paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/precondition-and-effect-reasoning-for-action
|
Precondition and Effect Reasoning for Action Recognition
|
2112.10057
|
https://arxiv.org/abs/2112.10057v2
|
https://arxiv.org/pdf/2112.10057v2.pdf
|
https://github.com/kaiyoo/precondition-and-effect-reasoning-for-action-recognition
| true | true | false |
none
|
https://paperswithcode.com/paper/metaformer-baselines-for-vision
|
MetaFormer Baselines for Vision
|
2210.13452
|
https://arxiv.org/abs/2210.13452v4
|
https://arxiv.org/pdf/2210.13452v4.pdf
|
https://github.com/Westlake-AI/MogaNet
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/robust-collaborative-3d-object-detection-in
|
Robust Collaborative 3D Object Detection in Presence of Pose Errors
|
2211.07214
|
https://arxiv.org/abs/2211.07214v3
|
https://arxiv.org/pdf/2211.07214v3.pdf
|
https://github.com/yifanlu0227/coalign
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/human-apprenticeship-learning-via-kernel
|
Reward Shaping for Human Learning via Inverse Reinforcement Learning
|
2002.10904
|
https://arxiv.org/abs/2002.10904v3
|
https://arxiv.org/pdf/2002.10904v3.pdf
|
https://github.com/mrucker/kpirl-kla
| true | true | true |
none
|
https://paperswithcode.com/paper/investigating-co-occurrences-of-mitre-att-ck
|
Investigating co-occurrences of MITRE ATT\&CK Techniques
|
2211.06495
|
https://arxiv.org/abs/2211.06495v1
|
https://arxiv.org/pdf/2211.06495v1.pdf
|
https://github.com/brokenquark/ttps-co-occurrence
| true | true | false |
none
|
https://paperswithcode.com/paper/multilinear-algebra-for-distributed-storage
|
Multilinear Algebra for Distributed Storage
|
2006.08911
|
http://arxiv.org/abs/2006.08911v1
|
http://arxiv.org/pdf/2006.08911v1.pdf
|
https://github.com/Symbol1/MoulinDistorage
| false | false | true |
none
|
https://paperswithcode.com/paper/shire-making-fpga-accelerated-middlebox
|
Rosebud: Making FPGA-Accelerated Middlebox Development More Pleasant
|
2201.08978
|
https://arxiv.org/abs/2201.08978v3
|
https://arxiv.org/pdf/2201.08978v3.pdf
|
https://github.com/ucsdsysnet/Shire
| true | false | true |
none
|
https://paperswithcode.com/paper/dual-head-adversarial-training
|
Dual Head Adversarial Training
|
2104.10377
|
https://arxiv.org/abs/2104.10377v2
|
https://arxiv.org/pdf/2104.10377v2.pdf
|
https://github.com/yujingmarkjiang/Dual-Head-Adversarial-Training
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/diffusion-kernel-attention-network-for-brain
|
Diffusion Kernel Attention Network for Brain Disorder Classification
| null |
https://ieeexplore.ieee.org/abstract/document/9763540
|
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9763540
|
https://github.com/seuzjj/Diffusion_kernel_attention_network
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/learning-sources-of-variability-from-high
|
Learning sources of variability from high-dimensional observational studies
|
2307.13868
|
https://arxiv.org/abs/2307.13868v2
|
https://arxiv.org/pdf/2307.13868v2.pdf
|
https://github.com/ebridge2/cdcorr
| true | true | false |
none
|
https://paperswithcode.com/paper/modeling-ideological-agenda-setting-and
|
Modeling Ideological Salience and Framing in Polarized Online Groups with Graph Neural Networks and Structured Sparsity
|
2104.08829
|
https://arxiv.org/abs/2104.08829v3
|
https://arxiv.org/pdf/2104.08829v3.pdf
|
https://github.com/valentinhofmann/slap4slip
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/streaming-pac-bayes-gaussian-process
|
Streaming PAC-Bayes Gaussian process regression with a performance guarantee for online decision making
|
2210.08486
|
https://arxiv.org/abs/2210.08486v2
|
https://arxiv.org/pdf/2210.08486v2.pdf
|
https://github.com/tyliu22/online_pacgp
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/three-dimensional-buoyant-hydraulic-fracture
|
Three-dimensional buoyant hydraulic fracture growth: constant release from a point source
|
2205.07621
|
https://arxiv.org/abs/2205.07621v2
|
https://arxiv.org/pdf/2205.07621v2.pdf
|
https://github.com/GeoEnergyLab-EPFL/PyFrac
| true | false | false |
none
|
https://paperswithcode.com/paper/algorithmic-changes-are-not-enough-evaluating
|
Algorithmic Changes Are Not Enough: Evaluating the Removal of Race Adjustment from the eGFR Equation
|
2404.12812
|
https://arxiv.org/abs/2404.12812v3
|
https://arxiv.org/pdf/2404.12812v3.pdf
|
https://github.com/StanfordHPDS/egfr_equation_shc
| true | true | true |
none
|
https://paperswithcode.com/paper/vine-copula-based-knockoff-generation-for
|
Vine copula based knockoff generation for high-dimensional controlled variable selection
|
2210.11196
|
https://arxiv.org/abs/2210.11196v1
|
https://arxiv.org/pdf/2210.11196v1.pdf
|
https://github.com/maltekurz/vineknockoffs
| true | true | true |
none
|
https://paperswithcode.com/paper/visualsparta-sparse-transformer-fragment
|
VisualSparta: An Embarrassingly Simple Approach to Large-scale Text-to-Image Search with Weighted Bag-of-words
|
2101.00265
|
https://arxiv.org/abs/2101.00265v2
|
https://arxiv.org/pdf/2101.00265v2.pdf
|
https://github.com/soco-ai/SF-QA
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/sparta-efficient-open-domain-question
|
SPARTA: Efficient Open-Domain Question Answering via Sparse Transformer Matching Retrieval
|
2009.13013
|
https://arxiv.org/abs/2009.13013v1
|
https://arxiv.org/pdf/2009.13013v1.pdf
|
https://github.com/soco-ai/SF-QA
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/sf-qa-simple-and-fair-evaluation-library-for
|
SF-QA: Simple and Fair Evaluation Library for Open-domain Question Answering
|
2101.01910
|
https://arxiv.org/abs/2101.01910v2
|
https://arxiv.org/pdf/2101.01910v2.pdf
|
https://github.com/soco-ai/SF-QA
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/mitigating-modality-collapse-in-multimodal
|
Mitigating Modality Collapse in Multimodal VAEs via Impartial Optimization
|
2206.04496
|
https://arxiv.org/abs/2206.04496v1
|
https://arxiv.org/pdf/2206.04496v1.pdf
|
https://github.com/adrianjav/impartial-vaes
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/desq-frequent-sequence-mining-with
|
DESQ: Frequent Sequence Mining with Subsequence Constraints
|
1609.08431
|
http://arxiv.org/abs/1609.08431v2
|
http://arxiv.org/pdf/1609.08431v2.pdf
|
https://github.com/zakimjz/cSPADE/blob/master/sequence.cc
| false | false | false |
none
|
https://paperswithcode.com/paper/face-pyramid-vision-transformer
|
Face Pyramid Vision Transformer
|
2210.11974
|
https://arxiv.org/abs/2210.11974v1
|
https://arxiv.org/pdf/2210.11974v1.pdf
|
https://github.com/khawar-islam/fpvt
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/autoprognosis-automated-clinical-prognostic
|
AutoPrognosis: Automated Clinical Prognostic Modeling via Bayesian Optimization with Structured Kernel Learning
|
1802.07207
|
http://arxiv.org/abs/1802.07207v1
|
http://arxiv.org/pdf/1802.07207v1.pdf
|
https://github.com/vanderschaarlab/autoprognosis
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/multilingual-generative-language-models-for-1
|
Multilingual Generative Language Models for Zero-Shot Cross-Lingual Event Argument Extraction
|
2203.08308
|
https://arxiv.org/abs/2203.08308v1
|
https://arxiv.org/pdf/2203.08308v1.pdf
|
https://github.com/pluslabnlp/x-gear
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/informask-unsupervised-informative-masking
|
InforMask: Unsupervised Informative Masking for Language Model Pretraining
|
2210.11771
|
https://arxiv.org/abs/2210.11771v1
|
https://arxiv.org/pdf/2210.11771v1.pdf
|
https://github.com/nafissadeq/informask
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/materials-transformers-language-models-for
|
Materials Transformers Language Models for Generative Materials Design: a benchmark study
|
2206.13578
|
https://arxiv.org/abs/2206.13578v1
|
https://arxiv.org/pdf/2206.13578v1.pdf
|
https://github.com/usccolumbia/mtransformer
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/exploring-the-whole-rashomon-set-of-sparse
|
Exploring the Whole Rashomon Set of Sparse Decision Trees
|
2209.08040
|
https://arxiv.org/abs/2209.08040v2
|
https://arxiv.org/pdf/2209.08040v2.pdf
|
https://github.com/ubc-systopia/treeFarms
| true | true | true |
none
|
https://paperswithcode.com/paper/a-hybrid-millimeter-wave-channel-simulator
|
A Hybrid Millimeter-wave Channel Simulator for Joint Communication and Localization
|
2210.11422
|
https://arxiv.org/abs/2210.11422v1
|
https://arxiv.org/pdf/2210.11422v1.pdf
|
https://github.com/dengjunquan/omnisim
| true | true | true |
none
|
https://paperswithcode.com/paper/mapping-and-cleaning-open-commonsense
|
Mapping and Cleaning Open Commonsense Knowledge Bases with Generative Translation
|
2306.12766
|
https://arxiv.org/abs/2306.12766v1
|
https://arxiv.org/pdf/2306.12766v1.pdf
|
https://github.com/Aunsiels/GenT
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/a-necessary-condition-for-non-oscillatory-and
|
A necessary condition for non oscillatory and positivity preserving time-integration schemes
|
2211.08905
|
https://arxiv.org/abs/2211.08905v1
|
https://arxiv.org/pdf/2211.08905v1.pdf
|
https://github.com/accdavlo/modified-patankar-oscillations-and-lyapunov-stability
| true | true | true |
none
|
https://paperswithcode.com/paper/physics-informed-machine-learning-of-1
|
Physics-Informed Machine Learning of Dynamical Systems for Efficient Bayesian Inference
|
2209.09349
|
https://arxiv.org/abs/2209.09349v1
|
https://arxiv.org/pdf/2209.09349v1.pdf
|
https://github.com/idaholabresearch/bihnns
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/targeted-active-learning-for-probabilistic
|
Targeted active learning for probabilistic models
|
2210.12122
|
https://arxiv.org/abs/2210.12122v1
|
https://arxiv.org/pdf/2210.12122v1.pdf
|
https://github.com/tansey-lab/pdbal
| true | false | false |
none
|
https://paperswithcode.com/paper/unknown-area-exploration-for-robots-with
|
Unknown area exploration for robots with energy constraints using a modified Butterfly Optimization Algorithm
|
2210.14774
|
https://arxiv.org/abs/2210.14774v1
|
https://arxiv.org/pdf/2210.14774v1.pdf
|
https://github.com/aminehorseman/butterfly-optimization-algorithms
| true | true | false |
none
|
https://paperswithcode.com/paper/scaling-knowledge-graphs-for-automating-ai-of
|
Scaling Knowledge Graphs for Automating AI of Digital Twins
|
2210.14596
|
https://arxiv.org/abs/2210.14596v1
|
https://arxiv.org/pdf/2210.14596v1.pdf
|
https://github.com/ibm/digital-twin-benchmark-model
| true | true | false |
none
|
https://paperswithcode.com/paper/pretrained-audio-neural-networks-for-speech
|
Pretrained audio neural networks for Speech emotion recognition in Portuguese
|
2210.14716
|
https://arxiv.org/abs/2210.14716v1
|
https://arxiv.org/pdf/2210.14716v1.pdf
|
https://github.com/marcelomatheusgauy/pretrained_audio_neural_networks_emotion_recognition
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/benchmarking-language-models-for-code-syntax
|
Benchmarking Language Models for Code Syntax Understanding
|
2210.14473
|
https://arxiv.org/abs/2210.14473v1
|
https://arxiv.org/pdf/2210.14473v1.pdf
|
https://github.com/dashends/codesyntax
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/disentangled-graph-neural-networks-for
|
Disentangled Graph Neural Networks for Session-based Recommendation
|
2201.03482
|
https://arxiv.org/abs/2201.03482v2
|
https://arxiv.org/pdf/2201.03482v2.pdf
|
https://github.com/AnsongLi/Disen-GNN
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/bayesian-inference-with-latent-hamiltonian
|
Bayesian Inference with Latent Hamiltonian Neural Networks
|
2208.06120
|
https://arxiv.org/abs/2208.06120v2
|
https://arxiv.org/pdf/2208.06120v2.pdf
|
https://github.com/idaholabresearch/bihnns
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/an-adversarial-benchmark-for-fake-news
|
An Adversarial Benchmark for Fake News Detection Models
|
2201.00912
|
https://arxiv.org/abs/2201.00912v1
|
https://arxiv.org/pdf/2201.00912v1.pdf
|
https://github.com/ljyflores/fake-news-explainability
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/deep-kernelized-dense-geometric-matching
|
DKM: Dense Kernelized Feature Matching for Geometry Estimation
|
2202.00667
|
https://arxiv.org/abs/2202.00667v3
|
https://arxiv.org/pdf/2202.00667v3.pdf
|
https://github.com/parskatt/dkm
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/waver-writing-style-agnostic-video-retrieval
|
WAVER: Writing-style Agnostic Text-Video Retrieval via Distilling Vision-Language Models Through Open-Vocabulary Knowledge
|
2312.09507
|
https://arxiv.org/abs/2312.09507v3
|
https://arxiv.org/pdf/2312.09507v3.pdf
|
https://github.com/fsoft-aic/waver
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/beta-embeddings-for-multi-hop-logical
|
Beta Embeddings for Multi-Hop Logical Reasoning in Knowledge Graphs
|
2010.11465
|
https://arxiv.org/abs/2010.11465v1
|
https://arxiv.org/pdf/2010.11465v1.pdf
|
https://github.com/uclnlp/cqd
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/dis-inhibitory-neuronal-circuits-can-control
|
Dis-inhibitory neuronal circuits can control the sign of synaptic plasticity
|
2310.19614
|
https://arxiv.org/abs/2310.19614v2
|
https://arxiv.org/pdf/2310.19614v2.pdf
|
https://github.com/fmi-basel/disinhibitory-control
| true | true | false |
jax
|
https://paperswithcode.com/paper/longitudinal-multimodal-transformer
|
Longitudinal Multimodal Transformer Integrating Imaging and Latent Clinical Signatures From Routine EHRs for Pulmonary Nodule Classification
|
2304.02836
|
https://arxiv.org/abs/2304.02836v5
|
https://arxiv.org/pdf/2304.02836v5.pdf
|
https://github.com/masilab/lmsignatures
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/pointflow-3d-point-cloud-generation-with
|
PointFlow: 3D Point Cloud Generation with Continuous Normalizing Flows
|
1906.12320
|
https://arxiv.org/abs/1906.12320v3
|
https://arxiv.org/pdf/1906.12320v3.pdf
|
https://github.com/visinf/s2-flow
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/ice-viscosity-governs-hydraulic-fracture-that
|
Ice viscosity governs hydraulic fracture that causes rapid drainage of supraglacial lakes
|
2409.05478
|
https://arxiv.org/abs/2409.05478v1
|
https://arxiv.org/pdf/2409.05478v1.pdf
|
https://github.com/T-Hageman/MATLAB_IceHydroFrac
| true | false | false |
none
|
https://paperswithcode.com/paper/pix4point-image-pretrained-transformers-for
|
Pix4Point: Image Pretrained Standard Transformers for 3D Point Cloud Understanding
|
2208.12259
|
https://arxiv.org/abs/2208.12259v3
|
https://arxiv.org/pdf/2208.12259v3.pdf
|
https://github.com/guochengqian/pix4point
| true | true | true |
none
|
https://paperswithcode.com/paper/learning-to-use-chopsticks-in-diverse-styles
|
Learning to Use Chopsticks in Diverse Gripping Styles
|
2205.14313
|
https://arxiv.org/abs/2205.14313v3
|
https://arxiv.org/pdf/2205.14313v3.pdf
|
https://github.com/chopsticks-research2022/learning2usechopsticks
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/new-mgcamb-tests-of-gravity-with-cosmomc-and
|
New MGCAMB tests of gravity with CosmoMC and Cobaya
|
2305.05667
|
https://arxiv.org/abs/2305.05667v2
|
https://arxiv.org/pdf/2305.05667v2.pdf
|
https://github.com/sfu-cosmo/MGCAMB
| true | true | true |
none
|
https://paperswithcode.com/paper/benchmarking-automl-algorithms-on-a
|
Benchmarking AutoML algorithms on a collection of synthetic classification problems
|
2212.02704
|
https://arxiv.org/abs/2212.02704v3
|
https://arxiv.org/pdf/2212.02704v3.pdf
|
https://github.com/perib/automl_digen_benchmark
| true | true | false |
none
|
https://paperswithcode.com/paper/rmmdet-road-side-multitype-and-multigroup
|
RMMDet: Road-Side Multitype and Multigroup Sensor Detection System for Autonomous Driving
|
2303.05203
|
https://arxiv.org/abs/2303.05203v3
|
https://arxiv.org/pdf/2303.05203v3.pdf
|
https://github.com/OrangeSodahub/CRLFnet
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/is-data-all-that-matters-the-role-of-control
|
Is Data All That Matters? The Role of Control Frequency for Learning-Based Sampled-Data Control of Uncertain Systems
|
2403.09504
|
https://arxiv.org/abs/2403.09504v1
|
https://arxiv.org/pdf/2403.09504v1.pdf
|
https://github.com/ralfroemer99/lb_sd
| true | true | true |
none
|
https://paperswithcode.com/paper/exploring-the-use-of-webassembly-in-hpc
|
Exploring the Use of WebAssembly in HPC
|
2301.03982
|
https://arxiv.org/abs/2301.03982v1
|
https://arxiv.org/pdf/2301.03982v1.pdf
|
https://github.com/kky-fury/mpiwasm
| true | true | true |
none
|
https://paperswithcode.com/paper/mediar-harmony-of-data-centric-and-model
|
MEDIAR: Harmony of Data-Centric and Model-Centric for Multi-Modality Microscopy
|
2212.03465
|
https://arxiv.org/abs/2212.03465v1
|
https://arxiv.org/pdf/2212.03465v1.pdf
|
https://github.com/lee-gihun/mediar
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/stochastic-nucleosome-disassembly-mediated-by
|
Stochastic nucleosome disassembly mediated by remodelers and histone fragmentation
|
2309.02736
|
https://arxiv.org/abs/2309.02736v1
|
https://arxiv.org/pdf/2309.02736v1.pdf
|
https://github.com/hsianktin/histone
| true | true | false |
none
|
https://paperswithcode.com/paper/continual-llava-continual-instruction-tuning
|
Continual LLaVA: Continual Instruction Tuning in Large Vision-Language Models
|
2411.02564
|
https://arxiv.org/abs/2411.02564v2
|
https://arxiv.org/pdf/2411.02564v2.pdf
|
https://github.com/mengcaopku/continual-llava
| true | true | true |
none
|
https://paperswithcode.com/paper/spatiotemporal-convolutional-network-for-time
|
Spatiotemporal information conversion machine for time-series prediction
|
2107.01353
|
https://arxiv.org/abs/2107.01353v2
|
https://arxiv.org/pdf/2107.01353v2.pdf
|
https://github.com/mahp-scut/sticm
| true | true | false |
tf
|
https://paperswithcode.com/paper/plausible-extractive-rationalization-through
|
Plausible Extractive Rationalization through Semi-Supervised Entailment Signal
|
2402.08479
|
https://arxiv.org/abs/2402.08479v5
|
https://arxiv.org/pdf/2402.08479v5.pdf
|
https://github.com/wj210/NLI_ETP
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/improving-named-entity-recognition-by
|
Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning
|
2105.03654
|
https://arxiv.org/abs/2105.03654v3
|
https://arxiv.org/pdf/2105.03654v3.pdf
|
https://github.com/modelscope/adaseq
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/finding-badly-drawn-bunnies
|
Finding Badly Drawn Bunnies
| null |
http://openaccess.thecvf.com//content/CVPR2022/html/Yang_Finding_Badly_Drawn_Bunnies_CVPR_2022_paper.html
|
http://openaccess.thecvf.com//content/CVPR2022/papers/Yang_Finding_Badly_Drawn_Bunnies_CVPR_2022_paper.pdf
|
https://github.com/yanglan0225/SketchX-Quantifying-Sketch-Quality
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/pre-trained-language-models-for-interactive
|
Pre-Trained Language Models for Interactive Decision-Making
|
2202.01771
|
https://arxiv.org/abs/2202.01771v4
|
https://arxiv.org/pdf/2202.01771v4.pdf
|
https://github.com/xavierpuigf/virtualhome
| false | false | true |
none
|
https://paperswithcode.com/paper/cheap-and-deterministic-inference-for-deep
|
Cheap and Deterministic Inference for Deep State-Space Models of Interacting Dynamical Systems
|
2305.01773
|
https://arxiv.org/abs/2305.01773v1
|
https://arxiv.org/pdf/2305.01773v1.pdf
|
https://github.com/boschresearch/deterministic-graph-deep-state-space-models
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/combined-mechanistic-and-machine-learning
|
Combined mechanistic and machine learning method for construction of oil reservoir permeability map consistent with well test measurements
|
2301.02585
|
https://arxiv.org/abs/2301.02585v1
|
https://arxiv.org/pdf/2301.02585v1.pdf
|
https://github.com/evgenii-kanin/data_fusion_hdm_ml
| true | true | false |
none
|
https://paperswithcode.com/paper/improved-pothole-detection-using-yolov7-and
|
Improved Pothole Detection Using YOLOv7 and ESRGAN
|
2401.08588
|
https://arxiv.org/abs/2401.08588v1
|
https://arxiv.org/pdf/2401.08588v1.pdf
|
https://gitlab.com/Ryukijano/ESRGAN_AND_YOLOV7
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/y-chromosome-of-aisin-gioro-the-imperial
|
Y Chromosome of Aisin Gioro, the Imperial House of Qing Dynasty
|
1412.6274
|
https://arxiv.org/abs/1412.6274v1
|
https://arxiv.org/pdf/1412.6274v1.pdf
|
https://github.com/jk-ice-cream/cirosantilli
| false | false | true |
none
|
https://paperswithcode.com/paper/ai-fairness-360-an-extensible-toolkit-for
|
AI Fairness 360: An Extensible Toolkit for Detecting, Understanding, and Mitigating Unwanted Algorithmic Bias
|
1810.01943
|
http://arxiv.org/abs/1810.01943v1
|
http://arxiv.org/pdf/1810.01943v1.pdf
|
https://github.com/datalab-georgetown/fairness-and-missing-values
| false | false | true |
none
|
https://paperswithcode.com/paper/adversarial-online-multi-task-reinforcement
|
Adversarial Online Multi-Task Reinforcement Learning
|
2301.04268
|
https://arxiv.org/abs/2301.04268v1
|
https://arxiv.org/pdf/2301.04268v1.pdf
|
https://github.com/ngmq/adversarial-online-multi-task-reinforcement-learning
| true | true | true |
none
|
https://paperswithcode.com/paper/a-joint-bayesian-hierarchical-model-for
|
A joint Bayesian hierarchical model for estimating SARS-CoV-2 diagnostic and subgenomic RNA viral dynamics and seroconversion
|
2301.03714
|
https://arxiv.org/abs/2301.03714v1
|
https://arxiv.org/pdf/2301.03714v1.pdf
|
https://github.com/dq0708/joint_vl_sero
| true | false | false |
none
|
https://paperswithcode.com/paper/algebraic-variety-models-for-high-rank-matrix
|
Algebraic Variety Models for High-Rank Matrix Completion
|
1703.09631
|
http://arxiv.org/abs/1703.09631v1
|
http://arxiv.org/pdf/1703.09631v1.pdf
|
https://github.com/gregongie/vmc
| false | false | true |
none
|
https://paperswithcode.com/paper/truncated-marginal-neural-ratio-estimation
|
Truncated Marginal Neural Ratio Estimation
|
2107.01214
|
https://arxiv.org/abs/2107.01214v2
|
https://arxiv.org/pdf/2107.01214v2.pdf
|
https://github.com/undark-lab/swyft
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/autoprognosis-2-0-democratizing-diagnostic
|
AutoPrognosis 2.0: Democratizing Diagnostic and Prognostic Modeling in Healthcare with Automated Machine Learning
|
2210.12090
|
https://arxiv.org/abs/2210.12090v1
|
https://arxiv.org/pdf/2210.12090v1.pdf
|
https://github.com/vanderschaarlab/autoprognosis
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/optimizing-feature-extraction-for-symbolic
|
Optimizing Feature Extraction for Symbolic Music
|
2307.05107
|
https://arxiv.org/abs/2307.05107v1
|
https://arxiv.org/pdf/2307.05107v1.pdf
|
https://github.com/didoneproject/music_symbolic_features
| true | true | false |
none
|
https://paperswithcode.com/paper/bayesian-temporal-factorization-for
|
Bayesian Temporal Factorization for Multidimensional Time Series Prediction
|
1910.06366
|
https://arxiv.org/abs/1910.06366v2
|
https://arxiv.org/pdf/1910.06366v2.pdf
|
https://github.com/xinychen/transdim
| true | true | true |
tf
|
https://paperswithcode.com/paper/aerial-base-station-placement-leveraging
|
Aerial Base Station Placement Leveraging Radio Tomographic Maps
|
2109.07372
|
https://arxiv.org/abs/2109.07372v2
|
https://arxiv.org/pdf/2109.07372v2.pdf
|
https://github.com/uiano/abs_placement_via_radio_maps
| true | true | true |
none
|
https://paperswithcode.com/paper/tsdownsample-high-performance-time-series
|
tsdownsample: high-performance time series downsampling for scalable visualization
|
2307.05389
|
https://arxiv.org/abs/2307.05389v1
|
https://arxiv.org/pdf/2307.05389v1.pdf
|
https://github.com/predict-idlab/tsdownsample
| true | true | false |
none
|
https://paperswithcode.com/paper/graph-neural-networks-in-computer-vision
|
Graph Neural Networks in Computer Vision -- Architectures, Datasets and Common Approaches
|
2212.10207
|
https://arxiv.org/abs/2212.10207v1
|
https://arxiv.org/pdf/2212.10207v1.pdf
|
https://github.com/mkrzywda/graph-neural-networks-in-computer-vision---architectures-datasets-and-common-approaches
| true | true | false |
none
|
https://paperswithcode.com/paper/precise-and-efficient-modeling-of-stellar
|
Precise and efficient modeling of stellar-activity-affected solar spectra using SOAP-GPU
|
2412.13500
|
https://arxiv.org/abs/2412.13500v1
|
https://arxiv.org/pdf/2412.13500v1.pdf
|
https://github.com/yinanzhao21/soap_gpu
| true | true | false |
none
|
https://paperswithcode.com/paper/an-effective-open-image-theorem-for-products
|
An effective open image theorem for products of principally polarized abelian varieties
|
2212.11472
|
https://arxiv.org/abs/2212.11472v5
|
https://arxiv.org/pdf/2212.11472v5.pdf
|
https://github.com/maylejacobj/productsecs
| true | true | true |
none
|
https://paperswithcode.com/paper/linearity-of-relation-decoding-in-transformer
|
Linearity of Relation Decoding in Transformer Language Models
|
2308.09124
|
https://arxiv.org/abs/2308.09124v2
|
https://arxiv.org/pdf/2308.09124v2.pdf
|
https://github.com/chanind/linear-relational
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/skit-s2i-an-indian-accented-speech-to-intent
|
Skit-S2I: An Indian Accented Speech to Intent dataset
|
2212.13015
|
https://arxiv.org/abs/2212.13015v1
|
https://arxiv.org/pdf/2212.13015v1.pdf
|
https://github.com/skit-ai/speech-to-intent-dataset
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/code-and-named-entity-recognition-in
|
Code and Named Entity Recognition in StackOverflow
|
2005.01634
|
https://arxiv.org/abs/2005.01634v3
|
https://arxiv.org/pdf/2005.01634v3.pdf
|
https://github.com/jeniyat/StackOverflowNER
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/red-teaming-language-models-to-reduce-harms
|
Red Teaming Language Models to Reduce Harms: Methods, Scaling Behaviors, and Lessons Learned
|
2209.07858
|
https://arxiv.org/abs/2209.07858v2
|
https://arxiv.org/pdf/2209.07858v2.pdf
|
https://github.com/lyqcom/red30
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/llm-voting-human-choices-and-ai-collective
|
LLM Voting: Human Choices and AI Collective Decision Making
|
2402.01766
|
https://arxiv.org/abs/2402.01766v3
|
https://arxiv.org/pdf/2402.01766v3.pdf
|
https://github.com/ethz-coss/LLM_voting
| true | false | true |
none
|
https://paperswithcode.com/paper/a-new-formula-for-the-determinant-and-bounds
|
A New Formula for the Determinant and Bounds on Its Tensor and Waring Ranks
|
2301.06586
|
https://arxiv.org/abs/2301.06586v2
|
https://arxiv.org/pdf/2301.06586v2.pdf
|
https://gitlab.com/apgoucher/det4f2
| true | true | true |
none
|
https://paperswithcode.com/paper/socially-aware-robot-crowd-navigation-with
|
Intention Aware Robot Crowd Navigation with Attention-Based Interaction Graph
|
2203.01821
|
https://arxiv.org/abs/2203.01821v4
|
https://arxiv.org/pdf/2203.01821v4.pdf
|
https://github.com/Shuijing725/CrowdNav_Prediction_AttnGraph
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/draw-all-your-imagine-a-holistic-benchmark
|
Draw ALL Your Imagine: A Holistic Benchmark and Agent Framework for Complex Instruction-based Image Generation
|
2505.24787
|
https://arxiv.org/abs/2505.24787v1
|
https://arxiv.org/pdf/2505.24787v1.pdf
|
https://github.com/yczhou001/longbench-t2i
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/pointpillars-fast-encoders-for-object
|
PointPillars: Fast Encoders for Object Detection from Point Clouds
|
1812.05784
|
https://arxiv.org/abs/1812.05784v2
|
https://arxiv.org/pdf/1812.05784v2.pdf
|
https://gitee.com/gai-shaoyan/mind3d
| false | false | false |
none
|
https://paperswithcode.com/paper/group-free-3d-object-detection-via
|
Group-Free 3D Object Detection via Transformers
|
2104.00678
|
https://arxiv.org/abs/2104.00678v2
|
https://arxiv.org/pdf/2104.00678v2.pdf
|
https://gitee.com/gai-shaoyan/mind3d
| false | false | false |
none
|
https://paperswithcode.com/paper/long-tail-detection-with-effective-class
|
Long-tail Detection with Effective Class-Margins
|
2301.09724
|
https://arxiv.org/abs/2301.09724v1
|
https://arxiv.org/pdf/2301.09724v1.pdf
|
https://github.com/janghyuncho/ecm-loss
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/exploring-simple-3d-multi-object-tracking-for
|
Exploring Simple 3D Multi-Object Tracking for Autonomous Driving
|
2108.10312
|
https://arxiv.org/abs/2108.10312v1
|
https://arxiv.org/pdf/2108.10312v1.pdf
|
https://gitee.com/gai-shaoyan/mind3d
| false | false | false |
none
|
https://paperswithcode.com/paper/eagermot-3d-multi-object-tracking-via-sensor
|
EagerMOT: 3D Multi-Object Tracking via Sensor Fusion
|
2104.14682
|
https://arxiv.org/abs/2104.14682v1
|
https://arxiv.org/pdf/2104.14682v1.pdf
|
https://gitee.com/gai-shaoyan/mind3d
| false | false | false |
none
|
https://paperswithcode.com/paper/attention-based-lstm-for-aspect-level
|
Attention-based LSTM for Aspect-level Sentiment Classification
| null |
https://aclanthology.org/D16-1058
|
https://aclanthology.org/D16-1058.pdf
|
https://github.com/mindspore-courses/ABSA-MindSpore
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/near-linear-time-algorithm-to-detect
|
Near linear time algorithm to detect community structures in large-scale networks
|
0709.2938
|
http://arxiv.org/abs/0709.2938v1
|
http://arxiv.org/pdf/0709.2938v1.pdf
|
https://github.com/ionicf/copra-communities-openmp
| false | false | true |
none
|
https://paperswithcode.com/paper/finding-overlapping-communities-in-networks
|
Finding overlapping communities in networks by label propagation
|
0910.5516
|
http://arxiv.org/abs/0910.5516v3
|
http://arxiv.org/pdf/0910.5516v3.pdf
|
https://github.com/ionicf/copra-communities-openmp
| false | false | true |
none
|
https://paperswithcode.com/paper/self-driving-multimodal-studies-at-user
|
Self-driving Multimodal Studies at User Facilities
|
2301.09177
|
https://arxiv.org/abs/2301.09177v1
|
https://arxiv.org/pdf/2301.09177v1.pdf
|
https://github.com/nsls-ii-pdf/mmm-experiments
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/near-linear-time-algorithm-to-detect
|
Near linear time algorithm to detect community structures in large-scale networks
|
0709.2938
|
http://arxiv.org/abs/0709.2938v1
|
http://arxiv.org/pdf/0709.2938v1.pdf
|
https://github.com/ionicf/rak-communities-openmp
| false | false | true |
none
|
https://paperswithcode.com/paper/solving-graph-problems-with-single-photons
|
Solving graph problems with single-photons and linear optics
|
2301.09594
|
https://arxiv.org/abs/2301.09594v2
|
https://arxiv.org/pdf/2301.09594v2.pdf
|
https://github.com/quandela/matrix-encoding-problems
| true | true | false |
none
|
https://paperswithcode.com/paper/debiasing-should-be-good-and-bad-measuring
|
Debiasing should be Good and Bad: Measuring the Consistency of Debiasing Techniques in Language Models
|
2305.14307
|
https://arxiv.org/abs/2305.14307v1
|
https://arxiv.org/pdf/2305.14307v1.pdf
|
https://github.com/Robert-Morabito/Instructive-Debiasing
| true | true | false |
none
|
https://paperswithcode.com/paper/transformation-networks-for-target-oriented
|
Transformation Networks for Target-Oriented Sentiment Classification
|
1805.01086
|
http://arxiv.org/abs/1805.01086v1
|
http://arxiv.org/pdf/1805.01086v1.pdf
|
https://github.com/mindspore-courses/ABSA-MindSpore
| false | false | true |
mindspore
|
https://paperswithcode.com/paper/plug-and-play-diffusion-features-for-text
|
Plug-and-Play Diffusion Features for Text-Driven Image-to-Image Translation
|
2211.12572
|
https://arxiv.org/abs/2211.12572v1
|
https://arxiv.org/pdf/2211.12572v1.pdf
|
https://github.com/MichalGeyer/plug-and-play
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/adn-artifact-disentanglement-network-for
|
ADN: Artifact Disentanglement Network for Unsupervised Metal Artifact Reduction
|
1908.01104
|
https://arxiv.org/abs/1908.01104v4
|
https://arxiv.org/pdf/1908.01104v4.pdf
|
https://github.com/ruanyuhui/adn-qsdl
| false | false | true |
pytorch
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.