paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/dsvt-dynamic-sparse-voxel-transformer-with
|
DSVT: Dynamic Sparse Voxel Transformer with Rotated Sets
|
2301.06051
|
https://arxiv.org/abs/2301.06051v2
|
https://arxiv.org/pdf/2301.06051v2.pdf
|
https://github.com/open-mmlab/OpenPCDet
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/evaluating-variants-of-wav2vec-2-0-on
|
Evaluating Variants of wav2vec 2.0 on Affective Vocal Burst Tasks
| null |
https://ieeexplore.ieee.org/document/10096552
|
https://ieeexplore.ieee.org/document/10096552
|
https://github.com/bagustris/A-VB2022_CCC
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/flowmur-a-stealthy-and-practical-audio
|
FlowMur: A Stealthy and Practical Audio Backdoor Attack with Limited Knowledge
|
2312.09665
|
https://arxiv.org/abs/2312.09665v2
|
https://arxiv.org/pdf/2312.09665v2.pdf
|
https://github.com/cristinalan/flowmur
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/minigpt-4-enhancing-vision-language
|
MiniGPT-4: Enhancing Vision-Language Understanding with Advanced Large Language Models
|
2304.10592
|
https://arxiv.org/abs/2304.10592v2
|
https://arxiv.org/pdf/2304.10592v2.pdf
|
https://github.com/2024-MindSpore-1/Code5/tree/main/advanced_east
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/beta-rank-a-robust-convolutional-filter
|
Beta-Rank: A Robust Convolutional Filter Pruning Method For Imbalanced Medical Image Analysis
|
2304.07461
|
https://arxiv.org/abs/2304.07461v2
|
https://arxiv.org/pdf/2304.07461v2.pdf
|
https://github.com/mohofar/beta-rank
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/sentence-level-multimodal-and-language
|
SONAR: Sentence-Level Multimodal and Language-Agnostic Representations
|
2308.11466
|
https://arxiv.org/abs/2308.11466v2
|
https://arxiv.org/pdf/2308.11466v2.pdf
|
https://github.com/facebookresearch/sonar
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/dive-into-self-supervised-learning-for
|
Dive into Self-Supervised Learning for Medical Image Analysis: Data, Models and Tasks
|
2209.12157
|
https://arxiv.org/abs/2209.12157v2
|
https://arxiv.org/pdf/2209.12157v2.pdf
|
https://github.com/endoluminalsurgicalvision-imr/medical-ssl
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/graph2vec-learning-distributed
|
graph2vec: Learning Distributed Representations of Graphs
|
1707.05005
|
http://arxiv.org/abs/1707.05005v1
|
http://arxiv.org/pdf/1707.05005v1.pdf
|
https://github.com/compnet/pang
| false | false | true |
tf
|
https://paperswithcode.com/paper/ml4c-seeing-causality-through-latent-vicinity
|
ML4C: Seeing Causality Through Latent Vicinity
|
2110.00637
|
https://arxiv.org/abs/2110.00637v4
|
https://arxiv.org/pdf/2110.00637v4.pdf
|
https://github.com/microsoft/ml4c
| true | true | true |
none
|
https://paperswithcode.com/paper/uncovering-the-background-induced-bias-in-rgb
|
Uncovering the Background-Induced bias in RGB based 6-DoF Object Pose Estimation
|
2304.08230
|
https://arxiv.org/abs/2304.08230v1
|
https://arxiv.org/pdf/2304.08230v1.pdf
|
https://github.com/elego9/6dp-data-bias
| true | true | false |
tf
|
https://paperswithcode.com/paper/enhancing-semantic-correlation-between
|
Enhancing Semantic Correlation between Instances and Relations for Zero-Shot Relation Extraction
| null |
https://www.jstage.jst.go.jp/article/jnlp/30/2/30_304/_article/-char/en
|
https://www.jstage.jst.go.jp/article/jnlp/30/2/30_304/_pdf/-char/en
|
https://github.com/vhientran/Code-ZSRE
| false | true | false |
pytorch
|
https://paperswithcode.com/paper/multiscale-principle-of-relevant-information
|
Multiscale Principle of Relevant Information for Hyperspectral Image Classification
|
1907.06022
|
https://arxiv.org/abs/1907.06022v3
|
https://arxiv.org/pdf/1907.06022v3.pdf
|
https://github.com/SJYuCNEL/Principle-of-Relevant-Information-and-HSI-Classification
| false | false | true |
none
|
https://paperswithcode.com/paper/root-graded-groups
|
Root Graded Groups
|
2404.02042
|
https://arxiv.org/abs/2404.02042v1
|
https://arxiv.org/pdf/2404.02042v1.pdf
|
https://github.com/twiedemann/rootgradedgroups
| true | true | false |
none
|
https://paperswithcode.com/paper/dense-atomic-construction-of-densely
|
Dense-ATOMIC: Towards Densely-connected ATOMIC with High Knowledge Coverage and Massive Multi-hop Paths
|
2210.07621
|
https://arxiv.org/abs/2210.07621v2
|
https://arxiv.org/pdf/2210.07621v2.pdf
|
https://github.com/nustm/dense-atomic
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/deep-transformer-q-networks-for-partially
|
Deep Transformer Q-Networks for Partially Observable Reinforcement Learning
|
2206.01078
|
https://arxiv.org/abs/2206.01078v2
|
https://arxiv.org/pdf/2206.01078v2.pdf
|
https://github.com/kevslinger/dtqn
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/controlling-class-layout-for-deep-ordinal
|
Controlling Class Layout for Deep Ordinal Classification via Constrained Proxies Learning
|
2303.00396
|
https://arxiv.org/abs/2303.00396v4
|
https://arxiv.org/pdf/2303.00396v4.pdf
|
https://github.com/tenvence/cpl
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/effects-of-spectral-normalization-in-multi
|
Effects of Spectral Normalization in Multi-agent Reinforcement Learning
|
2212.05331
|
https://arxiv.org/abs/2212.05331v2
|
https://arxiv.org/pdf/2212.05331v2.pdf
|
https://github.com/kinalmehta/epymarl_spectral
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/hypertuner-a-cross-layer-multi-objective
|
HyperTuner: A Cross-Layer Multi-Objective Hyperparameter Auto-Tuning Framework for Data Analytic Services
|
2304.10051
|
https://arxiv.org/abs/2304.10051v1
|
https://arxiv.org/pdf/2304.10051v1.pdf
|
https://github.com/zss233-21/hypertuner
| true | true | false |
tf
|
https://paperswithcode.com/paper/efficient-multi-order-gated-aggregation
|
MogaNet: Multi-order Gated Aggregation Network
|
2211.03295
|
https://arxiv.org/abs/2211.03295v3
|
https://arxiv.org/pdf/2211.03295v3.pdf
|
https://github.com/Westlake-AI/MogaNet
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/decreasing-annotation-burden-of-pairwise
|
Decreasing Annotation Burden of Pairwise Comparisons with Human-in-the-Loop Sorting: Application in Medical Image Artifact Rating
|
2202.04823
|
https://arxiv.org/abs/2202.04823v1
|
https://arxiv.org/pdf/2202.04823v1.pdf
|
https://github.com/gsnlyd/slicelabeler
| true | true | true |
none
|
https://paperswithcode.com/paper/picking-up-quantization-steps-for-compressed
|
Picking Up Quantization Steps for Compressed Image Classification
|
2304.10714
|
https://arxiv.org/abs/2304.10714v1
|
https://arxiv.org/pdf/2304.10714v1.pdf
|
https://github.com/limapku/qsam
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/receval-evaluating-reasoning-chains-via
|
ReCEval: Evaluating Reasoning Chains via Correctness and Informativeness
|
2304.10703
|
https://arxiv.org/abs/2304.10703v2
|
https://arxiv.org/pdf/2304.10703v2.pdf
|
https://github.com/archiki/receval
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/neural-arithmetic-logic-units
|
Neural Arithmetic Logic Units
|
1808.00508
|
http://arxiv.org/abs/1808.00508v1
|
http://arxiv.org/pdf/1808.00508v1.pdf
|
https://github.com/MindSpore-scientific-2/code-5/tree/main/nalu.ms
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/securing-distributed-sgd-against-gradient
|
Securing Distributed SGD against Gradient Leakage Threats
|
2305.06473
|
https://arxiv.org/abs/2305.06473v1
|
https://arxiv.org/pdf/2305.06473v1.pdf
|
https://github.com/git-disl/fed-alphacdp
| true | true | false |
tf
|
https://paperswithcode.com/paper/multi-digit-number-recognition-from-street
|
Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
|
1312.6082
|
http://arxiv.org/abs/1312.6082v4
|
http://arxiv.org/pdf/1312.6082v4.pdf
|
https://github.com/JennyVanessa/Paddle-SVHN
| false | false | true |
paddle
|
https://paperswithcode.com/paper/one-4-all-neural-potential-fields-for
|
One-4-All: Neural Potential Fields for Embodied Navigation
|
2303.04011
|
https://arxiv.org/abs/2303.04011v3
|
https://arxiv.org/pdf/2303.04011v3.pdf
|
https://github.com/montrealrobotics/one4all
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/uniformerv2-spatiotemporal-learning-by-arming-1
|
UniFormerV2: Spatiotemporal Learning by Arming Image ViTs with Video UniFormer
|
2211.09552
|
https://arxiv.org/abs/2211.09552v1
|
https://arxiv.org/pdf/2211.09552v1.pdf
|
https://github.com/innat/UniFormerV2
| false | false | true |
tf
|
https://paperswithcode.com/paper/image-and-video-tokenization-with-binary
|
Image and Video Tokenization with Binary Spherical Quantization
|
2406.07548
|
https://arxiv.org/abs/2406.07548v1
|
https://arxiv.org/pdf/2406.07548v1.pdf
|
https://github.com/lucidrains/vector-quantize-pytorch
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/advancing-visual-grounding-with-scene-1
|
Advancing Visual Grounding with Scene Knowledge: Benchmark and Method
|
2307.11558
|
https://arxiv.org/abs/2307.11558v1
|
https://arxiv.org/pdf/2307.11558v1.pdf
|
https://github.com/zhjohnchan/sk-vg
| true | true | false |
none
|
https://paperswithcode.com/paper/rc-autocalib-an-end-to-end-radar-camera
|
RC-AutoCalib: An End-to-End Radar-Camera Automatic Calibration Network
|
2505.22427
|
https://arxiv.org/abs/2505.22427v1
|
https://arxiv.org/pdf/2505.22427v1.pdf
|
https://github.com/nycu-acm/rc-autocalib
| true | true | false |
none
|
https://paperswithcode.com/paper/rethinking-federated-learning-with-domain
|
Rethinking Federated Learning With Domain Shift: A Prototype View
| null |
http://openaccess.thecvf.com//content/CVPR2023/html/Huang_Rethinking_Federated_Learning_With_Domain_Shift_A_Prototype_View_CVPR_2023_paper.html
|
http://openaccess.thecvf.com//content/CVPR2023/papers/Huang_Rethinking_Federated_Learning_With_Domain_Shift_A_Prototype_View_CVPR_2023_paper.pdf
|
https://github.com/wenkehuang/rethinkfl
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/few-shot-class-incremental-learning-via-class
|
Few-Shot Class-Incremental Learning via Class-Aware Bilateral Distillation
| null |
http://openaccess.thecvf.com//content/CVPR2023/html/Zhao_Few-Shot_Class-Incremental_Learning_via_Class-Aware_Bilateral_Distillation_CVPR_2023_paper.html
|
http://openaccess.thecvf.com//content/CVPR2023/papers/Zhao_Few-Shot_Class-Incremental_Learning_via_Class-Aware_Bilateral_Distillation_CVPR_2023_paper.pdf
|
https://github.com/linglanzhao/bidistfscil
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/manifold-aware-self-training-for-unsupervised
|
Manifold-Aware Self-Training for Unsupervised Domain Adaptation on Regressing 6D Object Pose
|
2305.10808
|
https://arxiv.org/abs/2305.10808v2
|
https://arxiv.org/pdf/2305.10808v2.pdf
|
https://github.com/gorilla-lab-scut/mast
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/extracting-low-high-frequency-knowledge-from
|
Extracting Low-/High- Frequency Knowledge from Graph Neural Networks and Injecting it into MLPs: An Effective GNN-to-MLP Distillation Framework
|
2305.10758
|
https://arxiv.org/abs/2305.10758v2
|
https://arxiv.org/pdf/2305.10758v2.pdf
|
https://github.com/lirongwu/ff-g2m
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/cwd30-a-comprehensive-and-holistic-dataset
|
CWD30: A Comprehensive and Holistic Dataset for Crop Weed Recognition in Precision Agriculture
|
2305.10084
|
https://arxiv.org/abs/2305.10084v1
|
https://arxiv.org/pdf/2305.10084v1.pdf
|
https://github.com/mr-talhailyas/cwd30
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/mean-field-interacting-multi-type-birth-death
|
Mean-field interacting multi-type birth-death processes with a view to applications in phylodynamics
|
2307.06010
|
https://arxiv.org/abs/2307.06010v2
|
https://arxiv.org/pdf/2307.06010v2.pdf
|
https://github.com/wsdewitt/mfbd
| true | true | false |
none
|
https://paperswithcode.com/paper/linear-transformers-with-learnable-kernel
|
Linear Transformers with Learnable Kernel Functions are Better In-Context Models
|
2402.10644
|
https://arxiv.org/abs/2402.10644v2
|
https://arxiv.org/pdf/2402.10644v2.pdf
|
https://github.com/corl-team/rebased
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/measuring-emergent-capabilities-of-llms-for
|
Measuring Emergent Capabilities of LLMs for Software Engineering: How Far Are We?
|
2411.17927
|
https://arxiv.org/abs/2411.17927v1
|
https://arxiv.org/pdf/2411.17927v1.pdf
|
https://github.com/WM-SEMERU/emergent-capabilities
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/measuring-inductive-biases-of-in-context
|
Measuring Inductive Biases of In-Context Learning with Underspecified Demonstrations
|
2305.13299
|
https://arxiv.org/abs/2305.13299v1
|
https://arxiv.org/pdf/2305.13299v1.pdf
|
https://github.com/noviscl/ambigprompt
| true | true | false |
none
|
https://paperswithcode.com/paper/cat-crf-based-asr-toolkit
|
CAT: CRF-based ASR Toolkit
|
1911.08747
|
https://arxiv.org/abs/1911.08747v1
|
https://arxiv.org/pdf/1911.08747v1.pdf
|
https://github.com/thuspmi/cat
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/nuclear-norm-regularized-loop-optimization
|
Nuclear norm regularized loop optimization for tensor network
|
2306.17479
|
https://arxiv.org/abs/2306.17479v4
|
https://arxiv.org/pdf/2306.17479v4.pdf
|
https://github.com/kenjihomma/nnr-tnr
| true | true | false |
none
|
https://paperswithcode.com/paper/modeling-the-q-diversity-in-a-min-max-play
|
Modeling the Q-Diversity in a Min-max Play Game for Robust Optimization
|
2305.12123
|
https://arxiv.org/abs/2305.12123v1
|
https://arxiv.org/pdf/2305.12123v1.pdf
|
https://github.com/cuteythyme/q-diversity
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/explaining-how-transformers-use-context-to
|
Explaining How Transformers Use Context to Build Predictions
|
2305.12535
|
https://arxiv.org/abs/2305.12535v1
|
https://arxiv.org/pdf/2305.12535v1.pdf
|
https://github.com/mt-upc/logit-explanations
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/towards-robust-personalized-dialogue
|
Towards Robust Personalized Dialogue Generation via Order-Insensitive Representation Regularization
|
2305.12782
|
https://arxiv.org/abs/2305.12782v1
|
https://arxiv.org/pdf/2305.12782v1.pdf
|
https://github.com/chanliang/orig
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/can-nli-provide-proper-indirect-supervision
|
Can NLI Provide Proper Indirect Supervision for Low-resource Biomedical Relation Extraction?
|
2212.10784
|
https://arxiv.org/abs/2212.10784v3
|
https://arxiv.org/pdf/2212.10784v3.pdf
|
https://github.com/luka-group/NLI_as_Indirect_Supervision
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/sphere-guided-training-of-neural-implicit
|
Sphere-Guided Training of Neural Implicit Surfaces
|
2209.15511
|
https://arxiv.org/abs/2209.15511v2
|
https://arxiv.org/pdf/2209.15511v2.pdf
|
https://github.com/AndreeaDogaru/SphereGuided
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/adversarial-audio-synthesis
|
Adversarial Audio Synthesis
|
1802.04208
|
http://arxiv.org/abs/1802.04208v3
|
http://arxiv.org/pdf/1802.04208v3.pdf
|
https://github.com/delijingyic/wavegan_phonology
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/nerflix-high-quality-neural-view-synthesis-by
|
NeRFLiX: High-Quality Neural View Synthesis by Learning a Degradation-Driven Inter-viewpoint MiXer
|
2303.06919
|
https://arxiv.org/abs/2303.06919v2
|
https://arxiv.org/pdf/2303.06919v2.pdf
|
https://github.com/redrock303/NeRFLiX_CPVR2023
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/integer-programming-games-a-gentle
|
Integer Programming Games: A Gentle Computational Overview
|
2306.02817
|
https://arxiv.org/abs/2306.02817v2
|
https://arxiv.org/pdf/2306.02817v2.pdf
|
https://github.com/ds4dm/zero
| true | true | false |
none
|
https://paperswithcode.com/paper/rethinking-the-visual-cues-in-audio-visual
|
Rethinking the visual cues in audio-visual speaker extraction
|
2306.02625
|
https://arxiv.org/abs/2306.02625v1
|
https://arxiv.org/pdf/2306.02625v1.pdf
|
https://github.com/mrjunjieli/davse
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/causal-strategic-classification-a-tale-of-two
|
Causal Strategic Classification: A Tale of Two Shifts
|
2302.06280
|
https://arxiv.org/abs/2302.06280v3
|
https://arxiv.org/pdf/2302.06280v3.pdf
|
https://github.com/guyhorowitz/csc
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/undercover-deepfakes-detecting-fake-segments
|
Undercover Deepfakes: Detecting Fake Segments in Videos
|
2305.06564
|
https://arxiv.org/abs/2305.06564v4
|
https://arxiv.org/pdf/2305.06564v4.pdf
|
https://github.com/sanjaysaha1311/temporal-deepfake-segmentation
| true | true | true |
tf
|
https://paperswithcode.com/paper/answering-questions-over-knowledge-graphs
|
Domain Specific Question Answering Over Knowledge Graphs Using Logical Programming and Large Language Models
|
2303.02206
|
https://arxiv.org/abs/2303.02206v2
|
https://arxiv.org/pdf/2303.02206v2.pdf
|
https://github.com/navidmdn/logic_based_qa
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/instance-aware-dynamic-prompt-tuning-for-pre
|
Instance-aware Dynamic Prompt Tuning for Pre-trained Point Cloud Models
|
2304.07221
|
https://arxiv.org/abs/2304.07221v2
|
https://arxiv.org/pdf/2304.07221v2.pdf
|
https://github.com/zyh16143998882/aaai24-pointfemae
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/ma2cl-masked-attentive-contrastive-learning
|
MA2CL:Masked Attentive Contrastive Learning for Multi-Agent Reinforcement Learning
|
2306.02006
|
https://arxiv.org/abs/2306.02006v1
|
https://arxiv.org/pdf/2306.02006v1.pdf
|
https://github.com/ustchlsong/ma2cl
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/imbalanced-graph-classification-with-multi
|
Imbalanced Graph Classification with Multi-scale Oversampling Graph Neural Networks
|
2405.04903
|
https://arxiv.org/abs/2405.04903v2
|
https://arxiv.org/pdf/2405.04903v2.pdf
|
https://github.com/rongrongma/mosgnn
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/biomedical-entity-linking-as-multiple-choice
|
Biomedical Entity Linking as Multiple Choice Question Answering
|
2402.15189
|
https://arxiv.org/abs/2402.15189v2
|
https://arxiv.org/pdf/2402.15189v2.pdf
|
https://github.com/lzxlin/bioelqa
| true | true | false |
none
|
https://paperswithcode.com/paper/spectral-temporal-graph-neural-network-for-1
|
Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting
|
2103.07719
|
https://arxiv.org/abs/2103.07719v1
|
https://arxiv.org/pdf/2103.07719v1.pdf
|
https://github.com/microsoft/StemGNN
| false | true | false |
pytorch
|
https://paperswithcode.com/paper/unified-attentional-generative-adversarial
|
Unified Attentional Generative Adversarial Network for Brain Tumor Segmentation From Multimodal Unpaired Images
|
1907.03548
|
https://arxiv.org/abs/1907.03548v1
|
https://arxiv.org/pdf/1907.03548v1.pdf
|
https://github.com/maloadba/mgenseg_2d
| false | false | true |
jax
|
https://paperswithcode.com/paper/m-genseg-domain-adaptation-for-target
|
M-GenSeg: Domain Adaptation For Target Modality Tumor Segmentation With Annotation-Efficient Supervision
|
2212.07276
|
https://arxiv.org/abs/2212.07276v2
|
https://arxiv.org/pdf/2212.07276v2.pdf
|
https://github.com/maloadba/mgenseg_2d
| true | true | false |
jax
|
https://paperswithcode.com/paper/transunet-transformers-make-strong-encoders
|
TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation
|
2102.04306
|
https://arxiv.org/abs/2102.04306v1
|
https://arxiv.org/pdf/2102.04306v1.pdf
|
https://github.com/maloadba/mgenseg_2d
| false | false | true |
jax
|
https://paperswithcode.com/paper/unified-schemes-for-directive-based-gpu
|
Unified schemes for directive-based GPU offloading
|
2411.18889
|
https://arxiv.org/abs/2411.18889v1
|
https://arxiv.org/pdf/2411.18889v1.pdf
|
https://github.com/ymiki-repo/solomon
| true | true | false |
none
|
https://paperswithcode.com/paper/citysim-a-drone-based-vehicle-trajectory
|
CitySim: A Drone-Based Vehicle Trajectory Dataset for Safety Oriented Research and Digital Twins
|
2208.11036
|
https://arxiv.org/abs/2208.11036v2
|
https://arxiv.org/pdf/2208.11036v2.pdf
|
https://github.com/ozheng1993/ucf-sst-citysim-dataset
| true | true | true |
none
|
https://paperswithcode.com/paper/structural-restrictions-in-local-causal
|
Structural restrictions in local causal discovery: identifying direct causes of a target variable
|
2307.16048
|
https://arxiv.org/abs/2307.16048v4
|
https://arxiv.org/pdf/2307.16048v4.pdf
|
https://github.com/jurobodik/structural-restrictions-in-local-causal-discovery
| true | true | false |
none
|
https://paperswithcode.com/paper/the-art-of-conversation-measuring-phonetic
|
The ART of Conversation: Measuring Phonetic Convergence and Deliberate Imitation in L2-Speech with a Siamese RNN
|
2306.05088
|
https://arxiv.org/abs/2306.05088v1
|
https://arxiv.org/pdf/2306.05088v1.pdf
|
https://github.com/byronthecoder/S-RNN-4-ART
| true | false | false |
tf
|
https://paperswithcode.com/paper/distributionally-invariant-learning
|
Enhancing Distributional Stability among Sub-populations
|
2206.02990
|
https://arxiv.org/abs/2206.02990v2
|
https://arxiv.org/pdf/2206.02990v2.pdf
|
https://github.com/ljsthu/srm
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/jgat-a-joint-spatio-temporal-graph-attention
|
JGAT: a joint spatio-temporal graph attention model for brain decoding
|
2306.05286
|
https://arxiv.org/abs/2306.05286v1
|
https://arxiv.org/pdf/2306.05286v1.pdf
|
https://github.com/brainml-gt/jgat
| true | true | false |
tf
|
https://paperswithcode.com/paper/logprecis-unleashing-language-models-for
|
LogPrécis: Unleashing Language Models for Automated Malicious Log Analysis
|
2307.08309
|
https://arxiv.org/abs/2307.08309v3
|
https://arxiv.org/pdf/2307.08309v3.pdf
|
https://github.com/smartdata-polito/logprecis
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/rank-aware-negative-training-for-semi
|
Rank-Aware Negative Training for Semi-Supervised Text Classification
|
2306.07621
|
https://arxiv.org/abs/2306.07621v1
|
https://arxiv.org/pdf/2306.07621v1.pdf
|
https://github.com/amurtadha/rnt
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/questioning-the-survey-responses-of-large
|
Questioning the Survey Responses of Large Language Models
|
2306.07951
|
https://arxiv.org/abs/2306.07951v4
|
https://arxiv.org/pdf/2306.07951v4.pdf
|
https://github.com/socialfoundations/surveying-language-models
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/king-generating-safety-critical-driving
|
KING: Generating Safety-Critical Driving Scenarios for Robust Imitation via Kinematics Gradients
|
2204.13683
|
https://arxiv.org/abs/2204.13683v1
|
https://arxiv.org/pdf/2204.13683v1.pdf
|
https://github.com/autonomousvision/king
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/experimental-study-of-alfven-wave-reflection
|
Experimental study of Alfvén wave reflection from an Alfvén-speed gradient relevant to the solar coronal holes
|
2402.06193
|
https://arxiv.org/abs/2402.06193v1
|
https://arxiv.org/pdf/2402.06193v1.pdf
|
https://github.com/ammarhakim/gkyl-paper-inp
| true | true | false |
none
|
https://paperswithcode.com/paper/from-nerflix-to-nerflix-a-general-nerf
|
From NeRFLiX to NeRFLiX++: A General NeRF-Agnostic Restorer Paradigm
|
2306.06388
|
https://arxiv.org/abs/2306.06388v3
|
https://arxiv.org/pdf/2306.06388v3.pdf
|
https://github.com/redrock303/NeRFLiX_CPVR2023
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/training-like-a-medical-resident-universal
|
Training Like a Medical Resident: Context-Prior Learning Toward Universal Medical Image Segmentation
|
2306.02416
|
https://arxiv.org/abs/2306.02416v3
|
https://arxiv.org/pdf/2306.02416v3.pdf
|
https://github.com/yhygao/universal-medical-image-segmentation
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/joint-adjustment-image-steganography-networks
|
Joint adjustment image steganography networks
| null |
https://www.sciencedirect.com/science/article/abs/pii/S0923596523001042
|
https://www.sciencedirect.com/science/article/abs/pii/S0923596523001042
|
https://github.com/zhangle408/Joint-adjustment-image-steganography-networks
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/towards-principled-representation-learning-1
|
Towards Principled Representation Learning from Videos for Reinforcement Learning
|
2403.13765
|
https://arxiv.org/abs/2403.13765v1
|
https://arxiv.org/pdf/2403.13765v1.pdf
|
https://github.com/microsoft/intrepid
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/unclocklike-biological-oscillators-with
|
Unclocklike oscillators with frequency memory for the entrainment of biological clocks
|
2405.05180
|
https://arxiv.org/abs/2405.05180v2
|
https://arxiv.org/pdf/2405.05180v2.pdf
|
https://github.com/cmdenis/2024-frequency-memory
| true | true | true |
none
|
https://paperswithcode.com/paper/diffnet-diffusion-parameter-mapping-network
|
DIFFnet: Diffusion parameter mapping network generalized for input diffusion gradient schemes and bvalues
|
2102.02463
|
https://arxiv.org/abs/2102.02463v1
|
https://arxiv.org/pdf/2102.02463v1.pdf
|
https://github.com/SNU-LIST/DIFFnet
| true | true | true |
tf
|
https://paperswithcode.com/paper/learning-conditional-attributes-for-1
|
Learning Conditional Attributes for Compositional Zero-Shot Learning
|
2305.17940
|
https://arxiv.org/abs/2305.17940v2
|
https://arxiv.org/pdf/2305.17940v2.pdf
|
https://github.com/wqshmzh/canet-czsl
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/ddfm-denoising-diffusion-model-for-multi
|
DDFM: Denoising Diffusion Model for Multi-Modality Image Fusion
|
2303.06840
|
https://arxiv.org/abs/2303.06840v2
|
https://arxiv.org/pdf/2303.06840v2.pdf
|
https://github.com/zhaozixiang1228/mmif-cddfuse
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/the-ricci-flatness-that-lurks-in-weight
|
The Ricci-flatness that lurks in weight
|
2403.00697
|
https://arxiv.org/abs/2403.00697v1
|
https://arxiv.org/pdf/2403.00697v1.pdf
|
https://github.com/diego-conti/skoll
| true | true | true |
none
|
https://paperswithcode.com/paper/learning-modulated-transformation-in-gans
|
Learning Modulated Transformation in GANs
| null |
https://openreview.net/forum?id=h8vJVABiBP
|
https://openreview.net/pdf?id=h8vJVABiBP
|
https://github.com/limbo0000/mtm
| true | true | false |
none
|
https://paperswithcode.com/paper/a-picture-of-the-space-of-typical-learnable
|
A picture of the space of typical learnable tasks
|
2210.17011
|
https://arxiv.org/abs/2210.17011v4
|
https://arxiv.org/pdf/2210.17011v4.pdf
|
https://github.com/grasp-lyrl/low-dimensional-deepnets
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/enhancing-privacy-in-federated-learning-1
|
Enhancing Privacy in Federated Learning: Secure Aggregation for Real-World Healthcare Applications
|
2409.00974
|
https://arxiv.org/abs/2409.00974v1
|
https://arxiv.org/pdf/2409.00974v1.pdf
|
https://github.com/fedbiomed/fedbiomed
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/multi-task-graph-neural-networks-for
|
Multi-task graph neural networks for simultaneous prediction of global and atomic properties in ferromagnetic systems
|
2202.01954
|
https://arxiv.org/abs/2202.01954v1
|
https://arxiv.org/pdf/2202.01954v1.pdf
|
https://github.com/ornl/hydragnn
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/hatebert-retraining-bert-for-abusive-language
|
HateBERT: Retraining BERT for Abusive Language Detection in English
|
2010.12472
|
https://arxiv.org/abs/2010.12472v2
|
https://arxiv.org/pdf/2010.12472v2.pdf
|
https://github.com/tommasoc80/HateBERT
| true | false | true |
none
|
https://paperswithcode.com/paper/ghostshiftaddnet-more-features-from-energy
|
GhostShiftAddNet: More Features from Energy-Efficient Operations
|
2109.09495
|
https://arxiv.org/abs/2109.09495v3
|
https://arxiv.org/pdf/2109.09495v3.pdf
|
https://github.com/MindSpore-paper-code-3/code7/tree/main/ghostnet_quant
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/improving-variational-autoencoder-estimation
|
Improving Variational Autoencoder Estimation from Incomplete Data with Mixture Variational Families
|
2403.03069
|
https://arxiv.org/abs/2403.03069v2
|
https://arxiv.org/pdf/2403.03069v2.pdf
|
https://github.com/vsimkus/demiss-vae
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/navigating-data-heterogeneity-in-federated
|
Navigating Data Heterogeneity in Federated Learning A Semi-Supervised Federated Object Detection
|
2310.17097
|
https://arxiv.org/abs/2310.17097v3
|
https://arxiv.org/pdf/2310.17097v3.pdf
|
https://github.com/Kthyeon/ssfod
| true | false | false |
none
|
https://paperswithcode.com/paper/actnn-reducing-training-memory-footprint-via
|
ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training
|
2104.14129
|
https://arxiv.org/abs/2104.14129v2
|
https://arxiv.org/pdf/2104.14129v2.pdf
|
https://github.com/zirui-ray-liu/exact
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/improving-retrieval-augmented-large-language
|
Improving Retrieval-Augmented Large Language Models via Data Importance Learning
|
2307.03027
|
https://arxiv.org/abs/2307.03027v1
|
https://arxiv.org/pdf/2307.03027v1.pdf
|
https://github.com/amsterdata/ragbooster
| true | true | true |
none
|
https://paperswithcode.com/paper/robust-unmanned-surface-vehicle-navigation
|
Robust Unmanned Surface Vehicle Navigation with Distributional Reinforcement Learning
|
2307.16240
|
https://arxiv.org/abs/2307.16240v1
|
https://arxiv.org/pdf/2307.16240v1.pdf
|
https://github.com/robustfieldautonomylab/distributional_rl_navigation
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/dealing-with-observability-in-interaction
|
Dealing with observability in interaction-based Offline Runtime Verification of Distributed Systems
|
2212.09324
|
https://arxiv.org/abs/2212.09324v1
|
https://arxiv.org/pdf/2212.09324v1.pdf
|
https://github.com/erwanm974/hibou_3sat_benchmark_experiment
| false | true | false |
none
|
https://paperswithcode.com/paper/multi-label-noise-transition-matrix
|
Multi-Label Noise Transition Matrix Estimation with Label Correlations: Theory and Algorithm
|
2309.12706
|
https://arxiv.org/abs/2309.12706v1
|
https://arxiv.org/pdf/2309.12706v1.pdf
|
https://github.com/tmllab/Multi-Label-T
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/tp-gmot-tracking-generic-multiple-object-by
|
TP-GMOT: Tracking Generic Multiple Object by Textual Prompt with Motion-Appearance Cost (MAC) SORT
|
2409.02490
|
https://arxiv.org/abs/2409.02490v1
|
https://arxiv.org/pdf/2409.02490v1.pdf
|
https://github.com/Fsoft-AIC/TP-GMOT
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/mer-2023-multi-label-learning-modality
|
MER 2023: Multi-label Learning, Modality Robustness, and Semi-Supervised Learning
|
2304.08981
|
https://arxiv.org/abs/2304.08981v2
|
https://arxiv.org/pdf/2304.08981v2.pdf
|
https://github.com/zeroqiaoba/affectgpt
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/video-object-segmentation-aware-video-frame
|
Video Object Segmentation-aware Video Frame Interpolation
| null |
http://openaccess.thecvf.com//content/ICCV2023/html/Yoo_Video_Object_Segmentation-aware_Video_Frame_Interpolation_ICCV_2023_paper.html
|
http://openaccess.thecvf.com//content/ICCV2023/papers/Yoo_Video_Object_Segmentation-aware_Video_Frame_Interpolation_ICCV_2023_paper.pdf
|
https://github.com/junsang7777/vos-vfi
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/rssl-semi-supervised-learning-in-r
|
RSSL: Semi-supervised Learning in R
|
1612.07993
|
http://arxiv.org/abs/1612.07993v1
|
http://arxiv.org/pdf/1612.07993v1.pdf
|
https://github.com/cran/RSSL
| false | false | true |
none
|
https://paperswithcode.com/paper/lp-musiccaps-llm-based-pseudo-music
|
LP-MusicCaps: LLM-Based Pseudo Music Captioning
|
2307.16372
|
https://arxiv.org/abs/2307.16372v1
|
https://arxiv.org/pdf/2307.16372v1.pdf
|
https://github.com/seungheondoh/lp-music-caps
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/av-pedaware-self-supervised-audio-visual
|
AV-PedAware: Self-Supervised Audio-Visual Fusion for Dynamic Pedestrian Awareness
|
2411.06789
|
https://arxiv.org/abs/2411.06789v2
|
https://arxiv.org/pdf/2411.06789v2.pdf
|
https://github.com/yizhuoyang/AV-PedAware
| true | false | false |
pytorch
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.