paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/topical-topic-pages-automagically
|
TOPICAL: TOPIC Pages AutomagicaLly
|
2405.01796
|
https://arxiv.org/abs/2405.01796v1
|
https://arxiv.org/pdf/2405.01796v1.pdf
|
https://github.com/allenai/topical
| true | true | true |
none
|
https://paperswithcode.com/paper/hard-thresholding-meets-evolution-strategies
|
Hard-Thresholding Meets Evolution Strategies in Reinforcement Learning
|
2405.01615
|
https://arxiv.org/abs/2405.01615v1
|
https://arxiv.org/pdf/2405.01615v1.pdf
|
https://github.com/cangcn/nes-ht
| true | true | true |
none
|
https://paperswithcode.com/paper/fast-wave-slow-wave-spectral-deferred
|
Fast-wave slow-wave spectral deferred correction methods applied to the compressible Euler equations
|
2505.15985
|
https://arxiv.org/abs/2505.15985v1
|
https://arxiv.org/pdf/2505.15985v1.pdf
|
https://github.com/firedrakeproject/gusto
| true | true | false |
none
|
https://paperswithcode.com/paper/balance-reward-and-safety-optimization-for
|
Balance Reward and Safety Optimization for Safe Reinforcement Learning: A Perspective of Gradient Manipulation
|
2405.01677
|
https://arxiv.org/abs/2405.01677v2
|
https://arxiv.org/pdf/2405.01677v2.pdf
|
https://github.com/pku-alignment/omnisafe
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/reconstructions-of-jupiter-s-magnetic-field
|
Reconstructions of Jupiter's magnetic field using physics informed neural networks
|
2403.07507
|
https://arxiv.org/abs/2403.07507v2
|
https://arxiv.org/pdf/2403.07507v2.pdf
|
https://github.com/LeyuanWu/JunoMag_PINN_VP3
| true | false | false |
none
|
https://paperswithcode.com/paper/language-model-based-paired-variational
|
Language Model-Based Paired Variational Autoencoders for Robotic Language Learning
|
2201.06317
|
https://arxiv.org/abs/2201.06317v2
|
https://arxiv.org/pdf/2201.06317v2.pdf
|
https://github.com/oo222bs/PVAE-BERT
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/recurrent-variational-network-a-deep-learning
|
Recurrent Variational Network: A Deep Learning Inverse Problem Solver applied to the task of Accelerated MRI Reconstruction
|
2111.09639
|
https://arxiv.org/abs/2111.09639v2
|
https://arxiv.org/pdf/2111.09639v2.pdf
|
https://github.com/directgroup/direct
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/state-of-the-art-machine-learning-mri
|
Results of the 2020 fastMRI Challenge for Machine Learning MR Image Reconstruction
|
2012.06318
|
https://arxiv.org/abs/2012.06318v3
|
https://arxiv.org/pdf/2012.06318v3.pdf
|
https://github.com/directgroup/direct
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/auto-encoding-variational-bayes-for-inferring
|
Auto-Encoding Variational Bayes for Inferring Topics and Visualization
|
2010.09233
|
https://arxiv.org/abs/2010.09233v2
|
https://arxiv.org/pdf/2010.09233v2.pdf
|
https://github.com/dangpnh2/plsv_vae
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/topology-dynamics-and-control-of-an-octopus
|
Topology, dynamics, and control of an octopus-analog muscular hydrostat
|
2304.08413
|
https://arxiv.org/abs/2304.08413v1
|
https://arxiv.org/pdf/2304.08413v1.pdf
|
https://github.com/GazzolaLab/PyElastica
| false | false | true |
none
|
https://paperswithcode.com/paper/paif-perception-aware-infrared-visible-image
|
PAIF: Perception-Aware Infrared-Visible Image Fusion for Attack-Tolerant Semantic Segmentation
|
2308.03979
|
https://arxiv.org/abs/2308.03979v1
|
https://arxiv.org/pdf/2308.03979v1.pdf
|
https://github.com/LiuZhu-CV/BDLFusion
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/identifying-linear-relational-concepts-in
|
Identifying Linear Relational Concepts in Large Language Models
|
2311.08968
|
https://arxiv.org/abs/2311.08968v2
|
https://arxiv.org/pdf/2311.08968v2.pdf
|
https://github.com/chanind/linear-relational
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/supervised-multiple-kernel-learning
|
Supervised Multiple Kernel Learning approaches for multi-omics data integration
|
2403.18355
|
https://arxiv.org/abs/2403.18355v2
|
https://arxiv.org/pdf/2403.18355v2.pdf
|
https://github.com/gabrieletaz/mkl_mo
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/a-real-time-rescheduling-algorithm-for-multi
|
A Real-Time Rescheduling Algorithm for Multi-robot Plan Execution
|
2403.18145
|
https://arxiv.org/abs/2403.18145v1
|
https://arxiv.org/pdf/2403.18145v1.pdf
|
https://github.com/YinggggFeng/Switchable-Edge-Search
| true | false | false |
none
|
https://paperswithcode.com/paper/lstm-a-search-space-odyssey
|
LSTM: A Search Space Odyssey
|
1503.04069
|
http://arxiv.org/abs/1503.04069v2
|
http://arxiv.org/pdf/1503.04069v2.pdf
|
https://github.com/yangyucheng000/papercode-2/tree/main/lstm-gaf
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/a-computational-approach-to-the-kiefer-weiss
|
A computational approach to the Kiefer-Weiss problem for sampling from a Bernoulli population
|
2110.04802
|
https://arxiv.org/abs/2110.04802v1
|
https://arxiv.org/pdf/2110.04802v1.pdf
|
https://github.com/tosinabase/Kiefer-Weiss
| true | true | true |
none
|
https://paperswithcode.com/paper/geocov19-a-dataset-of-hundreds-of-millions-of
|
GeoCoV19: A Dataset of Hundreds of Millions of Multilingual COVID-19 Tweets with Location Information
|
2005.11177
|
https://arxiv.org/abs/2005.11177v1
|
https://arxiv.org/pdf/2005.11177v1.pdf
|
https://github.com/vaceslav/cuda
| false | false | true |
none
|
https://paperswithcode.com/paper/qserve-w4a8kv4-quantization-and-system-co
|
QServe: W4A8KV4 Quantization and System Co-design for Efficient LLM Serving
|
2405.04532
|
https://arxiv.org/abs/2405.04532v3
|
https://arxiv.org/pdf/2405.04532v3.pdf
|
https://github.com/mit-han-lab/omniserve
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/are-llms-good-zero-shot-fallacy-classifiers
|
Are LLMs Good Zero-Shot Fallacy Classifiers?
|
2410.15050
|
https://arxiv.org/abs/2410.15050v1
|
https://arxiv.org/pdf/2410.15050v1.pdf
|
https://github.com/panfjcharlotte98/fallacy_detection
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/the-quantified-boolean-bayesian-network
|
The Quantified Boolean Bayesian Network: Theory and Experiments with a Logical Graphical Model
|
2402.06557
|
https://arxiv.org/abs/2402.06557v1
|
https://arxiv.org/pdf/2402.06557v1.pdf
|
https://github.com/gregorycoppola/bayes-star
| true | true | true |
none
|
https://paperswithcode.com/paper/u-slads-unsupervised-learning-approach-for
|
U-SLADS: Unsupervised Learning Approach for Dynamic Dendrite Sampling
|
1807.02233
|
http://arxiv.org/abs/1807.02233v1
|
http://arxiv.org/pdf/1807.02233v1.pdf
|
https://github.com/yatagarasu50469/slads
| false | false | true |
tf
|
https://paperswithcode.com/paper/deep-learning-approach-for-dynamic-sampling
|
Deep Learning Approach for Dynamic Sampling for Multichannel Mass Spectrometry Imaging
|
2210.13415
|
https://arxiv.org/abs/2210.13415v1
|
https://arxiv.org/pdf/2210.13415v1.pdf
|
https://github.com/yatagarasu50469/slads
| true | true | true |
tf
|
https://paperswithcode.com/paper/safe-unlearning-a-surprisingly-effective-and
|
From Theft to Bomb-Making: The Ripple Effect of Unlearning in Defending Against Jailbreak Attacks
|
2407.02855
|
https://arxiv.org/abs/2407.02855v3
|
https://arxiv.org/pdf/2407.02855v3.pdf
|
https://github.com/thu-coai/safeunlearning
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/robust-blockchained-federated-learning-with
|
Robust Blockchained Federated Learning with Model Validation and Proof-of-Stake Inspired Consensus
|
2101.03300
|
https://arxiv.org/abs/2101.03300v1
|
https://arxiv.org/pdf/2101.03300v1.pdf
|
https://github.com/flexible-fl/flex-block
| false | false | true |
none
|
https://paperswithcode.com/paper/thoughtsculpt-reasoning-with-intermediate
|
THOUGHTSCULPT: Reasoning with Intermediate Revision and Search
|
2404.05966
|
https://arxiv.org/abs/2404.05966v1
|
https://arxiv.org/pdf/2404.05966v1.pdf
|
https://github.com/cyzus/thoughtsculpt
| true | true | true |
none
|
https://paperswithcode.com/paper/the-pile-an-800gb-dataset-of-diverse-text-for
|
The Pile: An 800GB Dataset of Diverse Text for Language Modeling
|
2101.00027
|
https://arxiv.org/abs/2101.00027v1
|
https://arxiv.org/pdf/2101.00027v1.pdf
|
https://github.com/glassroom/heinsen_attention
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/arithmetic-transformers-can-length-generalize
|
Arithmetic Transformers Can Length-Generalize in Both Operand Length and Count
|
2410.15787
|
https://arxiv.org/abs/2410.15787v2
|
https://arxiv.org/pdf/2410.15787v2.pdf
|
https://github.com/hanseuljo/position-coupling
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/universal-and-transferable-adversarial
|
Universal and Transferable Adversarial Attacks on Aligned Language Models
|
2307.15043
|
https://arxiv.org/abs/2307.15043v2
|
https://arxiv.org/pdf/2307.15043v2.pdf
|
https://github.com/thu-coai/safeunlearning
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/automatic-restoration-of-diacritics-for
|
Automatic Restoration of Diacritics for Speech Data Sets
|
2311.10771
|
https://arxiv.org/abs/2311.10771v2
|
https://arxiv.org/pdf/2311.10771v2.pdf
|
https://github.com/sarashatnawi/diacritization
| true | true | true |
tf
|
https://paperswithcode.com/paper/flea-addressing-data-scarcity-and-label-skew
|
FLea: Addressing Data Scarcity and Label Skew in Federated Learning via Privacy-preserving Feature Augmentation
|
2406.09547
|
https://arxiv.org/abs/2406.09547v2
|
https://arxiv.org/pdf/2406.09547v2.pdf
|
https://github.com/xtxiatong/flea
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/reasoning-rcnn-unifying-adaptive-global
|
Reasoning-RCNN: Unifying Adaptive Global Reasoning Into Large-Scale Object Detection
| null |
http://openaccess.thecvf.com/content_CVPR_2019/html/Xu_Reasoning-RCNN_Unifying_Adaptive_Global_Reasoning_Into_Large-Scale_Object_Detection_CVPR_2019_paper.html
|
http://openaccess.thecvf.com/content_CVPR_2019/papers/Xu_Reasoning-RCNN_Unifying_Adaptive_Global_Reasoning_Into_Large-Scale_Object_Detection_CVPR_2019_paper.pdf
|
https://github.com/chanyn/Reasoning-RCNN
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/minmaxlttb-leveraging-minmax-preselection-to
|
MinMaxLTTB: Leveraging MinMax-Preselection to Scale LTTB
|
2305.00332
|
https://arxiv.org/abs/2305.00332v1
|
https://arxiv.org/pdf/2305.00332v1.pdf
|
https://github.com/predict-idlab/tsdownsample
| true | true | true |
none
|
https://paperswithcode.com/paper/efficient-computation-of-the-quantum-rate
|
Efficient Computation of the Quantum Rate-Distortion Function
|
2309.15919
|
https://arxiv.org/abs/2309.15919v3
|
https://arxiv.org/pdf/2309.15919v3.pdf
|
https://github.com/kerry-he/efficient-qrd
| true | true | true |
none
|
https://paperswithcode.com/paper/vimts-a-unified-video-and-image-text-spotter
|
VimTS: A Unified Video and Image Text Spotter for Enhancing the Cross-domain Generalization
|
2404.19652
|
https://arxiv.org/abs/2404.19652v4
|
https://arxiv.org/pdf/2404.19652v4.pdf
|
https://github.com/Yuliang-Liu/VimTS
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/random-pareto-front-surfaces
|
Random Pareto front surfaces
|
2405.01404
|
https://arxiv.org/abs/2405.01404v2
|
https://arxiv.org/pdf/2405.01404v2.pdf
|
https://github.com/benmltu/scalarize
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/texttt-pyresias-how-to-write-a-toy-parton
|
$\texttt{Pyresias}$: How To Write a Toy Parton Shower
|
2406.03528
|
https://arxiv.org/abs/2406.03528v1
|
https://arxiv.org/pdf/2406.03528v1.pdf
|
https://github.com/apapaefs/pyresias
| true | true | true |
none
|
https://paperswithcode.com/paper/benchmarking-node-outlier-detection-on-graphs
|
BOND: Benchmarking Unsupervised Outlier Node Detection on Static Attributed Graphs
|
2206.10071
|
https://arxiv.org/abs/2206.10071v2
|
https://arxiv.org/pdf/2206.10071v2.pdf
|
https://github.com/betterzhou/AAGNN
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/privacy-preserving-diffusion-model-using
|
Privacy-Preserving Diffusion Model Using Homomorphic Encryption
|
2403.05794
|
https://arxiv.org/abs/2403.05794v2
|
https://arxiv.org/pdf/2403.05794v2.pdf
|
https://github.com/HE-diffusion/HE-diffusion
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/towards-a-generic-compilation-approach-for
|
A Comparison of Quantum Compilers using a DAG-based or phase polynomial-based Intermediate Representation
|
2304.08814
|
https://arxiv.org/abs/2304.08814v2
|
https://arxiv.org/pdf/2304.08814v2.pdf
|
https://github.com/daehiff/pauliopt
| false | false | true |
none
|
https://paperswithcode.com/paper/annealing-optimisation-of-mixed-zx-phase
|
Annealing Optimisation of Mixed ZX Phase Circuits
|
2206.11839
|
https://arxiv.org/abs/2206.11839v2
|
https://arxiv.org/pdf/2206.11839v2.pdf
|
https://github.com/daehiff/pauliopt
| false | false | true |
none
|
https://paperswithcode.com/paper/architecture-aware-synthesis-of-stabilizer
|
Architecture-Aware Synthesis of Stabilizer Circuits from Clifford Tableaus
|
2309.08972
|
https://arxiv.org/abs/2309.08972v3
|
https://arxiv.org/pdf/2309.08972v3.pdf
|
https://github.com/daehiff/pauliopt
| true | true | true |
none
|
https://paperswithcode.com/paper/spectral-methods-for-neural-integral
|
Spectral methods for Neural Integral Equations
|
2312.05654
|
https://arxiv.org/abs/2312.05654v3
|
https://arxiv.org/pdf/2312.05654v3.pdf
|
https://github.com/emazap7/spectral_nie
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/hint-healthy-influential-noise-based-training
|
HINT: Healthy Influential-Noise based Training to Defend against Data Poisoning Attacks
|
2309.08549
|
https://arxiv.org/abs/2309.08549v3
|
https://arxiv.org/pdf/2309.08549v3.pdf
|
https://github.com/minhhao97vn/hint
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/differentiable-all-pole-filters-for-time
|
Differentiable All-pole Filters for Time-varying Audio Systems
|
2404.07970
|
https://arxiv.org/abs/2404.07970v4
|
https://arxiv.org/pdf/2404.07970v4.pdf
|
https://github.com/DiffAPF/torchcomp
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/iisan-efficiently-adapting-multimodal
|
IISAN: Efficiently Adapting Multimodal Representation for Sequential Recommendation with Decoupled PEFT
|
2404.02059
|
https://arxiv.org/abs/2404.02059v3
|
https://arxiv.org/pdf/2404.02059v3.pdf
|
https://github.com/gair-lab/iisan
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/long-term-fairness-in-sequential-multi-agent
|
Long-Term Fairness in Sequential Multi-Agent Selection with Positive Reinforcement
|
2407.07350
|
https://arxiv.org/abs/2407.07350v1
|
https://arxiv.org/pdf/2407.07350v1.pdf
|
https://github.com/guldoganozgur/long_term_fairness_pos_reinf
| true | false | false |
none
|
https://paperswithcode.com/paper/rade-gs-rasterizing-depth-in-gaussian
|
RaDe-GS: Rasterizing Depth in Gaussian Splatting
|
2406.01467
|
https://arxiv.org/abs/2406.01467v2
|
https://arxiv.org/pdf/2406.01467v2.pdf
|
https://github.com/BaowenZ/RaDe-GS
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/preliminary-wmt24-ranking-of-general-mt
|
Preliminary WMT24 Ranking of General MT Systems and LLMs
|
2407.19884
|
https://arxiv.org/abs/2407.19884v1
|
https://arxiv.org/pdf/2407.19884v1.pdf
|
https://github.com/wmt-conference/wmt-collect-translations
| true | false | false |
none
|
https://paperswithcode.com/paper/tight-fusion-of-events-and-inertial
|
Tight Fusion of Events and Inertial Measurements for Direct Velocity Estimation
|
2401.09296
|
https://arxiv.org/abs/2401.09296v1
|
https://arxiv.org/pdf/2401.09296v1.pdf
|
https://github.com/uzh-rpg/event-based_vision_resources
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/specter-an-instrument-concept-for-cmb
|
SPECTER: An Instrument Concept for CMB Spectral Distortion Measurements with Enhanced Sensitivity
|
2409.12188
|
https://arxiv.org/abs/2409.12188v1
|
https://arxiv.org/pdf/2409.12188v1.pdf
|
https://github.com/asabyr/specter_optimization
| true | false | true |
none
|
https://paperswithcode.com/paper/crosslocate-cross-modal-large-scale-visual
|
CrossLocate: Cross-modal Large-scale Visual Geo-Localization in Natural Environments using Rendered Modalities
| null |
https://cphoto.fit.vutbr.cz/crosslocate/
|
https://cphoto.fit.vutbr.cz/crosslocate/data/paper/CrossLocate.pdf
|
https://github.com/JanTomesek/CrossLocate
| false | false | false |
tf
|
https://paperswithcode.com/paper/semi-siamese-bi-encoder-neural-ranking-model
|
Semi-Siamese Bi-encoder Neural Ranking Model Using Lightweight Fine-Tuning
|
2110.14943
|
https://arxiv.org/abs/2110.14943v2
|
https://arxiv.org/pdf/2110.14943v2.pdf
|
https://github.com/xlpczv/semi_siamese
| true | true | true |
jax
|
https://paperswithcode.com/paper/3dmasc-accessible-explainable-3d-point-clouds
|
3DMASC: Accessible, explainable 3D point clouds classification. Application to Bi-spectral Topo-bathymetric lidar data
|
2401.09481
|
https://arxiv.org/abs/2401.09481v1
|
https://arxiv.org/pdf/2401.09481v1.pdf
|
https://github.com/Rennes-LiDAR-Platform/lidar_platform
| true | false | false |
none
|
https://paperswithcode.com/paper/ladic-are-diffusion-models-really-inferior-to
|
LaDiC: Are Diffusion Models Really Inferior to Autoregressive Counterparts for Image-to-Text Generation?
|
2404.10763
|
https://arxiv.org/abs/2404.10763v1
|
https://arxiv.org/pdf/2404.10763v1.pdf
|
https://github.com/wangyuchi369/ladic
| true | true | true |
jax
|
https://paperswithcode.com/paper/analytical-approximation-of-the-elbo-gradient
|
Analytical Approximation of the ELBO Gradient in the Context of the Clutter Problem
|
2404.10550
|
https://arxiv.org/abs/2404.10550v3
|
https://arxiv.org/pdf/2404.10550v3.pdf
|
https://github.com/rpopov42/elbo_gaa
| true | true | true |
none
|
https://paperswithcode.com/paper/explingo-explaining-ai-predictions-using
|
Explingo: Explaining AI Predictions using Large Language Models
|
2412.05145
|
https://arxiv.org/abs/2412.05145v1
|
https://arxiv.org/pdf/2412.05145v1.pdf
|
https://github.com/sibyl-dev/pyreal
| true | true | false |
none
|
https://paperswithcode.com/paper/differentially-private-sgd-without-clipping
|
Differentially Private SGD Without Clipping Bias: An Error-Feedback Approach
|
2311.14632
|
https://arxiv.org/abs/2311.14632v2
|
https://arxiv.org/pdf/2311.14632v2.pdf
|
https://github.com/564612540/DiceSGD
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/exploiting-inter-layer-expert-affinity-for
|
Exploiting Inter-Layer Expert Affinity for Accelerating Mixture-of-Experts Model Inference
|
2401.08383
|
https://arxiv.org/abs/2401.08383v2
|
https://arxiv.org/pdf/2401.08383v2.pdf
|
https://github.com/yjhmitweb/exflow
| true | true | true |
none
|
https://paperswithcode.com/paper/multimodal-machine-learning-combining-facial
|
GestaltMML: Enhancing Rare Genetic Disease Diagnosis through Multimodal Machine Learning Combining Facial Images and Clinical Texts
|
2312.15320
|
https://arxiv.org/abs/2312.15320v2
|
https://arxiv.org/pdf/2312.15320v2.pdf
|
https://github.com/wglab/gestaltmml-gestaltgpt
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/linear-time-one-class-classification-with
|
Linear-time One-Class Classification with Repeated Element-wise Folding
|
2408.11412
|
https://arxiv.org/abs/2408.11412v1
|
https://arxiv.org/pdf/2408.11412v1.pdf
|
https://github.com/jenniraitoharju/ref
| true | true | false |
none
|
https://paperswithcode.com/paper/dyport-dynamic-importance-based-hypothesis
|
Dyport: Dynamic Importance-based Hypothesis Generation Benchmarking Technique
|
2312.03303
|
https://arxiv.org/abs/2312.03303v1
|
https://arxiv.org/pdf/2312.03303v1.pdf
|
https://github.com/ilyatyagin/dyport
| true | true | true |
none
|
https://paperswithcode.com/paper/neural-image-compression-with-text-guided
|
Neural Image Compression with Text-guided Encoding for both Pixel-level and Perceptual Fidelity
|
2403.02944
|
https://arxiv.org/abs/2403.02944v2
|
https://arxiv.org/pdf/2403.02944v2.pdf
|
https://github.com/effl-lab/taco
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/real-time-flying-object-detection-with-yolov8
|
Real-Time Flying Object Detection with YOLOv8
|
2305.09972
|
https://arxiv.org/abs/2305.09972v2
|
https://arxiv.org/pdf/2305.09972v2.pdf
|
https://github.com/dillonreis/real-time-flying-object-detection_with_yolov8
| true | true | false |
none
|
https://paperswithcode.com/paper/generating-causal-explanations-of-vehicular
|
Generating Causal Explanations of Vehicular Agent Behavioural Interactions with Learnt Reward Profiles
|
2503.14557
|
https://arxiv.org/abs/2503.14557v1
|
https://arxiv.org/pdf/2503.14557v1.pdf
|
https://github.com/cognitive-robots/gce_vbai_lrp_paper_resources
| true | false | false |
none
|
https://paperswithcode.com/paper/exact-information-bottleneck-with-invertible
|
Training Normalizing Flows with the Information Bottleneck for Competitive Generative Classification
|
2001.06448
|
https://arxiv.org/abs/2001.06448v5
|
https://arxiv.org/pdf/2001.06448v5.pdf
|
https://github.com/VLL-HD/FrEIA
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/fer-yolo-mamba-facial-expression-detection
|
FER-YOLO-Mamba: Facial Expression Detection and Classification Based on Selective State Space
|
2405.01828
|
https://arxiv.org/abs/2405.01828v3
|
https://arxiv.org/pdf/2405.01828v3.pdf
|
https://github.com/swjtuma/fer-yolo-mamba
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/reshuffling-resampling-splits-can-improve
|
Reshuffling Resampling Splits Can Improve Generalization of Hyperparameter Optimization
|
2405.15393
|
https://arxiv.org/abs/2405.15393v2
|
https://arxiv.org/pdf/2405.15393v2.pdf
|
https://github.com/sumny/reshuffling
| true | false | true |
none
|
https://paperswithcode.com/paper/venomancer-towards-imperceptible-and-target
|
Venomancer: Towards Imperceptible and Target-on-Demand Backdoor Attacks in Federated Learning
|
2407.03144
|
https://arxiv.org/abs/2407.03144v2
|
https://arxiv.org/pdf/2407.03144v2.pdf
|
https://github.com/nguyenhongson1902/venomancer
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/gradient-boosting-reinforcement-learning
|
Gradient Boosting Reinforcement Learning
|
2407.08250
|
https://arxiv.org/abs/2407.08250v1
|
https://arxiv.org/pdf/2407.08250v1.pdf
|
https://github.com/nvlabs/gbrl
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/a-network-based-measure-of-cosponsorship
|
A Network-Based Measure of Cosponsorship Influence on Bill Passing in the United States House of Representatives
|
2406.19554
|
https://arxiv.org/abs/2406.19554v1
|
https://arxiv.org/pdf/2406.19554v1.pdf
|
https://github.com/sarahsotoudeh/LegislativeInfluence
| true | true | false |
none
|
https://paperswithcode.com/paper/improving-cross-domain-few-shot
|
Improving Cross-domain Few-shot Classification with Multilayer Perceptron
|
2312.09589
|
https://arxiv.org/abs/2312.09589v1
|
https://arxiv.org/pdf/2312.09589v1.pdf
|
https://github.com/BaiShuanghao/CDFSC-MLP
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/jup2kub-algorithms-and-a-system-to-translate
|
Jup2Kub: algorithms and a system to translate a Jupyter Notebook pipeline to a fault tolerant distributed Kubernetes deployment
|
2311.12308
|
https://arxiv.org/abs/2311.12308v1
|
https://arxiv.org/pdf/2311.12308v1.pdf
|
https://github.com/shirou10086/scientificworkflow
| true | true | true |
none
|
https://paperswithcode.com/paper/energy-based-sliced-wasserstein-distance-1
|
Energy-Based Sliced Wasserstein Distance
|
2304.13586
|
https://arxiv.org/abs/2304.13586v3
|
https://arxiv.org/pdf/2304.13586v3.pdf
|
https://github.com/khainb/ebsw
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/poker-hand-history-file-format-specification
|
Recording and Describing Poker Hands
|
2312.11753
|
https://arxiv.org/abs/2312.11753v5
|
https://arxiv.org/pdf/2312.11753v5.pdf
|
https://github.com/uoftcprg/phh-std
| true | true | false |
none
|
https://paperswithcode.com/paper/scalable-cross-entropy-loss-for-sequential
|
Scalable Cross-Entropy Loss for Sequential Recommendations with Large Item Catalogs
|
2409.18721
|
https://arxiv.org/abs/2409.18721v2
|
https://arxiv.org/pdf/2409.18721v2.pdf
|
https://github.com/AIRI-Institute/Scalable-SASRec
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/free-surgs-sfm-free-3d-gaussian-splatting-for
|
Free-SurGS: SfM-Free 3D Gaussian Splatting for Surgical Scene Reconstruction
|
2407.02918
|
https://arxiv.org/abs/2407.02918v1
|
https://arxiv.org/pdf/2407.02918v1.pdf
|
https://github.com/wrld/free-surgs
| true | true | true |
jax
|
https://paperswithcode.com/paper/growing-artificial-neural-networks-for
|
Growing Artificial Neural Networks for Control: the Role of Neuronal Diversity
|
2405.08510
|
https://arxiv.org/abs/2405.08510v1
|
https://arxiv.org/pdf/2405.08510v1.pdf
|
https://github.com/eleninisioti/GrowNeuralNets
| true | true | false |
jax
|
https://paperswithcode.com/paper/secml-a-python-library-for-secure-and
|
secml: A Python Library for Secure and Explainable Machine Learning
|
1912.10013
|
https://arxiv.org/abs/1912.10013v2
|
https://arxiv.org/pdf/1912.10013v2.pdf
|
https://github.com/pralab/secml
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/image-coding-for-machines-with-edge
|
Image Coding for Machines with Edge Information Learning Using Segment Anything
|
2403.04173
|
https://arxiv.org/abs/2403.04173v3
|
https://arxiv.org/pdf/2403.04173v3.pdf
|
https://github.com/final-0/sa-icm
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/p-bench-a-multi-level-privacy-evaluation
|
PrivLM-Bench: A Multi-level Privacy Evaluation Benchmark for Language Models
|
2311.04044
|
https://arxiv.org/abs/2311.04044v3
|
https://arxiv.org/pdf/2311.04044v3.pdf
|
https://github.com/hkust-knowcomp/privlm-bench
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/denseseg-joint-learning-for-semantic
|
DenseSeg: Joint Learning for Semantic Segmentation and Landmark Detection Using Dense Image-to-Shape Representation
|
2405.19746
|
https://arxiv.org/abs/2405.19746v2
|
https://arxiv.org/pdf/2405.19746v2.pdf
|
https://github.com/MDL-UzL/DenseSeg
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/elastic-feature-consolidation-for-cold-start
|
Elastic Feature Consolidation for Cold Start Exemplar-Free Incremental Learning
|
2402.03917
|
https://arxiv.org/abs/2402.03917v3
|
https://arxiv.org/pdf/2402.03917v3.pdf
|
https://github.com/simomagi/elastic_feature_consolidation
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/cpsycoun-a-report-based-multi-turn-dialogue
|
CPsyCoun: A Report-based Multi-turn Dialogue Reconstruction and Evaluation Framework for Chinese Psychological Counseling
|
2405.16433
|
https://arxiv.org/abs/2405.16433v3
|
https://arxiv.org/pdf/2405.16433v3.pdf
|
https://github.com/cas-siat-xinhai/cpsycoun
| true | true | true |
none
|
https://paperswithcode.com/paper/improved-techniques-for-training-score-based
|
Improved Techniques for Training Score-Based Generative Models
|
2006.09011
|
https://arxiv.org/abs/2006.09011v2
|
https://arxiv.org/pdf/2006.09011v2.pdf
|
https://github.com/tpresser570/Lambert-Diffusion
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/folded-spectrum-vqe-a-quantum-computing
|
Folded Spectrum VQE : A quantum computing method for the calculation of molecular excited states
|
2305.04783
|
https://arxiv.org/abs/2305.04783v2
|
https://arxiv.org/pdf/2305.04783v2.pdf
|
https://github.com/ichen17/Qhack2024-project
| false | false | true |
none
|
https://paperswithcode.com/paper/dormant-defending-against-pose-driven-human
|
Dormant: Defending against Pose-driven Human Image Animation
|
2409.14424
|
https://arxiv.org/abs/2409.14424v2
|
https://arxiv.org/pdf/2409.14424v2.pdf
|
https://github.com/Manu21JC/Dormant
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/tart-an-open-source-tool-augmented-framework
|
TART: An Open-Source Tool-Augmented Framework for Explainable Table-based Reasoning
|
2409.11724
|
https://arxiv.org/abs/2409.11724v2
|
https://arxiv.org/pdf/2409.11724v2.pdf
|
https://github.com/xinyuanlu00/tart
| true | true | true |
none
|
https://paperswithcode.com/paper/chibench-a-benchmark-suite-for-testing
|
ChiBench: a Benchmark Suite for Testing Electronic Design Automation Tools
|
2406.06550
|
https://arxiv.org/abs/2406.06550v1
|
https://arxiv.org/pdf/2406.06550v1.pdf
|
https://github.com/lac-dcc/chimera
| true | true | true |
none
|
https://paperswithcode.com/paper/federated-learning-you-may-communicate-less
|
Lessons from Generalization Error Analysis of Federated Learning: You May Communicate Less Often!
|
2306.05862
|
https://arxiv.org/abs/2306.05862v2
|
https://arxiv.org/pdf/2306.05862v2.pdf
|
https://github.com/romainchor/generalization_fl_icml2024
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/a-deep-dive-into-the-distribution-function
|
A Deep Dive into the Distribution Function: Understanding Phase Space Dynamics with Continuum Vlasov-Maxwell Simulations
|
2005.13539
|
https://arxiv.org/abs/2005.13539v1
|
https://arxiv.org/pdf/2005.13539v1.pdf
|
https://github.com/ammarhakim/gkyl-paper-inp
| true | true | true |
none
|
https://paperswithcode.com/paper/occ-vo-dense-mapping-via-3d-occupancy-based
|
OCC-VO: Dense Mapping via 3D Occupancy-Based Visual Odometry for Autonomous Driving
|
2309.11011
|
https://arxiv.org/abs/2309.11011v2
|
https://arxiv.org/pdf/2309.11011v2.pdf
|
https://github.com/ustclh/occ-vo
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/mammalps-a-multi-view-video-behavior
|
MammAlps: A multi-view video behavior monitoring dataset of wild mammals in the Swiss Alps
|
2503.18223
|
https://arxiv.org/abs/2503.18223v2
|
https://arxiv.org/pdf/2503.18223v2.pdf
|
https://github.com/eceo-epfl/mammalps
| true | true | false |
none
|
https://paperswithcode.com/paper/learning-to-iteratively-solve-routing
|
Learning to Iteratively Solve Routing Problems with Dual-Aspect Collaborative Transformer
|
2110.02544
|
https://arxiv.org/abs/2110.02544v3
|
https://arxiv.org/pdf/2110.02544v3.pdf
|
https://github.com/yining043/VRP-DACT
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/fair-classification-with-partial-feedback-an
|
Fair Classification with Partial Feedback: An Exploration-Based Data Collection Approach
|
2402.11338
|
https://arxiv.org/abs/2402.11338v2
|
https://arxiv.org/pdf/2402.11338v2.pdf
|
https://github.com/vijaykeswani/fair-classification-with-partial-feedback
| true | true | true |
none
|
https://paperswithcode.com/paper/nfi-2-learning-noise-free-illuminance
|
Advancing Unsupervised Low-light Image Enhancement: Noise Estimation, Illumination Interpolation, and Self-Regulation
|
2305.10223
|
https://arxiv.org/abs/2305.10223v4
|
https://arxiv.org/pdf/2305.10223v4.pdf
|
https://github.com/googolplexgoodenough/noise_estimate
| true | true | false |
none
|
https://paperswithcode.com/paper/mad-multi-alignment-meg-to-text-decoding
|
MAD: Multi-Alignment MEG-to-Text Decoding
|
2406.01512
|
https://arxiv.org/abs/2406.01512v1
|
https://arxiv.org/pdf/2406.01512v1.pdf
|
https://github.com/neuspeech/mad-meg2text
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/nerf-supervised-feature-point-detection-and
|
NeRF-Supervised Feature Point Detection and Description
|
2403.08156
|
https://arxiv.org/abs/2403.08156v3
|
https://arxiv.org/pdf/2403.08156v3.pdf
|
https://github.com/AliYoussef97/SuperPoint-PrP
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/learning-adaptive-fusion-bank-for-multi-modal
|
Learning Adaptive Fusion Bank for Multi-modal Salient Object Detection
|
2406.01127
|
https://arxiv.org/abs/2406.01127v1
|
https://arxiv.org/pdf/2406.01127v1.pdf
|
https://github.com/angknpng/lafb
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/odgs-3d-scene-reconstruction-from
|
ODGS: 3D Scene Reconstruction from Omnidirectional Images with 3D Gaussian Splattings
|
2410.20686
|
https://arxiv.org/abs/2410.20686v1
|
https://arxiv.org/pdf/2410.20686v1.pdf
|
https://github.com/esw0116/odgs
| true | true | true |
none
|
https://paperswithcode.com/paper/neural-topic-models-with-survival-supervision
|
Neural Topic Models with Survival Supervision: Jointly Predicting Time-to-Event Outcomes and Learning How Clinical Features Relate
|
2007.07796
|
https://arxiv.org/abs/2007.07796v2
|
https://arxiv.org/pdf/2007.07796v2.pdf
|
https://github.com/georgehc/survival-topics
| true | true | true |
pytorch
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.