paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/edtc-a-corpus-for-discourse-level-topic-chain
|
EDTC: A Corpus for Discourse-Level Topic Chain Parsing
| null |
https://aclanthology.org/2021.findings-emnlp.113
|
https://aclanthology.org/2021.findings-emnlp.113.pdf
|
https://github.com/nlp-discourse-soochowu/dtcp
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/writing-style-author-embedding-evaluation
|
Writing Style Author Embedding Evaluation
| null |
https://aclanthology.org/2021.eval4nlp-1.9
|
https://aclanthology.org/2021.eval4nlp-1.9.pdf
|
https://github.com/enzofleur/style_embedding_evaluation
| true | true | false |
none
|
https://paperswithcode.com/paper/countering-the-influence-of-essay-length-in
|
Countering the Influence of Essay Length in Neural Essay Scoring
| null |
https://aclanthology.org/2021.sustainlp-1.4
|
https://aclanthology.org/2021.sustainlp-1.4.pdf
|
https://github.com/sdeva14/sustai21-counter-neural-essay-length
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/unsupervised-monocular-depth-estimation-with
|
Unsupervised Monocular Depth Estimation with Left-Right Consistency
|
1609.03677
|
http://arxiv.org/abs/1609.03677v3
|
http://arxiv.org/pdf/1609.03677v3.pdf
|
https://github.com/xown3197/3D_Pedestrian_Localization_2021ComputerVision
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/unsupervised-monocular-depth-learning-in
|
Unsupervised Monocular Depth Learning in Dynamic Scenes
|
2010.16404
|
https://arxiv.org/abs/2010.16404v2
|
https://arxiv.org/pdf/2010.16404v2.pdf
|
https://github.com/CarloRadice/depth-and-motion-learning
| false | false | true |
tf
|
https://paperswithcode.com/paper/smells-in-system-user-interactive-tests
|
Smells in System User Interactive Tests
|
2111.02317
|
https://arxiv.org/abs/2111.02317v1
|
https://arxiv.org/pdf/2111.02317v1.pdf
|
https://github.com/kabinja/suit-smells-replication-package
| true | true | false |
none
|
https://paperswithcode.com/paper/improving-sequence-to-sequence-semantic
|
Improving Sequence-to-Sequence Semantic Parser for Task Oriented Dialog
| null |
https://aclanthology.org/2020.intexsempar-1.3
|
https://aclanthology.org/2020.intexsempar-1.3.pdf
|
https://github.com/cxuan2019/top
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/offensive-language-detection-in-nepali-social
|
Offensive Language Detection in Nepali Social Media
| null |
https://aclanthology.org/2021.woah-1.7
|
https://aclanthology.org/2021.woah-1.7.pdf
|
https://github.com/nowalab/offensive-nepali
| true | true | false |
none
|
https://paperswithcode.com/paper/bert4rec-sequential-recommendation-with
|
BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer
|
1904.06690
|
https://arxiv.org/abs/1904.06690v2
|
https://arxiv.org/pdf/1904.06690v2.pdf
|
https://github.com/vatsalsaglani/bert4rec
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/dual-attention-networks-for-multimodal
|
Dual Attention Networks for Multimodal Reasoning and Matching
|
1611.00471
|
http://arxiv.org/abs/1611.00471v2
|
http://arxiv.org/pdf/1611.00471v2.pdf
|
https://github.com/iammrhelo/pytorch-vqa-dan
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/cnn-architectures-for-large-scale-audio
|
CNN Architectures for Large-Scale Audio Classification
|
1609.09430
|
http://arxiv.org/abs/1609.09430v2
|
http://arxiv.org/pdf/1609.09430v2.pdf
|
https://github.com/stanfordmlgroup/aihc-sum20-lung-sounds
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/spread2rml-constructing-knowledge-graphs-by
|
Spread2RML: Constructing Knowledge Graphs by Predicting RML Mappings on Messy Spreadsheets
|
2110.12829
|
https://arxiv.org/abs/2110.12829v1
|
https://arxiv.org/pdf/2110.12829v1.pdf
|
https://github.com/mschroeder-github/spread2rml
| true | false | false |
none
|
https://paperswithcode.com/paper/polyhedral-mesh-quality-indicator-for-the
|
Polyhedral Mesh Quality Indicator for the Virtual Element Method
|
2112.11365
|
https://arxiv.org/abs/2112.11365v1
|
https://arxiv.org/pdf/2112.11365v1.pdf
|
https://github.com/tommasosorgente/vem-indicator-3d-dataset
| true | true | false |
none
|
https://paperswithcode.com/paper/on-the-fly-category-discovery
|
On-the-Fly Category Discovery
| null |
http://openaccess.thecvf.com//content/CVPR2023/html/Du_On-the-Fly_Category_Discovery_CVPR_2023_paper.html
|
http://openaccess.thecvf.com//content/CVPR2023/papers/Du_On-the-Fly_Category_Discovery_CVPR_2023_paper.pdf
|
https://github.com/pris-cv/on-the-fly-category-discovery
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/a-graph-neural-network-based-approach-for
|
Identifying Possible Rumor Spreaders on Twitter: A Weak Supervised Learning Approach
|
2010.07647
|
https://arxiv.org/abs/2010.07647v2
|
https://arxiv.org/pdf/2010.07647v2.pdf
|
https://github.com/shakshi12/Rumor-Spreaders-using-GNN-approach-PHEME-dataset-
| false | false | true |
tf
|
https://paperswithcode.com/paper/non-intrusive-binaural-speech-intelligibility
|
Non-Intrusive Binaural Speech Intelligibility Prediction from Discrete Latent Representations
|
2111.12531
|
https://arxiv.org/abs/2111.12531v2
|
https://arxiv.org/pdf/2111.12531v2.pdf
|
https://github.com/vvvm23/stoi-vqcpc
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/revisiting-graph-neural-networks-all-we-have
|
Revisiting Graph Neural Networks: All We Have is Low-Pass Filters
|
1905.09550
|
https://arxiv.org/abs/1905.09550v2
|
https://arxiv.org/pdf/1905.09550v2.pdf
|
https://github.com/hazdzz/gfNN
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/mesoscopic-insights-orchestrating-multi-scale
|
Mesoscopic Insights: Orchestrating Multi-scale & Hybrid Architecture for Image Manipulation Localization
|
2412.13753
|
https://arxiv.org/abs/2412.13753v1
|
https://arxiv.org/pdf/2412.13753v1.pdf
|
https://github.com/scu-zjz/Mesorch
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/multi-behavior-self-supervised-learning-for
|
Multi-behavior Self-supervised Learning for Recommendation
|
2305.18238
|
https://arxiv.org/abs/2305.18238v1
|
https://arxiv.org/pdf/2305.18238v1.pdf
|
https://github.com/scofield666/mbssl
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/a-great-model-comparison-against-the
|
A GREAT model comparison against the cosmological constant
|
2111.13083
|
https://arxiv.org/abs/2111.13083v2
|
https://arxiv.org/pdf/2111.13083v2.pdf
|
https://github.com/snesseris/great-project
| true | true | false |
none
|
https://paperswithcode.com/paper/bert-pre-training-of-deep-bidirectional
|
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
|
1810.04805
|
https://arxiv.org/abs/1810.04805v2
|
https://arxiv.org/pdf/1810.04805v2.pdf
|
https://github.com/geondopark/ckd
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/texttt-py-irt-a-scalable-item-response-theory
|
py-irt: A Scalable Item Response Theory Library for Python
|
2203.01282
|
https://arxiv.org/abs/2203.01282v2
|
https://arxiv.org/pdf/2203.01282v2.pdf
|
https://github.com/nd-ball/py-irt
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/deep-predictive-coding-networks-for-video
|
Deep Predictive Coding Networks for Video Prediction and Unsupervised Learning
|
1605.08104
|
http://arxiv.org/abs/1605.08104v5
|
http://arxiv.org/pdf/1605.08104v5.pdf
|
https://github.com/Mikkil5112/PredNet
| false | false | true |
tf
|
https://paperswithcode.com/paper/active-machine-learning-for-spatio-temporal
|
Enhanced spatio-temporal electric load forecasts using less data with active deep learning
|
2012.04407
|
https://arxiv.org/abs/2012.04407v2
|
https://arxiv.org/pdf/2012.04407v2.pdf
|
https://github.com/ArsamAryandoust/DataSelectionMaps
| true | true | true |
tf
|
https://paperswithcode.com/paper/video-action-classification-using-prednet
|
PredNet and Predictive Coding: A Critical Review
|
1906.11902
|
https://arxiv.org/abs/1906.11902v3
|
https://arxiv.org/pdf/1906.11902v3.pdf
|
https://github.com/Mikkil5112/PredNet
| false | false | true |
tf
|
https://paperswithcode.com/paper/an-end-to-end-trainable-neural-network-for
|
An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition
|
1507.05717
|
http://arxiv.org/abs/1507.05717v1
|
http://arxiv.org/pdf/1507.05717v1.pdf
|
https://github.com/chandan5362/Indian-Number-Plate-Recognition
| false | false | true |
none
|
https://paperswithcode.com/paper/discodisco-at-the-disrpt2021-shared-task-a
|
DisCoDisCo at the DISRPT2021 Shared Task: A System for Discourse Segmentation, Classification, and Connective Detection
|
2109.09777
|
https://arxiv.org/abs/2109.09777v1
|
https://arxiv.org/pdf/2109.09777v1.pdf
|
https://github.com/gucorpling/discodisco
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/nafs-a-simple-yet-tough-to-beat-baseline-for-1
|
NAFS: A Simple yet Tough-to-beat Baseline for Graph Representation Learning
|
2206.08583
|
https://arxiv.org/abs/2206.08583v1
|
https://arxiv.org/pdf/2206.08583v1.pdf
|
https://github.com/zwt233/NAFS
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/k-2-ie-kernel-method-based-kernel-intensity
|
K$^2$IE: Kernel Method-based Kernel Intensity Estimators for Inhomogeneous Poisson Processes
|
2505.24704
|
https://arxiv.org/abs/2505.24704v1
|
https://arxiv.org/pdf/2505.24704v1.pdf
|
https://github.com/hidkim/k2ie
| true | true | false |
tf
|
https://paperswithcode.com/paper/multilingual-controllable-transformer-based
|
Multilingual Controllable Transformer-Based Lexical Simplification
|
2307.02120
|
https://arxiv.org/abs/2307.02120v1
|
https://arxiv.org/pdf/2307.02120v1.pdf
|
https://github.com/kimchengsheang/mtls
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/strong-instance-segmentation-pipeline-for
|
Strong Instance Segmentation Pipeline for MMSports Challenge
|
2209.13899
|
https://arxiv.org/abs/2209.13899v1
|
https://arxiv.org/pdf/2209.13899v1.pdf
|
https://github.com/yjingyu/instanc_segmentation_pro
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/a-decentralized-framework-for-kernel-pca-with
|
A Decentralized Framework for Kernel PCA with Projection Consensus Constraints
|
2211.15953
|
https://arxiv.org/abs/2211.15953v1
|
https://arxiv.org/pdf/2211.15953v1.pdf
|
https://github.com/yruikk/dkpca-admm
| true | true | true |
none
|
https://paperswithcode.com/paper/open-domain-hierarchical-event-schema
|
Open-Domain Hierarchical Event Schema Induction by Incremental Prompting and Verification
|
2307.01972
|
https://arxiv.org/abs/2307.01972v1
|
https://arxiv.org/pdf/2307.01972v1.pdf
|
https://github.com/raspberryice/inc-schema
| true | true | false |
none
|
https://paperswithcode.com/paper/reverse-image-filtering-using-total
|
Reverse image filtering using total derivative approximation and accelerated gradient descent
|
2112.04121
|
https://arxiv.org/abs/2112.04121v3
|
https://arxiv.org/pdf/2112.04121v3.pdf
|
https://github.com/fergaletto/ReverseFilter_TDA
| true | false | true |
none
|
https://paperswithcode.com/paper/mipi-2022-challenge-on-rgb-tof-depth
|
MIPI 2022 Challenge on RGB+ToF Depth Completion: Dataset and Report
|
2209.07057
|
https://arxiv.org/abs/2209.07057v1
|
https://arxiv.org/pdf/2209.07057v1.pdf
|
https://github.com/mipi-challenge/mipi2022
| true | true | true |
none
|
https://paperswithcode.com/paper/mipi-2022-challenge-on-rgbw-sensor-re-mosaic
|
MIPI 2022 Challenge on RGBW Sensor Re-mosaic: Dataset and Report
|
2209.08471
|
https://arxiv.org/abs/2209.08471v1
|
https://arxiv.org/pdf/2209.08471v1.pdf
|
https://github.com/mipi-challenge/mipi2022
| true | true | true |
none
|
https://paperswithcode.com/paper/mipi-2022-challenge-on-rgbw-sensor-fusion
|
MIPI 2022 Challenge on RGBW Sensor Fusion: Dataset and Report
|
2209.07530
|
https://arxiv.org/abs/2209.07530v2
|
https://arxiv.org/pdf/2209.07530v2.pdf
|
https://github.com/mipi-challenge/mipi2022
| true | true | true |
none
|
https://paperswithcode.com/paper/cmua-watermark-a-cross-model-universal
|
CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes
|
2105.10872
|
https://arxiv.org/abs/2105.10872v2
|
https://arxiv.org/pdf/2105.10872v2.pdf
|
https://github.com/vdigpku/cmua-watermark
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/measuring-fairness-with-biased-rulers-a
|
Measuring Fairness with Biased Rulers: A Survey on Quantifying Biases in Pretrained Language Models
|
2112.07447
|
https://arxiv.org/abs/2112.07447v1
|
https://arxiv.org/pdf/2112.07447v1.pdf
|
https://github.com/ipieter/biased-rulers
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/investigation-of-the-dead-time-duration-and
|
Dead time duration and active reset influence on the afterpulse probability of InGaAs/InP single-photon avalanche diodes
|
2104.03919
|
https://arxiv.org/abs/2104.03919v4
|
https://arxiv.org/pdf/2104.03919v4.pdf
|
https://github.com/akoziy98/Automated_Stand
| false | false | true |
none
|
https://paperswithcode.com/paper/emnist-an-extension-of-mnist-to-handwritten
|
EMNIST: an extension of MNIST to handwritten letters
|
1702.05373
|
http://arxiv.org/abs/1702.05373v2
|
http://arxiv.org/pdf/1702.05373v2.pdf
|
https://github.com/chuiyunjun/projectCSC413
| false | false | true |
none
|
https://paperswithcode.com/paper/a-variance-reduced-and-stabilized-proximal
|
A Variance-Reduced and Stabilized Proximal Stochastic Gradient Method with Support Identification Guarantees for Structured Optimization
|
2302.06790
|
https://arxiv.org/abs/2302.06790v1
|
https://arxiv.org/pdf/2302.06790v1.pdf
|
https://github.com/yutong-dai/s-pstorm
| true | true | false |
none
|
https://paperswithcode.com/paper/automatic-evaluation-and-moderation-of-open
|
Automatic Evaluation and Moderation of Open-domain Dialogue Systems
|
2111.02110
|
https://arxiv.org/abs/2111.02110v3
|
https://arxiv.org/pdf/2111.02110v3.pdf
|
https://github.com/lfdharo/DSTC10_Track5_Toxicity
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/automated-grading-of-radiographic-knee
|
Knee arthritis severity measurement using deep learning: a publicly available algorithm with a multi-institutional validation showing radiologist-level performance
|
2203.08914
|
https://arxiv.org/abs/2203.08914v2
|
https://arxiv.org/pdf/2203.08914v2.pdf
|
https://github.com/maciejmazurowski/osteoarthritis-classification
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/investigation-of-the-dependence-of-noise
|
Investigation of the dependence of noise characteristics of SPAD on the gate parameters in sine-wave gated single-photon detectors
|
2103.07363
|
https://arxiv.org/abs/2103.07363v3
|
https://arxiv.org/pdf/2103.07363v3.pdf
|
https://github.com/akoziy98/Automated_Stand
| false | false | true |
none
|
https://paperswithcode.com/paper/investigating-the-coherent-state-detection
|
Investigating the coherent state detection probability of InGaAs/InP SPAD-based single-photon detectors
|
2104.07952
|
https://arxiv.org/abs/2104.07952v1
|
https://arxiv.org/pdf/2104.07952v1.pdf
|
https://github.com/akoziy98/Automated_Stand
| false | false | true |
none
|
https://paperswithcode.com/paper/tensor-renormalization-of-three-dimensional
|
Tensor renormalization of three-dimensional Potts model
|
2201.01789
|
https://arxiv.org/abs/2201.01789v1
|
https://arxiv.org/pdf/2201.01789v1.pdf
|
https://github.com/rgjha/TensorCodes
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/neural-discrete-representation-learning
|
Neural Discrete Representation Learning
|
1711.00937
|
http://arxiv.org/abs/1711.00937v2
|
http://arxiv.org/pdf/1711.00937v2.pdf
|
https://github.com/yhy258/VariationalAutoEncoders-Pytorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/kaggledbqa-realistic-evaluation-of-text-to
|
KaggleDBQA: Realistic Evaluation of Text-to-SQL Parsers
|
2106.11455
|
https://arxiv.org/abs/2106.11455v1
|
https://arxiv.org/pdf/2106.11455v1.pdf
|
https://github.com/chiahsuan156/KaggleDBQA
| true | false | false |
none
|
https://paperswithcode.com/paper/joint-entropy-search-for-maximally-informed
|
Joint Entropy Search for Maximally-Informed Bayesian Optimization
|
2206.04771
|
https://arxiv.org/abs/2206.04771v5
|
https://arxiv.org/pdf/2206.04771v5.pdf
|
https://github.com/jointentropysearch/jointentropysearch
| true | true | false |
none
|
https://paperswithcode.com/paper/signal-strength-and-noise-drive-feature-1
|
Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers
|
2201.08893
|
https://arxiv.org/abs/2201.08893v1
|
https://arxiv.org/pdf/2201.08893v1.pdf
|
https://github.com/mwolff31/signal_preference
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/a-parallel-corpus-of-python-functions-and
|
A parallel corpus of Python functions and documentation strings for automated code documentation and code generation
|
1707.02275
|
http://arxiv.org/abs/1707.02275v1
|
http://arxiv.org/pdf/1707.02275v1.pdf
|
https://github.com/ICSEG/M2TS
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/recommendations-for-datasets-for-source-code
|
Recommendations for Datasets for Source Code Summarization
|
1904.02660
|
http://arxiv.org/abs/1904.02660v1
|
http://arxiv.org/pdf/1904.02660v1.pdf
|
https://github.com/ICSEG/M2TS
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/squeeze-and-excitation-networks
|
Squeeze-and-Excitation Networks
|
1709.01507
|
https://arxiv.org/abs/1709.01507v4
|
https://arxiv.org/pdf/1709.01507v4.pdf
|
https://github.com/mehrdad-noori/brain-tumor-segmentation
| false | false | true |
tf
|
https://paperswithcode.com/paper/low-rank-constraints-for-fast-inference-in-1
|
Low-Rank Constraints for Fast Inference in Structured Models
|
2201.02715
|
https://arxiv.org/abs/2201.02715v1
|
https://arxiv.org/pdf/2201.02715v1.pdf
|
https://github.com/justinchiu/low-rank-models
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/spikecv-open-a-continuous-computer-vision-era
|
SpikeCV: Open a Continuous Computer Vision Era
|
2303.11684
|
https://arxiv.org/abs/2303.11684v2
|
https://arxiv.org/pdf/2303.11684v2.pdf
|
https://github.com/zyj061/spikecv
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/dissipativity-based-decentralized-co-design
|
Dissipativity-Based Decentralized Co-Design of Distributed Controllers and Communication Topologies for Vehicular Platoons
|
2312.06472
|
https://arxiv.org/abs/2312.06472v2
|
https://arxiv.org/pdf/2312.06472v2.pdf
|
https://github.com/ndzsong2/longitudinal-vehicular-platoon-simulator
| true | true | false |
none
|
https://paperswithcode.com/paper/online-multi-object-tracking-framework-with
|
Online Multi-Object Tracking Framework with the GMPHD Filter and Occlusion Group Management
|
1907.13347
|
https://arxiv.org/abs/1907.13347v1
|
https://arxiv.org/pdf/1907.13347v1.pdf
|
https://github.com/SonginCV/GMPHD-OGM_Tracker
| true | false | true |
none
|
https://paperswithcode.com/paper/boost-and-skip-a-simple-guidance-free
|
Boost-and-Skip: A Simple Guidance-Free Diffusion for Minority Generation
|
2502.06516
|
https://arxiv.org/abs/2502.06516v2
|
https://arxiv.org/pdf/2502.06516v2.pdf
|
https://github.com/soobin-um/bns
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/projection-of-functionals-and-fast-pricing-of
|
Projection of Functionals and Fast Pricing of Exotic Options
|
2111.03713
|
https://arxiv.org/abs/2111.03713v3
|
https://arxiv.org/pdf/2111.03713v3.pdf
|
https://github.com/valentintissot/klmc
| true | true | true |
none
|
https://paperswithcode.com/paper/parallel-longest-common-subsequence-analysis
|
Parallel Longest Common SubSequence Analysis In Chapel
|
2309.09072
|
https://arxiv.org/abs/2309.09072v1
|
https://arxiv.org/pdf/2309.09072v1.pdf
|
https://github.com/soroushvahidi/parallel-longest-common-subsequence
| true | true | false |
none
|
https://paperswithcode.com/paper/sum-a-benchmark-dataset-of-semantic-urban
|
SUM: A Benchmark Dataset of Semantic Urban Meshes
|
2103.00355
|
https://arxiv.org/abs/2103.00355v2
|
https://arxiv.org/pdf/2103.00355v2.pdf
|
https://github.com/tudelft3d/SUMS-Semantic-Urban-Mesh-Segmentation-public
| true | false | false |
none
|
https://paperswithcode.com/paper/pvg-at-wassa-2021-a-multi-input-multi-task
|
PVG at WASSA 2021: A Multi-Input, Multi-Task, Transformer-Based Architecture for Empathy and Distress Prediction
|
2103.03296
|
https://arxiv.org/abs/2103.03296v1
|
https://arxiv.org/pdf/2103.03296v1.pdf
|
https://github.com/mr-atharva-kulkarni/EACL-WASSA-2021-Empathy-Distress
| true | false | false |
tf
|
https://paperswithcode.com/paper/cocon-a-data-set-on-combined-contextualized
|
CoCon: A Data Set on Combined Contextualized Research Artifact Use
|
2303.15193
|
https://arxiv.org/abs/2303.15193v1
|
https://arxiv.org/pdf/2303.15193v1.pdf
|
https://github.com/illdepence/contextgraph
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/deep-generative-framework-for-interactive-3d
|
Deep Generative Framework for Interactive 3D Terrain Authoring and Manipulation
|
2201.02369
|
https://arxiv.org/abs/2201.02369v1
|
https://arxiv.org/pdf/2201.02369v1.pdf
|
https://github.com/Shanthika/TerrainAuthoring-Pytorch
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/scaled-yolov4-scaling-cross-stage-partial
|
Scaled-YOLOv4: Scaling Cross Stage Partial Network
|
2011.08036
|
https://arxiv.org/abs/2011.08036v2
|
https://arxiv.org/pdf/2011.08036v2.pdf
|
https://github.com/xyuan-wyze/darknet
| false | false | true |
tf
|
https://paperswithcode.com/paper/cspnet-a-new-backbone-that-can-enhance
|
CSPNet: A New Backbone that can Enhance Learning Capability of CNN
|
1911.11929
|
https://arxiv.org/abs/1911.11929v1
|
https://arxiv.org/pdf/1911.11929v1.pdf
|
https://github.com/xyuan-wyze/darknet
| false | false | true |
tf
|
https://paperswithcode.com/paper/yolov3-an-incremental-improvement
|
YOLOv3: An Incremental Improvement
|
1804.02767
|
http://arxiv.org/abs/1804.02767v1
|
http://arxiv.org/pdf/1804.02767v1.pdf
|
https://github.com/xyuan-wyze/darknet
| false | false | true |
tf
|
https://paperswithcode.com/paper/neural-ocr-post-hoc-correction-of-historical
|
Neural OCR Post-Hoc Correction of Historical Corpora
|
2102.00583
|
https://arxiv.org/abs/2102.00583v1
|
https://arxiv.org/pdf/2102.00583v1.pdf
|
https://github.com/GarfieldLyu/OCR_POST_DE
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/yolov4-optimal-speed-and-accuracy-of-object
|
YOLOv4: Optimal Speed and Accuracy of Object Detection
|
2004.10934
|
https://arxiv.org/abs/2004.10934v1
|
https://arxiv.org/pdf/2004.10934v1.pdf
|
https://github.com/xyuan-wyze/darknet
| false | false | true |
tf
|
https://paperswithcode.com/paper/detect-influential-points-of-feature-rankings
|
Detect influential points of feature rankings
|
2303.10516
|
https://arxiv.org/abs/2303.10516v1
|
https://arxiv.org/pdf/2303.10516v1.pdf
|
https://github.com/shuostat/ips_on_feature_rankings
| true | true | false |
none
|
https://paperswithcode.com/paper/probing-pre-trained-language-models-for-cross
|
Probing Pre-Trained Language Models for Cross-Cultural Differences in Values
|
2203.13722
|
https://arxiv.org/abs/2203.13722v2
|
https://arxiv.org/pdf/2203.13722v2.pdf
|
https://github.com/copenlu/value-probing
| true | true | false |
none
|
https://paperswithcode.com/paper/deep-graph-neural-networks-with-shallow-1
|
Deep Graph Neural Networks with Shallow Subgraph Samplers
|
2012.01380
|
https://arxiv.org/abs/2012.01380v3
|
https://arxiv.org/pdf/2012.01380v3.pdf
|
https://github.com/facebookresearch/shaDow_GNN
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/vector-based-data-improves-left-right-eye
|
Vector-Based Data Improves Left-Right Eye-Tracking Classifier Performance After a Covariate Distributional Shift
|
2208.00465
|
https://arxiv.org/abs/2208.00465v1
|
https://arxiv.org/pdf/2208.00465v1.pdf
|
https://github.com/brianxiang123/eegetcovariatedistributionalshift
| true | true | false |
none
|
https://paperswithcode.com/paper/a-state-distribution-matching-approach-to-non
|
A State-Distribution Matching Approach to Non-Episodic Reinforcement Learning
|
2205.05212
|
https://arxiv.org/abs/2205.05212v1
|
https://arxiv.org/pdf/2205.05212v1.pdf
|
https://github.com/architsharma97/medal
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/deep-learning-through-the-lens-of-example
|
Deep Learning Through the Lens of Example Difficulty
|
2106.09647
|
https://arxiv.org/abs/2106.09647v2
|
https://arxiv.org/pdf/2106.09647v2.pdf
|
https://github.com/pengbohua/AngularGap/tree/12dad1ec18d3c15a41835c3c342f82051d895ccc/standard_curriculum_learning/prediction_depth
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/end-to-end-learning-for-self-driving-cars
|
End to End Learning for Self-Driving Cars
|
1604.07316
|
http://arxiv.org/abs/1604.07316v1
|
http://arxiv.org/pdf/1604.07316v1.pdf
|
https://github.com/drtupe/Behavioral_Cloning
| false | false | true |
tf
|
https://paperswithcode.com/paper/collective-explainable-ai-explaining
|
Collective eXplainable AI: Explaining Cooperative Strategies and Agent Contribution in Multiagent Reinforcement Learning with Shapley Values
|
2110.01307
|
https://arxiv.org/abs/2110.01307v1
|
https://arxiv.org/pdf/2110.01307v1.pdf
|
https://github.com/fabien-couthouis/xai-in-rl
| true | true | true |
none
|
https://paperswithcode.com/paper/a-multi-agent-reinforcement-learning-model-of
|
A multi-agent reinforcement learning model of common-pool resource appropriation
|
1707.06600
|
http://arxiv.org/abs/1707.06600v2
|
http://arxiv.org/pdf/1707.06600v2.pdf
|
https://github.com/fabien-couthouis/xai-in-rl
| false | false | true |
none
|
https://paperswithcode.com/paper/msccl-microsoft-collective-communication
|
GC3: An Optimizing Compiler for GPU Collective Communication
|
2201.11840
|
https://arxiv.org/abs/2201.11840v3
|
https://arxiv.org/pdf/2201.11840v3.pdf
|
https://github.com/microsoft/msccl-tools
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/llama-open-and-efficient-foundation-language-1
|
LLaMA: Open and Efficient Foundation Language Models
|
2302.13971
|
https://arxiv.org/abs/2302.13971v1
|
https://arxiv.org/pdf/2302.13971v1.pdf
|
https://github.com/xiaoman-zhang/PMC-VQA
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/a-cooperation-graph-approach-for-multiagent
|
A Cooperation Graph Approach for Multiagent Sparse Reward Reinforcement Learning
|
2208.03002
|
https://arxiv.org/abs/2208.03002v1
|
https://arxiv.org/pdf/2208.03002v1.pdf
|
https://github.com/binary-husky/hmp2g
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/metrics-quantization-and-registration-in
|
Metrics, quantization and registration in varifold spaces
|
1903.11196
|
https://arxiv.org/abs/1903.11196v1
|
https://arxiv.org/pdf/1903.11196v1.pdf
|
https://github.com/charoncode/Var_LDDMM
| true | false | true |
none
|
https://paperswithcode.com/paper/mastering-visual-continuous-control-improved
|
Mastering Visual Continuous Control: Improved Data-Augmented Reinforcement Learning
|
2107.09645
|
https://arxiv.org/abs/2107.09645v1
|
https://arxiv.org/pdf/2107.09645v1.pdf
|
https://github.com/architsharma97/medal
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/generative-modeling-with-optimal-transport
|
Generative Modeling with Optimal Transport Maps
|
2110.02999
|
https://arxiv.org/abs/2110.02999v2
|
https://arxiv.org/pdf/2110.02999v2.pdf
|
https://github.com/LituRout/OptimalTransportModeling
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/structural-temporal-graph-neural-networks-for
|
Structural Temporal Graph Neural Networks for Anomaly Detection in Dynamic Graphs
|
2005.07427
|
https://arxiv.org/abs/2005.07427v2
|
https://arxiv.org/pdf/2005.07427v2.pdf
|
https://github.com/KnowledgeDiscovery/StrGNN
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/predrnn-towards-a-resolution-of-the-deep-in
|
PredRNN++: Towards A Resolution of the Deep-in-Time Dilemma in Spatiotemporal Predictive Learning
|
1804.06300
|
http://arxiv.org/abs/1804.06300v2
|
http://arxiv.org/pdf/1804.06300v2.pdf
|
https://github.com/mindspore-ai/models/tree/master/official/cv/predrnn%2B%2B
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/comparison-of-spatio-temporal-models-for
|
Comparison of Spatio-Temporal Models for Human Motion and Pose Forecasting in Face-to-Face Interaction Scenarios
|
2203.03245
|
https://arxiv.org/abs/2203.03245v1
|
https://arxiv.org/pdf/2203.03245v1.pdf
|
https://github.com/crisie/udiva
| true | true | false |
none
|
https://paperswithcode.com/paper/dynamic-mlp-for-fine-grained-image
|
Dynamic MLP for Fine-Grained Image Classification by Leveraging Geographical and Temporal Information
|
2203.03253
|
https://arxiv.org/abs/2203.03253v1
|
https://arxiv.org/pdf/2203.03253v1.pdf
|
https://github.com/ylingfeng/dynamicmlp
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/a-unified-framework-for-masked-and-mask-free
|
A Unified Framework for Masked and Mask-Free Face Recognition via Feature Rectification
|
2202.07358
|
https://arxiv.org/abs/2202.07358v1
|
https://arxiv.org/pdf/2202.07358v1.pdf
|
https://github.com/haoosz/ffr-net
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/bashexplainer-retrieval-augmented-bash-code
|
BashExplainer: Retrieval-Augmented Bash Code Comment Generation based on Fine-tuned CodeBERT
|
2206.13325
|
https://arxiv.org/abs/2206.13325v1
|
https://arxiv.org/pdf/2206.13325v1.pdf
|
https://github.com/NTDXYG/BASHEXPLAINER
| true | true | false |
none
|
https://paperswithcode.com/paper/generative-invertible-quantum-neural-networks
|
Generative Invertible Quantum Neural Networks
|
2302.12906
|
https://arxiv.org/abs/2302.12906v3
|
https://arxiv.org/pdf/2302.12906v3.pdf
|
https://gitlab.com/RussellA/quantumML
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/nedmp-neural-enhanced-dynamic-message-passing
|
NEDMP: Neural Enhanced Dynamic Message Passing
|
2202.06496
|
https://arxiv.org/abs/2202.06496v1
|
https://arxiv.org/pdf/2202.06496v1.pdf
|
https://github.com/feigsss/nedmp
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/distributing-persistent-homology-via-spectral
|
Distributing Persistent Homology via Spectral Sequences
|
1907.05228
|
https://arxiv.org/abs/1907.05228v1
|
https://arxiv.org/pdf/1907.05228v1.pdf
|
https://github.com/atorras1618/PerMaViss
| false | false | true |
none
|
https://paperswithcode.com/paper/r-local-sensing-improved-algorithm-and
|
r-local sensing: Improved algorithm and applications
|
2110.14034
|
https://arxiv.org/abs/2110.14034v3
|
https://arxiv.org/pdf/2110.14034v3.pdf
|
https://github.com/aabbas02/proximal-alt-min-for-uls-udgp
| true | true | true |
none
|
https://paperswithcode.com/paper/communication-efficient-zeroth-order
|
Communication-Efficient Zeroth-Order Distributed Online Optimization: Algorithm, Theory, and Applications
|
2306.05655
|
https://arxiv.org/abs/2306.05655v1
|
https://arxiv.org/pdf/2306.05655v1.pdf
|
https://github.com/sunses-hub/fed-ef-zo-sgd
| true | true | false |
none
|
https://paperswithcode.com/paper/denoising-diffusion-probabilistic-models
|
Denoising Diffusion Probabilistic Models
|
2006.11239
|
https://arxiv.org/abs/2006.11239v2
|
https://arxiv.org/pdf/2006.11239v2.pdf
|
https://github.com/keonlee9420/DiffGAN-TTS
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/tackling-the-generative-learning-trilemma-1
|
Tackling the Generative Learning Trilemma with Denoising Diffusion GANs
|
2112.07804
|
https://arxiv.org/abs/2112.07804v2
|
https://arxiv.org/pdf/2112.07804v2.pdf
|
https://github.com/keonlee9420/DiffGAN-TTS
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/diffsinger-diffusion-acoustic-model-for
|
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism
|
2105.02446
|
https://arxiv.org/abs/2105.02446v6
|
https://arxiv.org/pdf/2105.02446v6.pdf
|
https://github.com/keonlee9420/DiffGAN-TTS
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/divide-and-conquer-text-semantic-matching-1
|
Divide and Conquer: Text Semantic Matching with Disentangled Keywords and Intents
|
2203.02898
|
https://arxiv.org/abs/2203.02898v1
|
https://arxiv.org/pdf/2203.02898v1.pdf
|
https://github.com/rowitzou/dc-match
| true | true | true |
pytorch
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.