paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/dynamic-graph-cnn-for-learning-on-point
|
Dynamic Graph CNN for Learning on Point Clouds
|
1801.07829
|
https://arxiv.org/abs/1801.07829v2
|
https://arxiv.org/pdf/1801.07829v2.pdf
|
https://gitee.com/gai-shaoyan/mind3d
| false | false | false |
none
|
https://paperswithcode.com/paper/analyzing-noise-models-and-advanced-filtering
|
Analyzing Noise Models and Advanced Filtering Algorithms for Image Enhancement
|
2410.21946
|
https://arxiv.org/abs/2410.21946v2
|
https://arxiv.org/pdf/2410.21946v2.pdf
|
https://github.com/SahilAliAkbar/Image_Noise_Analysis
| true | false | false |
none
|
https://paperswithcode.com/paper/subtractive-aggregation-for-attributed
|
Subtractive Aggregation for Attributed Network Anomaly Detection
| null |
https://dl.acm.org/doi/10.1145/3459637.3482195
|
https://dl.acm.org/doi/10.1145/3459637.3482195
|
https://github.com/betterzhou/AAGNN
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/realtime-person-identification-via-gait
|
Realtime Person Identification via Gait Analysis
|
2404.15312
|
https://arxiv.org/abs/2404.15312v1
|
https://arxiv.org/pdf/2404.15312v1.pdf
|
https://github.com/ahmadrida9999/ahmad
| false | false | false |
none
|
https://paperswithcode.com/paper/fishdbc-flexible-incremental-scalable
|
FISHDBC: Flexible, Incremental, Scalable, Hierarchical Density-Based Clustering for Arbitrary Data and Distance
|
1910.07283
|
https://arxiv.org/abs/1910.07283v1
|
https://arxiv.org/pdf/1910.07283v1.pdf
|
https://github.com/matteodellamico/flexible-clustering
| true | true | true |
none
|
https://paperswithcode.com/paper/discontinuous-response-of-the-epidemic-peak
|
Discontinuous epidemic transition due to limited testing
|
2006.08005
|
https://arxiv.org/abs/2006.08005v3
|
https://arxiv.org/pdf/2006.08005v3.pdf
|
https://github.com/burakbudanur/gridemic
| false | false | true |
none
|
https://paperswithcode.com/paper/heterogeneous-random-forest
|
Heterogeneous Random Forest
|
2410.19022
|
https://arxiv.org/abs/2410.19022v1
|
https://arxiv.org/pdf/2410.19022v1.pdf
|
https://github.com/KimYenny/HeterogeneousRF
| true | false | false |
none
|
https://paperswithcode.com/paper/probing-the-effects-of-broken-symmetries-in
|
Probing the effects of broken symmetries in machine learning
|
2406.17747
|
https://arxiv.org/abs/2406.17747v1
|
https://arxiv.org/pdf/2406.17747v1.pdf
|
https://github.com/spozdn/pet
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/example-based-hypernetworks-for-out-of
|
Example-based Hypernetworks for Out-of-Distribution Generalization
|
2203.14276
|
https://arxiv.org/abs/2203.14276v3
|
https://arxiv.org/pdf/2203.14276v3.pdf
|
https://github.com/tomervolk/hyper-pada
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/conformal-prediction-sets-with-limited-false
|
Conformal Prediction Sets with Limited False Positives
|
2202.07650
|
https://arxiv.org/abs/2202.07650v1
|
https://arxiv.org/pdf/2202.07650v1.pdf
|
https://github.com/ajfisch/conformal-fp
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/contrast-with-reconstruct-contrastive-3d
|
Contrast with Reconstruct: Contrastive 3D Representation Learning Guided by Generative Pretraining
|
2302.02318
|
https://arxiv.org/abs/2302.02318v2
|
https://arxiv.org/pdf/2302.02318v2.pdf
|
https://github.com/runpeidong/act
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/bag-of-words-vs-sequence-vs-graph-vs
|
Are We Really Making Much Progress in Text Classification? A Comparative Review
|
2204.03954
|
https://arxiv.org/abs/2204.03954v6
|
https://arxiv.org/pdf/2204.03954v6.pdf
|
https://github.com/drndr/multilabel-text-clf
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/model-agnostic-meta-learning-for-fast
|
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
|
1703.03400
|
http://arxiv.org/abs/1703.03400v3
|
http://arxiv.org/pdf/1703.03400v3.pdf
|
https://github.com/Mind23-2/MindCode-55
| false | false | true |
mindspore
|
https://paperswithcode.com/paper/can-physics-informed-neural-networks-beat-the
|
Can Physics-Informed Neural Networks beat the Finite Element Method?
|
2302.04107
|
https://arxiv.org/abs/2302.04107v1
|
https://arxiv.org/pdf/2302.04107v1.pdf
|
https://github.com/tamaragrossmann/fem-vs-pinns
| true | true | true |
jax
|
https://paperswithcode.com/paper/maxvit-unet-multi-axis-attention-for-medical
|
MaxViT-UNet: Multi-Axis Attention for Medical Image Segmentation
|
2305.08396
|
https://arxiv.org/abs/2305.08396v5
|
https://arxiv.org/pdf/2305.08396v5.pdf
|
https://github.com/abdul2706/MaxViT-UNet
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/safe-deep-policy-adaptation
|
Safe Deep Policy Adaptation
|
2310.08602
|
https://arxiv.org/abs/2310.08602v3
|
https://arxiv.org/pdf/2310.08602v3.pdf
|
https://github.com/LeCAR-Lab/SafeDPA
| true | false | false |
none
|
https://paperswithcode.com/paper/on-pre-training-for-federated-learning
|
On the Importance and Applicability of Pre-Training for Federated Learning
|
2206.11488
|
https://arxiv.org/abs/2206.11488v3
|
https://arxiv.org/pdf/2206.11488v3.pdf
|
https://github.com/andytu28/fps_pre-training
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/calibrated-out-of-distribution-detection-with
|
Calibrated Out-of-Distribution Detection with a Generic Representation
|
2303.13148
|
https://arxiv.org/abs/2303.13148v2
|
https://arxiv.org/pdf/2303.13148v2.pdf
|
https://github.com/vojirt/grood
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/3d-dda-3d-dual-domain-attention-for-brain
|
3D-DDA: 3D Dual-Domain Attention for Brain Tumor Segmentation
| null |
https://ieeexplore.ieee.org/document/10222602
|
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10222602
|
https://github.com/sowwnn/3DDualDomainAttention
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/fingerprinting-web-servers-through
|
Fingerprinting web servers through Transformer-encoded HTTP response headers
|
2404.00056
|
https://arxiv.org/abs/2404.00056v1
|
https://arxiv.org/pdf/2404.00056v1.pdf
|
https://github.com/Darwinkel/bachelor-thesis-information-science
| true | true | false |
none
|
https://paperswithcode.com/paper/udapter-efficient-domain-adaptation-using
|
UDApter -- Efficient Domain Adaptation Using Adapters
|
2302.03194
|
https://arxiv.org/abs/2302.03194v2
|
https://arxiv.org/pdf/2302.03194v2.pdf
|
https://github.com/declare-lab/domadapter
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/neural-discrete-representation-learning
|
Neural Discrete Representation Learning
|
1711.00937
|
http://arxiv.org/abs/1711.00937v2
|
http://arxiv.org/pdf/1711.00937v2.pdf
|
https://github.com/lucidrains/vector-quantize-pytorch
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/co-active-subspace-methods-for-the-joint
|
Co-Active Subspace Methods for the Joint Analysis of Adjacent Computer Models
|
2311.18146
|
https://arxiv.org/abs/2311.18146v2
|
https://arxiv.org/pdf/2311.18146v2.pdf
|
https://github.com/knrumsey/concordance
| true | true | false |
none
|
https://paperswithcode.com/paper/cam-a-fast-and-efficient-network-for-speaker
|
CAM++: A Fast and Efficient Network for Speaker Verification Using Context-Aware Masking
|
2303.00332
|
https://arxiv.org/abs/2303.00332v3
|
https://arxiv.org/pdf/2303.00332v3.pdf
|
https://github.com/yuyq96/d-tdnn
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/splitnerf-split-sum-approximation-neural
|
SplitNeRF: Split Sum Approximation Neural Field for Joint Geometry, Illumination, and Material Estimation
|
2311.16671
|
https://arxiv.org/abs/2311.16671v1
|
https://arxiv.org/pdf/2311.16671v1.pdf
|
https://github.com/zarzarj/SplitNeRF
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/bayesian-nonparametric-inference-in-pde
|
Bayesian Nonparametric Inference in Elliptic PDEs: Convergence Rates and Implementation
|
2311.18322
|
https://arxiv.org/abs/2311.18322v2
|
https://arxiv.org/pdf/2311.18322v2.pdf
|
https://github.com/mattgiord/bayesian-inverse-problems
| true | true | false |
none
|
https://paperswithcode.com/paper/a-database-for-perceived-quality-assessment
|
Perceptual Quality Assessment of Virtual Reality Videos in the Wild
|
2206.08751
|
https://arxiv.org/abs/2206.08751v3
|
https://arxiv.org/pdf/2206.08751v3.pdf
|
https://github.com/limuhit/vr-video-quality-in-the-wild
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/the-extended-hoa-format-for-synthesis
|
The Extended HOA Format for Synthesis
|
1912.05793
|
https://arxiv.org/abs/1912.05793v2
|
https://arxiv.org/pdf/1912.05793v2.pdf
|
https://github.com/SYNTCOMP/hoa-tools
| false | false | true |
none
|
https://paperswithcode.com/paper/structure-adaptive-elastic-net
|
Structure Adaptive Elastic-Net
|
2006.02041
|
https://arxiv.org/abs/2006.02041v3
|
https://arxiv.org/pdf/2006.02041v3.pdf
|
https://github.com/sandy-pramanik/saenet
| true | true | false |
none
|
https://paperswithcode.com/paper/predicting-workload-in-virtual-flight
|
Predicting Workload in Virtual Flight Simulations using EEG Features (Including Post-hoc Analysis in Appendix)
|
2412.12428
|
https://arxiv.org/abs/2412.12428v2
|
https://arxiv.org/pdf/2412.12428v2.pdf
|
https://github.com/basverkennis/flight-sim-cognitive-workload-eeg-prediction
| true | true | false |
none
|
https://paperswithcode.com/paper/bayesian-low-rank-adaptation-for-large
|
Bayesian Low-rank Adaptation for Large Language Models
|
2308.13111
|
https://arxiv.org/abs/2308.13111v5
|
https://arxiv.org/pdf/2308.13111v5.pdf
|
https://github.com/maximerobeyns/bayesian_lora
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/multi-correlation-siamese-transformer-network
|
Multi-Correlation Siamese Transformer Network with Dense Connection for 3D Single Object Tracking
|
2312.11051
|
https://arxiv.org/abs/2312.11051v1
|
https://arxiv.org/pdf/2312.11051v1.pdf
|
https://github.com/liangp/mcstn-3dsot
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/organelle-specific-segmentation-spatial
|
Organelle-specific segmentation, spatial analysis, and visualization of volume electron microscopy datasets
|
2303.03876
|
https://arxiv.org/abs/2303.03876v1
|
https://arxiv.org/pdf/2303.03876v1.pdf
|
https://gitlab.com/album-app/album
| true | true | false |
none
|
https://paperswithcode.com/paper/fft-based-dynamic-token-mixer-for-vision
|
FFT-based Dynamic Token Mixer for Vision
|
2303.03932
|
https://arxiv.org/abs/2303.03932v2
|
https://arxiv.org/pdf/2303.03932v2.pdf
|
https://github.com/okojoalg/dfformer
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/integrated-image-and-location-analysis-for
|
Integrated Image and Location Analysis for Wound Classification: A Deep Learning Approach
|
2308.11877
|
https://arxiv.org/abs/2308.11877v2
|
https://arxiv.org/pdf/2308.11877v2.pdf
|
https://github.com/uwm-bigdata/multi-modal-wound-classification-using-images-and-locations
| true | true | false |
none
|
https://paperswithcode.com/paper/rm-e-3-equivariant-actor-critic-methods-for
|
${\rm E}(3)$-Equivariant Actor-Critic Methods for Cooperative Multi-Agent Reinforcement Learning
|
2308.11842
|
https://arxiv.org/abs/2308.11842v3
|
https://arxiv.org/pdf/2308.11842v3.pdf
|
https://github.com/dchen48/e3ac
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/facediffuser-speech-driven-3d-facial
|
FaceDiffuser: Speech-Driven 3D Facial Animation Synthesis Using Diffusion
|
2309.11306
|
https://arxiv.org/abs/2309.11306v1
|
https://arxiv.org/pdf/2309.11306v1.pdf
|
https://github.com/uuembodiedsocialai/FaceDiffuser
| true | true | false |
jax
|
https://paperswithcode.com/paper/wdd-weighted-delta-debugging
|
WDD: Weighted Delta Debugging
|
2411.19410
|
https://arxiv.org/abs/2411.19410v2
|
https://arxiv.org/pdf/2411.19410v2.pdf
|
https://github.com/uw-pluverse/perses
| true | true | false |
none
|
https://paperswithcode.com/paper/the-three-channels-of-many-body-perturbation
|
The three channels of many-body perturbation theory: $GW$, particle-particle, and electron-hole $T$-matrix self-energies
|
2309.04167
|
https://arxiv.org/abs/2309.04167v3
|
https://arxiv.org/pdf/2309.04167v3.pdf
|
https://github.com/pfloos/QuAcK
| true | true | false |
none
|
https://paperswithcode.com/paper/generative-adversarial-networks
|
Generative Adversarial Networks
|
1406.2661
|
https://arxiv.org/abs/1406.2661v1
|
https://arxiv.org/pdf/1406.2661v1.pdf
|
https://github.com/2024-MindSpore-1/Code5/tree/main/APDrawingGAN
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/a-simple-baseline-for-batch-active-learning
|
Stochastic Batch Acquisition: A Simple Baseline for Deep Active Learning
|
2106.12059
|
https://arxiv.org/abs/2106.12059v3
|
https://arxiv.org/pdf/2106.12059v3.pdf
|
https://github.com/baal-org/baal
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/head-tail-breaks-a-new-classification-scheme
|
Head/tail Breaks: A New Classification Scheme for Data with a Heavy-tailed Distribution
|
1209.2801
|
https://arxiv.org/abs/1209.2801v1
|
https://arxiv.org/pdf/1209.2801v1.pdf
|
https://github.com/r-spatial/classInt
| false | false | true |
none
|
https://paperswithcode.com/paper/deep-recurrent-q-learning-for-partially
|
Deep Recurrent Q-Learning for Partially Observable MDPs
|
1507.06527
|
http://arxiv.org/abs/1507.06527v4
|
http://arxiv.org/pdf/1507.06527v4.pdf
|
https://github.com/kevslinger/dtqn
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/star-tracking-using-an-event-camera
|
Star Tracking using an Event Camera
|
1812.02895
|
http://arxiv.org/abs/1812.02895v2
|
http://arxiv.org/pdf/1812.02895v2.pdf
|
https://github.com/uzh-rpg/event-based_vision_resources
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/exploiting-structural-and-semantic-context
|
Commonsense Knowledge Base Completion with Structural and Semantic Context
|
1910.02915
|
https://arxiv.org/abs/1910.02915v2
|
https://arxiv.org/pdf/1910.02915v2.pdf
|
https://github.com/allenai/commonsense-kg-completion
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/altered-topological-structure-of-the-brain
|
Altered Topological Structure of the Brain White Matter in Maltreated Children through Topological Data Analysis
|
2304.05908
|
https://arxiv.org/abs/2304.05908v3
|
https://arxiv.org/pdf/2304.05908v3.pdf
|
https://github.com/laplcebeltrami/maltreated
| true | true | false |
none
|
https://paperswithcode.com/paper/phavip-phage-virion-protein-classification
|
PhaVIP: Phage VIrion Protein classification based on chaos game representation and Vision Transformer
|
2301.12422
|
https://arxiv.org/abs/2301.12422v2
|
https://arxiv.org/pdf/2301.12422v2.pdf
|
https://github.com/kennthshang/phavip
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/it-takes-two-to-negotiate-modeling-social
|
It Takes Two to Negotiate: Modeling Social Exchange in Online Multiplayer Games
|
2311.08666
|
https://arxiv.org/abs/2311.08666v1
|
https://arxiv.org/pdf/2311.08666v1.pdf
|
https://github.com/kj2013/claff-diplomacy
| true | true | false |
none
|
https://paperswithcode.com/paper/sculpting-features-from-noise-reward-guided
|
Sculpting Features from Noise: Reward-Guided Hierarchical Diffusion for Task-Optimal Feature Transformation
|
2505.15152
|
https://arxiv.org/abs/2505.15152v1
|
https://arxiv.org/pdf/2505.15152v1.pdf
|
https://github.com/NanxuGong/DIFFT
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/egg-fast-and-extensible-equality-saturation
|
egg: Fast and Extensible Equality Saturation
|
2004.03082
|
https://arxiv.org/abs/2004.03082v3
|
https://arxiv.org/pdf/2004.03082v3.pdf
|
https://github.com/jcberentsen/egg-nog
| false | false | true |
none
|
https://paperswithcode.com/paper/selectivenet-a-deep-neural-network-with-an
|
SelectiveNet: A Deep Neural Network with an Integrated Reject Option
|
1901.09192
|
https://arxiv.org/abs/1901.09192v4
|
https://arxiv.org/pdf/1901.09192v4.pdf
|
https://github.com/BorealisAI/towards-better-sel-cls
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/deep-gamblers-learning-to-abstain-with
|
Deep Gamblers: Learning to Abstain with Portfolio Theory
|
1907.00208
|
https://arxiv.org/abs/1907.00208v2
|
https://arxiv.org/pdf/1907.00208v2.pdf
|
https://github.com/BorealisAI/towards-better-sel-cls
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/constyle-v2-a-strong-prompter-for-all-in-one
|
ConStyle v2: A Strong Prompter for All-in-One Image Restoration
|
2406.18242
|
https://arxiv.org/abs/2406.18242v1
|
https://arxiv.org/pdf/2406.18242v1.pdf
|
https://github.com/Dongqi-Fan/ConStyle_v2
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/compressai-a-pytorch-library-and-evaluation
|
CompressAI: a PyTorch library and evaluation platform for end-to-end compression research
|
2011.03029
|
https://arxiv.org/abs/2011.03029v1
|
https://arxiv.org/pdf/2011.03029v1.pdf
|
https://github.com/xinjie-q/ldmic
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/spores-sum-product-optimization-via
|
SPORES: Sum-Product Optimization via Relational Equality Saturation for Large Scale Linear Algebra
|
2002.07951
|
https://arxiv.org/abs/2002.07951v2
|
https://arxiv.org/pdf/2002.07951v2.pdf
|
https://github.com/jcberentsen/egg-nog
| false | false | true |
none
|
https://paperswithcode.com/paper/accommodating-audio-modality-in-clip-for
|
Accommodating Audio Modality in CLIP for Multimodal Processing
|
2303.06591
|
https://arxiv.org/abs/2303.06591v1
|
https://arxiv.org/pdf/2303.06591v1.pdf
|
https://github.com/ludanruan/clip4vla
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/transformer-encoder-with-multiscale-deep
|
Transformer Encoder with Multiscale Deep Learning for Pain Classification Using Physiological Signals
|
2303.06845
|
https://arxiv.org/abs/2303.06845v2
|
https://arxiv.org/pdf/2303.06845v2.pdf
|
https://github.com/zhenyuanlu/painattnnet
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/ldmic-learning-based-distributed-multi-view
|
LDMIC: Learning-based Distributed Multi-view Image Coding
|
2301.09799
|
https://arxiv.org/abs/2301.09799v3
|
https://arxiv.org/pdf/2301.09799v3.pdf
|
https://github.com/xinjie-q/ldmic
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/pet-neus-positional-encoding-tri-planes-for
|
PET-NeuS: Positional Encoding Tri-Planes for Neural Surfaces
|
2305.05594
|
https://arxiv.org/abs/2305.05594v1
|
https://arxiv.org/pdf/2305.05594v1.pdf
|
https://github.com/yiqun-wang/pet-neus
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/cosmological-measurements-from-void-galaxy
|
Cosmological measurements from void-galaxy and galaxy-galaxy clustering in the Sloan Digital Sky Survey
|
2303.06143
|
https://arxiv.org/abs/2303.06143v2
|
https://arxiv.org/pdf/2303.06143v2.pdf
|
https://github.com/alexwoodfinden/sdss-void-cosmology
| true | true | true |
none
|
https://paperswithcode.com/paper/transcription-free-filler-word-detection-with
|
Transcription free filler word detection with Neural semi-CRFs
|
2303.06475
|
https://arxiv.org/abs/2303.06475v1
|
https://arxiv.org/pdf/2303.06475v1.pdf
|
https://github.com/gzhu06/Filler-semi-CRF
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/checkerboard-context-model-for-efficient
|
Checkerboard Context Model for Efficient Learned Image Compression
|
2103.15306
|
https://arxiv.org/abs/2103.15306v2
|
https://arxiv.org/pdf/2103.15306v2.pdf
|
https://github.com/xinjie-q/ldmic
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/caloclouds-ii-ultra-fast-geometry-independent
|
CaloClouds II: Ultra-Fast Geometry-Independent Highly-Granular Calorimeter Simulation
|
2309.05704
|
https://arxiv.org/abs/2309.05704v2
|
https://arxiv.org/pdf/2309.05704v2.pdf
|
https://github.com/flc-qu-hep/caloclouds-2
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/unsupervised-domain-adaptation-for-cardiac
|
Unsupervised Domain Adaptation for Cardiac Segmentation: Towards Structure Mutual Information Maximization
|
2204.09334
|
https://arxiv.org/abs/2204.09334v3
|
https://arxiv.org/pdf/2204.09334v3.pdf
|
https://github.com/louey233/toward-mutual-information
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/towards-safe-bayesian-optimization-with
|
Towards safe Bayesian optimization with Wiener kernel regression
|
2411.02253
|
https://arxiv.org/abs/2411.02253v3
|
https://arxiv.org/pdf/2411.02253v3.pdf
|
https://github.com/OptCon/SafeBO_WKR
| true | false | true |
none
|
https://paperswithcode.com/paper/the-distributional-hypothesis-does-not-fully
|
The Distributional Hypothesis Does Not Fully Explain the Benefits of Masked Language Model Pretraining
|
2310.16261
|
https://arxiv.org/abs/2310.16261v1
|
https://arxiv.org/pdf/2310.16261v1.pdf
|
https://github.com/usc-tamagotchi/dh-mlm
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/iocr-informed-optical-character-recognition
|
iOCR: Informed Optical Character Recognition for Election Ballot Tallies
|
2208.00865
|
https://arxiv.org/abs/2208.00865v1
|
https://arxiv.org/pdf/2208.00865v1.pdf
|
https://github.com/wolfgarbe/symspell
| true | true | true |
none
|
https://paperswithcode.com/paper/high-dimensional-overdispersed-generalized
|
High-Dimensional Overdispersed Generalized Factor Model with Application to Single-Cell Sequencing Data Analysis
|
2408.11272
|
https://arxiv.org/abs/2408.11272v1
|
https://arxiv.org/pdf/2408.11272v1.pdf
|
https://github.com/feiyoung/GFM
| true | false | false |
none
|
https://paperswithcode.com/paper/evaluating-physics-informed-neural-network
|
Evaluating Physics Informed Neural Network Performance for Seismic Discrimination Between Earthquakes and Explosions
|
2403.04952
|
https://arxiv.org/abs/2403.04952v1
|
https://arxiv.org/pdf/2403.04952v1.pdf
|
https://github.com/qingkaikong/physicsml-pinn-empiricalrelationship
| true | true | true |
none
|
https://paperswithcode.com/paper/harnessing-the-power-of-large-language-model
|
Harnessing the Power of Large Language Model for Uncertainty Aware Graph Processing
|
2404.00589
|
https://arxiv.org/abs/2404.00589v2
|
https://arxiv.org/pdf/2404.00589v2.pdf
|
https://github.com/code4paper-2024/code4paper
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/cm-tts-enhancing-real-time-text-to-speech
|
CM-TTS: Enhancing Real Time Text-to-Speech Synthesis Efficiency through Weighted Samplers and Consistency Models
|
2404.00569
|
https://arxiv.org/abs/2404.00569v1
|
https://arxiv.org/pdf/2404.00569v1.pdf
|
https://github.com/xiangli2022/cm-tts
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/multimedia-generative-script-learning-for
|
Multimedia Generative Script Learning for Task Planning
|
2208.12306
|
https://arxiv.org/abs/2208.12306v3
|
https://arxiv.org/pdf/2208.12306v3.pdf
|
https://github.com/EagleW/Multimedia-Generative-Script-Learning-for-Task-Planning
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/lswinsr-uav-imagery-super-resolution-based-on
|
LSwinSR: UAV Imagery Super-Resolution based on Linear Swin Transformer
|
2303.10232
|
https://arxiv.org/abs/2303.10232v1
|
https://arxiv.org/pdf/2303.10232v1.pdf
|
https://github.com/lironui/geosr
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/short-time-ssvep-data-extension-by-a-novel
|
Short-length SSVEP data extension by a novel generative adversarial networks based framework
|
2301.05599
|
https://arxiv.org/abs/2301.05599v5
|
https://arxiv.org/pdf/2301.05599v5.pdf
|
https://github.com/yudongpan/tegan
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/bridging-the-gap-between-model-explanations
|
Bridging the Gap between Model Explanations in Partially Annotated Multi-label Classification
|
2304.01804
|
https://arxiv.org/abs/2304.01804v1
|
https://arxiv.org/pdf/2304.01804v1.pdf
|
https://github.com/youngwk/bridgegapexplanationpamc
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/one-shot-unsupervised-domain-adaptation-with
|
One-shot Unsupervised Domain Adaptation with Personalized Diffusion Models
|
2303.18080
|
https://arxiv.org/abs/2303.18080v2
|
https://arxiv.org/pdf/2303.18080v2.pdf
|
https://github.com/yasserben/datum
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/reliaavatar-a-robust-real-time-avatar
|
ReliaAvatar: A Robust Real-Time Avatar Animator with Integrated Motion Prediction
|
2407.02129
|
https://arxiv.org/abs/2407.02129v1
|
https://arxiv.org/pdf/2407.02129v1.pdf
|
https://github.com/MindSpore-scientific-2/code-7/tree/main/DocREfiner
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/learning-to-defer-to-multiple-experts
|
Learning to Defer to Multiple Experts: Consistent Surrogate Losses, Confidence Calibration, and Conformal Ensembles
|
2210.16955
|
https://arxiv.org/abs/2210.16955v2
|
https://arxiv.org/pdf/2210.16955v2.pdf
|
https://github.com/rajevv/multi_l2d
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/translist-a-transformer-based-linguistically
|
TransLIST: A Transformer-Based Linguistically Informed Sanskrit Tokenizer
|
2210.11753
|
https://arxiv.org/abs/2210.11753v1
|
https://arxiv.org/pdf/2210.11753v1.pdf
|
https://github.com/rsingha108/translist
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/q-net-query-informed-few-shot-medical-image
|
Q-Net: Query-Informed Few-Shot Medical Image Segmentation
|
2208.11451
|
https://arxiv.org/abs/2208.11451v3
|
https://arxiv.org/pdf/2208.11451v3.pdf
|
https://github.com/zjlab-ammi/q-net
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/self-supervision-with-superpixels-training
|
Self-Supervision with Superpixels: Training Few-shot Medical Image Segmentation without Annotation
|
2007.09886
|
https://arxiv.org/abs/2007.09886v2
|
https://arxiv.org/pdf/2007.09886v2.pdf
|
https://github.com/zjlab-ammi/q-net
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/damo-nlp-at-semeval-2023-task-2-a-unified
|
DAMO-NLP at SemEval-2023 Task 2: A Unified Retrieval-augmented System for Multilingual Named Entity Recognition
|
2305.03688
|
https://arxiv.org/abs/2305.03688v3
|
https://arxiv.org/pdf/2305.03688v3.pdf
|
https://github.com/modelscope/adaseq
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/hipool-modeling-long-documents-using-graph
|
HiPool: Modeling Long Documents Using Graph Neural Networks
|
2305.03319
|
https://arxiv.org/abs/2305.03319v2
|
https://arxiv.org/pdf/2305.03319v2.pdf
|
https://github.com/irenezihuili/hipool
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/factuality-enhanced-language-models-for-open
|
Factuality Enhanced Language Models for Open-Ended Text Generation
|
2206.04624
|
https://arxiv.org/abs/2206.04624v3
|
https://arxiv.org/pdf/2206.04624v3.pdf
|
https://github.com/triton-inference-server/fastertransformer_backend
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/suspected-undeclared-use-of-artificial
|
Suspected Undeclared Use of Artificial Intelligence in the Academic Literature: An Analysis of the Academ-AI Dataset
|
2411.15218
|
https://arxiv.org/abs/2411.15218v1
|
https://arxiv.org/pdf/2411.15218v1.pdf
|
https://github.com/alex-glynn/academ-ai-analysis
| true | false | false |
none
|
https://paperswithcode.com/paper/black-hole-spectroscopy-by-mode-cleaning
|
Black hole spectroscopy by mode cleaning
|
2301.06705
|
https://arxiv.org/abs/2301.06705v2
|
https://arxiv.org/pdf/2301.06705v2.pdf
|
https://github.com/sizheng-ma/qnm_filter
| true | true | true |
none
|
https://paperswithcode.com/paper/towards-a-coq-formalization-of-a-quantified
|
Towards a Coq formalization of a quantified modal logic
|
2206.03358
|
https://arxiv.org/abs/2206.03358v2
|
https://arxiv.org/pdf/2206.03358v2.pdf
|
https://gitlab.com/ana-borges/QRC1-Coq
| true | false | true |
none
|
https://paperswithcode.com/paper/optical-aberration-correction-in
|
Optical Aberration Correction in Postprocessing using Imaging Simulation
|
2305.05867
|
https://arxiv.org/abs/2305.05867v1
|
https://arxiv.org/pdf/2305.05867v1.pdf
|
https://github.com/tangeego/imagingsimulation
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/collective-filters-a-new-approach-to-analyze
|
Quasinormal-mode filters: a new approach to analyze the gravitational-wave ringdown of binary black-hole mergers
|
2207.10870
|
https://arxiv.org/abs/2207.10870v2
|
https://arxiv.org/pdf/2207.10870v2.pdf
|
https://github.com/sizheng-ma/qnm_filter
| false | false | true |
none
|
https://paperswithcode.com/paper/video-object-segmentation-in-panoptic-wild
|
Video Object Segmentation in Panoptic Wild Scenes
|
2305.04470
|
https://arxiv.org/abs/2305.04470v2
|
https://arxiv.org/pdf/2305.04470v2.pdf
|
https://github.com/yoxu515/viposeg-benchmark
| true | true | true |
none
|
https://paperswithcode.com/paper/a-new-particle-pusher-with-hadronic
|
A New Particle Pusher with Hadronic Interactions for Modeling Multimessenger Emission from Compact Objects
|
2410.22781
|
https://arxiv.org/abs/2410.22781v1
|
https://arxiv.org/pdf/2410.22781v1.pdf
|
https://github.com/Mynghao/pusher-library
| true | false | true |
none
|
https://paperswithcode.com/paper/a-virtual-reality-training-system-for
|
A Virtual Reality Training System for Automotive Engines Assembly and Disassembly
|
2311.02108
|
https://arxiv.org/abs/2311.02108v1
|
https://arxiv.org/pdf/2311.02108v1.pdf
|
https://github.com/ladissonlai/sustech_vrengine
| true | true | false |
none
|
https://paperswithcode.com/paper/cone-unsupervised-contrastive-opinion
|
Cone: Unsupervised Contrastive Opinion Extraction
|
2305.04599
|
https://arxiv.org/abs/2305.04599v1
|
https://arxiv.org/pdf/2305.04599v1.pdf
|
https://github.com/blpxspg/cone
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/scidasynth-interactive-structured-knowledge
|
SciDaSynth: Interactive Structured Knowledge Extraction and Synthesis from Scientific Literature with Large Language Model
|
2404.13765
|
https://arxiv.org/abs/2404.13765v1
|
https://arxiv.org/pdf/2404.13765v1.pdf
|
https://github.com/xingbow/SciDaEx
| true | false | true |
none
|
https://paperswithcode.com/paper/actively-discovering-new-slots-for-task
|
Actively Discovering New Slots for Task-oriented Conversation
|
2305.04049
|
https://arxiv.org/abs/2305.04049v1
|
https://arxiv.org/pdf/2305.04049v1.pdf
|
https://github.com/newslotdetection/newslotdetection
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/multi-scale-deformable-alignment-and-content
|
Multi-Scale Deformable Alignment and Content-Adaptive Inference for Flexible-Rate Bi-Directional Video Compression
|
2306.16544
|
https://arxiv.org/abs/2306.16544v1
|
https://arxiv.org/pdf/2306.16544v1.pdf
|
https://github.com/KUIS-AI-Tekalp-Research-Group/video-compression
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/characterizing-deep-learning-package-supply
|
Characterizing Deep Learning Package Supply Chains in PyPI: Domains, Clusters, and Disengagement
|
2306.16307
|
https://arxiv.org/abs/2306.16307v2
|
https://arxiv.org/pdf/2306.16307v2.pdf
|
https://github.com/gaokai320/pypi-dlsc
| true | true | false |
tf
|
https://paperswithcode.com/paper/backprop-free-reinforcement-learning-with
|
Backprop-Free Reinforcement Learning with Active Neural Generative Coding
|
2107.07046
|
https://arxiv.org/abs/2107.07046v1
|
https://arxiv.org/pdf/2107.07046v1.pdf
|
https://github.com/ago109/active-neural-generative-coding
| true | false | false |
jax
|
https://paperswithcode.com/paper/nine-year-wilkinson-microwave-anisotropy-1
|
Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results
|
1212.5225
|
https://arxiv.org/abs/1212.5225v3
|
https://arxiv.org/pdf/1212.5225v3.pdf
|
https://github.com/htjense/pywmap
| false | false | true |
none
|
https://paperswithcode.com/paper/learning-based-lossless-point-cloud-geometry
|
Learning-based Lossless Point Cloud Geometry Coding using Sparse Tensors
|
2204.05043
|
https://arxiv.org/abs/2204.05043v2
|
https://arxiv.org/pdf/2204.05043v2.pdf
|
https://github.com/Weafre/CNeT
| false | false | true |
pytorch
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.