paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/dual-invariance-self-training-for-reliable
|
Dual Invariance Self-training for Reliable Semi-supervised Surgical Phase Recognition
|
2501.17628
|
https://arxiv.org/abs/2501.17628v1
|
https://arxiv.org/pdf/2501.17628v1.pdf
|
https://github.com/sahar-nasiri/dist
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/waste-not-want-not-why-rarefying-microbiome
|
Waste Not, Want Not: Why Rarefying Microbiome Data is Inadmissible
|
1310.0424
|
https://arxiv.org/abs/1310.0424v2
|
https://arxiv.org/pdf/1310.0424v2.pdf
|
https://github.com/joey711/phyloseq
| false | false | true |
none
|
https://paperswithcode.com/paper/self-adaptive-training-beyond-empirical-risk
|
Self-Adaptive Training: beyond Empirical Risk Minimization
|
2002.10319
|
https://arxiv.org/abs/2002.10319v2
|
https://arxiv.org/pdf/2002.10319v2.pdf
|
https://github.com/BorealisAI/towards-better-sel-cls
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/stochastic-gradient-descent-with
|
Stochastic Gradient Descent with Preconditioned Polyak Step-size
|
2310.02093
|
https://arxiv.org/abs/2310.02093v1
|
https://arxiv.org/pdf/2310.02093v1.pdf
|
https://github.com/fxrshed/scaledsps
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/turingbench-a-benchmark-environment-for
|
TURINGBENCH: A Benchmark Environment for Turing Test in the Age of Neural Text Generation
|
2109.13296
|
https://arxiv.org/abs/2109.13296v1
|
https://arxiv.org/pdf/2109.13296v1.pdf
|
https://github.com/amritabh/conda-gen-text-detection
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/quantum-accelerated-causal-tomography-circuit
|
A scalable quantum gate-based implementation for causal hypothesis testing
|
2209.02016
|
https://arxiv.org/abs/2209.02016v4
|
https://arxiv.org/pdf/2209.02016v4.pdf
|
https://github.com/advanced-research-centre/qacht
| true | true | false |
none
|
https://paperswithcode.com/paper/integrating-earth-observation-data-into
|
Integrating Earth Observation Data into Causal Inference: Challenges and Opportunities
|
2301.12985
|
https://arxiv.org/abs/2301.12985v1
|
https://arxiv.org/pdf/2301.12985v1.pdf
|
https://github.com/AIandGlobalDevelopmentLab/causalimages-software
| false | false | true |
tf
|
https://paperswithcode.com/paper/all-languages-matter-on-the-multilingual
|
All Languages Matter: On the Multilingual Safety of Large Language Models
|
2310.00905
|
https://arxiv.org/abs/2310.00905v2
|
https://arxiv.org/pdf/2310.00905v2.pdf
|
https://github.com/jarviswang94/multilingual_safety_benchmark
| true | true | true |
none
|
https://paperswithcode.com/paper/understanding-in-context-learning-from
|
Understanding In-Context Learning from Repetitions
|
2310.00297
|
https://arxiv.org/abs/2310.00297v3
|
https://arxiv.org/pdf/2310.00297v3.pdf
|
https://github.com/elliottyan/understand-icl-from-repetition
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/an-image-is-worth-16x16-words-transformers-1
|
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
|
2010.11929
|
https://arxiv.org/abs/2010.11929v2
|
https://arxiv.org/pdf/2010.11929v2.pdf
|
https://github.com/uygarkurt/ViT-PyTorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/fedaiot-a-federated-learning-benchmark-for
|
FedAIoT: A Federated Learning Benchmark for Artificial Intelligence of Things
|
2310.00109
|
https://arxiv.org/abs/2310.00109v3
|
https://arxiv.org/pdf/2310.00109v3.pdf
|
https://github.com/aiot-mlsys-lab/fedaiot
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/hydra-multi-head-low-rank-adaptation-for
|
Hydra: Multi-head Low-rank Adaptation for Parameter Efficient Fine-tuning
|
2309.06922
|
https://arxiv.org/abs/2309.06922v1
|
https://arxiv.org/pdf/2309.06922v1.pdf
|
https://github.com/extremebird/hydra
| true | true | true |
jax
|
https://paperswithcode.com/paper/mini-gpts-efficient-large-language-models
|
Mini-GPTs: Efficient Large Language Models through Contextual Pruning
|
2312.12682
|
https://arxiv.org/abs/2312.12682v1
|
https://arxiv.org/pdf/2312.12682v1.pdf
|
https://github.com/tval2/contextual-pruning
| false | true | false |
pytorch
|
https://paperswithcode.com/paper/colora-continuous-low-rank-adaptation-for
|
CoLoRA: Continuous low-rank adaptation for reduced implicit neural modeling of parameterized partial differential equations
|
2402.14646
|
https://arxiv.org/abs/2402.14646v2
|
https://arxiv.org/pdf/2402.14646v2.pdf
|
https://github.com/julesberman/colora
| true | true | false |
jax
|
https://paperswithcode.com/paper/sublinear-time-opinion-estimation-in-the
|
Sublinear-Time Opinion Estimation in the Friedkin--Johnsen Model
|
2404.16464
|
https://arxiv.org/abs/2404.16464v1
|
https://arxiv.org/pdf/2404.16464v1.pdf
|
https://github.com/stefanresearch/sublinear-time-opinions
| true | true | true |
none
|
https://paperswithcode.com/paper/determination-of-optimal-chain-coupling-made
|
Determination of Optimal Chain Coupling made by Embedding in D-Wave Quantum Annealer
|
2406.03364
|
https://arxiv.org/abs/2406.03364v1
|
https://arxiv.org/pdf/2406.03364v1.pdf
|
https://github.com/hunpyolee/optimizechainstrength
| true | true | false |
none
|
https://paperswithcode.com/paper/population-group-2-0-bringing-the-umls
|
Population Group 2.0: Bringing the UMLS Semantic Network up to Speed
| null |
https://pubmed.ncbi.nlm.nih.gov/40380730/
|
https://ebooks.iospress.nl/doi/10.3233/SHTI250627
|
https://github.com/narenkhatwani/population-group-2.0
| false | false | false |
none
|
https://paperswithcode.com/paper/going-incognito-in-the-metaverse
|
Going Incognito in the Metaverse: Achieving Theoretically Optimal Privacy-Usability Tradeoffs in VR
|
2208.05604
|
https://arxiv.org/abs/2208.05604v5
|
https://arxiv.org/pdf/2208.05604v5.pdf
|
https://github.com/metaguard/metaguard
| true | true | true |
none
|
https://paperswithcode.com/paper/self-normalizing-neural-networks
|
Self-Normalizing Neural Networks
|
1706.02515
|
http://arxiv.org/abs/1706.02515v5
|
http://arxiv.org/pdf/1706.02515v5.pdf
|
https://github.com/2023-MindSpore-4/Code7/tree/main/snn_mlp
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/is-automated-topic-model-evaluation-broken
|
Is Automated Topic Model Evaluation Broken?: The Incoherence of Coherence
|
2107.02173
|
https://arxiv.org/abs/2107.02173v3
|
https://arxiv.org/pdf/2107.02173v3.pdf
|
https://github.com/dominiksinsaarland/evaluating-topic-model-output
| false | false | true |
none
|
https://paperswithcode.com/paper/re-visiting-automated-topic-model-evaluation
|
Revisiting Automated Topic Model Evaluation with Large Language Models
|
2305.12152
|
https://arxiv.org/abs/2305.12152v2
|
https://arxiv.org/pdf/2305.12152v2.pdf
|
https://github.com/dominiksinsaarland/evaluating-topic-model-output
| true | true | true |
none
|
https://paperswithcode.com/paper/randomizing-hypergraphs-preserving-degree
|
Randomizing hypergraphs preserving degree correlation and local clustering
|
2106.12162
|
https://arxiv.org/abs/2106.12162v2
|
https://arxiv.org/pdf/2106.12162v2.pdf
|
https://github.com/kazuibasou/hyper-dk-series
| true | true | true |
none
|
https://paperswithcode.com/paper/identifying-important-group-of-pixels-using
|
Identifying Important Group of Pixels using Interactions
|
2401.03785
|
https://arxiv.org/abs/2401.03785v3
|
https://arxiv.org/pdf/2401.03785v3.pdf
|
https://github.com/kosukesumiyasu/moxi
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/automated-security-response-through-online
|
Automated Security Response through Online Learning with Adaptive Conjectures
|
2402.12499
|
https://arxiv.org/abs/2402.12499v4
|
https://arxiv.org/pdf/2402.12499v4.pdf
|
https://github.com/limmen/csle
| true | true | false |
none
|
https://paperswithcode.com/paper/on-the-minimal-modules-for-exceptional-lie
|
On the minimal modules for exceptional Lie algebras: Jordan blocks and stabilisers
|
1508.02918
|
https://arxiv.org/abs/1508.02918v6
|
https://arxiv.org/pdf/1508.02918v6.pdf
|
https://github.com/davistem/nilpotent_orbits_gap
| true | true | false |
none
|
https://paperswithcode.com/paper/explainable-multimodal-emotion-reasoning
|
Explainable Multimodal Emotion Recognition
|
2306.15401
|
https://arxiv.org/abs/2306.15401v6
|
https://arxiv.org/pdf/2306.15401v6.pdf
|
https://github.com/zeroqiaoba/affectgpt
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/seamlessm4t-massively-multilingual-multimodal
|
SeamlessM4T: Massively Multilingual & Multimodal Machine Translation
|
2308.11596
|
https://arxiv.org/abs/2308.11596v3
|
https://arxiv.org/pdf/2308.11596v3.pdf
|
https://github.com/facebookresearch/seamless_communication
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/deriving-analytical-solutions-using-symbolic-1
|
Deriving Analytical Solutions Using Symbolic Matrix Structural Analysis: Part 2 -- Plane Trusses
|
2411.16573
|
https://arxiv.org/abs/2411.16573v1
|
https://arxiv.org/pdf/2411.16573v1.pdf
|
https://github.com/vplevris/symbolicmsa-2dtrusses
| true | true | false |
none
|
https://paperswithcode.com/paper/simple-pose-rethinking-and-improving-a-bottom
|
Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation
|
1911.10529
|
https://arxiv.org/abs/1911.10529v1
|
https://arxiv.org/pdf/1911.10529v1.pdf
|
https://github.com/2023-MindSpore-4/Code11/tree/main/simple_pose
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/heuristic-learning-with-graph-neural-networks
|
Heuristic Learning with Graph Neural Networks: A Unified Framework for Link Prediction
|
2406.07979
|
https://arxiv.org/abs/2406.07979v2
|
https://arxiv.org/pdf/2406.07979v2.pdf
|
https://github.com/LARS-research/HL-GNN
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/taming-diffusion-probabilistic-models-for
|
Taming Diffusion Probabilistic Models for Character Control
|
2404.15121
|
https://arxiv.org/abs/2404.15121v1
|
https://arxiv.org/pdf/2404.15121v1.pdf
|
https://github.com/AIGAnimation/CAMDM
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/on-the-differentiability-of-the-primal-dual
|
On the Differentiability of the Primal-Dual Interior-Point Method
|
2406.11749
|
https://arxiv.org/abs/2406.11749v2
|
https://arxiv.org/pdf/2406.11749v2.pdf
|
https://github.com/kevin-tracy/qpax
| true | true | true |
jax
|
https://paperswithcode.com/paper/triggerless-backdoor-attack-for-nlp-tasks
|
Triggerless Backdoor Attack for NLP Tasks with Clean Labels
|
2111.07970
|
https://arxiv.org/abs/2111.07970v2
|
https://arxiv.org/pdf/2111.07970v2.pdf
|
https://github.com/2023-MindSpore-4/Code12/tree/main/ganleilei/CleanLabelBackdoorAttackMindspore-master
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/context-based-interpretable-spatio-temporal
|
Context-based Interpretable Spatio-Temporal Graph Convolutional Network for Human Motion Forecasting
|
2402.19237
|
https://arxiv.org/abs/2402.19237v1
|
https://arxiv.org/pdf/2402.19237v1.pdf
|
https://github.com/qualityminds/cistgcn
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/electron-energization-in-reconnection
|
Electron Energization in Reconnection: Eulerian versus Lagrangian Perspectives
|
2310.17480
|
https://arxiv.org/abs/2310.17480v2
|
https://arxiv.org/pdf/2310.17480v2.pdf
|
https://github.com/ammarhakim/gkyl-paper-inp
| true | true | false |
none
|
https://paperswithcode.com/paper/a-survey-on-autonomous-driving-datasets-data
|
A Survey on Autonomous Driving Datasets: Statistics, Annotation Quality, and a Future Outlook
|
2401.01454
|
https://arxiv.org/abs/2401.01454v2
|
https://arxiv.org/pdf/2401.01454v2.pdf
|
https://github.com/mingyuliu1/autonomous_driving_datasets
| true | true | true |
none
|
https://paperswithcode.com/paper/logformer-a-pre-train-and-tuning-pipeline-for
|
LogFormer: A Pre-train and Tuning Pipeline for Log Anomaly Detection
|
2401.04749
|
https://arxiv.org/abs/2401.04749v1
|
https://arxiv.org/pdf/2401.04749v1.pdf
|
https://github.com/hc-guo/logformer
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/violation-of-expectation-via-metacognitive
|
Violation of Expectation via Metacognitive Prompting Reduces Theory of Mind Prediction Error in Large Language Models
|
2310.06983
|
https://arxiv.org/abs/2310.06983v1
|
https://arxiv.org/pdf/2310.06983v1.pdf
|
https://github.com/plastic-labs/voe-paper-eval
| true | true | false |
none
|
https://paperswithcode.com/paper/evolution-of-fullerenes-in-circumstellar
|
Evolution of Fullerenes in Circumstellar Envelopes by Carbon Condensation: Insights from Reactive Molecular Dynamics Simulations
|
2310.17095
|
https://arxiv.org/abs/2310.17095v1
|
https://arxiv.org/pdf/2310.17095v1.pdf
|
https://github.com/mengzss/fullerene_evolution
| true | true | false |
none
|
https://paperswithcode.com/paper/flag-hilbert-poincare-series-of-hyperplane
|
Flag Hilbert-Poincaré series of hyperplane arrangements and their Igusa zeta functions
|
2103.03640
|
https://arxiv.org/abs/2103.03640v2
|
https://arxiv.org/pdf/2103.03640v2.pdf
|
https://github.com/joshmaglione/hypigu
| true | true | true |
none
|
https://paperswithcode.com/paper/paraphrase-types-for-generation-and-detection
|
Paraphrase Types for Generation and Detection
|
2310.14863
|
https://arxiv.org/abs/2310.14863v3
|
https://arxiv.org/pdf/2310.14863v3.pdf
|
https://github.com/jpwahle/emnlp23-paraphrase-types
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/on-the-representational-capacity-of-recurrent
|
On the Representational Capacity of Recurrent Neural Language Models
|
2310.12942
|
https://arxiv.org/abs/2310.12942v5
|
https://arxiv.org/pdf/2310.12942v5.pdf
|
https://github.com/rycolab/rnn-turing-completeness
| true | true | true |
none
|
https://paperswithcode.com/paper/pruning-for-protection-increasing-jailbreak
|
Pruning for Protection: Increasing Jailbreak Resistance in Aligned LLMs Without Fine-Tuning
|
2401.10862
|
https://arxiv.org/abs/2401.10862v3
|
https://arxiv.org/pdf/2401.10862v3.pdf
|
https://github.com/crystaleye42/eval-safety
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/efficient-graduated-non-convexity-for-pose
|
Efficient Graduated Non-Convexity for Pose Graph Optimization
|
2310.06765
|
https://arxiv.org/abs/2310.06765v1
|
https://arxiv.org/pdf/2310.06765v1.pdf
|
https://github.com/SNU-DLLAB/EGNC-PGO
| true | true | true |
none
|
https://paperswithcode.com/paper/chatvis-automating-scientific-visualization
|
ChatVis: Automating Scientific Visualization with a Large Language Model
|
2410.11863
|
https://arxiv.org/abs/2410.11863v1
|
https://arxiv.org/pdf/2410.11863v1.pdf
|
https://github.com/tanwimallick/chatvis
| true | true | false |
none
|
https://paperswithcode.com/paper/variable-selection-for-partially-linear
|
Robust variable selection for partially linear additive models
|
2401.10869
|
https://arxiv.org/abs/2401.10869v2
|
https://arxiv.org/pdf/2401.10869v2.pdf
|
https://github.com/alemermartinez/rplam-vs
| true | true | false |
none
|
https://paperswithcode.com/paper/multi-task-faces-mtf-data-set-a-legally-and
|
Multi-Task Faces (MTF) Data Set: A Legally and Ethically Compliant Collection of Face Images for Various Classification Tasks
|
2311.11882
|
https://arxiv.org/abs/2311.11882v1
|
https://arxiv.org/pdf/2311.11882v1.pdf
|
https://github.com/ramihaf/mtf_data_set
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/unearthing-a-billion-telegram-posts-about-the
|
Unearthing a Billion Telegram Posts about the 2024 U.S. Presidential Election: Development of a Public Dataset
|
2410.23638
|
https://arxiv.org/abs/2410.23638v1
|
https://arxiv.org/pdf/2410.23638v1.pdf
|
https://github.com/leonardo-blas/usc-tg-24-us-election
| true | true | true |
none
|
https://paperswithcode.com/paper/resnet50-on-cifar-100-without-transfer
|
ResNet50_on_Cifar_100_Without_Transfer_Learning
| null |
https://github.com/batuhan3526/ResNet50_on_Cifar_100_Without_Transfer_Learning/blob/master/abstract.txt
|
https://github.com/batuhan3526/ResNet50_on_Cifar_100_Without_Transfer_Learning/blob/master/abstract.txt
|
https://github.com/2023-MindSpore-4/Code7/tree/main/ssd_resnet50
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/chatgpt-as-data-augmentation-for
|
ChatGPT as Data Augmentation for Compositional Generalization: A Case Study in Open Intent Detection
|
2308.13517
|
https://arxiv.org/abs/2308.13517v1
|
https://arxiv.org/pdf/2308.13517v1.pdf
|
https://github.com/fangyihao/gptaug
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/a-structured-l-bfgs-method-and-its
|
A structured L-BFGS method and its application to inverse problems
|
2310.07296
|
https://arxiv.org/abs/2310.07296v7
|
https://arxiv.org/pdf/2310.07296v7.pdf
|
https://github.com/hariagr/slbfgs
| true | true | false |
none
|
https://paperswithcode.com/paper/neur2sp-neural-two-stage-stochastic
|
Neur2SP: Neural Two-Stage Stochastic Programming
|
2205.12006
|
https://arxiv.org/abs/2205.12006v2
|
https://arxiv.org/pdf/2205.12006v2.pdf
|
https://github.com/khalil-research/neur2ro
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/are-eeg-to-text-models-working
|
Are EEG-to-Text Models Working?
|
2405.06459
|
https://arxiv.org/abs/2405.06459v4
|
https://arxiv.org/pdf/2405.06459v4.pdf
|
https://github.com/mikewangwzhl/eeg-to-text
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/contrastive-modules-with-temporal-attention
|
Contrastive Modules with Temporal Attention for Multi-Task Reinforcement Learning
|
2311.01075
|
https://arxiv.org/abs/2311.01075v1
|
https://arxiv.org/pdf/2311.01075v1.pdf
|
https://github.com/niiceMing/CMTA
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/mutox-universal-multilingual-audio-based
|
MuTox: Universal MUltilingual Audio-based TOXicity Dataset and Zero-shot Detector
|
2401.05060
|
https://arxiv.org/abs/2401.05060v2
|
https://arxiv.org/pdf/2401.05060v2.pdf
|
https://github.com/facebookresearch/seamless_communication
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/adaptive-optimizers-with-sparse-group-lasso-1
|
Adaptive Optimizers with Sparse Group Lasso for Neural Networks in CTR Prediction
|
2107.14432
|
https://arxiv.org/abs/2107.14432v6
|
https://arxiv.org/pdf/2107.14432v6.pdf
|
https://github.com/intelligent-machine-learning/tfplus
| true | true | true |
tf
|
https://paperswithcode.com/paper/wasm-icare-a-portable-and-privacy-preserving
|
Wasm-iCARE: a portable and privacy-preserving web module to build, validate, and apply absolute risk models
|
2310.09252
|
https://arxiv.org/abs/2310.09252v1
|
https://arxiv.org/pdf/2310.09252v1.pdf
|
https://github.com/jeyabbalas/wasm-icare
| true | true | false |
none
|
https://paperswithcode.com/paper/time-varying-optimization-of-lti-systems-via
|
Time-Varying Optimization of LTI Systems via Projected Primal-Dual Gradient Flows
|
2101.01799
|
https://arxiv.org/abs/2101.01799v3
|
https://arxiv.org/pdf/2101.01799v3.pdf
|
https://github.com/gianlucaBi/onlinePrimalDual_rampMetering
| true | true | false |
none
|
https://paperswithcode.com/paper/efficient-psf-modeling-with-shopt-jl-a-psf
|
Efficient PSF Modeling with ShOpt.jl: A PSF Benchmarking Study with JWST NIRCam Imaging
|
2401.11625
|
https://arxiv.org/abs/2401.11625v3
|
https://arxiv.org/pdf/2401.11625v3.pdf
|
https://github.com/edwardberman/shopt
| true | true | true |
jax
|
https://paperswithcode.com/paper/from-clip-to-dino-visual-encoders-shout-in
|
From CLIP to DINO: Visual Encoders Shout in Multi-modal Large Language Models
|
2310.08825
|
https://arxiv.org/abs/2310.08825v3
|
https://arxiv.org/pdf/2310.08825v3.pdf
|
https://github.com/yuchenliu98/comm
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/metra-scalable-unsupervised-rl-with-metric
|
METRA: Scalable Unsupervised RL with Metric-Aware Abstraction
|
2310.08887
|
https://arxiv.org/abs/2310.08887v2
|
https://arxiv.org/pdf/2310.08887v2.pdf
|
https://github.com/seohongpark/metra
| true | true | false |
tf
|
https://paperswithcode.com/paper/self-storm-deep-unrolled-self-supervised
|
Self-STORM: Deep Unrolled Self-Supervised Learning for Super-Resolution Microscopy
|
2403.16974
|
https://arxiv.org/abs/2403.16974v1
|
https://arxiv.org/pdf/2403.16974v1.pdf
|
https://github.com/yairbs/Self-STORM
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/comparative-analysis-of-llama-and-chatgpt
|
Can Large Language Models Understand Molecules?
|
2402.00024
|
https://arxiv.org/abs/2402.00024v3
|
https://arxiv.org/pdf/2402.00024v3.pdf
|
https://github.com/sshaghayeghs/llama-vs-gpt
| true | true | false |
none
|
https://paperswithcode.com/paper/cosmos-web-the-over-abundance-and-physical
|
COSMOS-Web: The over-abundance and physical nature of "little red dots"--Implications for early galaxy and SMBH assembly
|
2406.10341
|
https://arxiv.org/abs/2406.10341v1
|
https://arxiv.org/pdf/2406.10341v1.pdf
|
https://github.com/hollisakins/akins24_cw
| true | true | true |
none
|
https://paperswithcode.com/paper/leveraging-adversarial-detection-to-enable
|
BreakHammer: Enhancing RowHammer Mitigations by Carefully Throttling Suspect Threads
|
2404.13477
|
https://arxiv.org/abs/2404.13477v2
|
https://arxiv.org/pdf/2404.13477v2.pdf
|
https://github.com/cmu-safari/breakhammer
| true | true | true |
none
|
https://paperswithcode.com/paper/crossmoco-multi-modal-momentum-contrastive
|
CrossMoCo: Multi-modal Momentum Contrastive Learning for Point Cloud
| null |
https://ieeexplore.ieee.org/abstract/document/10229841
|
https://ieeexplore.ieee.org/abstract/document/10229841
|
https://github.com/snehaputul/CrossMoCo
| false | true | false |
pytorch
|
https://paperswithcode.com/paper/apollo-unified-adapter-and-prompt-learning
|
APoLLo: Unified Adapter and Prompt Learning for Vision Language Models
|
2312.01564
|
https://arxiv.org/abs/2312.01564v1
|
https://arxiv.org/pdf/2312.01564v1.pdf
|
https://github.com/schowdhury671/APoLLo
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/look-at-me-no-replay-surprisenet-anomaly
|
Look At Me, No Replay! SurpriseNet: Anomaly Detection Inspired Class Incremental Learning
|
2310.20052
|
https://arxiv.org/abs/2310.20052v1
|
https://arxiv.org/pdf/2310.20052v1.pdf
|
https://github.com/tachyonicclock/surprisenet-cikm-23
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/histopathological-image-analysis-with-style
|
Histopathological Image Analysis with Style-Augmented Feature Domain Mixing for Improved Generalization
|
2310.20638
|
https://arxiv.org/abs/2310.20638v1
|
https://arxiv.org/pdf/2310.20638v1.pdf
|
https://github.com/vaibhav-khamankar/fusestyle
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/bias-against-93-stigmatized-groups-in-masked
|
Bias Against 93 Stigmatized Groups in Masked Language Models and Downstream Sentiment Classification Tasks
|
2306.05550
|
https://arxiv.org/abs/2306.05550v1
|
https://arxiv.org/pdf/2306.05550v1.pdf
|
https://github.com/mooniem/mlms_bias_stigmas
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/prefix-tree-decoding-for-predicting-mass
|
Prefix-Tree Decoding for Predicting Mass Spectra from Molecules
|
2303.06470
|
https://arxiv.org/abs/2303.06470v3
|
https://arxiv.org/pdf/2303.06470v3.pdf
|
https://github.com/samgoldman97/ms-pred
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/dataset-and-benchmark-for-urdu-natural-scenes
|
Dataset and Benchmark for Urdu Natural Scenes Text Detection, Recognition and Visual Question Answering
|
2405.12533
|
https://arxiv.org/abs/2405.12533v1
|
https://arxiv.org/pdf/2405.12533v1.pdf
|
https://github.com/hiba-meiruan/urdu-vqa-dataset-
| true | true | true |
none
|
https://paperswithcode.com/paper/mind-the-gap-between-prototypes-and-images-in
|
Mind the Gap Between Prototypes and Images in Cross-domain Finetuning
|
2410.12474
|
https://arxiv.org/abs/2410.12474v2
|
https://arxiv.org/pdf/2410.12474v2.pdf
|
https://github.com/tmlr-group/CoPA
| true | true | true |
tf
|
https://paperswithcode.com/paper/aligning-llms-with-domain-invariant-reward
|
Aligning LLMs with Domain Invariant Reward Models
|
2501.00911
|
https://arxiv.org/abs/2501.00911v1
|
https://arxiv.org/pdf/2501.00911v1.pdf
|
https://github.com/portal-cornell/dial
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/data-driven-study-of-composition-dependent
|
Data-driven study of composition-dependent phase compatibility in NiTi shape memory alloys
|
2402.12520
|
https://arxiv.org/abs/2402.12520v1
|
https://arxiv.org/pdf/2402.12520v1.pdf
|
https://github.com/sinazadeh/phase-compatibility-model-niti
| true | true | false |
none
|
https://paperswithcode.com/paper/universal-representation-learning-from
|
Universal Representation Learning from Multiple Domains for Few-shot Classification
|
2103.13841
|
https://arxiv.org/abs/2103.13841v1
|
https://arxiv.org/pdf/2103.13841v1.pdf
|
https://github.com/tmlr-group/CoPA
| false | false | true |
tf
|
https://paperswithcode.com/paper/meta-dataset-a-dataset-of-datasets-for
|
Meta-Dataset: A Dataset of Datasets for Learning to Learn from Few Examples
|
1903.03096
|
https://arxiv.org/abs/1903.03096v4
|
https://arxiv.org/pdf/1903.03096v4.pdf
|
https://github.com/tmlr-group/CoPA
| false | false | true |
tf
|
https://paperswithcode.com/paper/unleashing-the-creative-mind-language-model
|
Unleashing the Creative Mind: Language Model As Hierarchical Policy For Improved Exploration on Challenging Problem Solving
|
2311.00694
|
https://arxiv.org/abs/2311.00694v2
|
https://arxiv.org/pdf/2311.00694v2.pdf
|
https://github.com/lz1oceani/llm-as-hierarchical-policy
| true | true | true |
none
|
https://paperswithcode.com/paper/event-causality-is-key-to-computational-story
|
Event Causality Is Key to Computational Story Understanding
|
2311.09648
|
https://arxiv.org/abs/2311.09648v2
|
https://arxiv.org/pdf/2311.09648v2.pdf
|
https://github.com/insundaycathy/event-causality-extraction
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/chemplaskin-a-general-purpose-program-for
|
ChemPlasKin: a general-purpose program for unified gas and plasma kinetics simulations
|
2405.04224
|
https://arxiv.org/abs/2405.04224v1
|
https://arxiv.org/pdf/2405.04224v1.pdf
|
https://github.com/ShaoX96/ChemPlasKin
| true | false | true |
none
|
https://paperswithcode.com/paper/distributed-statistical-machine-learning-in
|
Distributed Statistical Machine Learning in Adversarial Settings: Byzantine Gradient Descent
|
1705.05491
|
http://arxiv.org/abs/1705.05491v2
|
http://arxiv.org/pdf/1705.05491v2.pdf
|
https://github.com/bladesteam/blades
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/smaller-language-models-are-capable-of
|
Smaller Language Models are capable of selecting Instruction-Tuning Training Data for Larger Language Models
|
2402.10430
|
https://arxiv.org/abs/2402.10430v1
|
https://arxiv.org/pdf/2402.10430v1.pdf
|
https://github.com/dheeraj7596/small2large
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/hierspeech-bridging-the-gap-between-semantic
|
HierSpeech++: Bridging the Gap between Semantic and Acoustic Representation of Speech by Hierarchical Variational Inference for Zero-shot Speech Synthesis
|
2311.12454
|
https://arxiv.org/abs/2311.12454v2
|
https://arxiv.org/pdf/2311.12454v2.pdf
|
https://github.com/sh-lee-prml/hierspeechpp
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/readme-bridging-medical-jargon-and-lay
|
README: Bridging Medical Jargon and Lay Understanding for Patient Education through Data-Centric NLP
|
2312.15561
|
https://arxiv.org/abs/2312.15561v5
|
https://arxiv.org/pdf/2312.15561v5.pdf
|
https://github.com/seasonyao/noteaid-readme
| true | true | false |
none
|
https://paperswithcode.com/paper/unsupervised-discovery-of-interpretable-3
|
Unsupervised discovery of Interpretable Visual Concepts
|
2309.00018
|
https://arxiv.org/abs/2309.00018v2
|
https://arxiv.org/pdf/2309.00018v2.pdf
|
https://github.com/carolmazini/unsupervised-ivc
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/wear-a-multimodal-dataset-for-wearable-and
|
WEAR: An Outdoor Sports Dataset for Wearable and Egocentric Activity Recognition
|
2304.05088
|
https://arxiv.org/abs/2304.05088v4
|
https://arxiv.org/pdf/2304.05088v4.pdf
|
https://github.com/mariusbock/wear
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/bridging-the-gap-between-domain-specific
|
Bridging the Gap Between Domain-specific Frameworks and Multiple Hardware Devices
|
2405.12491
|
https://arxiv.org/abs/2405.12491v1
|
https://arxiv.org/pdf/2405.12491v1.pdf
|
https://github.com/benchcouncil/bridger
| true | true | false |
none
|
https://paperswithcode.com/paper/mm-sap-a-comprehensive-benchmark-for
|
MM-SAP: A Comprehensive Benchmark for Assessing Self-Awareness of Multimodal Large Language Models in Perception
|
2401.07529
|
https://arxiv.org/abs/2401.07529v3
|
https://arxiv.org/pdf/2401.07529v3.pdf
|
https://github.com/yhwmz/mm-sap
| true | true | true |
none
|
https://paperswithcode.com/paper/asgir-audio-spectrogram-transformer-guided
|
ASGIR: Audio Spectrogram Transformer Guided Classification And Information Retrieval For Birds
|
2407.18927
|
https://arxiv.org/abs/2407.18927v1
|
https://arxiv.org/pdf/2407.18927v1.pdf
|
https://github.com/mainsample1234/as-gir
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/gohberg-semencul-estimation-of-toeplitz
|
Gohberg-Semencul Estimation of Toeplitz Structured Covariance Matrices and Their Inverses
|
2311.14995
|
https://arxiv.org/abs/2311.14995v1
|
https://arxiv.org/pdf/2311.14995v1.pdf
|
https://github.com/beneboeck/toep-cov-estimation
| true | true | false |
none
|
https://paperswithcode.com/paper/a-self-attentive-model-for-knowledge-tracing
|
A Self-Attentive model for Knowledge Tracing
|
1907.06837
|
https://arxiv.org/abs/1907.06837v1
|
https://arxiv.org/pdf/1907.06837v1.pdf
|
https://github.com/nanzhaogang/contrib/tree/master/application/a-self-attentive-model-for-knowledge-tracing
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/zo-adamu-optimizer-adapting-perturbation-by
|
ZO-AdaMU Optimizer: Adapting Perturbation by the Momentum and Uncertainty in Zeroth-order Optimization
|
2312.15184
|
https://arxiv.org/abs/2312.15184v1
|
https://arxiv.org/pdf/2312.15184v1.pdf
|
https://github.com/mathisall/zo-adamu
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/grokformer-graph-fourier-kolmogorov-arnold
|
GrokFormer: Graph Fourier Kolmogorov-Arnold Transformers
|
2411.17296
|
https://arxiv.org/abs/2411.17296v1
|
https://arxiv.org/pdf/2411.17296v1.pdf
|
https://github.com/GGA23/GrokFormer
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/fine-tuning-language-models-with-just-forward-1
|
Fine-Tuning Language Models with Just Forward Passes
|
2305.17333
|
https://arxiv.org/abs/2305.17333v3
|
https://arxiv.org/pdf/2305.17333v3.pdf
|
https://github.com/mathisall/zo-adamu
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/sfpnet-sparse-focal-point-network-for
|
SFPNet: Sparse Focal Point Network for Semantic Segmentation on General LiDAR Point Clouds
|
2407.11569
|
https://arxiv.org/abs/2407.11569v1
|
https://arxiv.org/pdf/2407.11569v1.pdf
|
https://github.com/Cavendish518/SFPNet
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/towards-non-robocentric-dynamic-landing-of
|
Towards Non-Robocentric Dynamic Landing of Quadrotor UAVs
|
2401.11445
|
https://arxiv.org/abs/2401.11445v1
|
https://arxiv.org/pdf/2401.11445v1.pdf
|
https://github.com/hkpolyu-uav/alan
| true | true | false |
none
|
https://paperswithcode.com/paper/couler-unified-machine-learning-workflow
|
Couler: Unified Machine Learning Workflow Optimization in Cloud
|
2403.07608
|
https://arxiv.org/abs/2403.07608v1
|
https://arxiv.org/pdf/2403.07608v1.pdf
|
https://github.com/couler-proj/couler
| true | true | true |
none
|
https://paperswithcode.com/paper/the-mass-profiles-of-dwarf-galaxies-from-dark
|
The mass profiles of dwarf galaxies from Dark Energy Survey lensing
|
2311.14659
|
https://arxiv.org/abs/2311.14659v1
|
https://arxiv.org/pdf/2311.14659v1.pdf
|
https://github.com/aamon/dwarf-lensing
| true | true | true |
none
|
https://paperswithcode.com/paper/rapid-training-of-deep-neural-networks
|
Rapid training of deep neural networks without skip connections or normalization layers using Deep Kernel Shaping
|
2110.01765
|
https://arxiv.org/abs/2110.01765v1
|
https://arxiv.org/pdf/2110.01765v1.pdf
|
https://github.com/ml-jku/convex-init
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/wav2vec-2-0-a-framework-for-self-supervised
|
wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations
|
2006.11477
|
https://arxiv.org/abs/2006.11477v3
|
https://arxiv.org/pdf/2006.11477v3.pdf
|
https://github.com/sh-lee-prml/hierspeechpp
| false | false | true |
pytorch
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.