text
stringlengths
31
243k
type
stringclasses
1 value
start
int64
36
275k
end
int64
286
280k
depth
int64
0
1
filepath
stringlengths
85
188
parent_class
stringclasses
3 values
class_index
int64
0
10.8k
class IBertForTokenClassification(IBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.ibert = IBertModel(config, add_pooling_layer=False) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(IBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[TokenClassifierOutput, Tuple[torch.FloatTensor]]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.ibert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
48,085
50,825
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/ibert/modeling_ibert.py
null
9,200
class IBertClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) def forward(self, features, **kwargs): hidden_states = features[:, 0, :] # take <s> token (equiv. to [CLS]) hidden_states = self.dropout(hidden_states) hidden_states = self.dense(hidden_states) hidden_states = torch.tanh(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.out_proj(hidden_states) return hidden_states
class_definition
50,828
51,599
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/ibert/modeling_ibert.py
null
9,201
class IBertForQuestionAnswering(IBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.ibert = IBertModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(IBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[QuestionAnsweringModelOutput, Tuple[torch.FloatTensor]]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.ibert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
51,889
56,137
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/ibert/modeling_ibert.py
null
9,202
class QuantEmbedding(nn.Module): """ Quantized version of `torch.nn.Embedding`. Adds quantization-specific arguments on top of `torch.nn.Embedding`. Args: weight_bit (`int`, *optional*, defaults to `8`): Bitwidth for the quantized weight. momentum (`float`, *optional*, defaults to `0.95`): Momentum for updating the activation quantization range. quant_mode (`bool`, *optional*, defaults to `False`): Whether or not the layer is quantized. """ def __init__( self, num_embeddings, embedding_dim, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False, _weight=None, weight_bit=8, momentum=0.95, quant_mode=False, ): super().__init__() self.num_ = num_embeddings self.dim = embedding_dim self.padding_idx = padding_idx self.max_norm = max_norm self.norm_type = norm_type self.scale_grad_by_freq = scale_grad_by_freq self.sparse = sparse self.weight = nn.Parameter(torch.zeros([num_embeddings, embedding_dim])) self.register_buffer("weight_scaling_factor", torch.zeros(1)) self.register_buffer("weight_integer", torch.zeros_like(self.weight)) self.weight_bit = weight_bit self.momentum = momentum self.quant_mode = quant_mode self.percentile_mode = False self.weight_function = SymmetricQuantFunction.apply def forward(self, x, positions=None, incremental_state=None): if not self.quant_mode: return ( nn.functional.embedding( x, self.weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse, ), None, ) w = self.weight w_transform = w.data.detach() w_min = w_transform.min().expand(1) w_max = w_transform.max().expand(1) self.weight_scaling_factor = symmetric_linear_quantization_params(self.weight_bit, w_min, w_max, False) self.weight_integer = self.weight_function( self.weight, self.weight_bit, self.percentile_mode, self.weight_scaling_factor ) emb_int = nn.functional.embedding( x, self.weight_integer, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse, ) return emb_int * self.weight_scaling_factor, self.weight_scaling_factor
class_definition
957
3,710
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/ibert/quant_modules.py
null
9,203
class QuantAct(nn.Module): """ Quantizes the given activation. Args: activation_bit (`int`): Bitwidth for the quantized activation. act_range_momentum (`float`, *optional*, defaults to `0.95`): Momentum for updating the activation quantization range. per_channel (`bool`, *optional*, defaults to `False`): Whether to or not use channel-wise quantization. channel_len (`int`, *optional*): Specify the channel length when set the *per_channel* True. quant_mode (`bool`, *optional*, defaults to `False`): Whether or not the layer is quantized. """ def __init__(self, activation_bit, act_range_momentum=0.95, per_channel=False, channel_len=None, quant_mode=False): super().__init__() self.activation_bit = activation_bit self.act_range_momentum = act_range_momentum self.quant_mode = quant_mode self.per_channel = per_channel self.percentile = False self.act_function = SymmetricQuantFunction.apply if not self.per_channel: self.register_buffer("x_min", torch.zeros(1)) self.register_buffer("x_max", torch.zeros(1)) self.register_buffer("act_scaling_factor", torch.zeros(1)) self.x_min -= 1e-5 self.x_max += 1e-5 else: raise NotImplementedError("per-channel mode is not currently supported for activation.") def __repr__(self): return ( f"{self.__class__.__name__}(activation_bit={self.activation_bit}, " f"quant_mode: {self.quant_mode}, Act_min: {self.x_min.item():.2f}, " f"Act_max: {self.x_max.item():.2f})" ) def forward( self, x, pre_act_scaling_factor=None, identity=None, identity_scaling_factor=None, specified_min=None, specified_max=None, ): x_act = x if identity is None else identity + x # collect running stats if training if self.training: assert not self.percentile, "percentile mode is not currently supported for activation." assert not self.per_channel, "per-channel mode is not currently supported for activation." x_min = x_act.data.min() x_max = x_act.data.max() assert ( x_max.isnan().sum() == 0 and x_min.isnan().sum() == 0 ), "NaN detected when computing min/max of the activation" # Initialization if self.x_min.min() > -1.1e-5 and self.x_max.max() < 1.1e-5: self.x_min = self.x_min + x_min self.x_max = self.x_max + x_max # exponential moving average (EMA) # use momentum to prevent the quantized values change greatly every iteration elif self.act_range_momentum == -1: self.x_min = torch.min(self.x_min, x_min) self.x_max = torch.max(self.x_max, x_max) else: self.x_min = self.x_min * self.act_range_momentum + x_min * (1 - self.act_range_momentum) self.x_max = self.x_max * self.act_range_momentum + x_max * (1 - self.act_range_momentum) if not self.quant_mode: return x_act, None x_min = self.x_min if specified_min is None else specified_min x_max = self.x_max if specified_max is None else specified_max self.act_scaling_factor = symmetric_linear_quantization_params( self.activation_bit, x_min, x_max, per_channel=self.per_channel ) if pre_act_scaling_factor is None: # this is for the input quantization quant_act_int = self.act_function(x, self.activation_bit, self.percentile, self.act_scaling_factor) else: quant_act_int = FixedPointMul.apply( x, pre_act_scaling_factor, self.activation_bit, self.act_scaling_factor, identity, identity_scaling_factor, ) correct_output_scale = self.act_scaling_factor.view(-1) return quant_act_int * correct_output_scale, self.act_scaling_factor
class_definition
3,713
7,943
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/ibert/quant_modules.py
null
9,204
class QuantLinear(nn.Module): """ Quantized version of `torch.nn.Linear`. Adds quantization-specific arguments on top of `torch.nn.Linear`. Args: weight_bit (`int`, *optional*, defaults to `8`): Bitwidth for the quantized weight. bias_bit (`int`, *optional*, defaults to `32`): Bitwidth for the quantized bias. per_channel (`bool`, *optional*, defaults to `False`): Whether or not to use channel-wise quantization. quant_mode (`bool`, *optional*, defaults to `False`): Whether or not the layer is quantized. """ def __init__( self, in_features, out_features, bias=True, weight_bit=8, bias_bit=32, per_channel=False, quant_mode=False ): super().__init__() self.in_features = in_features self.out_features = out_features self.weight = nn.Parameter(torch.zeros([out_features, in_features])) self.register_buffer("weight_integer", torch.zeros_like(self.weight)) self.register_buffer("fc_scaling_factor", torch.zeros(self.out_features)) if bias: self.bias = nn.Parameter(torch.zeros(out_features)) self.register_buffer("bias_integer", torch.zeros_like(self.bias)) self.weight_bit = weight_bit self.quant_mode = quant_mode self.per_channel = per_channel self.bias_bit = bias_bit self.quant_mode = quant_mode self.percentile_mode = False self.weight_function = SymmetricQuantFunction.apply def __repr__(self): s = super().__repr__() s = f"({s} weight_bit={self.weight_bit}, quant_mode={self.quant_mode})" return s def forward(self, x, prev_act_scaling_factor=None): if not self.quant_mode: return nn.functional.linear(x, weight=self.weight, bias=self.bias), None # assert that prev_act_scaling_factor is a scalar tensor assert prev_act_scaling_factor is not None and prev_act_scaling_factor.shape == (1,), ( "Input activation to the QuantLinear layer should be globally (non-channel-wise) quantized. " "Please add a QuantAct layer with `per_channel = True` before this QuantAct layer" ) w = self.weight w_transform = w.data.detach() if self.per_channel: w_min, _ = torch.min(w_transform, dim=1, out=None) w_max, _ = torch.max(w_transform, dim=1, out=None) else: w_min = w_transform.min().expand(1) w_max = w_transform.max().expand(1) self.fc_scaling_factor = symmetric_linear_quantization_params(self.weight_bit, w_min, w_max, self.per_channel) self.weight_integer = self.weight_function( self.weight, self.weight_bit, self.percentile_mode, self.fc_scaling_factor ) bias_scaling_factor = self.fc_scaling_factor * prev_act_scaling_factor if self.bias is not None: self.bias_integer = self.weight_function(self.bias, self.bias_bit, False, bias_scaling_factor) prev_act_scaling_factor = prev_act_scaling_factor.view(1, -1) x_int = x / prev_act_scaling_factor return ( nn.functional.linear(x_int, weight=self.weight_integer, bias=self.bias_integer) * bias_scaling_factor, bias_scaling_factor, )
class_definition
7,946
11,290
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/ibert/quant_modules.py
null
9,205
class IntGELU(nn.Module): """ Quantized version of `torch.nn.GELU`. Adds quantization-specific arguments on top of `torch.nn.GELU`. Args: quant_mode (`bool`, *optional*, defaults to `False`): Whether or not the layer is quantized. force_dequant (`str`, *optional*, defaults to `"none"`): Force dequantize the layer if either "gelu" or "nonlinear" is given. """ def __init__(self, quant_mode=True, force_dequant="none"): super().__init__() self.quant_mode = quant_mode if force_dequant in ["nonlinear", "gelu"]: logger.info("Force dequantize gelu") self.quant_mode = False if not self.quant_mode: self.activation_fn = nn.GELU() self.k = 1.4142 self.const = 14 # dummy integer constant self.coeff = [-0.2888, -1.769, 1] # a(x+b)**2 + c self.coeff[2] /= self.coeff[0] def int_erf(self, x_int, scaling_factor): b_int = torch.floor(self.coeff[1] / scaling_factor) c_int = torch.floor(self.coeff[2] / scaling_factor**2) sign = torch.sign(x_int) abs_int = torch.min(torch.abs(x_int), -b_int) y_int = sign * ((abs_int + b_int) ** 2 + c_int) scaling_factor = scaling_factor**2 * self.coeff[0] # avoid overflow y_int = floor_ste.apply(y_int / 2**self.const) scaling_factor = scaling_factor * 2**self.const return y_int, scaling_factor def forward(self, x, scaling_factor=None): if not self.quant_mode: return self.activation_fn(x), None x_int = x / scaling_factor sigmoid_int, sigmoid_scaling_factor = self.int_erf(x_int, scaling_factor / self.k) shift_int = 1.0 // sigmoid_scaling_factor x_int = x_int * (sigmoid_int + shift_int) scaling_factor = scaling_factor * sigmoid_scaling_factor / 2 return x_int * scaling_factor, scaling_factor
class_definition
11,293
13,252
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/ibert/quant_modules.py
null
9,206
class IntSoftmax(nn.Module): """ Quantized version of `torch.nn.Softmax`. Adds quantization-specific arguments on top of `torch.nn.Softmax`. Args: output_bit (`int`): Bitwidth for the layer output activation. quant_mode (`bool`, *optional*, defaults to `False`): Whether or not the layer is quantized. force_dequant (`str`, *optional*, defaults to `"none"`): Force dequantize the layer if either "softmax" or "nonlinear" is given. """ def __init__(self, output_bit, quant_mode=False, force_dequant="none"): super().__init__() self.output_bit = output_bit self.max_bit = 32 self.quant_mode = quant_mode if force_dequant in ["nonlinear", "softmax"]: logger.info("Force dequantize softmax") self.quant_mode = False self.act = QuantAct(16, quant_mode=self.quant_mode) self.x0 = -0.6931 # -ln2 self.const = 30 # dummy integer constant self.coef = [0.35815147, 0.96963238, 1.0] # ax**2 + bx + c self.coef[1] /= self.coef[0] self.coef[2] /= self.coef[0] def int_polynomial(self, x_int, scaling_factor): with torch.no_grad(): b_int = torch.floor(self.coef[1] / scaling_factor) c_int = torch.floor(self.coef[2] / scaling_factor**2) z = (x_int + b_int) * x_int + c_int scaling_factor = self.coef[0] * scaling_factor**2 return z, scaling_factor def int_exp(self, x_int, scaling_factor): with torch.no_grad(): x0_int = torch.floor(self.x0 / scaling_factor) x_int = torch.max(x_int, self.const * x0_int) q = floor_ste.apply(x_int / x0_int) r = x_int - x0_int * q exp_int, exp_scaling_factor = self.int_polynomial(r, scaling_factor) exp_int = torch.clamp(floor_ste.apply(exp_int * 2 ** (self.const - q)), min=0) scaling_factor = exp_scaling_factor / 2**self.const return exp_int, scaling_factor def forward(self, x, scaling_factor): if not self.quant_mode: return nn.functional.softmax(x, dim=-1), None x_int = x / scaling_factor x_int_max, _ = x_int.max(dim=-1, keepdim=True) x_int = x_int - x_int_max exp_int, exp_scaling_factor = self.int_exp(x_int, scaling_factor) # Avoid overflow exp, exp_scaling_factor = self.act(exp_int, exp_scaling_factor) exp_int = exp / exp_scaling_factor exp_int_sum = exp_int.sum(dim=-1, keepdim=True) factor = floor_ste.apply(2**self.max_bit / exp_int_sum) exp_int = floor_ste.apply(exp_int * factor / 2 ** (self.max_bit - self.output_bit)) scaling_factor = 1 / 2**self.output_bit return exp_int * scaling_factor, scaling_factor
class_definition
13,255
16,068
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/ibert/quant_modules.py
null
9,207
class IntLayerNorm(nn.Module): """ Quantized version of `torch.nn.LayerNorm`. Adds quantization-specific arguments on top of `torch.nn.LayerNorm`. Args: output_bit (`int`, *optional*, defaults to `8`): Bitwidth for the layer output activation. quant_mode (`bool`, *optional*, defaults to `False`): Whether or not the layer is quantized. force_dequant (`str`, *optional*, defaults to `"none"`): Force dequantize the layer if either "layernorm" or "nonlinear" is given. """ def __init__(self, normalized_shape, eps, output_bit=8, quant_mode=False, force_dequant="none"): super().__init__() self.normalized_shape = normalized_shape self.eps = eps self.weight = nn.Parameter(torch.zeros(normalized_shape)) self.bias = nn.Parameter(torch.zeros(normalized_shape)) self.quant_mode = quant_mode if force_dequant in ["nonlinear", "layernorm"]: logger.info("Force dequantize layernorm") self.quant_mode = False self.register_buffer("shift", torch.zeros(1)) self.output_bit = output_bit self.max_bit = 32 self.dim_sqrt = None self.activation = QuantAct(self.output_bit, quant_mode=self.quant_mode) def set_shift(self, y_int): with torch.no_grad(): y_sq_int = y_int**2 var_int = torch.sum(y_sq_int, axis=2, keepdim=True) shift = (torch.log2(torch.sqrt(var_int / 2**self.max_bit)).ceil()).max() shift_old = self.shift self.shift = torch.max(self.shift, shift) logger.info(f"Dynamic shift adjustment: {int(shift_old)} -> {int(self.shift)}") def overflow_fallback(self, y_int): """ This fallback function is called when overflow is detected during training time, and adjusts the `self.shift` to avoid overflow in the subsequent runs. """ self.set_shift(y_int) # adjusts `self.shift` y_int_shifted = floor_ste.apply(y_int / 2**self.shift) y_sq_int = y_int_shifted**2 var_int = torch.sum(y_sq_int, axis=2, keepdim=True) return var_int def forward(self, x, scaling_factor=None): if not self.quant_mode: mean = x.mean(axis=2, keepdim=True) y = x - mean var = torch.mean(y**2, axis=2, keepdim=True) x = y / torch.sqrt(self.eps + var) x = x * self.weight + self.bias return x, None # compute sqrt of the feature dimension if it is the first run if self.dim_sqrt is None: n = torch.tensor(x.shape[2], dtype=torch.float) self.dim_sqrt = torch.sqrt(n).to(x.device) # Normalization: computes mean and variance(std) x_int = x / scaling_factor mean_int = round_ste.apply(x_int.mean(axis=2, keepdim=True)) y_int = x_int - mean_int y_int_shifted = floor_ste.apply(y_int / 2**self.shift) y_sq_int = y_int_shifted**2 var_int = torch.sum(y_sq_int, axis=2, keepdim=True) # overflow handling in training time if self.training: # if overflow is detected if var_int.max() >= 2**self.max_bit: var_int = self.overflow_fallback(y_int) assert var_int.max() < 2**self.max_bit + 0.1, ( "Error detected in overflow handling: " "`var_int` exceeds `self.max_bit` (the maximum possible bit width)" ) # To be replaced with integer-sqrt kernel that produces the same output std_int = floor_ste.apply(torch.sqrt(var_int)) * 2**self.shift factor = floor_ste.apply(2**31 / std_int) y_int = floor_ste.apply(y_int * factor / 2) scaling_factor = self.dim_sqrt / 2**30 # scaling and shifting bias = self.bias.data.detach() / (self.weight.data.detach()) bias_int = floor_ste.apply(bias / scaling_factor) y_int = y_int + bias_int scaling_factor = scaling_factor * self.weight x = y_int * scaling_factor return x, scaling_factor
class_definition
16,071
20,221
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/ibert/quant_modules.py
null
9,208
class SymmetricQuantFunction(Function): """ Class to quantize the given floating-point values using symmetric quantization with given range and bitwidth. """ @staticmethod def forward(ctx, x, k, percentile_mode, scale): """ Args: x (`torch.Tensor`): Floating point tensor to be quantized. k (`int`): Quantization bitwidth. percentile_mode (`bool`): Whether or not to use percentile calibration. scale (`torch.Tensor`): Pre-calculated scaling factor for *x*. Note that the current implementation of SymmetricQuantFunction requires pre-calculated scaling factor. Returns: `torch.Tensor`: Symmetric-quantized value of *input*. """ zero_point = torch.tensor(0.0).to(scale.device) n = 2 ** (k - 1) - 1 new_quant_x = linear_quantize(x, scale, zero_point, inplace=False) new_quant_x = torch.clamp(new_quant_x, -n, n - 1) ctx.scale = scale return new_quant_x @staticmethod def backward(ctx, grad_output): scale = ctx.scale if len(grad_output.shape) == 4: scale = scale.view(-1, 1, 1, 1) # reshape scale and zeropoint for linear weights elif len(grad_output.shape) == 2: scale = scale.view(-1, 1) else: scale = scale.view(-1) return grad_output.clone() / scale, None, None, None, None
class_definition
24,068
25,581
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/ibert/quant_modules.py
null
9,209
class floor_ste(Function): """ Straight-through Estimator(STE) for torch.floor() """ @staticmethod def forward(ctx, x): return torch.floor(x) @staticmethod def backward(ctx, grad_output): return grad_output.clone()
class_definition
25,584
25,844
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/ibert/quant_modules.py
null
9,210
class round_ste(Function): """ Straight-through Estimator(STE) for torch.round() """ @staticmethod def forward(ctx, x): return torch.round(x) @staticmethod def backward(ctx, grad_output): return grad_output.clone()
class_definition
25,847
26,107
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/ibert/quant_modules.py
null
9,211
class FixedPointMul(Function): """ Function to perform fixed-point arithmetic that can match integer arithmetic on hardware. Args: pre_act (`torch.Tensor`): Input tensor. pre_act_scaling_factor (`torch.Tensor`): Scaling factor of the input tensor *pre_act*. bit_num (`int`): Quantization bitwidth. z_scaling_factor (`torch.Tensor`): Scaling factor of the output tensor. identity (`torch.Tensor`, *optional*): Identity tensor, if exists. identity_scaling_factor (`torch.Tensor`, *optional*): Scaling factor of the identity tensor *identity*, if exists. Returns: `torch.Tensor`: Output tensor(*pre_act* if *identity* is not given, otherwise the addition of *pre_act* and *identity*), whose scale is rescaled to *z_scaling_factor*. """ @staticmethod def forward( ctx, pre_act, pre_act_scaling_factor, bit_num, z_scaling_factor, identity=None, identity_scaling_factor=None, ): if len(pre_act_scaling_factor.shape) == 3: reshape = lambda x: x # noqa: E731 else: reshape = lambda x: x.view(1, 1, -1) # noqa: E731 ctx.identity = identity n = 2 ** (bit_num - 1) - 1 with torch.no_grad(): pre_act_scaling_factor = reshape(pre_act_scaling_factor) if identity is not None: identity_scaling_factor = reshape(identity_scaling_factor) ctx.z_scaling_factor = z_scaling_factor z_int = torch.round(pre_act / pre_act_scaling_factor) _A = pre_act_scaling_factor.type(torch.double) _B = (z_scaling_factor.type(torch.float)).type(torch.double) new_scale = _A / _B new_scale = reshape(new_scale) m, e = batch_frexp(new_scale) output = z_int.type(torch.double) * m.type(torch.double) output = torch.round(output / (2.0**e)) if identity is not None: # needs addition of identity activation wx_int = torch.round(identity / identity_scaling_factor) _A = identity_scaling_factor.type(torch.double) _B = (z_scaling_factor.type(torch.float)).type(torch.double) new_scale = _A / _B new_scale = reshape(new_scale) m1, e1 = batch_frexp(new_scale) output1 = wx_int.type(torch.double) * m1.type(torch.double) output1 = torch.round(output1 / (2.0**e1)) output = output1 + output return torch.clamp(output.type(torch.float), -n - 1, n) @staticmethod def backward(ctx, grad_output): identity_grad = None if ctx.identity is not None: identity_grad = grad_output.clone() / ctx.z_scaling_factor return grad_output.clone() / ctx.z_scaling_factor, None, None, None, None, identity_grad, None
class_definition
27,041
30,071
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/ibert/quant_modules.py
null
9,212
class IBertConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a [`IBertModel`]. It is used to instantiate a I-BERT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the IBERT [kssteven/ibert-roberta-base](https://huggingface.co/kssteven/ibert-roberta-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the I-BERT model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`IBertModel`] hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`IBertModel`] initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). quant_mode (`bool`, *optional*, defaults to `False`): Whether to quantize the model or not. force_dequant (`str`, *optional*, defaults to `"none"`): Force dequantize specific nonlinear layer. Dequatized layers are then executed with full precision. `"none"`, `"gelu"`, `"softmax"`, `"layernorm"` and `"nonlinear"` are supported. As deafult, it is set as `"none"`, which does not dequantize any layers. Please specify `"gelu"`, `"softmax"`, or `"layernorm"` to dequantize GELU, Softmax, or LayerNorm, respectively. `"nonlinear"` will dequantize all nonlinear layers, i.e., GELU, Softmax, and LayerNorm. """ model_type = "ibert" def __init__( self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=1, bos_token_id=0, eos_token_id=2, position_embedding_type="absolute", quant_mode=False, force_dequant="none", **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.quant_mode = quant_mode self.force_dequant = force_dequant
class_definition
1,025
6,597
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/ibert/configuration_ibert.py
null
9,213
class IBertOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} else: dynamic_axis = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
class_definition
6,600
7,046
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/ibert/configuration_ibert.py
null
9,214
class GlmMLP(Phi3MLP): pass
class_definition
1,089
1,120
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/glm/modular_glm.py
null
9,215
class GlmAttention(LlamaAttention): def __init__(self, config: GlmConfig, layer_idx: Optional[int] = None): super().__init__(config, layer_idx) self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
class_definition
3,449
3,712
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/glm/modular_glm.py
null
9,216
class GlmForCausalLM(LlamaForCausalLM): pass
class_definition
3,715
3,763
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/glm/modular_glm.py
null
9,217
class GlmForSequenceClassification(LlamaForSequenceClassification): pass
class_definition
3,766
3,842
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/glm/modular_glm.py
null
9,218
class GlmForTokenClassification(LlamaForTokenClassification): pass
class_definition
3,845
3,915
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/glm/modular_glm.py
null
9,219
class GlmConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`GlmModel`]. It is used to instantiate an Glm model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Glm-4-9b-chat. e.g. [THUDM/glm-4-9b-chat](https://huggingface.co/THUDM/glm-4-9b-chat) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 151552): Vocabulary size of the Glm model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`GlmModel`] hidden_size (`int`, *optional*, defaults to 4096): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 13696): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 40): Number of hidden layers in the Transformer decoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer decoder. num_key_value_heads (`int`, *optional*, defaults to 2): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `num_attention_heads`. partial_rotary_factor (`float`, *optional*, defaults to 0.5): The factor of the partial rotary position. head_dim (`int`, *optional*, defaults to 128): The attention head dimension. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The legacy activation function. It is overwritten by the `hidden_activation`. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 131072): The maximum sequence length that this model might ever be used with. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. rms_norm_eps (`float`, *optional*, defaults to 1.5625e-07): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether to tie weight embeddings rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. pad_token_id (`int`, *optional*, defaults to 151329): Padding token id. eos_token_id (`int` | `list`, *optional*, defaults to `[151329, 151336, 151338]`): End of stream token id. bos_token_id (`int`, *optional*): Beginning of stream token id. attention_bias (`bool`, defaults to `False`, *optional*, defaults to `True`): Whether to use a bias in the query, key, value and output projection layers during self-attention. ```python >>> from transformers import GlmModel, GlmConfig >>> # Initializing a Glm glm-4-9b-chat style configuration >>> configuration = GlmConfig() >>> # Initializing a model from the glm-4-9b-chat style configuration >>> model = GlmModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "glm" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=151552, hidden_size=4096, intermediate_size=13696, num_hidden_layers=40, num_attention_heads=32, num_key_value_heads=2, partial_rotary_factor=0.5, head_dim=128, hidden_act="silu", attention_dropout=0.0, max_position_embeddings=131072, initializer_range=0.02, rms_norm_eps=0.00000015625, use_cache=True, tie_word_embeddings=False, rope_theta=10000.0, pad_token_id=151329, eos_token_id=[151329, 151336, 151338], bos_token_id=None, attention_bias=True, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.partial_rotary_factor = partial_rotary_factor self.head_dim = head_dim self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.attention_bias = attention_bias self.attention_dropout = attention_dropout super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, )
class_definition
706
6,835
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/glm/configuration_glm.py
null
9,220
class GlmMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False) self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False) self.activation_fn = ACT2FN[config.hidden_act] def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: up_states = self.gate_up_proj(hidden_states) gate, up_states = up_states.chunk(2, dim=-1) up_states = up_states * self.activation_fn(gate) return self.down_proj(up_states)
class_definition
2,482
3,128
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/glm/modeling_glm.py
null
9,221
class GlmAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: GlmConfig, layer_idx: Optional[int] = None): super().__init__() self.config = config self.layer_idx = layer_idx self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads self.scaling = self.head_dim**-0.5 self.attention_dropout = config.attention_dropout self.is_causal = True self.q_proj = nn.Linear( config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias ) self.k_proj = nn.Linear( config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias ) self.v_proj = nn.Linear( config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias ) self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False) def forward( self, hidden_states: torch.Tensor, position_embeddings: Tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor], past_key_value: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): logger.warning_once( "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) else: attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights
class_definition
7,008
10,550
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/glm/modeling_glm.py
null
9,222
class GlmRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ GlmRMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
class_definition
10,553
11,269
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/glm/modeling_glm.py
null
9,223
class GlmRotaryEmbedding(nn.Module): def __init__(self, config: GlmConfig, device=None): super().__init__() # BC: "rope_type" was originally "type" if hasattr(config, "rope_scaling") and config.rope_scaling is not None: self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) else: self.rope_type = "default" self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings self.config = config self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq def _dynamic_frequency_update(self, position_ids, device): """ dynamic RoPE layers should recompute `inv_freq` in the following situations: 1 - growing beyond the cached sequence length (allow scaling) 2 - the current sequence length is in the original scale (avoid losing precision with small sequences) """ seq_len = torch.max(position_ids) + 1 if seq_len > self.max_seq_len_cached: # growth inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len) self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation self.max_seq_len_cached = seq_len if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset # This .to() is needed if the model has been moved to a device after being initialized (because # the buffer is automatically moved, but not the original copy) self.original_inv_freq = self.original_inv_freq.to(device) self.register_buffer("inv_freq", self.original_inv_freq, persistent=False) self.max_seq_len_cached = self.original_max_seq_len @torch.no_grad() def forward(self, x, position_ids): if "dynamic" in self.rope_type: self._dynamic_frequency_update(position_ids, device=x.device) # Core RoPE block inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) position_ids_expanded = position_ids[:, None, :].float() # Force float32 (see https://github.com/huggingface/transformers/pull/29285) device_type = x.device.type device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() sin = emb.sin() # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention cos = cos * self.attention_scaling sin = sin * self.attention_scaling return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
class_definition
11,272
14,463
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/glm/modeling_glm.py
null
9,224
class GlmDecoderLayer(nn.Module): def __init__(self, config: GlmConfig, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.self_attn = GlmAttention(config=config, layer_idx=layer_idx) self.mlp = GlmMLP(config) self.input_layernorm = GlmRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = GlmRMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC **kwargs: Unpack[FlashAttentionKwargs], ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **kwargs, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) return outputs
class_definition
14,466
16,524
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/glm/modeling_glm.py
null
9,225
class GlmPreTrainedModel(PreTrainedModel): config_class = GlmConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["GlmDecoderLayer"] _skip_keys_device_placement = ["past_key_values"] _supports_flash_attn_2 = True _supports_sdpa = True _supports_flex_attn = True _supports_cache_class = True _supports_quantized_cache = True _supports_static_cache = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_()
class_definition
17,538
18,455
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/glm/modeling_glm.py
null
9,226
class GlmModel(GlmPreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`GlmDecoderLayer`] Args: config: GlmConfig """ def __init__(self, config: GlmConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [GlmDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.norm = GlmRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.rotary_emb = GlmRotaryEmbedding(config=config) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(GLM_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **flash_attn_kwargs: Unpack[FlashAttentionKwargs], ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if use_cache and past_key_values is None: past_key_values = DynamicCache() if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask( attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions ) hidden_states = inputs_embeds # create position embeddings to be shared across the decoder layers position_embeddings = self.rotary_emb(hidden_states, position_ids) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None for decoder_layer in self.layers[: self.config.num_hidden_layers]: if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, causal_mask, position_ids, past_key_values, output_attentions, use_cache, cache_position, position_embeddings, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **flash_attn_kwargs, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) output = BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values if use_cache else None, hidden_states=all_hidden_states, attentions=all_self_attns, ) return output if return_dict else output.to_tuple() def _update_causal_mask( self, attention_mask: torch.Tensor, input_tensor: torch.Tensor, cache_position: torch.Tensor, past_key_values: Cache, output_attentions: bool, ): if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and (attention_mask == 0.0).any(): return attention_mask return None # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail # to infer the attention mask. past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 using_static_cache = isinstance(past_key_values, StaticCache) # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions: if AttentionMaskConverter._ignore_causal_mask_sdpa( attention_mask, inputs_embeds=input_tensor, past_key_values_length=past_seen_tokens, is_training=self.training, ): return None dtype, device = input_tensor.dtype, input_tensor.device sequence_length = input_tensor.shape[1] if using_static_cache: target_length = past_key_values.get_max_cache_shape() else: target_length = ( attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else past_seen_tokens + sequence_length + 1 ) # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( attention_mask, sequence_length=sequence_length, target_length=target_length, dtype=dtype, device=device, cache_position=cache_position, batch_size=input_tensor.shape[0], ) if ( self.config._attn_implementation == "sdpa" and attention_mask is not None and attention_mask.device.type == "cuda" and not output_attentions ): # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 min_dtype = torch.finfo(dtype).min causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) return causal_mask @staticmethod def _prepare_4d_causal_attention_mask_with_cache_position( attention_mask: torch.Tensor, sequence_length: int, target_length: int, dtype: torch.dtype, device: torch.device, cache_position: torch.Tensor, batch_size: int, **kwargs, ): """ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. Args: attention_mask (`torch.Tensor`): A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. sequence_length (`int`): The sequence length being processed. target_length (`int`): The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. dtype (`torch.dtype`): The dtype to use for the 4D attention mask. device (`torch.device`): The device to plcae the 4D attention mask on. cache_position (`torch.Tensor`): Indices depicting the position of the input sequence tokens in the sequence. batch_size (`torch.Tensor`): Batch size. """ if attention_mask is not None and attention_mask.dim() == 4: # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. causal_mask = attention_mask else: min_dtype = torch.finfo(dtype).min causal_mask = torch.full( (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device ) if sequence_length != 1: causal_mask = torch.triu(causal_mask, diagonal=1) causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit mask_length = attention_mask.shape[-1] padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] padding_mask = padding_mask == 0 causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( padding_mask, min_dtype ) return causal_mask
class_definition
23,253
34,460
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/glm/modeling_glm.py
null
9,227
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
class_definition
34,463
34,525
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/glm/modeling_glm.py
null
9,228
class GlmForCausalLM(GlmPreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] _tp_plan = {"lm_head": "colwise_rep"} def __init__(self, config): super().__init__(config) self.model = GlmModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @add_start_docstrings_to_model_forward(GLM_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, num_logits_to_keep: int = 0, **kwargs: Unpack[KwargsForCausalLM], ) -> Union[Tuple, CausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. num_logits_to_keep (`int`, *optional*): Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences or large vocabulary size. Returns: Example: ```python >>> from transformers import AutoTokenizer, GlmForCausalLM >>> model = GlmForCausalLM.from_pretrained("meta-glm/Glm-2-7b-hf") >>> tokenizer = AutoTokenizer.from_pretrained("meta-glm/Glm-2-7b-hf") >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, **kwargs, ) hidden_states = outputs[0] # Only compute necessary logits, and do not upcast them to float if we are not computing the loss logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :]) loss = None if labels is not None: loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
34,528
39,635
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/glm/modeling_glm.py
null
9,229
class GlmForSequenceClassification(GlmPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = GlmModel(config) self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @add_start_docstrings_to_model_forward(GLM_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 sequence_lengths = sequence_lengths % input_ids.shape[-1] sequence_lengths = sequence_lengths.to(logits.device) else: sequence_lengths = -1 pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] loss = None if labels is not None: loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )
class_definition
40,422
44,226
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/glm/modeling_glm.py
null
9,230
class GlmForTokenClassification(GlmPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = GlmModel(config) if getattr(config, "classifier_dropout", None) is not None: classifier_dropout = config.classifier_dropout elif getattr(config, "hidden_dropout", None) is not None: classifier_dropout = config.hidden_dropout else: classifier_dropout = 0.1 self.dropout = nn.Dropout(classifier_dropout) self.score = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @add_start_docstrings_to_model_forward(GLM_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.score(sequence_output) loss = None if labels is not None: loss = self.loss_function(logits, labels, self.config) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
44,469
47,673
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/glm/modeling_glm.py
null
9,231
class TFFlaubertPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = FlaubertConfig base_model_prefix = "transformer" @property def dummy_inputs(self): # Sometimes Flaubert has language embeddings so don't forget to build them as well if needed inputs_list = tf.constant([[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]], dtype=tf.int32) attns_list = tf.constant([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]], dtype=tf.int32) if self.config.use_lang_emb and self.config.n_langs > 1: return { "input_ids": inputs_list, "attention_mask": attns_list, "langs": tf.constant([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]], dtype=tf.int32), } else: return {"input_ids": inputs_list, "attention_mask": attns_list}
class_definition
10,238
11,241
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flaubert/modeling_tf_flaubert.py
null
9,232
class TFFlaubertModel(TFFlaubertPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFFlaubertMainLayer(config, name="transformer") @unpack_inputs @add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: np.ndarray | tf.Tensor | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, langs: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, lengths: np.ndarray | tf.Tensor | None = None, cache: Optional[Dict[str, tf.Tensor]] = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[Tuple, TFBaseModelOutput]: outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, langs=langs, token_type_ids=token_type_ids, position_ids=position_ids, lengths=lengths, cache=cache, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None)
class_definition
11,405
13,465
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flaubert/modeling_tf_flaubert.py
null
9,233
class TFFlaubertMultiHeadAttention(keras.layers.Layer): NEW_ID = itertools.count() def __init__(self, n_heads, dim, config, **kwargs): super().__init__(**kwargs) self.layer_id = next(TFFlaubertMultiHeadAttention.NEW_ID) self.dim = dim self.n_heads = n_heads self.output_attentions = config.output_attentions assert self.dim % self.n_heads == 0 self.q_lin = keras.layers.Dense(dim, kernel_initializer=get_initializer(config.init_std), name="q_lin") self.k_lin = keras.layers.Dense(dim, kernel_initializer=get_initializer(config.init_std), name="k_lin") self.v_lin = keras.layers.Dense(dim, kernel_initializer=get_initializer(config.init_std), name="v_lin") self.out_lin = keras.layers.Dense(dim, kernel_initializer=get_initializer(config.init_std), name="out_lin") self.dropout = keras.layers.Dropout(config.attention_dropout) self.pruned_heads = set() self.dim = dim def prune_heads(self, heads): raise NotImplementedError def call(self, input, mask, kv, cache, head_mask, output_attentions, training=False): """ Self-attention (if kv is None) or attention over source sentence (provided by kv). """ # Input is (bs, qlen, dim) # Mask is (bs, klen) (non-causal) or (bs, klen, klen) bs, qlen, dim = shape_list(input) if kv is None: klen = qlen if cache is None else cache["slen"] + qlen else: klen = shape_list(kv)[1] # assert dim == self.dim, f'Dimensions do not match: {dim} input vs {self.dim} configured' dim_per_head = self.dim // self.n_heads mask_reshape = (bs, 1, qlen, klen) if len(shape_list(mask)) == 3 else (bs, 1, 1, klen) def shape(x): """projection""" return tf.transpose(tf.reshape(x, (bs, -1, self.n_heads, dim_per_head)), perm=(0, 2, 1, 3)) def unshape(x): """compute context""" return tf.reshape(tf.transpose(x, perm=(0, 2, 1, 3)), (bs, -1, self.n_heads * dim_per_head)) q = shape(self.q_lin(input)) # (bs, n_heads, qlen, dim_per_head) if kv is None: k = shape(self.k_lin(input)) # (bs, n_heads, qlen, dim_per_head) v = shape(self.v_lin(input)) # (bs, n_heads, qlen, dim_per_head) elif cache is None or self.layer_id not in cache: k = v = kv k = shape(self.k_lin(k)) # (bs, n_heads, qlen, dim_per_head) v = shape(self.v_lin(v)) # (bs, n_heads, qlen, dim_per_head) if cache is not None: if self.layer_id in cache: if kv is None: k_, v_ = cache[self.layer_id] k = tf.concat([k_, k], axis=2) # (bs, n_heads, klen, dim_per_head) v = tf.concat([v_, v], axis=2) # (bs, n_heads, klen, dim_per_head) else: k, v = cache[self.layer_id] cache[self.layer_id] = (k, v) f_dim_per_head = tf.cast(dim_per_head, dtype=q.dtype) q = tf.multiply(q, tf.math.rsqrt(f_dim_per_head)) # (bs, n_heads, qlen, dim_per_head) k = tf.cast(k, dtype=q.dtype) scores = tf.matmul(q, k, transpose_b=True) # (bs, n_heads, qlen, klen) mask = tf.reshape(mask, mask_reshape) # (bs, n_heads, qlen, klen) # scores.masked_fill_(mask, -float('inf')) # (bs, n_heads, qlen, klen) mask = tf.cast(mask, dtype=scores.dtype) scores = scores - 1e30 * (1.0 - mask) weights = stable_softmax(scores, axis=-1) # (bs, n_heads, qlen, klen) weights = self.dropout(weights, training=training) # (bs, n_heads, qlen, klen) # Mask heads if we want to if head_mask is not None: weights = weights * head_mask context = tf.matmul(weights, v) # (bs, n_heads, qlen, dim_per_head) context = unshape(context) # (bs, qlen, dim) outputs = (self.out_lin(context),) if output_attentions: outputs = outputs + (weights,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "q_lin", None) is not None: with tf.name_scope(self.q_lin.name): self.q_lin.build([None, None, self.dim]) if getattr(self, "k_lin", None) is not None: with tf.name_scope(self.k_lin.name): self.k_lin.build([None, None, self.dim]) if getattr(self, "v_lin", None) is not None: with tf.name_scope(self.v_lin.name): self.v_lin.build([None, None, self.dim]) if getattr(self, "out_lin", None) is not None: with tf.name_scope(self.out_lin.name): self.out_lin.build([None, None, self.dim])
class_definition
13,565
18,442
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flaubert/modeling_tf_flaubert.py
null
9,234
class TFFlaubertTransformerFFN(keras.layers.Layer): def __init__(self, in_dim, dim_hidden, out_dim, config, **kwargs): super().__init__(**kwargs) self.lin1 = keras.layers.Dense(dim_hidden, kernel_initializer=get_initializer(config.init_std), name="lin1") self.lin2 = keras.layers.Dense(out_dim, kernel_initializer=get_initializer(config.init_std), name="lin2") self.act = get_tf_activation("gelu") if config.gelu_activation else get_tf_activation("relu") self.dropout = keras.layers.Dropout(config.dropout) self.in_dim = in_dim self.dim_hidden = dim_hidden def call(self, input, training=False): x = self.lin1(input) x = self.act(x) x = self.lin2(x) x = self.dropout(x, training=training) return x def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "lin1", None) is not None: with tf.name_scope(self.lin1.name): self.lin1.build([None, None, self.in_dim]) if getattr(self, "lin2", None) is not None: with tf.name_scope(self.lin2.name): self.lin2.build([None, None, self.dim_hidden])
class_definition
18,519
19,753
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flaubert/modeling_tf_flaubert.py
null
9,235
class TFFlaubertMainLayer(keras.layers.Layer): config_class = FlaubertConfig def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.n_heads = config.n_heads self.n_langs = config.n_langs self.dim = config.emb_dim self.hidden_dim = self.dim * 4 self.n_words = config.n_words self.pad_index = config.pad_index self.causal = config.causal self.n_layers = config.n_layers self.use_lang_emb = config.use_lang_emb self.layerdrop = getattr(config, "layerdrop", 0.0) self.pre_norm = getattr(config, "pre_norm", False) self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.return_dict = config.use_return_dict self.max_position_embeddings = config.max_position_embeddings self.embed_init_std = config.embed_init_std self.dropout = keras.layers.Dropout(config.dropout) self.embeddings = TFSharedEmbeddings( self.n_words, self.dim, initializer_range=config.embed_init_std, name="embeddings" ) self.layer_norm_emb = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm_emb") self.attentions = [] self.layer_norm1 = [] self.ffns = [] self.layer_norm2 = [] for i in range(self.n_layers): self.attentions.append( TFFlaubertMultiHeadAttention(self.n_heads, self.dim, config=config, name=f"attentions_._{i}") ) self.layer_norm1.append( keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name=f"layer_norm1_._{i}") ) # if self.is_decoder: # self.layer_norm15.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps)) # self.encoder_attn.append(MultiHeadAttention(self.n_heads, self.dim, dropout=self.attention_dropout)) self.ffns.append( TFFlaubertTransformerFFN(self.dim, self.hidden_dim, self.dim, config=config, name=f"ffns_._{i}") ) self.layer_norm2.append( keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name=f"layer_norm2_._{i}") ) def build(self, input_shape=None): with tf.name_scope("position_embeddings"): self.position_embeddings = self.add_weight( name="embeddings", shape=[self.max_position_embeddings, self.dim], initializer=get_initializer(self.embed_init_std), ) if self.n_langs > 1 and self.use_lang_emb: with tf.name_scope("lang_embeddings"): self.lang_embeddings = self.add_weight( name="embeddings", shape=[self.n_langs, self.dim], initializer=get_initializer(self.embed_init_std), ) if self.built: return self.built = True if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) if getattr(self, "layer_norm_emb", None) is not None: with tf.name_scope(self.layer_norm_emb.name): self.layer_norm_emb.build([None, None, self.dim]) for layer in self.attentions: with tf.name_scope(layer.name): layer.build(None) for layer in self.layer_norm1: with tf.name_scope(layer.name): layer.build([None, None, self.dim]) for layer in self.ffns: with tf.name_scope(layer.name): layer.build(None) for layer in self.layer_norm2: with tf.name_scope(layer.name): layer.build([None, None, self.dim]) def get_input_embeddings(self): return self.embeddings def set_input_embeddings(self, value): self.embeddings.weight = value self.embeddings.vocab_size = shape_list(value)[0] @unpack_inputs def call( self, input_ids: np.ndarray | tf.Tensor | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, langs: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, lengths: np.ndarray | tf.Tensor | None = None, cache: Optional[Dict[str, tf.Tensor]] = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[Tuple, TFBaseModelOutput]: # removed: src_enc=None, src_len=None if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: bs, slen = shape_list(input_ids) elif inputs_embeds is not None: bs, slen = shape_list(inputs_embeds)[:2] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if lengths is None: if input_ids is not None: lengths = tf.reduce_sum( tf.cast(tf.not_equal(input_ids, self.pad_index), dtype=input_ids.dtype), axis=1 ) else: lengths = tf.convert_to_tensor([slen] * bs) # mask = input_ids != self.pad_index # check inputs # assert shape_list(lengths)[0] == bs ( tf.debugging.assert_equal(shape_list(lengths)[0], bs), f"Expected batch size {shape_list(lengths)[0]} and received batch size {bs} mismatched", ) # assert lengths.max().item() <= slen # input_ids = input_ids.transpose(0, 1) # batch size as dimension 0 # assert (src_enc is None) == (src_len is None) # if src_enc is not None: # assert self.is_decoder # assert src_enc.size(0) == bs # generate masks mask, attn_mask = get_masks(slen, lengths, self.causal, padding_mask=attention_mask) # if self.is_decoder and src_enc is not None: # src_mask = torch.arange(src_len.max(), dtype=torch.long, device=lengths.device) < src_len[:, None] # position_ids if position_ids is None: position_ids = tf.expand_dims(tf.range(slen), axis=0) position_ids = tf.tile(position_ids, (bs, 1)) # assert shape_list(position_ids) == [bs, slen] # (slen, bs) ( tf.debugging.assert_equal(shape_list(position_ids), [bs, slen]), f"Position id shape {shape_list(position_ids)} and input shape {[bs, slen]} mismatched", ) # position_ids = position_ids.transpose(0, 1) # langs if langs is not None: # assert shape_list(langs) == [bs, slen] # (slen, bs) ( tf.debugging.assert_equal(shape_list(langs), [bs, slen]), f"Lang shape {shape_list(langs)} and input shape {[bs, slen]} mismatched", ) # langs = langs.transpose(0, 1) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x qlen x klen] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.n_layers # do not recompute cached elements if cache is not None and input_ids is not None: _slen = slen - cache["slen"] input_ids = input_ids[:, -_slen:] position_ids = position_ids[:, -_slen:] if langs is not None: langs = langs[:, -_slen:] mask = mask[:, -_slen:] attn_mask = attn_mask[:, -_slen:] # embeddings if inputs_embeds is None: check_embeddings_within_bounds(input_ids, self.embeddings.vocab_size) inputs_embeds = self.embeddings(input_ids) tensor = inputs_embeds + tf.gather(self.position_embeddings, position_ids) if langs is not None and self.use_lang_emb: tensor = tensor + tf.gather(self.lang_embeddings, langs) if token_type_ids is not None: tensor = tensor + self.embeddings(token_type_ids) tensor = self.layer_norm_emb(tensor) tensor = self.dropout(tensor, training=training) mask = tf.cast(mask, dtype=tensor.dtype) tensor = tensor * tf.expand_dims(mask, axis=-1) # hidden_states and attentions cannot be None in graph mode. hidden_states = () if output_hidden_states else None attentions = () if output_attentions else None # transformer layers for i in range(self.n_layers): # LayerDrop dropout_probability = random.uniform(0, 1) if training and (dropout_probability < self.layerdrop): continue if output_hidden_states: hidden_states = hidden_states + (tensor,) # self attention if not self.pre_norm: attn_outputs = self.attentions[i]( tensor, attn_mask, None, cache, head_mask[i], output_attentions, training=training, ) attn = attn_outputs[0] if output_attentions: attentions = attentions + (attn_outputs[1],) attn = self.dropout(attn, training=training) tensor = tensor + attn tensor = self.layer_norm1[i](tensor) else: tensor_normalized = self.layer_norm1[i](tensor) attn_outputs = self.attentions[i]( tensor_normalized, attn_mask, None, cache, head_mask[i], output_attentions, training=training, ) attn = attn_outputs[0] if output_attentions: attentions = attentions + (attn_outputs[1],) attn = self.dropout(attn, training=training) tensor = tensor + attn # encoder attention (for decoder only) # if self.is_decoder and src_enc is not None: # attn = self.encoder_attn[i](tensor, src_mask, kv=src_enc, cache=cache) # attn = nn.functional.dropout(attn, p=self.dropout, training=self.training) # tensor = tensor + attn # tensor = self.layer_norm15[i](tensor) # FFN if not self.pre_norm: tensor = tensor + self.ffns[i](tensor) tensor = self.layer_norm2[i](tensor) else: tensor_normalized = self.layer_norm2[i](tensor) tensor = tensor + self.ffns[i](tensor_normalized) tensor = tensor * tf.expand_dims(mask, axis=-1) # Add last hidden state if output_hidden_states: hidden_states = hidden_states + (tensor,) # update cache length if cache is not None: cache["slen"] += tensor.size(1) # move back sequence length to dimension 0 # tensor = tensor.transpose(0, 1) if not return_dict: return tuple(v for v in [tensor, hidden_states, attentions] if v is not None) return TFBaseModelOutput(last_hidden_state=tensor, hidden_states=hidden_states, attentions=attentions)
class_definition
19,776
31,868
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flaubert/modeling_tf_flaubert.py
null
9,236
class TFFlaubertPredLayer(keras.layers.Layer): """ Prediction layer (cross_entropy or adaptive_softmax). """ def __init__(self, config, input_embeddings, **kwargs): super().__init__(**kwargs) self.asm = config.asm self.n_words = config.n_words self.pad_index = config.pad_index if config.asm is False: self.input_embeddings = input_embeddings else: raise NotImplementedError # self.proj = nn.AdaptiveLogSoftmaxWithLoss( # in_features=dim, # n_classes=config.n_words, # cutoffs=config.asm_cutoffs, # div_value=config.asm_div_value, # head_bias=True, # default is False # ) def build(self, input_shape): # The output weights are the same as the input embeddings, but there is an output-only bias for each token. self.bias = self.add_weight(shape=(self.n_words,), initializer="zeros", trainable=True, name="bias") super().build(input_shape) def get_output_embeddings(self): return self.input_embeddings def set_output_embeddings(self, value): self.input_embeddings.weight = value self.input_embeddings.vocab_size = shape_list(value)[0] def get_bias(self): return {"bias": self.bias} def set_bias(self, value): self.bias = value["bias"] self.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states): hidden_states = self.input_embeddings(hidden_states, mode="linear") hidden_states = hidden_states + self.bias return hidden_states
class_definition
31,940
33,605
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flaubert/modeling_tf_flaubert.py
null
9,237
class TFFlaubertWithLMHeadModelOutput(ModelOutput): """ Base class for [`TFFlaubertWithLMHeadModel`] outputs. Args: logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ logits: tf.Tensor = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None
class_definition
33,619
34,931
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flaubert/modeling_tf_flaubert.py
null
9,238
class TFFlaubertWithLMHeadModel(TFFlaubertPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFFlaubertMainLayer(config, name="transformer") self.pred_layer = TFFlaubertPredLayer(config, self.transformer.embeddings, name="pred_layer_._proj") # Flaubert does not have past caching features self.supports_xla_generation = False def get_lm_head(self): return self.pred_layer def get_prefix_bias_name(self): warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.pred_layer.name def prepare_inputs_for_generation(self, inputs, **kwargs): mask_token_id = self.config.mask_token_id lang_id = self.config.lang_id effective_batch_size = inputs.shape[0] mask_token = tf.fill((effective_batch_size, 1), 1) * mask_token_id inputs = tf.concat([inputs, mask_token], axis=1) if lang_id is not None: langs = tf.ones_like(inputs) * lang_id else: langs = None return {"input_ids": inputs, "langs": langs} @unpack_inputs @add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFFlaubertWithLMHeadModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: np.ndarray | tf.Tensor | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, langs: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, lengths: np.ndarray | tf.Tensor | None = None, cache: Optional[Dict[str, tf.Tensor]] = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[Tuple, TFFlaubertWithLMHeadModelOutput]: transformer_outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, langs=langs, token_type_ids=token_type_ids, position_ids=position_ids, lengths=lengths, cache=cache, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) output = transformer_outputs[0] outputs = self.pred_layer(output) if not return_dict: return (outputs,) + transformer_outputs[1:] return TFFlaubertWithLMHeadModelOutput( logits=outputs, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) if getattr(self, "pred_layer", None) is not None: with tf.name_scope(self.pred_layer.name): self.pred_layer.build(None)
class_definition
35,140
38,712
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flaubert/modeling_tf_flaubert.py
null
9,239
class TFFlaubertForSequenceClassification(TFFlaubertPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.transformer = TFFlaubertMainLayer(config, name="transformer") self.sequence_summary = TFSequenceSummary(config, initializer_range=config.init_std, name="sequence_summary") @unpack_inputs @add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, langs: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, lengths: np.ndarray | tf.Tensor | None = None, cache: Optional[Dict[str, tf.Tensor]] = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ transformer_outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, langs=langs, token_type_ids=token_type_ids, position_ids=position_ids, lengths=lengths, cache=cache, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) output = transformer_outputs[0] logits = self.sequence_summary(output) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) if getattr(self, "sequence_summary", None) is not None: with tf.name_scope(self.sequence_summary.name): self.sequence_summary.build(None)
class_definition
39,062
42,566
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flaubert/modeling_tf_flaubert.py
null
9,240
class TFFlaubertForQuestionAnsweringSimple(TFFlaubertPreTrainedModel, TFQuestionAnsweringLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFFlaubertMainLayer(config, name="transformer") self.qa_outputs = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.init_std), name="qa_outputs" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, langs: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, lengths: np.ndarray | tf.Tensor | None = None, cache: Optional[Dict[str, tf.Tensor]] = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, start_positions: np.ndarray | tf.Tensor | None = None, end_positions: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: r""" start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ transformer_outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, langs=langs, token_type_ids=token_type_ids, position_ids=position_ids, lengths=lengths, cache=cache, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = transformer_outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = tf.split(logits, 2, axis=-1) start_logits = tf.squeeze(start_logits, axis=-1) end_logits = tf.squeeze(end_logits, axis=-1) loss = None if start_positions is not None and end_positions is not None: labels = {"start_position": start_positions} labels["end_position"] = end_positions loss = self.hf_compute_loss(labels, (start_logits, end_logits)) if not return_dict: output = (start_logits, end_logits) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFQuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) if getattr(self, "qa_outputs", None) is not None: with tf.name_scope(self.qa_outputs.name): self.qa_outputs.build([None, None, self.config.hidden_size])
class_definition
42,993
47,425
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flaubert/modeling_tf_flaubert.py
null
9,241
class TFFlaubertForTokenClassification(TFFlaubertPreTrainedModel, TFTokenClassificationLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.transformer = TFFlaubertMainLayer(config, name="transformer") self.dropout = keras.layers.Dropout(config.dropout) self.classifier = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.init_std), name="classifier" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, langs: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, lengths: np.ndarray | tf.Tensor | None = None, cache: Optional[Dict[str, tf.Tensor]] = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ transformer_outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, langs=langs, token_type_ids=token_type_ids, position_ids=position_ids, lengths=lengths, cache=cache, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = transformer_outputs[0] sequence_output = self.dropout(sequence_output, training=training) logits = self.classifier(sequence_output) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFTokenClassifierOutput( loss=loss, logits=logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size])
class_definition
47,791
51,333
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flaubert/modeling_tf_flaubert.py
null
9,242
class TFFlaubertForMultipleChoice(TFFlaubertPreTrainedModel, TFMultipleChoiceLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFFlaubertMainLayer(config, name="transformer") self.sequence_summary = TFSequenceSummary(config, initializer_range=config.init_std, name="sequence_summary") self.logits_proj = keras.layers.Dense( 1, kernel_initializer=get_initializer(config.initializer_range), name="logits_proj" ) self.config = config @property def dummy_inputs(self): """ Dummy inputs to build the network. Returns: tf.Tensor with dummy inputs """ # Sometimes Flaubert has language embeddings so don't forget to build them as well if needed if self.config.use_lang_emb and self.config.n_langs > 1: return { "input_ids": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS, dtype=tf.int32), "langs": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS, dtype=tf.int32), } else: return { "input_ids": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS, dtype=tf.int32), } @unpack_inputs @add_start_docstrings_to_model_forward( FLAUBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, langs: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, lengths: np.ndarray | tf.Tensor | None = None, cache: Optional[Dict[str, tf.Tensor]] = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]: if input_ids is not None: num_choices = shape_list(input_ids)[1] seq_length = shape_list(input_ids)[2] else: num_choices = shape_list(inputs_embeds)[1] seq_length = shape_list(inputs_embeds)[2] flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None flat_langs = tf.reshape(langs, (-1, seq_length)) if langs is not None else None flat_inputs_embeds = ( tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3])) if inputs_embeds is not None else None ) if lengths is not None: logger.warning( "The `lengths` parameter cannot be used with the Flaubert multiple choice models. Please use the " "attention mask instead.", ) lengths = None transformer_outputs = self.transformer( flat_input_ids, flat_attention_mask, flat_langs, flat_token_type_ids, flat_position_ids, lengths, cache, head_mask, flat_inputs_embeds, output_attentions, output_hidden_states, return_dict=return_dict, training=training, ) output = transformer_outputs[0] logits = self.sequence_summary(output) logits = self.logits_proj(logits) reshaped_logits = tf.reshape(logits, (-1, num_choices)) loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits) if not return_dict: output = (reshaped_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFMultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) if getattr(self, "sequence_summary", None) is not None: with tf.name_scope(self.sequence_summary.name): self.sequence_summary.build(None) if getattr(self, "logits_proj", None) is not None: with tf.name_scope(self.logits_proj.name): self.logits_proj.build([None, None, self.config.num_labels])
class_definition
51,696
57,078
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flaubert/modeling_tf_flaubert.py
null
9,243
class MultiHeadAttention(nn.Module): NEW_ID = itertools.count() def __init__(self, n_heads, dim, config): super().__init__() self.layer_id = next(MultiHeadAttention.NEW_ID) self.dim = dim self.n_heads = n_heads self.dropout = config.attention_dropout assert self.dim % self.n_heads == 0 self.q_lin = nn.Linear(dim, dim) self.k_lin = nn.Linear(dim, dim) self.v_lin = nn.Linear(dim, dim) self.out_lin = nn.Linear(dim, dim) self.pruned_heads = set() def prune_heads(self, heads): attention_head_size = self.dim // self.n_heads if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices(heads, self.n_heads, attention_head_size, self.pruned_heads) # Prune linear layers self.q_lin = prune_linear_layer(self.q_lin, index) self.k_lin = prune_linear_layer(self.k_lin, index) self.v_lin = prune_linear_layer(self.v_lin, index) self.out_lin = prune_linear_layer(self.out_lin, index, dim=1) # Update hyper params self.n_heads = self.n_heads - len(heads) self.dim = attention_head_size * self.n_heads self.pruned_heads = self.pruned_heads.union(heads) def forward(self, input, mask, kv=None, cache=None, head_mask=None, output_attentions=False): """ Self-attention (if kv is None) or attention over source sentence (provided by kv). """ # Input is (bs, qlen, dim) # Mask is (bs, klen) (non-causal) or (bs, klen, klen) bs, qlen, dim = input.size() if kv is None: klen = qlen if cache is None else cache["slen"] + qlen else: klen = kv.size(1) # assert dim == self.dim, f'Dimensions do not match: {dim} input vs {self.dim} configured' n_heads = self.n_heads dim_per_head = self.dim // n_heads mask_reshape = (bs, 1, qlen, klen) if mask.dim() == 3 else (bs, 1, 1, klen) def shape(x): """projection""" return x.view(bs, -1, self.n_heads, dim_per_head).transpose(1, 2) def unshape(x): """compute context""" return x.transpose(1, 2).contiguous().view(bs, -1, self.n_heads * dim_per_head) q = shape(self.q_lin(input)) # (bs, n_heads, qlen, dim_per_head) if kv is None: k = shape(self.k_lin(input)) # (bs, n_heads, qlen, dim_per_head) v = shape(self.v_lin(input)) # (bs, n_heads, qlen, dim_per_head) elif cache is None or self.layer_id not in cache: k = v = kv k = shape(self.k_lin(k)) # (bs, n_heads, qlen, dim_per_head) v = shape(self.v_lin(v)) # (bs, n_heads, qlen, dim_per_head) if cache is not None: if self.layer_id in cache: if kv is None: k_, v_ = cache[self.layer_id] k = torch.cat([k_, k], dim=2) # (bs, n_heads, klen, dim_per_head) v = torch.cat([v_, v], dim=2) # (bs, n_heads, klen, dim_per_head) else: k, v = cache[self.layer_id] cache[self.layer_id] = (k, v) q = q / math.sqrt(dim_per_head) # (bs, n_heads, qlen, dim_per_head) scores = torch.matmul(q, k.transpose(2, 3)) # (bs, n_heads, qlen, klen) mask = (mask == 0).view(mask_reshape).expand_as(scores) # (bs, n_heads, qlen, klen) scores.masked_fill_(mask, torch.finfo(scores.dtype).min) # (bs, n_heads, qlen, klen) weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores) # (bs, n_heads, qlen, klen) weights = nn.functional.dropout(weights, p=self.dropout, training=self.training) # (bs, n_heads, qlen, klen) # Mask heads if we want to if head_mask is not None: weights = weights * head_mask context = torch.matmul(weights, v) # (bs, n_heads, qlen, dim_per_head) context = unshape(context) # (bs, qlen, dim) outputs = (self.out_lin(context),) if output_attentions: outputs = outputs + (weights,) return outputs
class_definition
3,068
7,236
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flaubert/modeling_flaubert.py
null
9,244
class TransformerFFN(nn.Module): def __init__(self, in_dim, dim_hidden, out_dim, config): super().__init__() self.dropout = config.dropout self.lin1 = nn.Linear(in_dim, dim_hidden) self.lin2 = nn.Linear(dim_hidden, out_dim) self.act = gelu if config.gelu_activation else nn.functional.relu self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 def forward(self, input): return apply_chunking_to_forward(self.ff_chunk, self.chunk_size_feed_forward, self.seq_len_dim, input) def ff_chunk(self, input): x = self.lin1(input) x = self.act(x) x = self.lin2(x) x = nn.functional.dropout(x, p=self.dropout, training=self.training) return x
class_definition
7,305
8,083
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flaubert/modeling_flaubert.py
null
9,245
class FlaubertPredLayer(nn.Module): """ Prediction layer (cross_entropy or adaptive_softmax). """ def __init__(self, config): super().__init__() self.asm = config.asm self.n_words = config.n_words self.pad_index = config.pad_index dim = config.emb_dim if config.asm is False: self.proj = nn.Linear(dim, config.n_words, bias=True) else: self.proj = nn.AdaptiveLogSoftmaxWithLoss( in_features=dim, n_classes=config.n_words, cutoffs=config.asm_cutoffs, div_value=config.asm_div_value, head_bias=True, # default is False ) def forward(self, x, y=None): """Compute the loss, and optionally the scores.""" outputs = () if self.asm is False: scores = self.proj(x) outputs = (scores,) + outputs if y is not None: loss = nn.functional.cross_entropy(scores.view(-1, self.n_words), y.view(-1), reduction="mean") outputs = (loss,) + outputs else: scores = self.proj.log_prob(x) outputs = (scores,) + outputs if y is not None: _, loss = self.proj(x, y) outputs = (loss,) + outputs return outputs
class_definition
12,765
14,120
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flaubert/modeling_flaubert.py
null
9,246
class FlaubertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = FlaubertConfig load_tf_weights = None base_model_prefix = "transformer" def __init__(self, *inputs, **kwargs): super().__init__(*inputs, **kwargs) @property def dummy_inputs(self): inputs_list = torch.tensor([[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]]) attns_list = torch.tensor([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]]) if self.config.use_lang_emb and self.config.n_langs > 1: langs_list = torch.tensor([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]]) else: langs_list = None return {"input_ids": inputs_list, "attention_mask": attns_list, "langs": langs_list} def _init_weights(self, module): """Initialize the weights.""" if isinstance(module, nn.Embedding): if self.config is not None and self.config.embed_init_std is not None: nn.init.normal_(module.weight, mean=0, std=self.config.embed_init_std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() if isinstance(module, nn.Linear): if self.config is not None and self.config.init_std is not None: nn.init.normal_(module.weight, mean=0, std=self.config.init_std) if module.bias is not None: nn.init.constant_(module.bias, 0.0) if isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, FlaubertModel) and self.config.sinusoidal_embeddings: create_sinusoidal_embeddings( self.config.max_position_embeddings, self.config.emb_dim, out=module.position_embeddings.weight )
class_definition
14,212
16,180
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flaubert/modeling_flaubert.py
null
9,247
class FlaubertModel(FlaubertPreTrainedModel): def __init__(self, config): # , dico, is_encoder, with_output): super().__init__(config) # encoder / decoder, output layer self.is_encoder = config.is_encoder self.is_decoder = not config.is_encoder if self.is_decoder: raise NotImplementedError("Currently Flaubert can only be used as an encoder") # self.with_output = with_output self.causal = config.causal # dictionary / languages self.n_langs = config.n_langs self.use_lang_emb = config.use_lang_emb self.n_words = config.n_words self.eos_index = config.eos_index self.pad_index = config.pad_index # self.dico = dico # self.id2lang = config.id2lang # self.lang2id = config.lang2id # assert len(self.dico) == self.n_words # assert len(self.id2lang) == len(self.lang2id) == self.n_langs # model parameters self.dim = config.emb_dim # 512 by default self.hidden_dim = self.dim * 4 # 2048 by default self.n_heads = config.n_heads # 8 by default self.n_layers = config.n_layers self.dropout = config.dropout self.attention_dropout = config.attention_dropout assert self.dim % self.n_heads == 0, "transformer dim must be a multiple of n_heads" # embeddings self.position_embeddings = nn.Embedding(config.max_position_embeddings, self.dim) if config.n_langs > 1 and config.use_lang_emb: self.lang_embeddings = nn.Embedding(self.n_langs, self.dim) self.embeddings = nn.Embedding(self.n_words, self.dim, padding_idx=self.pad_index) self.layer_norm_emb = nn.LayerNorm(self.dim, eps=config.layer_norm_eps) # transformer layers self.attentions = nn.ModuleList() self.layer_norm1 = nn.ModuleList() self.ffns = nn.ModuleList() self.layer_norm2 = nn.ModuleList() # if self.is_decoder: # self.layer_norm15 = nn.ModuleList() # self.encoder_attn = nn.ModuleList() for _ in range(self.n_layers): self.attentions.append(MultiHeadAttention(self.n_heads, self.dim, config=config)) self.layer_norm1.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps)) # if self.is_decoder: # self.layer_norm15.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps)) # self.encoder_attn.append(MultiHeadAttention(self.n_heads, self.dim, dropout=self.attention_dropout)) self.ffns.append(TransformerFFN(self.dim, self.hidden_dim, self.dim, config=config)) self.layer_norm2.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps)) if hasattr(config, "pruned_heads"): pruned_heads = config.pruned_heads.copy().items() config.pruned_heads = {} for layer, heads in pruned_heads: if self.attentions[int(layer)].n_heads == config.n_heads: self.prune_heads({int(layer): list(map(int, heads))}) # Initialize weights and apply final processing self.post_init() self.layerdrop = getattr(config, "layerdrop", 0.0) self.pre_norm = getattr(config, "pre_norm", False) self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) # Copied from transformers.models.xlm.modeling_xlm.XLMModel.get_input_embeddings def get_input_embeddings(self): return self.embeddings # Copied from transformers.models.xlm.modeling_xlm.XLMModel.set_input_embeddings def set_input_embeddings(self, new_embeddings): self.embeddings = new_embeddings # Copied from transformers.models.xlm.modeling_xlm.XLMModel._prune_heads def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.attentions[layer].prune_heads(heads) @add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, langs: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, lengths: Optional[torch.LongTensor] = None, cache: Optional[Dict[str, torch.FloatTensor]] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # removed: src_enc=None, src_len=None if input_ids is not None: bs, slen = input_ids.size() else: bs, slen = inputs_embeds.size()[:-1] device = input_ids.device if input_ids is not None else inputs_embeds.device if lengths is None: if input_ids is not None: lengths = (input_ids != self.pad_index).sum(dim=1).long() else: lengths = torch.tensor([slen] * bs, device=device) # mask = input_ids != self.pad_index # check inputs assert lengths.size(0) == bs assert lengths.max().item() <= slen # input_ids = input_ids.transpose(0, 1) # batch size as dimension 0 # assert (src_enc is None) == (src_len is None) # if src_enc is not None: # assert self.is_decoder # assert src_enc.size(0) == bs # generate masks mask, attn_mask = get_masks(slen, lengths, self.causal, padding_mask=attention_mask) # if self.is_decoder and src_enc is not None: # src_mask = torch.arange(src_len.max(), dtype=torch.long, device=lengths.device) < src_len[:, None] # Setting the position-ids to the registered buffer in constructor, it helps # when tracing the model without passing position-ids, solves # isues similar to issue #5664 if position_ids is None: if hasattr(self, "position_ids"): position_ids = self.position_ids[:, :slen] position_ids = position_ids.expand((bs, slen)) else: position_ids = torch.arange(slen, dtype=torch.long, device=device) position_ids = position_ids.unsqueeze(0).expand((bs, slen)) else: assert position_ids.size() == (bs, slen) # (slen, bs) # position_ids = position_ids.transpose(0, 1) # langs if langs is not None: assert langs.size() == (bs, slen) # (slen, bs) # langs = langs.transpose(0, 1) # Prepare head mask if needed head_mask = self.get_head_mask(head_mask, self.config.n_layers) # do not recompute cached elements if cache is not None and input_ids is not None: _slen = slen - cache["slen"] input_ids = input_ids[:, -_slen:] position_ids = position_ids[:, -_slen:] if langs is not None: langs = langs[:, -_slen:] mask = mask[:, -_slen:] attn_mask = attn_mask[:, -_slen:] # embeddings if inputs_embeds is None: inputs_embeds = self.embeddings(input_ids) tensor = inputs_embeds + self.position_embeddings(position_ids).expand_as(inputs_embeds) if langs is not None and self.use_lang_emb and self.config.n_langs > 1: tensor = tensor + self.lang_embeddings(langs) if token_type_ids is not None: tensor = tensor + self.embeddings(token_type_ids) tensor = self.layer_norm_emb(tensor) tensor = nn.functional.dropout(tensor, p=self.dropout, training=self.training) tensor *= mask.unsqueeze(-1).to(tensor.dtype) # transformer layers hidden_states = () if output_hidden_states else None attentions = () if output_attentions else None for i in range(self.n_layers): # LayerDrop if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: continue if output_hidden_states: hidden_states = hidden_states + (tensor,) # self attention if not self.pre_norm: attn_outputs = self.attentions[i]( tensor, attn_mask, cache=cache, head_mask=head_mask[i], output_attentions=output_attentions, ) attn = attn_outputs[0] if output_attentions: attentions = attentions + (attn_outputs[1],) attn = nn.functional.dropout(attn, p=self.dropout, training=self.training) tensor = tensor + attn tensor = self.layer_norm1[i](tensor) else: tensor_normalized = self.layer_norm1[i](tensor) attn_outputs = self.attentions[i](tensor_normalized, attn_mask, cache=cache, head_mask=head_mask[i]) attn = attn_outputs[0] if output_attentions: attentions = attentions + (attn_outputs[1],) attn = nn.functional.dropout(attn, p=self.dropout, training=self.training) tensor = tensor + attn # encoder attention (for decoder only) # if self.is_decoder and src_enc is not None: # attn = self.encoder_attn[i](tensor, src_mask, kv=src_enc, cache=cache) # attn = nn.functional.dropout(attn, p=self.dropout, training=self.training) # tensor = tensor + attn # tensor = self.layer_norm15[i](tensor) # FFN if not self.pre_norm: tensor = tensor + self.ffns[i](tensor) tensor = self.layer_norm2[i](tensor) else: tensor_normalized = self.layer_norm2[i](tensor) tensor = tensor + self.ffns[i](tensor_normalized) tensor *= mask.unsqueeze(-1).to(tensor.dtype) # Add last hidden state if output_hidden_states: hidden_states = hidden_states + (tensor,) # update cache length if cache is not None: cache["slen"] += tensor.size(1) # move back sequence length to dimension 0 # tensor = tensor.transpose(0, 1) if not return_dict: return tuple(v for v in [tensor, hidden_states, attentions] if v is not None) return BaseModelOutput(last_hidden_state=tensor, hidden_states=hidden_states, attentions=attentions)
class_definition
16,183
27,745
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flaubert/modeling_flaubert.py
null
9,248
class FlaubertWithLMHeadModel(FlaubertPreTrainedModel, GenerationMixin): _tied_weights_keys = ["pred_layer.proj.weight"] def __init__(self, config): super().__init__(config) self.transformer = FlaubertModel(config) self.pred_layer = FlaubertPredLayer(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.pred_layer.proj def set_output_embeddings(self, new_embeddings): self.pred_layer.proj = new_embeddings def prepare_inputs_for_generation(self, input_ids, **kwargs): # Overwritten -- uses a language id mask_token_id = self.config.mask_token_id lang_id = self.config.lang_id effective_batch_size = input_ids.shape[0] mask_token = torch.full((effective_batch_size, 1), mask_token_id, dtype=torch.long, device=input_ids.device) input_ids = torch.cat([input_ids, mask_token], dim=1) if lang_id is not None: langs = torch.full_like(input_ids, lang_id) else: langs = None return {"input_ids": input_ids, "langs": langs} @add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, mask="<special1>", ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, langs: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, lengths: Optional[torch.Tensor] = None, cache: Optional[Dict[str, torch.Tensor]] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, attention_mask=attention_mask, langs=langs, token_type_ids=token_type_ids, position_ids=position_ids, lengths=lengths, cache=cache, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) output = transformer_outputs[0] outputs = self.pred_layer(output, labels) # (loss, logits) or (logits,) depending on if labels are provided. if not return_dict: return outputs + transformer_outputs[1:] return MaskedLMOutput( loss=outputs[0] if labels is not None else None, logits=outputs[0] if labels is None else outputs[1], hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )
class_definition
28,066
31,818
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flaubert/modeling_flaubert.py
null
9,249
class FlaubertForSequenceClassification(FlaubertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.transformer = FlaubertModel(config) self.sequence_summary = SequenceSummary(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, langs: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, lengths: Optional[torch.Tensor] = None, cache: Optional[Dict[str, torch.Tensor]] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, attention_mask=attention_mask, langs=langs, token_type_ids=token_type_ids, position_ids=position_ids, lengths=lengths, cache=cache, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) output = transformer_outputs[0] logits = self.sequence_summary(output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )
class_definition
32,158
36,171
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flaubert/modeling_flaubert.py
null
9,250
class FlaubertForTokenClassification(FlaubertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.transformer = FlaubertModel(config) self.dropout = nn.Dropout(config.dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, langs: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, lengths: Optional[torch.Tensor] = None, cache: Optional[Dict[str, torch.Tensor]] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.transformer( input_ids, attention_mask=attention_mask, langs=langs, token_type_ids=token_type_ids, position_ids=position_ids, lengths=lengths, cache=cache, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
36,532
39,439
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flaubert/modeling_flaubert.py
null
9,251
class FlaubertForQuestionAnsweringSimple(FlaubertPreTrainedModel): def __init__(self, config): super().__init__(config) self.transformer = FlaubertModel(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, langs: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, lengths: Optional[torch.Tensor] = None, cache: Optional[Dict[str, torch.Tensor]] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, attention_mask=attention_mask, langs=langs, token_type_ids=token_type_ids, position_ids=position_ids, lengths=lengths, cache=cache, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = transformer_outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + transformer_outputs[1:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )
class_definition
39,862
44,307
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flaubert/modeling_flaubert.py
null
9,252
class FlaubertForQuestionAnsweringOutput(ModelOutput): """ Base class for outputs of question answering models using a `SquadHead`. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned if both `start_positions` and `end_positions` are provided): Classification loss as the sum of start token, end token (and is_impossible if provided) classification losses. start_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided): Log probabilities for the top config.start_n_top start token possibilities (beam-search). start_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided): Indices for the top config.start_n_top start token possibilities (beam-search). end_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided): Log probabilities for the top `config.start_n_top * config.end_n_top` end token possibilities (beam-search). end_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided): Indices for the top `config.start_n_top * config.end_n_top` end token possibilities (beam-search). cls_logits (`torch.FloatTensor` of shape `(batch_size,)`, *optional*, returned if `start_positions` or `end_positions` is not provided): Log probabilities for the `is_impossible` label of the answers. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None start_top_log_probs: Optional[torch.FloatTensor] = None start_top_index: Optional[torch.LongTensor] = None end_top_log_probs: Optional[torch.FloatTensor] = None end_top_index: Optional[torch.LongTensor] = None cls_logits: Optional[torch.FloatTensor] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None
class_definition
44,724
47,848
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flaubert/modeling_flaubert.py
null
9,253
class FlaubertForQuestionAnswering(FlaubertPreTrainedModel): def __init__(self, config): super().__init__(config) self.transformer = FlaubertModel(config) self.qa_outputs = SQuADHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=FlaubertForQuestionAnsweringOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, langs: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, lengths: Optional[torch.Tensor] = None, cache: Optional[Dict[str, torch.Tensor]] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, is_impossible: Optional[torch.Tensor] = None, cls_index: Optional[torch.Tensor] = None, p_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, FlaubertForQuestionAnsweringOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. is_impossible (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels whether a question has an answer or no answer (SQuAD 2.0) cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the classification token to use as input for computing plausibility of the answer. p_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Optional mask of tokens which can't be in answers (e.g. [CLS], [PAD], ...). 1.0 means token should be masked. 0.0 mean token is not masked. Returns: Example: ```python >>> from transformers import XLMTokenizer, XLMForQuestionAnswering >>> import torch >>> tokenizer = XLMTokenizer.from_pretrained("FacebookAI/xlm-mlm-en-2048") >>> model = XLMForQuestionAnswering.from_pretrained("FacebookAI/xlm-mlm-en-2048") >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze( ... 0 ... ) # Batch size 1 >>> start_positions = torch.tensor([1]) >>> end_positions = torch.tensor([3]) >>> outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions) >>> loss = outputs.loss ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, attention_mask=attention_mask, langs=langs, token_type_ids=token_type_ids, position_ids=position_ids, lengths=lengths, cache=cache, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) output = transformer_outputs[0] outputs = self.qa_outputs( output, start_positions=start_positions, end_positions=end_positions, cls_index=cls_index, is_impossible=is_impossible, p_mask=p_mask, return_dict=return_dict, ) if not return_dict: return outputs + transformer_outputs[1:] return FlaubertForQuestionAnsweringOutput( loss=outputs.loss, start_top_log_probs=outputs.start_top_log_probs, start_top_index=outputs.start_top_index, end_top_log_probs=outputs.end_top_log_probs, end_top_index=outputs.end_top_index, cls_logits=outputs.cls_logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )
class_definition
47,972
53,077
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flaubert/modeling_flaubert.py
null
9,254
class FlaubertForMultipleChoice(FlaubertPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = FlaubertModel(config) self.sequence_summary = SequenceSummary(config) self.logits_proj = nn.Linear(config.num_labels, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward( FLAUBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, langs: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, lengths: Optional[torch.Tensor] = None, cache: Optional[Dict[str, torch.Tensor]] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None langs = langs.view(-1, langs.size(-1)) if langs is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) if lengths is not None: logger.warning( "The `lengths` parameter cannot be used with the Flaubert multiple choice models. Please use the " "attention mask instead." ) lengths = None transformer_outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, langs=langs, token_type_ids=token_type_ids, position_ids=position_ids, lengths=lengths, cache=cache, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) output = transformer_outputs[0] logits = self.sequence_summary(output) logits = self.logits_proj(logits) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )
class_definition
53,434
57,601
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flaubert/modeling_flaubert.py
null
9,255
class FlaubertConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a [`FlaubertModel`] or a [`TFFlaubertModel`]. It is used to instantiate a FlauBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the FlauBERT [flaubert/flaubert_base_uncased](https://huggingface.co/flaubert/flaubert_base_uncased) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: pre_norm (`bool`, *optional*, defaults to `False`): Whether to apply the layer normalization before or after the feed forward layer following the attention in each layer (Vaswani et al., Tensor2Tensor for Neural Machine Translation. 2018) layerdrop (`float`, *optional*, defaults to 0.0): Probability to drop layers during training (Fan et al., Reducing Transformer Depth on Demand with Structured Dropout. ICLR 2020) vocab_size (`int`, *optional*, defaults to 30145): Vocabulary size of the FlauBERT model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`FlaubertModel`] or [`TFFlaubertModel`]. emb_dim (`int`, *optional*, defaults to 2048): Dimensionality of the encoder layers and the pooler layer. n_layer (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. n_head (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for the attention mechanism gelu_activation (`bool`, *optional*, defaults to `True`): Whether or not to use a *gelu* activation instead of *relu*. sinusoidal_embeddings (`bool`, *optional*, defaults to `False`): Whether or not to use sinusoidal positional embeddings instead of absolute positional embeddings. causal (`bool`, *optional*, defaults to `False`): Whether or not the model should behave in a causal manner. Causal models use a triangular attention mask in order to only attend to the left-side context instead if a bidirectional context. asm (`bool`, *optional*, defaults to `False`): Whether or not to use an adaptive log softmax projection layer instead of a linear layer for the prediction layer. n_langs (`int`, *optional*, defaults to 1): The number of languages the model handles. Set to 1 for monolingual models. use_lang_emb (`bool`, *optional*, defaults to `True`) Whether to use language embeddings. Some models use additional language embeddings, see [the multilingual models page](http://huggingface.co/transformers/multilingual.html#xlm-language-embeddings) for information on how to use them. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). embed_init_std (`float`, *optional*, defaults to 2048^-0.5): The standard deviation of the truncated_normal_initializer for initializing the embedding matrices. init_std (`int`, *optional*, defaults to 50257): The standard deviation of the truncated_normal_initializer for initializing all weight matrices except the embedding matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. bos_index (`int`, *optional*, defaults to 0): The index of the beginning of sentence token in the vocabulary. eos_index (`int`, *optional*, defaults to 1): The index of the end of sentence token in the vocabulary. pad_index (`int`, *optional*, defaults to 2): The index of the padding token in the vocabulary. unk_index (`int`, *optional*, defaults to 3): The index of the unknown token in the vocabulary. mask_index (`int`, *optional*, defaults to 5): The index of the masking token in the vocabulary. is_encoder(`bool`, *optional*, defaults to `True`): Whether or not the initialized model should be a transformer encoder or decoder as seen in Vaswani et al. summary_type (`string`, *optional*, defaults to "first"): Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. Has to be one of the following options: - `"last"`: Take the last token hidden state (like XLNet). - `"first"`: Take the first token hidden state (like BERT). - `"mean"`: Take the mean of all tokens hidden states. - `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2). - `"attn"`: Not implemented now, use multi-head attention. summary_use_proj (`bool`, *optional*, defaults to `True`): Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. Whether or not to add a projection after the vector extraction. summary_activation (`str`, *optional*): Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation. summary_proj_to_labels (`bool`, *optional*, defaults to `True`): Used in the sequence classification and multiple choice models. Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes. summary_first_dropout (`float`, *optional*, defaults to 0.1): Used in the sequence classification and multiple choice models. The dropout ratio to be used after the projection and activation. start_n_top (`int`, *optional*, defaults to 5): Used in the SQuAD evaluation script. end_n_top (`int`, *optional*, defaults to 5): Used in the SQuAD evaluation script. mask_token_id (`int`, *optional*, defaults to 0): Model agnostic parameter to identify masked tokens when generating text in an MLM context. lang_id (`int`, *optional*, defaults to 1): The ID of the language used by the model. This parameter is used when generating text in a given language. """ model_type = "flaubert" attribute_map = { "hidden_size": "emb_dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", "n_words": "vocab_size", # For backward compatibility } def __init__( self, pre_norm=False, layerdrop=0.0, vocab_size=30145, emb_dim=2048, n_layers=12, n_heads=16, dropout=0.1, attention_dropout=0.1, gelu_activation=True, sinusoidal_embeddings=False, causal=False, asm=False, n_langs=1, use_lang_emb=True, max_position_embeddings=512, embed_init_std=2048**-0.5, layer_norm_eps=1e-12, init_std=0.02, bos_index=0, eos_index=1, pad_index=2, unk_index=3, mask_index=5, is_encoder=True, summary_type="first", summary_use_proj=True, summary_activation=None, summary_proj_to_labels=True, summary_first_dropout=0.1, start_n_top=5, end_n_top=5, mask_token_id=0, lang_id=0, pad_token_id=2, bos_token_id=0, **kwargs, ): """Constructs FlaubertConfig.""" self.pre_norm = pre_norm self.layerdrop = layerdrop self.vocab_size = vocab_size self.emb_dim = emb_dim self.n_layers = n_layers self.n_heads = n_heads self.dropout = dropout self.attention_dropout = attention_dropout self.gelu_activation = gelu_activation self.sinusoidal_embeddings = sinusoidal_embeddings self.causal = causal self.asm = asm self.n_langs = n_langs self.use_lang_emb = use_lang_emb self.layer_norm_eps = layer_norm_eps self.bos_index = bos_index self.eos_index = eos_index self.pad_index = pad_index self.unk_index = unk_index self.mask_index = mask_index self.is_encoder = is_encoder self.max_position_embeddings = max_position_embeddings self.embed_init_std = embed_init_std self.init_std = init_std self.summary_type = summary_type self.summary_use_proj = summary_use_proj self.summary_activation = summary_activation self.summary_proj_to_labels = summary_proj_to_labels self.summary_first_dropout = summary_first_dropout self.start_n_top = start_n_top self.end_n_top = end_n_top self.mask_token_id = mask_token_id self.lang_id = lang_id if "n_words" in kwargs: self.n_words = kwargs["n_words"] super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, **kwargs)
class_definition
885
10,735
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flaubert/configuration_flaubert.py
null
9,256
class FlaubertOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} else: dynamic_axis = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
class_definition
10,738
11,187
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flaubert/configuration_flaubert.py
null
9,257
class FlaubertTokenizer(PreTrainedTokenizer): """ Construct a Flaubert tokenizer. Based on Byte-Pair Encoding. The tokenization process is the following: - Moses preprocessing and tokenization. - Normalizing all inputs text. - The arguments `special_tokens` and the function `set_special_tokens`, can be used to add additional symbols (like "__classify__") to a vocabulary. - The argument `do_lowercase` controls lower casing (automatically set for pretrained vocabularies). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Vocabulary file. merges_file (`str`): Merges file. do_lowercase (`bool`, *optional*, defaults to `False`): Controls lower casing. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"</s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"<special1>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. additional_special_tokens (`List[str]`, *optional*, defaults to `['<special0>', '<special1>', '<special2>', '<special3>', '<special4>', '<special5>', '<special6>', '<special7>', '<special8>', '<special9>']`): List of additional special tokens. lang2id (`Dict[str, int]`, *optional*): Dictionary mapping languages string identifiers to their IDs. id2lang (`Dict[int, str]`, *optional*): Dictionary mapping language IDs to their string identifiers. """ vocab_files_names = VOCAB_FILES_NAMES def __init__( self, vocab_file, merges_file, do_lowercase=False, unk_token="<unk>", bos_token="<s>", sep_token="</s>", pad_token="<pad>", cls_token="</s>", mask_token="<special1>", additional_special_tokens=[ "<special0>", "<special1>", "<special2>", "<special3>", "<special4>", "<special5>", "<special6>", "<special7>", "<special8>", "<special9>", ], lang2id=None, id2lang=None, **kwargs, ): do_lowercase_and_remove_accent = kwargs.pop("do_lowercase_and_remove_accent", None) if do_lowercase_and_remove_accent is not None: logger.warning( "`do_lowercase_and_remove_accent` is passed as a keyword argument, but this won't do anything." " `FlaubertTokenizer` will always set it to `False`." ) # always `False` self.do_lowercase_and_remove_accent = False self.do_lowercase = do_lowercase try: import sacremoses except ImportError: raise ImportError( "You need to install sacremoses to use FlaubertTokenizer. " "See https://pypi.org/project/sacremoses/ for installation." ) self.sm = sacremoses # cache of sm.MosesPunctNormalizer instance self.cache_moses_punct_normalizer = {} # cache of sm.MosesTokenizer instance self.cache_moses_tokenizer = {} self.lang_with_custom_tokenizer = {"zh", "th", "ja"} self.lang2id = lang2id self.id2lang = id2lang if lang2id is not None and id2lang is not None: assert len(lang2id) == len(id2lang) self.ja_word_tokenizer = None self.zh_word_tokenizer = None with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: merges = merges_handle.read().split("\n")[:-1] merges = [tuple(merge.split()[:2]) for merge in merges] self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {} super().__init__( do_lowercase=do_lowercase, unk_token=unk_token, bos_token=bos_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, additional_special_tokens=additional_special_tokens, lang2id=lang2id, id2lang=id2lang, **kwargs, ) @property # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.do_lower_case def do_lower_case(self): return self.do_lowercase_and_remove_accent # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.moses_punct_norm def moses_punct_norm(self, text, lang): if lang not in self.cache_moses_punct_normalizer: punct_normalizer = self.sm.MosesPunctNormalizer(lang=lang) self.cache_moses_punct_normalizer[lang] = punct_normalizer else: punct_normalizer = self.cache_moses_punct_normalizer[lang] return punct_normalizer.normalize(text) # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.moses_tokenize def moses_tokenize(self, text, lang): if lang not in self.cache_moses_tokenizer: moses_tokenizer = self.sm.MosesTokenizer(lang=lang) self.cache_moses_tokenizer[lang] = moses_tokenizer else: moses_tokenizer = self.cache_moses_tokenizer[lang] return moses_tokenizer.tokenize(text, return_str=False, escape=False) # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.moses_pipeline def moses_pipeline(self, text, lang): text = replace_unicode_punct(text) text = self.moses_punct_norm(text, lang) text = remove_non_printing_char(text) return text # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.ja_tokenize def ja_tokenize(self, text): if self.ja_word_tokenizer is None: try: import Mykytea self.ja_word_tokenizer = Mykytea.Mykytea( f"-model {os.path.expanduser('~')}/local/share/kytea/model.bin" ) except (AttributeError, ImportError): logger.error( "Make sure you install KyTea (https://github.com/neubig/kytea) and it's python wrapper" " (https://github.com/chezou/Mykytea-python) with the following steps" ) logger.error("1. git clone [email protected]:neubig/kytea.git && cd kytea") logger.error("2. autoreconf -i") logger.error("3. ./configure --prefix=$HOME/local") logger.error("4. make && make install") logger.error("5. pip install kytea") raise return list(self.ja_word_tokenizer.getWS(text)) @property # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.vocab_size def vocab_size(self): return len(self.encoder) # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.get_vocab def get_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.bpe def bpe(self, token): word = tuple(token[:-1]) + (token[-1] + "</w>",) if token in self.cache: return self.cache[token] pairs = get_pairs(word) if not pairs: return token + "</w>" while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) if word == "\n </w>": word = "\n</w>" self.cache[token] = word return word def preprocess_text(self, text): text = text.replace("``", '"').replace("''", '"') text = convert_to_unicode(text) text = unicodedata.normalize("NFC", text) if self.do_lowercase: text = text.lower() return text def _tokenize(self, text, bypass_tokenizer=False): """ Tokenize a string given language code using Moses. Details of tokenization: - [sacremoses](https://github.com/alvations/sacremoses): port of Moses - Install with `pip install sacremoses` Args: - bypass_tokenizer: Allow users to preprocess and tokenize the sentences externally (default = False) (bool). If True, we only apply BPE. Returns: List of tokens. """ lang = "fr" if lang and self.lang2id and lang not in self.lang2id: logger.error( "Supplied language code not found in lang2id mapping. Please check that your language is supported by" " the loaded pretrained model." ) if bypass_tokenizer: text = text.split() else: text = self.preprocess_text(text) text = self.moses_pipeline(text, lang=lang) text = self.moses_tokenize(text, lang=lang) split_tokens = [] for token in text: if token: split_tokens.extend(list(self.bpe(token).split(" "))) return split_tokens # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer._convert_token_to_id def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer._convert_id_to_token def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index, self.unk_token) # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.convert_tokens_to_string def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" out_string = "".join(tokens).replace("</w>", " ").strip() return out_string # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.build_inputs_with_special_tokens def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An XLM sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ bos = [self.bos_token_id] sep = [self.sep_token_id] if token_ids_1 is None: return bos + token_ids_0 + sep return bos + token_ids_0 + sep + token_ids_1 + sep # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.get_special_tokens_mask def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.create_token_type_ids_from_sequences def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. An XLM sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.save_vocabulary def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") index = 0 with open(merge_file, "w", encoding="utf-8") as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 return vocab_file, merge_file # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.__getstate__ def __getstate__(self): state = self.__dict__.copy() state["sm"] = None return state # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.__setstate__ def __setstate__(self, d): self.__dict__ = d try: import sacremoses except ImportError: raise ImportError( "You need to install sacremoses to use XLMTokenizer. " "See https://pypi.org/project/sacremoses/ for installation." ) self.sm = sacremoses
class_definition
3,827
22,173
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flaubert/tokenization_flaubert.py
null
9,258
class ViTMAEConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`ViTMAEModel`]. It is used to instantiate an ViT MAE model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the ViT [facebook/vit-mae-base](https://huggingface.co/facebook/vit-mae-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 16): The size (resolution) of each patch. num_channels (`int`, *optional*, defaults to 3): The number of input channels. qkv_bias (`bool`, *optional*, defaults to `True`): Whether to add a bias to the queries, keys and values. decoder_num_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the decoder. decoder_hidden_size (`int`, *optional*, defaults to 512): Dimensionality of the decoder. decoder_num_hidden_layers (`int`, *optional*, defaults to 8): Number of hidden layers in the decoder. decoder_intermediate_size (`int`, *optional*, defaults to 2048): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the decoder. mask_ratio (`float`, *optional*, defaults to 0.75): The ratio of the number of masked tokens in the input sequence. norm_pix_loss (`bool`, *optional*, defaults to `False`): Whether or not to train with normalized pixels (see Table 3 in the paper). Using normalized pixels improved representation quality in the experiments of the authors. Example: ```python >>> from transformers import ViTMAEConfig, ViTMAEModel >>> # Initializing a ViT MAE vit-mae-base style configuration >>> configuration = ViTMAEConfig() >>> # Initializing a model (with random weights) from the vit-mae-base style configuration >>> model = ViTMAEModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "vit_mae" def __init__( self, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, initializer_range=0.02, layer_norm_eps=1e-12, image_size=224, patch_size=16, num_channels=3, qkv_bias=True, decoder_num_attention_heads=16, decoder_hidden_size=512, decoder_num_hidden_layers=8, decoder_intermediate_size=2048, mask_ratio=0.75, norm_pix_loss=False, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.qkv_bias = qkv_bias self.decoder_num_attention_heads = decoder_num_attention_heads self.decoder_hidden_size = decoder_hidden_size self.decoder_num_hidden_layers = decoder_num_hidden_layers self.decoder_intermediate_size = decoder_intermediate_size self.mask_ratio = mask_ratio self.norm_pix_loss = norm_pix_loss
class_definition
800
6,342
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_mae/configuration_vit_mae.py
null
9,259
class TFViTMAEModelOutput(ModelOutput): """ Class for TFViTMAEModel's outputs, with potential hidden states and attentions. Args: last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. mask (`tf.Tensor` of shape `(batch_size, sequence_length)`): Tensor indicating which patches are masked (1) and which are not (0). ids_restore (`tf.Tensor` of shape `(batch_size, sequence_length)`): Tensor containing the original index of the (shuffled) masked patches. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: tf.Tensor = None mask: tf.Tensor = None ids_restore: tf.Tensor = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None
class_definition
1,576
3,248
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_mae/modeling_tf_vit_mae.py
null
9,260
class TFViTMAEDecoderOutput(ModelOutput): """ Class for TFViTMAEDecoder's outputs, with potential hidden states and attentions. Args: logits (`tf.Tensor` of shape `(batch_size, sequence_length, patch_size ** 2 * num_channels)`): Pixel reconstruction logits. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ logits: tf.Tensor = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None
class_definition
3,262
4,521
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_mae/modeling_tf_vit_mae.py
null
9,261
class TFViTMAEForPreTrainingOutput(ModelOutput): """ Class for TFViTMAEForPreTraining's outputs, with potential hidden states and attentions. Args: loss (`tf.Tensor` of shape `(1,)`): Pixel reconstruction loss. logits (`tf.Tensor` of shape `(batch_size, sequence_length, patch_size ** 2 * num_channels)`): Pixel reconstruction logits. mask (`tf.Tensor` of shape `(batch_size, sequence_length)`): Tensor indicating which patches are masked (1) and which are not (0). ids_restore (`tf.Tensor` of shape `(batch_size, sequence_length)`): Tensor containing the original index of the (shuffled) masked patches. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: tf.Tensor | None = None logits: tf.Tensor = None mask: tf.Tensor = None ids_restore: tf.Tensor = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None
class_definition
4,535
6,296
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_mae/modeling_tf_vit_mae.py
null
9,262
class TFViTMAEEmbeddings(keras.layers.Layer): """ Construct the CLS token, position and patch embeddings. """ def __init__(self, config: ViTMAEConfig, **kwargs): super().__init__(**kwargs) self.patch_embeddings = TFViTMAEPatchEmbeddings(config, name="patch_embeddings") self.num_patches = self.patch_embeddings.num_patches self.config = config def build(self, input_shape=None): self.cls_token = self.add_weight( shape=(1, 1, self.config.hidden_size), initializer=tf.random_normal_initializer(stddev=self.config.initializer_range), trainable=True, name="cls_token", ) self.position_embeddings = self.add_weight( shape=(1, self.num_patches + 1, self.config.hidden_size), initializer="zeros", trainable=False, # fixed sin-cos embedding name="position_embeddings", ) pos_embed = get_2d_sincos_pos_embed( self.position_embeddings.shape[-1], int(self.patch_embeddings.num_patches**0.5), add_cls_token=True, )[None, ...] self.position_embeddings.assign(pos_embed) if self.built: return self.built = True if getattr(self, "patch_embeddings", None) is not None: with tf.name_scope(self.patch_embeddings.name): self.patch_embeddings.build(None) def interpolate_pos_encoding(self, embeddings, height, width) -> tf.Tensor: """ This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution images. Source: https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174 """ batch_size, seq_len, dim = shape_list(embeddings) num_patches = seq_len - 1 _, num_positions, _ = shape_list(self.position_embeddings) num_positions -= 1 if num_patches == num_positions and height == width: return self.position_embeddings class_pos_embed = self.position_embeddings[:, :1] patch_pos_embed = self.position_embeddings[:, 1:] h0 = height // self.config.patch_size w0 = width // self.config.patch_size patch_pos_embed = tf.image.resize( images=tf.reshape( patch_pos_embed, shape=(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim) ), size=(h0, w0), method="bicubic", ) patch_pos_embed = tf.reshape(tensor=patch_pos_embed, shape=(1, -1, dim)) return tf.concat(values=(class_pos_embed, patch_pos_embed), axis=1) def random_masking(self, sequence: tf.Tensor, noise: tf.Tensor | None = None): """ Perform per-sample random masking by per-sample shuffling. Per-sample shuffling is done by argsort random noise. Args: sequence (`tf.Tensor` of shape `(batch_size, sequence_length, dim)`) noise (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*) which is mainly used for testing purposes to control randomness and maintain the reproducibility """ batch_size, seq_length, dim = shape_list(sequence) len_keep = int(seq_length * (1 - self.config.mask_ratio)) if noise is None: noise = tf.random.uniform(shape=(batch_size, seq_length), minval=0.0, maxval=1.0) # noise in [0, 1) # sort noise for each sample ids_shuffle = tf.argsort(noise, axis=1) # ascend: small is keep, large is remove ids_restore = tf.argsort(ids_shuffle, axis=1) # keep the first subset ids_keep = ids_shuffle[:, :len_keep] sequence_unmasked = tf.gather( sequence, axis=1, batch_dims=1, indices=ids_keep, ) # generate the binary mask: 0 is keep, 1 is remove # this hack is needed because TF's EagerTensors don't support # assignment mask_keep = tf.zeros((batch_size, len_keep)) mask_remove = tf.ones((batch_size, seq_length - len_keep)) mask = tf.concat([mask_keep, mask_remove], axis=-1) # unshuffle to get the binary mask mask = tf.gather(mask, axis=1, batch_dims=1, indices=ids_restore) return sequence_unmasked, mask, ids_restore def call( self, pixel_values: tf.Tensor, noise: tf.Tensor = None, interpolate_pos_encoding: bool = False ) -> tf.Tensor: batch_size, num_channels, height, width = shape_list(pixel_values) embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) if interpolate_pos_encoding: position_embeddings = self.interpolate_pos_encoding(embeddings, height, width) else: position_embeddings = self.position_embeddings # add position embeddings w/o cls token embeddings = embeddings + position_embeddings[:, 1:, :] # masking: length -> length * config.mask_ratio embeddings, mask, ids_restore = self.random_masking(embeddings, noise) # append cls token cls_token = self.cls_token + position_embeddings[:, :1, :] cls_tokens = tf.tile(cls_token, (shape_list(embeddings)[0], 1, 1)) embeddings = tf.concat([cls_tokens, embeddings], axis=1) return embeddings, mask, ids_restore
class_definition
8,525
14,039
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_mae/modeling_tf_vit_mae.py
null
9,263
class TFViTMAEPatchEmbeddings(keras.layers.Layer): """ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config: ViTMAEConfig, **kwargs): super().__init__(**kwargs) image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_patches = num_patches self.num_channels = num_channels self.config = config self.projection = keras.layers.Conv2D( filters=hidden_size, kernel_size=patch_size, strides=patch_size, padding="valid", data_format="channels_last", kernel_initializer="glorot_uniform", # following torch.nn.Linear bias_initializer="zeros", name="projection", ) def call( self, pixel_values: tf.Tensor, training: bool = False, interpolate_pos_encoding: bool = False ) -> tf.Tensor: batch_size, num_channels, height, width = shape_list(pixel_values) if tf.executing_eagerly(): if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the" " configuration." ) if not interpolate_pos_encoding and (height != self.image_size[0] or width != self.image_size[1]): raise ValueError( f"Input image size ({height}*{width}) doesn't match model" f" ({self.image_size[0]}*{self.image_size[1]})." ) # When running on CPU, `keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1)) projection = self.projection(pixel_values) # Change the 2D spatial dimensions to a single temporal dimension. # shape = (batch_size, num_patches, out_channels=embed_dim) num_patches = (width // self.patch_size[1]) * (height // self.patch_size[0]) x = tf.reshape(tensor=projection, shape=(batch_size, num_patches, -1)) return x def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "projection", None) is not None: with tf.name_scope(self.projection.name): self.projection.build([None, None, None, self.num_channels])
class_definition
14,042
17,228
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_mae/modeling_tf_vit_mae.py
null
9,264
class TFViTMAESelfAttention(keras.layers.Layer): def __init__(self, config: ViTMAEConfig, **kwargs): super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number " f"of attention heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.sqrt_att_head_size = math.sqrt(self.attention_head_size) self.query = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" ) self.key = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" ) self.value = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" ) self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob) self.config = config def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor: # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size] return tf.transpose(tensor, perm=[0, 2, 1, 3]) def call( self, hidden_states: tf.Tensor, head_mask: tf.Tensor, output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: batch_size = shape_list(hidden_states)[0] mixed_query_layer = self.query(inputs=hidden_states) mixed_key_layer = self.key(inputs=hidden_states) mixed_value_layer = self.value(inputs=hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) key_layer = self.transpose_for_scores(mixed_key_layer, batch_size) value_layer = self.transpose_for_scores(mixed_value_layer, batch_size) # Take the dot product between "query" and "key" to get the raw attention scores. # (batch size, num_heads, seq_len_q, seq_len_k) attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype) attention_scores = tf.divide(attention_scores, dk) # Normalize the attention scores to probabilities. attention_probs = stable_softmax(logits=attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(inputs=attention_probs, training=training) # Mask heads if we want to if head_mask is not None: attention_probs = tf.multiply(attention_probs, head_mask) attention_output = tf.matmul(attention_probs, value_layer) attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, all_head_size) attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size)) outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "query", None) is not None: with tf.name_scope(self.query.name): self.query.build([None, None, self.config.hidden_size]) if getattr(self, "key", None) is not None: with tf.name_scope(self.key.name): self.key.build([None, None, self.config.hidden_size]) if getattr(self, "value", None) is not None: with tf.name_scope(self.value.name): self.value.build([None, None, self.config.hidden_size])
class_definition
17,321
21,779
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_mae/modeling_tf_vit_mae.py
null
9,265
class TFViTMAESelfOutput(keras.layers.Layer): """ The residual connection is defined in TFViTMAELayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config: ViTMAEConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.config = config def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size])
class_definition
21,869
23,009
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_mae/modeling_tf_vit_mae.py
null
9,266
class TFViTMAEAttention(keras.layers.Layer): def __init__(self, config: ViTMAEConfig, **kwargs): super().__init__(**kwargs) self.self_attention = TFViTMAESelfAttention(config, name="attention") self.dense_output = TFViTMAESelfOutput(config, name="output") def prune_heads(self, heads): raise NotImplementedError def call( self, input_tensor: tf.Tensor, head_mask: tf.Tensor, output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: self_outputs = self.self_attention( hidden_states=input_tensor, head_mask=head_mask, output_attentions=output_attentions, training=training ) attention_output = self.dense_output( hidden_states=self_outputs[0], input_tensor=input_tensor, training=training ) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self_attention", None) is not None: with tf.name_scope(self.self_attention.name): self.self_attention.build(None) if getattr(self, "dense_output", None) is not None: with tf.name_scope(self.dense_output.name): self.dense_output.build(None)
class_definition
23,098
24,504
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_mae/modeling_tf_vit_mae.py
null
9,267
class TFViTMAEIntermediate(keras.layers.Layer): def __init__(self, config: ViTMAEConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size])
class_definition
24,596
25,622
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_mae/modeling_tf_vit_mae.py
null
9,268
class TFViTMAEOutput(keras.layers.Layer): def __init__(self, config: ViTMAEConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.config = config def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = hidden_states + input_tensor return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.intermediate_size])
class_definition
25,708
26,726
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_mae/modeling_tf_vit_mae.py
null
9,269
class TFViTMAELayer(keras.layers.Layer): """This corresponds to the Block class in the timm implementation.""" def __init__(self, config: ViTMAEConfig, **kwargs): super().__init__(**kwargs) self.attention = TFViTMAEAttention(config, name="attention") self.intermediate = TFViTMAEIntermediate(config, name="intermediate") self.vit_output = TFViTMAEOutput(config, name="output") self.layernorm_before = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_before") self.layernorm_after = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_after") self.config = config def call( self, hidden_states: tf.Tensor, head_mask: tf.Tensor, output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: attention_outputs = self.attention( # in ViTMAE, layernorm is applied before self-attention input_tensor=self.layernorm_before(inputs=hidden_states), head_mask=head_mask, output_attentions=output_attentions, training=training, ) attention_output = attention_outputs[0] # first residual connection hidden_states = attention_output + hidden_states # in ViTMAE, layernorm is also applied after self-attention layer_output = self.layernorm_after(inputs=hidden_states) intermediate_output = self.intermediate(hidden_states=layer_output) # second residual connection is done here layer_output = self.vit_output( hidden_states=intermediate_output, input_tensor=hidden_states, training=training ) outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "intermediate", None) is not None: with tf.name_scope(self.intermediate.name): self.intermediate.build(None) if getattr(self, "vit_output", None) is not None: with tf.name_scope(self.vit_output.name): self.vit_output.build(None) if getattr(self, "layernorm_before", None) is not None: with tf.name_scope(self.layernorm_before.name): self.layernorm_before.build([None, None, self.config.hidden_size]) if getattr(self, "layernorm_after", None) is not None: with tf.name_scope(self.layernorm_after.name): self.layernorm_after.build([None, None, self.config.hidden_size])
class_definition
26,811
29,643
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_mae/modeling_tf_vit_mae.py
null
9,270
class TFViTMAEEncoder(keras.layers.Layer): def __init__(self, config: ViTMAEConfig, **kwargs): super().__init__(**kwargs) self.layer = [TFViTMAELayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] def call( self, hidden_states: tf.Tensor, head_mask: tf.Tensor, output_attentions: bool, output_hidden_states: bool, return_dict: bool, training: bool = False, ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( hidden_states=hidden_states, head_mask=head_mask[i], output_attentions=output_attentions, training=training, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layer", None) is not None: for layer in self.layer: with tf.name_scope(layer.name): layer.build(None)
class_definition
29,730
31,609
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_mae/modeling_tf_vit_mae.py
null
9,271
class TFViTMAEMainLayer(keras.layers.Layer): config_class = ViTMAEConfig def __init__(self, config: ViTMAEConfig, **kwargs): super().__init__(**kwargs) self.config = config self.embeddings = TFViTMAEEmbeddings(config, name="embeddings") self.encoder = TFViTMAEEncoder(config, name="encoder") self.layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm") def get_input_embeddings(self) -> keras.layers.Layer: return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError @unpack_inputs def call( self, pixel_values: TFModelInputType | None = None, noise: tf.Tensor = None, head_mask: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, interpolate_pos_encoding: bool = False, ) -> Union[TFViTMAEModelOutput, Tuple[tf.Tensor]]: embedding_output, mask, ids_restore = self.embeddings( pixel_values=pixel_values, training=training, noise=noise, interpolate_pos_encoding=interpolate_pos_encoding, ) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.config.num_hidden_layers encoder_outputs = self.encoder( embedding_output, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(inputs=sequence_output) if not return_dict: return (sequence_output, mask, ids_restore) + encoder_outputs[1:] return TFViTMAEModelOutput( last_hidden_state=sequence_output, mask=mask, ids_restore=ids_restore, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "layernorm", None) is not None: with tf.name_scope(self.layernorm.name): self.layernorm.build([None, None, self.config.hidden_size])
class_definition
31,632
34,992
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_mae/modeling_tf_vit_mae.py
null
9,272
class TFViTMAEPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = ViTMAEConfig base_model_prefix = "vit" main_input_name = "pixel_values"
class_definition
34,995
35,289
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_mae/modeling_tf_vit_mae.py
null
9,273
class TFViTMAEModel(TFViTMAEPreTrainedModel): def __init__(self, config: ViTMAEConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.vit = TFViTMAEMainLayer(config, name="vit") def get_input_embeddings(self): return self.vit.get_input_embeddings() @unpack_inputs @add_start_docstrings_to_model_forward(VIT_MAE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFViTMAEModelOutput, config_class=_CONFIG_FOR_DOC) def call( self, pixel_values: TFModelInputType | None = None, noise: tf.Tensor = None, head_mask: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, interpolate_pos_encoding: bool = False, ) -> Union[TFViTMAEModelOutput, Tuple[tf.Tensor]]: r""" Returns: Examples: ```python >>> from transformers import AutoImageProcessor, TFViTMAEModel >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("facebook/vit-mae-base") >>> model = TFViTMAEModel.from_pretrained("facebook/vit-mae-base") >>> inputs = image_processor(images=image, return_tensors="tf") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state ```""" outputs = self.vit( pixel_values=pixel_values, noise=noise, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, interpolate_pos_encoding=interpolate_pos_encoding, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "vit", None) is not None: with tf.name_scope(self.vit.name): self.vit.build(None)
class_definition
39,913
42,186
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_mae/modeling_tf_vit_mae.py
null
9,274
class TFViTMAEDecoder(keras.layers.Layer): def __init__(self, config, num_patches, **kwargs): super().__init__(**kwargs) self.decoder_embed = keras.layers.Dense(config.decoder_hidden_size, name="decoder_embed") decoder_config = deepcopy(config) decoder_config.hidden_size = config.decoder_hidden_size decoder_config.num_hidden_layers = config.decoder_num_hidden_layers decoder_config.num_attention_heads = config.decoder_num_attention_heads decoder_config.intermediate_size = config.decoder_intermediate_size self.decoder_layers = [ TFViTMAELayer(decoder_config, name=f"decoder_layers.{j}") for j in range(config.decoder_num_hidden_layers) ] self.decoder_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="decoder_norm") self.decoder_pred = keras.layers.Dense( config.patch_size**2 * config.num_channels, kernel_initializer=get_initializer(config.initializer_range), name="decoder_pred", ) # encoder to decoder self.config = config self.num_patches = num_patches def build(self, input_shape=None): self.mask_token = self.add_weight( shape=(1, 1, self.config.decoder_hidden_size), initializer=tf.random_normal_initializer(stddev=self.config.initializer_range), trainable=True, name="mask_token", ) self.decoder_pos_embed = self.add_weight( shape=(1, self.num_patches + 1, self.config.decoder_hidden_size), initializer="zeros", trainable=False, name="decoder_pos_embed", ) decoder_pos_embed = get_2d_sincos_pos_embed( self.decoder_pos_embed.shape[-1], int(self.num_patches**0.5), add_cls_token=True, )[None, ...] self.decoder_pos_embed.assign(decoder_pos_embed) if self.built: return self.built = True if getattr(self, "decoder_embed", None) is not None: with tf.name_scope(self.decoder_embed.name): self.decoder_embed.build([None, None, self.config.hidden_size]) if getattr(self, "decoder_norm", None) is not None: with tf.name_scope(self.decoder_norm.name): self.decoder_norm.build([None, None, self.config.decoder_hidden_size]) if getattr(self, "decoder_pred", None) is not None: with tf.name_scope(self.decoder_pred.name): self.decoder_pred.build([None, None, self.config.decoder_hidden_size]) if getattr(self, "decoder_layers", None) is not None: for layer in self.decoder_layers: with tf.name_scope(layer.name): layer.build(None) def interpolate_pos_encoding(self, embeddings) -> tf.Tensor: """ This method is a modified version of the interpolation function for ViT-mae model at the deocder, that allows to interpolate the pre-trained decoder position encodings, to be able to use the model on higher resolution images. Source: https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174 """ # [batch_size, num_patches + 1, hidden_size] _, num_positions, dim = shape_list(self.decoder_pos_embed) # -1 removes the class dimension since we later append it without interpolation seq_len = shape_list(embeddings)[1] - 1 num_positions = num_positions - 1 # Separation of class token and patch tokens class_pos_embed = self.decoder_pos_embed[:, :1, :] patch_pos_embed = self.decoder_pos_embed[:, 1:, :] # interpolate the position embeddings patch_pos_embed = tf.image.resize( images=tf.reshape(patch_pos_embed, shape=(1, 1, -1, dim)), size=(1, seq_len), method="bicubic", ) # [1, seq_len, hidden_size] patch_pos_embed = tf.reshape(tensor=patch_pos_embed, shape=(1, -1, dim)) # Adding the class token back return tf.concat(values=(class_pos_embed, patch_pos_embed), axis=1) def call( self, hidden_states, ids_restore, output_attentions=False, output_hidden_states=False, return_dict=True, interpolate_pos_encoding=False, ): # embed tokens x = self.decoder_embed(hidden_states) # append mask tokens to sequence mask_tokens = tf.tile( self.mask_token, (shape_list(x)[0], shape_list(ids_restore)[1] + 1 - shape_list(x)[1], 1), ) x_ = tf.concat([x[:, 1:, :], mask_tokens], axis=1) # no cls token x_ = tf.gather(x_, axis=1, batch_dims=1, indices=ids_restore) # unshuffle x = tf.concat([x[:, :1, :], x_], axis=1) # append cls token if interpolate_pos_encoding: decoder_pos_embed = self.interpolate_pos_encoding(x) else: decoder_pos_embed = self.decoder_pos_embed # add pos embed hidden_states = x + decoder_pos_embed # apply Transformer layers (blocks) all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.decoder_layers): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( hidden_states, head_mask=None, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) hidden_states = self.decoder_norm(hidden_states) # predictor projection logits = self.decoder_pred(hidden_states) # remove cls token logits = logits[:, 1:, :] if not return_dict: return tuple(v for v in [logits, all_hidden_states, all_self_attentions] if v is not None) return TFViTMAEDecoderOutput(logits=logits, hidden_states=all_hidden_states, attentions=all_self_attentions)
class_definition
42,189
48,598
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_mae/modeling_tf_vit_mae.py
null
9,275
class TFViTMAEForPreTraining(TFViTMAEPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.vit = TFViTMAEMainLayer(config, name="vit") self.decoder = TFViTMAEDecoder( config, num_patches=self.vit.embeddings.num_patches, name="decoder", ) def get_input_embeddings(self): return self.vit.get_input_embeddings() def _prune_heads(self, heads_to_prune): raise NotImplementedError def patchify(self, pixel_values, interpolate_pos_encoding: bool = False): """ Args: pixel_values (`tf.Tensor` of shape `(batch_size, height, width, num_channels)` or `(batch_size, num_channels, height, width)`): Pixel values. interpolate_pos_encoding (`bool`, default `False`): interpolation flag passed during the forward pass. Returns: `tf.Tensor` of shape `(batch_size, num_patches, patch_size**2 * num_channels)`: Patchified pixel values. """ patch_size, num_channels = self.config.patch_size, self.config.num_channels # make sure channels are last if shape_list(pixel_values)[1] == num_channels: pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1)) # sanity checks if not interpolate_pos_encoding: tf.debugging.assert_equal( shape_list(pixel_values)[1], shape_list(pixel_values)[2], message="Make sure the pixel values have a squared size", ) tf.debugging.assert_equal( shape_list(pixel_values)[1] % patch_size, 0, message="Make sure the pixel values have a size that is divisible by the patch size", ) tf.debugging.assert_equal( shape_list(pixel_values)[3], num_channels, message=( "Make sure the number of channels of the pixel values is equal to the one set in the configuration" ), ) # patchify batch_size = shape_list(pixel_values)[0] num_patches_h = shape_list(pixel_values)[1] // patch_size num_patches_w = shape_list(pixel_values)[2] // patch_size patchified_pixel_values = tf.reshape( pixel_values, (batch_size, num_patches_h, patch_size, num_patches_w, patch_size, num_channels), ) patchified_pixel_values = tf.einsum("nhpwqc->nhwpqc", patchified_pixel_values) patchified_pixel_values = tf.reshape( patchified_pixel_values, (batch_size, num_patches_h * num_patches_w, patch_size**2 * num_channels), ) return patchified_pixel_values def unpatchify(self, patchified_pixel_values, original_image_size: Optional[Tuple[int, int]] = None): """ Args: patchified_pixel_values (`tf.Tensor` of shape `(batch_size, num_patches, patch_size**2 * num_channels)`: Patchified pixel values. original_image_size (`Tuple[int, int]`, *optional*): Original image size. Returns: `tf.Tensor` of shape `(batch_size, height, width, num_channels)`: Pixel values. """ patch_size, num_channels = self.config.patch_size, self.config.num_channels original_image_size = ( original_image_size if original_image_size is not None else (self.config.image_size, self.config.image_size) ) original_height, original_width = original_image_size num_patches_h = original_height // patch_size num_patches_w = original_width // patch_size # sanity check tf.debugging.assert_equal( num_patches_h * num_patches_w, shape_list(patchified_pixel_values)[1], message=f"The number of patches in the patchified pixel values is {shape_list(patchified_pixel_values)[1]} does not match the patches of original image {num_patches_w}*{num_patches_h}", ) # unpatchify batch_size = shape_list(patchified_pixel_values)[0] patchified_pixel_values = tf.reshape( patchified_pixel_values, (batch_size, num_patches_h, num_patches_w, patch_size, patch_size, num_channels), ) patchified_pixel_values = tf.einsum("nhwpqc->nhpwqc", patchified_pixel_values) pixel_values = tf.reshape( patchified_pixel_values, (batch_size, num_patches_h * patch_size, num_patches_w * patch_size, num_channels), ) return pixel_values def forward_loss(self, pixel_values, pred, mask, interpolate_pos_encoding: bool = False): """ Args: pixel_values (`tf.Tensor` of shape `(batch_size, height, width, num_channels)`): Pixel values. pred (`tf.Tensor` of shape `(batch_size, num_patches, patch_size**2 * num_channels)`: Predicted pixel values. mask (`tf.Tensor` of shape `(batch_size, sequence_length)`): Tensor indicating which patches are masked (1) and which are not (0). interpolate_pos_encoding (`bool`, *optional*, default `False`): interpolation flag passed during the forward pass. Returns: `tf.Tensor`: Pixel reconstruction loss. """ target = self.patchify(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) if self.config.norm_pix_loss: mean = tf.reduce_mean(target, axis=-1, keepdims=True) var = tf.math.reduce_variance(target, axis=-1, keepdims=True) target = (target - mean) / (var + 1.0e-6) ** 0.5 loss = (pred - target) ** 2 loss = tf.reduce_mean(loss, axis=-1) # [batch_size, num_patches], mean loss per patch loss = tf.reduce_sum(loss * mask) / tf.reduce_sum(mask) # mean loss on removed patches loss = tf.reshape(loss, (1,)) return loss @unpack_inputs @add_start_docstrings_to_model_forward(VIT_MAE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFViTMAEForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def call( self, pixel_values: TFModelInputType | None = None, noise: tf.Tensor = None, head_mask: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, interpolate_pos_encoding: bool = False, ) -> Union[TFViTMAEForPreTrainingOutput, Tuple[tf.Tensor]]: r""" Returns: Examples: ```python >>> from transformers import AutoImageProcessor, TFViTMAEForPreTraining >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("facebook/vit-mae-base") >>> model = TFViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base") >>> inputs = image_processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> loss = outputs.loss >>> mask = outputs.mask >>> ids_restore = outputs.ids_restore ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.vit( pixel_values=pixel_values, noise=noise, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, interpolate_pos_encoding=interpolate_pos_encoding, ) latent = outputs.last_hidden_state ids_restore = outputs.ids_restore mask = outputs.mask # [batch_size, num_patches, patch_size**2*3] decoder_outputs = self.decoder(latent, ids_restore, interpolate_pos_encoding=interpolate_pos_encoding) logits = decoder_outputs.logits loss = self.forward_loss(pixel_values, logits, mask, interpolate_pos_encoding=interpolate_pos_encoding) if not return_dict: output = (logits, mask, ids_restore) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFViTMAEForPreTrainingOutput( loss=loss, logits=logits, mask=mask, ids_restore=ids_restore, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "vit", None) is not None: with tf.name_scope(self.vit.name): self.vit.build(None) if getattr(self, "decoder", None) is not None: with tf.name_scope(self.decoder.name): self.decoder.build(None)
class_definition
48,749
57,944
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_mae/modeling_tf_vit_mae.py
null
9,276
class ViTMAEModelOutput(ModelOutput): """ Class for ViTMAEModel's outputs, with potential hidden states and attentions. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Tensor indicating which patches are masked (1) and which are not (0). ids_restore (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Tensor containing the original index of the (shuffled) masked patches. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: torch.FloatTensor = None mask: torch.LongTensor = None ids_restore: torch.LongTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None
class_definition
1,481
3,248
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_mae/modeling_vit_mae.py
null
9,277
class ViTMAEDecoderOutput(ModelOutput): """ Class for ViTMAEDecoder's outputs, with potential hidden states and attentions. Args: logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, patch_size ** 2 * num_channels)`): Pixel reconstruction logits. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None
class_definition
3,262
4,587
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_mae/modeling_vit_mae.py
null
9,278
class ViTMAEForPreTrainingOutput(ModelOutput): """ Class for ViTMAEForPreTraining's outputs, with potential hidden states and attentions. Args: loss (`torch.FloatTensor` of shape `(1,)`): Pixel reconstruction loss. logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, patch_size ** 2 * num_channels)`): Pixel reconstruction logits. mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Tensor indicating which patches are masked (1) and which are not (0). ids_restore (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Tensor containing the original index of the (shuffled) masked patches. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None mask: torch.LongTensor = None ids_restore: torch.LongTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None
class_definition
4,601
6,476
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_mae/modeling_vit_mae.py
null
9,279
class ViTMAEEmbeddings(nn.Module): """ Construct the CLS token, position and patch embeddings. """ def __init__(self, config): super().__init__() self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) self.patch_embeddings = ViTMAEPatchEmbeddings(config) self.num_patches = self.patch_embeddings.num_patches # fixed sin-cos embedding self.position_embeddings = nn.Parameter( torch.zeros(1, self.num_patches + 1, config.hidden_size), requires_grad=False ) self.patch_size = config.patch_size self.config = config self.initialize_weights() def initialize_weights(self): # initialize (and freeze) position embeddings by sin-cos embedding pos_embed = get_2d_sincos_pos_embed( self.position_embeddings.shape[-1], int(self.patch_embeddings.num_patches**0.5), add_cls_token=True ) self.position_embeddings.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0)) # initialize patch_embeddings like nn.Linear (instead of nn.Conv2d) w = self.patch_embeddings.projection.weight.data torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1])) # timm's trunc_normal_(std=.02) is effectively normal_(std=0.02) as cutoff is too big (2.) torch.nn.init.normal_(self.cls_token, std=self.config.initializer_range) # Copied from transformers.models.vit.modeling_vit.ViTEmbeddings.interpolate_pos_encoding def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: """ This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution images. This method is also adapted to support torch.jit tracing. Adapted from: - https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and - https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211 """ num_patches = embeddings.shape[1] - 1 num_positions = self.position_embeddings.shape[1] - 1 # always interpolate when tracing to ensure the exported model works for dynamic input shapes if not torch.jit.is_tracing() and num_patches == num_positions and height == width: return self.position_embeddings class_pos_embed = self.position_embeddings[:, :1] patch_pos_embed = self.position_embeddings[:, 1:] dim = embeddings.shape[-1] new_height = height // self.patch_size new_width = width // self.patch_size sqrt_num_positions = torch_int(num_positions**0.5) patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim) patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) patch_pos_embed = nn.functional.interpolate( patch_pos_embed, size=(new_height, new_width), mode="bicubic", align_corners=False, ) patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return torch.cat((class_pos_embed, patch_pos_embed), dim=1) def random_masking(self, sequence, noise=None): """ Perform per-sample random masking by per-sample shuffling. Per-sample shuffling is done by argsort random noise. Args: sequence (`torch.LongTensor` of shape `(batch_size, sequence_length, dim)`) noise (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*) which is mainly used for testing purposes to control randomness and maintain the reproducibility """ batch_size, seq_length, dim = sequence.shape len_keep = int(seq_length * (1 - self.config.mask_ratio)) if noise is None: noise = torch.rand(batch_size, seq_length, device=sequence.device) # noise in [0, 1] # sort noise for each sample ids_shuffle = torch.argsort(noise, dim=1).to(sequence.device) # ascend: small is keep, large is remove ids_restore = torch.argsort(ids_shuffle, dim=1).to(sequence.device) # keep the first subset ids_keep = ids_shuffle[:, :len_keep] sequence_unmasked = torch.gather(sequence, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, dim)) # generate the binary mask: 0 is keep, 1 is remove mask = torch.ones([batch_size, seq_length], device=sequence.device) mask[:, :len_keep] = 0 # unshuffle to get the binary mask mask = torch.gather(mask, dim=1, index=ids_restore) return sequence_unmasked, mask, ids_restore def forward(self, pixel_values, noise=None, interpolate_pos_encoding: bool = False): batch_size, num_channels, height, width = pixel_values.shape embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) if interpolate_pos_encoding: position_embeddings = self.interpolate_pos_encoding(embeddings, height, width) else: position_embeddings = self.position_embeddings # add position embeddings w/o cls token embeddings = embeddings + position_embeddings[:, 1:, :] # masking: length -> length * config.mask_ratio embeddings, mask, ids_restore = self.random_masking(embeddings, noise) # append cls token cls_token = self.cls_token + position_embeddings[:, :1, :] cls_tokens = cls_token.expand(embeddings.shape[0], -1, -1) embeddings = torch.cat((cls_tokens, embeddings), dim=1) return embeddings, mask, ids_restore
class_definition
8,596
14,377
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_mae/modeling_vit_mae.py
null
9,280
class ViTMAEPatchEmbeddings(nn.Module): """ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config): super().__init__() image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_patches = num_patches self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) def forward(self, pixel_values, interpolate_pos_encoding: bool = False): batch_size, num_channels, height, width = pixel_values.shape if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) if not interpolate_pos_encoding and (height != self.image_size[0] or width != self.image_size[1]): raise ValueError( f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})." ) x = self.projection(pixel_values).flatten(2).transpose(1, 2) return x
class_definition
14,380
16,166
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_mae/modeling_vit_mae.py
null
9,281
class ViTMAESelfAttention(nn.Module): def __init__(self, config: ViTMAEConfig) -> None: super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs
class_definition
16,249
19,095
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_mae/modeling_vit_mae.py
null
9,282
class ViTMAESdpaSelfAttention(ViTMAESelfAttention): def __init__(self, config: ViTMAEConfig) -> None: super().__init__(config) self.attention_probs_dropout_prob = config.attention_probs_dropout_prob def forward( self, hidden_states: torch.FloatTensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: if output_attentions or head_mask is not None: logger.warning_once( "`ViTMAESdpaAttention` is used but `torch.nn.functional.scaled_dot_product_attention` does not support " "`output_attentions=True` or `head_mask`. Falling back to the manual attention implementation, but " "specifying the manual implementation will be required from Transformers version v5.0.0 onwards. " 'This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states=hidden_states, head_mask=head_mask, output_attentions=output_attentions, ) mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) context_layer = torch.nn.functional.scaled_dot_product_attention( query_layer, key_layer, value_layer, head_mask, self.attention_probs_dropout_prob if self.training else 0.0, is_causal=False, scale=None, ) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) return context_layer, None
class_definition
19,182
21,232
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_mae/modeling_vit_mae.py
null
9,283
class ViTMAESelfOutput(nn.Module): """ The residual connection is defined in ViTMAELayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config: ViTMAEConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states
class_definition
21,317
21,969
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_mae/modeling_vit_mae.py
null
9,284
class ViTMAEAttention(nn.Module): def __init__(self, config: ViTMAEConfig) -> None: super().__init__() self.attention = ViTMAESelfAttention(config) self.output = ViTMAESelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads: Set[int]) -> None: if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads ) # Prune linear layers self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_outputs = self.attention(hidden_states, head_mask, output_attentions) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs
class_definition
22,053
23,742
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_mae/modeling_vit_mae.py
null
9,285
class ViTMAESdpaAttention(ViTMAEAttention): def __init__(self, config: ViTMAEConfig) -> None: super().__init__(config) self.attention = ViTMAESdpaSelfAttention(config)
class_definition
23,830
24,017
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_mae/modeling_vit_mae.py
null
9,286
class ViTMAEIntermediate(nn.Module): def __init__(self, config: ViTMAEConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states
class_definition
24,099
24,689
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_mae/modeling_vit_mae.py
null
9,287
class ViTMAEOutput(nn.Module): def __init__(self, config: ViTMAEConfig) -> None: super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor return hidden_states
class_definition
24,765
25,298
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_mae/modeling_vit_mae.py
null
9,288
class ViTMAELayer(nn.Module): """This corresponds to the Block class in the timm implementation.""" def __init__(self, config: ViTMAEConfig) -> None: super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = VITMAE_ATTENTION_CLASSES[config._attn_implementation](config) self.intermediate = ViTMAEIntermediate(config) self.output = ViTMAEOutput(config) self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_attention_outputs = self.attention( self.layernorm_before(hidden_states), # in ViTMAE, layernorm is applied before self-attention head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # first residual connection hidden_states = attention_output + hidden_states # in ViTMAE, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) # second residual connection is done here layer_output = self.output(layer_output, hidden_states) outputs = (layer_output,) + outputs return outputs
class_definition
25,486
27,221
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_mae/modeling_vit_mae.py
null
9,289
class ViTMAEEncoder(nn.Module): def __init__(self, config: ViTMAEConfig) -> None: super().__init__() self.config = config self.layer = nn.ModuleList([ViTMAELayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, layer_head_mask, output_attentions, ) else: layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, )
class_definition
27,303
29,233
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_mae/modeling_vit_mae.py
null
9,290
class ViTMAEPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = ViTMAEConfig base_model_prefix = "vit" main_input_name = "pixel_values" supports_gradient_checkpointing = True _supports_sdpa = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0)
class_definition
29,236
30,178
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_mae/modeling_vit_mae.py
null
9,291
class ViTMAEModel(ViTMAEPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.embeddings = ViTMAEEmbeddings(config) self.encoder = ViTMAEEncoder(config) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(VIT_MAE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ViTMAEModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, noise: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, interpolate_pos_encoding: bool = False, ) -> Union[Tuple, ViTMAEModelOutput]: r""" Returns: Examples: ```python >>> from transformers import AutoImageProcessor, ViTMAEModel >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("facebook/vit-mae-base") >>> model = ViTMAEModel.from_pretrained("facebook/vit-mae-base") >>> inputs = image_processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output, mask, ids_restore = self.embeddings( pixel_values, noise=noise, interpolate_pos_encoding=interpolate_pos_encoding ) encoder_outputs = self.encoder( embedding_output, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) if not return_dict: return (sequence_output, mask, ids_restore) + encoder_outputs[1:] return ViTMAEModelOutput( last_hidden_state=sequence_output, mask=mask, ids_restore=ids_restore, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, )
class_definition
32,315
36,192
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_mae/modeling_vit_mae.py
null
9,292
class ViTMAEDecoder(nn.Module): def __init__(self, config, num_patches): super().__init__() self.decoder_embed = nn.Linear(config.hidden_size, config.decoder_hidden_size, bias=True) self.mask_token = nn.Parameter(torch.zeros(1, 1, config.decoder_hidden_size)) self.decoder_pos_embed = nn.Parameter( torch.zeros(1, num_patches + 1, config.decoder_hidden_size), requires_grad=False ) # fixed sin-cos embedding decoder_config = deepcopy(config) decoder_config.hidden_size = config.decoder_hidden_size decoder_config.num_hidden_layers = config.decoder_num_hidden_layers decoder_config.num_attention_heads = config.decoder_num_attention_heads decoder_config.intermediate_size = config.decoder_intermediate_size self.decoder_layers = nn.ModuleList( [ViTMAELayer(decoder_config) for _ in range(config.decoder_num_hidden_layers)] ) self.decoder_norm = nn.LayerNorm(config.decoder_hidden_size, eps=config.layer_norm_eps) self.decoder_pred = nn.Linear( config.decoder_hidden_size, config.patch_size**2 * config.num_channels, bias=True ) # encoder to decoder self.gradient_checkpointing = False self.config = config self.initialize_weights(num_patches) def interpolate_pos_encoding(self, embeddings: torch.Tensor) -> torch.Tensor: """ This method is a modified version of the interpolation function for ViT-mae model at the decoder, that allows to interpolate the pre-trained decoder position encodings, to be able to use the model on higher resolution images. Adapted from: https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174 """ # -1 removes the class dimension since we later append it without interpolation embeddings_positions = embeddings.shape[1] - 1 # Separation of class token and patch tokens class_pos_embed = self.decoder_pos_embed[:, :1] patch_pos_embed = self.decoder_pos_embed[:, 1:] # To retain the final 3d tensor with the required dimensions dim = self.decoder_pos_embed.shape[-1] # Increasing a dimension to enable bicubic interpolation patch_pos_embed = patch_pos_embed.reshape(1, 1, -1, dim) # permute to bring the dimension to be interpolated, to the last patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) # Interpolating the decoder position embeddings shape wrt embeddings shape i.e (x). # we keep the second last dimension constant patch_pos_embed = nn.functional.interpolate( patch_pos_embed, size=(patch_pos_embed.shape[-2], embeddings_positions), mode="bicubic", align_corners=False, ) # Converting back to the original shape patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) # Adding the class token back return torch.cat((class_pos_embed, patch_pos_embed), dim=1) def initialize_weights(self, num_patches): # initialize (and freeze) position embeddings by sin-cos embedding decoder_pos_embed = get_2d_sincos_pos_embed( self.decoder_pos_embed.shape[-1], int(num_patches**0.5), add_cls_token=True ) self.decoder_pos_embed.data.copy_(torch.from_numpy(decoder_pos_embed).float().unsqueeze(0)) # timm's trunc_normal_(std=.02) is effectively normal_(std=0.02) as cutoff is too big (2.) torch.nn.init.normal_(self.mask_token, std=self.config.initializer_range) def forward( self, hidden_states, ids_restore, output_attentions=False, output_hidden_states=False, return_dict=True, interpolate_pos_encoding: bool = False, ): # embed tokens x = self.decoder_embed(hidden_states) # append mask tokens to sequence mask_tokens = self.mask_token.repeat(x.shape[0], ids_restore.shape[1] + 1 - x.shape[1], 1) x_ = torch.cat([x[:, 1:, :], mask_tokens], dim=1) # no cls token # unshuffle x_ = torch.gather(x_, dim=1, index=ids_restore.unsqueeze(-1).repeat(1, 1, x.shape[2]).to(x_.device)) x = torch.cat([x[:, :1, :], x_], dim=1) # append cls token # add pos embed if interpolate_pos_encoding: decoder_pos_embed = self.interpolate_pos_encoding(x) else: decoder_pos_embed = self.decoder_pos_embed hidden_states = x + decoder_pos_embed # apply Transformer layers (blocks) all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.decoder_layers): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, None, output_attentions, ) else: layer_outputs = layer_module(hidden_states, head_mask=None, output_attentions=output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) hidden_states = self.decoder_norm(hidden_states) # predictor projection logits = self.decoder_pred(hidden_states) # remove cls token logits = logits[:, 1:, :] if not return_dict: return tuple(v for v in [logits, all_hidden_states, all_self_attentions] if v is not None) return ViTMAEDecoderOutput( logits=logits, hidden_states=all_hidden_states, attentions=all_self_attentions, )
class_definition
36,195
42,354
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_mae/modeling_vit_mae.py
null
9,293
class ViTMAEForPreTraining(ViTMAEPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.vit = ViTMAEModel(config) self.decoder = ViTMAEDecoder(config, num_patches=self.vit.embeddings.num_patches) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.vit.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) def patchify(self, pixel_values, interpolate_pos_encoding: bool = False): """ Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. interpolate_pos_encoding (`bool`, *optional*, default `False`): interpolation flag passed during the forward pass. Returns: `torch.FloatTensor` of shape `(batch_size, num_patches, patch_size**2 * num_channels)`: Patchified pixel values. """ patch_size, num_channels = self.config.patch_size, self.config.num_channels # sanity checks if not interpolate_pos_encoding and ( pixel_values.shape[2] != pixel_values.shape[3] or pixel_values.shape[2] % patch_size != 0 ): raise ValueError("Make sure the pixel values have a squared size that is divisible by the patch size") if pixel_values.shape[1] != num_channels: raise ValueError( "Make sure the number of channels of the pixel values is equal to the one set in the configuration" ) # patchify batch_size = pixel_values.shape[0] num_patches_h = pixel_values.shape[2] // patch_size num_patches_w = pixel_values.shape[3] // patch_size patchified_pixel_values = pixel_values.reshape( batch_size, num_channels, num_patches_h, patch_size, num_patches_w, patch_size ) patchified_pixel_values = torch.einsum("nchpwq->nhwpqc", patchified_pixel_values) patchified_pixel_values = patchified_pixel_values.reshape( batch_size, num_patches_h * num_patches_w, patch_size**2 * num_channels ) return patchified_pixel_values def unpatchify(self, patchified_pixel_values, original_image_size: Optional[Tuple[int, int]] = None): """ Args: patchified_pixel_values (`torch.FloatTensor` of shape `(batch_size, num_patches, patch_size**2 * num_channels)`: Patchified pixel values. original_image_size (`Tuple[int, int]`, *optional*): Original image size. Returns: `torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`: Pixel values. """ patch_size, num_channels = self.config.patch_size, self.config.num_channels original_image_size = ( original_image_size if original_image_size is not None else (self.config.image_size, self.config.image_size) ) original_height, original_width = original_image_size num_patches_h = original_height // patch_size num_patches_w = original_width // patch_size # sanity check if num_patches_h * num_patches_w != patchified_pixel_values.shape[1]: raise ValueError( f"The number of patches in the patchified pixel values {patchified_pixel_values.shape[1]}, does not match the number of patches on original image {num_patches_h}*{num_patches_w}" ) # unpatchify batch_size = patchified_pixel_values.shape[0] patchified_pixel_values = patchified_pixel_values.reshape( batch_size, num_patches_h, num_patches_w, patch_size, patch_size, num_channels, ) patchified_pixel_values = torch.einsum("nhwpqc->nchpwq", patchified_pixel_values) pixel_values = patchified_pixel_values.reshape( batch_size, num_channels, num_patches_h * patch_size, num_patches_w * patch_size, ) return pixel_values def forward_loss(self, pixel_values, pred, mask, interpolate_pos_encoding: bool = False): """ Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. pred (`torch.FloatTensor` of shape `(batch_size, num_patches, patch_size**2 * num_channels)`: Predicted pixel values. mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Tensor indicating which patches are masked (1) and which are not (0). interpolate_pos_encoding (`bool`, *optional*, default `False`): interpolation flag passed during the forward pass. Returns: `torch.FloatTensor`: Pixel reconstruction loss. """ target = self.patchify(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) if self.config.norm_pix_loss: mean = target.mean(dim=-1, keepdim=True) var = target.var(dim=-1, keepdim=True) target = (target - mean) / (var + 1.0e-6) ** 0.5 loss = (pred - target) ** 2 loss = loss.mean(dim=-1) # [N, L], mean loss per patch loss = (loss * mask).sum() / mask.sum() # mean loss on removed patches return loss @add_start_docstrings_to_model_forward(VIT_MAE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ViTMAEForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, noise: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, interpolate_pos_encoding: bool = False, ) -> Union[Tuple, ViTMAEForPreTrainingOutput]: r""" Returns: Examples: ```python >>> from transformers import AutoImageProcessor, ViTMAEForPreTraining >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("facebook/vit-mae-base") >>> model = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base") >>> inputs = image_processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> loss = outputs.loss >>> mask = outputs.mask >>> ids_restore = outputs.ids_restore ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.vit( pixel_values, noise=noise, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, interpolate_pos_encoding=interpolate_pos_encoding, ) latent = outputs.last_hidden_state ids_restore = outputs.ids_restore mask = outputs.mask decoder_outputs = self.decoder(latent, ids_restore, interpolate_pos_encoding=interpolate_pos_encoding) logits = decoder_outputs.logits # shape (batch_size, num_patches, patch_size*patch_size*num_channels) loss = self.forward_loss(pixel_values, logits, mask, interpolate_pos_encoding=interpolate_pos_encoding) if not return_dict: output = (logits, mask, ids_restore) + outputs[2:] return ((loss,) + output) if loss is not None else output return ViTMAEForPreTrainingOutput( loss=loss, logits=logits, mask=mask, ids_restore=ids_restore, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
42,735
51,193
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_mae/modeling_vit_mae.py
null
9,294
class RoCBertEmbeddings(nn.Module): """Construct the embeddings from word, position, shape, pronunciation and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.pronunciation_embed = nn.Embedding( config.pronunciation_vocab_size, config.pronunciation_embed_dim, padding_idx=config.pad_token_id ) self.shape_embed = nn.Embedding( config.shape_vocab_size, config.shape_embed_dim, padding_idx=config.pad_token_id ) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) self.enable_pronunciation = config.enable_pronunciation self.enable_shape = config.enable_shape if config.concat_input: input_dim = config.hidden_size if self.enable_pronunciation: pronunciation_dim = config.pronunciation_embed_dim input_dim += pronunciation_dim if self.enable_shape: shape_dim = config.shape_embed_dim input_dim += shape_dim self.map_inputs_layer = torch.nn.Linear(input_dim, config.hidden_size) else: self.map_inputs_layer = None # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device), persistent=False, ) def forward( self, input_ids=None, input_shape_ids=None, input_pronunciation_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0, ): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if self.map_inputs_layer is None: if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) denominator = 1 embedding_in = torch.clone(embeddings) if self.enable_shape and input_shape_ids is not None: embedding_shape = self.shape_embed(input_shape_ids) embedding_in += embedding_shape denominator += 1 if self.enable_pronunciation and input_pronunciation_ids is not None: embedding_pronunciation = self.pronunciation_embed(input_pronunciation_ids) embedding_in += embedding_pronunciation denominator += 1 embedding_in /= denominator return embedding_in else: if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) # embedding_word device = inputs_embeds.device embedding_in = torch.clone(inputs_embeds) if self.enable_shape: if input_shape_ids is None: input_shape_ids = torch.zeros(input_shape, dtype=torch.long, device=device) embedding_shape = self.shape_embed(input_shape_ids) embedding_in = torch.cat((embedding_in, embedding_shape), -1) if self.enable_pronunciation: if input_pronunciation_ids is None: input_pronunciation_ids = torch.zeros(input_shape, dtype=torch.long, device=device) embedding_pronunciation = self.pronunciation_embed(input_pronunciation_ids) embedding_in = torch.cat((embedding_in, embedding_pronunciation), -1) embedding_in = self.map_inputs_layer(embedding_in) # batch_size * seq_len * hidden_dim token_type_embeddings = self.token_type_embeddings(token_type_ids) embedding_in += token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embedding_in += position_embeddings embedding_in = self.LayerNorm(embedding_in) embedding_in = self.dropout(embedding_in) return embedding_in
class_definition
5,909
12,180
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/roc_bert/modeling_roc_bert.py
null
9,295
class RoCBertSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.is_decoder = config.is_decoder def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) use_cache = past_key_value is not None if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": query_length, key_length = query_layer.shape[2], key_layer.shape[2] if use_cache: position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( -1, 1 ) else: position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in RoCBertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs
class_definition
12,273
19,621
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/roc_bert/modeling_roc_bert.py
null
9,296
class RoCBertSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states
class_definition
19,711
20,320
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/roc_bert/modeling_roc_bert.py
null
9,297
class RoCBertAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() self.self = ROC_BERT_SELF_ATTENTION_CLASSES[config._attn_implementation]( config, position_embedding_type=position_embedding_type ) self.output = RoCBertSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs
class_definition
20,499
22,631
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/roc_bert/modeling_roc_bert.py
null
9,298
class RoCBertIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states
class_definition
22,723
23,291
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/roc_bert/modeling_roc_bert.py
null
9,299