paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/learning-debiased-models-with-dynamic
|
Combating Unknown Bias with Effective Bias-Conflicting Scoring and Gradient Alignment
|
2111.13108
|
https://arxiv.org/abs/2111.13108v2
|
https://arxiv.org/pdf/2111.13108v2.pdf
|
https://github.com/parkgeonyeong/dcwp
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/mud-towards-a-large-scale-and-noise-filtered
|
MUD: Towards a Large-Scale and Noise-Filtered UI Dataset for Modern Style UI Modeling
|
2405.07090
|
https://arxiv.org/abs/2405.07090v1
|
https://arxiv.org/pdf/2405.07090v1.pdf
|
https://github.com/sidongfeng/MUD
| true | true | false |
none
|
https://paperswithcode.com/paper/find-the-funding-entity-linking-with
|
Find the Funding: Entity Linking with Incomplete Funding Knowledge Bases
|
2209.00351
|
https://arxiv.org/abs/2209.00351v2
|
https://arxiv.org/pdf/2209.00351v2.pdf
|
https://github.com/informagi/fund-el
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/dimsum-distributed-and-multilingual
|
DiMSum: Distributed and Multilingual Summarization of Financial Narratives
| null |
https://aclanthology.org/2022.fnp-1.9
|
https://aclanthology.org/2022.fnp-1.9.pdf
|
https://github.com/neeleshkshukla/DiMSum_FNP_2022
| true | false | false |
none
|
https://paperswithcode.com/paper/aesthetic-attribute-assessment-of-images
|
Aesthetic Attribute Assessment of Images Numerically on Mixed Multi-attribute Datasets
|
2207.01806
|
https://arxiv.org/abs/2207.01806v1
|
https://arxiv.org/pdf/2207.01806v1.pdf
|
https://github.com/BestiVictory/Aesthetic-Attribute-Assessment-Model
| false | false | true |
mindspore
|
https://paperswithcode.com/paper/splitee-early-exit-in-deep-neural-networks
|
SplitEE: Early Exit in Deep Neural Networks with Split Computing
|
2309.09195
|
https://arxiv.org/abs/2309.09195v1
|
https://arxiv.org/pdf/2309.09195v1.pdf
|
https://github.com/Div290/SplitEE/blob/main/README.md
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/fourier-series-expansion-based-filter
|
Fourier Series Expansion Based Filter Parametrization for Equivariant Convolutions
|
2107.14519
|
https://arxiv.org/abs/2107.14519v2
|
https://arxiv.org/pdf/2107.14519v2.pdf
|
https://github.com/XieQi2015/F-Conv
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/target-guided-open-domain-conversation-1
|
Target-Guided Open-Domain Conversation Planning
|
2209.09746
|
https://arxiv.org/abs/2209.09746v1
|
https://arxiv.org/pdf/2209.09746v1.pdf
|
https://github.com/y-kishinami/tgcp
| true | true | false |
none
|
https://paperswithcode.com/paper/agreement-or-disagreement-in-noise-tolerant
|
Agreement or Disagreement in Noise-tolerant Mutual Learning?
|
2203.15317
|
https://arxiv.org/abs/2203.15317v2
|
https://arxiv.org/pdf/2203.15317v2.pdf
|
https://github.com/jiarunliu/mlc
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/perspective-phase-angle-model-for
|
Perspective Phase Angle Model for Polarimetric 3D Reconstruction
|
2207.09629
|
https://arxiv.org/abs/2207.09629v2
|
https://arxiv.org/pdf/2207.09629v2.pdf
|
https://github.com/gcchen97/ppa4p3d
| true | true | true |
none
|
https://paperswithcode.com/paper/hyp-2-loss-beyond-hypersphere-metric-space
|
HyP$^2$ Loss: Beyond Hypersphere Metric Space for Multi-label Image Retrieval
|
2208.06866
|
https://arxiv.org/abs/2208.06866v1
|
https://arxiv.org/pdf/2208.06866v1.pdf
|
https://github.com/jerryxu0129/hyp2-loss
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/classification-of-small-triorthogonal-codes
|
Classification of Small Triorthogonal Codes
|
2107.09684
|
https://arxiv.org/abs/2107.09684v2
|
https://arxiv.org/pdf/2107.09684v2.pdf
|
https://github.com/sgnez/Tri_from_RM
| true | true | false |
none
|
https://paperswithcode.com/paper/multi-partition-embedding-interaction-with
|
Multi-Partition Embedding Interaction with Block Term Format for Knowledge Graph Completion
|
2006.16365
|
https://arxiv.org/abs/2006.16365v2
|
https://arxiv.org/pdf/2006.16365v2.pdf
|
https://github.com/tranhungnghiep/AnalyzeKGE
| false | false | true |
tf
|
https://paperswithcode.com/paper/ensemble-of-expanded-ensembles-a-generalized
|
Replica exchange of expanded ensembles: A generalized ensemble approach with enhanced flexibility and parallelizability
|
2308.06938
|
https://arxiv.org/abs/2308.06938v2
|
https://arxiv.org/pdf/2308.06938v2.pdf
|
https://github.com/wehs7661/ensemble_md
| true | true | true |
none
|
https://paperswithcode.com/paper/visualization-guidelines-for-model
|
Are Metrics Enough? Guidelines for Communicating and Visualizing Predictive Models to Subject Matter Experts
|
2205.05749
|
https://arxiv.org/abs/2205.05749v3
|
https://arxiv.org/pdf/2205.05749v3.pdf
|
https://github.com/tuftsvalt/modelcomm
| true | true | false |
none
|
https://paperswithcode.com/paper/bertoldo-the-historical-bert-for-italian
|
BERToldo, the Historical BERT for Italian
| null |
https://aclanthology.org/2022.lt4hala-1.10
|
https://aclanthology.org/2022.lt4hala-1.10.pdf
|
https://github.com/dhfbk/historical-bert
| true | true | false |
none
|
https://paperswithcode.com/paper/tt-bajes-bayesian-inference-of-multimessenger
|
${\tt bajes}$: Bayesian inference of multimessenger astrophysical data, methods and application to gravitational-waves
|
2102.00017
|
https://arxiv.org/abs/2102.00017v2
|
https://arxiv.org/pdf/2102.00017v2.pdf
|
https://github.com/roxgamba/bajes
| false | false | true |
none
|
https://paperswithcode.com/paper/text-alpha-2-discovering-logical-formulaic
|
$\text{Alpha}^2$: Discovering Logical Formulaic Alphas using Deep Reinforcement Learning
|
2406.16505
|
https://arxiv.org/abs/2406.16505v2
|
https://arxiv.org/pdf/2406.16505v2.pdf
|
https://github.com/x35f/alpha2
| true | true | true |
jax
|
https://paperswithcode.com/paper/an-image-is-worth-16x16-words-transformers-1
|
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
|
2010.11929
|
https://arxiv.org/abs/2010.11929v2
|
https://arxiv.org/pdf/2010.11929v2.pdf
|
https://github.com/smitheric95/MoCoViT-PyTorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/predicting-hurricane-trajectories-using-a
|
Predicting Hurricane Trajectories using a Recurrent Neural Network
|
1802.02548
|
http://arxiv.org/abs/1802.02548v3
|
http://arxiv.org/pdf/1802.02548v3.pdf
|
https://github.com/stormalytics/hurricane-frocasting
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/behanceqa-a-new-dataset-for-identifying
|
BehanceQA: A New Dataset for Identifying Question-Answer Pairs in Video Transcripts
| null |
https://aclanthology.org/2022.lrec-1.796
|
https://aclanthology.org/2022.lrec-1.796.pdf
|
https://github.com/amirveyseh/behanceqa
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/scalable-computation-of-monge-maps-with
|
Neural Monge Map estimation and its applications
|
2106.03812
|
https://arxiv.org/abs/2106.03812v3
|
https://arxiv.org/pdf/2106.03812v3.pdf
|
https://github.com/sbyebss/monge_map_solver
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/convnext-v2-co-designing-and-scaling-convnets
|
ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders
|
2301.00808
|
https://arxiv.org/abs/2301.00808v1
|
https://arxiv.org/pdf/2301.00808v1.pdf
|
https://github.com/zibbini/convnext-v2_tensorflow
| false | false | true |
tf
|
https://paperswithcode.com/paper/privacy-induces-robustness-information
|
Privacy Induces Robustness: Information-Computation Gaps and Sparse Mean Estimation
|
2211.00724
|
https://arxiv.org/abs/2211.00724v2
|
https://arxiv.org/pdf/2211.00724v2.pdf
|
https://github.com/kristian-georgiev/privacy-induces-robustness
| true | false | false |
none
|
https://paperswithcode.com/paper/stylised-choropleth-maps-for-new-zealand
|
Stylised Choropleth Maps for New Zealand Regions and District Health Boards
|
1912.04435
|
https://arxiv.org/abs/1912.04435v1
|
https://arxiv.org/pdf/1912.04435v1.pdf
|
https://github.com/tslumley/DHBins
| true | true | true |
none
|
https://paperswithcode.com/paper/perturbed-self-distillation-weakly-supervised
|
Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation
| null |
http://openaccess.thecvf.com//content/ICCV2021/html/Zhang_Perturbed_Self-Distillation_Weakly_Supervised_Large-Scale_Point_Cloud_Semantic_Segmentation_ICCV_2021_paper.html
|
http://openaccess.thecvf.com//content/ICCV2021/papers/Zhang_Perturbed_Self-Distillation_Weakly_Supervised_Large-Scale_Point_Cloud_Semantic_Segmentation_ICCV_2021_paper.pdf
|
https://github.com/yangyucheng000/PSD_Mindspore
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/progressive-color-transfer-with-dense
|
Progressive Color Transfer with Dense Semantic Correspondences
|
1710.00756
|
http://arxiv.org/abs/1710.00756v2
|
http://arxiv.org/pdf/1710.00756v2.pdf
|
https://github.com/dev-Adrian-Vera/Second_Partial_Project
| false | false | true |
tf
|
https://paperswithcode.com/paper/automatic-annotation-of-direct-speech-in
|
Automatic Annotation of Direct Speech in Written French Narratives
|
2306.15634
|
https://arxiv.org/abs/2306.15634v2
|
https://arxiv.org/pdf/2306.15634v2.pdf
|
https://github.com/deezer/aads_french
| true | true | false |
none
|
https://paperswithcode.com/paper/lasso-hyperinterpolation-over-general-regions
|
Lasso hyperinterpolation over general regions
|
2011.00433
|
https://arxiv.org/abs/2011.00433v2
|
https://arxiv.org/pdf/2011.00433v2.pdf
|
https://github.com/HaoNingWu/LassoHyper
| false | false | true |
none
|
https://paperswithcode.com/paper/product-information-extraction-using-chatgpt
|
Product Information Extraction using ChatGPT
|
2306.14921
|
https://arxiv.org/abs/2306.14921v1
|
https://arxiv.org/pdf/2306.14921v1.pdf
|
https://github.com/wbsg-uni-mannheim/pie_chatgpt
| true | true | false |
none
|
https://paperswithcode.com/paper/finding-stable-groups-of-cross-correlated
|
Finding Groups of Cross-Correlated Features in Bi-View Data
|
2009.05079
|
https://arxiv.org/abs/2009.05079v4
|
https://arxiv.org/pdf/2009.05079v4.pdf
|
https://github.com/miheerdew/cbce
| true | true | false |
none
|
https://paperswithcode.com/paper/unsupervised-representation-learning-with-1
|
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
|
1511.06434
|
http://arxiv.org/abs/1511.06434v2
|
http://arxiv.org/pdf/1511.06434v2.pdf
|
https://github.com/MasoumehVahedi/GANs-Model
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/ultra-high-resolution-unpaired-stain
|
Ultra-high-resolution unpaired stain transformation via Kernelized Instance Normalization
|
2208.10730
|
https://arxiv.org/abs/2208.10730v1
|
https://arxiv.org/pdf/2208.10730v1.pdf
|
https://github.com/kaminyou/urust
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/the-spatially-correlative-loss-for-various
|
The Spatially-Correlative Loss for Various Image Translation Tasks
|
2104.00854
|
https://arxiv.org/abs/2104.00854v1
|
https://arxiv.org/pdf/2104.00854v1.pdf
|
https://github.com/kaminyou/urust
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/unpaired-image-to-image-translation-using
|
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
|
1703.10593
|
https://arxiv.org/abs/1703.10593v7
|
https://arxiv.org/pdf/1703.10593v7.pdf
|
https://github.com/kaminyou/urust
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/sentimentarcs-a-novel-method-for-self
|
SentimentArcs: A Novel Method for Self-Supervised Sentiment Analysis of Time Series Shows SOTA Transformers Can Struggle Finding Narrative Arcs
|
2110.09454
|
https://arxiv.org/abs/2110.09454v1
|
https://arxiv.org/pdf/2110.09454v1.pdf
|
https://github.com/jon-chun/sentimentarcs_notebooks
| true | false | true |
none
|
https://paperswithcode.com/paper/deep-learning-software-engineering-state-of
|
Deep Learning & Software Engineering: State of Research and Future Directions
|
2009.08525
|
https://arxiv.org/abs/2009.08525v1
|
https://arxiv.org/pdf/2009.08525v1.pdf
|
https://gitlab.com/dlse-workshop/dlse-workshop-community-report
| true | true | false |
none
|
https://paperswithcode.com/paper/posetrans-a-simple-yet-effective-pose
|
PoseTrans: A Simple Yet Effective Pose Transformation Augmentation for Human Pose Estimation
|
2208.07755
|
https://arxiv.org/abs/2208.07755v1
|
https://arxiv.org/pdf/2208.07755v1.pdf
|
https://github.com/wtjiang98/PoseTrans
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/flopping-mode-electron-dipole-spin-resonance
|
Flopping-mode electron dipole spin resonance in the strong-driving regime
|
2208.10548
|
https://arxiv.org/abs/2208.10548v1
|
https://arxiv.org/pdf/2208.10548v1.pdf
|
https://github.com/qutech/qopt-applications
| true | true | false |
none
|
https://paperswithcode.com/paper/a-time-domain-generalized-wiener-filter-for
|
A Time-domain Real-valued Generalized Wiener Filter for Multi-channel Neural Separation Systems
|
2112.03533
|
https://arxiv.org/abs/2112.03533v2
|
https://arxiv.org/pdf/2112.03533v2.pdf
|
https://github.com/yluo42/TAC
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/on-the-complementarity-between-pre-training-1
|
On the Complementarity between Pre-Training and Random-Initialization for Resource-Rich Machine Translation
|
2209.03316
|
https://arxiv.org/abs/2209.03316v3
|
https://arxiv.org/pdf/2209.03316v3.pdf
|
https://github.com/zanchangtong/ptvsri
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/crowdsourced-fact-checking-at-twitter-how
|
Crowdsourced Fact-Checking at Twitter: How Does the Crowd Compare With Experts?
|
2208.09214
|
https://arxiv.org/abs/2208.09214v1
|
https://arxiv.org/pdf/2208.09214v1.pdf
|
https://github.com/mhmdsaiid/birdwatch
| true | true | true |
none
|
https://paperswithcode.com/paper/privacy-preserving-data-sharing-via
|
Privacy-preserving data sharing via probabilistic modelling
|
1912.04439
|
https://arxiv.org/abs/1912.04439v4
|
https://arxiv.org/pdf/1912.04439v4.pdf
|
https://github.com/DPBayes/twinify
| false | false | true |
jax
|
https://paperswithcode.com/paper/multi-objective-representation-learning-for
|
Multi-objective Representation Learning for Scientific Document Retrieval
| null |
https://aclanthology.org/2022.sdp-1.9
|
https://aclanthology.org/2022.sdp-1.9.pdf
|
https://github.com/zetaalphavector/multi-obj-repr-learning
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/revision-transformers-getting-rit-of-no-nos
|
Revision Transformers: Instructing Language Models to Change their Values
|
2210.10332
|
https://arxiv.org/abs/2210.10332v3
|
https://arxiv.org/pdf/2210.10332v3.pdf
|
https://github.com/ml-research/revision-transformer
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/longformer-the-long-document-transformer
|
Longformer: The Long-Document Transformer
|
2004.05150
|
https://arxiv.org/abs/2004.05150v2
|
https://arxiv.org/pdf/2004.05150v2.pdf
|
https://github.com/a-rios/ats-models
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/corrclip-reconstructing-correlations-in-clip
|
CorrCLIP: Reconstructing Correlations in CLIP with Off-the-Shelf Foundation Models for Open-Vocabulary Semantic Segmentation
|
2411.10086
|
https://arxiv.org/abs/2411.10086v1
|
https://arxiv.org/pdf/2411.10086v1.pdf
|
https://github.com/zdk258/CorrCLIP
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/fast-and-accurate-importance-weighting-for
|
Fast and Accurate Importance Weighting for Correcting Sample Bias
|
2209.04215
|
https://arxiv.org/abs/2209.04215v1
|
https://arxiv.org/pdf/2209.04215v1.pdf
|
https://github.com/antoinedemathelin/importance-weighting-network
| true | true | true |
tf
|
https://paperswithcode.com/paper/policy-bifurcation-in-safe-reinforcement
|
Policy Bifurcation in Safe Reinforcement Learning
|
2403.12847
|
https://arxiv.org/abs/2403.12847v3
|
https://arxiv.org/pdf/2403.12847v3.pdf
|
https://github.com/thuzouwenjun/mupo
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/exploring-the-potential-of-multimodal-llm
|
Exploring the Potential of Multimodal LLM with Knowledge-Intensive Multimodal ASR
|
2406.10880
|
https://arxiv.org/abs/2406.10880v2
|
https://arxiv.org/pdf/2406.10880v2.pdf
|
https://github.com/yuriak/ms-asr
| true | true | true |
none
|
https://paperswithcode.com/paper/mcunetv2-memory-efficient-patch-based
|
MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning
|
2110.15352
|
https://arxiv.org/abs/2110.15352v2
|
https://arxiv.org/pdf/2110.15352v2.pdf
|
https://github.com/mit-han-lab/mcunet
| false | false | true |
tf
|
https://paperswithcode.com/paper/on-device-training-under-256kb-memory
|
On-Device Training Under 256KB Memory
|
2206.15472
|
https://arxiv.org/abs/2206.15472v4
|
https://arxiv.org/pdf/2206.15472v4.pdf
|
https://github.com/mit-han-lab/mcunet
| false | false | true |
tf
|
https://paperswithcode.com/paper/secure-shapley-value-for-cross-silo-federated
|
Secure Shapley Value for Cross-Silo Federated Learning (Technical Report)
|
2209.04856
|
https://arxiv.org/abs/2209.04856v5
|
https://arxiv.org/pdf/2209.04856v5.pdf
|
https://github.com/teijyogen/secsv
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/neural-bayesian-network-understudy
|
Neural Bayesian Network Understudy
|
2211.08243
|
https://arxiv.org/abs/2211.08243v1
|
https://arxiv.org/pdf/2211.08243v1.pdf
|
https://github.com/prabaey/nbn-understudy
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/constraints-on-the-cosmic-expansion-history
|
Constraints on the cosmic expansion history from GWTC-3
|
2111.03604
|
https://arxiv.org/abs/2111.03604v2
|
https://arxiv.org/pdf/2111.03604v2.pdf
|
https://github.com/mariapalfi/gwcosmo_coasting
| false | false | true |
none
|
https://paperswithcode.com/paper/dynamic-multi-scale-convolution-for-dialect
|
Dynamic Multi-scale Convolution for Dialect Identification
|
2108.07787
|
https://arxiv.org/abs/2108.07787v1
|
https://arxiv.org/pdf/2108.07787v1.pdf
|
https://github.com/yuyq96/d-tdnn
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/variational-beam-search-for-online-learning
|
Detecting and Adapting to Irregular Distribution Shifts in Bayesian Online Learning
|
2012.08101
|
https://arxiv.org/abs/2012.08101v3
|
https://arxiv.org/pdf/2012.08101v3.pdf
|
https://github.com/mandt-lab/variational-beam-search
| true | false | false |
tf
|
https://paperswithcode.com/paper/improving-children-s-speech-recognition-by
|
Improving Children's Speech Recognition by Fine-tuning Self-supervised Adult Speech Representations
|
2211.07769
|
https://arxiv.org/abs/2211.07769v1
|
https://arxiv.org/pdf/2211.07769v1.pdf
|
https://github.com/monomest/thesis
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/probabilistic-auto-encoder
|
Probabilistic Autoencoder
|
2006.05479
|
https://arxiv.org/abs/2006.05479v4
|
https://arxiv.org/pdf/2006.05479v4.pdf
|
https://github.com/vmboehm/pae-ablation
| true | true | true |
tf
|
https://paperswithcode.com/paper/distribution-inference-risks-identifying-and
|
Distribution inference risks: Identifying and mitigating sources of leakage
|
2209.08541
|
https://arxiv.org/abs/2209.08541v1
|
https://arxiv.org/pdf/2209.08541v1.pdf
|
https://github.com/epfl-dlab/property-inference-attacks
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/fastclass-a-time-efficient-approach-to-weakly
|
FastClass: A Time-Efficient Approach to Weakly-Supervised Text Classification
|
2212.05506
|
https://arxiv.org/abs/2212.05506v2
|
https://arxiv.org/pdf/2212.05506v2.pdf
|
https://github.com/xiatingyu/fastclass
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/formalizing-distribution-inference-risks
|
Formalizing Distribution Inference Risks
|
2106.03699
|
https://arxiv.org/abs/2106.03699v4
|
https://arxiv.org/pdf/2106.03699v4.pdf
|
https://github.com/epfl-dlab/property-inference-attacks
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/towards-a-perceptual-evaluation-framework-for
|
Towards a Perceptual Evaluation Framework for Lighting Estimation
|
2312.04334
|
https://arxiv.org/abs/2312.04334v3
|
https://arxiv.org/pdf/2312.04334v3.pdf
|
https://github.com/JustineGiroux/Lightsome
| true | false | false |
none
|
https://paperswithcode.com/paper/improving-rare-word-translation-with
|
Improving Rare Word Translation With Dictionaries and Attention Masking
|
2408.09075
|
https://arxiv.org/abs/2408.09075v2
|
https://arxiv.org/pdf/2408.09075v2.pdf
|
https://github.com/kennethsible/dictionary-attention
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/high-stable-and-accurate-vehicle-selection
|
High stable and accurate vehicle selection scheme based on federated edge learning in vehicular networks
|
2208.01890
|
https://arxiv.org/abs/2208.01890v2
|
https://arxiv.org/pdf/2208.01890v2.pdf
|
https://github.com/qiongwu86/Vehicle-selection
| true | true | false |
tf
|
https://paperswithcode.com/paper/interactively-generating-explanations-for
|
Interactively Providing Explanations for Transformer Language Models
|
2110.02058
|
https://arxiv.org/abs/2110.02058v4
|
https://arxiv.org/pdf/2110.02058v4.pdf
|
https://github.com/felifri/xaitransformer
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/usln-a-statistically-guided-lightweight
|
USLN: A statistically guided lightweight network for underwater image enhancement via dual-statistic white balance and multi-color space stretch
|
2209.02221
|
https://arxiv.org/abs/2209.02221v1
|
https://arxiv.org/pdf/2209.02221v1.pdf
|
https://github.com/deepxzy/usln
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/rethinking-causal-relationships-learning-in
|
Rethinking Causal Relationships Learning in Graph Neural Networks
|
2312.09613
|
https://arxiv.org/abs/2312.09613v1
|
https://arxiv.org/pdf/2312.09613v1.pdf
|
https://github.com/yaoyao-yaoyao-cell/crcg
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/gnmr-a-provable-one-line-algorithm-for-low
|
GNMR: A provable one-line algorithm for low rank matrix recovery
|
2106.12933
|
https://arxiv.org/abs/2106.12933v3
|
https://arxiv.org/pdf/2106.12933v3.pdf
|
https://github.com/pizilber/GNMR
| true | true | true |
none
|
https://paperswithcode.com/paper/learning-from-the-dark-boosting-graph
|
Learning from the Dark: Boosting Graph Convolutional Neural Networks with Diverse Negative Samples
|
2210.00728
|
https://arxiv.org/abs/2210.00728v1
|
https://arxiv.org/pdf/2210.00728v1.pdf
|
https://github.com/Wei9711/NegGCNs
| true | false | false |
none
|
https://paperswithcode.com/paper/towards-reliable-predictive-analytics-a
|
Towards reliable predictive analytics: a generalized calibration framework
|
2309.08559
|
https://arxiv.org/abs/2309.08559v1
|
https://arxiv.org/pdf/2309.08559v1.pdf
|
https://github.com/bavodc/papergeneralizedcalibrationcurves
| true | true | false |
none
|
https://paperswithcode.com/paper/privileged-knowledge-distillation-for-sim-to
|
Bridging the Sim-to-Real Gap from the Information Bottleneck Perspective
|
2305.18464
|
https://arxiv.org/abs/2305.18464v2
|
https://arxiv.org/pdf/2305.18464v2.pdf
|
https://github.com/tinnerhrhe/HIB_Policy
| true | false | true |
none
|
https://paperswithcode.com/paper/leandojo-theorem-proving-with-retrieval-1
|
LeanDojo: Theorem Proving with Retrieval-Augmented Language Models
|
2306.15626
|
https://arxiv.org/abs/2306.15626v2
|
https://arxiv.org/pdf/2306.15626v2.pdf
|
https://github.com/lean-dojo/leandojochatgpt
| true | true | false |
none
|
https://paperswithcode.com/paper/motor-crosslinking-augments-elasticity-in
|
Motor crosslinking augments elasticity in active nematics
|
2308.16831
|
https://arxiv.org/abs/2308.16831v1
|
https://arxiv.org/pdf/2308.16831v1.pdf
|
https://github.com/gardel-lab/responsefunction
| true | true | false |
none
|
https://paperswithcode.com/paper/floquet-theory-and-stability-for-hamiltonian
|
Floquet theory and stability for Hamiltonian partial differential equations
|
2309.03962
|
https://arxiv.org/abs/2309.03962v1
|
https://arxiv.org/pdf/2309.03962v1.pdf
|
https://github.com/JaredCBronski/Hamiltonian-Floquet
| true | false | false |
none
|
https://paperswithcode.com/paper/ideal-improved-dense-local-contrastive
|
IDEAL: Improved DEnse locAL Contrastive Learning for Semi-Supervised Medical Image Segmentation
|
2210.15075
|
https://arxiv.org/abs/2210.15075v2
|
https://arxiv.org/pdf/2210.15075v2.pdf
|
https://github.com/rohit-kundu/ideal-icassp23
| true | true | true |
none
|
https://paperswithcode.com/paper/on-a-three-dimensional-and-two-four
|
On a three-dimensional and two four-dimensional oncolytic viro-therapy models
|
2210.00401
|
https://arxiv.org/abs/2210.00401v1
|
https://arxiv.org/pdf/2210.00401v1.pdf
|
https://github.com/rim-adenane/oncolytic-viro-therapy-models-m
| true | true | false |
none
|
https://paperswithcode.com/paper/pesotif-a-challenging-visual-dataset-for
|
PeSOTIF: a Challenging Visual Dataset for Perception SOTIF Problems in Long-tail Traffic Scenarios
|
2211.03402
|
https://arxiv.org/abs/2211.03402v1
|
https://arxiv.org/pdf/2211.03402v1.pdf
|
https://github.com/sotif-avlab/pesotif
| true | true | true |
none
|
https://paperswithcode.com/paper/mmdetection-open-mmlab-detection-toolbox-and
|
MMDetection: Open MMLab Detection Toolbox and Benchmark
|
1906.07155
|
https://arxiv.org/abs/1906.07155v1
|
https://arxiv.org/pdf/1906.07155v1.pdf
|
https://github.com/sotif-avlab/pesotif
| false | false | true |
none
|
https://paperswithcode.com/paper/bert-and-pals-projected-attention-layers-for
|
BERT and PALs: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning
|
1902.02671
|
https://arxiv.org/abs/1902.02671v2
|
https://arxiv.org/pdf/1902.02671v2.pdf
|
https://github.com/josselinsomervilleroberts/ptsl
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/sotif-entropy-online-sotif-risk
|
SOTIF Entropy: Online SOTIF Risk Quantification and Mitigation for Autonomous Driving
|
2211.04009
|
https://arxiv.org/abs/2211.04009v1
|
https://arxiv.org/pdf/2211.04009v1.pdf
|
https://github.com/sotif-avlab/pesotif
| true | true | true |
none
|
https://paperswithcode.com/paper/odd-a-benchmark-dataset-for-the-nlp-based
|
ODD: A Benchmark Dataset for the Natural Language Processing based Opioid Related Aberrant Behavior Detection
|
2307.02591
|
https://arxiv.org/abs/2307.02591v4
|
https://arxiv.org/pdf/2307.02591v4.pdf
|
https://github.com/soon91jae/orab_mimic
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/convnext-v2-co-designing-and-scaling-convnets
|
ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders
|
2301.00808
|
https://arxiv.org/abs/2301.00808v1
|
https://arxiv.org/pdf/2301.00808v1.pdf
|
https://github.com/facebookresearch/convnext-v2
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/text2traj2text-learning-by-synthesis
|
Text2Traj2Text: Learning-by-Synthesis Framework for Contextual Captioning of Human Movement Trajectories
|
2409.12670
|
https://arxiv.org/abs/2409.12670v1
|
https://arxiv.org/pdf/2409.12670v1.pdf
|
https://github.com/cyberagentailab/text2traj2text
| true | true | true |
jax
|
https://paperswithcode.com/paper/qmes-derivation-mathematica-package-for-the
|
QMeS-Derivation: Mathematica package for the symbolic derivation of functional equations
|
2102.01410
|
https://arxiv.org/abs/2102.01410v2
|
https://arxiv.org/pdf/2102.01410v2.pdf
|
https://github.com/QMeS-toolbox/QMeS-Derivation
| false | false | true |
none
|
https://paperswithcode.com/paper/integrative-imaging-informatics-for-cancer
|
Integrative Imaging Informatics for Cancer Research: Workflow Automation for Neuro-oncology (I3CR-WANO)
|
2210.03151
|
https://arxiv.org/abs/2210.03151v1
|
https://arxiv.org/pdf/2210.03151v1.pdf
|
https://github.com/satrajitgithub/nrg_ai_neuroonco_segment
| true | true | true |
none
|
https://paperswithcode.com/paper/hyperparameter-optimization-as-a-service-on
|
Hyperparameter Optimization as a Service on INFN Cloud
|
2301.05522
|
https://arxiv.org/abs/2301.05522v3
|
https://arxiv.org/pdf/2301.05522v3.pdf
|
https://github.com/landerlini/hopaas_client
| false | false | false |
none
|
https://paperswithcode.com/paper/a-multi-head-model-for-continual-learning-via
|
A Multi-Head Model for Continual Learning via Out-of-Distribution Replay
|
2208.09734
|
https://arxiv.org/abs/2208.09734v1
|
https://arxiv.org/pdf/2208.09734v1.pdf
|
https://github.com/k-gyuhak/clom
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/self-supervised-predictive-convolutional
|
Self-Supervised Predictive Convolutional Attentive Block for Anomaly Detection
|
2111.09099
|
https://arxiv.org/abs/2111.09099v6
|
https://arxiv.org/pdf/2111.09099v6.pdf
|
https://github.com/wasve/DRAEM-SSPCAB
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/ds-k3dom-3-d-dynamic-occupancy-mapping-with
|
DS-K3DOM: 3-D Dynamic Occupancy Mapping with Kernel Inference and Dempster-Shafer Evidential Theory
|
2209.07764
|
https://arxiv.org/abs/2209.07764v2
|
https://arxiv.org/pdf/2209.07764v2.pdf
|
https://github.com/JuyeopHan/dsk3dom_public
| true | true | true |
none
|
https://paperswithcode.com/paper/deep-residual-learning-for-image-recognition
|
Deep Residual Learning for Image Recognition
|
1512.03385
|
http://arxiv.org/abs/1512.03385v1
|
http://arxiv.org/pdf/1512.03385v1.pdf
|
https://github.com/code-implementation1/Code5/tree/main/lresnet100e_ir
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/diffmatch-diffusion-model-for-dense-matching
|
Diffusion Model for Dense Matching
|
2305.19094
|
https://arxiv.org/abs/2305.19094v2
|
https://arxiv.org/pdf/2305.19094v2.pdf
|
https://github.com/KU-CVLAB/DiffMatch
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/cute-lock-behavioral-and-structural-multi-key
|
Cute-Lock: Behavioral and Structural Multi-Key Logic Locking Using Time Base Keys
|
2501.17402
|
https://arxiv.org/abs/2501.17402v1
|
https://arxiv.org/pdf/2501.17402v1.pdf
|
https://github.com/cars-lab-repo/cute-lock
| true | true | false |
none
|
https://paperswithcode.com/paper/desed-dialogue-based-explanation-for-sentence
|
DESED: Dialogue-based Explanation for Sentence-level Event Detection
| null |
https://aclanthology.org/2022.coling-1.219
|
https://aclanthology.org/2022.coling-1.219.pdf
|
https://github.com/ydongd/desed
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/mc-mlp-multiple-coordinate-frames-in-all-mlp
|
MC-MLP:Multiple Coordinate Frames in all-MLP Architecture for Vision
|
2304.03917
|
https://arxiv.org/abs/2304.03917v1
|
https://arxiv.org/pdf/2304.03917v1.pdf
|
https://github.com/zzm11/mc-mlp
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/rigorous-dynamical-mean-field-theory-for
|
Rigorous dynamical mean field theory for stochastic gradient descent methods
|
2210.06591
|
https://arxiv.org/abs/2210.06591v3
|
https://arxiv.org/pdf/2210.06591v3.pdf
|
https://github.com/spoc-group/rigorous-dynamical-mean-field-theory
| true | true | false |
none
|
https://paperswithcode.com/paper/utilizing-supervised-models-to-infer
|
CROWDLAB: Supervised learning to infer consensus labels and quality scores for data with multiple annotators
|
2210.06812
|
https://arxiv.org/abs/2210.06812v2
|
https://arxiv.org/pdf/2210.06812v2.pdf
|
https://github.com/cleanlab/multiannotator-benchmarks
| true | true | true |
none
|
https://paperswithcode.com/paper/convolutional-conditional-neural-processes-1
|
Convolutional Conditional Neural Processes
|
1910.13556
|
https://arxiv.org/abs/1910.13556v5
|
https://arxiv.org/pdf/1910.13556v5.pdf
|
https://github.com/peterholderrieth/steerable_cnps
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/divide-and-contrast-source-free-domain
|
Divide and Contrast: Source-free Domain Adaptation via Adaptive Contrastive Learning
|
2211.06612
|
https://arxiv.org/abs/2211.06612v1
|
https://arxiv.org/pdf/2211.06612v1.pdf
|
https://github.com/zyezhang/dac
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/pkcam-previous-knowledge-channel-attention-1
|
PKCAM: Previous Knowledge Channel Attention Module
|
2211.07521
|
https://arxiv.org/abs/2211.07521v2
|
https://arxiv.org/pdf/2211.07521v2.pdf
|
https://github.com/eslambakr/emca
| true | true | false |
pytorch
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.