paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/privacy-issues-in-large-language-models-a
|
Privacy Issues in Large Language Models: A Survey
|
2312.06717
|
https://arxiv.org/abs/2312.06717v4
|
https://arxiv.org/pdf/2312.06717v4.pdf
|
https://github.com/safr-ml-lab/survey-llm
| true | true | true |
tf
|
https://paperswithcode.com/paper/effects-of-diversity-incentives-on-sample
|
Effects of diversity incentives on sample diversity and downstream model performance in LLM-based text augmentation
|
2401.06643
|
https://arxiv.org/abs/2401.06643v3
|
https://arxiv.org/pdf/2401.06643v3.pdf
|
https://github.com/kinit-sk/llm-div-incts
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/detecting-attended-visual-targets-in-video
|
Detecting Attended Visual Targets in Video
|
2003.02501
|
https://arxiv.org/abs/2003.02501v2
|
https://arxiv.org/pdf/2003.02501v2.pdf
|
https://github.com/ejcgt/attention-target-detection
| false | true | true |
pytorch
|
https://paperswithcode.com/paper/spatially-adaptive-self-supervised-learning
|
Spatially Adaptive Self-Supervised Learning for Real-World Image Denoising
|
2303.14934
|
https://arxiv.org/abs/2303.14934v1
|
https://arxiv.org/pdf/2303.14934v1.pdf
|
https://github.com/nagejacob/spatiallyadaptivessid
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/rethinking-node-wise-propagation-for-large
|
Rethinking Node-wise Propagation for Large-scale Graph Learning
|
2402.06128
|
https://arxiv.org/abs/2402.06128v1
|
https://arxiv.org/pdf/2402.06128v1.pdf
|
https://github.com/xkli-allen/atp
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/multi-granularity-correspondence-learning-1
|
Multi-granularity Correspondence Learning from Long-term Noisy Videos
|
2401.16702
|
https://arxiv.org/abs/2401.16702v1
|
https://arxiv.org/pdf/2401.16702v1.pdf
|
https://github.com/XLearning-SCU/2024-ICLR-Norton
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/llm4eda-emerging-progress-in-large-language
|
LLM4EDA: Emerging Progress in Large Language Models for Electronic Design Automation
|
2401.12224
|
https://arxiv.org/abs/2401.12224v1
|
https://arxiv.org/pdf/2401.12224v1.pdf
|
https://github.com/thinklab-sjtu/awesome-llm4eda
| true | true | true |
none
|
https://paperswithcode.com/paper/training-on-test-proteins-improves-fitness
|
Training on test proteins improves fitness, structure, and function prediction
|
2411.02109
|
https://arxiv.org/abs/2411.02109v1
|
https://arxiv.org/pdf/2411.02109v1.pdf
|
https://github.com/anton-bushuiev/ProteinTTT
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/structured-complex-and-time-complete-temporal
|
SCTc-TE: A Comprehensive Formulation and Benchmark for Temporal Event Forecasting
|
2312.01052
|
https://arxiv.org/abs/2312.01052v2
|
https://arxiv.org/pdf/2312.01052v2.pdf
|
https://github.com/yecchen/gdelt-complexevent
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/a-robust-ensemble-algorithm-for-ischemic
|
A Robust Ensemble Algorithm for Ischemic Stroke Lesion Segmentation: Generalizability and Clinical Utility Beyond the ISLES Challenge
|
2403.19425
|
https://arxiv.org/abs/2403.19425v2
|
https://arxiv.org/pdf/2403.19425v2.pdf
|
https://github.com/ezequieldlrosa/isles22
| true | true | false |
none
|
https://paperswithcode.com/paper/khronos-a-unified-approach-for-spatio
|
Khronos: A Unified Approach for Spatio-Temporal Metric-Semantic SLAM in Dynamic Environments
|
2402.13817
|
https://arxiv.org/abs/2402.13817v2
|
https://arxiv.org/pdf/2402.13817v2.pdf
|
https://github.com/mit-spark/khronos
| true | true | true |
none
|
https://paperswithcode.com/paper/scene-graph-generation-from-hierarchical
|
Hierarchical Relationships: A New Perspective to Enhance Scene Graph Generation
|
2303.06842
|
https://arxiv.org/abs/2303.06842v5
|
https://arxiv.org/pdf/2303.06842v5.pdf
|
https://github.com/bowen-upenn/scene_graph_commonsense
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/a-closed-form-solution-to-best-rank-1-tensor
|
Fast Tucker Rank Reduction for Non-Negative Tensors Using Mean-Field Approximation
|
2103.02898
|
https://arxiv.org/abs/2103.02898v3
|
https://arxiv.org/pdf/2103.02898v3.pdf
|
https://github.com/gkazunii/Legendre-tucker-rank-reduction
| true | false | true |
none
|
https://paperswithcode.com/paper/translating-images-to-road-network-a-non-1
|
Translating Images to Road Network: A Sequence-to-Sequence Perspective
|
2402.08207
|
https://arxiv.org/abs/2402.08207v2
|
https://arxiv.org/pdf/2402.08207v2.pdf
|
https://github.com/MindSpore-scientific-2/code-3/tree/main/translating-math-formula-images
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/activerag-revealing-the-treasures-of
|
ActiveRAG: Autonomously Knowledge Assimilation and Accommodation through Retrieval-Augmented Agents
|
2402.13547
|
https://arxiv.org/abs/2402.13547v2
|
https://arxiv.org/pdf/2402.13547v2.pdf
|
https://github.com/openmatch/activerag
| true | true | true |
none
|
https://paperswithcode.com/paper/instruction-tuned-language-models-are-better
|
Instruction-tuned Language Models are Better Knowledge Learners
|
2402.12847
|
https://arxiv.org/abs/2402.12847v2
|
https://arxiv.org/pdf/2402.12847v2.pdf
|
https://github.com/edward-sun/pit
| true | true | true |
none
|
https://paperswithcode.com/paper/scale-match-for-tiny-person-detection
|
Scale Match for Tiny Person Detection
|
1912.10664
|
https://arxiv.org/abs/1912.10664v1
|
https://arxiv.org/pdf/1912.10664v1.pdf
|
https://github.com/ucas-vg/TinyBenchmark
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/object-localization-under-single-coarse-point
|
Object Localization under Single Coarse Point Supervision
|
2203.09338
|
https://arxiv.org/abs/2203.09338v1
|
https://arxiv.org/pdf/2203.09338v1.pdf
|
https://github.com/ucas-vg/TinyBenchmark
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/point-to-box-network-for-accurate-object
|
Point-to-Box Network for Accurate Object Detection via Single Point Supervision
|
2207.06827
|
https://arxiv.org/abs/2207.06827v2
|
https://arxiv.org/pdf/2207.06827v2.pdf
|
https://github.com/ucas-vg/TinyBenchmark
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/cpr-object-localization-via-single-coarse
|
CPR++: Object Localization via Single Coarse Point Supervision
|
2401.17203
|
https://arxiv.org/abs/2401.17203v1
|
https://arxiv.org/pdf/2401.17203v1.pdf
|
https://github.com/ucas-vg/TinyBenchmark
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/caphuman-capture-your-moments-in-parallel
|
CapHuman: Capture Your Moments in Parallel Universes
|
2402.00627
|
https://arxiv.org/abs/2402.00627v3
|
https://arxiv.org/pdf/2402.00627v3.pdf
|
https://github.com/vamosc/caphuman
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/pap-rec-personalized-automatic-prompt-for
|
PAP-REC: Personalized Automatic Prompt for Recommendation Language Model
|
2402.00284
|
https://arxiv.org/abs/2402.00284v1
|
https://arxiv.org/pdf/2402.00284v1.pdf
|
https://github.com/rutgerswiselab/pap-rec
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/wordepth-variational-language-prior-for
|
WorDepth: Variational Language Prior for Monocular Depth Estimation
|
2404.03635
|
https://arxiv.org/abs/2404.03635v4
|
https://arxiv.org/pdf/2404.03635v4.pdf
|
https://github.com/adonis-galaxy/wordepth
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/improving-multimodal-classification-of-social
|
Improving Multimodal Classification of Social Media Posts by Leveraging Image-Text Auxiliary Tasks
|
2309.07794
|
https://arxiv.org/abs/2309.07794v2
|
https://arxiv.org/pdf/2309.07794v2.pdf
|
https://github.com/danaesavi/socialmedia-textimage-classification-auxlosses
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/attention-based-simple-primitives-for-open
|
Attention Based Simple Primitives for Open World Compositional Zero-Shot Learning
|
2407.13715
|
https://arxiv.org/abs/2407.13715v1
|
https://arxiv.org/pdf/2407.13715v1.pdf
|
https://github.com/ans92/ASP
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/learning-semantic-proxies-from-visual-prompts
|
Learning Semantic Proxies from Visual Prompts for Parameter-Efficient Fine-Tuning in Deep Metric Learning
|
2402.02340
|
https://arxiv.org/abs/2402.02340v2
|
https://arxiv.org/pdf/2402.02340v2.pdf
|
https://github.com/noahsark/parameterefficient-dml
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/fade-fusing-the-assets-of-decoder-and-encoder
|
FADE: Fusing the Assets of Decoder and Encoder for Task-Agnostic Upsampling
|
2207.10392
|
https://arxiv.org/abs/2207.10392v2
|
https://arxiv.org/pdf/2207.10392v2.pdf
|
https://github.com/poppinace/fade
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/promptrr-diffusion-models-as-prompt
|
PromptRR: Diffusion Models as Prompt Generators for Single Image Reflection Removal
|
2402.02374
|
https://arxiv.org/abs/2402.02374v1
|
https://arxiv.org/pdf/2402.02374v1.pdf
|
https://github.com/taowangzj/promptrr
| true | true | true |
none
|
https://paperswithcode.com/paper/boosting-adversarial-transferability-across
|
Boosting Adversarial Transferability across Model Genus by Deformation-Constrained Warping
|
2402.03951
|
https://arxiv.org/abs/2402.03951v1
|
https://arxiv.org/pdf/2402.03951v1.pdf
|
https://github.com/linqinliang/decowa
| true | true | true |
none
|
https://paperswithcode.com/paper/learning-to-simulate-complex-physics-with
|
Learning to Simulate Complex Physics with Graph Networks
|
2002.09405
|
https://arxiv.org/abs/2002.09405v2
|
https://arxiv.org/pdf/2002.09405v2.pdf
|
https://github.com/tumaer/lagrangebench
| false | false | true |
jax
|
https://paperswithcode.com/paper/feedback-loops-with-language-models-drive-in
|
Feedback Loops With Language Models Drive In-Context Reward Hacking
|
2402.06627
|
https://arxiv.org/abs/2402.06627v3
|
https://arxiv.org/pdf/2402.06627v3.pdf
|
https://github.com/aypan17/llm-feedback
| true | true | true |
none
|
https://paperswithcode.com/paper/how-faithful-is-your-synthetic-data-sample
|
How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating and Auditing Generative Models
|
2102.08921
|
https://arxiv.org/abs/2102.08921v2
|
https://arxiv.org/pdf/2102.08921v2.pdf
|
https://github.com/amazon-science/tabsyn
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/actor-critic-algorithms-for-fiber-sampling
|
Learning to sample fibers for goodness-of-fit testing
|
2405.13950
|
https://arxiv.org/abs/2405.13950v3
|
https://arxiv.org/pdf/2405.13950v3.pdf
|
https://github.com/DLR-RM/stable-baselines3
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/knowledge-driven-cross-document-relation
|
Knowledge-Driven Cross-Document Relation Extraction
|
2405.13546
|
https://arxiv.org/abs/2405.13546v2
|
https://arxiv.org/pdf/2405.13546v2.pdf
|
https://github.com/kracr/cross-doc-relation-extraction
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/neural-optimizer-equation-decay-function-and
|
Neural Optimizer Equation, Decay Function, and Learning Rate Schedule Joint Evolution
|
2404.06679
|
https://arxiv.org/abs/2404.06679v1
|
https://arxiv.org/pdf/2404.06679v1.pdf
|
https://github.com/oustudent/neuraloptimizersearch
| true | true | false |
tf
|
https://paperswithcode.com/paper/how-to-tune-a-multilingual-encoder-model-for
|
How to Tune a Multilingual Encoder Model for Germanic Languages: A Study of PEFT, Full Fine-Tuning, and Language Adapters
|
2501.06025
|
https://arxiv.org/abs/2501.06025v1
|
https://arxiv.org/pdf/2501.06025v1.pdf
|
https://github.com/rominaoji/german-language-adapter
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/fails-a-framework-for-automated-collection
|
FAILS: A Framework for Automated Collection and Analysis of LLM Service Incidents
|
2503.12185
|
https://arxiv.org/abs/2503.12185v1
|
https://arxiv.org/pdf/2503.12185v1.pdf
|
https://github.com/atlarge-research/fails
| true | true | false |
none
|
https://paperswithcode.com/paper/towards-understanding-jailbreak-attacks-in
|
Towards Understanding Jailbreak Attacks in LLMs: A Representation Space Analysis
|
2406.10794
|
https://arxiv.org/abs/2406.10794v3
|
https://arxiv.org/pdf/2406.10794v3.pdf
|
https://github.com/yuplin2333/representation-space-jailbreak
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/shuttleset-a-human-annotated-stroke-level
|
ShuttleSet: A Human-Annotated Stroke-Level Singles Dataset for Badminton Tactical Analysis
|
2306.04948
|
https://arxiv.org/abs/2306.04948v1
|
https://arxiv.org/pdf/2306.04948v1.pdf
|
https://github.com/andychiangsh/badge
| false | false | true |
none
|
https://paperswithcode.com/paper/ehrnoteqa-a-patient-specific-question
|
EHRNoteQA: An LLM Benchmark for Real-World Clinical Practice Using Discharge Summaries
|
2402.16040
|
https://arxiv.org/abs/2402.16040v5
|
https://arxiv.org/pdf/2402.16040v5.pdf
|
https://github.com/ji-youn-kim/ehrnoteqa
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/fvit-a-focal-vision-transformer-with-gabor
|
FViT: A Focal Vision Transformer with Gabor Filter
|
2402.11303
|
https://arxiv.org/abs/2402.11303v3
|
https://arxiv.org/pdf/2402.11303v3.pdf
|
https://github.com/nkusyl/fvit
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/generative-3d-part-assembly-via-part-whole
|
Generative 3D Part Assembly via Part-Whole-Hierarchy Message Passing
|
2402.17464
|
https://arxiv.org/abs/2402.17464v3
|
https://arxiv.org/pdf/2402.17464v3.pdf
|
https://github.com/pkudba/3dhpa
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/pcr-99-a-practical-method-for-point-cloud
|
PCR-99: A Practical Method for Point Cloud Registration with 99 Percent Outliers
|
2402.16598
|
https://arxiv.org/abs/2402.16598v6
|
https://arxiv.org/pdf/2402.16598v6.pdf
|
https://github.com/sunghoon031/pcr-99
| true | true | true |
none
|
https://paperswithcode.com/paper/a-framework-for-standardizing-similarity
|
A Framework for Standardizing Similarity Measures in a Rapidly Evolving Field
|
2409.18333
|
https://arxiv.org/abs/2409.18333v1
|
https://arxiv.org/pdf/2409.18333v1.pdf
|
https://github.com/nacloos/similarity-repository
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/soul-unlocking-the-power-of-second-order
|
SOUL: Unlocking the Power of Second-Order Optimization for LLM Unlearning
|
2404.18239
|
https://arxiv.org/abs/2404.18239v4
|
https://arxiv.org/pdf/2404.18239v4.pdf
|
https://github.com/optml-group/soul
| true | true | true |
none
|
https://paperswithcode.com/paper/label-informed-contrastive-pretraining-for
|
Label Informed Contrastive Pretraining for Node Importance Estimation on Knowledge Graphs
|
2402.17791
|
https://arxiv.org/abs/2402.17791v1
|
https://arxiv.org/pdf/2402.17791v1.pdf
|
https://github.com/zhangtia16/licap
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/univs-unified-and-universal-video
|
UniVS: Unified and Universal Video Segmentation with Prompts as Queries
|
2402.18115
|
https://arxiv.org/abs/2402.18115v2
|
https://arxiv.org/pdf/2402.18115v2.pdf
|
https://github.com/minghanli/univs
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/rethinking-centered-kernel-alignment-in
|
Rethinking Centered Kernel Alignment in Knowledge Distillation
|
2401.11824
|
https://arxiv.org/abs/2401.11824v4
|
https://arxiv.org/pdf/2401.11824v4.pdf
|
https://github.com/klayand/pcka
| true | true | false |
none
|
https://paperswithcode.com/paper/retaining-key-information-under-high
|
Retaining Key Information under High Compression Ratios: Query-Guided Compressor for LLMs
|
2406.02376
|
https://arxiv.org/abs/2406.02376v2
|
https://arxiv.org/pdf/2406.02376v2.pdf
|
https://github.com/DeepLearnXMU/QGC
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/sonata-self-supervised-learning-of-reliable
|
Sonata: Self-Supervised Learning of Reliable Point Representations
|
2503.16429
|
https://arxiv.org/abs/2503.16429v1
|
https://arxiv.org/pdf/2503.16429v1.pdf
|
https://github.com/facebookresearch/sonata
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/dimal-deep-isometric-manifold-learning-using
|
DIMAL: Deep Isometric Manifold Learning Using Sparse Geodesic Sampling
|
1711.06011
|
http://arxiv.org/abs/1711.06011v2
|
http://arxiv.org/pdf/1711.06011v2.pdf
|
https://github.com/paigautam/DIMAL
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/mila-multi-view-intensive-fidelity-long-term
|
MiLA: Multi-view Intensive-fidelity Long-term Video Generation World Model for Autonomous Driving
|
2503.15875
|
https://arxiv.org/abs/2503.15875v1
|
https://arxiv.org/pdf/2503.15875v1.pdf
|
https://github.com/xiaomi-mlab/mila.github.io
| true | true | false |
none
|
https://paperswithcode.com/paper/fast-graph-condensation-with-structure-based
|
Fast Graph Condensation with Structure-based Neural Tangent Kernel
|
2310.11046
|
https://arxiv.org/abs/2310.11046v2
|
https://arxiv.org/pdf/2310.11046v2.pdf
|
https://github.com/wanglin0126/gcsntk
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/usat-a-universal-speaker-adaptive-text-to
|
USAT: A Universal Speaker-Adaptive Text-to-Speech Approach
|
2404.18094
|
https://arxiv.org/abs/2404.18094v1
|
https://arxiv.org/pdf/2404.18094v1.pdf
|
https://github.com/mushanshanshan/esltts
| true | true | true |
none
|
https://paperswithcode.com/paper/safe-deep-model-based-reinforcement-learning
|
Safe Deep Model-Based Reinforcement Learning with Lyapunov Functions
|
2405.16184
|
https://arxiv.org/abs/2405.16184v1
|
https://arxiv.org/pdf/2405.16184v1.pdf
|
https://github.com/harryzhangOG/salved
| true | true | false |
tf
|
https://paperswithcode.com/paper/clip-ebc-clip-can-count-accurately-through
|
CLIP-EBC: CLIP Can Count Accurately through Enhanced Blockwise Classification
|
2403.09281
|
https://arxiv.org/abs/2403.09281v3
|
https://arxiv.org/pdf/2403.09281v3.pdf
|
https://github.com/Yiming-M/CLIP-EBC
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/3am-an-ambiguity-aware-multi-modal-machine
|
3AM: An Ambiguity-Aware Multi-Modal Machine Translation Dataset
|
2404.18413
|
https://arxiv.org/abs/2404.18413v1
|
https://arxiv.org/pdf/2404.18413v1.pdf
|
https://github.com/maxylee/3am
| true | true | false |
none
|
https://paperswithcode.com/paper/oodrobustbench-benchmarking-and-analyzing
|
OODRobustBench: a Benchmark and Large-Scale Analysis of Adversarial Robustness under Distribution Shift
|
2310.12793
|
https://arxiv.org/abs/2310.12793v2
|
https://arxiv.org/pdf/2310.12793v2.pdf
|
https://github.com/treelli/apt
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/what-do-we-learn-from-inverting-clip-models
|
What do we learn from inverting CLIP models?
|
2403.02580
|
https://arxiv.org/abs/2403.02580v1
|
https://arxiv.org/pdf/2403.02580v1.pdf
|
https://github.com/hamidkazemi22/clipinversion
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/xoftr-cross-modal-feature-matching
|
XoFTR: Cross-modal Feature Matching Transformer
|
2404.09692
|
https://arxiv.org/abs/2404.09692v1
|
https://arxiv.org/pdf/2404.09692v1.pdf
|
https://github.com/ondert/xoftr
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/actor-identified-spatiotemporal-action
|
Actor-identified Spatiotemporal Action Detection --- Detecting Who Is Doing What in Videos
|
2208.12940
|
https://arxiv.org/abs/2208.12940v2
|
https://arxiv.org/pdf/2208.12940v2.pdf
|
https://github.com/fandulu/asad
| true | true | true |
none
|
https://paperswithcode.com/paper/inverse-decision-making-using-neural
|
Inverse decision-making using neural amortized Bayesian actors
|
2409.03710
|
https://arxiv.org/abs/2409.03710v2
|
https://arxiv.org/pdf/2409.03710v2.pdf
|
https://github.com/rothkopflab/naba
| true | true | false |
jax
|
https://paperswithcode.com/paper/approach-to-predicting-news-a-precise-multi
|
Approach to Predicting News -- A Precise Multi-LSTM Network With BERT
|
2204.12093
|
https://arxiv.org/abs/2204.12093v1
|
https://arxiv.org/pdf/2204.12093v1.pdf
|
https://github.com/LanaChen0/Predict_News
| true | true | true |
tf
|
https://paperswithcode.com/paper/language-model-adaptation-to-specialized
|
Language Model Adaptation to Specialized Domains through Selective Masking based on Genre and Topical Characteristics
|
2402.12036
|
https://arxiv.org/abs/2402.12036v2
|
https://arxiv.org/pdf/2402.12036v2.pdf
|
https://github.com/ygorg/legal-masking
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/rephrase-and-respond-let-large-language
|
Rephrase and Respond: Let Large Language Models Ask Better Questions for Themselves
|
2311.04205
|
https://arxiv.org/abs/2311.04205v2
|
https://arxiv.org/pdf/2311.04205v2.pdf
|
https://github.com/xirui-li/drattack
| false | false | true |
none
|
https://paperswithcode.com/paper/data-filtering-networks
|
Data Filtering Networks
|
2309.17425
|
https://arxiv.org/abs/2309.17425v3
|
https://arxiv.org/pdf/2309.17425v3.pdf
|
https://github.com/apple/ml-mobileclip
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/sigmoid-loss-for-language-image-pre-training
|
Sigmoid Loss for Language Image Pre-Training
|
2303.15343
|
https://arxiv.org/abs/2303.15343v4
|
https://arxiv.org/pdf/2303.15343v4.pdf
|
https://github.com/apple/ml-mobileclip
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/learning-transferable-visual-models-from
|
Learning Transferable Visual Models From Natural Language Supervision
|
2103.00020
|
https://arxiv.org/abs/2103.00020v1
|
https://arxiv.org/pdf/2103.00020v1.pdf
|
https://github.com/apple/ml-mobileclip
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/llm-as-os-llmao-agents-as-apps-envisioning
|
LLM as OS, Agents as Apps: Envisioning AIOS, Agents and the AIOS-Agent Ecosystem
|
2312.03815
|
https://arxiv.org/abs/2312.03815v2
|
https://arxiv.org/pdf/2312.03815v2.pdf
|
https://github.com/agiresearch/aios
| false | false | true |
none
|
https://paperswithcode.com/paper/on-the-convergence-of-locally-adaptive-and
|
On the Convergence of Locally Adaptive and Scalable Diffusion-Based Sampling Methods for Deep Bayesian Neural Network Posteriors
|
2403.08609
|
https://arxiv.org/abs/2403.08609v2
|
https://arxiv.org/pdf/2403.08609v2.pdf
|
https://github.com/timrensmeyer/Convergence-Experiments
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/tetrasphere-a-neural-descriptor-for-o-3
|
TetraSphere: A Neural Descriptor for O(3)-Invariant Point Cloud Analysis
|
2211.14456
|
https://arxiv.org/abs/2211.14456v6
|
https://arxiv.org/pdf/2211.14456v6.pdf
|
https://github.com/pavlo-melnyk/tetrasphere
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/generative-ensemble-deep-learning-severe
|
Generative ensemble deep learning severe weather prediction from a deterministic convection-allowing model
|
2310.06045
|
https://arxiv.org/abs/2310.06045v2
|
https://arxiv.org/pdf/2310.06045v2.pdf
|
https://github.com/yingkaisha/aies_d_23_0094
| true | true | true |
tf
|
https://paperswithcode.com/paper/balancing-act-constraining-disparate-impact
|
Balancing Act: Constraining Disparate Impact in Sparse Models
|
2310.20673
|
https://arxiv.org/abs/2310.20673v2
|
https://arxiv.org/pdf/2310.20673v2.pdf
|
https://github.com/merajhashemi/balancing-act
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/pathfinding-future-pim-architectures-by
|
Pathfinding Future PIM Architectures by Demystifying a Commercial PIM Technology
|
2308.00846
|
https://arxiv.org/abs/2308.00846v3
|
https://arxiv.org/pdf/2308.00846v3.pdf
|
https://github.com/via-research/upimulator
| true | true | true |
none
|
https://paperswithcode.com/paper/core-llm-as-interpreter-for-natural-language
|
AIOS Compiler: LLM as Interpreter for Natural Language Programming and Flow Programming of AI Agents
|
2405.06907
|
https://arxiv.org/abs/2405.06907v2
|
https://arxiv.org/pdf/2405.06907v2.pdf
|
https://github.com/agiresearch/aios
| true | true | false |
none
|
https://paperswithcode.com/paper/contextual-learning-in-fourier-complex-field
|
Contextual Learning in Fourier Complex Field for VHR Remote Sensing Images
|
2210.15972
|
https://arxiv.org/abs/2210.15972v1
|
https://arxiv.org/pdf/2210.15972v1.pdf
|
https://github.com/MindCode-4/code-11/tree/main/contextual-learning
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/approaching-test-time-augmentation-in-the
|
Approaching Test Time Augmentation in the Context of Uncertainty Calibration for Deep Neural Networks
|
2304.05104
|
https://arxiv.org/abs/2304.05104v2
|
https://arxiv.org/pdf/2304.05104v2.pdf
|
https://github.com/pedrormconde/mv-atta
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/orco-towards-better-generalization-via
|
OrCo: Towards Better Generalization via Orthogonality and Contrast for Few-Shot Class-Incremental Learning
|
2403.18550
|
https://arxiv.org/abs/2403.18550v1
|
https://arxiv.org/pdf/2403.18550v1.pdf
|
https://github.com/noorahmedds/orco
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/computational-sentence-level-metrics
|
Computational Sentence-level Metrics Predicting Human Sentence Comprehension
|
2403.15822
|
https://arxiv.org/abs/2403.15822v2
|
https://arxiv.org/pdf/2403.15822v2.pdf
|
https://github.com/fivehills/sentence-relevance-and-sentence-surprisal
| true | true | false |
none
|
https://paperswithcode.com/paper/homogeneous-tokenizer-matters-homogeneous
|
Homogeneous Tokenizer Matters: Homogeneous Visual Tokenizer for Remote Sensing Image Understanding
|
2403.18593
|
https://arxiv.org/abs/2403.18593v2
|
https://arxiv.org/pdf/2403.18593v2.pdf
|
https://github.com/geox-lab/hook
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/deepsdf-learning-continuous-signed-distance
|
DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation
|
1901.05103
|
http://arxiv.org/abs/1901.05103v1
|
http://arxiv.org/pdf/1901.05103v1.pdf
|
https://github.com/maurock/deepsdf
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/clip-fields-weakly-supervised-semantic-fields
|
CLIP-Fields: Weakly Supervised Semantic Fields for Robotic Memory
|
2210.05663
|
https://arxiv.org/abs/2210.05663v3
|
https://arxiv.org/pdf/2210.05663v3.pdf
|
https://github.com/notmahi/clip-fields
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/diffusionface-towards-a-comprehensive-dataset
|
DiffusionFace: Towards a Comprehensive Dataset for Diffusion-Based Face Forgery Analysis
|
2403.18471
|
https://arxiv.org/abs/2403.18471v1
|
https://arxiv.org/pdf/2403.18471v1.pdf
|
https://github.com/rapisurazurite/diffface
| true | true | false |
none
|
https://paperswithcode.com/paper/unprocessing-seven-years-of-algorithmic
|
Unprocessing Seven Years of Algorithmic Fairness
|
2306.07261
|
https://arxiv.org/abs/2306.07261v5
|
https://arxiv.org/pdf/2306.07261v5.pdf
|
https://github.com/socialfoundations/error-parity
| true | true | true |
none
|
https://paperswithcode.com/paper/weight-inherited-distillation-for-task
|
Weight-Inherited Distillation for Task-Agnostic BERT Compression
|
2305.09098
|
https://arxiv.org/abs/2305.09098v2
|
https://arxiv.org/pdf/2305.09098v2.pdf
|
https://github.com/wutaiqiang/WID-NAACL2024
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/a-structural-text-based-scaling-model-for
|
A Structural Text-Based Scaling Model for Analyzing Political Discourse
|
2410.11897
|
https://arxiv.org/abs/2410.11897v1
|
https://arxiv.org/pdf/2410.11897v1.pdf
|
https://github.com/vavrajan/stbs
| true | true | true |
tf
|
https://paperswithcode.com/paper/nach0-multimodal-natural-and-chemical
|
nach0: Multimodal Natural and Chemical Languages Foundation Model
|
2311.12410
|
https://arxiv.org/abs/2311.12410v3
|
https://arxiv.org/pdf/2311.12410v3.pdf
|
https://github.com/insilicomedicine/nach0
| true | true | true |
none
|
https://paperswithcode.com/paper/decode-neural-signal-as-speech
|
NeuSpeech: Decode Neural signal as Speech
|
2403.01748
|
https://arxiv.org/abs/2403.01748v3
|
https://arxiv.org/pdf/2403.01748v3.pdf
|
https://github.com/mikewangwzhl/eeg-to-text
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/gptscore-evaluate-as-you-desire
|
GPTScore: Evaluate as You Desire
|
2302.04166
|
https://arxiv.org/abs/2302.04166v2
|
https://arxiv.org/pdf/2302.04166v2.pdf
|
https://github.com/osu-nlp-group/llm-cn-eval
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/using-pre-trained-language-models-for
|
Using Pre-Trained Language Models for Producing Counter Narratives Against Hate Speech: a Comparative Study
|
2204.01440
|
https://arxiv.org/abs/2204.01440v1
|
https://arxiv.org/pdf/2204.01440v1.pdf
|
https://github.com/osu-nlp-group/llm-cn-eval
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/mmoe-mixture-of-multimodal-interaction
|
MMoE: Enhancing Multimodal Models with Mixtures of Multimodal Interaction Experts
|
2311.09580
|
https://arxiv.org/abs/2311.09580v3
|
https://arxiv.org/pdf/2311.09580v3.pdf
|
https://github.com/lwaekfjlk/mmoe
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/on-interference-rejection-using-riemannian
|
On Interference-Rejection Using Riemannian Geometry for Direction of Arrival Estimation
|
2301.03399
|
https://arxiv.org/abs/2301.03399v2
|
https://arxiv.org/pdf/2301.03399v2.pdf
|
https://github.com/amitaybar/interference-rejection-using-riemannian-geometry-for-doa-estimation
| true | true | false |
none
|
https://paperswithcode.com/paper/integrate-the-essence-and-eliminate-the-dross
|
Integrate the Essence and Eliminate the Dross: Fine-Grained Self-Consistency for Free-Form Language Generation
|
2407.02056
|
https://arxiv.org/abs/2407.02056v1
|
https://arxiv.org/pdf/2407.02056v1.pdf
|
https://github.com/WangXinglin/FSC
| true | true | true |
none
|
https://paperswithcode.com/paper/aetta-label-free-accuracy-estimation-for-test
|
AETTA: Label-Free Accuracy Estimation for Test-Time Adaptation
|
2404.01351
|
https://arxiv.org/abs/2404.01351v1
|
https://arxiv.org/pdf/2404.01351v1.pdf
|
https://github.com/taeckyung/aetta
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/age-of-information-in-prioritized-random
|
Age of Information in Prioritized Random Access
|
2112.01182
|
https://arxiv.org/abs/2112.01182v1
|
https://arxiv.org/pdf/2112.01182v1.pdf
|
https://github.com/khachoang1412/AoI_prioritized_random_access
| true | false | false |
none
|
https://paperswithcode.com/paper/quantifying-distribution-shifts-and
|
Quantifying Distribution Shifts and Uncertainties for Enhanced Model Robustness in Machine Learning Applications
|
2405.01978
|
https://arxiv.org/abs/2405.01978v1
|
https://arxiv.org/pdf/2405.01978v1.pdf
|
https://github.com/veflo/uncert_quant
| true | true | true |
tf
|
https://paperswithcode.com/paper/scalable-3d-registration-via-truncated-entry
|
Scalable 3D Registration via Truncated Entry-wise Absolute Residuals
|
2404.00915
|
https://arxiv.org/abs/2404.00915v2
|
https://arxiv.org/pdf/2404.00915v2.pdf
|
https://github.com/tyhuang98/tear-release
| true | true | false |
none
|
https://paperswithcode.com/paper/pixel-wise-agricultural-image-time-series
|
Pixel-wise Agricultural Image Time Series Classification: Comparisons and a Deformable Prototype-based Approach
|
2303.12533
|
https://arxiv.org/abs/2303.12533v2
|
https://arxiv.org/pdf/2303.12533v2.pdf
|
https://github.com/elliotvincent/agriitsc
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/comparing-personalized-relevance-algorithms
|
Comparing Personalized Relevance Algorithms for Directed Graphs
|
2405.02261
|
https://arxiv.org/abs/2405.02261v1
|
https://arxiv.org/pdf/2405.02261v1.pdf
|
https://github.com/cyclerank/cyclerank-demo
| true | true | false |
none
|
https://paperswithcode.com/paper/nuqmm-quantized-matmul-for-efficient
|
LUT-GEMM: Quantized Matrix Multiplication based on LUTs for Efficient Inference in Large-Scale Generative Language Models
|
2206.09557
|
https://arxiv.org/abs/2206.09557v4
|
https://arxiv.org/pdf/2206.09557v4.pdf
|
https://github.com/naver-aics/lut-gemm
| true | true | true |
none
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.