paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/knowledge-guided-prompt-learning-for-request
|
Knowledge-Guided Prompt Learning for Request Quality Assurance in Public Code Review
|
2410.21673
|
https://arxiv.org/abs/2410.21673v2
|
https://arxiv.org/pdf/2410.21673v2.pdf
|
https://github.com/wut-idea/kp-pcr
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/knowledge-fusion-of-large-language-models
|
Knowledge Fusion of Large Language Models
|
2401.10491
|
https://arxiv.org/abs/2401.10491v2
|
https://arxiv.org/pdf/2401.10491v2.pdf
|
https://github.com/fanqiwan/fusellm
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/weighted-reward-preference-optimization-for
|
Weighted-Reward Preference Optimization for Implicit Model Fusion
|
2412.03187
|
https://arxiv.org/abs/2412.03187v1
|
https://arxiv.org/pdf/2412.03187v1.pdf
|
https://github.com/fanqiwan/fusellm
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/advancing-learnable-multi-agent-pathfinding
|
Advancing Learnable Multi-Agent Pathfinding Solvers with Active Fine-Tuning
|
2506.23793
|
https://arxiv.org/abs/2506.23793v1
|
https://arxiv.org/pdf/2506.23793v1.pdf
|
https://github.com/Cognitive-AI-Systems/MAPF-GPT
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/a-little-less-conversation-a-little-more
|
A little less conversation, a little more action, please: Investigating the physical common-sense of LLMs in a 3D embodied environment
|
2410.23242
|
https://arxiv.org/abs/2410.23242v2
|
https://arxiv.org/pdf/2410.23242v2.pdf
|
https://github.com/kinds-of-intelligence-cfi/llm-aai
| true | true | true |
none
|
https://paperswithcode.com/paper/v2x-assisted-distributed-computing-and
|
V2X-Assisted Distributed Computing and Control Framework for Connected and Automated Vehicles under Ramp Merging Scenario
|
2410.22987
|
https://arxiv.org/abs/2410.22987v1
|
https://arxiv.org/pdf/2410.22987v1.pdf
|
https://github.com/qiongwu86/v2x-assisted-distributed-computing-and-control-framework-for-connected-and-automated-vehicles
| true | true | false |
none
|
https://paperswithcode.com/paper/100k-or-100-days-trade-offs-when-pre-training
|
$100K or 100 Days: Trade-offs when Pre-Training with Academic Resources
|
2410.23261
|
https://arxiv.org/abs/2410.23261v1
|
https://arxiv.org/pdf/2410.23261v1.pdf
|
https://github.com/apoorvkh/academic-pretraining
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/misspecification-uncertainties-in-near
|
Parameter uncertainties for imperfect surrogate models in the low-noise regime
|
2402.01810
|
https://arxiv.org/abs/2402.01810v5
|
https://arxiv.org/pdf/2402.01810v5.pdf
|
https://github.com/tomswinburne/POPS-Regression
| true | true | true |
none
|
https://paperswithcode.com/paper/latent-diffusion-implicit-amplification
|
Latent Diffusion, Implicit Amplification: Efficient Continuous-Scale Super-Resolution for Remote Sensing Images
|
2410.22830
|
https://arxiv.org/abs/2410.22830v1
|
https://arxiv.org/pdf/2410.22830v1.pdf
|
https://github.com/hanlinwu/E2DiffSR
| true | false | false |
none
|
https://paperswithcode.com/paper/exactly-minimax-optimal-locally
|
Exactly Minimax-Optimal Locally Differentially Private Sampling
|
2410.22699
|
https://arxiv.org/abs/2410.22699v1
|
https://arxiv.org/pdf/2410.22699v1.pdf
|
https://github.com/phy811/Optimal-LDP-Sampling
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/statistical-quantification-of-confounding
|
Statistical quantification of confounding bias in predictive modelling
|
2111.00814
|
https://arxiv.org/abs/2111.00814v1
|
https://arxiv.org/pdf/2111.00814v1.pdf
|
https://github.com/spisakt/mlconfound_manuscript
| true | true | true |
none
|
https://paperswithcode.com/paper/general-identifiability-and-achievability-for
|
General Identifiability and Achievability for Causal Representation Learning
|
2310.15450
|
https://arxiv.org/abs/2310.15450v2
|
https://arxiv.org/pdf/2310.15450v2.pdf
|
https://github.com/bvarici/score-general-id-crl
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/mle-dojo-interactive-environments-for
|
MLE-Dojo: Interactive Environments for Empowering LLM Agents in Machine Learning Engineering
|
2505.07782
|
https://arxiv.org/abs/2505.07782v1
|
https://arxiv.org/pdf/2505.07782v1.pdf
|
https://github.com/MLE-Dojo/MLE-Dojo
| true | false | true |
none
|
https://paperswithcode.com/paper/neural-brain-a-neuroscience-inspired
|
Neural Brain: A Neuroscience-inspired Framework for Embodied Agents
|
2505.07634
|
https://arxiv.org/abs/2505.07634v2
|
https://arxiv.org/pdf/2505.07634v2.pdf
|
https://github.com/CNJianLiu/Neural-Brain-for-Embodied-Agents
| true | false | true |
tf
|
https://paperswithcode.com/paper/refact-updating-text-to-image-models-by
|
ReFACT: Updating Text-to-Image Models by Editing the Text Encoder
|
2306.00738
|
https://arxiv.org/abs/2306.00738v2
|
https://arxiv.org/pdf/2306.00738v2.pdf
|
https://github.com/technion-cs-nlp/refact
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/can-llms-learn-by-teaching-a-preliminary
|
Can LLMs Learn by Teaching for Better Reasoning? A Preliminary Study
|
2406.14629
|
https://arxiv.org/abs/2406.14629v3
|
https://arxiv.org/pdf/2406.14629v3.pdf
|
https://github.com/imagination-research/lbt
| true | true | true |
none
|
https://paperswithcode.com/paper/reflexion-language-agents-with-verbal
|
Reflexion: Language Agents with Verbal Reinforcement Learning
|
2303.11366
|
https://arxiv.org/abs/2303.11366v4
|
https://arxiv.org/pdf/2303.11366v4.pdf
|
https://github.com/imagination-research/lbt
| false | false | true |
none
|
https://paperswithcode.com/paper/direct-preference-optimization-your-language
|
Direct Preference Optimization: Your Language Model is Secretly a Reward Model
|
2305.18290
|
https://arxiv.org/abs/2305.18290v3
|
https://arxiv.org/pdf/2305.18290v3.pdf
|
https://github.com/imagination-research/lbt
| false | false | true |
none
|
https://paperswithcode.com/paper/cv-cities-advancing-cross-view-geo
|
CV-Cities: Advancing Cross-View Geo-Localization in Global Cities
|
2411.12431
|
https://arxiv.org/abs/2411.12431v1
|
https://arxiv.org/pdf/2411.12431v1.pdf
|
https://github.com/gaoshuang98/cvcities
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/the-isomorphism-problem-for-ideal-class
|
The isomorphism problem for ideal class monoids of numerical semigroups
|
2311.15265
|
https://arxiv.org/abs/2311.15265v2
|
https://arxiv.org/pdf/2311.15265v2.pdf
|
https://github.com/numerical-semigroups/ideal-class-monoid
| true | true | true |
none
|
https://paperswithcode.com/paper/tensor-based-synchronization-and-the-low
|
Tensor-Based Synchronization and the Low-Rankness of the Block Trifocal Tensor
|
2409.09313
|
https://arxiv.org/abs/2409.09313v2
|
https://arxiv.org/pdf/2409.09313v2.pdf
|
https://github.com/dmiao153/trifocalsync
| true | true | false |
none
|
https://paperswithcode.com/paper/sugarcrepe-fixing-hackable-benchmarks-for-1
|
SugarCrepe: Fixing Hackable Benchmarks for Vision-Language Compositionality
|
2306.14610
|
https://arxiv.org/abs/2306.14610v1
|
https://arxiv.org/pdf/2306.14610v1.pdf
|
https://github.com/borisdayma/clip-jax
| false | false | true |
jax
|
https://paperswithcode.com/paper/learning-to-edit-visual-programs-with-self
|
Learning to Edit Visual Programs with Self-Supervision
|
2406.02383
|
https://arxiv.org/abs/2406.02383v2
|
https://arxiv.org/pdf/2406.02383v2.pdf
|
https://github.com/rkjones4/vpi-edit
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/adaptive-length-image-tokenization-via
|
Adaptive Length Image Tokenization via Recurrent Allocation
|
2411.02393
|
https://arxiv.org/abs/2411.02393v1
|
https://arxiv.org/pdf/2411.02393v1.pdf
|
https://github.com/shivamduggal4/adaptive-length-tokenizer
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/mamt-4-multi-view-attention-networks-for
|
MamT$^4$: Multi-view Attention Networks for Mammography Cancer Classification
|
2411.01669
|
https://arxiv.org/abs/2411.01669v1
|
https://arxiv.org/pdf/2411.01669v1.pdf
|
https://github.com/ispras/mammo_crop
| true | true | false |
none
|
https://paperswithcode.com/paper/unified-speech-recognition-a-single-model-for
|
Unified Speech Recognition: A Single Model for Auditory, Visual, and Audiovisual Inputs
|
2411.02256
|
https://arxiv.org/abs/2411.02256v1
|
https://arxiv.org/pdf/2411.02256v1.pdf
|
https://github.com/ahaliassos/usr
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/finding-influential-cores-via-normalized
|
Finding Influential Cores via Normalized Ricci Flows in Directed and Undirected Hypergraphs with Applications
|
2502.16382
|
https://arxiv.org/abs/2502.16382v1
|
https://arxiv.org/pdf/2502.16382v1.pdf
|
https://github.com/iamprith/Ricci-Flow-on-Hypergraphs
| true | false | false |
none
|
https://paperswithcode.com/paper/hamiltonian-simulation-based-quantum-selected
|
Hamiltonian simulation-based quantum-selected configuration interaction for large-scale electronic structure calculations with a quantum computer
|
2412.07218
|
https://arxiv.org/abs/2412.07218v2
|
https://arxiv.org/pdf/2412.07218v2.pdf
|
https://github.com/qiskit/qiskit-addon-sqd
| true | true | true |
jax
|
https://paperswithcode.com/paper/crepe-open-domain-question-answering-with
|
CREPE: Open-Domain Question Answering with False Presuppositions
|
2211.17257
|
https://arxiv.org/abs/2211.17257v1
|
https://arxiv.org/pdf/2211.17257v1.pdf
|
https://github.com/velocitycavalry/crepe
| true | true | true |
none
|
https://paperswithcode.com/paper/ev-3dod-pushing-the-temporal-boundaries-of-3d
|
Ev-3DOD: Pushing the Temporal Boundaries of 3D Object Detection with Event Cameras
|
2502.19630
|
https://arxiv.org/abs/2502.19630v1
|
https://arxiv.org/pdf/2502.19630v1.pdf
|
https://github.com/mickeykang16/ev3dod
| true | true | false |
jax
|
https://paperswithcode.com/paper/critic-guided-decision-transformer-for
|
Critic-Guided Decision Transformer for Offline Reinforcement Learning
|
2312.13716
|
https://arxiv.org/abs/2312.13716v1
|
https://arxiv.org/pdf/2312.13716v1.pdf
|
https://github.com/sharkwyf/cgdt
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/newton-puiseux-analysis-for-interpretability
|
Newton-Puiseux Analysis for Interpretability and Calibration of Complex-Valued Neural Networks
|
2504.19176
|
https://arxiv.org/abs/2504.19176v1
|
https://arxiv.org/pdf/2504.19176v1.pdf
|
https://github.com/piotrmgs/puiseux-cvnn
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/mdpe-a-multimodal-deception-dataset-with
|
MDPE: A Multimodal Deception Dataset with Personality and Emotional Characteristics
|
2407.12274
|
https://arxiv.org/abs/2407.12274v1
|
https://arxiv.org/pdf/2407.12274v1.pdf
|
https://github.com/cai-cong/MER25_personality
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/learning-interaction-aware-3d-gaussian
|
Learning Interaction-aware 3D Gaussian Splatting for One-shot Hand Avatars
|
2410.08840
|
https://arxiv.org/abs/2410.08840v1
|
https://arxiv.org/pdf/2410.08840v1.pdf
|
https://github.com/xuanhuang0/guassianhand
| true | true | true |
jax
|
https://paperswithcode.com/paper/breast-tumor-classification-using
|
Breast Tumor Classification Using EfficientNet Deep Learning Model
|
2411.17870
|
https://arxiv.org/abs/2411.17870v1
|
https://arxiv.org/pdf/2411.17870v1.pdf
|
https://github.com/majid9418/Breast-Tumor-Classification-Histopathological
| true | false | false |
none
|
https://paperswithcode.com/paper/exo-2-growing-a-scheduling-language
|
Exo 2: Growing a Scheduling Language
|
2411.07211
|
https://arxiv.org/abs/2411.07211v4
|
https://arxiv.org/pdf/2411.07211v4.pdf
|
https://github.com/exo-lang/exoblas
| true | true | true |
none
|
https://paperswithcode.com/paper/optimal-reactive-operation-of-general
|
Optimal Reactive Operation of General Topology Supply Chain and Manufacturing Networks under Disruptions
|
2412.08046
|
https://arxiv.org/abs/2412.08046v1
|
https://arxiv.org/pdf/2412.08046v1.pdf
|
https://github.com/dovallev/supply_chain_disruptions
| true | false | false |
none
|
https://paperswithcode.com/paper/revisiting-neural-retrieval-on-accelerators
|
Revisiting Neural Retrieval on Accelerators
|
2306.04039
|
https://arxiv.org/abs/2306.04039v1
|
https://arxiv.org/pdf/2306.04039v1.pdf
|
https://github.com/facebookresearch/generative-recommenders
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/turning-dross-into-gold-loss-is-bert4rec
|
Turning Dross Into Gold Loss: is BERT4Rec really better than SASRec?
|
2309.07602
|
https://arxiv.org/abs/2309.07602v1
|
https://arxiv.org/pdf/2309.07602v1.pdf
|
https://github.com/facebookresearch/generative-recommenders
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/actions-speak-louder-than-words-trillion
|
Actions Speak Louder than Words: Trillion-Parameter Sequential Transducers for Generative Recommendations
|
2402.17152
|
https://arxiv.org/abs/2402.17152v3
|
https://arxiv.org/pdf/2402.17152v3.pdf
|
https://github.com/facebookresearch/generative-recommenders
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/review-of-deep-learning-models-for-crypto
|
Review of deep learning models for crypto price prediction: implementation and evaluation
|
2405.11431
|
https://arxiv.org/abs/2405.11431v2
|
https://arxiv.org/pdf/2405.11431v2.pdf
|
https://github.com/sydney-machine-learning/quantiledeeplearning
| false | false | true |
none
|
https://paperswithcode.com/paper/response-estimation-and-system-identification
|
Response Estimation and System Identification of Dynamical Systems via Physics-Informed Neural Networks
|
2410.01340
|
https://arxiv.org/abs/2410.01340v2
|
https://arxiv.org/pdf/2410.01340v2.pdf
|
https://github.com/marcusha94/structural-dynamics-pinns
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/curvature-constrained-vector-field-for-motion
|
Curvature-Constrained Vector Field for Motion Planning of Nonholonomic Robots
|
2504.02852
|
https://arxiv.org/abs/2504.02852v1
|
https://arxiv.org/pdf/2504.02852v1.pdf
|
https://github.com/y1kee/cvf-for-nonholonomic-motion-planning
| true | true | false |
none
|
https://paperswithcode.com/paper/meshmask-physics-based-simulations-with
|
MeshMask: Physics-Based Simulations with Masked Graph Neural Networks
|
2501.08738
|
https://arxiv.org/abs/2501.08738v3
|
https://arxiv.org/pdf/2501.08738v3.pdf
|
https://github.com/DonsetPG/graph-physics
| true | false | true |
jax
|
https://paperswithcode.com/paper/bot-sort-robust-associations-multi-pedestrian
|
BoT-SORT: Robust Associations Multi-Pedestrian Tracking
|
2206.14651
|
https://arxiv.org/abs/2206.14651v2
|
https://arxiv.org/pdf/2206.14651v2.pdf
|
https://github.com/airotau/pointpillarshailoinnoviz
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/a-spectral-approach-for-quasinormal
|
A Spectral Approach for Quasinormal Frequencies of Noncommutative Geometry-inspired Wormholes
|
2504.02370
|
https://arxiv.org/abs/2504.02370v1
|
https://arxiv.org/pdf/2504.02370v1.pdf
|
https://github.com/dutykh/ncwh
| true | true | false |
none
|
https://paperswithcode.com/paper/towards-all-in-one-medical-image-re
|
Towards All-in-One Medical Image Re-Identification
|
2503.08173
|
https://arxiv.org/abs/2503.08173v1
|
https://arxiv.org/pdf/2503.08173v1.pdf
|
https://github.com/tianyuan168326/all-in-one-medreid-pytorch
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/spargeattn-accurate-sparse-attention
|
SpargeAttention: Accurate and Training-free Sparse Attention Accelerating Any Model Inference
|
2502.18137
|
https://arxiv.org/abs/2502.18137v5
|
https://arxiv.org/pdf/2502.18137v5.pdf
|
https://github.com/thu-ml/spargeattn
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/multi-grid-graph-neural-networks-with-self
|
Multi-Grid Graph Neural Networks with Self-Attention for Computational Mechanics
|
2409.11899
|
https://arxiv.org/abs/2409.11899v1
|
https://arxiv.org/pdf/2409.11899v1.pdf
|
https://github.com/DonsetPG/graph-physics
| true | false | true |
jax
|
https://paperswithcode.com/paper/learning-mesh-based-simulation-with-graph-1
|
Learning Mesh-Based Simulation with Graph Networks
|
2010.03409
|
https://arxiv.org/abs/2010.03409v4
|
https://arxiv.org/pdf/2010.03409v4.pdf
|
https://github.com/DonsetPG/graph-physics
| false | false | true |
jax
|
https://paperswithcode.com/paper/discrete-neural-nets-and-polymorphic-learning
|
Discrete neural nets and polymorphic learning
|
2308.00677
|
https://arxiv.org/abs/2308.00677v2
|
https://arxiv.org/pdf/2308.00677v2.pdf
|
https://github.com/caten2/tripods2021ua
| true | true | true |
none
|
https://paperswithcode.com/paper/subjective-visual-quality-assessment-for-high
|
Subjective Visual Quality Assessment for High-Fidelity Learning-Based Image Compression
|
2504.06301
|
https://arxiv.org/abs/2504.06301v2
|
https://arxiv.org/pdf/2504.06301v2.pdf
|
https://github.com/jpeg-aic/dataset-jpeg-ai-sdr25
| true | true | false |
none
|
https://paperswithcode.com/paper/pomato-marrying-pointmap-matching-with
|
POMATO: Marrying Pointmap Matching with Temporal Motion for Dynamic 3D Reconstruction
|
2504.05692
|
https://arxiv.org/abs/2504.05692v1
|
https://arxiv.org/pdf/2504.05692v1.pdf
|
https://github.com/wyddmw/pomato
| true | true | true |
none
|
https://paperswithcode.com/paper/correlation-of-frechet-audio-distance-with
|
Correlation of Fréchet Audio Distance With Human Perception of Environmental Audio Is Embedding Dependant
|
2403.17508
|
https://arxiv.org/abs/2403.17508v1
|
https://arxiv.org/pdf/2403.17508v1.pdf
|
https://github.com/YoonjinXD/kadtk
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/adapting-frechet-audio-distance-for
|
Adapting Frechet Audio Distance for Generative Music Evaluation
|
2311.01616
|
https://arxiv.org/abs/2311.01616v2
|
https://arxiv.org/pdf/2311.01616v2.pdf
|
https://github.com/YoonjinXD/kadtk
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/detox-toxic-subspace-projection-for-model
|
Model Editing as a Robust and Denoised variant of DPO: A Case Study on Toxicity
|
2405.13967
|
https://arxiv.org/abs/2405.13967v4
|
https://arxiv.org/pdf/2405.13967v4.pdf
|
https://github.com/uppaal/detox-edit
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/self-detoxifying-language-models-via
|
Self-Detoxifying Language Models via Toxification Reversal
|
2310.09573
|
https://arxiv.org/abs/2310.09573v1
|
https://arxiv.org/pdf/2310.09573v1.pdf
|
https://github.com/uppaal/detox-edit
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/the-gender-gap-pipeline-a-gender-aware
|
The Gender-GAP Pipeline: A Gender-Aware Polyglot Pipeline for Gender Characterisation in 55 Languages
|
2308.16871
|
https://arxiv.org/abs/2308.16871v1
|
https://arxiv.org/pdf/2308.16871v1.pdf
|
https://github.com/facebookresearch/responsiblenlp
| true | true | true |
none
|
https://paperswithcode.com/paper/i-m-sorry-to-hear-that-finding-bias-in
|
"I'm sorry to hear that": Finding New Biases in Language Models with a Holistic Descriptor Dataset
|
2205.09209
|
https://arxiv.org/abs/2205.09209v2
|
https://arxiv.org/pdf/2205.09209v2.pdf
|
https://github.com/facebookresearch/responsiblenlp
| true | true | true |
none
|
https://paperswithcode.com/paper/improving-model-evaluation-using-smart
|
Improving Model Evaluation using SMART Filtering of Benchmark Datasets
|
2410.20245
|
https://arxiv.org/abs/2410.20245v1
|
https://arxiv.org/pdf/2410.20245v1.pdf
|
https://github.com/facebookresearch/responsiblenlp
| false | false | true |
none
|
https://paperswithcode.com/paper/sparkle-a-statistical-learning-toolkit-for
|
Sparklen: A Statistical Learning Toolkit for High-Dimensional Hawkes Processes in Python
|
2502.18979
|
https://arxiv.org/abs/2502.18979v2
|
https://arxiv.org/pdf/2502.18979v2.pdf
|
https://github.com/romain-e-lacoste/sparklen
| true | true | true |
none
|
https://paperswithcode.com/paper/a-weak-supervision-learning-approach-towards
|
A Weak Supervision Learning Approach Towards an Equitable Mobility Estimation
|
2505.04229
|
https://arxiv.org/abs/2505.04229v2
|
https://arxiv.org/pdf/2505.04229v2.pdf
|
https://github.com/societal-computing/equitable_mobility_estimation
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/mechanically-programming-the-cross-sectional
|
Mechanically Programming the Cross-Sectional Shape of Soft Growing Robotic Structures for Patient Transfer
|
2505.11593
|
https://arxiv.org/abs/2505.11593v2
|
https://arxiv.org/pdf/2505.11593v2.pdf
|
https://github.com/kentaro-barhydt/softGrowingRobotCrossSectionProgramming
| true | false | false |
none
|
https://paperswithcode.com/paper/m2oe-multimodal-collaborative-expert-peptide
|
M2oE: Multimodal Collaborative Expert Peptide Model
|
2411.15208
|
https://arxiv.org/abs/2411.15208v1
|
https://arxiv.org/pdf/2411.15208v1.pdf
|
https://github.com/goldzzmj/M2oE
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/step-video-t2v-technical-report-the-practice
|
Step-Video-T2V Technical Report: The Practice, Challenges, and Future of Video Foundation Model
|
2502.10248
|
https://arxiv.org/abs/2502.10248v1
|
https://arxiv.org/pdf/2502.10248v1.pdf
|
https://github.com/stepfun-ai/step-video-ti2v
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/retworkx-a-high-performance-graph-library-for
|
rustworkx: A High-Performance Graph Library for Python
|
2110.15221
|
https://arxiv.org/abs/2110.15221v4
|
https://arxiv.org/pdf/2110.15221v4.pdf
|
https://github.com/qiskit/rustworkx
| true | true | true |
none
|
https://paperswithcode.com/paper/spectral-density-estimation-for-random-fields
|
Spectral Density Estimation for Random Fields via Periodic Embeddings
|
1710.08978
|
https://arxiv.org/abs/1710.08978v2
|
https://arxiv.org/pdf/1710.08978v2.pdf
|
https://github.com/joeguinness/npspec
| false | false | true |
none
|
https://paperswithcode.com/paper/image-to-image-mlp-mixer-for-image-1
|
Image-to-Image MLP-mixer for Image Reconstruction
|
2202.02018
|
https://arxiv.org/abs/2202.02018v1
|
https://arxiv.org/pdf/2202.02018v1.pdf
|
https://github.com/mli-lab/imaging_mlps
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/distributed-node-covering-optimization-for
|
Distributed Node Covering Optimization for Large Scale Networks and Its Application on Social Advertising
|
2211.08738
|
https://arxiv.org/abs/2211.08738v1
|
https://arxiv.org/pdf/2211.08738v1.pdf
|
https://github.com/pobooo/pobooo.github.io
| false | false | true |
none
|
https://paperswithcode.com/paper/friend-recall-in-online-games-via-pre
|
Friend Ranking in Online Games via Pre-training Edge Transformers
|
2302.10043
|
https://arxiv.org/abs/2302.10043v4
|
https://arxiv.org/pdf/2302.10043v4.pdf
|
https://github.com/pobooo/pobooo.github.io
| false | false | true |
none
|
https://paperswithcode.com/paper/numerical-relativity-using-a-generalized
|
Numerical Relativity Using a Generalized Harmonic Decomposition
|
gr-qc/0407110
|
https://arxiv.org/abs/gr-qc/0407110v2
|
https://arxiv.org/pdf/gr-qc/0407110v2.pdf
|
https://github.com/alejandroc137/ScalarWaveEvolution
| false | false | true |
tf
|
https://paperswithcode.com/paper/comprehensive-analysis-of-spherical-bubble
|
Comprehensive analysis of spherical bubble oscillations and shock wave emission in laser-induced cavitation
|
2109.04372
|
https://arxiv.org/abs/2109.04372v1
|
https://arxiv.org/pdf/2109.04372v1.pdf
|
https://github.com/X-X-Liang/LIBDAR
| true | false | false |
none
|
https://paperswithcode.com/paper/expressive-higher-order-link-prediction
|
Expressive Higher-Order Link Prediction through Hypergraph Symmetry Breaking
|
2402.11339
|
https://arxiv.org/abs/2402.11339v2
|
https://arxiv.org/pdf/2402.11339v2.pdf
|
https://github.com/simonzhang00/hypergraphsymmetrybreaking
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/focus-towards-universal-foreground
|
FOCUS: Towards Universal Foreground Segmentation
|
2501.05238
|
https://arxiv.org/abs/2501.05238v1
|
https://arxiv.org/pdf/2501.05238v1.pdf
|
https://github.com/geshang777/FOCUS
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/cevit-copula-enhanced-vision-transformer-in
|
CeViT: Copula-Enhanced Vision Transformer in multi-task learning and bi-group image covariates with an application to myopia screening
|
2501.06540
|
https://arxiv.org/abs/2501.06540v1
|
https://arxiv.org/pdf/2501.06540v1.pdf
|
https://github.com/silent618/cevit
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/analytical-and-numerical-solutions-to-the
|
Analytical and numerical solutions to the three-phase Stefan problem with simultaneous occurrences of melting, solidification, boiling, and condensation phenomena
|
2503.06360
|
https://arxiv.org/abs/2503.06360v1
|
https://arxiv.org/pdf/2503.06360v1.pdf
|
https://github.com/amneetb/ThreePhaseStefan
| true | false | false |
none
|
https://paperswithcode.com/paper/intra-class-patch-swap-for-self-distillation
|
Intra-class Patch Swap for Self-Distillation
|
2505.14124
|
https://arxiv.org/abs/2505.14124v1
|
https://arxiv.org/pdf/2505.14124v1.pdf
|
https://github.com/hchoi71/intra-class-patch-swap
| true | true | false |
none
|
https://paperswithcode.com/paper/automatic-determination-of-quasicrystalline
|
Automatic determination of quasicrystalline patterns from microscopy images
|
2503.05472
|
https://arxiv.org/abs/2503.05472v1
|
https://arxiv.org/pdf/2503.05472v1.pdf
|
https://github.com/QuantumMaterialsModelling/AiSurf-Automated-Identification-of-Surface-images
| true | false | true |
none
|
https://paperswithcode.com/paper/domain-knowledge-informed-self-supervised
|
Domain Knowledge-Informed Self-Supervised Representations for Workout Form Assessment
|
2202.14019
|
https://arxiv.org/abs/2202.14019v2
|
https://arxiv.org/pdf/2202.14019v2.pdf
|
https://github.com/ParitoshParmar/Fitness-AQA
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/structured-unrestricted-rank-matrices-for
|
Structured Unrestricted-Rank Matrices for Parameter Efficient Fine-tuning
|
2406.17740
|
https://arxiv.org/abs/2406.17740v3
|
https://arxiv.org/pdf/2406.17740v3.pdf
|
https://github.com/arijitthegame/structured-matrices-peft
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/security-properties-for-open-source-hardware
|
Security Properties for Open-Source Hardware Designs
|
2412.08769
|
https://arxiv.org/abs/2412.08769v2
|
https://arxiv.org/pdf/2412.08769v2.pdf
|
https://github.com/HWSec-UNC/verification-benchmarks
| true | false | true |
none
|
https://paperswithcode.com/paper/anisotropic-induced-polarization-modeling
|
Anisotropic induced polarization modeling with neural networks and effective medium theory
|
2402.11313
|
https://arxiv.org/abs/2402.11313v1
|
https://arxiv.org/pdf/2402.11313v1.pdf
|
https://github.com/clberube/gemtip-ml
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/escaping-spurious-local-minima-of-low-rank
|
Accelerating nuclear-norm regularized low-rank matrix optimization through Burer-Monteiro decomposition
|
2204.14067
|
https://arxiv.org/abs/2204.14067v3
|
https://arxiv.org/pdf/2204.14067v3.pdf
|
https://github.com/leepei/bm-global
| true | true | true |
none
|
https://paperswithcode.com/paper/opportunities-and-risks-of-llms-for-scalable
|
Opportunities and Risks of LLMs for Scalable Deliberation with Polis
|
2306.11932
|
https://arxiv.org/abs/2306.11932v1
|
https://arxiv.org/pdf/2306.11932v1.pdf
|
https://github.com/compdemocracy/polis
| true | false | false |
none
|
https://paperswithcode.com/paper/decoding-with-limited-teacher-supervision
|
Decoding with Limited Teacher Supervision Requires Understanding When to Trust the Teacher
|
2406.18002
|
https://arxiv.org/abs/2406.18002v2
|
https://arxiv.org/pdf/2406.18002v2.pdf
|
https://github.com/hj-ok/declimsup
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/mfm-da-instance-aware-adaptor-and
|
MFM-DA: Instance-Aware Adaptor and Hierarchical Alignment for Efficient Domain Adaptation in Medical Foundation Models
|
2503.00802
|
https://arxiv.org/abs/2503.00802v1
|
https://arxiv.org/pdf/2503.00802v1.pdf
|
https://github.com/HopkinsKwong/MFM-DA
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/improve-robustness-of-eye-disease-detection
|
Enhance Eye Disease Detection using Learnable Probabilistic Discrete Latents in Machine Learning Architectures
|
2402.16865
|
https://arxiv.org/abs/2402.16865v3
|
https://arxiv.org/pdf/2402.16865v3.pdf
|
https://github.com/anirudhprabhakaran3/gflowout_on_eye_images
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/multi-level-optimal-transport-for-universal
|
Multi-Level Optimal Transport for Universal Cross-Tokenizer Knowledge Distillation on Language Models
|
2412.14528
|
https://arxiv.org/abs/2412.14528v2
|
https://arxiv.org/pdf/2412.14528v2.pdf
|
https://github.com/2018cx/multi-level-ot
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/the-law-of-the-unconscious-contrastive
|
The "Law" of the Unconscious Contrastive Learner: Probabilistic Alignment of Unpaired Modalities
|
2501.11326
|
https://arxiv.org/abs/2501.11326v1
|
https://arxiv.org/pdf/2501.11326v1.pdf
|
https://github.com/yongweiche/unconsciouscontrastivelearner
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/sageattention2-technical-report-accurate-4
|
SageAttention2: Efficient Attention with Thorough Outlier Smoothing and Per-thread INT4 Quantization
|
2411.10958
|
https://arxiv.org/abs/2411.10958v6
|
https://arxiv.org/pdf/2411.10958v6.pdf
|
https://github.com/thu-ml/spargeattn
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/multi-output-conformal-regression-a-unified
|
A Unified Comparative Study with Generalized Conformity Scores for Multi-Output Conformal Regression
|
2501.10533
|
https://arxiv.org/abs/2501.10533v2
|
https://arxiv.org/pdf/2501.10533v2.pdf
|
https://github.com/vekteur/multi-output-conformal-regression
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/accretion-and-ablation-in-deformable-solids
|
Accretion and Ablation in Deformable Solids using an Eulerian Formulation: A Finite Deformation Numerical Method
|
2502.16348
|
https://arxiv.org/abs/2502.16348v1
|
https://arxiv.org/pdf/2502.16348v1.pdf
|
https://github.com/Kiana-Naghibzadeh/SurfaceGrowth
| true | false | false |
none
|
https://paperswithcode.com/paper/collaborative-evaluation-exploring-the
|
Exploring the Reliability of Large Language Models as Customized Evaluators for Diverse NLP Tasks
|
2310.19740
|
https://arxiv.org/abs/2310.19740v2
|
https://arxiv.org/pdf/2310.19740v2.pdf
|
https://github.com/qtli/coeval
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/echodfkd-data-free-knowledge-distillation-for
|
EchoDFKD: Data-Free Knowledge Distillation for Cardiac Ultrasound Segmentation using Synthetic Data
|
2409.07566
|
https://arxiv.org/abs/2409.07566v2
|
https://arxiv.org/pdf/2409.07566v2.pdf
|
https://github.com/gregoirepetit/echodfkd
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/personax-a-recommendation-agent-oriented-user
|
PersonaX: A Recommendation Agent Oriented User Modeling Framework for Long Behavior Sequence
|
2503.02398
|
https://arxiv.org/abs/2503.02398v1
|
https://arxiv.org/pdf/2503.02398v1.pdf
|
https://github.com/ancientshi/personax
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/large-angle-convergent-beam-electron
|
Large-Angle Convergent-Beam Electron Diffraction Patterns via Conditional Generative Adversarial Networks
|
2503.02852
|
https://arxiv.org/abs/2503.02852v2
|
https://arxiv.org/pdf/2503.02852v2.pdf
|
https://github.com/wephy/ai-diffraction
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/towards-detecting-prompt-knowledge-gaps-for
|
Towards Detecting Prompt Knowledge Gaps for Improved LLM-guided Issue Resolution
|
2501.11709
|
https://arxiv.org/abs/2501.11709v3
|
https://arxiv.org/pdf/2501.11709v3.pdf
|
https://github.com/soar-lab/prompt-knowledge-gap
| true | true | false |
none
|
https://paperswithcode.com/paper/proportional-effect-models-for-continuous
|
A critical evaluation of longitudinal proportional effect models
|
2502.00214
|
https://arxiv.org/abs/2502.00214v3
|
https://arxiv.org/pdf/2502.00214v3.pdf
|
https://github.com/mcdonohue/propeffects
| true | true | false |
none
|
https://paperswithcode.com/paper/cocoevo-co-evolution-of-programs-and-test
|
CoCoEvo: Co-Evolution of Programs and Test Cases to Enhance Code Generation
|
2502.10802
|
https://arxiv.org/abs/2502.10802v1
|
https://arxiv.org/pdf/2502.10802v1.pdf
|
https://github.com/lbaf23/llm-cocoevo
| false | false | false |
none
|
https://paperswithcode.com/paper/variational-diffusion-posterior-sampling-with
|
Variational Diffusion Posterior Sampling with Midpoint Guidance
|
2410.09945
|
https://arxiv.org/abs/2410.09945v2
|
https://arxiv.org/pdf/2410.09945v2.pdf
|
https://github.com/yazidjanati/mgps
| true | true | false |
jax
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.