paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/managing-o-ran-networks-xapp-development-from
|
Managing O-RAN Networks: xApp Development from Zero to Hero
|
2407.09619
|
https://arxiv.org/abs/2407.09619v3
|
https://arxiv.org/pdf/2407.09619v3.pdf
|
https://github.com/santos-j/xapp_development_zero_to_hero
| true | true | true |
none
|
https://paperswithcode.com/paper/isethdr-a-physics-based-synthetic-radiance
|
ISETHDR: A Physics-based Synthetic Radiance Dataset for High Dynamic Range Driving Scenes
|
2408.12048
|
https://arxiv.org/abs/2408.12048v1
|
https://arxiv.org/pdf/2408.12048v1.pdf
|
https://github.com/iset/isethdrsensor
| true | true | true |
none
|
https://paperswithcode.com/paper/3d-human-pose-estimation-with-2d-marginal
|
3D Human Pose Estimation with 2D Marginal Heatmaps
|
1806.01484
|
http://arxiv.org/abs/1806.01484v2
|
http://arxiv.org/pdf/1806.01484v2.pdf
|
https://github.com/anibali/margipose
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/model-conversion-via-differentially-private
|
Model Conversion via Differentially Private Data-Free Distillation
|
2304.12528
|
https://arxiv.org/abs/2304.12528v2
|
https://arxiv.org/pdf/2304.12528v2.pdf
|
https://github.com/MindCode-4/code-7/tree/main/model-conversion-via
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/bertscore-evaluating-text-generation-with
|
BERTScore: Evaluating Text Generation with BERT
|
1904.09675
|
https://arxiv.org/abs/1904.09675v3
|
https://arxiv.org/pdf/1904.09675v3.pdf
|
https://github.com/stair-lab/villm-eval
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/summac-re-visiting-nli-based-models-for
|
SummaC: Re-Visiting NLI-based Models for Inconsistency Detection in Summarization
|
2111.09525
|
https://arxiv.org/abs/2111.09525v1
|
https://arxiv.org/pdf/2111.09525v1.pdf
|
https://github.com/stair-lab/villm-eval
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/neural-networks-for-parameter-estimation-in-1
|
Neural Networks for Parameter Estimation in Geometrically Anisotropic Geostatistical Models
|
2408.10915
|
https://arxiv.org/abs/2408.10915v1
|
https://arxiv.org/pdf/2408.10915v1.pdf
|
https://github.com/AlejandroVillazonG/AnisotropyEstimatorsNN
| true | false | false |
none
|
https://paperswithcode.com/paper/tina-acceleration-of-non-nn-signal-processing
|
TINA: Acceleration of Non-NN Signal Processing Algorithms Using NN Accelerators
|
2408.16551
|
https://arxiv.org/abs/2408.16551v1
|
https://arxiv.org/pdf/2408.16551v1.pdf
|
https://github.com/christiaanboe/tina
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/scribble-based-fast-weak-supervision-and
|
Scribble-based fast weak-supervision and interactive corrections for segmenting whole slide images
|
2402.08333
|
https://arxiv.org/abs/2402.08333v1
|
https://arxiv.org/pdf/2402.08333v1.pdf
|
https://github.com/antoinehabis/wss-uic
| true | true | true |
none
|
https://paperswithcode.com/paper/geocalib-learning-single-image-calibration
|
GeoCalib: Learning Single-image Calibration with Geometric Optimization
|
2409.06704
|
https://arxiv.org/abs/2409.06704v2
|
https://arxiv.org/pdf/2409.06704v2.pdf
|
https://github.com/cvg/geocalib
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/collaborative-management-of-benchmark
|
Collaborative Management of Benchmark Instances and their Attributes
|
2009.02995
|
https://arxiv.org/abs/2009.02995v2
|
https://arxiv.org/pdf/2009.02995v2.pdf
|
https://github.com/Udopia/gbdc
| false | false | true |
none
|
https://paperswithcode.com/paper/learning-to-groove-with-inverse-sequence
|
Learning to Groove with Inverse Sequence Transformations
|
1905.06118
|
https://arxiv.org/abs/1905.06118v2
|
https://arxiv.org/pdf/1905.06118v2.pdf
|
https://github.com/polimi-ispl/larsnet
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/improving-perceptual-quality-of-drum
|
Improving Perceptual Quality of Drum Transcription with the Expanded Groove MIDI Dataset
|
2004.00188
|
https://arxiv.org/abs/2004.00188v5
|
https://arxiv.org/pdf/2004.00188v5.pdf
|
https://github.com/polimi-ispl/larsnet
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/technical-insights-and-legal-considerations
|
Technical Insights and Legal Considerations for Advancing Federated Learning in Bioinformatics
|
2503.09649
|
https://arxiv.org/abs/2503.09649v2
|
https://arxiv.org/pdf/2503.09649v2.pdf
|
https://github.com/IDSIA/FL-Bioinformatics
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/enhancing-next-active-object-based-egocentric
|
Enhancing Next Active Object-based Egocentric Action Anticipation with Guided Attention
|
2305.12953
|
https://arxiv.org/abs/2305.12953v2
|
https://arxiv.org/pdf/2305.12953v2.pdf
|
https://github.com/sanketsans/ganov2
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/spagbol-spatial-graph-based-orientated
|
SpaGBOL: Spatial-Graph-Based Orientated Localisation
|
2409.15514
|
https://arxiv.org/abs/2409.15514v2
|
https://arxiv.org/pdf/2409.15514v2.pdf
|
https://github.com/tavisshore/SpaGBOL
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/when-the-poset-of-the-ideal-class-monoid-of-a
|
When the poset of the ideal class monoid of a numerical semigroup is a lattice
|
2412.07281
|
https://arxiv.org/abs/2412.07281v1
|
https://arxiv.org/pdf/2412.07281v1.pdf
|
https://github.com/numerical-semigroups/ideal-class-monoid
| true | true | true |
none
|
https://paperswithcode.com/paper/omnilrs-a-photorealistic-simulator-for-lunar
|
OmniLRS: A Photorealistic Simulator for Lunar Robotics
|
2309.08997
|
https://arxiv.org/abs/2309.08997v1
|
https://arxiv.org/pdf/2309.08997v1.pdf
|
https://github.com/antoinerichard/lunarsim
| true | true | true |
none
|
https://paperswithcode.com/paper/bip-ndr-nodoirefs-a-dataset-of-citations-from
|
BIP! NDR (NoDoiRefs): A Dataset of Citations From Papers Without DOIs in Computer Science Conferences and Workshops
|
2307.12794
|
https://arxiv.org/abs/2307.12794v1
|
https://arxiv.org/pdf/2307.12794v1.pdf
|
https://github.com/athenarc/bip-ndr-workflow
| true | true | true |
none
|
https://paperswithcode.com/paper/hawkes-process-based-on-controlled
|
Hawkes Process Based on Controlled Differential Equations
|
2305.07031
|
https://arxiv.org/abs/2305.07031v2
|
https://arxiv.org/pdf/2305.07031v2.pdf
|
https://github.com/kookseungji/Hawkes-Process-Based-on-Controlled-Differential-Equations
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/nushurescue-revitalization-of-the-endangered
|
NushuRescue: Revitalization of the Endangered Nushu Language with AI
|
2412.00218
|
https://arxiv.org/abs/2412.00218v4
|
https://arxiv.org/pdf/2412.00218v4.pdf
|
https://github.com/ivoryayang/NushuRescue
| true | true | true |
none
|
https://paperswithcode.com/paper/how-should-we-represent-history-in
|
How Should We Represent History in Interpretable Models of Clinical Policies?
|
2412.07895
|
https://arxiv.org/abs/2412.07895v1
|
https://arxiv.org/pdf/2412.07895v1.pdf
|
https://github.com/Healthy-AI/inpole
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/constructing-non-markovian-decision-process
|
Constructing Non-Markovian Decision Process via History Aggregator
|
2506.24026
|
https://arxiv.org/abs/2506.24026v1
|
https://arxiv.org/pdf/2506.24026v1.pdf
|
https://github.com/2664139264/sequential_rl
| true | false | false |
none
|
https://paperswithcode.com/paper/enhanced-graph-learning-schemes-driven-by
|
Enhanced graph-learning schemes driven by similar distributions of motifs
|
2207.04747
|
https://arxiv.org/abs/2207.04747v1
|
https://arxiv.org/pdf/2207.04747v1.pdf
|
https://github.com/reysam93/adaptive_agg_gcn
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/vrem-fl-mobility-aware-computation-scheduling
|
VREM-FL: Mobility-Aware Computation-Scheduling Co-Design for Vehicular Federated Learning
|
2311.18741
|
https://arxiv.org/abs/2311.18741v3
|
https://arxiv.org/pdf/2311.18741v3.pdf
|
https://github.com/lucaballotta/vrem-fl
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/prompting-language-informed-distribution-for
|
Prompting Language-Informed Distribution for Compositional Zero-Shot Learning
|
2305.14428
|
https://arxiv.org/abs/2305.14428v3
|
https://arxiv.org/pdf/2305.14428v3.pdf
|
https://github.com/cogito2012/plid
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/capturing-visualization-design-rationale
|
Capturing Visualization Design Rationale
|
2506.16571
|
https://arxiv.org/abs/2506.16571v1
|
https://arxiv.org/pdf/2506.16571v1.pdf
|
https://github.com/maevehutch/DesignQAR
| true | false | false |
none
|
https://paperswithcode.com/paper/llamapartialspoof-an-llm-driven-fake-speech
|
LlamaPartialSpoof: An LLM-Driven Fake Speech Dataset Simulating Disinformation Generation
|
2409.14743
|
https://arxiv.org/abs/2409.14743v2
|
https://arxiv.org/pdf/2409.14743v2.pdf
|
https://github.com/hieuthi/llamapartialspoof
| true | true | true |
none
|
https://paperswithcode.com/paper/colpali-efficient-document-retrieval-with
|
ColPali: Efficient Document Retrieval with Vision Language Models
|
2407.01449
|
https://arxiv.org/abs/2407.01449v6
|
https://arxiv.org/pdf/2407.01449v6.pdf
|
https://github.com/illuin-tech/colpali
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/empo-theory-driven-dataset-construction-for
|
EmPO: Emotion Grounding for Empathetic Response Generation through Preference Optimization
|
2406.19071
|
https://arxiv.org/abs/2406.19071v2
|
https://arxiv.org/pdf/2406.19071v2.pdf
|
https://github.com/justtherightsize/empo
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/fast-analysis-of-the-openai-o1-preview-model
|
Fast Analysis of the OpenAI O1-Preview Model in Solving Random K-SAT Problem: Does the LLM Solve the Problem Itself or Call an External SAT Solver?
|
2409.11232
|
https://arxiv.org/abs/2409.11232v2
|
https://arxiv.org/pdf/2409.11232v2.pdf
|
https://github.com/raffaelemarino/analysisopenaio1modelksat
| true | true | false |
none
|
https://paperswithcode.com/paper/on-the-limits-of-agency-in-agent-based-models
|
On the limits of agency in agent-based models
|
2409.10568
|
https://arxiv.org/abs/2409.10568v3
|
https://arxiv.org/pdf/2409.10568v3.pdf
|
https://github.com/agenttorch/agenttorch
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/a-comprehensive-evaluation-of-quantized
|
Exploring the Trade-Offs: Quantization Methods, Task Difficulty, and Model Size in Large Language Models From Edge to Giant
|
2409.11055
|
https://arxiv.org/abs/2409.11055v5
|
https://arxiv.org/pdf/2409.11055v5.pdf
|
https://gitlab.com/ones-ai/eval-quant-llms
| true | true | false |
none
|
https://paperswithcode.com/paper/non-stationary-time-series-forecasting-based
|
Non-Stationary Time Series Forecasting Based on Fourier Analysis and Cross Attention Mechanism
|
2505.06917
|
https://arxiv.org/abs/2505.06917v1
|
https://arxiv.org/pdf/2505.06917v1.pdf
|
https://github.com/YukiBear426/AEFIN
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/ontology-generation-using-large-language
|
Ontology Generation using Large Language Models
|
2503.05388
|
https://arxiv.org/abs/2503.05388v1
|
https://arxiv.org/pdf/2503.05388v1.pdf
|
https://github.com/dersuchendee/Onto-Generation
| true | false | false |
none
|
https://paperswithcode.com/paper/mvgamba-unify-3d-content-generation-as-state
|
MVGamba: Unify 3D Content Generation as State Space Sequence Modeling
|
2406.06367
|
https://arxiv.org/abs/2406.06367v3
|
https://arxiv.org/pdf/2406.06367v3.pdf
|
https://github.com/skyworkai/mvgamba
| true | true | true |
jax
|
https://paperswithcode.com/paper/an-accelerated-algorithm-for-stochastic
|
An Accelerated Algorithm for Stochastic Bilevel Optimization under Unbounded Smoothness
|
2409.19212
|
https://arxiv.org/abs/2409.19212v5
|
https://arxiv.org/pdf/2409.19212v5.pdf
|
https://github.com/mingruiliu-ml-lab/accelerated-bilevel-optimization-unbounded-smoothness
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/crafting-distribution-shifts-for-validation
|
Crafting Distribution Shifts for Validation and Training in Single Source Domain Generalization
|
2409.19774
|
https://arxiv.org/abs/2409.19774v1
|
https://arxiv.org/pdf/2409.19774v1.pdf
|
https://github.com/nikosefth/crafting-shifts
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/deriving-representative-structure-from-music
|
Synthesizing Composite Hierarchical Structure from Symbolic Music Corpora
|
2502.15849
|
https://arxiv.org/abs/2502.15849v4
|
https://arxiv.org/pdf/2502.15849v4.pdf
|
https://github.com/ilanashapiro/constraints_project
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/forecasting-disease-progression-with-parallel
|
Forecasting Disease Progression with Parallel Hyperplanes in Longitudinal Retinal OCT
|
2409.20195
|
https://arxiv.org/abs/2409.20195v2
|
https://arxiv.org/pdf/2409.20195v2.pdf
|
https://github.com/arunava555/Forecast_parallel_hyperplanes
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/a-survey-on-graph-neural-networks-for-1
|
A Survey on Graph Neural Networks for Remaining Useful Life Prediction: Methodologies, Evaluation and Future Trends
|
2409.19629
|
https://arxiv.org/abs/2409.19629v1
|
https://arxiv.org/pdf/2409.19629v1.pdf
|
https://github.com/Frank-Wang-oss/GNN_RUL_Benchmarking
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/retrieval-based-reconstruction-for-time
|
REBAR: Retrieval-Based Reconstruction for Time-series Contrastive Learning
|
2311.00519
|
https://arxiv.org/abs/2311.00519v4
|
https://arxiv.org/pdf/2311.00519v4.pdf
|
https://github.com/maxxu05/rebar
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/dmin-scalable-training-data-influence
|
DMin: Scalable Training Data Influence Estimation for Diffusion Models
|
2412.08637
|
https://arxiv.org/abs/2412.08637v1
|
https://arxiv.org/pdf/2412.08637v1.pdf
|
https://github.com/huawei-lin/DMin
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/conductor-exponents-for-families-of
|
Conductor exponents for families of hyperelliptic curves
|
2410.21134
|
https://arxiv.org/abs/2410.21134v1
|
https://arxiv.org/pdf/2410.21134v1.pdf
|
https://github.com/martin-azon/clusters_and_conductors
| true | true | false |
none
|
https://paperswithcode.com/paper/blip-bootstrapping-language-image-pre
|
BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation
|
2201.12086
|
https://arxiv.org/abs/2201.12086v2
|
https://arxiv.org/pdf/2201.12086v2.pdf
|
https://github.com/ninatu/howtocaption
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/restructuring-vector-quantization-with-the
|
Restructuring Vector Quantization with the Rotation Trick
|
2410.06424
|
https://arxiv.org/abs/2410.06424v1
|
https://arxiv.org/pdf/2410.06424v1.pdf
|
https://github.com/lucidrains/vector-quantize-pytorch
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/noether-s-razor-learning-conserved-quantities
|
Noether's razor: Learning Conserved Quantities
|
2410.08087
|
https://arxiv.org/abs/2410.08087v1
|
https://arxiv.org/pdf/2410.08087v1.pdf
|
https://github.com/tychovdo/noethers-razor
| true | false | true |
jax
|
https://paperswithcode.com/paper/synthia-novel-concept-design-with-affordance
|
Synthia: Novel Concept Design with Affordance Composition
|
2502.17793
|
https://arxiv.org/abs/2502.17793v1
|
https://arxiv.org/pdf/2502.17793v1.pdf
|
https://github.com/hyeonjeongha/synthia
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/donut-document-understanding-transformer
|
OCR-free Document Understanding Transformer
|
2111.15664
|
https://arxiv.org/abs/2111.15664v5
|
https://arxiv.org/pdf/2111.15664v5.pdf
|
https://github.com/MindCode-4/code-3/tree/main/donut
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/hypothesis-free-discovery-from
|
Hypothesis-free discovery from epidemiological data by automatic detection and local inference for tree-based nonlinearities and interactions
|
2505.00571
|
https://arxiv.org/abs/2505.00571v1
|
https://arxiv.org/pdf/2505.00571v1.pdf
|
https://github.com/GiorgioSpadaccini/ruleSHAP
| true | false | false |
none
|
https://paperswithcode.com/paper/understanding-and-improving-transferability
|
Understanding and improving transferability in machine-learned activation energy predictors
|
2505.00604
|
https://arxiv.org/abs/2505.00604v1
|
https://arxiv.org/pdf/2505.00604v1.pdf
|
https://github.com/Kinetica-jl/Kinetica.jl
| true | false | false |
none
|
https://paperswithcode.com/paper/scalarisation-based-risk-concepts-for-robust
|
Scalarisation-based risk concepts for robust multi-objective optimisation
|
2405.10221
|
https://arxiv.org/abs/2405.10221v4
|
https://arxiv.org/pdf/2405.10221v4.pdf
|
https://github.com/benmltu/scalarize
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/predicting-ionic-conductivity-in-solids-from
|
Predicting ionic conductivity in solids from the machine-learned potential energy landscape
|
2411.06804
|
https://arxiv.org/abs/2411.06804v2
|
https://arxiv.org/pdf/2411.06804v2.pdf
|
https://github.com/SiLiKhon/pes_fingerprint
| true | false | true |
tf
|
https://paperswithcode.com/paper/learning-test-generators-for-cyber-physical
|
Learning test generators for cyber-physical systems
|
2410.03202
|
https://arxiv.org/abs/2410.03202v1
|
https://arxiv.org/pdf/2410.03202v1.pdf
|
https://github.com/dgumenyuk/tool-competition-av
| true | false | false |
none
|
https://paperswithcode.com/paper/persuasiveness-of-generated-free-text
|
Persuasiveness of Generated Free-Text Rationales in Subjective Decisions: A Case Study on Pairwise Argument Ranking
|
2406.13905
|
https://arxiv.org/abs/2406.13905v1
|
https://arxiv.org/pdf/2406.13905v1.pdf
|
https://github.com/EngSalem/Free-text-rationale-persuasion
| true | false | false |
none
|
https://paperswithcode.com/paper/modeling-social-media-recommendation-impacts
|
Modeling Social Media Recommendation Impacts Using Academic Networks: A Graph Neural Network Approach
|
2410.04552
|
https://arxiv.org/abs/2410.04552v1
|
https://arxiv.org/pdf/2410.04552v1.pdf
|
https://github.com/dimneurolab/academic_network_project
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/test-time-adaptation-for-keypoint-based
|
Test-Time Adaptation for Keypoint-Based Spacecraft Pose Estimation Based on Predicted-View Synthesis
|
2410.04298
|
https://arxiv.org/abs/2410.04298v1
|
https://arxiv.org/pdf/2410.04298v1.pdf
|
https://github.com/jotabravo/spacecraft-tta
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/ddr-exploiting-deep-degradation-response-as
|
DDR: Exploiting Deep Degradation Response as Flexible Image Descriptor
|
2406.08377
|
https://arxiv.org/abs/2406.08377v3
|
https://arxiv.org/pdf/2406.08377v3.pdf
|
https://github.com/eezkni/ddr
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/2408-02824
|
Wave-RVFL: A Randomized Neural Network Based on Wave Loss Function
|
2408.02824
|
https://arxiv.org/abs/2408.02824v2
|
https://arxiv.org/pdf/2408.02824v2.pdf
|
https://github.com/mtanveer1/wave-rvfl
| true | true | true |
none
|
https://paperswithcode.com/paper/implicitly-aligning-humans-and-autonomous
|
Implicitly Aligning Humans and Autonomous Agents through Shared Task Abstractions
|
2505.04579
|
https://arxiv.org/abs/2505.04579v1
|
https://arxiv.org/pdf/2505.04579v1.pdf
|
https://github.com/HIRO-group/HA2
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/unveiling-the-mechanisms-of-dai-a-logic-based
|
Unveiling the Mechanisms of DAI: A Logic-Based Approach to Stablecoin Analysis
|
2412.15814
|
https://arxiv.org/abs/2412.15814v3
|
https://arxiv.org/pdf/2412.15814v3.pdf
|
https://zenodo.org/record/15094256
| true | false | false |
none
|
https://paperswithcode.com/paper/online-isolation-forest
|
Online Isolation Forest
|
2505.09593
|
https://arxiv.org/abs/2505.09593v1
|
https://arxiv.org/pdf/2505.09593v1.pdf
|
https://github.com/ineveloppilif/online-isolation-forest
| true | true | false |
none
|
https://paperswithcode.com/paper/nerva-a-truly-sparse-implementation-of-neural
|
Nerva: a Truly Sparse Implementation of Neural Networks
|
2407.17437
|
https://arxiv.org/abs/2407.17437v1
|
https://arxiv.org/pdf/2407.17437v1.pdf
|
https://github.com/wiegerw/nerva
| true | true | true |
jax
|
https://paperswithcode.com/paper/optnet-differentiable-optimization-as-a-layer
|
OptNet: Differentiable Optimization as a Layer in Neural Networks
|
1703.00443
|
https://arxiv.org/abs/1703.00443v5
|
https://arxiv.org/pdf/1703.00443v5.pdf
|
https://github.com/kevin-tracy/qpax
| false | false | true |
jax
|
https://paperswithcode.com/paper/a-new-federated-learning-framework-against
|
A New Federated Learning Framework Against Gradient Inversion Attacks
|
2412.07187
|
https://arxiv.org/abs/2412.07187v1
|
https://arxiv.org/pdf/2412.07187v1.pdf
|
https://github.com/pengxin-guo/hyperfl
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/bimedix2-bio-medical-expert-lmm-for-diverse
|
BiMediX2: Bio-Medical EXpert LMM for Diverse Medical Modalities
|
2412.07769
|
https://arxiv.org/abs/2412.07769v1
|
https://arxiv.org/pdf/2412.07769v1.pdf
|
https://github.com/mbzuai-oryx/bimedix2
| true | true | true |
none
|
https://paperswithcode.com/paper/were-rnns-all-we-needed
|
Were RNNs All We Needed?
|
2410.01201
|
https://arxiv.org/abs/2410.01201v3
|
https://arxiv.org/pdf/2410.01201v3.pdf
|
https://github.com/YecanLee/min-LSTM-torch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/stochastic-bilevel-optimization-with-lower
|
Contextual Bilevel Reinforcement Learning for Incentive Alignment
|
2406.01575
|
https://arxiv.org/abs/2406.01575v2
|
https://arxiv.org/pdf/2406.01575v2.pdf
|
https://github.com/lasgroup/hpgd
| true | true | true |
jax
|
https://paperswithcode.com/paper/integrated-machine-learning-and-survival
|
Integrated Machine Learning and Survival Analysis Modeling for Enhanced Chronic Kidney Disease Risk Stratification
|
2411.10754
|
https://arxiv.org/abs/2411.10754v1
|
https://arxiv.org/pdf/2411.10754v1.pdf
|
https://github.com/vironix-health/CKD-ZD-project
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/lion-xa-unsupervised-domain-adaptation-via
|
LiOn-XA: Unsupervised Domain Adaptation via LiDAR-Only Cross-Modal Adversarial Training
|
2410.15833
|
https://arxiv.org/abs/2410.15833v1
|
https://arxiv.org/pdf/2410.15833v1.pdf
|
https://github.com/jensle97/lion-xa
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/hammer-robust-function-calling-for-on-device
|
Hammer: Robust Function-Calling for On-Device Language Models via Function Masking
|
2410.04587
|
https://arxiv.org/abs/2410.04587v2
|
https://arxiv.org/pdf/2410.04587v2.pdf
|
https://github.com/MadeAgents/Hammer
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/semsegbench-detecbench-benchmarking
|
SemSegBench & DetecBench: Benchmarking Reliability and Generalization Beyond Classification
|
2505.18015
|
https://arxiv.org/abs/2505.18015v1
|
https://arxiv.org/pdf/2505.18015v1.pdf
|
https://github.com/shashankskagnihotri/benchmarking_reliability_generalization
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/wetica-a-directed-search-weighted-ensemble
|
WeTICA: A directed search weighted ensemble based enhanced sampling method to estimate rare event kinetics in a reduced dimensional space
|
2501.08926
|
https://arxiv.org/abs/2501.08926v1
|
https://arxiv.org/pdf/2501.08926v1.pdf
|
https://github.com/teamsuman/wetica
| true | true | false |
none
|
https://paperswithcode.com/paper/maxim-multi-axis-mlp-for-image-processing
|
MAXIM: Multi-Axis MLP for Image Processing
|
2201.02973
|
https://arxiv.org/abs/2201.02973v2
|
https://arxiv.org/pdf/2201.02973v2.pdf
|
https://github.com/sayakpaul/maxim-tf
| false | false | true |
tf
|
https://paperswithcode.com/paper/misinfo-reaction-frames-reasoning-about
|
Misinfo Reaction Frames: Reasoning about Readers’ Reactions to News Headlines
| null |
https://aclanthology.org/2022.acl-long.222
|
https://aclanthology.org/2022.acl-long.222.pdf
|
https://github.com/MindCode-4/code-12/tree/main/misinfo-reaction-frames
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/positive-augmented-contrastive-learning-for
|
Positive-Augmented Contrastive Learning for Vision-and-Language Evaluation and Training
|
2410.07336
|
https://arxiv.org/abs/2410.07336v1
|
https://arxiv.org/pdf/2410.07336v1.pdf
|
https://github.com/aimagelab/pacscore
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/inceventgs-pose-free-gaussian-splatting-from
|
IncEventGS: Pose-Free Gaussian Splatting from a Single Event Camera
|
2410.08107
|
https://arxiv.org/abs/2410.08107v2
|
https://arxiv.org/pdf/2410.08107v2.pdf
|
https://github.com/wu-cvgl/inceventgs
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/one-shot-world-models-using-a-transformer
|
One-shot World Models Using a Transformer Trained on a Synthetic Prior
|
2409.14084
|
https://arxiv.org/abs/2409.14084v2
|
https://arxiv.org/pdf/2409.14084v2.pdf
|
https://github.com/automl/oswm
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/improving-speaker-representations-using
|
Improving Speaker Representations Using Contrastive Losses on Multi-scale Features
|
2410.05037
|
https://arxiv.org/abs/2410.05037v1
|
https://arxiv.org/pdf/2410.05037v1.pdf
|
https://github.com/satvik-dixit/mfcon
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/llms-and-memorization-on-quality-and
|
LLMs and Memorization: On Quality and Specificity of Copyright Compliance
|
2405.18492
|
https://arxiv.org/abs/2405.18492v3
|
https://arxiv.org/pdf/2405.18492v3.pdf
|
https://github.com/felixbmuller/llms-memorization-copyright
| true | true | true |
none
|
https://paperswithcode.com/paper/zero-reference-deep-curve-estimation-for-low
|
Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement
|
2001.06826
|
https://arxiv.org/abs/2001.06826v2
|
https://arxiv.org/pdf/2001.06826v2.pdf
|
https://github.com/pwc-1/Paper-9/tree/main/6/Zero-DCE%2B%2B
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/contrast-similarity-aware-dual-pathway-mamba
|
Contrast Similarity-Aware Dual-Pathway Mamba for Multivariate Time Series Node Classification
|
2411.12222
|
https://arxiv.org/abs/2411.12222v1
|
https://arxiv.org/pdf/2411.12222v1.pdf
|
https://github.com/dumingsen/DPMamba
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/learning-to-optimize-for-mixed-integer-non
|
Learning to Optimize for Mixed-Integer Non-linear Programming with Feasibility Guarantees
|
2410.11061
|
https://arxiv.org/abs/2410.11061v9
|
https://arxiv.org/pdf/2410.11061v9.pdf
|
https://github.com/pnnl/l2o-pminlp
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/step-level-reward-for-free-in-rl-based-t2i
|
Step-level Reward for Free in RL-based T2I Diffusion Model Fine-tuning
|
2505.19196
|
https://arxiv.org/abs/2505.19196v1
|
https://arxiv.org/pdf/2505.19196v1.pdf
|
https://github.com/lil-shake/coca
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/cerebrum-aios-sdk-a-platform-for-agent
|
Cerebrum (AIOS SDK): A Platform for Agent Development, Deployment, Distribution, and Discovery
|
2503.11444
|
https://arxiv.org/abs/2503.11444v1
|
https://arxiv.org/pdf/2503.11444v1.pdf
|
https://github.com/agiresearch/aios
| false | false | true |
none
|
https://paperswithcode.com/paper/instant-gaussian-stream-fast-and
|
Instant Gaussian Stream: Fast and Generalizable Streaming of Dynamic Scene Reconstruction via Gaussian Splatting
|
2503.16979
|
https://arxiv.org/abs/2503.16979v1
|
https://arxiv.org/pdf/2503.16979v1.pdf
|
https://github.com/yjb6/IGS
| true | false | true |
jax
|
https://paperswithcode.com/paper/modelling-and-verifying-neuronal-archetypes
|
Modelling and Verifying Neuronal Archetypes in Coq
|
2505.05362
|
https://arxiv.org/abs/2505.05362v1
|
https://arxiv.org/pdf/2505.05362v1.pdf
|
https://github.com/afelty/NeuronalArchetypesAppendix
| true | false | false |
none
|
https://paperswithcode.com/paper/quic-exfil-exploiting-quic-s-server-preferred
|
QUIC-Exfil: Exploiting QUIC's Server Preferred Address Feature to Perform Data Exfiltration Attacks
|
2505.05292
|
https://arxiv.org/abs/2505.05292v1
|
https://arxiv.org/pdf/2505.05292v1.pdf
|
https://github.com/thomasgruebl/quic-exfil
| true | true | false |
none
|
https://paperswithcode.com/paper/from-n-grams-to-pre-trained-multilingual
|
From N-grams to Pre-trained Multilingual Models For Language Identification
|
2410.08728
|
https://arxiv.org/abs/2410.08728v1
|
https://arxiv.org/pdf/2410.08728v1.pdf
|
https://github.com/dsfsi/za-lid
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/integrating-supertag-features-into-neural
|
Integrating Supertag Features into Neural Discontinuous Constituent Parsing
|
2410.08766
|
https://arxiv.org/abs/2410.08766v1
|
https://arxiv.org/pdf/2410.08766v1.pdf
|
https://github.com/filemon11/discoparset-supertag
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/beyond-gfvc-a-progressive-face-video
|
Beyond GFVC: A Progressive Face Video Compression Framework with Adaptive Visual Tokens
|
2410.08485
|
https://arxiv.org/abs/2410.08485v1
|
https://arxiv.org/pdf/2410.08485v1.pdf
|
https://github.com/berlin0610/pfvc
| true | true | false |
none
|
https://paperswithcode.com/paper/do-generative-video-models-learn-physical
|
Do generative video models understand physical principles?
|
2501.09038
|
https://arxiv.org/abs/2501.09038v3
|
https://arxiv.org/pdf/2501.09038v3.pdf
|
https://github.com/google-deepmind/physics-IQ-benchmark
| true | true | false |
none
|
https://paperswithcode.com/paper/extreme-sparsity-gives-rise-to-functional
|
Dynamics of specialization in neural modules under resource constraints
|
2106.02626
|
https://arxiv.org/abs/2106.02626v6
|
https://arxiv.org/pdf/2106.02626v6.pdf
|
https://github.com/GabrielBena/specialization-dynamics
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/a-framework-for-adapting-human-robot
|
A Framework for Adapting Human-Robot Interaction to Diverse User Groups
|
2410.11377
|
https://arxiv.org/abs/2410.11377v2
|
https://arxiv.org/pdf/2410.11377v2.pdf
|
https://github.com/tpekarekrosin/uhh_ub_ageawarehri
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/aide-ai-driven-exploration-in-the-space-of
|
AIDE: AI-Driven Exploration in the Space of Code
|
2502.13138
|
https://arxiv.org/abs/2502.13138v1
|
https://arxiv.org/pdf/2502.13138v1.pdf
|
https://github.com/wecoai/aideml
| true | true | true |
none
|
https://paperswithcode.com/paper/re-bench-evaluating-frontier-ai-r-d
|
RE-Bench: Evaluating frontier AI R&D capabilities of language model agents against human experts
|
2411.15114
|
https://arxiv.org/abs/2411.15114v1
|
https://arxiv.org/pdf/2411.15114v1.pdf
|
https://github.com/wecoai/aideml
| true | false | true |
none
|
https://paperswithcode.com/paper/amago-scalable-in-context-reinforcement
|
AMAGO: Scalable In-Context Reinforcement Learning for Adaptive Agents
|
2310.09971
|
https://arxiv.org/abs/2310.09971v4
|
https://arxiv.org/pdf/2310.09971v4.pdf
|
https://github.com/ut-austin-rpl/amago
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/conditional-latent-diffusion-based-speech
|
Conditional Latent Diffusion-Based Speech Enhancement Via Dual Context Learning
|
2501.10052
|
https://arxiv.org/abs/2501.10052v1
|
https://arxiv.org/pdf/2501.10052v1.pdf
|
https://github.com/modelscope/ClearerVoice-Studio
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/ditto-tts-efficient-and-scalable-zero-shot
|
DiTTo-TTS: Diffusion Transformers for Scalable Text-to-Speech without Domain-Specific Factors
|
2406.11427
|
https://arxiv.org/abs/2406.11427v2
|
https://arxiv.org/pdf/2406.11427v2.pdf
|
https://github.com/keonlee9420/evaluate-zero-shot-tts
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/shapley-guided-utility-learning-for-effective
|
Shapley-Guided Utility Learning for Effective Graph Inference Data Valuation
|
2503.18195
|
https://arxiv.org/abs/2503.18195v1
|
https://arxiv.org/pdf/2503.18195v1.pdf
|
https://github.com/frankhlchi/infer_data_valuation
| true | false | false |
pytorch
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.