paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/findver-explainable-claim-verification-over
|
FinDVer: Explainable Claim Verification over Long and Hybrid-Content Financial Documents
|
2411.05764
|
https://arxiv.org/abs/2411.05764v1
|
https://arxiv.org/pdf/2411.05764v1.pdf
|
https://github.com/yilunzhao/FinDVer
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/optimal-high-frequency-trading-with-limit-and
|
Optimal High Frequency Trading with limit and market orders
|
1106.5040
|
https://arxiv.org/abs/1106.5040v1
|
https://arxiv.org/pdf/1106.5040v1.pdf
|
https://github.com/lcsrodriguez/optimalHFT
| false | false | true |
none
|
https://paperswithcode.com/paper/transferable-selective-virtual-sensing-active
|
Transferable Selective Virtual Sensing Active Noise Control Technique Based on Metric Learning
|
2409.05470
|
https://arxiv.org/abs/2409.05470v1
|
https://arxiv.org/pdf/2409.05470v1.pdf
|
https://github.com/Wang-Boxiang/Transferable-Selective-Virtual-Sensing-Active-Noise-Control
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/gx2mol-de-novo-generation-of-hit-like
|
De Novo Generation of Hit-like Molecules from Gene Expression Profiles via Deep Learning
|
2412.19422
|
https://arxiv.org/abs/2412.19422v2
|
https://arxiv.org/pdf/2412.19422v2.pdf
|
https://github.com/naruto7283/gx2mol
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/generalized-uncertainty-based-evidential
|
Generalized Uncertainty-Based Evidential Fusion with Hybrid Multi-Head Attention for Weak-Supervised Temporal Action Localization
|
2412.19418
|
https://arxiv.org/abs/2412.19418v1
|
https://arxiv.org/pdf/2412.19418v1.pdf
|
https://github.com/heyuanpengpku/guef
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/recurrent-neural-networks-with-top-k-gains
|
Recurrent Neural Networks with Top-k Gains for Session-based Recommendations
|
1706.03847
|
http://arxiv.org/abs/1706.03847v3
|
http://arxiv.org/pdf/1706.03847v3.pdf
|
https://github.com/otto-de/recsys-dataset
| false | false | true |
none
|
https://paperswithcode.com/paper/an-open-dataset-for-oracle-bone-script
|
An open dataset for oracle bone script recognition and decipherment
|
2401.15365
|
https://arxiv.org/abs/2401.15365v4
|
https://arxiv.org/pdf/2401.15365v4.pdf
|
https://github.com/yuliang-liu/open-oracle
| true | true | true |
none
|
https://paperswithcode.com/paper/pareto-front-approximation-for-multi
|
Pareto Front Approximation for Multi-Objective Session-Based Recommender Systems
|
2407.16828
|
https://arxiv.org/abs/2407.16828v3
|
https://arxiv.org/pdf/2407.16828v3.pdf
|
https://github.com/otto-de/recsys-dataset
| true | false | true |
none
|
https://paperswithcode.com/paper/180809781
|
Self-Attentive Sequential Recommendation
|
1808.09781
|
http://arxiv.org/abs/1808.09781v1
|
http://arxiv.org/pdf/1808.09781v1.pdf
|
https://github.com/otto-de/recsys-dataset
| false | false | true |
none
|
https://paperswithcode.com/paper/question-attentive-review-level-for-neural
|
Question-Attentive Review-Level for Neural Rating Regression
| null |
https://dl.acm.org/doi/10.1145/3699516
|
https://dl.acm.org/doi/pdf/10.1145/3699516
|
https://github.com/PreferredAI/QuestER
| false | false | false |
tf
|
https://paperswithcode.com/paper/floating-point-neural-networks-are-provably
|
Floating-Point Neural Networks Are Provably Robust Universal Approximators
|
2506.16065
|
https://arxiv.org/abs/2506.16065v1
|
https://arxiv.org/pdf/2506.16065v1.pdf
|
https://github.com/yechanp/floating-point-iua-theorem
| true | true | false |
none
|
https://paperswithcode.com/paper/imageref-vl-enabling-contextual-image
|
ImageRef-VL: Enabling Contextual Image Referencing in Vision-Language Models
|
2501.12418
|
https://arxiv.org/abs/2501.12418v1
|
https://arxiv.org/pdf/2501.12418v1.pdf
|
https://github.com/bytedance/imageref-vl
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/solving-high-dimensional-pdes-with-latent
|
Solving High-Dimensional PDEs with Latent Spectral Models
|
2301.12664
|
https://arxiv.org/abs/2301.12664v3
|
https://arxiv.org/pdf/2301.12664v3.pdf
|
https://github.com/thuml/Latent-Spectral-Models
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/stmdnet-a-lightweight-directional-framework
|
STMDNet: A Lightweight Directional Framework for Motion Pattern Recognition of Tiny Targets
|
2501.13054
|
https://arxiv.org/abs/2501.13054v1
|
https://arxiv.org/pdf/2501.13054v1.pdf
|
https://github.com/mingshuoxu/stmdnet
| true | true | true |
none
|
https://paperswithcode.com/paper/vpi-bench-visual-prompt-injection-attacks-for
|
VPI-Bench: Visual Prompt Injection Attacks for Computer-Use Agents
|
2506.02456
|
https://arxiv.org/abs/2506.02456v1
|
https://arxiv.org/pdf/2506.02456v1.pdf
|
https://github.com/cua-framework/agents
| true | true | false |
none
|
https://paperswithcode.com/paper/learning-partonomic-3d-reconstruction-from
|
Learning Partonomic 3D Reconstruction from Image Collections
| null |
http://openaccess.thecvf.com//content/CVPR2025/html/Ruan_Learning_Partonomic_3D_Reconstruction_from_Image_Collections_CVPR_2025_paper.html
|
http://openaccess.thecvf.com//content/CVPR2025/papers/Ruan_Learning_Partonomic_3D_Reconstruction_from_Image_Collections_CVPR_2025_paper.pdf
|
https://github.com/xiaoqianruan1/partonomic_reconstruction
| true | true | false |
none
|
https://paperswithcode.com/paper/stress-testing-machine-generated-text
|
Stress-testing Machine Generated Text Detection: Shifting Language Models Writing Style to Fool Detectors
|
2505.24523
|
https://arxiv.org/abs/2505.24523v1
|
https://arxiv.org/pdf/2505.24523v1.pdf
|
https://github.com/gpucce/control_mgt
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/videocad-a-large-scale-video-dataset-for
|
VideoCAD: A Large-Scale Video Dataset for Learning UI Interactions and 3D Reasoning from CAD Software
|
2505.24838
|
https://arxiv.org/abs/2505.24838v1
|
https://arxiv.org/pdf/2505.24838v1.pdf
|
https://github.com/brandonman123/videocad
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/specklenn-a-unified-embedding-for-real-time
|
SpeckleNN: A unified embedding for real-time speckle pattern classification in X-ray single-particle imaging with limited labeled examples
|
2302.06895
|
https://arxiv.org/abs/2302.06895v1
|
https://arxiv.org/pdf/2302.06895v1.pdf
|
https://github.com/carbonscott/speckleNN
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/tracing-knowledge-instead-of-paterns-stable
|
Tracing Knowledge Instead of Paterns: Stable Knowledge Tracing with Diagnostic Transformer
| null |
https://dl.acm.org/doi/abs/10.1145/3543507.3583255
|
https://dl.acm.org/doi/abs/10.1145/3543507.3583255
|
https://github.com/yxonic/DTransformer
| false | true | false |
pytorch
|
https://paperswithcode.com/paper/what-limits-llm-based-human-simulation-llms
|
What Limits LLM-based Human Simulation: LLMs or Our Design?
|
2501.08579
|
https://arxiv.org/abs/2501.08579v1
|
https://arxiv.org/pdf/2501.08579v1.pdf
|
https://github.com/persdre/llm-human-simulation
| true | true | false |
none
|
https://paperswithcode.com/paper/certified-robustness-under-bounded
|
Certified Robustness Under Bounded Levenshtein Distance
|
2501.13676
|
https://arxiv.org/abs/2501.13676v1
|
https://arxiv.org/pdf/2501.13676v1.pdf
|
https://github.com/lions-epfl/lipslev
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/learning-to-explain-recommendations
|
On the Relationship between Explanation and Recommendation: Learning to Rank Explanations for Improved Performance
|
2102.00627
|
https://arxiv.org/abs/2102.00627v4
|
https://arxiv.org/pdf/2102.00627v4.pdf
|
https://github.com/lileipisces/bper
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/attractor-based-coevolving-dot-product-random
|
Attractor-Based Coevolving Dot Product Random Graph Model
|
2505.02675
|
https://arxiv.org/abs/2505.02675v1
|
https://arxiv.org/pdf/2505.02675v1.pdf
|
https://github.com/Shiwen-Yang/ABCDPRGM
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/onlyflow-optical-flow-based-motion
|
OnlyFlow: Optical Flow based Motion Conditioning for Video Diffusion Models
|
2411.10501
|
https://arxiv.org/abs/2411.10501v1
|
https://arxiv.org/pdf/2411.10501v1.pdf
|
https://github.com/obvious-research/OnlyFlow
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/token-weighting-for-long-range-language
|
Token Weighting for Long-Range Language Modeling
|
2503.09202
|
https://arxiv.org/abs/2503.09202v1
|
https://arxiv.org/pdf/2503.09202v1.pdf
|
https://github.com/ukplab/naacl2025-token-weighting
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/interpretable-rna-foundation-model-from
|
Interpretable RNA Foundation Model from Unannotated Data for Highly Accurate RNA Structure and Function Predictions
|
2204.00300
|
https://arxiv.org/abs/2204.00300v5
|
https://arxiv.org/pdf/2204.00300v5.pdf
|
https://github.com/lulab/OligoFormer
| false | false | true |
none
|
https://paperswithcode.com/paper/chatbot-arena-an-open-platform-for-evaluating
|
Chatbot Arena: An Open Platform for Evaluating LLMs by Human Preference
|
2403.04132
|
https://arxiv.org/abs/2403.04132v1
|
https://arxiv.org/pdf/2403.04132v1.pdf
|
https://github.com/aken12/LLM-based-QE-fails
| false | false | true |
none
|
https://paperswithcode.com/paper/towards-effective-and-efficient-context-aware
|
Towards Effective and Efficient Context-aware Nucleus Detection in Histopathology Whole Slide Images
|
2503.05678
|
https://arxiv.org/abs/2503.05678v1
|
https://arxiv.org/pdf/2503.05678v1.pdf
|
https://github.com/windygoo/pathcontext
| true | true | false |
none
|
https://paperswithcode.com/paper/misspelling-oblivious-word-embeddings
|
Misspelling Oblivious Word Embeddings
|
1905.09755
|
https://arxiv.org/abs/1905.09755v1
|
https://arxiv.org/pdf/1905.09755v1.pdf
|
https://github.com/dleemiller/string-noise
| false | false | true |
none
|
https://paperswithcode.com/paper/sparsity-promoting-reachability-analysis-and
|
Sparsity-Promoting Reachability Analysis and Optimization of Constrained Zonotopes
|
2504.03885
|
https://arxiv.org/abs/2504.03885v1
|
https://arxiv.org/pdf/2504.03885v1.pdf
|
https://github.com/psu-PAC-Lab/ZonoOpt
| true | false | true |
none
|
https://paperswithcode.com/paper/rejshand-efficient-real-time-hand-pose
|
ReJSHand: Efficient Real-Time Hand Pose Estimation and Mesh Reconstruction Using Refined Joint and Skeleton Features
|
2503.05995
|
https://arxiv.org/abs/2503.05995v1
|
https://arxiv.org/pdf/2503.05995v1.pdf
|
https://github.com/daishipeng/rejshand
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/hierdamap-towards-universal-domain-adaptive
|
HierDAMap: Towards Universal Domain Adaptive BEV Mapping via Hierarchical Perspective Priors
|
2503.06821
|
https://arxiv.org/abs/2503.06821v1
|
https://arxiv.org/pdf/2503.06821v1.pdf
|
https://github.com/lynn-yu/hierdamap
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/bi-level-optimization-for-parameter
|
Bi-Level optimization for parameter estimation of differential equations using interpolation
|
2506.00720
|
https://arxiv.org/abs/2506.00720v1
|
https://arxiv.org/pdf/2506.00720v1.pdf
|
https://github.com/siddharth-prabhu/bilevelparameterestimation
| true | true | true |
jax
|
https://paperswithcode.com/paper/learning-to-localize-leakage-of-cryptographic
|
Learning to Localize Leakage of Cryptographic Sensitive Variables
|
2503.07464
|
https://arxiv.org/abs/2503.07464v1
|
https://arxiv.org/pdf/2503.07464v1.pdf
|
https://github.com/jimgammell/learning_to_localize_leakage
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/drawing-a-map-of-elections
|
Drawing a Map of Elections
|
2504.03809
|
https://arxiv.org/abs/2504.03809v2
|
https://arxiv.org/pdf/2504.03809v2.pdf
|
https://github.com/Project-PRAGMA/Journal---Drawing-a-Map-of-Elections
| true | false | false |
none
|
https://paperswithcode.com/paper/an-adaptively-inexact-method-for-bilevel
|
An Adaptively Inexact Method for Bilevel Learning Using Primal-Dual Style Differentiation
|
2412.06436
|
https://arxiv.org/abs/2412.06436v3
|
https://arxiv.org/pdf/2412.06436v3.pdf
|
https://github.com/MohammadSadeghSalehi/Analytical-Deep-Priors
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/a-simulation-study-to-compare-210pb-dating
|
A simulation study to compare 210Pb dating data analyses
|
2012.06819
|
https://arxiv.org/abs/2012.06819v1
|
https://arxiv.org/pdf/2012.06819v1.pdf
|
https://github.com/maquinolopez/Paper_Simulations
| true | true | true |
none
|
https://paperswithcode.com/paper/good-colour-maps-how-to-design-them
|
Good Colour Maps: How to Design Them
|
1509.03700
|
http://arxiv.org/abs/1509.03700v1
|
http://arxiv.org/pdf/1509.03700v1.pdf
|
https://github.com/holoviz/colorcet
| false | false | true |
none
|
https://paperswithcode.com/paper/clustering-the-nearest-neighbor-gaussian
|
Clustering the Nearest Neighbor Gaussian Process
|
2501.10656
|
https://arxiv.org/abs/2501.10656v1
|
https://arxiv.org/pdf/2501.10656v1.pdf
|
https://github.com/ashlynn-c/cnngp
| true | true | false |
none
|
https://paperswithcode.com/paper/ceresa-cycles-of-x-0-n
|
Ceresa Cycles of $X_{0}(N)$
|
2501.14060
|
https://arxiv.org/abs/2501.14060v2
|
https://arxiv.org/pdf/2501.14060v2.pdf
|
https://github.com/jameswrawson/modularceresa
| true | true | false |
none
|
https://paperswithcode.com/paper/event-based-motion-segmentation-by-cascaded
|
Event-based Motion Segmentation by Cascaded Two-Level Multi-Model Fitting
|
2111.03483
|
https://arxiv.org/abs/2111.03483v1
|
https://arxiv.org/pdf/2111.03483v1.pdf
|
https://github.com/hkust-aerial-robotics/emsgc
| false | false | true |
none
|
https://paperswithcode.com/paper/certified-knowledge-compilation-with
|
Certified Knowledge Compilation with Application to Formally Verified Model Counting
|
2501.12906
|
https://arxiv.org/abs/2501.12906v1
|
https://arxiv.org/pdf/2501.12906v1.pdf
|
https://github.com/rebryant/cpog
| true | true | false |
none
|
https://paperswithcode.com/paper/safe-interval-randomized-path-planing-for
|
Safe Interval Randomized Path Planning For Manipulators
|
2412.19567
|
https://arxiv.org/abs/2412.19567v2
|
https://arxiv.org/pdf/2412.19567v2.pdf
|
https://github.com/pathplanning/manipulationplanning-si-rrt
| true | true | true |
none
|
https://paperswithcode.com/paper/langevin-soft-actor-critic-efficient
|
Langevin Soft Actor-Critic: Efficient Exploration through Uncertainty-Driven Critic Learning
|
2501.17827
|
https://arxiv.org/abs/2501.17827v1
|
https://arxiv.org/pdf/2501.17827v1.pdf
|
https://github.com/hmishfaq/lsac
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/2ssp-a-two-stage-framework-for-structured
|
2SSP: A Two-Stage Framework for Structured Pruning of LLMs
|
2501.17771
|
https://arxiv.org/abs/2501.17771v1
|
https://arxiv.org/pdf/2501.17771v1.pdf
|
https://github.com/fabriziosandri/2ssp
| true | true | true |
none
|
https://paperswithcode.com/paper/recovery-policies-for-safe-exploration-of
|
Recovery Policies for Safe Exploration of Lunar Permanently Shadowed Regions by a Solar-Powered Rover
|
2307.16786
|
https://arxiv.org/abs/2307.16786v2
|
https://arxiv.org/pdf/2307.16786v2.pdf
|
https://github.com/utiasSTARS/gplanetary-nav
| true | false | true |
none
|
https://paperswithcode.com/paper/estimating-adult-death-rates-from-sibling
|
Estimating adult death rates from sibling histories: A network approach
|
1906.12000
|
http://arxiv.org/abs/1906.12000v1
|
http://arxiv.org/pdf/1906.12000v1.pdf
|
https://github.com/dfeehan/siblingsurvival
| true | true | true |
none
|
https://paperswithcode.com/paper/u-net-convolutional-networks-for-biomedical
|
U-Net: Convolutional Networks for Biomedical Image Segmentation
|
1505.04597
|
http://arxiv.org/abs/1505.04597v1
|
http://arxiv.org/pdf/1505.04597v1.pdf
|
https://github.com/sk1123344/U-2-NET-and-U-NET
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/u-2-net-going-deeper-with-nested-u-structure
|
U$^2$-Net: Going Deeper with Nested U-Structure for Salient Object Detection
|
2005.09007
|
https://arxiv.org/abs/2005.09007v3
|
https://arxiv.org/pdf/2005.09007v3.pdf
|
https://github.com/sk1123344/U-2-NET-and-U-NET
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/large-scale-cross-modality-pretrained-model
|
Translating Electrocardiograms to Cardiac Magnetic Resonance Imaging Useful for Cardiac Assessment and Disease Screening: A Multi-Center Study AI for ECG to CMR Translation Study
|
2411.13602
|
https://arxiv.org/abs/2411.13602v2
|
https://arxiv.org/pdf/2411.13602v2.pdf
|
https://github.com/yukui-1999/ecg-cmr
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/motion-x-a-large-scale-multimodal-3d-whole
|
Motion-X++: A Large-Scale Multimodal 3D Whole-body Human Motion Dataset
|
2501.05098
|
https://arxiv.org/abs/2501.05098v1
|
https://arxiv.org/pdf/2501.05098v1.pdf
|
https://github.com/idea-research/motion-x
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/sample-based-krylov-quantum-diagonalization
|
Quantum-Centric Algorithm for Sample-Based Krylov Diagonalization
|
2501.09702
|
https://arxiv.org/abs/2501.09702v2
|
https://arxiv.org/pdf/2501.09702v2.pdf
|
https://github.com/qiskit/qiskit-addon-sqd
| true | true | true |
jax
|
https://paperswithcode.com/paper/uniocc-a-unified-benchmark-for-occupancy
|
UniOcc: A Unified Benchmark for Occupancy Forecasting and Prediction in Autonomous Driving
|
2503.24381
|
https://arxiv.org/abs/2503.24381v1
|
https://arxiv.org/pdf/2503.24381v1.pdf
|
https://github.com/tasl-lab/uniocc
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/schemaagent-a-multi-agents-framework-for
|
SchemaAgent: A Multi-Agents Framework for Generating Relational Database Schema
|
2503.23886
|
https://arxiv.org/abs/2503.23886v1
|
https://arxiv.org/pdf/2503.23886v1.pdf
|
https://github.com/hnugraph/llm4dbdesign
| true | true | false |
none
|
https://paperswithcode.com/paper/quantum-computing-of-reacting-flows-via
|
Quantum computing of reacting flows via Hamiltonian simulation
|
2312.07893
|
https://arxiv.org/abs/2312.07893v3
|
https://arxiv.org/pdf/2312.07893v3.pdf
|
https://github.com/YYgroup/qcReactingFlows
| true | false | true |
none
|
https://paperswithcode.com/paper/focusedad-character-centric-movie-audio
|
FocusedAD: Character-centric Movie Audio Description
|
2504.12157
|
https://arxiv.org/abs/2504.12157v3
|
https://arxiv.org/pdf/2504.12157v3.pdf
|
https://github.com/thorin215/focusedad
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/mass-moerging-through-adaptive-subspace
|
MASS: MoErging through Adaptive Subspace Selection
|
2504.05342
|
https://arxiv.org/abs/2504.05342v1
|
https://arxiv.org/pdf/2504.05342v1.pdf
|
https://github.com/crisostomi/mass
| false | true | false |
pytorch
|
https://paperswithcode.com/paper/exponential-quantum-speedup-for-simulating
|
Exponential Quantum Speedup for Simulating Classical Lattice Dynamics
|
2504.05453
|
https://arxiv.org/abs/2504.05453v1
|
https://arxiv.org/pdf/2504.05453v1.pdf
|
https://github.com/xxl12/quantum-algorithms-lattice-dynamics
| true | true | false |
none
|
https://paperswithcode.com/paper/predicting-cascade-failures-in-interdependent
|
Predicting Cascade Failures in Interdependent Urban Infrastructure Networks
|
2503.02890
|
https://arxiv.org/abs/2503.02890v1
|
https://arxiv.org/pdf/2503.02890v1.pdf
|
https://github.com/tsinghua-fib-lab/icube
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/synthesizing-permissive-winning-strategy
|
Synthesizing Permissive Winning Strategy Templates for Parity Games
|
2305.14026
|
https://arxiv.org/abs/2305.14026v2
|
https://arxiv.org/pdf/2305.14026v2.pdf
|
https://github.com/satya2009rta/pestel
| true | true | true |
none
|
https://paperswithcode.com/paper/seaformer-squeeze-enhanced-axial-transformer
|
SeaFormer++: Squeeze-enhanced Axial Transformer for Mobile Visual Recognition
|
2301.13156
|
https://arxiv.org/abs/2301.13156v5
|
https://arxiv.org/pdf/2301.13156v5.pdf
|
https://github.com/fudan-zvg/seaformer
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/curvature-tuning-provable-training-free-model
|
Curvature Tuning: Provable Training-free Model Steering From a Single Parameter
|
2502.07783
|
https://arxiv.org/abs/2502.07783v1
|
https://arxiv.org/pdf/2502.07783v1.pdf
|
https://github.com/leon-leyang/curvature-tuning
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/on-the-randomized-horn-problem-and-the
|
On the randomized Horn problem and the surface tension of hives
|
2410.12619
|
https://arxiv.org/abs/2410.12619v3
|
https://arxiv.org/pdf/2410.12619v3.pdf
|
https://github.com/aalok1993/combinatorial-hives
| true | true | true |
none
|
https://paperswithcode.com/paper/less-is-more-one-shot-subgraph-reasoning-on
|
Less is More: One-shot Subgraph Reasoning on Large-scale Knowledge Graphs
|
2403.10231
|
https://arxiv.org/abs/2403.10231v2
|
https://arxiv.org/pdf/2403.10231v2.pdf
|
https://github.com/tmlr-group/one-shot-subgraph
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/template-based-financial-report-generation-in
|
Template-Based Financial Report Generation in Agentic and Decomposed Information Retrieval
|
2504.14233
|
https://arxiv.org/abs/2504.14233v1
|
https://arxiv.org/pdf/2504.14233v1.pdf
|
https://github.com/bryant-nn/template-based-financial-report-generation
| true | true | true |
none
|
https://paperswithcode.com/paper/teach-me-how-to-denoise-a-universal-framework
|
Teach Me How to Denoise: A Universal Framework for Denoising Multi-modal Recommender Systems via Guided Calibration
|
2504.14214
|
https://arxiv.org/abs/2504.14214v1
|
https://arxiv.org/pdf/2504.14214v1.pdf
|
https://github.com/neon-jing/guider
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/deepretrieval-powerful-query-generation-for
|
DeepRetrieval: Hacking Real Search Engines and Retrievers with Large Language Models via Reinforcement Learning
|
2503.00223
|
https://arxiv.org/abs/2503.00223v3
|
https://arxiv.org/pdf/2503.00223v3.pdf
|
https://github.com/pat-jj/deepretrieval
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/zooming-in-on-fakes-a-novel-dataset-for
|
Zooming In on Fakes: A Novel Dataset for Localized AI-Generated Image Detection with Forgery Amplification Approach
|
2504.11922
|
https://arxiv.org/abs/2504.11922v2
|
https://arxiv.org/pdf/2504.11922v2.pdf
|
https://github.com/clpbc/br-gen
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/distilling-heterogeneous-treatment-effects
|
Distilling heterogeneous treatment effects: Stable subgroup estimation in causal inference
|
2502.07275
|
https://arxiv.org/abs/2502.07275v2
|
https://arxiv.org/pdf/2502.07275v2.pdf
|
https://github.com/tiffanymtang/causalDT
| true | false | true |
none
|
https://paperswithcode.com/paper/window-token-concatenation-for-efficient
|
Window Token Concatenation for Efficient Visual Large Language Models
|
2504.04024
|
https://arxiv.org/abs/2504.04024v1
|
https://arxiv.org/pdf/2504.04024v1.pdf
|
https://github.com/jackyfl/wico
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/instability-analysis-of-massive-static
|
Instability Analysis of Massive Static Phantom Wormholes via the Spectral Method
|
2502.05486
|
https://arxiv.org/abs/2502.05486v1
|
https://arxiv.org/pdf/2502.05486v1.pdf
|
https://github.com/dutykh/EllisBronnikov
| true | false | false |
none
|
https://paperswithcode.com/paper/leveraging-allophony-in-self-supervised
|
Leveraging Allophony in Self-Supervised Speech Models for Atypical Pronunciation Assessment
|
2502.07029
|
https://arxiv.org/abs/2502.07029v2
|
https://arxiv.org/pdf/2502.07029v2.pdf
|
https://github.com/juice500ml/acoustic-units-for-ood
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/progressive-confident-masking-attention
|
Progressive Confident Masking Attention Network for Audio-Visual Segmentation
|
2406.02345
|
https://arxiv.org/abs/2406.02345v2
|
https://arxiv.org/pdf/2406.02345v2.pdf
|
https://github.com/prettyplate/pcmanet
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/fluorescence-detected-two-dimensional
|
Fluorescence-detected two-dimensional electronic spectroscopy of a single molecule
|
2407.09200
|
https://arxiv.org/abs/2407.09200v1
|
https://arxiv.org/pdf/2407.09200v1.pdf
|
https://github.com/Lippitz-Lab/PLL-on-FPGA
| false | false | true |
none
|
https://paperswithcode.com/paper/detection-friendly-nonuniformity-correction-a
|
Detection-Friendly Nonuniformity Correction: A Union Framework for Infrared UAVTarget Detection
|
2504.04012
|
https://arxiv.org/abs/2504.04012v1
|
https://arxiv.org/pdf/2504.04012v1.pdf
|
https://github.com/IVPLaboratory/UniCD
| true | true | true |
none
|
https://paperswithcode.com/paper/cross-modal-and-uncertainty-aware
|
Cross-Modal and Uncertainty-Aware Agglomeration for Open-Vocabulary 3D Scene Understanding
|
2503.16707
|
https://arxiv.org/abs/2503.16707v2
|
https://arxiv.org/pdf/2503.16707v2.pdf
|
https://github.com/tyroneli/cua_o3d
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/litecua-computer-as-mcp-server-for-computer
|
LiteCUA: Computer as MCP Server for Computer-Use Agent on AIOS
|
2505.18829
|
https://arxiv.org/abs/2505.18829v1
|
https://arxiv.org/pdf/2505.18829v1.pdf
|
https://github.com/agiresearch/cerebrum
| false | false | true |
none
|
https://paperswithcode.com/paper/zero-execution-retrieval-augmented
|
Zero-Execution Retrieval-Augmented Configuration Tuning of Spark Applications
|
2503.03826
|
https://arxiv.org/abs/2503.03826v1
|
https://arxiv.org/pdf/2503.03826v1.pdf
|
https://github.com/layer6ai-labs/spark-retrieval-tuning
| true | true | true |
none
|
https://paperswithcode.com/paper/lightweight-and-direct-document-relevance
|
Lightweight and Direct Document Relevance Optimization for Generative Information Retrieval
|
2504.05181
|
https://arxiv.org/abs/2504.05181v2
|
https://arxiv.org/pdf/2504.05181v2.pdf
|
https://github.com/kidist-amde/ddro
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/direct-preference-optimization-your-language
|
Direct Preference Optimization: Your Language Model is Secretly a Reward Model
|
2305.18290
|
https://arxiv.org/abs/2305.18290v3
|
https://arxiv.org/pdf/2305.18290v3.pdf
|
https://github.com/kidist-amde/ddro
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/190600121
|
Graph WaveNet for Deep Spatial-Temporal Graph Modeling
|
1906.00121
|
https://arxiv.org/abs/1906.00121v1
|
https://arxiv.org/pdf/1906.00121v1.pdf
|
https://github.com/razvanc92/enhancenet
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/diffusion-convolutional-recurrent-neural
|
Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting
|
1707.01926
|
http://arxiv.org/abs/1707.01926v3
|
http://arxiv.org/pdf/1707.01926v3.pdf
|
https://github.com/razvanc92/enhancenet
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/fecfusion-infrared-and-visible-image-fusion
|
FECFusion: Infrared and visible image fusion network based on fast edge convolution
| null |
https://www.aimspress.com/article/doi/10.3934/mbe.2023717
|
https://www.aimspress.com/article/doi/10.3934/mbe.2023717
|
https://github.com/qingchen2333/FECFusion
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/rs-del-edit-distance-robustness-certificates-1
|
RS-Del: Edit Distance Robustness Certificates for Sequence Classifiers via Randomized Deletion
|
2302.01757
|
https://arxiv.org/abs/2302.01757v3
|
https://arxiv.org/pdf/2302.01757v3.pdf
|
https://github.com/lions-epfl/lipslev
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/unveiling-implicit-table-knowledge-with
|
Unveiling Implicit Table Knowledge with Question-Then-Pinpoint Reasoner for Insightful Table Summarization
|
2406.12269
|
https://arxiv.org/abs/2406.12269v2
|
https://arxiv.org/pdf/2406.12269v2.pdf
|
https://github.com/tommyezreal/qtp
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/jvmc-versatile-and-performant-variational
|
jVMC: Versatile and performant variational Monte Carlo leveraging automated differentiation and GPU acceleration
|
2108.03409
|
https://arxiv.org/abs/2108.03409v2
|
https://arxiv.org/pdf/2108.03409v2.pdf
|
https://github.com/markusschmitt/vmc_jax
| true | true | true |
jax
|
https://paperswithcode.com/paper/event-based-star-tracking-via-multiresolution
|
Event-based Star Tracking via Multiresolution Progressive Hough Transforms
|
1906.07866
|
https://arxiv.org/abs/1906.07866v2
|
https://arxiv.org/pdf/1906.07866v2.pdf
|
https://github.com/uzh-rpg/event-based_vision_resources
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/once-bitten-twice-shy-a-modeling-framework
|
Once bitten, twice shy: A modeling framework for incorporating heterogeneous mosquito biting into transmission models
|
2503.10585
|
https://arxiv.org/abs/2503.10585v1
|
https://arxiv.org/pdf/2503.10585v1.pdf
|
https://github.com/kydahl/mosquito-bite-process-modeling
| true | true | false |
none
|
https://paperswithcode.com/paper/featsharp-your-vision-model-features-sharper
|
FeatSharp: Your Vision Model Features, Sharper
|
2502.16025
|
https://arxiv.org/abs/2502.16025v1
|
https://arxiv.org/pdf/2502.16025v1.pdf
|
https://github.com/nvlabs/radio
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/refactorbench-evaluating-stateful-reasoning
|
RefactorBench: Evaluating Stateful Reasoning in Language Agents Through Code
|
2503.07832
|
https://arxiv.org/abs/2503.07832v1
|
https://arxiv.org/pdf/2503.07832v1.pdf
|
https://github.com/microsoft/RefactorBench
| true | false | false |
none
|
https://paperswithcode.com/paper/detecting-hallucinations-in-large-language-1
|
Detecting hallucinations in large language models using semantic entropy
| null |
https://www.nature.com/articles/s41586-024-07421-0
|
https://www.nature.com/articles/s41586-024-07421-0.pdf
|
https://github.com/jlko/semantic_uncertainty
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/movable-antenna-enabled-ris-aided-integrated
|
Movable Antenna-enabled RIS-aided Integrated Sensing and Communication
|
2407.03228
|
https://arxiv.org/abs/2407.03228v2
|
https://arxiv.org/pdf/2407.03228v2.pdf
|
https://github.com/OnePieceofCakeforYou/Movable-antenna-enabled-RIS-aided-integrated-sensing-and-communication
| false | false | false |
none
|
https://paperswithcode.com/paper/efficient-alignment-of-unconditioned-action
|
Efficient Alignment of Unconditioned Action Prior for Language-conditioned Pick and Place in Clutter
|
2503.09423
|
https://arxiv.org/abs/2503.09423v2
|
https://arxiv.org/pdf/2503.09423v2.pdf
|
https://github.com/H-Freax/ThinkGrasp
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/free-form-language-based-robotic-reasoning
|
Free-form language-based robotic reasoning and grasping
|
2503.13082
|
https://arxiv.org/abs/2503.13082v1
|
https://arxiv.org/pdf/2503.13082v1.pdf
|
https://github.com/H-Freax/ThinkGrasp
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/affordgrasp-in-context-affordance-reasoning
|
AffordGrasp: In-Context Affordance Reasoning for Open-Vocabulary Task-Oriented Grasping in Clutter
|
2503.00778
|
https://arxiv.org/abs/2503.00778v1
|
https://arxiv.org/pdf/2503.00778v1.pdf
|
https://github.com/H-Freax/ThinkGrasp
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/tinyvla-towards-fast-data-efficient-vision
|
TinyVLA: Towards Fast, Data-Efficient Vision-Language-Action Models for Robotic Manipulation
|
2409.12514
|
https://arxiv.org/abs/2409.12514v5
|
https://arxiv.org/pdf/2409.12514v5.pdf
|
https://github.com/liyaxuanliyaxuan/TinyVLA
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/neuqi-near-optimal-uniform-quantization
|
NeUQI: Near-Optimal Uniform Quantization Parameter Initialization
|
2505.17595
|
https://arxiv.org/abs/2505.17595v2
|
https://arxiv.org/pdf/2505.17595v2.pdf
|
https://github.com/efsotr/NeUQI
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/rwkv-x-a-linear-complexity-hybrid-language
|
RWKV-X: A Linear Complexity Hybrid Language Model
|
2504.21463
|
https://arxiv.org/abs/2504.21463v2
|
https://arxiv.org/pdf/2504.21463v2.pdf
|
https://github.com/howard-hou/rwkv-x
| true | true | false |
none
|
https://paperswithcode.com/paper/mmhcl-multi-modal-hypergraph-contrastive
|
MMHCL: Multi-Modal Hypergraph Contrastive Learning for Recommendation
|
2504.16576
|
https://arxiv.org/abs/2504.16576v1
|
https://arxiv.org/pdf/2504.16576v1.pdf
|
https://github.com/xu107/mmhcl
| true | true | true |
pytorch
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.