paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/second-order-differential-operators
|
Second-order differential operators, stochastic differential equations and Brownian motions on embedded manifolds
|
2406.02879
|
https://arxiv.org/abs/2406.02879v1
|
https://arxiv.org/pdf/2406.02879v1.pdf
|
https://github.com/dnguyend/jax-rb
| true | true | true |
jax
|
https://paperswithcode.com/paper/exploring-the-efficacy-of-a-hybrid-approach
|
Generalization capabilities and robustness of hybrid models grounded in physics compared to purely deep learning models
|
2404.17884
|
https://arxiv.org/abs/2404.17884v4
|
https://arxiv.org/pdf/2404.17884v4.pdf
|
https://github.com/rabadiah/generalization-capabilities-and-robustness-of-hybrid-machine-learning-models
| true | true | false |
none
|
https://paperswithcode.com/paper/translating-text-synopses-to-video
|
TeViS:Translating Text Synopses to Video Storyboards
|
2301.00135
|
https://arxiv.org/abs/2301.00135v4
|
https://arxiv.org/pdf/2301.00135v4.pdf
|
https://github.com/guxu313/TeViS
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/sltrain-a-sparse-plus-low-rank-approach-for
|
SLTrain: a sparse plus low-rank approach for parameter and memory efficient pretraining
|
2406.02214
|
https://arxiv.org/abs/2406.02214v2
|
https://arxiv.org/pdf/2406.02214v2.pdf
|
https://github.com/andyjm3/SLTrain
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/gptq-accurate-post-training-quantization-for
|
GPTQ: Accurate Post-Training Quantization for Generative Pre-trained Transformers
|
2210.17323
|
https://arxiv.org/abs/2210.17323v2
|
https://arxiv.org/pdf/2210.17323v2.pdf
|
https://github.com/microsoft/bitblas
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/learning-to-cache-accelerating-diffusion
|
Learning-to-Cache: Accelerating Diffusion Transformer via Layer Caching
|
2406.01733
|
https://arxiv.org/abs/2406.01733v2
|
https://arxiv.org/pdf/2406.01733v2.pdf
|
https://github.com/horseee/learning-to-cache
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/conformal-language-modeling
|
Conformal Language Modeling
|
2306.10193
|
https://arxiv.org/abs/2306.10193v2
|
https://arxiv.org/pdf/2306.10193v2.pdf
|
https://github.com/varal7/conformal-language-modeling
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/mimic-minimally-modified-counterfactuals-in
|
Representation Surgery: Theory and Practice of Affine Steering
|
2402.09631
|
https://arxiv.org/abs/2402.09631v7
|
https://arxiv.org/pdf/2402.09631v7.pdf
|
https://github.com/shauli-ravfogel/affine-steering
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/kornia-an-open-source-differentiable-computer
|
Kornia: an Open Source Differentiable Computer Vision Library for PyTorch
|
1910.02190
|
https://arxiv.org/abs/1910.02190v2
|
https://arxiv.org/pdf/1910.02190v2.pdf
|
https://github.com/arraiyopensource/torchgeometry
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/exploring-the-effectiveness-and-consistency
|
Exploring the Effectiveness and Consistency of Task Selection in Intermediate-Task Transfer Learning
|
2407.16245
|
https://arxiv.org/abs/2407.16245v1
|
https://arxiv.org/pdf/2407.16245v1.pdf
|
https://github.com/uds-lsv/intermediate-task-selection
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/apery-sets-and-the-ideal-class-monoid-of-a
|
Apéry sets and the ideal class monoid of a numerical semigroup
|
2302.09647
|
https://arxiv.org/abs/2302.09647v2
|
https://arxiv.org/pdf/2302.09647v2.pdf
|
https://github.com/numerical-semigroups/ideal-class-monoid
| true | true | true |
none
|
https://paperswithcode.com/paper/texhoi-reconstructing-textures-of-3d-unknown
|
TexHOI: Reconstructing Textures of 3D Unknown Objects in Monocular Hand-Object Interaction Scenes
|
2501.03525
|
https://arxiv.org/abs/2501.03525v1
|
https://arxiv.org/pdf/2501.03525v1.pdf
|
https://github.com/alakhag/texhoi
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/cute-measuring-llms-understanding-of-their
|
CUTE: Measuring LLMs' Understanding of Their Tokens
|
2409.15452
|
https://arxiv.org/abs/2409.15452v2
|
https://arxiv.org/pdf/2409.15452v2.pdf
|
https://github.com/leukas/cute
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/deep-learning-the-slow-modes-for-rare-events
|
Deep learning the slow modes for rare events sampling
|
2107.03943
|
https://arxiv.org/abs/2107.03943v2
|
https://arxiv.org/pdf/2107.03943v2.pdf
|
https://github.com/luigibonati/deep-learning-slow-modes-data
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/logicol-logically-informed-contrastive
|
LogiCoL: Logically-Informed Contrastive Learning for Set-based Dense Retrieval
|
2505.19588
|
https://arxiv.org/abs/2505.19588v1
|
https://arxiv.org/pdf/2505.19588v1.pdf
|
https://github.com/yanzhen4/logicol
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/palantir-towards-efficient-super-resolution
|
Palantir: Towards Efficient Super Resolution for Ultra-high-definition Live Streaming
|
2408.06152
|
https://arxiv.org/abs/2408.06152v2
|
https://arxiv.org/pdf/2408.06152v2.pdf
|
https://github.com/Palantir-SR/palantir
| true | false | true |
tf
|
https://paperswithcode.com/paper/distributed-quantum-logic-algorithm
|
Distributed quantum logic algorithm
|
2411.11979
|
https://arxiv.org/abs/2411.11979v1
|
https://arxiv.org/pdf/2411.11979v1.pdf
|
https://github.com/barseniev/dql_algorithm
| true | true | false |
none
|
https://paperswithcode.com/paper/llcaps-learning-to-illuminate-low-light
|
LLCaps: Learning to Illuminate Low-Light Capsule Endoscopy with Curved Wavelet Attention and Reverse Diffusion
|
2307.02452
|
https://arxiv.org/abs/2307.02452v2
|
https://arxiv.org/pdf/2307.02452v2.pdf
|
https://github.com/longbai1006/llcaps
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/a-generic-approach-to-nonparametric-function
|
A generic approach to nonparametric function estimation with mixed data
|
1704.07457
|
http://arxiv.org/abs/1704.07457v3
|
http://arxiv.org/pdf/1704.07457v3.pdf
|
https://github.com/cran/cctools
| false | false | true |
none
|
https://paperswithcode.com/paper/vmamba-visual-state-space-model
|
VMamba: Visual State Space Model
|
2401.10166
|
https://arxiv.org/abs/2401.10166v4
|
https://arxiv.org/pdf/2401.10166v4.pdf
|
https://github.com/raytrun/mamba-clip
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/raq-vae-rate-adaptive-vector-quantized
|
Rate-Adaptive Quantization: A Multi-Rate Codebook Adaptation for Vector Quantization-based Generative Models
|
2405.14222
|
https://arxiv.org/abs/2405.14222v2
|
https://arxiv.org/pdf/2405.14222v2.pdf
|
https://github.com/JiwanSeo/RAQ-VAE
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/roman-open-set-object-map-alignment-for
|
ROMAN: Open-Set Object Map Alignment for Robust View-Invariant Global Localization
|
2410.08262
|
https://arxiv.org/abs/2410.08262v2
|
https://arxiv.org/pdf/2410.08262v2.pdf
|
https://github.com/mit-acl/ROMAN
| true | false | false |
none
|
https://paperswithcode.com/paper/cpa-wac-constellation-partitioning-based
|
CPa-WAC: Constellation Partitioning-based Scalable Weighted Aggregation Composition for Knowledge Graph Embedding
| null |
https://www.ijcai.org/proceedings/2024/388
|
https://www.ijcai.org/proceedings/2024/0388.pdf
|
https://github.com/ganzagun/CPa-WAC
| false | true | false |
pytorch
|
https://paperswithcode.com/paper/minimum-weighted-feedback-arc-sets-for
|
Minimum Weighted Feedback Arc Sets for Ranking from Pairwise Comparisons
|
2412.16181
|
https://arxiv.org/abs/2412.16181v2
|
https://arxiv.org/pdf/2412.16181v2.pdf
|
https://github.com/soroushvahidi/ranking_with_mwfas
| true | true | false |
none
|
https://paperswithcode.com/paper/fast-generalizable-gaussian-splatting
|
MVSGaussian: Fast Generalizable Gaussian Splatting Reconstruction from Multi-View Stereo
|
2405.12218
|
https://arxiv.org/abs/2405.12218v3
|
https://arxiv.org/pdf/2405.12218v3.pdf
|
https://github.com/TQTQliu/MVSGaussian
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/mmworld-towards-multi-discipline-multi
|
MMWorld: Towards Multi-discipline Multi-faceted World Model Evaluation in Videos
|
2406.08407
|
https://arxiv.org/abs/2406.08407v3
|
https://arxiv.org/pdf/2406.08407v3.pdf
|
https://github.com/eric-ai-lab/mmworld
| true | true | true |
none
|
https://paperswithcode.com/paper/understanding-visual-concepts-across-models
|
Understanding Visual Concepts Across Models
|
2406.07506
|
https://arxiv.org/abs/2406.07506v1
|
https://arxiv.org/pdf/2406.07506v1.pdf
|
https://github.com/visual-words/visual-words
| true | true | true |
none
|
https://paperswithcode.com/paper/calibrating-doubly-robust-estimators-with
|
Calibrating doubly-robust estimators with unbalanced treatment assignment
|
2403.01585
|
https://arxiv.org/abs/2403.01585v2
|
https://arxiv.org/pdf/2403.01585v2.pdf
|
https://github.com/dballinari/Calibrating-doubly-robust-estimators-with-unbalanced-treatment-assignment
| true | true | true |
none
|
https://paperswithcode.com/paper/pretraining-ecg-data-with-adversarial-masking
|
Pretraining ECG Data with Adversarial Masking Improves Model Generalizability for Data-Scarce Tasks
|
2211.07889
|
https://arxiv.org/abs/2211.07889v1
|
https://arxiv.org/pdf/2211.07889v1.pdf
|
https://github.com/jessica-bo/advmask_ecg
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/subject-driven-text-to-image-generation-via-1
|
Subject-driven Text-to-Image Generation via Preference-based Reinforcement Learning
|
2407.12164
|
https://arxiv.org/abs/2407.12164v3
|
https://arxiv.org/pdf/2407.12164v3.pdf
|
https://github.com/andrew-miao/RPO
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/chance-constrained-energy-storage-pricing-for
|
Chance-Constrained Energy Storage Pricing for Social Welfare Maximization
|
2407.07068
|
https://arxiv.org/abs/2407.07068v1
|
https://arxiv.org/pdf/2407.07068v1.pdf
|
https://github.com/thuqining/Storage_Pricing_for_Social_Welfare_Maximization
| true | false | false |
none
|
https://paperswithcode.com/paper/uncovering-latent-themes-of-messaging-on
|
Discovering Latent Themes in Social Media Messaging: A Machine-in-the-Loop Approach Integrating LLMs
|
2403.10707
|
https://arxiv.org/abs/2403.10707v2
|
https://arxiv.org/pdf/2403.10707v2.pdf
|
https://github.com/tunazislam/latent-themes-llms
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/data-efficient-molecular-generation-with
|
Data-Efficient Molecular Generation with Hierarchical Textual Inversion
|
2405.02845
|
https://arxiv.org/abs/2405.02845v3
|
https://arxiv.org/pdf/2405.02845v3.pdf
|
https://github.com/seojin-kim/hi-mol
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/spectral-variance-in-a-stochastic
|
Spectral Variance in a Stochastic Gravitational-Wave Background From a Binary Population
|
2407.06270
|
https://arxiv.org/abs/2407.06270v3
|
https://arxiv.org/pdf/2407.06270v3.pdf
|
https://github.com/astrolamb/pop_synth
| true | true | true |
none
|
https://paperswithcode.com/paper/search-based-trace-diagnostic
|
Search-based Trace Diagnostic
|
2406.17268
|
https://arxiv.org/abs/2406.17268v1
|
https://arxiv.org/pdf/2406.17268v1.pdf
|
https://github.com/gastd/ga-hls
| true | true | false |
none
|
https://paperswithcode.com/paper/trocr-transformer-based-optical-character
|
TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models
|
2109.10282
|
https://arxiv.org/abs/2109.10282v5
|
https://arxiv.org/pdf/2109.10282v5.pdf
|
https://github.com/prathameshza/TrOCR_FineTuning
| false | false | false |
none
|
https://paperswithcode.com/paper/dahl-domain-specific-automated-hallucination
|
DAHL: Domain-specific Automated Hallucination Evaluation of Long-Form Text through a Benchmark Dataset in Biomedicine
|
2411.09255
|
https://arxiv.org/abs/2411.09255v1
|
https://arxiv.org/pdf/2411.09255v1.pdf
|
https://github.com/seemdog/DAHL
| true | false | true |
none
|
https://paperswithcode.com/paper/how-dnns-break-the-curse-of-dimensionality
|
How DNNs break the Curse of Dimensionality: Compositionality and Symmetry Learning
|
2407.05664
|
https://arxiv.org/abs/2407.05664v1
|
https://arxiv.org/pdf/2407.05664v1.pdf
|
https://github.com/shc443/coveringnumber_gb
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/hpff-hierarchical-locally-supervised-learning
|
HPFF: Hierarchical Locally Supervised Learning with Patch Feature Fusion
|
2407.05638
|
https://arxiv.org/abs/2407.05638v2
|
https://arxiv.org/pdf/2407.05638v2.pdf
|
https://github.com/zeudfish/hpff
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/passage-retrieval-of-polish-texts-using-okapi
|
Passage Retrieval of Polish Texts Using OKAPI BM25 and an Ensemble of Cross Encoders
|
2410.04620
|
https://arxiv.org/abs/2410.04620v1
|
https://arxiv.org/pdf/2410.04620v1.pdf
|
https://github.com/kubapok/poleval22
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/eagleeye-attention-to-unveil-malicious-event
|
EagleEye: Attention to Unveil Malicious Event Sequences from Provenance Graphs
|
2408.09217
|
https://arxiv.org/abs/2408.09217v2
|
https://arxiv.org/pdf/2408.09217v2.pdf
|
https://github.com/gyselph/eagle-eye
| true | false | true |
tf
|
https://paperswithcode.com/paper/art-automatic-red-teaming-for-text-to-image
|
ART: Automatic Red-teaming for Text-to-Image Models to Protect Benign Users
|
2405.19360
|
https://arxiv.org/abs/2405.19360v3
|
https://arxiv.org/pdf/2405.19360v3.pdf
|
https://github.com/guanlinlee/art
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/position-coupling-leveraging-task-structure
|
Position Coupling: Improving Length Generalization of Arithmetic Transformers Using Task Structure
|
2405.20671
|
https://arxiv.org/abs/2405.20671v2
|
https://arxiv.org/pdf/2405.20671v2.pdf
|
https://github.com/hanseuljo/position-coupling
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/how-not-to-stitch-representations-to-measure
|
How not to Stitch Representations to Measure Similarity: Task Loss Matching versus Direct Matching
|
2412.11299
|
https://arxiv.org/abs/2412.11299v1
|
https://arxiv.org/pdf/2412.11299v1.pdf
|
https://github.com/szegedai/stitching-ood
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/towards-controllable-face-generation-with
|
Controllable Face Synthesis with Semantic Latent Diffusion Models
|
2403.12743
|
https://arxiv.org/abs/2403.12743v2
|
https://arxiv.org/pdf/2403.12743v2.pdf
|
https://github.com/ergastialex/sca-dm
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/neural-port-hamiltonian-differential
|
Neural Port-Hamiltonian Differential Algebraic Equations for Compositional Learning of Electrical Networks
|
2412.11215
|
https://arxiv.org/abs/2412.11215v2
|
https://arxiv.org/pdf/2412.11215v2.pdf
|
https://github.com/nathan-t4/nphdae
| true | true | true |
jax
|
https://paperswithcode.com/paper/listen-and-speak-fairly-a-study-on-semantic
|
Listen and Speak Fairly: A Study on Semantic Gender Bias in Speech Integrated Large Language Models
|
2407.06957
|
https://arxiv.org/abs/2407.06957v1
|
https://arxiv.org/pdf/2407.06957v1.pdf
|
https://github.com/dlion168/Listen-and-Speak-Fairly
| true | true | true |
none
|
https://paperswithcode.com/paper/autordf2gml-facilitating-rdf-integration-in
|
AutoRDF2GML: Facilitating RDF Integration in Graph Machine Learning
|
2407.18735
|
https://arxiv.org/abs/2407.18735v1
|
https://arxiv.org/pdf/2407.18735v1.pdf
|
https://github.com/davidlamprecht/autordf2gml
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/extended-agriculture-vision-an-extension-of-a
|
Extended Agriculture-Vision: An Extension of a Large Aerial Image Dataset for Agricultural Pattern Analysis
|
2303.02460
|
https://arxiv.org/abs/2303.02460v1
|
https://arxiv.org/pdf/2303.02460v1.pdf
|
https://github.com/jingwu6/extended-agriculture-vision-dataset
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/neural-cleanse-identifying-and-mitigating
|
Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks
| null |
https://ieeexplore.ieee.org/document/8835365
|
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8835365
|
https://github.com/bolunwang/backdoor
| false | false | false |
tf
|
https://paperswithcode.com/paper/scsa-exploring-the-synergistic-effects
|
SCSA: Exploring the Synergistic Effects Between Spatial and Channel Attention
|
2407.05128
|
https://arxiv.org/abs/2407.05128v2
|
https://arxiv.org/pdf/2407.05128v2.pdf
|
https://github.com/HZAI-ZJNU/SCSA
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/efficient-and-long-tailed-generalization-for
|
Efficient and Long-Tailed Generalization for Pre-trained Vision-Language Model
|
2406.12638
|
https://arxiv.org/abs/2406.12638v1
|
https://arxiv.org/pdf/2406.12638v1.pdf
|
https://github.com/shijxcs/candle
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/real-time-3d-object-detection-using
|
Real-Time 3D Object Detection Using InnovizOne LiDAR and Low-Power Hailo-8 AI Accelerator
|
2412.05594
|
https://arxiv.org/abs/2412.05594v1
|
https://arxiv.org/pdf/2412.05594v1.pdf
|
https://github.com/airotau/pointpillarshailoinnoviz
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/data-driven-prediction-of-colonization
|
Data-driven prediction of colonization outcomes for complex microbial communities
| null |
https://doi.org/10.1038/s41467-024-46766-y
|
https://doi.org/10.1038/s41467-024-46766-y
|
https://github.com/spxuw/COP
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/a-variational-bayes-approach-to-debiased
|
A variational Bayes approach to debiased inference for low-dimensional parameters in high-dimensional linear regression
|
2406.12659
|
https://arxiv.org/abs/2406.12659v1
|
https://arxiv.org/pdf/2406.12659v1.pdf
|
https://github.com/lukemmtravis/Debiased-SVB
| true | true | false |
none
|
https://paperswithcode.com/paper/adaptive-habitability-of-exoplanets-thriving
|
Adaptive Habitability of Exoplanets: Thriving Under Extreme Environmental Change
|
2407.02571
|
https://arxiv.org/abs/2407.02571v1
|
https://arxiv.org/pdf/2407.02571v1.pdf
|
https://github.com/itaywe1998/Astro-Ecology-Paper
| true | false | false |
none
|
https://paperswithcode.com/paper/longformer-the-long-document-transformer
|
Longformer: The Long-Document Transformer
|
2004.05150
|
https://arxiv.org/abs/2004.05150v2
|
https://arxiv.org/pdf/2004.05150v2.pdf
|
https://github.com/mim-solutions/roberta_for_longer_texts
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/enhancing-fake-news-detection-in-social-media
|
Enhancing Fake News Detection in Social Media via Label Propagation on Cross-modal Tweet Graph
|
2406.09884
|
https://arxiv.org/abs/2406.09884v1
|
https://arxiv.org/pdf/2406.09884v1.pdf
|
https://github.com/zhaowanqing/FCN-LP
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/vector-valued-variation-spaces-and-width
|
Variation Spaces for Multi-Output Neural Networks: Insights on Multi-Task Learning and Network Compression
|
2305.16534
|
https://arxiv.org/abs/2305.16534v3
|
https://arxiv.org/pdf/2305.16534v3.pdf
|
https://github.com/joeshenouda/vv-spaces-nn-width
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/dinov2-learning-robust-visual-features
|
DINOv2: Learning Robust Visual Features without Supervision
|
2304.07193
|
https://arxiv.org/abs/2304.07193v2
|
https://arxiv.org/pdf/2304.07193v2.pdf
|
https://github.com/facebookresearch/highrescanopyheight
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/grathena-puncture-evolutions-on-vertex
|
GRAthena++: puncture evolutions on vertex-centered oct-tree AMR
|
2101.08289
|
https://arxiv.org/abs/2101.08289v1
|
https://arxiv.org/pdf/2101.08289v1.pdf
|
https://bitbucket.org/bernuzzi/twopuncturesc
| false | false | true |
none
|
https://paperswithcode.com/paper/a-single-domain-spectral-method-for-black
|
A single-domain spectral method for black hole puncture data
|
gr-qc/0404056
|
https://arxiv.org/abs/gr-qc/0404056v2
|
https://arxiv.org/pdf/gr-qc/0404056v2.pdf
|
https://bitbucket.org/bernuzzi/twopuncturesc
| false | false | true |
none
|
https://paperswithcode.com/paper/continual-learning-via-sequential-function
|
Continual Learning via Sequential Function-Space Variational Inference
|
2312.17210
|
https://arxiv.org/abs/2312.17210v1
|
https://arxiv.org/pdf/2312.17210v1.pdf
|
https://github.com/timrudner/S-FSVI
| true | false | false |
jax
|
https://paperswithcode.com/paper/2408-02205
|
Swiss Cheese Model for AI Safety: A Taxonomy and Reference Architecture for Multi-Layered Guardrails of Foundation Model Based Agents
|
2408.02205
|
https://arxiv.org/abs/2408.02205v4
|
https://arxiv.org/pdf/2408.02205v4.pdf
|
https://github.com/dishacse/Publication-Resources/tree/main/2025%20ICSA
| true | false | false |
none
|
https://paperswithcode.com/paper/structure-your-data-towards-semantic-graph
|
Structure Your Data: Towards Semantic Graph Counterfactuals
|
2403.06514
|
https://arxiv.org/abs/2403.06514v2
|
https://arxiv.org/pdf/2403.06514v2.pdf
|
https://github.com/aggeliki-dimitriou/sgce
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/smart-scene-motion-aware-human-action
|
SMART: Scene-motion-aware human action recognition framework for mental disorder group
|
2406.04649
|
https://arxiv.org/abs/2406.04649v1
|
https://arxiv.org/pdf/2406.04649v1.pdf
|
https://github.com/inowlzy/smart
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/mambamos-lidar-based-3d-moving-object
|
MambaMOS: LiDAR-based 3D Moving Object Segmentation with Motion-aware State Space Model
|
2404.12794
|
https://arxiv.org/abs/2404.12794v2
|
https://arxiv.org/pdf/2404.12794v2.pdf
|
https://github.com/terminal-k/mambamos
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/learning-interpretable-collective-variables
|
Learning Interpretable Collective Variables for Spreading Processes on Networks
|
2307.03491
|
https://arxiv.org/abs/2307.03491v3
|
https://arxiv.org/pdf/2307.03491v3.pdf
|
https://github.com/lueckem/spreading-processes-cvs
| true | true | true |
none
|
https://paperswithcode.com/paper/a-conic-transformation-approach-for-solving
|
A Conic Transformation Approach for Solving the Perspective-Three-Point Problem
|
2504.01620
|
https://arxiv.org/abs/2504.01620v1
|
https://arxiv.org/pdf/2504.01620v1.pdf
|
https://github.com/hayden-86/p3p-solver
| true | false | false |
none
|
https://paperswithcode.com/paper/fastclip-a-suite-of-optimization-techniques
|
FastCLIP: A Suite of Optimization Techniques to Accelerate CLIP Training with Limited Resources
|
2407.01445
|
https://arxiv.org/abs/2407.01445v3
|
https://arxiv.org/pdf/2407.01445v3.pdf
|
https://github.com/optimization-ai/fast_clip
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/reverse-map-projections-as-equivariant
|
Reverse Map Projections as Equivariant Quantum Embeddings
|
2407.19906
|
https://arxiv.org/abs/2407.19906v2
|
https://arxiv.org/pdf/2407.19906v2.pdf
|
https://github.com/kezmcd1903/equivariant_qnns
| true | true | false |
none
|
https://paperswithcode.com/paper/autostory-generating-diverse-storytelling
|
AutoStory: Generating Diverse Storytelling Images with Minimal Human Effort
|
2311.11243
|
https://arxiv.org/abs/2311.11243v1
|
https://arxiv.org/pdf/2311.11243v1.pdf
|
https://github.com/aim-uofa/AutoStory
| true | false | true |
none
|
https://paperswithcode.com/paper/hierarchical-temporal-convolution-network
|
Hierarchical Temporal Convolution Network:Towards Privacy-Centric Activity Recognition
| null |
https://www.researchgate.net/publication/387230107_Hierarchical_Temporal_Convolution_Network_Towards_Privacy-Centric_Activity_Recognition
|
https://www.researchgate.net/publication/387230107_Hierarchical_Temporal_Convolution_Network_Towards_Privacy-Centric_Activity_Recognition
|
https://github.com/Gbouna/HT-ConvNet
| false | true | false |
pytorch
|
https://paperswithcode.com/paper/weakest-precondition-reasoning-for-expected
|
Weakest Precondition Reasoning for Expected Run-Times of Probabilistic Programs
|
1601.01001
|
http://arxiv.org/abs/1601.01001v2
|
http://arxiv.org/pdf/1601.01001v2.pdf
|
https://github.com/maxhaslbeck/verERT
| false | false | true |
none
|
https://paperswithcode.com/paper/generating-geographically-and-economically
|
Generating geographically and economically realistic large-scale synthetic contact networks: A general method using publicly available data
|
2406.14698
|
https://arxiv.org/abs/2406.14698v1
|
https://arxiv.org/pdf/2406.14698v1.pdf
|
https://github.com/cddep-dc/greasypop-co
| true | true | true |
none
|
https://paperswithcode.com/paper/chat-ai-a-seamless-slurm-native-solution-for
|
Chat AI: A Seamless Slurm-Native Solution for HPC-Based Services
|
2407.00110
|
https://arxiv.org/abs/2407.00110v2
|
https://arxiv.org/pdf/2407.00110v2.pdf
|
https://github.com/gwdg/chat-ai
| true | true | true |
none
|
https://paperswithcode.com/paper/dense-neural-network-based-arrhythmia
|
Dense Neural Network Based Arrhythmia Classification on Low-cost and Low-compute Micro-controller
|
2504.03531
|
https://arxiv.org/abs/2504.03531v1
|
https://arxiv.org/pdf/2504.03531v1.pdf
|
https://github.com/mohammedz666/denseecgmicro
| true | true | false |
none
|
https://paperswithcode.com/paper/batchtopk-sparse-autoencoders
|
BatchTopK Sparse Autoencoders
|
2412.06410
|
https://arxiv.org/abs/2412.06410v1
|
https://arxiv.org/pdf/2412.06410v1.pdf
|
https://github.com/bartbussmann/batchtopk
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/dual-stream-feature-augmentation-for-domain
|
Dual-stream Feature Augmentation for Domain Generalization
|
2409.04699
|
https://arxiv.org/abs/2409.04699v1
|
https://arxiv.org/pdf/2409.04699v1.pdf
|
https://github.com/alusi123/dfa
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/spinhex-a-low-crosstalk-spin-qubit
|
SpinHex: A low-crosstalk, spin-qubit architecture based on multi-electron couplers
|
2504.03149
|
https://arxiv.org/abs/2504.03149v1
|
https://arxiv.org/pdf/2504.03149v1.pdf
|
https://github.com/pschnabl/spin-qubit-mec-surface-code
| true | true | true |
none
|
https://paperswithcode.com/paper/fast-gradient-free-optimization-of
|
Fast gradient-free optimization of excitations in variational quantum eigensolvers
|
2409.05939
|
https://arxiv.org/abs/2409.05939v2
|
https://arxiv.org/pdf/2409.05939v2.pdf
|
https://github.com/dlr-wf/ExcitationSolve
| true | false | true |
none
|
https://paperswithcode.com/paper/federated-transformer-multi-party-vertical
|
Federated Transformer: Multi-Party Vertical Federated Learning on Practical Fuzzily Linked Data
|
2410.17986
|
https://arxiv.org/abs/2410.17986v1
|
https://arxiv.org/pdf/2410.17986v1.pdf
|
https://github.com/xtra-computing/fet
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/genudc-high-quality-3d-mesh-generation-with
|
GenUDC: High Quality 3D Mesh Generation with Unsigned Dual Contouring Representation
|
2410.17802
|
https://arxiv.org/abs/2410.17802v1
|
https://arxiv.org/pdf/2410.17802v1.pdf
|
https://github.com/trepangcat/genudc
| true | true | false |
none
|
https://paperswithcode.com/paper/cascrnet-an-atrous-spatial-pyramid-pooling
|
CASCRNet: An Atrous Spatial Pyramid Pooling and Shared Channel Residual based Network for Capsule Endoscopy
|
2410.17863
|
https://arxiv.org/abs/2410.17863v2
|
https://arxiv.org/pdf/2410.17863v2.pdf
|
https://github.com/Manvith-Prabhu/Capsule-Vision-2024
| true | false | true |
tf
|
https://paperswithcode.com/paper/off-policy-maximum-entropy-rl-with-future
|
Off-Policy Maximum Entropy RL with Future State and Action Visitation Measures
|
2412.06655
|
https://arxiv.org/abs/2412.06655v1
|
https://arxiv.org/pdf/2412.06655v1.pdf
|
https://github.com/adrienBolland/future-visitation-exploration
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/lamda-a-longitudinal-android-malware
|
LAMDA: A Longitudinal Android Malware Benchmark for Concept Drift Analysis
|
2505.18551
|
https://arxiv.org/abs/2505.18551v1
|
https://arxiv.org/pdf/2505.18551v1.pdf
|
https://github.com/iqsec-lab/lamda
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/allenoise-large-scale-text-classification
|
AlleNoise: large-scale text classification benchmark dataset with real-world label noise
|
2407.10992
|
https://arxiv.org/abs/2407.10992v2
|
https://arxiv.org/pdf/2407.10992v2.pdf
|
https://github.com/allegro/allenoise
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/jess-designing-embodied-ai-for-interactive
|
Jess+: designing embodied AI for interactive music-making
|
2412.06469
|
https://arxiv.org/abs/2412.06469v1
|
https://arxiv.org/pdf/2412.06469v1.pdf
|
https://github.com/DigiScore/jess_plus
| true | true | false |
none
|
https://paperswithcode.com/paper/d2styler-advancing-arbitrary-style-transfer
|
D2Styler: Advancing Arbitrary Style Transfer with Discrete Diffusion Methods
|
2408.03558
|
https://arxiv.org/abs/2408.03558v1
|
https://arxiv.org/pdf/2408.03558v1.pdf
|
https://github.com/onkarsus13/d2styler
| true | true | true |
jax
|
https://paperswithcode.com/paper/lauragpt-listen-attend-understand-and
|
LauraGPT: Listen, Attend, Understand, and Regenerate Audio with GPT
|
2310.04673
|
https://arxiv.org/abs/2310.04673v4
|
https://arxiv.org/pdf/2310.04673v4.pdf
|
https://github.com/modelscope/FunCodec
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/improving-intervention-efficacy-via-concept
|
Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models
|
2405.01531
|
https://arxiv.org/abs/2405.01531v2
|
https://arxiv.org/pdf/2405.01531v2.pdf
|
https://github.com/explainableml/concept_realignment
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/wm-net-robust-deep-3d-watermarking-with
|
Rethinking Mesh Watermark: Towards Highly Robust and Adaptable Deep 3D Mesh Watermarking
|
2307.11628
|
https://arxiv.org/abs/2307.11628v2
|
https://arxiv.org/pdf/2307.11628v2.pdf
|
https://github.com/Xyronix99/Deep3DMark
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/efficacy-of-modern-neuro-evolutionary
|
Efficacy of Modern Neuro-Evolutionary Strategies for Continuous Control Optimization
|
1912.05239
|
https://arxiv.org/abs/1912.05239v2
|
https://arxiv.org/pdf/1912.05239v2.pdf
|
https://github.com/PaoloP84/EfficacyModernES
| true | true | false |
none
|
https://paperswithcode.com/paper/fine-tuning-large-language-models-for-entity
|
Fine-tuning Large Language Models for Entity Matching
|
2409.08185
|
https://arxiv.org/abs/2409.08185v2
|
https://arxiv.org/pdf/2409.08185v2.pdf
|
https://github.com/wbsg-uni-mannheim/tailormatch
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/grid-a-next-generation-data-parallel-c-qcd
|
Grid: A next generation data parallel C++ QCD library
|
1512.03487
|
http://arxiv.org/abs/1512.03487v1
|
http://arxiv.org/pdf/1512.03487v1.pdf
|
https://github.com/edbennett/grid_epcc
| false | false | true |
none
|
https://paperswithcode.com/paper/demonstration-of-an-ai-driven-workflow-for
|
Demonstration of an AI-driven workflow for autonomous high-resolution scanning microscopy
|
2301.05286
|
https://arxiv.org/abs/2301.05286v1
|
https://arxiv.org/pdf/2301.05286v1.pdf
|
https://github.com/yatagarasu50469/slads
| false | false | true |
tf
|
https://paperswithcode.com/paper/empirical-evaluation-of-normalizing-flows-in
|
Empirical evaluation of normalizing flows in Markov Chain Monte Carlo
|
2412.17136
|
https://arxiv.org/abs/2412.17136v1
|
https://arxiv.org/pdf/2412.17136v1.pdf
|
https://github.com/davidnabergoj/nfmc
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/multi-agent-motion-planning-from-signal
|
Multi-agent Motion Planning from Signal Temporal Logic Specifications
|
2201.05247
|
https://arxiv.org/abs/2201.05247v1
|
https://arxiv.org/pdf/2201.05247v1.pdf
|
https://github.com/Tass0sm/stl_planner
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/a-novel-metric-for-assessing-climatological
|
A novel metric for assessing climatological surface habitability
|
2407.05838
|
https://arxiv.org/abs/2407.05838v2
|
https://arxiv.org/pdf/2407.05838v2.pdf
|
https://github.com/hannahwoodward/2024-hab-metrics
| true | true | true |
none
|
https://paperswithcode.com/paper/global-benchmark-database
|
Global Benchmark Database
|
2405.10045
|
https://arxiv.org/abs/2405.10045v2
|
https://arxiv.org/pdf/2405.10045v2.pdf
|
https://github.com/Udopia/gbdc
| true | false | false |
none
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.