paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/a-multi-modal-geographic-pre-training-method
|
MGeo: Multi-Modal Geographic Pre-Training Method
|
2301.04283
|
https://arxiv.org/abs/2301.04283v2
|
https://arxiv.org/pdf/2301.04283v2.pdf
|
https://github.com/phantomgrapes/mgeo
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/temos-generating-diverse-human-motions-from
|
TEMOS: Generating diverse human motions from textual descriptions
|
2204.14109
|
https://arxiv.org/abs/2204.14109v2
|
https://arxiv.org/pdf/2204.14109v2.pdf
|
https://github.com/Mathux/TEMOS
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/contrastive-learning-for-improving-asr
|
Contrastive Learning for Improving ASR Robustness in Spoken Language Understanding
|
2205.00693
|
https://arxiv.org/abs/2205.00693v2
|
https://arxiv.org/pdf/2205.00693v2.pdf
|
https://github.com/miulab/spokencse
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/mnist-c-a-robustness-benchmark-for-computer
|
MNIST-C: A Robustness Benchmark for Computer Vision
|
1906.02337
|
https://arxiv.org/abs/1906.02337v1
|
https://arxiv.org/pdf/1906.02337v1.pdf
|
https://github.com/testingautomated-usi/fashion-mnist-c
| false | false | true |
none
|
https://paperswithcode.com/paper/prefix-tuning-optimizing-continuous-prompts
|
Prefix-Tuning: Optimizing Continuous Prompts for Generation
|
2101.00190
|
https://arxiv.org/abs/2101.00190v1
|
https://arxiv.org/pdf/2101.00190v1.pdf
|
https://github.com/ga642381/SpeechPrompt
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/generative-spoken-language-modeling-from-raw
|
Generative Spoken Language Modeling from Raw Audio
|
2102.01192
|
https://arxiv.org/abs/2102.01192v2
|
https://arxiv.org/pdf/2102.01192v2.pdf
|
https://github.com/ga642381/SpeechPrompt
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/towards-theoretical-analysis-of
|
Towards Theoretical Analysis of Transformation Complexity of ReLU DNNs
|
2205.01940
|
https://arxiv.org/abs/2205.01940v2
|
https://arxiv.org/pdf/2205.01940v2.pdf
|
https://github.com/sjtu-xai-lab/transformation-complexity
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/mad-self-supervised-masked-anomaly-detection
|
MAD: Self-Supervised Masked Anomaly Detection Task for Multivariate Time Series
|
2205.02100
|
https://arxiv.org/abs/2205.02100v1
|
https://arxiv.org/pdf/2205.02100v1.pdf
|
https://github.com/icsdataset/hai
| true | true | false |
none
|
https://paperswithcode.com/paper/emospeech-guiding-fastspeech2-towards
|
EmoSpeech: Guiding FastSpeech2 Towards Emotional Text to Speech
|
2307.00024
|
https://arxiv.org/abs/2307.00024v1
|
https://arxiv.org/pdf/2307.00024v1.pdf
|
https://github.com/deepvk/emospeech
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/learning-to-disambiguate-strongly-interacting
|
Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-pixel Part Segmentation
|
2107.00434
|
https://arxiv.org/abs/2107.00434v2
|
https://arxiv.org/pdf/2107.00434v2.pdf
|
https://github.com/zc-alexfan/digit-interacting
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/graph-topology-invariant-gradient-and
|
Graph topology invariant gradient and sampling complexity for decentralized and stochastic optimization
|
2101.00143
|
https://arxiv.org/abs/2101.00143v2
|
https://arxiv.org/pdf/2101.00143v2.pdf
|
https://github.com/Libensemble/libensemble
| false | false | true |
none
|
https://paperswithcode.com/paper/gradient-sliding-for-composite-optimization
|
Gradient Sliding for Composite Optimization
|
1406.0919
|
http://arxiv.org/abs/1406.0919v2
|
http://arxiv.org/pdf/1406.0919v2.pdf
|
https://github.com/Libensemble/libensemble
| false | false | true |
none
|
https://paperswithcode.com/paper/inferring-density-dependent-population
|
Inferring Density-Dependent Population Dynamics Mechanisms through Rate Disambiguation for Logistic Birth-Death Processes
|
2205.05189
|
https://arxiv.org/abs/2205.05189v1
|
https://arxiv.org/pdf/2205.05189v1.pdf
|
https://github.com/lhuynhm/birthdeathdisambiguation
| true | true | false |
none
|
https://paperswithcode.com/paper/cic-bart-ssa-controllable-image-captioning
|
CIC-BART-SSA: Controllable Image Captioning with Structured Semantic Augmentation
|
2407.11393
|
https://arxiv.org/abs/2407.11393v2
|
https://arxiv.org/pdf/2407.11393v2.pdf
|
https://github.com/SamsungLabs/CIC-BART-SSA
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/jax-md-end-to-end-differentiable-hardware-1
|
JAX, M.D.: A Framework for Differentiable Physics
|
1912.04232
|
https://arxiv.org/abs/1912.04232v2
|
https://arxiv.org/pdf/1912.04232v2.pdf
|
https://github.com/google/jax-md
| true | true | true |
jax
|
https://paperswithcode.com/paper/deep-learning-based-channel-estimation-for-4
|
Deep Learning-based Channel Estimation for Wideband Hybrid MmWave Massive MIMO
|
2205.05202
|
https://arxiv.org/abs/2205.05202v1
|
https://arxiv.org/pdf/2205.05202v1.pdf
|
https://github.com/ericgjb/sbl_unfolding_based_had_mimo_channel_estimation
| true | true | false |
tf
|
https://paperswithcode.com/paper/partial-class-activation-attention-for
|
Partial Class Activation Attention for Semantic Segmentation
| null |
http://openaccess.thecvf.com//content/CVPR2022/html/Liu_Partial_Class_Activation_Attention_for_Semantic_Segmentation_CVPR_2022_paper.html
|
http://openaccess.thecvf.com//content/CVPR2022/papers/Liu_Partial_Class_Activation_Attention_for_Semantic_Segmentation_CVPR_2022_paper.pdf
|
https://github.com/lsa1997/pcaa
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/multi-scale-memory-based-video-deblurring
|
Multi-Scale Memory-Based Video Deblurring
|
2204.02977
|
https://arxiv.org/abs/2204.02977v1
|
https://arxiv.org/pdf/2204.02977v1.pdf
|
https://github.com/jibo27/memdeblur
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/far-from-asymptopia
|
Far from Asymptopia
|
2205.03343
|
https://arxiv.org/abs/2205.03343v2
|
https://arxiv.org/pdf/2205.03343v2.pdf
|
https://github.com/mcabbott/atomicpriors.jl
| true | true | true |
none
|
https://paperswithcode.com/paper/llm-based-multi-agent-generation-of-semi
|
LLM Based Multi-Agent Generation of Semi-structured Documents from Semantic Templates in the Public Administration Domain
|
2402.14871
|
https://arxiv.org/abs/2402.14871v1
|
https://arxiv.org/pdf/2402.14871v1.pdf
|
https://github.com/michelebri/multi_agent_document_generation
| true | false | true |
none
|
https://paperswithcode.com/paper/two-metrics-on-rooted-unordered-trees-with
|
Two Metrics on Rooted Unordered Trees with Labels
|
2103.11553
|
https://arxiv.org/abs/2103.11553v3
|
https://arxiv.org/pdf/2103.11553v3.pdf
|
https://github.com/yuewangmathbio/treemetric
| true | true | true |
none
|
https://paperswithcode.com/paper/pointdistiller-structured-knowledge
|
PointDistiller: Structured Knowledge Distillation Towards Efficient and Compact 3D Detection
|
2205.11098
|
https://arxiv.org/abs/2205.11098v1
|
https://arxiv.org/pdf/2205.11098v1.pdf
|
https://github.com/runpeidong/pointdistiller
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/pre-trained-vision-language-models-learn
|
Pre-trained Vision-Language Models Learn Discoverable Visual Concepts
|
2404.12652
|
https://arxiv.org/abs/2404.12652v2
|
https://arxiv.org/pdf/2404.12652v2.pdf
|
https://github.com/brown-palm/concept-discovery-and-learning
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/teaching-programming-to-novices-using-the
|
Teaching Programming to Novices Using the codeBoot Online Environment
|
2207.12702
|
https://arxiv.org/abs/2207.12702v1
|
https://arxiv.org/pdf/2207.12702v1.pdf
|
https://github.com/udem-dlteam/codeboot
| true | true | false |
none
|
https://paperswithcode.com/paper/what-causes-optical-flow-networks-to-be
|
Towards Understanding Adversarial Robustness of Optical Flow Networks
|
2103.16255
|
https://arxiv.org/abs/2103.16255v3
|
https://arxiv.org/pdf/2103.16255v3.pdf
|
https://github.com/lmb-freiburg/understanding_flow_robustness
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/hierarchical-consistency-regularized-mean
|
Hierarchical Consistency Regularized Mean Teacher for Semi-supervised 3D Left Atrium Segmentation
|
2105.10369
|
https://arxiv.org/abs/2105.10369v2
|
https://arxiv.org/pdf/2105.10369v2.pdf
|
https://github.com/jacobzhaoziyuan/HCR-MT
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/fully-steerable-3d-spherical-neurons
|
Steerable 3D Spherical Neurons
|
2106.13863
|
https://arxiv.org/abs/2106.13863v7
|
https://arxiv.org/pdf/2106.13863v7.pdf
|
https://github.com/pavlo-melnyk/steerable-3d-neurons
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/boxdiff-text-to-image-synthesis-with-training
|
BoxDiff: Text-to-Image Synthesis with Training-Free Box-Constrained Diffusion
|
2307.10816
|
https://arxiv.org/abs/2307.10816v4
|
https://arxiv.org/pdf/2307.10816v4.pdf
|
https://github.com/showlab/boxdiff
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/supracentrality-analysis-of-temporal-networks
|
Supracentrality Analysis of Temporal Networks with Directed Interlayer Coupling
|
1906.06366
|
http://arxiv.org/abs/1906.06366v2
|
http://arxiv.org/pdf/1906.06366v2.pdf
|
https://github.com/taylordr/supracentrality
| false | false | true |
none
|
https://paperswithcode.com/paper/190402059
|
Tunable Eigenvector-Based Centralities for Multiplex and Temporal Networks
|
1904.02059
|
http://arxiv.org/abs/1904.02059v1
|
http://arxiv.org/pdf/1904.02059v1.pdf
|
https://github.com/taylordr/supracentrality
| true | true | true |
none
|
https://paperswithcode.com/paper/mascara-systematically-generating-memorable
|
MASCARA: Systematically Generating Memorable And Secure Passphrases
|
2303.09150
|
https://arxiv.org/abs/2303.09150v1
|
https://arxiv.org/pdf/2303.09150v1.pdf
|
https://github.com/mainack/mascara-passphrase-code-data
| true | true | false |
none
|
https://paperswithcode.com/paper/representation-learning-with-contrastive
|
Representation Learning with Contrastive Predictive Coding
|
1807.03748
|
http://arxiv.org/abs/1807.03748v2
|
http://arxiv.org/pdf/1807.03748v2.pdf
|
https://github.com/chorowski-lab/hcpc
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/effective-explanations-for-entity-resolution
|
Effective Explanations for Entity Resolution Models
|
2203.12978
|
https://arxiv.org/abs/2203.12978v2
|
https://arxiv.org/pdf/2203.12978v2.pdf
|
https://github.com/tteofili/certa
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/voxel-field-fusion-for-3d-object-detection
|
Voxel Field Fusion for 3D Object Detection
|
2205.15938
|
https://arxiv.org/abs/2205.15938v1
|
https://arxiv.org/pdf/2205.15938v1.pdf
|
https://github.com/dvlab-research/vff
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/libensemble-a-library-to-coordinate-the
|
libEnsemble: A Library to Coordinate the Concurrent Evaluation of Dynamic Ensembles of Calculations
|
2104.08322
|
https://arxiv.org/abs/2104.08322v1
|
https://arxiv.org/pdf/2104.08322v1.pdf
|
https://github.com/Libensemble/libensemble
| false | false | true |
none
|
https://paperswithcode.com/paper/toward-large-kernel-models
|
Toward Large Kernel Models
|
2302.02605
|
https://arxiv.org/abs/2302.02605v3
|
https://arxiv.org/pdf/2302.02605v3.pdf
|
https://github.com/eigenpro/eigenpro3
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/u-net-convolutional-networks-for-biomedical
|
U-Net: Convolutional Networks for Biomedical Image Segmentation
|
1505.04597
|
http://arxiv.org/abs/1505.04597v1
|
http://arxiv.org/pdf/1505.04597v1.pdf
|
https://github.com/VedantDere0104/Pix2Pix_GAN
| false | false | true |
none
|
https://paperswithcode.com/paper/boosting-out-of-distribution-detection-with-1
|
Boosting Out-of-Distribution Detection with Multiple Pre-trained Models
|
2212.12720
|
https://arxiv.org/abs/2212.12720v2
|
https://arxiv.org/pdf/2212.12720v2.pdf
|
https://github.com/mapleleaf6/zode
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/electrical-impedance-tomography-with-deep
|
Electrical Impedance Tomography with Deep Calderón Method
|
2304.09074
|
https://arxiv.org/abs/2304.09074v2
|
https://arxiv.org/pdf/2304.09074v2.pdf
|
https://github.com/kwancheolshin/deep-calderon-method
| true | true | false |
tf
|
https://paperswithcode.com/paper/supmae-supervised-masked-autoencoders-are
|
SupMAE: Supervised Masked Autoencoders Are Efficient Vision Learners
|
2205.14540
|
https://arxiv.org/abs/2205.14540v3
|
https://arxiv.org/pdf/2205.14540v3.pdf
|
https://github.com/cmu-enyac/supmae
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/the-curious-layperson-fine-grained-image
|
The Curious Layperson: Fine-Grained Image Recognition without Expert Labels
|
2111.03651
|
https://arxiv.org/abs/2111.03651v1
|
https://arxiv.org/pdf/2111.03651v1.pdf
|
https://github.com/subhc/clever
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/sharp-shielding-aware-robust-planning-for
|
SHARP: Shielding-Aware Robust Planning for Safe and Efficient Human-Robot Interaction
|
2110.00843
|
https://arxiv.org/abs/2110.00843v3
|
https://arxiv.org/pdf/2110.00843v3.pdf
|
https://github.com/saferoboticslab/sharp
| true | true | true |
none
|
https://paperswithcode.com/paper/unsupervised-cross-lingual-representation-1
|
Unsupervised Cross-lingual Representation Learning at Scale
|
1911.02116
|
https://arxiv.org/abs/1911.02116v2
|
https://arxiv.org/pdf/1911.02116v2.pdf
|
https://github.com/deepset-ai/FARM
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/semantic-conditional-diffusion-networks-for
|
Semantic-Conditional Diffusion Networks for Image Captioning
|
2212.03099
|
https://arxiv.org/abs/2212.03099v1
|
https://arxiv.org/pdf/2212.03099v1.pdf
|
https://github.com/yehli/xmodaler
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/active-uncertainty-learning-for-human-robot
|
Active Uncertainty Reduction for Human-Robot Interaction: An Implicit Dual Control Approach
|
2202.07720
|
https://arxiv.org/abs/2202.07720v2
|
https://arxiv.org/pdf/2202.07720v2.pdf
|
https://github.com/saferoboticslab/sharp
| false | false | true |
none
|
https://paperswithcode.com/paper/tpc-transformation-specific-smoothing-for
|
TPC: Transformation-Specific Smoothing for Point Cloud Models
|
2201.12733
|
https://arxiv.org/abs/2201.12733v5
|
https://arxiv.org/pdf/2201.12733v5.pdf
|
https://github.com/qianhewu/point-cloud-smoothing
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/activeaed-a-human-in-the-loop-improves
|
ActiveAED: A Human in the Loop Improves Annotation Error Detection
|
2305.20045
|
https://arxiv.org/abs/2305.20045v1
|
https://arxiv.org/pdf/2305.20045v1.pdf
|
https://github.com/mainlp/activeaed
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/one-step-detection-paradigm-for-hyperspectral
|
One-Step Detection Paradigm for Hyperspectral Anomaly Detection via Spectral Deviation Relationship Learning
|
2303.12342
|
https://arxiv.org/abs/2303.12342v1
|
https://arxiv.org/pdf/2303.12342v1.pdf
|
https://github.com/Jingtao-Li-CVer/TDD
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/linearity-grafting-relaxed-neuron-pruning
|
Linearity Grafting: Relaxed Neuron Pruning Helps Certifiable Robustness
|
2206.07839
|
https://arxiv.org/abs/2206.07839v1
|
https://arxiv.org/pdf/2206.07839v1.pdf
|
https://github.com/vita-group/linearity-grafting
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/lightseq-accelerated-training-for-transformer
|
LightSeq2: Accelerated Training for Transformer-based Models on GPUs
|
2110.05722
|
https://arxiv.org/abs/2110.05722v3
|
https://arxiv.org/pdf/2110.05722v3.pdf
|
https://github.com/bytedance/lightseq
| true | true | false |
tf
|
https://paperswithcode.com/paper/variational-counterdiabatic-driving-of-the
|
Variational counterdiabatic driving of the Hubbard model for ground-state preparation
|
2206.07597
|
https://arxiv.org/abs/2206.07597v2
|
https://arxiv.org/pdf/2206.07597v2.pdf
|
https://github.com/qx20211202/hubbardcd
| true | true | true |
none
|
https://paperswithcode.com/paper/self-supervised-learning-for-contextualized
|
Self-Supervised Learning for Contextualized Extractive Summarization
|
1906.04466
|
https://arxiv.org/abs/1906.04466v1
|
https://arxiv.org/pdf/1906.04466v1.pdf
|
https://github.com/minsoo9506/NLP-study
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/sequence-to-sequence-learning-with-neural
|
Sequence to Sequence Learning with Neural Networks
|
1409.3215
|
http://arxiv.org/abs/1409.3215v3
|
http://arxiv.org/pdf/1409.3215v3.pdf
|
https://github.com/minsoo9506/NLP-study
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/efficient-estimation-of-word-representations
|
Efficient Estimation of Word Representations in Vector Space
|
1301.3781
|
http://arxiv.org/abs/1301.3781v3
|
http://arxiv.org/pdf/1301.3781v3.pdf
|
https://github.com/minsoo9506/NLP-study
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/quantum-circuit-autoencoder
|
Quantum Circuit AutoEncoder
|
2307.08446
|
https://arxiv.org/abs/2307.08446v2
|
https://arxiv.org/pdf/2307.08446v2.pdf
|
https://github.com/linke-quantum/qcae-master
| true | true | false |
mindspore
|
https://paperswithcode.com/paper/soft-actor-critic-off-policy-maximum-entropy
|
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor
|
1801.01290
|
http://arxiv.org/abs/1801.01290v2
|
http://arxiv.org/pdf/1801.01290v2.pdf
|
https://github.com/facebookresearch/rl/blob/main/examples/sac/sac.py
| false | false | false |
jax
|
https://paperswithcode.com/paper/label-and-distribution-discriminative-dual
|
Dual Representation Learning for Out-of-Distribution Detection
|
2206.09387
|
https://arxiv.org/abs/2206.09387v2
|
https://arxiv.org/pdf/2206.09387v2.pdf
|
https://github.com/lawliet-zzl/drl
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/efficient-and-robust-approximate-nearest
|
Efficient and robust approximate nearest neighbor search using Hierarchical Navigable Small World graphs
|
1603.09320
|
http://arxiv.org/abs/1603.09320v4
|
http://arxiv.org/pdf/1603.09320v4.pdf
|
https://github.com/evan176/hnswgo
| false | false | true |
none
|
https://paperswithcode.com/paper/agent-based-graph-neural-networks
|
Agent-based Graph Neural Networks
|
2206.11010
|
https://arxiv.org/abs/2206.11010v2
|
https://arxiv.org/pdf/2206.11010v2.pdf
|
https://github.com/karolismart/agentnet
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/parametrization-of-gamma-ray-production-cross
|
Parametrization of gamma-ray production cross-sections for pp interactions in a broad proton energy range from the kinematic threshold to PeV energies
|
1406.7369
|
https://arxiv.org/abs/1406.7369v2
|
https://arxiv.org/pdf/1406.7369v2.pdf
|
https://github.com/ervinkafex/LibppGam
| false | false | true |
none
|
https://paperswithcode.com/paper/application-of-a-hybrid-bi-lstm-crf-model-to
|
Application of a Hybrid Bi-LSTM-CRF model to the task of Russian Named Entity Recognition
|
1709.09686
|
http://arxiv.org/abs/1709.09686v2
|
http://arxiv.org/pdf/1709.09686v2.pdf
|
https://github.com/deepmipt/ner
| false | false | true |
tf
|
https://paperswithcode.com/paper/a-context-integrated-transformer-based-neural
|
A Context-Integrated Transformer-Based Neural Network for Auction Design
|
2201.12489
|
https://arxiv.org/abs/2201.12489v3
|
https://arxiv.org/pdf/2201.12489v3.pdf
|
https://github.com/zjduan/CITransNet
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/dataperf-benchmarks-for-data-centric-ai-1
|
DataPerf: Benchmarks for Data-Centric AI Development
|
2207.10062
|
https://arxiv.org/abs/2207.10062v4
|
https://arxiv.org/pdf/2207.10062v4.pdf
|
https://github.com/mlcommons/dataperf
| true | true | false |
tf
|
https://paperswithcode.com/paper/a-permutation-equivariant-neural-network
|
A Permutation-Equivariant Neural Network Architecture For Auction Design
|
2003.01497
|
https://arxiv.org/abs/2003.01497v4
|
https://arxiv.org/pdf/2003.01497v4.pdf
|
https://github.com/zjduan/CITransNet
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/plingo-a-system-for-probabilistic-reasoning
|
plingo: A system for probabilistic reasoning in clingo based on lpmln
|
2206.11515
|
https://arxiv.org/abs/2206.11515v4
|
https://arxiv.org/pdf/2206.11515v4.pdf
|
https://github.com/potassco/plingo
| true | true | false |
none
|
https://paperswithcode.com/paper/objective-robustness-in-deep-reinforcement
|
Goal Misgeneralization in Deep Reinforcement Learning
|
2105.14111
|
https://arxiv.org/abs/2105.14111v7
|
https://arxiv.org/pdf/2105.14111v7.pdf
|
https://github.com/JacobPfau/procgenAISC
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/keras-gpt-copilot-integrating-the-power-of
|
Keras GPT Copilot: Integrating the Power of Large Language Models in Deep Learning Model Development
| null |
https://doi.org/10.5281/zenodo.7935183
|
https://doi.org/10.5281/zenodo.7935183
|
https://github.com/fabprezja/keras-gpt-copilot
| true | false | false |
tf
|
https://paperswithcode.com/paper/diffusion-deformable-model-for-4d-temporal
|
Diffusion Deformable Model for 4D Temporal Medical Image Generation
|
2206.13295
|
https://arxiv.org/abs/2206.13295v1
|
https://arxiv.org/pdf/2206.13295v1.pdf
|
https://github.com/torchddm/ddm
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/tracer-extreme-attention-guided-salient
|
TRACER: Extreme Attention Guided Salient Object Tracing Network
|
2112.07380
|
https://arxiv.org/abs/2112.07380v2
|
https://arxiv.org/pdf/2112.07380v2.pdf
|
https://github.com/Karel911/TRACER
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/optimizing-task-waiting-times-in-dynamic
|
Optimizing Task Waiting Times in Dynamic Vehicle Routing
|
2307.03984
|
https://arxiv.org/abs/2307.03984v1
|
https://arxiv.org/pdf/2307.03984v1.pdf
|
https://github.com/arminsadeghi/mdvrp-optimal-policy
| true | true | false |
none
|
https://paperswithcode.com/paper/tico-transformation-invariance-and-covariance
|
TiCo: Transformation Invariance and Covariance Contrast for Self-Supervised Visual Representation Learning
|
2206.10698
|
https://arxiv.org/abs/2206.10698v2
|
https://arxiv.org/pdf/2206.10698v2.pdf
|
https://github.com/sayannag/TiCo-pytorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/refined-semantic-enhancement-towards
|
Refined Semantic Enhancement towards Frequency Diffusion for Video Captioning
|
2211.15076
|
https://arxiv.org/abs/2211.15076v2
|
https://arxiv.org/pdf/2211.15076v2.pdf
|
https://github.com/lzp870/rsfd
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/self-supervised-semantic-segmentation-1
|
Self-supervised Semantic Segmentation: Consistency over Transformation
|
2309.00143
|
https://arxiv.org/abs/2309.00143v1
|
https://arxiv.org/pdf/2309.00143v1.pdf
|
https://github.com/mindflow-institue/ssct
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/machine-learning-the-trilinear-and-light
|
Machine learning the trilinear and light-quark Yukawa couplings from Higgs pair kinematic shapes
|
2207.04157
|
https://arxiv.org/abs/2207.04157v2
|
https://arxiv.org/pdf/2207.04157v2.pdf
|
https://github.com/talismanbrandi/IML-diHiggs
| true | true | true |
none
|
https://paperswithcode.com/paper/normalizing-flows-on-tori-and-spheres
|
Normalizing Flows on Tori and Spheres
|
2002.02428
|
https://arxiv.org/abs/2002.02428v2
|
https://arxiv.org/pdf/2002.02428v2.pdf
|
https://github.com/ryushinn/flows-on-sphere
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/adapterhub-a-framework-for-adapting
|
AdapterHub: A Framework for Adapting Transformers
|
2007.07779
|
https://arxiv.org/abs/2007.07779v3
|
https://arxiv.org/pdf/2007.07779v3.pdf
|
https://github.com/parovicm/badx
| false | false | true |
jax
|
https://paperswithcode.com/paper/automatic-pull-request-title-generation
|
Automatic Pull Request Title Generation
|
2206.10430
|
https://arxiv.org/abs/2206.10430v2
|
https://arxiv.org/pdf/2206.10430v2.pdf
|
https://github.com/soarsmu/prtiger
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/trajectron-multi-agent-generative-trajectory
|
Trajectron++: Dynamically-Feasible Trajectory Forecasting With Heterogeneous Data
|
2001.03093
|
https://arxiv.org/abs/2001.03093v5
|
https://arxiv.org/pdf/2001.03093v5.pdf
|
https://github.com/nvr-avg/adaptive-prediction
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/neural-networks-on-random-graphs
|
Analyzing Neural Networks Based on Random Graphs
|
2002.08104
|
https://arxiv.org/abs/2002.08104v3
|
https://arxiv.org/pdf/2002.08104v3.pdf
|
https://github.com/rmldj/random-graph-nn-paper
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/the-problem-of-human-label-variation-on
|
The 'Problem' of Human Label Variation: On Ground Truth in Data, Modeling and Evaluation
|
2211.02570
|
https://arxiv.org/abs/2211.02570v1
|
https://arxiv.org/pdf/2211.02570v1.pdf
|
https://github.com/mainlp/awesome-human-label-variation
| true | true | true |
none
|
https://paperswithcode.com/paper/masked-autoencoders-that-listen
|
Masked Autoencoders that Listen
|
2207.06405
|
https://arxiv.org/abs/2207.06405v3
|
https://arxiv.org/pdf/2207.06405v3.pdf
|
https://github.com/facebookresearch/audiomae
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/a-tutorial-on-time-dependent-cohort-state
|
A Tutorial on Time-Dependent Cohort State-Transition Models in R using a Cost-Effectiveness Analysis Example
|
2108.13552
|
https://arxiv.org/abs/2108.13552v2
|
https://arxiv.org/pdf/2108.13552v2.pdf
|
https://github.com/DARTH-git/cohort-modeling-tutorial-timedep
| true | true | true |
none
|
https://paperswithcode.com/paper/pidloc-cross-view-pose-optimization-network
|
PIDLoc: Cross-View Pose Optimization Network Inspired by PID Controllers
| null |
http://openaccess.thecvf.com//content/CVPR2025/html/Lee_PIDLoc_Cross-View_Pose_Optimization_Network_Inspired_by_PID_Controllers_CVPR_2025_paper.html
|
http://openaccess.thecvf.com//content/CVPR2025/papers/Lee_PIDLoc_Cross-View_Pose_Optimization_Network_Inspired_by_PID_Controllers_CVPR_2025_paper.pdf
|
https://github.com/url-kaist/pidloc
| true | true | false |
none
|
https://paperswithcode.com/paper/real-world-image-dehazing-with-improved-joint
|
Real-world image dehazing with improved joint enhancement and exposure fusion
| null |
https://www.sciencedirect.com/science/article/pii/S1047320322002401
|
https://www.sciencedirect.com/science/article/pii/S1047320322002401
|
https://github.com/nhk21/Real-world-image-dehazing-with-improved-joint-enhancement-and-exposure-fusion
| true | false | false |
none
|
https://paperswithcode.com/paper/a-k-cdot-p-effective-hamiltonian-generator
|
A $k\cdot p$ effective Hamiltonian generator
|
2104.08493
|
https://arxiv.org/abs/2104.08493v1
|
https://arxiv.org/pdf/2104.08493v1.pdf
|
https://github.com/yjiang-iop/kdotp-generator
| true | true | true |
none
|
https://paperswithcode.com/paper/custom-pretrainings-and-adapted-3d-convnext
|
COVID Detection and Severity Prediction with 3D-ConvNeXt and Custom Pretrainings
|
2206.15073
|
https://arxiv.org/abs/2206.15073v2
|
https://arxiv.org/pdf/2206.15073v2.pdf
|
https://github.com/kiedani/submission_2nd_covid19_competition
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/motion-style-transfer-modular-low-rank
|
Motion Style Transfer: Modular Low-Rank Adaptation for Deep Motion Forecasting
|
2211.03165
|
https://arxiv.org/abs/2211.03165v1
|
https://arxiv.org/pdf/2211.03165v1.pdf
|
https://github.com/vita-epfl/motion-style-transfer
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/skeleton-based-action-recognition-via
|
Skeleton-based Action Recognition via Temporal-Channel Aggregation
|
2205.15936
|
https://arxiv.org/abs/2205.15936v2
|
https://arxiv.org/pdf/2205.15936v2.pdf
|
https://github.com/OrdinaryQin/TCA-GCN
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/building-a-relation-extraction-baseline-for
|
Building a Relation Extraction Baseline for Gene-Disease Associations: A Reproducibility Study
|
2207.06226
|
https://arxiv.org/abs/2207.06226v1
|
https://arxiv.org/pdf/2207.06226v1.pdf
|
https://github.com/mntlra/dexter
| true | true | false |
none
|
https://paperswithcode.com/paper/voxel-r-cnn-towards-high-performance-voxel
|
Voxel R-CNN: Towards High Performance Voxel-based 3D Object Detection
|
2012.15712
|
https://arxiv.org/abs/2012.15712v2
|
https://arxiv.org/pdf/2012.15712v2.pdf
|
https://github.com/open-mmlab/OpenPCDet
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/mppnet-multi-frame-feature-intertwining-with
|
MPPNet: Multi-Frame Feature Intertwining with Proxy Points for 3D Temporal Object Detection
|
2205.05979
|
https://arxiv.org/abs/2205.05979v2
|
https://arxiv.org/pdf/2205.05979v2.pdf
|
https://github.com/open-mmlab/OpenPCDet
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/spatial-aggregation-with-respect-to-a
|
Spatial Aggregation with Respect to a Population Distribution
|
2207.06700
|
https://arxiv.org/abs/2207.06700v1
|
https://arxiv.org/pdf/2207.06700v1.pdf
|
https://github.com/paigejo/summer
| true | true | false |
none
|
https://paperswithcode.com/paper/a-little-fog-for-a-large-turn
|
A Little Fog for a Large Turn
|
2001.05873
|
https://arxiv.org/abs/2001.05873v1
|
https://arxiv.org/pdf/2001.05873v1.pdf
|
https://github.com/SullyChen/Autopilot-TensorFlow
| false | false | true |
tf
|
https://paperswithcode.com/paper/tt-ggxy-a-flexible-library-to-compute-gluon
|
{\tt ggxy}: a flexible library to compute gluon-induced cross sections
|
2506.04323
|
https://arxiv.org/abs/2506.04323v1
|
https://arxiv.org/pdf/2506.04323v1.pdf
|
https://gitlab.com/ggxy/ggxy-release
| true | true | true |
none
|
https://paperswithcode.com/paper/evaluating-coreference-resolvers-on-community
|
Evaluating Coreference Resolvers on Community-based Question Answering: From Rule-based to State of the Art
| null |
https://aclanthology.org/2022.crac-1.7
|
https://aclanthology.org/2022.crac-1.7.pdf
|
https://github.com/haixiachai/coref_cqa
| true | true | false |
tf
|
https://paperswithcode.com/paper/improving-bridging-reference-resolution-using
|
Improving Bridging Reference Resolution using Continuous Essentiality from Crowdsourcing
| null |
https://aclanthology.org/2022.crac-1.8
|
https://aclanthology.org/2022.crac-1.8.pdf
|
https://github.com/nobu-g/bridging-resolution
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/watermark-vaccine-adversarial-attacks-to
|
Watermark Vaccine: Adversarial Attacks to Prevent Watermark Removal
|
2207.08178
|
https://arxiv.org/abs/2207.08178v1
|
https://arxiv.org/pdf/2207.08178v1.pdf
|
https://github.com/thinwayliu/watermark-vaccine
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/learning-to-infer-from-unlabeled-data-a-semi
|
Learning to Infer from Unlabeled Data: A Semi-supervised Learning Approach for Robust Natural Language Inference
|
2211.02971
|
https://arxiv.org/abs/2211.02971v1
|
https://arxiv.org/pdf/2211.02971v1.pdf
|
https://github.com/msadat3/ssl_for_nli
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/semi-supervised-vision-transformers
|
Semi-Supervised Vision Transformers
|
2111.11067
|
https://arxiv.org/abs/2111.11067v2
|
https://arxiv.org/pdf/2111.11067v2.pdf
|
https://github.com/wengzejia1/semiformer
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/does-thermal-data-make-the-detection-systems
|
Does Thermal data make the detection systems more reliable?
|
2111.05191
|
https://arxiv.org/abs/2111.05191v1
|
https://arxiv.org/pdf/2111.05191v1.pdf
|
https://github.com/neurai-lab/mmc
| true | true | true |
pytorch
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.