text
stringlengths
31
243k
type
stringclasses
1 value
start
int64
36
275k
end
int64
286
280k
depth
int64
0
1
filepath
stringlengths
85
188
parent_class
stringclasses
3 values
class_index
int64
0
10.8k
class BlenderbotSmallTokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" BlenderbotSmall tokenizer (backed by HuggingFace's *tokenizers* library). Args: vocab_file (`str`): Path to the vocabulary file. """ vocab_files_names = VOCAB_FILES_NAMES slow_tokenizer_class = BlenderbotSmallTokenizer def __init__( self, vocab_file=None, merges_file=None, unk_token="<|endoftext|>", bos_token="<|endoftext|>", eos_token="<|endoftext|>", add_prefix_space=False, trim_offsets=True, **kwargs, ): super().__init__( ByteLevelBPETokenizer( vocab=vocab_file, merges=merges_file, add_prefix_space=add_prefix_space, trim_offsets=trim_offsets, ), bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, **kwargs, ) self.add_prefix_space = add_prefix_space def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): output = [self.bos_token_id] + token_ids_0 + [self.eos_token_id] if token_ids_1 is None: return output return output + [self.eos_token_id] + token_ids_1 + [self.eos_token_id] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. BlenderbotSmall does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
class_definition
1,129
3,321
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot_small/tokenization_blenderbot_small_fast.py
null
9,400
class BlenderbotSmallTokenizer(PreTrainedTokenizer): """ Constructs a Blenderbot-90M tokenizer based on BPE (Byte-Pair-Encoding) This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to the superclass for more information regarding methods. Args: vocab_file (`str`): File containing the vocabulary. merges_file (`str`): Path to the merges file. bos_token (`str`, *optional*, defaults to `"__start__"`): The beginning of sentence token. eos_token (`str`, *optional*, defaults to `"__end__"`): The end of sentence token. unk_token (`str`, *optional*, defaults to `"__unk__"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"__null__"`): The token used for padding, for example when batching sequences of different lengths. kwargs (*optional*): Additional keyword arguments passed along to [`PreTrainedTokenizer`] """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, merges_file, bos_token="__start__", eos_token="__end__", unk_token="__unk__", pad_token="__null__", **kwargs, ): with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: merges = merges_handle.read().split("\n")[1:-1] merges = [tuple(merge.split()) for merge in merges] self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {} super().__init__(unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, **kwargs) @property def vocab_size(self) -> int: return len(self.encoder) def get_vocab(self) -> Dict: return dict(self.encoder, **self.added_tokens_encoder) def bpe(self, token: str) -> str: if token in self.cache: return self.cache[token] token = re.sub("([.,!?()])", r" \1", token) token = re.sub("(')", r" \1 ", token) token = re.sub(r"\s{2,}", " ", token) if "\n" in token: token = token.replace("\n", " __newln__") tokens = token.split(" ") words = [] for token in tokens: if not len(token): continue token = token.lower() word = tuple(token) word = tuple(list(word[:-1]) + [word[-1] + "</w>"]) pairs = get_pairs(word) if not pairs: words.append(token) continue while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) new_word.extend(word[i:j]) i = j except ValueError: new_word.extend(word[i:]) break if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = "@@ ".join(word) word = word[:-4] self.cache[token] = word words.append(word) return " ".join(words) def _tokenize(self, text: str) -> List[str]: """Split a string into tokens using BPE.""" split_tokens = [] words = re.findall(r"\S+\n?", text) for token in words: split_tokens.extend(list(self.bpe(token).split(" "))) return split_tokens def _convert_token_to_id(self, token: str) -> int: """Converts a token to an id using the vocab.""" token = token.lower() return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index: int) -> str: """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index, self.unk_token) def convert_tokens_to_string(self, tokens: List[str]) -> str: """Converts a sequence of tokens in a single string.""" out_string = " ".join(tokens).replace("@@ ", "").strip() return out_string def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") index = 0 with open(merge_file, "w", encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 return vocab_file, merge_file
class_definition
1,393
7,922
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot_small/tokenization_blenderbot_small.py
null
9,401
class MegatronBertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file # In Megatron, layer-norm is applied after the 1st dropout. # self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") def forward( self, input_ids: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.LongTensor] = None, past_key_values_length: int = 0, ) -> torch.Tensor: if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings # Megatron BERT moves that layer norm after the drop-out (and to each layer). # embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings
class_definition
4,817
7,420
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/megatron_bert/modeling_megatron_bert.py
null
9,402
class MegatronBertSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.is_decoder = config.is_decoder def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) use_cache = past_key_value is not None if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": query_length, key_length = query_layer.shape[2], key_layer.shape[2] if use_cache: position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( -1, 1 ) else: position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in MegatronBertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs
class_definition
7,518
14,876
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/megatron_bert/modeling_megatron_bert.py
null
9,403
class MegatronBertSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, residual: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return residual + hidden_states
class_definition
14,990
15,457
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/megatron_bert/modeling_megatron_bert.py
null
9,404
class MegatronBertAttention(nn.Module): def __init__(self, config): super().__init__() self.ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.self = MegatronBertSelfAttention(config) self.output = MegatronBertSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: ln_outputs = self.ln(hidden_states) self_outputs = self.self( ln_outputs, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs
class_definition
15,539
17,664
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/megatron_bert/modeling_megatron_bert.py
null
9,405
class MegatronBertIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states
class_definition
17,761
18,334
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/megatron_bert/modeling_megatron_bert.py
null
9,406
class MegatronBertOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return input_tensor + hidden_states
class_definition
18,443
18,920
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/megatron_bert/modeling_megatron_bert.py
null
9,407
class MegatronBertLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = MegatronBertAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise TypeError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = MegatronBertAttention(config) self.ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.intermediate = MegatronBertIntermediate(config) self.output = MegatronBertOutput(config) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise AttributeError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): ln_output = self.ln(attention_output) intermediate_output = self.intermediate(ln_output) layer_output = self.output(intermediate_output, attention_output) return layer_output
class_definition
19,001
23,032
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/megatron_bert/modeling_megatron_bert.py
null
9,408
class MegatronBertEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([MegatronBertLayer(config) for _ in range(config.num_hidden_layers)]) # The final layer norm. We removed the 1st LN, moved LN to each hidden layer and this one # is simply the final LN (Transformer's BERT has it attached to each hidden layer). self.ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) # Because we moved the layer-norm at the end of the hidden layer, we have non-normali- # zed data here. If that's really needed, we must apply LN to match Transformer's BERT. hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) # Finalize the hidden states. hidden_states = self.ln(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, )
class_definition
23,035
27,381
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/megatron_bert/modeling_megatron_bert.py
null
9,409
class MegatronBertPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output
class_definition
27,472
28,039
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/megatron_bert/modeling_megatron_bert.py
null
9,410
class MegatronBertPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states
class_definition
28,147
28,855
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/megatron_bert/modeling_megatron_bert.py
null
9,411
class MegatronBertLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = MegatronBertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def _tie_weights(self): self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states
class_definition
28,956
29,804
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/megatron_bert/modeling_megatron_bert.py
null
9,412
class MegatronBertOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = MegatronBertLMPredictionHead(config) def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: prediction_scores = self.predictions(sequence_output) return prediction_scores
class_definition
29,900
30,230
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/megatron_bert/modeling_megatron_bert.py
null
9,413
class MegatronBertOnlyNSPHead(nn.Module): def __init__(self, config): super().__init__() self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, pooled_output): seq_relationship_score = self.seq_relationship(pooled_output) return seq_relationship_score
class_definition
30,326
30,638
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/megatron_bert/modeling_megatron_bert.py
null
9,414
class MegatronBertPreTrainingHeads(nn.Module): def __init__(self, config): super().__init__() self.predictions = MegatronBertLMPredictionHead(config) self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, sequence_output, pooled_output): prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score
class_definition
30,739
31,218
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/megatron_bert/modeling_megatron_bert.py
null
9,415
class MegatronBertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MegatronBertConfig load_tf_weights = load_tf_weights_in_megatron_bert base_model_prefix = "bert" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Embedding)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_()
class_definition
31,221
32,197
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/megatron_bert/modeling_megatron_bert.py
null
9,416
class MegatronBertForPreTrainingOutput(ModelOutput): """ Output type of [`MegatronBertForPreTraining`]. Args: loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None prediction_logits: torch.FloatTensor = None seq_relationship_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None
class_definition
32,313
34,279
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/megatron_bert/modeling_megatron_bert.py
null
9,417
class MegatronBertModel(MegatronBertPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in [Attention is all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. """ def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = MegatronBertEmbeddings(config) self.encoder = MegatronBertEncoder(config) self.pooler = MegatronBertPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPoolingAndCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, )
class_definition
37,987
46,848
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/megatron_bert/modeling_megatron_bert.py
null
9,418
class MegatronBertForPreTraining(MegatronBertPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder"] def __init__(self, config, add_binary_head=True): super().__init__(config) self.bert = MegatronBertModel(config) self.cls = MegatronBertPreTrainingHeads(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings self.cls.predictions.bias = new_embeddings.bias @add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=MegatronBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, next_sentence_label: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MegatronBertForPreTrainingOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1]`: - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. kwargs (`Dict[str, any]`, *optional*, defaults to `{}`): Used to hide legacy arguments that have been deprecated. Returns: Example: ```python >>> from transformers import AutoTokenizer, MegatronBertForPreTraining >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-cased-345m") >>> model = MegatronBertForPreTraining.from_pretrained("nvidia/megatron-bert-cased-345m") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.prediction_logits >>> seq_relationship_logits = outputs.seq_relationship_logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output, pooled_output = outputs[:2] prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) total_loss = None if labels is not None and next_sentence_label is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) total_loss = masked_lm_loss + next_sentence_loss if not return_dict: output = (prediction_scores, seq_relationship_score) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return MegatronBertForPreTrainingOutput( loss=total_loss, prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
47,099
51,752
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/megatron_bert/modeling_megatron_bert.py
null
9,419
class MegatronBertForCausalLM(MegatronBertPreTrainedModel, GenerationMixin): _tied_weights_keys = ["cls.predictions.decoder"] def __init__(self, config): super().__init__(config) if not config.is_decoder: logger.warning("If you want to use `MegatronBertForCausalLM` as a standalone, add `is_decoder=True.`") self.bert = MegatronBertModel(config, add_pooling_layer=False) self.cls = MegatronBertOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings self.cls.predictions.bias = new_embeddings.bias @add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]` past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Returns: Example: ```python >>> from transformers import AutoTokenizer, MegatronBertForCausalLM, MegatronBertConfig >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-cased-345m") >>> model = MegatronBertForCausalLM.from_pretrained("nvidia/megatron-bert-cased-345m", is_decoder=True) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: use_cache = False outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) lm_loss = None if labels is not None: # we are doing next-token prediction; shift prediction scores and input ids by one shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() labels = labels[:, 1:].contiguous() loss_fct = CrossEntropyLoss() lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((lm_loss,) + output) if lm_loss is not None else output return CausalLMOutputWithCrossAttentions( loss=lm_loss, logits=prediction_scores, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def _reorder_cache(self, past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past
class_definition
51,905
58,426
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/megatron_bert/modeling_megatron_bert.py
null
9,420
class MegatronBertForMaskedLM(MegatronBertPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder"] def __init__(self, config): super().__init__(config) if config.is_decoder: logger.warning( "If you want to use `MegatronBertForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.bert = MegatronBertModel(config, add_pooling_layer=False) self.cls = MegatronBertOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings self.cls.predictions.bias = new_embeddings.bias @add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs): input_shape = input_ids.shape effective_batch_size = input_shape[0] # add a dummy token if self.config.pad_token_id is None: raise ValueError("The PAD token should be defined for generation") attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1) dummy_token = torch.full( (effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device ) input_ids = torch.cat([input_ids, dummy_token], dim=1) return {"input_ids": input_ids, "attention_mask": attention_mask}
class_definition
58,548
62,916
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/megatron_bert/modeling_megatron_bert.py
null
9,421
class MegatronBertForNextSentencePrediction(MegatronBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.bert = MegatronBertModel(config) self.cls = MegatronBertOnlyNSPHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple, NextSentencePredictorOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring). Indices should be in `[0, 1]`: - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. Returns: Example: ```python >>> from transformers import AutoTokenizer, MegatronBertForNextSentencePrediction >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-cased-345m") >>> model = MegatronBertForNextSentencePrediction.from_pretrained("nvidia/megatron-bert-cased-345m") >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." >>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt") >>> outputs = model(**encoding, labels=torch.LongTensor([1])) >>> logits = outputs.logits >>> assert logits[0, 0] < logits[0, 1] # next sentence was random ```""" if "next_sentence_label" in kwargs: warnings.warn( "The `next_sentence_label` argument is deprecated and will be removed in a future version, use" " `labels` instead.", FutureWarning, ) labels = kwargs.pop("next_sentence_label") return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] seq_relationship_scores = self.cls(pooled_output) next_sentence_loss = None if labels is not None: loss_fct = CrossEntropyLoss() next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1)) if not return_dict: output = (seq_relationship_scores,) + outputs[2:] return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output return NextSentencePredictorOutput( loss=next_sentence_loss, logits=seq_relationship_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
63,073
67,041
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/megatron_bert/modeling_megatron_bert.py
null
9,422
class MegatronBertForSequenceClassification(MegatronBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.bert = MegatronBertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
67,280
71,149
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/megatron_bert/modeling_megatron_bert.py
null
9,423
class MegatronBertForMultipleChoice(MegatronBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.bert = MegatronBertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward( MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
71,397
74,949
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/megatron_bert/modeling_megatron_bert.py
null
9,424
class MegatronBertForTokenClassification(MegatronBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.bert = MegatronBertModel(config, add_pooling_layer=False) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
75,195
77,943
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/megatron_bert/modeling_megatron_bert.py
null
9,425
class MegatronBertForQuestionAnswering(MegatronBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.bert = MegatronBertModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
78,247
82,503
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/megatron_bert/modeling_megatron_bert.py
null
9,426
class MegatronBertConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MegatronBertModel`]. It is used to instantiate a MEGATRON_BERT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the MEGATRON_BERT [nvidia/megatron-bert-uncased-345m](https://huggingface.co/nvidia/megatron-bert-uncased-345m) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 29056): Vocabulary size of the MEGATRON_BERT model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`MegatronBertModel`]. hidden_size (`int`, *optional*, defaults to 1024): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 24): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 4096): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`MegatronBertModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). is_decoder (`bool`, *optional*, defaults to `False`): Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. Examples: ```python >>> from transformers import MegatronBertConfig, MegatronBertModel >>> # Initializing a MEGATRON_BERT google-bert/bert-base-uncased style configuration >>> configuration = MegatronBertConfig() >>> # Initializing a model (with random weights) from the google-bert/bert-base-uncased style configuration >>> model = MegatronBertModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "megatron-bert" def __init__( self, vocab_size=29056, hidden_size=1024, num_hidden_layers=24, num_attention_heads=16, intermediate_size=4096, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, position_embedding_type="absolute", use_cache=True, **kwargs, ): super().__init__(pad_token_id=pad_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.use_cache = use_cache
class_definition
814
6,465
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/megatron_bert/configuration_megatron_bert.py
null
9,427
class GPTBigCodeAttention(nn.Module): def __init__(self, config, is_cross_attention=False, layer_idx=None): super().__init__() self.config = config self.mask_value = None self.multi_query = config.multi_query self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads self.kv_heads = 1 if self.multi_query else self.num_heads self.kv_dim = self.kv_heads * self.head_dim self.split_size = self.embed_dim self.is_causal = True if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale_attn_weights = config.scale_attn_weights self.is_cross_attention = is_cross_attention self.layer_idx = layer_idx self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32 self.scale_attention_softmax_in_fp32 = ( config.scale_attention_softmax_in_fp32 and config.attention_softmax_in_fp32 ) self.attn_pdrop = config.attn_pdrop if self.is_cross_attention: if self.multi_query: raise NotImplementedError("Multi-Query Attention not supported for cross_attention") self.c_attn = nn.Linear(self.embed_dim, 2 * self.embed_dim) self.q_attn = nn.Linear(self.embed_dim, self.embed_dim) else: self.c_attn = nn.Linear(self.embed_dim, self.embed_dim + 2 * self.kv_dim) self.c_proj = nn.Linear(self.embed_dim, self.embed_dim) self.attn_dropout = nn.Dropout(config.attn_pdrop) self.resid_dropout = nn.Dropout(config.resid_pdrop) def _get_mask_value(self, device, dtype): # torch.where expects a tensor. We use a cache to avoid recreating it every time. if self.mask_value is None or self.mask_value.dtype != dtype or self.mask_value.device != device: self.mask_value = torch.full([], torch.finfo(dtype).min, dtype=dtype, device=device) return self.mask_value def _attn(self, query, key, value, attention_mask=None, head_mask=None): dtype = query.dtype softmax_dtype = torch.float32 if self.attention_softmax_in_fp32 else dtype upcast = dtype != softmax_dtype unscale = self.layer_idx + 1 if self.scale_attention_softmax_in_fp32 and upcast else 1 scale_factor = unscale**-1 if self.scale_attn_weights: scale_factor /= self.head_dim**0.5 # MQA models: (batch_size, query_length, num_heads * head_dim) # MHA models: (batch_size, num_heads, query_length, head_dim) query_shape = query.shape batch_size = query_shape[0] key_length = key.size(-1) if self.multi_query: # (batch_size, query_length, num_heads, head_dim) x (batch_size, head_dim, key_length) # -> (batch_size, query_length, num_heads, key_length) query_length = query_shape[1] attn_shape = (batch_size, query_length, self.num_heads, key_length) attn_view = (batch_size, query_length * self.num_heads, key_length) # No copy needed for MQA 2, or when layer_past is provided. query = query.reshape(batch_size, query_length * self.num_heads, self.head_dim) else: # (batch_size, num_heads, query_length, head_dim) x (batch_size, num_heads, head_dim, key_length) # -> (batch_size, num_heads, query_length, key_length) query_length = query_shape[2] attn_shape = (batch_size, self.num_heads, query_length, key_length) attn_view = (batch_size * self.num_heads, query_length, key_length) # Always copies query = query.reshape(batch_size * self.num_heads, query_length, self.head_dim) # No copy when layer_past is provided. key = key.reshape(batch_size * self.num_heads, self.head_dim, key_length) attn_weights = torch.empty(attn_view, device=query.device, dtype=query.dtype) if query.device.type == "cpu": # This is needed because of a bug in pytorch https://github.com/pytorch/pytorch/issues/80588. # The bug was fixed in https://github.com/pytorch/pytorch/pull/96086, # but the fix has not been released as of pytorch version 2.0.0. attn_weights = torch.zeros_like(attn_weights) beta = 1 else: beta = 0 attn_weights = torch.baddbmm(attn_weights, query, key, beta=beta, alpha=scale_factor).view(attn_shape) if upcast: # Use a fused kernel to prevent a large overhead from casting and scaling. # Sub-optimal when the key length is not a multiple of 8. if attention_mask is None: attn_weights = upcast_softmax(attn_weights, unscale, softmax_dtype) else: mask_value = self._get_mask_value(attn_weights.device, softmax_dtype) attn_weights = upcast_masked_softmax(attn_weights, attention_mask, mask_value, unscale, softmax_dtype) else: if attention_mask is not None: mask_value = self._get_mask_value(attn_weights.device, softmax_dtype) # The fused kernel is very slow when the key length is not a multiple of 8, so we skip fusion. attn_weights = torch.where(attention_mask, attn_weights, mask_value) attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1) attn_weights = self.attn_dropout(attn_weights) # Mask heads if we want to if head_mask is not None: if self.multi_query: head_mask = head_mask.transpose(1, 2) attn_weights = attn_weights * head_mask if self.multi_query: attn_output = torch.bmm(attn_weights.view(attn_view), value).view(query_shape) else: attn_output = torch.matmul(attn_weights, value) return attn_output, attn_weights def forward( self, hidden_states: torch.Tensor, layer_past: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, use_cache: Optional[bool] = False, output_attentions: Optional[bool] = False, ) -> Union[ Tuple[torch.Tensor, Optional[torch.Tensor]], Tuple[torch.Tensor, Optional[torch.Tensor], Tuple[torch.Tensor, ...]], ]: if encoder_hidden_states is not None: if not hasattr(self, "q_attn") or not self.is_cross_attention: raise ValueError( "If class is used as cross attention, the weights `q_attn` have to be defined. " "Please make sure to instantiate class with `GPTBigCodeAttention(..., is_cross_attention=True)`." ) query = self.q_attn(hidden_states) key_value = self.c_attn(encoder_hidden_states) attention_mask = encoder_attention_mask elif self.multi_query: query, key_value = self.c_attn(hidden_states).split((self.embed_dim, 2 * self.kv_dim), dim=2) else: # Note: We split as (self.num_heads, 3, self.head_dim) instead of (3, self.num_heads, self.head_dim), # i.e., the memory layout is not the same as GPT2. # This makes the concatenation with past_key_value more efficient. query, key_value = ( self.c_attn(hidden_states) .view(*hidden_states.shape[:2], self.num_heads, 3 * self.head_dim) .transpose(1, 2) .split((self.head_dim, 2 * self.head_dim), dim=3) ) if layer_past is not None: key_value = torch.cat((layer_past, key_value), dim=-2) present = key_value if use_cache else None key, value = key_value.split((self.head_dim, self.head_dim), dim=-1) attn_output, attn_weights = self._attn(query, key.transpose(-1, -2), value, attention_mask, head_mask) if not self.multi_query: attn_output = attn_output.transpose(1, 2).reshape(hidden_states.shape) attn_output = self.c_proj(attn_output) attn_output = self.resid_dropout(attn_output) outputs = (attn_output, present) if output_attentions: if self.multi_query: # Transpose to return weights in the usual format (batch_size, num_heads, query_length, key_length) attn_weights = attn_weights.transpose(1, 2) outputs += (attn_weights,) return outputs # a, present, (attentions)
class_definition
2,800
11,750
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gpt_bigcode/modeling_gpt_bigcode.py
null
9,428
class GPTBigCodeFlashAttention2(GPTBigCodeAttention): """ GPTBigCode flash attention module. This module inherits from `GPTBigCodeAttention` as the weights of the module stays untouched. The only required change would be on the forward pass where it needs to correctly call the public API of flash attention and deal with padding tokens in case the input contains any of them. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() def forward( self, hidden_states: torch.Tensor, layer_past: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, use_cache: Optional[bool] = False, output_attentions: Optional[bool] = False, ) -> Union[ Tuple[torch.Tensor, Optional[torch.Tensor]], Tuple[torch.Tensor, Optional[torch.Tensor], Tuple[torch.Tensor, ...]], ]: if encoder_hidden_states is not None: if not hasattr(self, "q_attn") or not self.is_cross_attention: raise ValueError( "If class is used as cross attention, the weights `q_attn` have to be defined. " "Please make sure to instantiate class with `GPTBigCodeAttention(..., is_cross_attention=True)`." ) query = self.q_attn(hidden_states) key_value = self.c_attn(encoder_hidden_states) attention_mask = encoder_attention_mask elif self.multi_query: query, key_value = self.c_attn(hidden_states).split((self.embed_dim, 2 * self.kv_dim), dim=2) else: # Note: We split as (self.num_heads, 3, self.head_dim) instead of (3, self.num_heads, self.head_dim), # i.e., the memory layout is not the same as GPT2. # This makes the concatenation with past_key_value more efficient. query, key_value = ( self.c_attn(hidden_states) .view(*hidden_states.shape[:2], self.num_heads, 3 * self.head_dim) .transpose(1, 2) .split((self.head_dim, 2 * self.head_dim), dim=3) ) if layer_past is not None: key_value = torch.cat((layer_past, key_value), dim=-2) present = key_value if use_cache else None key, value = key_value.split((self.head_dim, self.head_dim), dim=-1) # Flash attention requires the input to have the shape # batch_size x seq_length x head_dim x hidden_dim if self.multi_query: batch_size, query_length, _ = query.shape query = query.reshape(batch_size, query_length, self.num_heads, self.head_dim) key = key.unsqueeze(2) value = value.unsqueeze(2) else: query_length = query.shape[2] batch_size, _, tgt, _ = key.shape query = query.transpose(1, 2).reshape(batch_size, query_length, self.num_heads, self.head_dim) key = key.transpose(1, 2).reshape(batch_size, tgt, self.num_heads, self.head_dim) value = value.transpose(1, 2).reshape(batch_size, tgt, self.num_heads, self.head_dim) attn_dropout = self.attn_pdrop if self.training else 0.0 # In PEFT, usually we cast the layer norms in float32 for training stability reasons # therefore the input hidden states gets silently casted in float32. Hence, we need # cast them back in float16 just to be sure everything works as expected. input_dtype = query.dtype if input_dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() # Handle the case where the model is quantized elif hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype else: target_dtype = self.c_attn.weight.dtype logger.warning_once( f"The input hidden states seems to be silently casted in float32, this might be related to" f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" f" {target_dtype}." ) query = query.to(target_dtype) key = key.to(target_dtype) value = value.to(target_dtype) attn_output = _flash_attention_forward( query, key, value, attention_mask, query_length, dropout=attn_dropout, is_causal=self.is_causal, use_top_left_mask=self._flash_attn_uses_top_left_mask, ) attn_weights_reshaped = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim) attn_output = self.c_proj(attn_weights_reshaped) attn_output = self.resid_dropout(attn_output) outputs = (attn_output, present) if output_attentions: if self.multi_query: # Transpose to return weights in the usual format (batch_size, num_heads, query_length, key_length) attn_weights_reshaped = attn_weights_reshaped.transpose(1, 2) else: attn_weights_reshaped = None outputs += (attn_weights_reshaped,) return outputs # a, present, (attentions)
class_definition
11,753
17,869
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gpt_bigcode/modeling_gpt_bigcode.py
null
9,429
class GPTBigCodeSdpaAttention(GPTBigCodeAttention): def _attn(self, query, key, value, attention_mask=None, head_mask=None): if head_mask is not None: # The super dispatch is done in the forward. raise ValueError( "PyTorch SDPA does not support head_mask. Please open an issue in Transformers repository." ) scale = None if not self.scale_attn_weights: scale = 1 # MQA models: (batch_size, query_length, num_heads * head_dim) # MHA models: (batch_size, num_heads, query_length, head_dim) query_shape = query.shape batch_size = query_shape[0] key.shape[-2] if self.multi_query: query_length = query_shape[1] # SDPA requires the dimension [..., sequence_length, head_dim]. query = query.view(batch_size, query_length, self.num_heads, self.head_dim).transpose(1, 2) # Without these unsqueeze, SDPA complains as the query and key/value have a different number of dimensions. key = key.unsqueeze(1) value = value.unsqueeze(1) # Although these expand are not numerically useful, PyTorch can not dispatch to memory-efficient backend # and flash attention backend (No available kernel. Aborting execution.) from the shapes # query = [batch_size, num_heads, query_length, head_dim] # key = [batch_size, 1, past_length, head_dim] # value = [batch_size, 1, past_length, head_dim] # # torch==2.1.2 is bugged with non-contiguous inputs with custom attn_mask (https://github.com/pytorch/pytorch/issues/112577), hence the check. if is_torch_greater_or_equal_than_2_2: key = key.expand(-1, self.num_heads, -1, -1) value = value.expand(-1, self.num_heads, -1, -1) else: query_length = query_shape[-1] # See the comment above. if query.device.type == "cuda" and attention_mask is not None: query = query.contiguous() key = key.contiguous() value = value.contiguous() # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. # The query_length > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not # create a causal mask in case query_length == 1. is_causal = True if self.is_causal and attention_mask is None and query_length > 1 else False sdpa_result = torch.nn.functional.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=self.attn_pdrop if self.training else 0.0, is_causal=is_causal, scale=scale, ) if self.multi_query: # (batch_size, num_heads, seq_len, head_dim) --> (batch_size, seq_len, num_heads, head_dim) sdpa_result = sdpa_result.transpose(1, 2) # Reshape is kind of expensive here, as it does a memory copy, # but I did not manage to make away without it (logits do not match when using view) # (batch_size, seq_len, num_heads, head_dim) --> (batch_size, seq_len, num_heads * head_dim) sdpa_result = sdpa_result.reshape(query_shape) return sdpa_result, None def forward( self, hidden_states: torch.Tensor, layer_past: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, use_cache: Optional[bool] = False, output_attentions: Optional[bool] = False, ) -> Union[ Tuple[torch.Tensor, Optional[torch.Tensor]], Tuple[torch.Tensor, Optional[torch.Tensor], Tuple[torch.Tensor, ...]], ]: if encoder_hidden_states is not None: if not hasattr(self, "q_attn") or not self.is_cross_attention: raise ValueError( "If class is used as cross attention, the weights `q_attn` have to be defined. " "Please make sure to instantiate class with `GPTBigCodeAttention(..., is_cross_attention=True)`." ) query = self.q_attn(hidden_states) key_value = self.c_attn(encoder_hidden_states) attention_mask = encoder_attention_mask elif self.multi_query: query, key_value = self.c_attn(hidden_states).split((self.embed_dim, 2 * self.kv_dim), dim=2) else: # Note: We split as (self.num_heads, 3, self.head_dim) instead of (3, self.num_heads, self.head_dim), # i.e., the memory layout is not the same as GPT2. # This makes the concatenation with past_key_value more efficient. query, key_value = ( self.c_attn(hidden_states) .view(*hidden_states.shape[:2], self.num_heads, 3 * self.head_dim) .transpose(1, 2) .split((self.head_dim, 2 * self.head_dim), dim=3) ) if layer_past is not None: key_value = torch.cat((layer_past, key_value), dim=-2) present = key_value if use_cache else None key, value = key_value.split((self.head_dim, self.head_dim), dim=-1) if not output_attentions and head_mask is None: # Difference with the original implementation: there is no need to transpose the key here, # as SDPA expects seq_length to be at index -2 for the key as well attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask) else: # TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once this is implemented. logger.warning_once( "GPTBigCodeModel is using GPTBigCodeSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` and `head_mask` not None." ' Falling back to the manual attention implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) attn_output, attn_weights = super()._attn(query, key.transpose(-1, -2), value, attention_mask, head_mask) if not self.multi_query: attn_output = attn_output.transpose(1, 2).reshape(hidden_states.shape) attn_output = self.c_proj(attn_output) attn_output = self.resid_dropout(attn_output) outputs = (attn_output, present) if output_attentions: if self.multi_query: # Transpose to return weights in the usual format (batch_size, num_heads, query_length, key_length) attn_weights = attn_weights.transpose(1, 2) outputs += (attn_weights,) return outputs
class_definition
17,872
25,211
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gpt_bigcode/modeling_gpt_bigcode.py
null
9,430
class GPTBigCodeMLP(nn.Module): def __init__(self, intermediate_size, config): super().__init__() embed_dim = config.hidden_size self.c_fc = nn.Linear(embed_dim, intermediate_size) self.c_proj = nn.Linear(intermediate_size, embed_dim) self.act = ACT2FN[config.activation_function] self.dropout = nn.Dropout(config.resid_pdrop) # Copied from transformers.models.gpt2.modeling_gpt2.GPT2MLP.forward def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor: hidden_states = self.c_fc(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.c_proj(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states
class_definition
25,214
25,990
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gpt_bigcode/modeling_gpt_bigcode.py
null
9,431
class GPTBigCodeBlock(nn.Module): def __init__(self, config, layer_idx=None): super().__init__() hidden_size = config.hidden_size self.inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.attn = GPTBIGCODE_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx) self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) if config.add_cross_attention: if config.multi_query: raise NotImplementedError("Cross-attention not implemented for MQA") self.crossattention = GPTBIGCODE_ATTENTION_CLASSES[config._attn_implementation]( config, is_cross_attention=True, layer_idx=layer_idx ) self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.mlp = GPTBigCodeMLP(self.inner_dim, config) def forward( self, hidden_states: Optional[Tuple[torch.Tensor]], layer_past: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, use_cache: Optional[bool] = False, output_attentions: Optional[bool] = False, **kwargs, ) -> Union[ Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.Tensor, torch.Tensor] ]: residual = hidden_states hidden_states = self.ln_1(hidden_states) attn_outputs = self.attn( hidden_states, layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask, use_cache=use_cache, output_attentions=output_attentions, ) attn_output = attn_outputs[0] # output_attn: a, present, (attentions) outputs = attn_outputs[1:] # residual connection hidden_states = attn_output + residual if encoder_hidden_states is not None: # add one self-attention block for cross-attention if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with " "cross-attention layers by setting `config.add_cross_attention=True`" ) residual = hidden_states hidden_states = self.ln_cross_attn(hidden_states) cross_attn_outputs = self.crossattention( hidden_states, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, ) attn_output = cross_attn_outputs[0] # residual connection hidden_states = residual + attn_output outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights residual = hidden_states hidden_states = self.ln_2(hidden_states) feed_forward_hidden_states = self.mlp(hidden_states) # residual connection hidden_states = residual + feed_forward_hidden_states if use_cache: outputs = (hidden_states,) + outputs else: outputs = (hidden_states,) + outputs[1:] return outputs # hidden_states, present, (attentions, cross_attentions)
class_definition
26,153
29,855
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gpt_bigcode/modeling_gpt_bigcode.py
null
9,432
class GPTBigCodePreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = GPTBigCodeConfig base_model_prefix = "transformer" supports_gradient_checkpointing = True _no_split_modules = ["GPTBigCodeBlock"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn_2 = True _supports_sdpa = True def __init__(self, *inputs, **kwargs): super().__init__(*inputs, **kwargs) def _init_weights(self, module): """Initialize the weights.""" if isinstance(module, (GPTBigCodeMLP, GPTBigCodeAttention)): # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme: # > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale # > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers. # > -- GPT-2 :: https://openai.com/blog/better-language-models/ # # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py module.c_proj.weight.data.normal_( mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer)) ) module.c_proj._is_hf_initialized = True elif isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0)
class_definition
29,858
32,055
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gpt_bigcode/modeling_gpt_bigcode.py
null
9,433
class GPTBigCodeModel(GPTBigCodePreTrainedModel): def __init__(self, config): super().__init__(config) self.multi_query = config.multi_query self.embed_dim = config.hidden_size self.wte = nn.Embedding(config.vocab_size, self.embed_dim) self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim) self.drop = nn.Dropout(config.embd_pdrop) self.h = nn.ModuleList([GPTBigCodeBlock(config, layer_idx=i) for i in range(config.num_hidden_layers)]) self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) max_positions = config.max_position_embeddings self.register_buffer( "bias", torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)), persistent=False ) self.gradient_checkpointing = False self._use_sdpa = config._attn_implementation == "sdpa" self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.wte def set_input_embeddings(self, new_embeddings): self.wte = new_embeddings @add_start_docstrings_to_model_forward(GPT_BIGCODE_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPastAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) batch_size = input_ids.shape[0] elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] batch_size = inputs_embeds.shape[0] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if batch_size <= 0: raise ValueError("batch_size has to be defined and > 0") device = input_ids.device if input_ids is not None else inputs_embeds.device if token_type_ids is not None: token_type_ids = token_type_ids.view(-1, input_shape[-1]) if past_key_values is None: past_length = 0 past_key_values = tuple([None] * len(self.h)) else: past_length = past_key_values[0].size(-2) if attention_mask is not None and len(attention_mask.shape) == 2 and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_length > 0: position_ids = position_ids[:, past_length : input_shape[-1] + past_length :] elif position_ids is None: position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device) position_ids = position_ids.unsqueeze(0) # Self-attention mask. query_length = input_shape[-1] key_length = past_length + query_length self_attention_mask = self.bias[None, key_length - query_length : key_length, :key_length] if self._use_flash_attention_2: # 2d mask is passed through the layers attention_mask = attention_mask.bool() if (attention_mask is not None and 0 in attention_mask) else None encoder_attention_mask = ( encoder_attention_mask.bool() if (encoder_attention_mask is not None and 0 in encoder_attention_mask) else None ) else: # 4d mask is passed through the layers if attention_mask is not None: self_attention_mask = self_attention_mask * attention_mask.view(batch_size, 1, -1).to( dtype=torch.bool, device=self_attention_mask.device ) # MQA models: (batch_size, query_length, n_heads, key_length) # MHA models: (batch_size, n_heads, query_length, key_length) self_attention_mask = self_attention_mask.unsqueeze(2 if self.multi_query else 1) if self._use_sdpa and head_mask is None and not output_attentions: # SDPA with a custom mask is much faster in fp16/fp32 dtype rather than bool. Cast here to floating point instead of at every layer. dtype = self.wte.weight.dtype min_dtype = torch.finfo(dtype).min self_attention_mask = torch.where( self_attention_mask, torch.full([], 0.0, dtype=dtype, device=self_attention_mask.device), torch.full([], min_dtype, dtype=dtype, device=self_attention_mask.device), ) # output_attentions=True can not be supported when using SDPA, and we fall back on # the manual implementation that requires a 4D causal mask in all cases. if self.multi_query: # gpt_bigcode using MQA has the bad taste to use a causal mask with shape # [batch_size, target_length, 1, source_length], not compatible with SDPA, hence this transpose. self_attention_mask = self_attention_mask.transpose(1, 2) if query_length > 1 and attention_mask is not None and attention_mask.device.type == "cuda": # From PyTorch 2.1 onwards, F.scaled_dot_product_attention with the memory-efficient attention backend # produces nans if sequences are completely unattended in the attention mask. Details: https://github.com/pytorch/pytorch/issues/110213 self_attention_mask = AttentionMaskConverter._unmask_unattended( self_attention_mask, min_dtype=min_dtype ) attention_mask = self_attention_mask # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if ( self.config.add_cross_attention and encoder_hidden_states is not None and encoder_attention_mask is not None ): if encoder_attention_mask.dim() == 2: encoder_attention_mask.unsqueeze(1) assert encoder_attention_mask.dim() == 3 encoder_attention_mask = encoder_attention_mask.bool().unsqueeze(2 if self.multi_query else 1) else: encoder_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # head_mask has shape n_layer x batch x n_heads x N x N head_mask = self.get_head_mask(head_mask, self.config.n_layer) if inputs_embeds is None: inputs_embeds = self.wte(input_ids) position_embeds = self.wpe(position_ids) hidden_states = inputs_embeds + position_embeds if token_type_ids is not None: token_type_embeds = self.wte(token_type_ids) hidden_states = hidden_states + token_type_embeds hidden_states = self.drop(hidden_states) output_shape = input_shape + (hidden_states.size(-1),) presents = [] if use_cache else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None all_hidden_states = () if output_hidden_states else None for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: outputs = self._gradient_checkpointing_func( block.__call__, hidden_states, None, attention_mask, head_mask[i], encoder_hidden_states, encoder_attention_mask, use_cache, output_attentions, ) else: outputs = block( hidden_states, layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask[i], encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = outputs[0] if use_cache: presents.append(outputs[1]) if output_attentions: all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],) hidden_states = self.ln_f(hidden_states) hidden_states = hidden_states.view(output_shape) # Add last hidden state if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, )
class_definition
37,202
48,638
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gpt_bigcode/modeling_gpt_bigcode.py
null
9,434
class GPTBigCodeForCausalLM(GPTBigCodePreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) self.transformer = GPTBigCodeModel(config) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): # Overwritten -- `past_key_values` with uncommon shape token_type_ids = kwargs.get("token_type_ids", None) # Omit tokens covered by past_key_values if past_key_values: if self.config.multi_query: past_length = past_key_values[0].shape[1] else: past_length = past_key_values[0].shape[2] # Some generation methods already pass only the last input ID if input_ids.shape[1] > past_length: remove_prefix_length = past_length else: # Default to old behavior: keep only final ID remove_prefix_length = input_ids.shape[1] - 1 input_ids = input_ids[:, remove_prefix_length:] if token_type_ids is not None: token_type_ids = token_type_ids[:, -input_ids.shape[1] :] attention_mask = kwargs.get("attention_mask", None) position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1] :] else: position_ids = None # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "position_ids": position_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } ) return model_inputs def _get_initial_cache_position(self, input_ids, model_kwargs): """ Calculates `cache_position` for the pre-fill stage based on `input_ids` and optionally past length. Since gpt bigcode is special, the method is overridden here, other models use it from `generation.utils.py`. """ past_length = 0 if "past_key_values" in model_kwargs: if self.config.multi_query: past_length = model_kwargs["past_key_values"][0].shape[1] else: past_length = model_kwargs["past_key_values"][0].shape[2] if "inputs_embeds" in model_kwargs: cur_len = model_kwargs["inputs_embeds"].shape[1] else: cur_len = input_ids.shape[-1] model_kwargs["cache_position"] = torch.arange(past_length, cur_len, device=input_ids.device) return model_kwargs @add_start_docstrings_to_model_forward(GPT_BIGCODE_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: r""" labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] lm_logits = self.lm_head(hidden_states) loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous().to(shift_logits.device) # Flatten the tokens loss_fct = CrossEntropyLoss() loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) if not return_dict: output = (lm_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return CausalLMOutputWithCrossAttentions( loss=loss, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, cross_attentions=transformer_outputs.cross_attentions, ) @staticmethod def _reorder_cache( past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor ) -> Tuple[Tuple[torch.Tensor]]: """ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct beam_idx at every generation step. """ return tuple(layer_past.index_select(0, beam_idx.to(layer_past.device)) for layer_past in past_key_values)
class_definition
48,853
56,257
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gpt_bigcode/modeling_gpt_bigcode.py
null
9,435
class GPTBigCodeForSequenceClassification(GPTBigCodePreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.transformer = GPTBigCodeModel(config) self.score = nn.Linear(config.n_embd, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(GPT_BIGCODE_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutputWithPast]: r""" labels (`torch.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size, sequence_length = input_ids.shape[:2] else: batch_size, sequence_length = inputs_embeds.shape[:2] assert ( self.config.pad_token_id is not None or batch_size == 1 ), "Cannot handle batch sizes > 1 if no padding token is defined." if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 sequence_lengths = sequence_lengths % input_ids.shape[-1] sequence_lengths = sequence_lengths.to(logits.device) else: sequence_lengths = -1 logger.warning_once( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " "unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] loss = None if labels is not None: labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )
class_definition
57,066
62,240
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gpt_bigcode/modeling_gpt_bigcode.py
null
9,436
class GPTBigCodeForTokenClassification(GPTBigCodePreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.transformer = GPTBigCodeModel(config) if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None: classifier_dropout = config.classifier_dropout elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None: classifier_dropout = config.hidden_dropout else: classifier_dropout = 0.1 self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(GPT_BIGCODE_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] hidden_states = self.dropout(hidden_states) logits = self.classifier(hidden_states) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1).to(logits.device)) if not return_dict: output = (logits,) + transformer_outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )
class_definition
62,483
65,767
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gpt_bigcode/modeling_gpt_bigcode.py
null
9,437
class GPTBigCodeConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a [`GPTBigCodeModel`]. It is used to instantiate a GPTBigCode model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the GPTBigCode [gpt_bigcode](https://huggingface.co/gpt_bigcode) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50257): Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`GPTBigCodeModel`]. n_positions (`int`, *optional*, defaults to 1024): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). n_embd (`int`, *optional*, defaults to 768): Dimensionality of the embeddings and hidden states. n_layer (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. n_head (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. n_inner (`int`, *optional*, defaults to None): Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd activation_function (`str`, *optional*, defaults to `"gelu_pytorch_tanh"`): Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new", "gelu_pytorch_tanh"]`. resid_pdrop (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. embd_pdrop (`float`, *optional*, defaults to 0.1): The dropout ratio for the embeddings. attn_pdrop (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention. layer_norm_epsilon (`float`, *optional*, defaults to 1e-5): The epsilon to use in the layer normalization layers. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. scale_attn_weights (`bool`, *optional*, defaults to `True`): Scale attention weights by dividing by sqrt(hidden_size).. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). attention_softmax_in_fp32 (`bool`, *optional*, defaults to `True`): Whether to call the fused softmax in float32. scale_attention_softmax_in_fp32 (`bool`, *optional*, defaults to `True`): Whether to scale the attention softmax in float32. attention_type (`bool`, *optional*, defaults to `True`): Whether to use Multi-Query Attion (`True`) or Multi-Head Attention (`False`). Example: ```python >>> from transformers import GPTBigCodeConfig, GPTBigCodeModel >>> # Initializing a GPTBigCode configuration >>> configuration = GPTBigCodeConfig() >>> # Initializing a model (with random weights) from the configuration >>> model = GPTBigCodeModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "gpt_bigcode" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, vocab_size=50257, n_positions=1024, n_embd=768, n_layer=12, n_head=12, n_inner=None, activation_function="gelu_pytorch_tanh", resid_pdrop=0.1, embd_pdrop=0.1, attn_pdrop=0.1, layer_norm_epsilon=1e-5, initializer_range=0.02, scale_attn_weights=True, use_cache=True, bos_token_id=50256, eos_token_id=50256, attention_softmax_in_fp32=True, scale_attention_softmax_in_fp32=True, multi_query=True, **kwargs, ): self.vocab_size = vocab_size self.n_positions = n_positions self.n_embd = n_embd self.n_layer = n_layer self.n_head = n_head self.n_inner = n_inner self.activation_function = activation_function self.resid_pdrop = resid_pdrop self.embd_pdrop = embd_pdrop self.attn_pdrop = attn_pdrop self.layer_norm_epsilon = layer_norm_epsilon self.initializer_range = initializer_range self.scale_attn_weights = scale_attn_weights self.use_cache = use_cache self.attention_softmax_in_fp32 = attention_softmax_in_fp32 self.scale_attention_softmax_in_fp32 = scale_attention_softmax_in_fp32 self.multi_query = multi_query self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
class_definition
777
6,277
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gpt_bigcode/configuration_gpt_bigcode.py
null
9,438
class FunnelTokenizerFast(PreTrainedTokenizerFast): r""" Construct a "fast" Funnel Transformer tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece. This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): File containing the vocabulary. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"<sep>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"<cls>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. clean_text (`bool`, *optional*, defaults to `True`): Whether or not to clean the text before tokenization by removing any control characters and replacing all whitespaces by the classic one. tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this issue](https://github.com/huggingface/transformers/issues/328)). bos_token (`str`, `optional`, defaults to `"<s>"`): The beginning of sentence token. eos_token (`str`, `optional`, defaults to `"</s>"`): The end of sentence token. strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). wordpieces_prefix (`str`, *optional*, defaults to `"##"`): The prefix for subwords. """ vocab_files_names = VOCAB_FILES_NAMES slow_tokenizer_class = FunnelTokenizer cls_token_type_id: int = 2 def __init__( self, vocab_file=None, tokenizer_file=None, do_lower_case=True, unk_token="<unk>", sep_token="<sep>", pad_token="<pad>", cls_token="<cls>", mask_token="<mask>", bos_token="<s>", eos_token="</s>", clean_text=True, tokenize_chinese_chars=True, strip_accents=None, wordpieces_prefix="##", **kwargs, ): super().__init__( vocab_file, tokenizer_file=tokenizer_file, do_lower_case=do_lower_case, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, bos_token=bos_token, eos_token=eos_token, clean_text=clean_text, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, wordpieces_prefix=wordpieces_prefix, **kwargs, ) normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase", do_lower_case) != do_lower_case or normalizer_state.get("strip_accents", strip_accents) != strip_accents or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars ): normalizer_class = getattr(normalizers, normalizer_state.pop("type")) normalizer_state["lowercase"] = do_lower_case normalizer_state["strip_accents"] = strip_accents normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state) self.do_lower_case = do_lower_case # Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.build_inputs_with_special_tokens with BERT->Funnel def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A Funnel sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id] if token_ids_1 is not None: output += token_ids_1 + [self.sep_token_id] return output def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A Funnel Transformer sequence pair mask has the following format: ``` 2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls) * [self.cls_token_type_id] + len(token_ids_0 + sep) * [0] return len(cls) * [self.cls_token_type_id] + len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] # Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.save_vocabulary def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) return tuple(files)
class_definition
1,206
8,642
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/tokenization_funnel_fast.py
null
9,439
class FunnelTokenizer(PreTrainedTokenizer): r""" Construct a Funnel Transformer tokenizer. Based on WordPiece. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): File containing the vocabulary. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. do_basic_tokenize (`bool`, *optional*, defaults to `True`): Whether or not to do basic tokenization before WordPiece. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"<sep>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"<cls>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sentence token. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sentence token. tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). clean_up_tokenization_spaces (`bool`, *optional*, defaults to `True`): Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like extra spaces. """ vocab_files_names = VOCAB_FILES_NAMES cls_token_type_id: int = 2 def __init__( self, vocab_file, do_lower_case=True, do_basic_tokenize=True, never_split=None, unk_token="<unk>", sep_token="<sep>", pad_token="<pad>", cls_token="<cls>", mask_token="<mask>", bos_token="<s>", eos_token="</s>", tokenize_chinese_chars=True, strip_accents=None, clean_up_tokenization_spaces=True, **kwargs, ): if not os.path.isfile(vocab_file): raise ValueError( f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" " model use `tokenizer = FunnelTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) self.vocab = load_vocab(vocab_file) self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) self.do_basic_tokenize = do_basic_tokenize if do_basic_tokenize: self.basic_tokenizer = BasicTokenizer( do_lower_case=do_lower_case, never_split=never_split, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, ) self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token)) super().__init__( do_lower_case=do_lower_case, do_basic_tokenize=do_basic_tokenize, never_split=never_split, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, bos_token=bos_token, eos_token=eos_token, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs, ) @property # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.do_lower_case def do_lower_case(self): return self.basic_tokenizer.do_lower_case @property # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.vocab_size def vocab_size(self): return len(self.vocab) # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_vocab def get_vocab(self): return dict(self.vocab, **self.added_tokens_encoder) # Copied from transformers.models.bert.tokenization_bert.BertTokenizer._tokenize def _tokenize(self, text, split_special_tokens=False): split_tokens = [] if self.do_basic_tokenize: for token in self.basic_tokenizer.tokenize( text, never_split=self.all_special_tokens if not split_special_tokens else None ): # If the token is part of the never_split set if token in self.basic_tokenizer.never_split: split_tokens.append(token) else: split_tokens += self.wordpiece_tokenizer.tokenize(token) else: split_tokens = self.wordpiece_tokenizer.tokenize(text) return split_tokens # Copied from transformers.models.bert.tokenization_bert.BertTokenizer._convert_token_to_id def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.vocab.get(token, self.vocab.get(self.unk_token)) # Copied from transformers.models.bert.tokenization_bert.BertTokenizer._convert_id_to_token def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.ids_to_tokens.get(index, self.unk_token) # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.convert_tokens_to_string def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" out_string = " ".join(tokens).replace(" ##", "").strip() return out_string # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.build_inputs_with_special_tokens def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERT sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + token_ids_1 + sep # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_special_tokens_mask def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A Funnel Transformer sequence pair mask has the following format: ``` 2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls) * [self.cls_token_type_id] + len(token_ids_0 + sep) * [0] return len(cls) * [self.cls_token_type_id] + len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.save_vocabulary def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: index = 0 if os.path.isdir(save_directory): vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory with open(vocab_file, "w", encoding="utf-8") as writer: for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) index = token_index writer.write(token + "\n") index += 1 return (vocab_file,)
class_definition
1,855
13,895
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/tokenization_funnel.py
null
9,440
class BasicTokenizer: """ Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). Args: do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). do_split_on_punc (`bool`, *optional*, defaults to `True`): In some instances we want to skip the basic punctuation splitting so that later tokenization can capture the full context of the words, such as contractions. """ def __init__( self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None, do_split_on_punc=True, ): if never_split is None: never_split = [] self.do_lower_case = do_lower_case self.never_split = set(never_split) self.tokenize_chinese_chars = tokenize_chinese_chars self.strip_accents = strip_accents self.do_split_on_punc = do_split_on_punc def tokenize(self, text, never_split=None): """ Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer. Args: never_split (`List[str]`, *optional*) Kept for backward compatibility purposes. Now implemented directly at the base class level (see [`PreTrainedTokenizer.tokenize`]) List of token not to split. """ # union() returns a new set by concatenating the two sets. never_split = self.never_split.union(set(never_split)) if never_split else self.never_split text = self._clean_text(text) # This was added on November 1st, 2018 for the multilingual and Chinese # models. This is also applied to the English models now, but it doesn't # matter since the English models were not trained on any Chinese data # and generally don't have any Chinese data in them (there are Chinese # characters in the vocabulary because Wikipedia does have some Chinese # words in the English Wikipedia.). if self.tokenize_chinese_chars: text = self._tokenize_chinese_chars(text) # prevents treating the same character with different unicode codepoints as different characters unicode_normalized_text = unicodedata.normalize("NFC", text) orig_tokens = whitespace_tokenize(unicode_normalized_text) split_tokens = [] for token in orig_tokens: if token not in never_split: if self.do_lower_case: token = token.lower() if self.strip_accents is not False: token = self._run_strip_accents(token) elif self.strip_accents: token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token, never_split)) output_tokens = whitespace_tokenize(" ".join(split_tokens)) return output_tokens def _run_strip_accents(self, text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output) def _run_split_on_punc(self, text, never_split=None): """Splits punctuation on a piece of text.""" if not self.do_split_on_punc or (never_split is not None and text in never_split): return [text] chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def _tokenize_chinese_chars(self, text): """Adds whitespace around any CJK character.""" output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(" ") output.append(char) output.append(" ") else: output.append(char) return "".join(output) def _is_chinese_char(self, cp): """Checks whether CP is the codepoint of a CJK character.""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False def _clean_text(self, text): """Performs invalid character removal and whitespace cleanup on text.""" output = [] for char in text: cp = ord(char) if cp == 0 or cp == 0xFFFD or _is_control(char): continue if _is_whitespace(char): output.append(" ") else: output.append(char) return "".join(output)
class_definition
13,970
20,718
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/tokenization_funnel.py
null
9,441
class WordpieceTokenizer: """Runs WordPiece tokenization.""" def __init__(self, vocab, unk_token, max_input_chars_per_word=100): self.vocab = vocab self.unk_token = unk_token self.max_input_chars_per_word = max_input_chars_per_word def tokenize(self, text): """ Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary. For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`. Args: text: A single token or whitespace separated tokens. This should have already been passed through *BasicTokenizer*. Returns: A list of wordpiece tokens. """ output_tokens = [] for token in whitespace_tokenize(text): chars = list(token) if len(chars) > self.max_input_chars_per_word: output_tokens.append(self.unk_token) continue is_bad = False start = 0 sub_tokens = [] while start < len(chars): end = len(chars) cur_substr = None while start < end: substr = "".join(chars[start:end]) if start > 0: substr = "##" + substr if substr in self.vocab: cur_substr = substr break end -= 1 if cur_substr is None: is_bad = True break sub_tokens.append(cur_substr) start = end if is_bad: output_tokens.append(self.unk_token) else: output_tokens.extend(sub_tokens) return output_tokens
class_definition
20,797
22,685
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/tokenization_funnel.py
null
9,442
class TFFunnelEmbeddings(keras.layers.Layer): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.hidden_size = config.hidden_size self.initializer_std = 1.0 if config.initializer_std is None else config.initializer_std self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout) def build(self, input_shape=None): with tf.name_scope("word_embeddings"): self.weight = self.add_weight( name="weight", shape=[self.config.vocab_size, self.hidden_size], initializer=get_initializer(initializer_range=self.initializer_std), ) if self.built: return self.built = True if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.d_model]) def call(self, input_ids=None, inputs_embeds=None, training=False): """ Applies embedding based on inputs tensor. Returns: final_embeddings (`tf.Tensor`): output embedding tensor. """ assert not (input_ids is None and inputs_embeds is None) assert not (input_ids is not None and inputs_embeds is not None) if input_ids is not None: check_embeddings_within_bounds(input_ids, self.config.vocab_size) inputs_embeds = tf.gather(self.weight, input_ids) final_embeddings = self.LayerNorm(inputs=inputs_embeds) final_embeddings = self.dropout(inputs=final_embeddings, training=training) return final_embeddings
class_definition
1,848
3,712
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/modeling_tf_funnel.py
null
9,443
class TFFunnelAttentionStructure: """ Contains helpers for `TFFunnelRelMultiheadAttention `. """ cls_token_type_id: int = 2 def __init__(self, config): self.d_model = config.d_model self.attention_type = config.attention_type self.num_blocks = config.num_blocks self.separate_cls = config.separate_cls self.truncate_seq = config.truncate_seq self.pool_q_only = config.pool_q_only self.pooling_type = config.pooling_type self.sin_dropout = keras.layers.Dropout(config.hidden_dropout) self.cos_dropout = keras.layers.Dropout(config.hidden_dropout) # Track where we are at in terms of pooling from the original input, e.g., by how much the sequence length was # divided. self.pooling_mult = None def init_attention_inputs(self, inputs_embeds, attention_mask=None, token_type_ids=None, training=False): """Returns the attention inputs associated to the inputs of the model.""" # inputs_embeds has shape batch_size x seq_len x d_model # attention_mask and token_type_ids have shape batch_size x seq_len self.pooling_mult = 1 self.seq_len = seq_len = shape_list(inputs_embeds)[1] position_embeds = self.get_position_embeds(seq_len, training=training) token_type_mat = self.token_type_ids_to_mat(token_type_ids) if token_type_ids is not None else None cls_mask = ( tf.pad(tf.ones([seq_len - 1, seq_len - 1], dtype=inputs_embeds.dtype), [[1, 0], [1, 0]]) if self.separate_cls else None ) return (position_embeds, token_type_mat, attention_mask, cls_mask) def token_type_ids_to_mat(self, token_type_ids): """Convert `token_type_ids` to `token_type_mat`.""" token_type_mat = tf.equal(tf.expand_dims(token_type_ids, -1), tf.expand_dims(token_type_ids, -2)) # Treat <cls> as in the same segment as both A & B cls_ids = tf.equal(token_type_ids, tf.constant([self.cls_token_type_id], dtype=token_type_ids.dtype)) cls_mat = tf.logical_or(tf.expand_dims(cls_ids, -1), tf.expand_dims(cls_ids, -2)) return tf.logical_or(cls_mat, token_type_mat) def get_position_embeds(self, seq_len, training=False): """ Create and cache inputs related to relative position encoding. Those are very different depending on whether we are using the factorized or the relative shift attention: For the factorized attention, it returns the matrices (phi, pi, psi, omega) used in the paper, appendix A.2.2, final formula. For the relative shift attention, it returns all possible vectors R used in the paper, appendix A.2.1, final formula. Paper link: https://arxiv.org/abs/2006.03236 """ if self.attention_type == "factorized": # Notations from the paper, appending A.2.2, final formula. # We need to create and return the matrices phi, psi, pi and omega. pos_seq = tf.range(0, seq_len, 1.0) freq_seq = tf.range(0, self.d_model // 2, 1.0) inv_freq = 1 / (10000 ** (freq_seq / (self.d_model // 2))) sinusoid = tf.einsum("i,d->id", pos_seq, inv_freq) sin_embed = tf.sin(sinusoid) sin_embed_d = self.sin_dropout(sin_embed, training=training) cos_embed = tf.cos(sinusoid) cos_embed_d = self.cos_dropout(cos_embed, training=training) # This is different from the formula on the paper... phi = tf.concat([sin_embed_d, sin_embed_d], axis=-1) psi = tf.concat([cos_embed, sin_embed], axis=-1) pi = tf.concat([cos_embed_d, cos_embed_d], axis=-1) omega = tf.concat([-sin_embed, cos_embed], axis=-1) return (phi, pi, psi, omega) else: # Notations from the paper, appending A.2.1, final formula. # We need to create and return all the possible vectors R for all blocks and shifts. freq_seq = tf.range(0, self.d_model // 2, 1.0) inv_freq = 1 / (10000 ** (freq_seq / (self.d_model // 2))) # Maximum relative positions for the first input rel_pos_id = tf.range(-seq_len * 2, seq_len * 2, 1.0) zero_offset = seq_len * tf.constant(2) sinusoid = tf.einsum("i,d->id", rel_pos_id, inv_freq) sin_embed = self.sin_dropout(tf.sin(sinusoid), training=training) cos_embed = self.cos_dropout(tf.cos(sinusoid), training=training) pos_embed = tf.concat([sin_embed, cos_embed], axis=-1) pos = tf.range(0, seq_len) pooled_pos = pos position_embeds_list = [] for block_index in range(0, self.num_blocks): # For each block with block_index > 0, we need two types position embeddings: # - Attention(pooled-q, unpooled-kv) # - Attention(pooled-q, pooled-kv) # For block_index = 0 we only need the second one and leave the first one as None. # First type position_embeds_pooling = tf.fill([1], value=-1.0) if block_index != 0: pooled_pos = self.stride_pool_pos(pos, block_index) # construct rel_pos_id stride = 2 ** (block_index - 1) rel_pos = self.relative_pos(pos, stride, pooled_pos, shift=2) # rel_pos = tf.expand_dims(rel_pos,1) + zero_offset # rel_pos = tf.broadcast_to(rel_pos, (rel_pos.shape[0], self.d_model)) rel_pos = tf.cast(rel_pos, dtype=zero_offset.dtype) rel_pos = rel_pos + zero_offset position_embeds_pooling = tf.gather(pos_embed, rel_pos, axis=0) # Second type pos = pooled_pos stride = 2**block_index rel_pos = self.relative_pos(pos, stride) # rel_pos = tf.expand_dims(rel_pos,1) + zero_offset # rel_pos = tf.broadcast_to(rel_pos, (rel_pos.shape[0], self.d_model)) rel_pos = tf.cast(rel_pos, dtype=zero_offset.dtype) rel_pos = rel_pos + zero_offset tf.debugging.assert_less(rel_pos, tf.shape(pos_embed)[0]) position_embeds_no_pooling = tf.gather(pos_embed, rel_pos, axis=0) position_embeds_list.append([position_embeds_no_pooling, position_embeds_pooling]) return position_embeds_list def stride_pool_pos(self, pos_id, block_index): """ Pool `pos_id` while keeping the cls token separate (if `self.separate_cls=True`). """ if self.separate_cls: # Under separate <cls>, we treat the <cls> as the first token in # the previous block of the 1st real block. Since the 1st real # block always has position 1, the position of the previous block # will be at `1 - 2 ** block_index`. cls_pos = tf.constant([-(2**block_index) + 1], dtype=pos_id.dtype) pooled_pos_id = pos_id[1:-1] if self.truncate_seq else pos_id[1:] return tf.concat([cls_pos, pooled_pos_id[::2]], 0) else: return pos_id[::2] def relative_pos(self, pos, stride, pooled_pos=None, shift=1): """ Build the relative positional vector between `pos` and `pooled_pos`. """ if pooled_pos is None: pooled_pos = pos ref_point = pooled_pos[0] - pos[0] num_remove = shift * shape_list(pooled_pos)[0] max_dist = ref_point + num_remove * stride min_dist = pooled_pos[0] - pos[-1] return tf.range(max_dist, min_dist - 1, -stride) def stride_pool(self, tensor, axis): """ Perform pooling by stride slicing the tensor along the given axis. """ if tensor is None: return None # Do the stride pool recursively if axis is a list or a tuple of ints. if isinstance(axis, (list, tuple)): for ax in axis: tensor = self.stride_pool(tensor, ax) return tensor # Do the stride pool recursively if tensor is a list or tuple of tensors. if isinstance(tensor, (tuple, list)): return type(tensor)(self.stride_pool(x, axis) for x in tensor) # Deal with negative axis axis %= len(shape_list(tensor)) axis_slice = slice(None, -1, 2) if self.separate_cls and self.truncate_seq else slice(None, None, 2) enc_slice = [slice(None)] * axis + [axis_slice] if self.separate_cls: cls_slice = [slice(None)] * axis + [slice(None, 1)] tensor = tf.concat([tensor[cls_slice], tensor], axis) return tensor[enc_slice] def pool_tensor(self, tensor, mode="mean", stride=2): """Apply 1D pooling to a tensor of size [B x T (x H)].""" if tensor is None: return None # Do the pool recursively if tensor is a list or tuple of tensors. if isinstance(tensor, (tuple, list)): return type(tensor)(self.pool_tensor(tensor, mode=mode, stride=stride) for x in tensor) if self.separate_cls: suffix = tensor[:, :-1] if self.truncate_seq else tensor tensor = tf.concat([tensor[:, :1], suffix], axis=1) ndim = len(shape_list(tensor)) if ndim == 2: tensor = tensor[:, :, None] if mode == "mean": tensor = tf.nn.avg_pool1d(tensor, stride, strides=stride, data_format="NWC", padding="SAME") elif mode == "max": tensor = tf.nn.max_pool1d(tensor, stride, strides=stride, data_format="NWC", padding="SAME") elif mode == "min": tensor = -tf.nn.max_pool1d(-tensor, stride, strides=stride, data_format="NWC", padding="SAME") else: raise NotImplementedError("The supported modes are 'mean', 'max' and 'min'.") return tf.squeeze(tensor, 2) if ndim == 2 else tensor def pre_attention_pooling(self, output, attention_inputs): """Pool `output` and the proper parts of `attention_inputs` before the attention layer.""" position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs if self.pool_q_only: if self.attention_type == "factorized": position_embeds = self.stride_pool(position_embeds[:2], 0) + position_embeds[2:] token_type_mat = self.stride_pool(token_type_mat, 1) cls_mask = self.stride_pool(cls_mask, 0) output = self.pool_tensor(output, mode=self.pooling_type) else: self.pooling_mult *= 2 if self.attention_type == "factorized": position_embeds = self.stride_pool(position_embeds, 0) token_type_mat = self.stride_pool(token_type_mat, [1, 2]) cls_mask = self.stride_pool(cls_mask, [1, 2]) attention_mask = self.pool_tensor(attention_mask, mode="min") output = self.pool_tensor(output, mode=self.pooling_type) attention_inputs = (position_embeds, token_type_mat, attention_mask, cls_mask) return output, attention_inputs def post_attention_pooling(self, attention_inputs): """Pool the proper parts of `attention_inputs` after the attention layer.""" position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs if self.pool_q_only: self.pooling_mult *= 2 if self.attention_type == "factorized": position_embeds = position_embeds[:2] + self.stride_pool(position_embeds[2:], 0) token_type_mat = self.stride_pool(token_type_mat, 2) cls_mask = self.stride_pool(cls_mask, 1) attention_mask = self.pool_tensor(attention_mask, mode="min") attention_inputs = (position_embeds, token_type_mat, attention_mask, cls_mask) return attention_inputs
class_definition
3,715
15,750
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/modeling_tf_funnel.py
null
9,444
class TFFunnelRelMultiheadAttention(keras.layers.Layer): def __init__(self, config, block_index, **kwargs): super().__init__(**kwargs) self.attention_type = config.attention_type self.n_head = n_head = config.n_head self.d_head = d_head = config.d_head self.d_model = d_model = config.d_model self.initializer_range = config.initializer_range self.block_index = block_index self.hidden_dropout = keras.layers.Dropout(config.hidden_dropout) self.attention_dropout = keras.layers.Dropout(config.attention_dropout) initializer = get_initializer(config.initializer_range) self.q_head = keras.layers.Dense( n_head * d_head, use_bias=False, kernel_initializer=initializer, name="q_head" ) self.k_head = keras.layers.Dense(n_head * d_head, kernel_initializer=initializer, name="k_head") self.v_head = keras.layers.Dense(n_head * d_head, kernel_initializer=initializer, name="v_head") self.post_proj = keras.layers.Dense(d_model, kernel_initializer=initializer, name="post_proj") self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") self.scale = 1.0 / (d_head**0.5) def build(self, input_shape=None): n_head, d_head, d_model = self.n_head, self.d_head, self.d_model initializer = get_initializer(self.initializer_range) self.r_w_bias = self.add_weight( shape=(n_head, d_head), initializer=initializer, trainable=True, name="r_w_bias" ) self.r_r_bias = self.add_weight( shape=(n_head, d_head), initializer=initializer, trainable=True, name="r_r_bias" ) self.r_kernel = self.add_weight( shape=(d_model, n_head, d_head), initializer=initializer, trainable=True, name="r_kernel" ) self.r_s_bias = self.add_weight( shape=(n_head, d_head), initializer=initializer, trainable=True, name="r_s_bias" ) self.seg_embed = self.add_weight( shape=(2, n_head, d_head), initializer=initializer, trainable=True, name="seg_embed" ) if self.built: return self.built = True if getattr(self, "q_head", None) is not None: with tf.name_scope(self.q_head.name): self.q_head.build([None, None, d_model]) if getattr(self, "k_head", None) is not None: with tf.name_scope(self.k_head.name): self.k_head.build([None, None, d_model]) if getattr(self, "v_head", None) is not None: with tf.name_scope(self.v_head.name): self.v_head.build([None, None, d_model]) if getattr(self, "post_proj", None) is not None: with tf.name_scope(self.post_proj.name): self.post_proj.build([None, None, n_head * d_head]) if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, d_model]) def relative_positional_attention(self, position_embeds, q_head, context_len, cls_mask=None): """Relative attention score for the positional encodings""" # q_head has shape batch_size x sea_len x n_head x d_head if self.attention_type == "factorized": # Notations from the paper, appending A.2.2, final formula (https://arxiv.org/abs/2006.03236) # phi and pi have shape seq_len x d_model, psi and omega have shape context_len x d_model phi, pi, psi, omega = position_embeds # Shape n_head x d_head u = self.r_r_bias * self.scale # Shape d_model x n_head x d_head w_r = self.r_kernel # Shape batch_size x sea_len x n_head x d_model q_r_attention = tf.einsum("binh,dnh->bind", q_head + u, w_r) q_r_attention_1 = q_r_attention * phi[:, None] q_r_attention_2 = q_r_attention * pi[:, None] # Shape batch_size x n_head x seq_len x context_len positional_attn = tf.einsum("bind,jd->bnij", q_r_attention_1, psi) + tf.einsum( "bind,jd->bnij", q_r_attention_2, omega ) else: # Notations from the paper, appending A.2.1, final formula (https://arxiv.org/abs/2006.03236) # Grab the proper positional encoding, shape max_rel_len x d_model if shape_list(q_head)[1] != context_len: shift = 2 r = position_embeds[self.block_index][1] else: shift = 1 r = position_embeds[self.block_index][0] # Shape n_head x d_head v = self.r_r_bias * self.scale # Shape d_model x n_head x d_head w_r = self.r_kernel # Shape max_rel_len x n_head x d_model r_head = tf.einsum("td,dnh->tnh", r, w_r) # Shape batch_size x n_head x seq_len x max_rel_len positional_attn = tf.einsum("binh,tnh->bnit", q_head + v, r_head) # Shape batch_size x n_head x seq_len x context_len positional_attn = _relative_shift_gather(positional_attn, context_len, shift) if cls_mask is not None: positional_attn *= cls_mask return positional_attn def relative_token_type_attention(self, token_type_mat, q_head, cls_mask=None): """Relative attention score for the token_type_ids""" if token_type_mat is None: return 0 batch_size, seq_len, context_len = shape_list(token_type_mat) # q_head has shape batch_size x seq_len x n_head x d_head # Shape n_head x d_head r_s_bias = self.r_s_bias * self.scale # Shape batch_size x n_head x seq_len x 2 token_type_bias = tf.einsum("bind,snd->bnis", q_head + r_s_bias, self.seg_embed) # Shape batch_size x n_head x seq_len x context_len token_type_mat = tf.tile(token_type_mat[:, None], [1, shape_list(q_head)[2], 1, 1]) # token_type_mat = tf.broadcast_to(token_type_mat[:, None], new_shape) # Shapes batch_size x n_head x seq_len diff_token_type, same_token_type = tf.split(token_type_bias, 2, axis=-1) # Shape batch_size x n_head x seq_len x context_len token_type_attn = tf.where( token_type_mat, tf.tile(same_token_type, [1, 1, 1, context_len]), tf.tile(diff_token_type, [1, 1, 1, context_len]), ) if cls_mask is not None: token_type_attn *= cls_mask return token_type_attn def call(self, query, key, value, attention_inputs, output_attentions=False, training=False): # query has shape batch_size x seq_len x d_model # key and value have shapes batch_size x context_len x d_model position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs batch_size, seq_len, _ = shape_list(query) context_len = shape_list(key)[1] n_head, d_head = self.n_head, self.d_head # Shape batch_size x seq_len x n_head x d_head q_head = tf.reshape(self.q_head(query), [batch_size, seq_len, n_head, d_head]) # Shapes batch_size x context_len x n_head x d_head k_head = tf.reshape(self.k_head(key), [batch_size, context_len, n_head, d_head]) v_head = tf.reshape(self.v_head(value), [batch_size, context_len, n_head, d_head]) q_head = q_head * self.scale # Shape n_head x d_head r_w_bias = self.r_w_bias * self.scale # Shapes batch_size x n_head x seq_len x context_len content_score = tf.einsum("bind,bjnd->bnij", q_head + r_w_bias, k_head) positional_attn = self.relative_positional_attention(position_embeds, q_head, context_len, cls_mask) token_type_attn = self.relative_token_type_attention(token_type_mat, q_head, cls_mask) # merge attention scores attn_score = content_score + positional_attn + token_type_attn # perform masking if attention_mask is not None: attention_mask = tf.cast(attention_mask, dtype=attn_score.dtype) attn_score = attn_score - (INF * (1 - attention_mask[:, None, None])) # attention probability attn_prob = stable_softmax(attn_score, axis=-1) attn_prob = self.attention_dropout(attn_prob, training=training) # attention output, shape batch_size x seq_len x n_head x d_head attn_vec = tf.einsum("bnij,bjnd->bind", attn_prob, v_head) # Shape shape batch_size x seq_len x d_model attn_out = self.post_proj(tf.reshape(attn_vec, [batch_size, seq_len, n_head * d_head])) attn_out = self.hidden_dropout(attn_out, training=training) output = self.layer_norm(query + attn_out) return (output, attn_prob) if output_attentions else (output,)
class_definition
16,694
25,593
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/modeling_tf_funnel.py
null
9,445
class TFFunnelPositionwiseFFN(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) initializer = get_initializer(config.initializer_range) self.linear_1 = keras.layers.Dense(config.d_inner, kernel_initializer=initializer, name="linear_1") self.activation_function = get_tf_activation(config.hidden_act) self.activation_dropout = keras.layers.Dropout(config.activation_dropout) self.linear_2 = keras.layers.Dense(config.d_model, kernel_initializer=initializer, name="linear_2") self.dropout = keras.layers.Dropout(config.hidden_dropout) self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") self.config = config def call(self, hidden, training=False): h = self.linear_1(hidden) h = self.activation_function(h) h = self.activation_dropout(h, training=training) h = self.linear_2(h) h = self.dropout(h, training=training) return self.layer_norm(hidden + h) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "linear_1", None) is not None: with tf.name_scope(self.linear_1.name): self.linear_1.build([None, None, self.config.d_model]) if getattr(self, "linear_2", None) is not None: with tf.name_scope(self.linear_2.name): self.linear_2.build([None, None, self.config.d_inner]) if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.config.d_model])
class_definition
25,596
27,308
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/modeling_tf_funnel.py
null
9,446
class TFFunnelLayer(keras.layers.Layer): def __init__(self, config, block_index, **kwargs): super().__init__(**kwargs) self.attention = TFFunnelRelMultiheadAttention(config, block_index, name="attention") self.ffn = TFFunnelPositionwiseFFN(config, name="ffn") def call(self, query, key, value, attention_inputs, output_attentions=False, training=False): attn = self.attention( query, key, value, attention_inputs, output_attentions=output_attentions, training=training ) output = self.ffn(attn[0], training=training) return (output, attn[1]) if output_attentions else (output,) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "ffn", None) is not None: with tf.name_scope(self.ffn.name): self.ffn.build(None)
class_definition
27,311
28,361
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/modeling_tf_funnel.py
null
9,447
class TFFunnelEncoder(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.separate_cls = config.separate_cls self.pool_q_only = config.pool_q_only self.block_repeats = config.block_repeats self.attention_structure = TFFunnelAttentionStructure(config) self.blocks = [ [TFFunnelLayer(config, block_index, name=f"blocks_._{block_index}_._{i}") for i in range(block_size)] for block_index, block_size in enumerate(config.block_sizes) ] def call( self, inputs_embeds, attention_mask=None, token_type_ids=None, output_attentions=False, output_hidden_states=False, return_dict=True, training=False, ): # The pooling is not implemented on long tensors, so we convert this mask. # attention_mask = tf.cast(attention_mask, inputs_embeds.dtype) attention_inputs = self.attention_structure.init_attention_inputs( inputs_embeds, attention_mask=attention_mask, token_type_ids=token_type_ids, training=training, ) hidden = inputs_embeds all_hidden_states = (inputs_embeds,) if output_hidden_states else None all_attentions = () if output_attentions else None for block_index, block in enumerate(self.blocks): pooling_flag = shape_list(hidden)[1] > (2 if self.separate_cls else 1) pooling_flag = pooling_flag and block_index > 0 pooled_hidden = tf.zeros(shape_list(hidden)) if pooling_flag: pooled_hidden, attention_inputs = self.attention_structure.pre_attention_pooling( hidden, attention_inputs ) for layer_index, layer in enumerate(block): for repeat_index in range(self.block_repeats[block_index]): do_pooling = (repeat_index == 0) and (layer_index == 0) and pooling_flag if do_pooling: query = pooled_hidden key = value = hidden if self.pool_q_only else pooled_hidden else: query = key = value = hidden layer_output = layer( query, key, value, attention_inputs, output_attentions=output_attentions, training=training ) hidden = layer_output[0] if do_pooling: attention_inputs = self.attention_structure.post_attention_pooling(attention_inputs) if output_attentions: all_attentions = all_attentions + layer_output[1:] if output_hidden_states: all_hidden_states = all_hidden_states + (hidden,) if not return_dict: return tuple(v for v in [hidden, all_hidden_states, all_attentions] if v is not None) return TFBaseModelOutput(last_hidden_state=hidden, hidden_states=all_hidden_states, attentions=all_attentions) def build(self, input_shape=None): if self.built: return self.built = True for block in self.blocks: for layer in block: with tf.name_scope(layer.name): layer.build(None)
class_definition
28,364
31,740
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/modeling_tf_funnel.py
null
9,448
class TFFunnelDecoder(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.separate_cls = config.separate_cls self.truncate_seq = config.truncate_seq self.stride = 2 ** (len(config.block_sizes) - 1) self.attention_structure = TFFunnelAttentionStructure(config) self.layers = [TFFunnelLayer(config, 0, name=f"layers_._{i}") for i in range(config.num_decoder_layers)] def call( self, final_hidden, first_block_hidden, attention_mask=None, token_type_ids=None, output_attentions=False, output_hidden_states=False, return_dict=True, training=False, ): upsampled_hidden = upsample( final_hidden, stride=self.stride, target_len=shape_list(first_block_hidden)[1], separate_cls=self.separate_cls, truncate_seq=self.truncate_seq, ) hidden = upsampled_hidden + first_block_hidden all_hidden_states = (hidden,) if output_hidden_states else None all_attentions = () if output_attentions else None attention_inputs = self.attention_structure.init_attention_inputs( hidden, attention_mask=attention_mask, token_type_ids=token_type_ids, training=training, ) for layer in self.layers: layer_output = layer( hidden, hidden, hidden, attention_inputs, output_attentions=output_attentions, training=training ) hidden = layer_output[0] if output_attentions: all_attentions = all_attentions + layer_output[1:] if output_hidden_states: all_hidden_states = all_hidden_states + (hidden,) if not return_dict: return tuple(v for v in [hidden, all_hidden_states, all_attentions] if v is not None) return TFBaseModelOutput(last_hidden_state=hidden, hidden_states=all_hidden_states, attentions=all_attentions) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layers", None) is not None: for layer in self.layers: with tf.name_scope(layer.name): layer.build(None)
class_definition
32,387
34,736
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/modeling_tf_funnel.py
null
9,449
class TFFunnelBaseLayer(keras.layers.Layer): """Base model without decoder""" config_class = FunnelConfig def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.return_dict = config.use_return_dict self.embeddings = TFFunnelEmbeddings(config, name="embeddings") self.encoder = TFFunnelEncoder(config, name="encoder") def get_input_embeddings(self): return self.embeddings def set_input_embeddings(self, value): self.embeddings.weight = value self.embeddings.vocab_size = shape_list(value)[0] def _prune_heads(self, heads_to_prune): raise NotImplementedError # Not implemented yet in the library fr TF 2.0 models @unpack_inputs def call( self, input_ids=None, attention_mask=None, token_type_ids=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if attention_mask is None: attention_mask = tf.fill(input_shape, 1) if token_type_ids is None: token_type_ids = tf.fill(input_shape, 0) if inputs_embeds is None: inputs_embeds = self.embeddings(input_ids, training=training) encoder_outputs = self.encoder( inputs_embeds, attention_mask=attention_mask, token_type_ids=token_type_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return encoder_outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None)
class_definition
34,759
37,426
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/modeling_tf_funnel.py
null
9,450
class TFFunnelMainLayer(keras.layers.Layer): """Base model with decoder""" config_class = FunnelConfig def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.block_sizes = config.block_sizes self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.return_dict = config.use_return_dict self.embeddings = TFFunnelEmbeddings(config, name="embeddings") self.encoder = TFFunnelEncoder(config, name="encoder") self.decoder = TFFunnelDecoder(config, name="decoder") def get_input_embeddings(self): return self.embeddings def set_input_embeddings(self, value): self.embeddings.weight = value self.embeddings.vocab_size = shape_list(value)[0] def _prune_heads(self, heads_to_prune): raise NotImplementedError # Not implemented yet in the library fr TF 2.0 models @unpack_inputs def call( self, input_ids=None, attention_mask=None, token_type_ids=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if attention_mask is None: attention_mask = tf.fill(input_shape, 1) if token_type_ids is None: token_type_ids = tf.fill(input_shape, 0) if inputs_embeds is None: inputs_embeds = self.embeddings(input_ids, training=training) encoder_outputs = self.encoder( inputs_embeds, attention_mask=attention_mask, token_type_ids=token_type_ids, output_attentions=output_attentions, output_hidden_states=True, return_dict=return_dict, training=training, ) decoder_outputs = self.decoder( final_hidden=encoder_outputs[0], first_block_hidden=encoder_outputs[1][self.block_sizes[0]], attention_mask=attention_mask, token_type_ids=token_type_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) if not return_dict: idx = 0 outputs = (decoder_outputs[0],) if output_hidden_states: idx += 1 outputs = outputs + (encoder_outputs[1] + decoder_outputs[idx],) if output_attentions: idx += 1 outputs = outputs + (encoder_outputs[2] + decoder_outputs[idx],) return outputs return TFBaseModelOutput( last_hidden_state=decoder_outputs[0], hidden_states=(encoder_outputs.hidden_states + decoder_outputs.hidden_states) if output_hidden_states else None, attentions=(encoder_outputs.attentions + decoder_outputs.attentions) if output_attentions else None, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "decoder", None) is not None: with tf.name_scope(self.decoder.name): self.decoder.build(None)
class_definition
37,449
41,507
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/modeling_tf_funnel.py
null
9,451
class TFFunnelDiscriminatorPredictions(keras.layers.Layer): """Prediction module for the discriminator, made up of two dense layers.""" def __init__(self, config, **kwargs): super().__init__(**kwargs) initializer = get_initializer(config.initializer_range) self.dense = keras.layers.Dense(config.d_model, kernel_initializer=initializer, name="dense") self.activation_function = get_tf_activation(config.hidden_act) self.dense_prediction = keras.layers.Dense(1, kernel_initializer=initializer, name="dense_prediction") self.config = config def call(self, discriminator_hidden_states): hidden_states = self.dense(discriminator_hidden_states) hidden_states = self.activation_function(hidden_states) logits = tf.squeeze(self.dense_prediction(hidden_states)) return logits def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.d_model]) if getattr(self, "dense_prediction", None) is not None: with tf.name_scope(self.dense_prediction.name): self.dense_prediction.build([None, None, self.config.d_model])
class_definition
41,510
42,852
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/modeling_tf_funnel.py
null
9,452
class TFFunnelMaskedLMHead(keras.layers.Layer): def __init__(self, config, input_embeddings, **kwargs): super().__init__(**kwargs) self.config = config self.hidden_size = config.hidden_size self.input_embeddings = input_embeddings def build(self, input_shape): self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") super().build(input_shape) def get_output_embeddings(self): return self.input_embeddings def set_output_embeddings(self, value): self.input_embeddings.weight = value self.input_embeddings.vocab_size = shape_list(value)[0] def get_bias(self): return {"bias": self.bias} def set_bias(self, value): self.bias = value["bias"] self.config.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states, training=False): seq_length = shape_list(tensor=hidden_states)[1] hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size]) hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True) hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size]) hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias) return hidden_states
class_definition
42,855
44,236
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/modeling_tf_funnel.py
null
9,453
class TFFunnelClassificationHead(keras.layers.Layer): def __init__(self, config, n_labels, **kwargs): super().__init__(**kwargs) initializer = get_initializer(config.initializer_range) self.linear_hidden = keras.layers.Dense(config.d_model, kernel_initializer=initializer, name="linear_hidden") self.dropout = keras.layers.Dropout(config.hidden_dropout) self.linear_out = keras.layers.Dense(n_labels, kernel_initializer=initializer, name="linear_out") self.config = config def call(self, hidden, training=False): hidden = self.linear_hidden(hidden) hidden = keras.activations.tanh(hidden) hidden = self.dropout(hidden, training=training) return self.linear_out(hidden) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "linear_hidden", None) is not None: with tf.name_scope(self.linear_hidden.name): self.linear_hidden.build([None, None, self.config.d_model]) if getattr(self, "linear_out", None) is not None: with tf.name_scope(self.linear_out.name): self.linear_out.build([None, None, self.config.d_model])
class_definition
44,239
45,483
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/modeling_tf_funnel.py
null
9,454
class TFFunnelPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = FunnelConfig base_model_prefix = "funnel" @property def dummy_inputs(self): # Funnel misbehaves with very small inputs, so we override and make them a bit bigger return {"input_ids": tf.ones((1, 3), dtype=tf.int32)}
class_definition
45,486
45,945
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/modeling_tf_funnel.py
null
9,455
class TFFunnelForPreTrainingOutput(ModelOutput): """ Output type of [`FunnelForPreTraining`]. Args: logits (`tf.Tensor` of shape `(batch_size, sequence_length)`): Prediction scores of the head (scores for each token before SoftMax). hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ logits: tf.Tensor = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None
class_definition
45,959
47,207
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/modeling_tf_funnel.py
null
9,456
class TFFunnelBaseModel(TFFunnelPreTrainedModel): def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None: super().__init__(config, *inputs, **kwargs) self.funnel = TFFunnelBaseLayer(config, name="funnel") @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="funnel-transformer/small-base", output_type=TFBaseModelOutput, config_class=_CONFIG_FOR_DOC, ) @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[Tuple[tf.Tensor], TFBaseModelOutput]: return self.funnel( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) def serving_output(self, output): # hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of # different dimensions return TFBaseModelOutput( last_hidden_state=output.last_hidden_state, hidden_states=output.hidden_states, attentions=output.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "funnel", None) is not None: with tf.name_scope(self.funnel.name): self.funnel.build(None)
class_definition
52,748
54,765
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/modeling_tf_funnel.py
null
9,457
class TFFunnelModel(TFFunnelPreTrainedModel): def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None: super().__init__(config, *inputs, **kwargs) self.funnel = TFFunnelMainLayer(config, name="funnel") @unpack_inputs @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="funnel-transformer/small", output_type=TFBaseModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[Tuple[tf.Tensor], TFBaseModelOutput]: return self.funnel( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) def serving_output(self, output): # hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of # different dimensions return TFBaseModelOutput( last_hidden_state=output.last_hidden_state, hidden_states=output.hidden_states, attentions=output.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "funnel", None) is not None: with tf.name_scope(self.funnel.name): self.funnel.build(None)
class_definition
54,937
56,945
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/modeling_tf_funnel.py
null
9,458
class TFFunnelForPreTraining(TFFunnelPreTrainedModel): def __init__(self, config: FunnelConfig, **kwargs) -> None: super().__init__(config, **kwargs) self.funnel = TFFunnelMainLayer(config, name="funnel") self.discriminator_predictions = TFFunnelDiscriminatorPredictions(config, name="discriminator_predictions") @unpack_inputs @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFFunnelForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, **kwargs, ) -> Union[Tuple[tf.Tensor], TFFunnelForPreTrainingOutput]: r""" Returns: Examples: ```python >>> from transformers import AutoTokenizer, TFFunnelForPreTraining >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("funnel-transformer/small") >>> model = TFFunnelForPreTraining.from_pretrained("funnel-transformer/small") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf") >>> logits = model(inputs).logits ```""" discriminator_hidden_states = self.funnel( input_ids, attention_mask, token_type_ids, inputs_embeds, output_attentions, output_hidden_states, return_dict=return_dict, training=training, ) discriminator_sequence_output = discriminator_hidden_states[0] logits = self.discriminator_predictions(discriminator_sequence_output) if not return_dict: return (logits,) + discriminator_hidden_states[1:] return TFFunnelForPreTrainingOutput( logits=logits, hidden_states=discriminator_hidden_states.hidden_states, attentions=discriminator_hidden_states.attentions, ) def serving_output(self, output): # hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of # different dimensions return TFFunnelForPreTrainingOutput( logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "funnel", None) is not None: with tf.name_scope(self.funnel.name): self.funnel.build(None) if getattr(self, "discriminator_predictions", None) is not None: with tf.name_scope(self.discriminator_predictions.name): self.discriminator_predictions.build(None)
class_definition
57,137
60,247
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/modeling_tf_funnel.py
null
9,459
class TFFunnelForMaskedLM(TFFunnelPreTrainedModel, TFMaskedLanguageModelingLoss): def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None: super().__init__(config, *inputs, **kwargs) self.funnel = TFFunnelMainLayer(config, name="funnel") self.lm_head = TFFunnelMaskedLMHead(config, self.funnel.embeddings, name="lm_head") def get_lm_head(self) -> TFFunnelMaskedLMHead: return self.lm_head def get_prefix_bias_name(self) -> str: warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.lm_head.name @unpack_inputs @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="funnel-transformer/small", output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> Union[Tuple[tf.Tensor], TFMaskedLMOutput]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ outputs = self.funnel( input_ids, attention_mask, token_type_ids, inputs_embeds, output_attentions, output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output, training=training) loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores) if not return_dict: output = (prediction_scores,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFMaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def serving_output(self, output: TFMaskedLMOutput) -> TFMaskedLMOutput: # hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of # different dimensions return TFMaskedLMOutput(logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "funnel", None) is not None: with tf.name_scope(self.funnel.name): self.funnel.build(None) if getattr(self, "lm_head", None) is not None: with tf.name_scope(self.lm_head.name): self.lm_head.build(None)
class_definition
60,356
63,848
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/modeling_tf_funnel.py
null
9,460
class TFFunnelForSequenceClassification(TFFunnelPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None: super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.funnel = TFFunnelBaseLayer(config, name="funnel") self.classifier = TFFunnelClassificationHead(config, config.num_labels, name="classifier") @unpack_inputs @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="funnel-transformer/small-base", output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> Union[Tuple[tf.Tensor], TFSequenceClassifierOutput]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ outputs = self.funnel( input_ids, attention_mask, token_type_ids, inputs_embeds, output_attentions, output_hidden_states, return_dict=return_dict, training=training, ) last_hidden_state = outputs[0] pooled_output = last_hidden_state[:, 0] logits = self.classifier(pooled_output, training=training) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def serving_output(self, output: TFSequenceClassifierOutput) -> TFSequenceClassifierOutput: # hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of # different dimensions return TFSequenceClassifierOutput( logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "funnel", None) is not None: with tf.name_scope(self.funnel.name): self.funnel.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build(None)
class_definition
64,074
67,420
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/modeling_tf_funnel.py
null
9,461
class TFFunnelForMultipleChoice(TFFunnelPreTrainedModel, TFMultipleChoiceLoss): def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None: super().__init__(config, *inputs, **kwargs) self.funnel = TFFunnelBaseLayer(config, name="funnel") self.classifier = TFFunnelClassificationHead(config, 1, name="classifier") @property def dummy_inputs(self): return {"input_ids": tf.ones((3, 3, 4), dtype=tf.int32)} @unpack_inputs @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( checkpoint="funnel-transformer/small-base", output_type=TFMultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> Union[Tuple[tf.Tensor], TFMultipleChoiceModelOutput]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ if input_ids is not None: num_choices = shape_list(input_ids)[1] seq_length = shape_list(input_ids)[2] else: num_choices = shape_list(inputs_embeds)[1] seq_length = shape_list(inputs_embeds)[2] flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None flat_inputs_embeds = ( tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3])) if inputs_embeds is not None else None ) outputs = self.funnel( flat_input_ids, attention_mask=flat_attention_mask, token_type_ids=flat_token_type_ids, inputs_embeds=flat_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) last_hidden_state = outputs[0] pooled_output = last_hidden_state[:, 0] logits = self.classifier(pooled_output, training=training) reshaped_logits = tf.reshape(logits, (-1, num_choices)) loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits) if not return_dict: output = (reshaped_logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFMultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def serving_output(self, output: TFMultipleChoiceModelOutput) -> TFMultipleChoiceModelOutput: # hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of # different dimensions return TFMultipleChoiceModelOutput( logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "funnel", None) is not None: with tf.name_scope(self.funnel.name): self.funnel.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build(None)
class_definition
67,655
71,946
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/modeling_tf_funnel.py
null
9,462
class TFFunnelForTokenClassification(TFFunnelPreTrainedModel, TFTokenClassificationLoss): def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None: super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.funnel = TFFunnelMainLayer(config, name="funnel") self.dropout = keras.layers.Dropout(config.hidden_dropout) self.classifier = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="funnel-transformer/small", output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> Union[Tuple[tf.Tensor], TFTokenClassifierOutput]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ outputs = self.funnel( input_ids, attention_mask, token_type_ids, inputs_embeds, output_attentions, output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output, training=training) logits = self.classifier(sequence_output) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFTokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def serving_output(self, output: TFTokenClassifierOutput) -> TFTokenClassifierOutput: # hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of # different dimensions return TFTokenClassifierOutput( logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "funnel", None) is not None: with tf.name_scope(self.funnel.name): self.funnel.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size])
class_definition
72,179
75,524
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/modeling_tf_funnel.py
null
9,463
class TFFunnelForQuestionAnswering(TFFunnelPreTrainedModel, TFQuestionAnsweringLoss): def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None: super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.funnel = TFFunnelMainLayer(config, name="funnel") self.qa_outputs = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="funnel-transformer/small", output_type=TFQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, start_positions: np.ndarray | tf.Tensor | None = None, end_positions: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> Union[Tuple[tf.Tensor], TFQuestionAnsweringModelOutput]: r""" start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ outputs = self.funnel( input_ids, attention_mask, token_type_ids, inputs_embeds, output_attentions, output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = tf.split(logits, 2, axis=-1) start_logits = tf.squeeze(start_logits, axis=-1) end_logits = tf.squeeze(end_logits, axis=-1) loss = None if start_positions is not None and end_positions is not None: labels = {"start_position": start_positions, "end_position": end_positions} loss = self.hf_compute_loss(labels, (start_logits, end_logits)) if not return_dict: output = (start_logits, end_logits) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFQuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def serving_output(self, output: TFQuestionAnsweringModelOutput) -> TFQuestionAnsweringModelOutput: # hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of # different dimensions return TFQuestionAnsweringModelOutput( start_logits=output.start_logits, end_logits=output.end_logits, hidden_states=output.hidden_states, attentions=output.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "funnel", None) is not None: with tf.name_scope(self.funnel.name): self.funnel.build(None) if getattr(self, "qa_outputs", None) is not None: with tf.name_scope(self.qa_outputs.name): self.qa_outputs.build([None, None, self.config.hidden_size])
class_definition
75,815
80,163
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/modeling_tf_funnel.py
null
9,464
class FunnelConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`FunnelModel`] or a [`TFBertModel`]. It is used to instantiate a Funnel Transformer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Funnel Transformer [funnel-transformer/small](https://huggingface.co/funnel-transformer/small) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the Funnel transformer. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`FunnelModel`] or [`TFFunnelModel`]. block_sizes (`List[int]`, *optional*, defaults to `[4, 4, 4]`): The sizes of the blocks used in the model. block_repeats (`List[int]`, *optional*): If passed along, each layer of each block is repeated the number of times indicated. num_decoder_layers (`int`, *optional*, defaults to 2): The number of layers in the decoder (when not using the base model). d_model (`int`, *optional*, defaults to 768): Dimensionality of the model's hidden states. n_head (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. d_head (`int`, *optional*, defaults to 64): Dimensionality of the model's heads. d_inner (`int`, *optional*, defaults to 3072): Inner dimension in the feed-forward blocks. hidden_act (`str` or `callable`, *optional*, defaults to `"gelu_new"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for the attention probabilities. activation_dropout (`float`, *optional*, defaults to 0.0): The dropout probability used between the two layers of the feed-forward blocks. initializer_range (`float`, *optional*, defaults to 0.1): The upper bound of the *uniform initializer* for initializing all weight matrices in attention layers. initializer_std (`float`, *optional*): The standard deviation of the *normal initializer* for initializing the embedding matrix and the weight of linear layers. Will default to 1 for the embedding matrix and the value given by Xavier initialization for linear layers. layer_norm_eps (`float`, *optional*, defaults to 1e-09): The epsilon used by the layer normalization layers. pooling_type (`str`, *optional*, defaults to `"mean"`): Possible values are `"mean"` or `"max"`. The way pooling is performed at the beginning of each block. attention_type (`str`, *optional*, defaults to `"relative_shift"`): Possible values are `"relative_shift"` or `"factorized"`. The former is faster on CPU/GPU while the latter is faster on TPU. separate_cls (`bool`, *optional*, defaults to `True`): Whether or not to separate the cls token when applying pooling. truncate_seq (`bool`, *optional*, defaults to `True`): When using `separate_cls`, whether or not to truncate the last token when pooling, to avoid getting a sequence length that is not a multiple of 2. pool_q_only (`bool`, *optional*, defaults to `True`): Whether or not to apply the pooling only to the query or to query, key and values for the attention layers. """ model_type = "funnel" attribute_map = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self, vocab_size=30522, block_sizes=[4, 4, 4], block_repeats=None, num_decoder_layers=2, d_model=768, n_head=12, d_head=64, d_inner=3072, hidden_act="gelu_new", hidden_dropout=0.1, attention_dropout=0.1, activation_dropout=0.0, initializer_range=0.1, initializer_std=None, layer_norm_eps=1e-9, pooling_type="mean", attention_type="relative_shift", separate_cls=True, truncate_seq=True, pool_q_only=True, **kwargs, ): self.vocab_size = vocab_size self.block_sizes = block_sizes self.block_repeats = [1] * len(block_sizes) if block_repeats is None else block_repeats assert len(block_sizes) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." self.num_decoder_layers = num_decoder_layers self.d_model = d_model self.n_head = n_head self.d_head = d_head self.d_inner = d_inner self.hidden_act = hidden_act self.hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.initializer_range = initializer_range self.initializer_std = initializer_std self.layer_norm_eps = layer_norm_eps assert pooling_type in [ "mean", "max", ], f"Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported." self.pooling_type = pooling_type assert attention_type in [ "relative_shift", "factorized", ], f"Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported." self.attention_type = attention_type self.separate_cls = separate_cls self.truncate_seq = truncate_seq self.pool_q_only = pool_q_only super().__init__(**kwargs) @property def num_hidden_layers(self): return sum(self.block_sizes) @num_hidden_layers.setter def num_hidden_layers(self, value): raise NotImplementedError( "This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`." ) @property def num_blocks(self): return len(self.block_sizes) @num_blocks.setter def num_blocks(self, value): raise NotImplementedError("This model does not support the setting of `num_blocks`. Please set `block_sizes`.")
class_definition
761
7,650
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/configuration_funnel.py
null
9,465
class FunnelEmbeddings(nn.Module): def __init__(self, config: FunnelConfig) -> None: super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.layer_norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout) def forward( self, input_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None ) -> torch.Tensor: if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) embeddings = self.layer_norm(inputs_embeds) embeddings = self.dropout(embeddings) return embeddings
class_definition
4,967
5,697
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/modeling_funnel.py
null
9,466
class FunnelAttentionStructure(nn.Module): """ Contains helpers for `FunnelRelMultiheadAttention `. """ cls_token_type_id: int = 2 def __init__(self, config: FunnelConfig) -> None: super().__init__() self.config = config self.sin_dropout = nn.Dropout(config.hidden_dropout) self.cos_dropout = nn.Dropout(config.hidden_dropout) # Track where we are at in terms of pooling from the original input, e.g., by how much the sequence length was # divided. self.pooling_mult = None def init_attention_inputs( self, inputs_embeds: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor]: """Returns the attention inputs associated to the inputs of the model.""" # inputs_embeds has shape batch_size x seq_len x d_model # attention_mask and token_type_ids have shape batch_size x seq_len self.pooling_mult = 1 self.seq_len = seq_len = inputs_embeds.size(1) position_embeds = self.get_position_embeds(seq_len, inputs_embeds.dtype, inputs_embeds.device) token_type_mat = self.token_type_ids_to_mat(token_type_ids) if token_type_ids is not None else None cls_mask = ( nn.functional.pad(inputs_embeds.new_ones([seq_len - 1, seq_len - 1]), (1, 0, 1, 0)) if self.config.separate_cls else None ) return (position_embeds, token_type_mat, attention_mask, cls_mask) def token_type_ids_to_mat(self, token_type_ids: torch.Tensor) -> torch.Tensor: """Convert `token_type_ids` to `token_type_mat`.""" token_type_mat = token_type_ids[:, :, None] == token_type_ids[:, None] # Treat <cls> as in the same segment as both A & B cls_ids = token_type_ids == self.cls_token_type_id cls_mat = cls_ids[:, :, None] | cls_ids[:, None] return cls_mat | token_type_mat def get_position_embeds( self, seq_len: int, dtype: torch.dtype, device: torch.device ) -> Union[Tuple[torch.Tensor], List[List[torch.Tensor]]]: """ Create and cache inputs related to relative position encoding. Those are very different depending on whether we are using the factorized or the relative shift attention: For the factorized attention, it returns the matrices (phi, pi, psi, omega) used in the paper, appendix A.2.2, final formula. For the relative shift attention, it returns all possible vectors R used in the paper, appendix A.2.1, final formula. Paper link: https://arxiv.org/abs/2006.03236 """ d_model = self.config.d_model if self.config.attention_type == "factorized": # Notations from the paper, appending A.2.2, final formula. # We need to create and return the matrices phi, psi, pi and omega. pos_seq = torch.arange(0, seq_len, 1.0, dtype=torch.int64, device=device).to(dtype) freq_seq = torch.arange(0, d_model // 2, 1.0, dtype=torch.int64, device=device).to(dtype) inv_freq = 1 / (10000 ** (freq_seq / (d_model // 2))) sinusoid = pos_seq[:, None] * inv_freq[None] sin_embed = torch.sin(sinusoid) sin_embed_d = self.sin_dropout(sin_embed) cos_embed = torch.cos(sinusoid) cos_embed_d = self.cos_dropout(cos_embed) # This is different from the formula on the paper... phi = torch.cat([sin_embed_d, sin_embed_d], dim=-1) psi = torch.cat([cos_embed, sin_embed], dim=-1) pi = torch.cat([cos_embed_d, cos_embed_d], dim=-1) omega = torch.cat([-sin_embed, cos_embed], dim=-1) return (phi, pi, psi, omega) else: # Notations from the paper, appending A.2.1, final formula. # We need to create and return all the possible vectors R for all blocks and shifts. freq_seq = torch.arange(0, d_model // 2, 1.0, dtype=torch.int64, device=device).to(dtype) inv_freq = 1 / (10000 ** (freq_seq / (d_model // 2))) # Maximum relative positions for the first input rel_pos_id = torch.arange(-seq_len * 2, seq_len * 2, 1.0, dtype=torch.int64, device=device).to(dtype) zero_offset = seq_len * 2 sinusoid = rel_pos_id[:, None] * inv_freq[None] sin_embed = self.sin_dropout(torch.sin(sinusoid)) cos_embed = self.cos_dropout(torch.cos(sinusoid)) pos_embed = torch.cat([sin_embed, cos_embed], dim=-1) pos = torch.arange(0, seq_len, dtype=torch.int64, device=device).to(dtype) pooled_pos = pos position_embeds_list = [] for block_index in range(0, self.config.num_blocks): # For each block with block_index > 0, we need two types position embeddings: # - Attention(pooled-q, unpooled-kv) # - Attention(pooled-q, pooled-kv) # For block_index = 0 we only need the second one and leave the first one as None. # First type if block_index == 0: position_embeds_pooling = None else: pooled_pos = self.stride_pool_pos(pos, block_index) # construct rel_pos_id stride = 2 ** (block_index - 1) rel_pos = self.relative_pos(pos, stride, pooled_pos, shift=2) rel_pos = rel_pos[:, None] + zero_offset rel_pos = rel_pos.expand(rel_pos.size(0), d_model) position_embeds_pooling = torch.gather(pos_embed, 0, rel_pos) # Second type pos = pooled_pos stride = 2**block_index rel_pos = self.relative_pos(pos, stride) rel_pos = rel_pos[:, None] + zero_offset rel_pos = rel_pos.expand(rel_pos.size(0), d_model) position_embeds_no_pooling = torch.gather(pos_embed, 0, rel_pos) position_embeds_list.append([position_embeds_no_pooling, position_embeds_pooling]) return position_embeds_list def stride_pool_pos(self, pos_id: torch.Tensor, block_index: int): """ Pool `pos_id` while keeping the cls token separate (if `config.separate_cls=True`). """ if self.config.separate_cls: # Under separate <cls>, we treat the <cls> as the first token in # the previous block of the 1st real block. Since the 1st real # block always has position 1, the position of the previous block # will be at `1 - 2 ** block_index`. cls_pos = pos_id.new_tensor([-(2**block_index) + 1]) pooled_pos_id = pos_id[1:-1] if self.config.truncate_seq else pos_id[1:] return torch.cat([cls_pos, pooled_pos_id[::2]], 0) else: return pos_id[::2] def relative_pos(self, pos: torch.Tensor, stride: int, pooled_pos=None, shift: int = 1) -> torch.Tensor: """ Build the relative positional vector between `pos` and `pooled_pos`. """ if pooled_pos is None: pooled_pos = pos ref_point = pooled_pos[0] - pos[0] num_remove = shift * len(pooled_pos) max_dist = ref_point + num_remove * stride min_dist = pooled_pos[0] - pos[-1] return torch.arange(max_dist, min_dist - 1, -stride, dtype=torch.long, device=pos.device) def stride_pool( self, tensor: Union[torch.Tensor, Tuple[torch.Tensor], List[torch.Tensor]], axis: Union[int, Tuple[int], List[int]], ) -> torch.Tensor: """ Perform pooling by stride slicing the tensor along the given axis. """ if tensor is None: return None # Do the stride pool recursively if axis is a list or a tuple of ints. if isinstance(axis, (list, tuple)): for ax in axis: tensor = self.stride_pool(tensor, ax) return tensor # Do the stride pool recursively if tensor is a list or tuple of tensors. if isinstance(tensor, (tuple, list)): return type(tensor)(self.stride_pool(x, axis) for x in tensor) # Deal with negative axis axis %= tensor.ndim axis_slice = ( slice(None, -1, 2) if self.config.separate_cls and self.config.truncate_seq else slice(None, None, 2) ) enc_slice = [slice(None)] * axis + [axis_slice] if self.config.separate_cls: cls_slice = [slice(None)] * axis + [slice(None, 1)] tensor = torch.cat([tensor[cls_slice], tensor], axis=axis) return tensor[enc_slice] def pool_tensor( self, tensor: Union[torch.Tensor, Tuple[torch.Tensor], List[torch.Tensor]], mode: str = "mean", stride: int = 2 ) -> torch.Tensor: """Apply 1D pooling to a tensor of size [B x T (x H)].""" if tensor is None: return None # Do the pool recursively if tensor is a list or tuple of tensors. if isinstance(tensor, (tuple, list)): return type(tensor)(self.pool_tensor(tensor, mode=mode, stride=stride) for x in tensor) if self.config.separate_cls: suffix = tensor[:, :-1] if self.config.truncate_seq else tensor tensor = torch.cat([tensor[:, :1], suffix], dim=1) ndim = tensor.ndim if ndim == 2: tensor = tensor[:, None, :, None] elif ndim == 3: tensor = tensor[:, None, :, :] # Stride is applied on the second-to-last dimension. stride = (stride, 1) if mode == "mean": tensor = nn.functional.avg_pool2d(tensor, stride, stride=stride, ceil_mode=True) elif mode == "max": tensor = nn.functional.max_pool2d(tensor, stride, stride=stride, ceil_mode=True) elif mode == "min": tensor = -nn.functional.max_pool2d(-tensor, stride, stride=stride, ceil_mode=True) else: raise NotImplementedError("The supported modes are 'mean', 'max' and 'min'.") if ndim == 2: return tensor[:, 0, :, 0] elif ndim == 3: return tensor[:, 0] return tensor def pre_attention_pooling( self, output, attention_inputs: Tuple[torch.Tensor] ) -> Tuple[torch.Tensor, Tuple[torch.Tensor]]: """Pool `output` and the proper parts of `attention_inputs` before the attention layer.""" position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs if self.config.pool_q_only: if self.config.attention_type == "factorized": position_embeds = self.stride_pool(position_embeds[:2], 0) + position_embeds[2:] token_type_mat = self.stride_pool(token_type_mat, 1) cls_mask = self.stride_pool(cls_mask, 0) output = self.pool_tensor(output, mode=self.config.pooling_type) else: self.pooling_mult *= 2 if self.config.attention_type == "factorized": position_embeds = self.stride_pool(position_embeds, 0) token_type_mat = self.stride_pool(token_type_mat, [1, 2]) cls_mask = self.stride_pool(cls_mask, [1, 2]) attention_mask = self.pool_tensor(attention_mask, mode="min") output = self.pool_tensor(output, mode=self.config.pooling_type) attention_inputs = (position_embeds, token_type_mat, attention_mask, cls_mask) return output, attention_inputs def post_attention_pooling(self, attention_inputs: Tuple[torch.Tensor]) -> Tuple[torch.Tensor]: """Pool the proper parts of `attention_inputs` after the attention layer.""" position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs if self.config.pool_q_only: self.pooling_mult *= 2 if self.config.attention_type == "factorized": position_embeds = position_embeds[:2] + self.stride_pool(position_embeds[2:], 0) token_type_mat = self.stride_pool(token_type_mat, 2) cls_mask = self.stride_pool(cls_mask, 1) attention_mask = self.pool_tensor(attention_mask, mode="min") attention_inputs = (position_embeds, token_type_mat, attention_mask, cls_mask) return attention_inputs
class_definition
5,700
18,172
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/modeling_funnel.py
null
9,467
class FunnelRelMultiheadAttention(nn.Module): def __init__(self, config: FunnelConfig, block_index: int) -> None: super().__init__() self.config = config self.block_index = block_index d_model, n_head, d_head = config.d_model, config.n_head, config.d_head self.hidden_dropout = nn.Dropout(config.hidden_dropout) self.attention_dropout = nn.Dropout(config.attention_dropout) self.q_head = nn.Linear(d_model, n_head * d_head, bias=False) self.k_head = nn.Linear(d_model, n_head * d_head) self.v_head = nn.Linear(d_model, n_head * d_head) self.r_w_bias = nn.Parameter(torch.zeros([n_head, d_head])) self.r_r_bias = nn.Parameter(torch.zeros([n_head, d_head])) self.r_kernel = nn.Parameter(torch.zeros([d_model, n_head, d_head])) self.r_s_bias = nn.Parameter(torch.zeros([n_head, d_head])) self.seg_embed = nn.Parameter(torch.zeros([2, n_head, d_head])) self.post_proj = nn.Linear(n_head * d_head, d_model) self.layer_norm = nn.LayerNorm(d_model, eps=config.layer_norm_eps) self.scale = 1.0 / (d_head**0.5) def relative_positional_attention(self, position_embeds, q_head, context_len, cls_mask=None): """Relative attention score for the positional encodings""" # q_head has shape batch_size x sea_len x n_head x d_head if self.config.attention_type == "factorized": # Notations from the paper, appending A.2.2, final formula (https://arxiv.org/abs/2006.03236) # phi and pi have shape seq_len x d_model, psi and omega have shape context_len x d_model phi, pi, psi, omega = position_embeds # Shape n_head x d_head u = self.r_r_bias * self.scale # Shape d_model x n_head x d_head w_r = self.r_kernel # Shape batch_size x sea_len x n_head x d_model q_r_attention = torch.einsum("binh,dnh->bind", q_head + u, w_r) q_r_attention_1 = q_r_attention * phi[:, None] q_r_attention_2 = q_r_attention * pi[:, None] # Shape batch_size x n_head x seq_len x context_len positional_attn = torch.einsum("bind,jd->bnij", q_r_attention_1, psi) + torch.einsum( "bind,jd->bnij", q_r_attention_2, omega ) else: shift = 2 if q_head.shape[1] != context_len else 1 # Notations from the paper, appending A.2.1, final formula (https://arxiv.org/abs/2006.03236) # Grab the proper positional encoding, shape max_rel_len x d_model r = position_embeds[self.block_index][shift - 1] # Shape n_head x d_head v = self.r_r_bias * self.scale # Shape d_model x n_head x d_head w_r = self.r_kernel # Shape max_rel_len x n_head x d_model r_head = torch.einsum("td,dnh->tnh", r, w_r) # Shape batch_size x n_head x seq_len x max_rel_len positional_attn = torch.einsum("binh,tnh->bnit", q_head + v, r_head) # Shape batch_size x n_head x seq_len x context_len positional_attn = _relative_shift_gather(positional_attn, context_len, shift) if cls_mask is not None: positional_attn *= cls_mask return positional_attn def relative_token_type_attention(self, token_type_mat, q_head, cls_mask=None): """Relative attention score for the token_type_ids""" if token_type_mat is None: return 0 batch_size, seq_len, context_len = token_type_mat.shape # q_head has shape batch_size x seq_len x n_head x d_head # Shape n_head x d_head r_s_bias = self.r_s_bias * self.scale # Shape batch_size x n_head x seq_len x 2 token_type_bias = torch.einsum("bind,snd->bnis", q_head + r_s_bias, self.seg_embed) # Shape batch_size x n_head x seq_len x context_len token_type_mat = token_type_mat[:, None].expand([batch_size, q_head.shape[2], seq_len, context_len]) # Shapes batch_size x n_head x seq_len diff_token_type, same_token_type = torch.split(token_type_bias, 1, dim=-1) # Shape batch_size x n_head x seq_len x context_len token_type_attn = torch.where( token_type_mat, same_token_type.expand(token_type_mat.shape), diff_token_type.expand(token_type_mat.shape) ) if cls_mask is not None: token_type_attn *= cls_mask return token_type_attn def forward( self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_inputs: Tuple[torch.Tensor], output_attentions: bool = False, ) -> Tuple[torch.Tensor, ...]: # query has shape batch_size x seq_len x d_model # key and value have shapes batch_size x context_len x d_model position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs batch_size, seq_len, _ = query.shape context_len = key.shape[1] n_head, d_head = self.config.n_head, self.config.d_head # Shape batch_size x seq_len x n_head x d_head q_head = self.q_head(query).view(batch_size, seq_len, n_head, d_head) # Shapes batch_size x context_len x n_head x d_head k_head = self.k_head(key).view(batch_size, context_len, n_head, d_head) v_head = self.v_head(value).view(batch_size, context_len, n_head, d_head) q_head = q_head * self.scale # Shape n_head x d_head r_w_bias = self.r_w_bias * self.scale # Shapes batch_size x n_head x seq_len x context_len content_score = torch.einsum("bind,bjnd->bnij", q_head + r_w_bias, k_head) positional_attn = self.relative_positional_attention(position_embeds, q_head, context_len, cls_mask) token_type_attn = self.relative_token_type_attention(token_type_mat, q_head, cls_mask) # merge attention scores attn_score = content_score + positional_attn + token_type_attn # precision safe in case of mixed precision training dtype = attn_score.dtype attn_score = attn_score.float() # perform masking if attention_mask is not None: attn_score = attn_score - INF * (1 - attention_mask[:, None, None].float()) # attention probability attn_prob = torch.softmax(attn_score, dim=-1, dtype=dtype) attn_prob = self.attention_dropout(attn_prob) # attention output, shape batch_size x seq_len x n_head x d_head attn_vec = torch.einsum("bnij,bjnd->bind", attn_prob, v_head) # Shape shape batch_size x seq_len x d_model attn_out = self.post_proj(attn_vec.reshape(batch_size, seq_len, n_head * d_head)) attn_out = self.hidden_dropout(attn_out) output = self.layer_norm(query + attn_out) return (output, attn_prob) if output_attentions else (output,)
class_definition
19,145
26,083
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/modeling_funnel.py
null
9,468
class FunnelPositionwiseFFN(nn.Module): def __init__(self, config: FunnelConfig) -> None: super().__init__() self.linear_1 = nn.Linear(config.d_model, config.d_inner) self.activation_function = ACT2FN[config.hidden_act] self.activation_dropout = nn.Dropout(config.activation_dropout) self.linear_2 = nn.Linear(config.d_inner, config.d_model) self.dropout = nn.Dropout(config.hidden_dropout) self.layer_norm = nn.LayerNorm(config.d_model, config.layer_norm_eps) def forward(self, hidden: torch.Tensor) -> torch.Tensor: h = self.linear_1(hidden) h = self.activation_function(h) h = self.activation_dropout(h) h = self.linear_2(h) h = self.dropout(h) return self.layer_norm(hidden + h)
class_definition
26,086
26,881
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/modeling_funnel.py
null
9,469
class FunnelLayer(nn.Module): def __init__(self, config: FunnelConfig, block_index: int) -> None: super().__init__() self.attention = FunnelRelMultiheadAttention(config, block_index) self.ffn = FunnelPositionwiseFFN(config) def forward( self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_inputs, output_attentions: bool = False, ) -> Tuple: attn = self.attention(query, key, value, attention_inputs, output_attentions=output_attentions) output = self.ffn(attn[0]) return (output, attn[1]) if output_attentions else (output,)
class_definition
26,884
27,543
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/modeling_funnel.py
null
9,470
class FunnelEncoder(nn.Module): def __init__(self, config: FunnelConfig) -> None: super().__init__() self.config = config self.attention_structure = FunnelAttentionStructure(config) self.blocks = nn.ModuleList( [ nn.ModuleList([FunnelLayer(config, block_index) for _ in range(block_size)]) for block_index, block_size in enumerate(config.block_sizes) ] ) def forward( self, inputs_embeds: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[Tuple, BaseModelOutput]: # The pooling is not implemented on long tensors, so we convert this mask. attention_mask = attention_mask.type_as(inputs_embeds) attention_inputs = self.attention_structure.init_attention_inputs( inputs_embeds, attention_mask=attention_mask, token_type_ids=token_type_ids, ) hidden = inputs_embeds all_hidden_states = (inputs_embeds,) if output_hidden_states else None all_attentions = () if output_attentions else None for block_index, block in enumerate(self.blocks): pooling_flag = hidden.size(1) > (2 if self.config.separate_cls else 1) pooling_flag = pooling_flag and block_index > 0 if pooling_flag: pooled_hidden, attention_inputs = self.attention_structure.pre_attention_pooling( hidden, attention_inputs ) for layer_index, layer in enumerate(block): for repeat_index in range(self.config.block_repeats[block_index]): do_pooling = (repeat_index == 0) and (layer_index == 0) and pooling_flag if do_pooling: query = pooled_hidden key = value = hidden if self.config.pool_q_only else pooled_hidden else: query = key = value = hidden layer_output = layer(query, key, value, attention_inputs, output_attentions=output_attentions) hidden = layer_output[0] if do_pooling: attention_inputs = self.attention_structure.post_attention_pooling(attention_inputs) if output_attentions: all_attentions = all_attentions + layer_output[1:] if output_hidden_states: all_hidden_states = all_hidden_states + (hidden,) if not return_dict: return tuple(v for v in [hidden, all_hidden_states, all_attentions] if v is not None) return BaseModelOutput(last_hidden_state=hidden, hidden_states=all_hidden_states, attentions=all_attentions)
class_definition
27,546
30,512
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/modeling_funnel.py
null
9,471
class FunnelDecoder(nn.Module): def __init__(self, config: FunnelConfig) -> None: super().__init__() self.config = config self.attention_structure = FunnelAttentionStructure(config) self.layers = nn.ModuleList([FunnelLayer(config, 0) for _ in range(config.num_decoder_layers)]) def forward( self, final_hidden: torch.Tensor, first_block_hidden: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[Tuple, BaseModelOutput]: upsampled_hidden = upsample( final_hidden, stride=2 ** (len(self.config.block_sizes) - 1), target_len=first_block_hidden.shape[1], separate_cls=self.config.separate_cls, truncate_seq=self.config.truncate_seq, ) hidden = upsampled_hidden + first_block_hidden all_hidden_states = (hidden,) if output_hidden_states else None all_attentions = () if output_attentions else None attention_inputs = self.attention_structure.init_attention_inputs( hidden, attention_mask=attention_mask, token_type_ids=token_type_ids, ) for layer in self.layers: layer_output = layer(hidden, hidden, hidden, attention_inputs, output_attentions=output_attentions) hidden = layer_output[0] if output_attentions: all_attentions = all_attentions + layer_output[1:] if output_hidden_states: all_hidden_states = all_hidden_states + (hidden,) if not return_dict: return tuple(v for v in [hidden, all_hidden_states, all_attentions] if v is not None) return BaseModelOutput(last_hidden_state=hidden, hidden_states=all_hidden_states, attentions=all_attentions)
class_definition
31,238
33,229
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/modeling_funnel.py
null
9,472
class FunnelDiscriminatorPredictions(nn.Module): """Prediction module for the discriminator, made up of two dense layers.""" def __init__(self, config: FunnelConfig) -> None: super().__init__() self.config = config self.dense = nn.Linear(config.d_model, config.d_model) self.dense_prediction = nn.Linear(config.d_model, 1) def forward(self, discriminator_hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(discriminator_hidden_states) hidden_states = ACT2FN[self.config.hidden_act](hidden_states) logits = self.dense_prediction(hidden_states).squeeze(-1) return logits
class_definition
33,232
33,900
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/modeling_funnel.py
null
9,473
class FunnelPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = FunnelConfig load_tf_weights = load_tf_weights_in_funnel base_model_prefix = "funnel" def _init_weights(self, module): classname = module.__class__.__name__ if classname.find("Linear") != -1: if getattr(module, "weight", None) is not None: if self.config.initializer_std is None: fan_out, fan_in = module.weight.shape std = np.sqrt(1.0 / float(fan_in + fan_out)) else: std = self.config.initializer_std nn.init.normal_(module.weight, std=std) if getattr(module, "bias", None) is not None: nn.init.constant_(module.bias, 0.0) elif classname == "FunnelRelMultiheadAttention": nn.init.uniform_(module.r_w_bias, b=self.config.initializer_range) nn.init.uniform_(module.r_r_bias, b=self.config.initializer_range) nn.init.uniform_(module.r_kernel, b=self.config.initializer_range) nn.init.uniform_(module.r_s_bias, b=self.config.initializer_range) nn.init.uniform_(module.seg_embed, b=self.config.initializer_range) elif classname == "FunnelEmbeddings": std = 1.0 if self.config.initializer_std is None else self.config.initializer_std nn.init.normal_(module.word_embeddings.weight, std=std) if module.word_embeddings.padding_idx is not None: module.word_embeddings.weight.data[module.word_embeddings.padding_idx].zero_()
class_definition
33,903
35,634
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/modeling_funnel.py
null
9,474
class FunnelClassificationHead(nn.Module): def __init__(self, config: FunnelConfig, n_labels: int) -> None: super().__init__() self.linear_hidden = nn.Linear(config.d_model, config.d_model) self.dropout = nn.Dropout(config.hidden_dropout) self.linear_out = nn.Linear(config.d_model, n_labels) def forward(self, hidden: torch.Tensor) -> torch.Tensor: hidden = self.linear_hidden(hidden) hidden = torch.tanh(hidden) hidden = self.dropout(hidden) return self.linear_out(hidden)
class_definition
35,637
36,184
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/modeling_funnel.py
null
9,475
class FunnelForPreTrainingOutput(ModelOutput): """ Output type of [`FunnelForPreTraining`]. Args: loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): Total loss of the ELECTRA-style objective. logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Prediction scores of the head (scores for each token before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None
class_definition
36,198
37,714
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/modeling_funnel.py
null
9,476
class FunnelBaseModel(FunnelPreTrainedModel): def __init__(self, config: FunnelConfig) -> None: super().__init__(config) self.embeddings = FunnelEmbeddings(config) self.encoder = FunnelEncoder(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Embedding: return self.embeddings.word_embeddings def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None: self.embeddings.word_embeddings = new_embeddings @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="funnel-transformer/small-base", output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # TODO: deal with head_mask inputs_embeds = self.embeddings(input_ids, inputs_embeds=inputs_embeds) encoder_outputs = self.encoder( inputs_embeds, attention_mask=attention_mask, token_type_ids=token_type_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) return encoder_outputs
class_definition
41,073
44,067
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/modeling_funnel.py
null
9,477
class FunnelModel(FunnelPreTrainedModel): def __init__(self, config: FunnelConfig) -> None: super().__init__(config) self.config = config self.embeddings = FunnelEmbeddings(config) self.encoder = FunnelEncoder(config) self.decoder = FunnelDecoder(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Embedding: return self.embeddings.word_embeddings def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None: self.embeddings.word_embeddings = new_embeddings @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # TODO: deal with head_mask inputs_embeds = self.embeddings(input_ids, inputs_embeds=inputs_embeds) encoder_outputs = self.encoder( inputs_embeds, attention_mask=attention_mask, token_type_ids=token_type_ids, output_attentions=output_attentions, output_hidden_states=True, return_dict=return_dict, ) decoder_outputs = self.decoder( final_hidden=encoder_outputs[0], first_block_hidden=encoder_outputs[1][self.config.block_sizes[0]], attention_mask=attention_mask, token_type_ids=token_type_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: idx = 0 outputs = (decoder_outputs[0],) if output_hidden_states: idx += 1 outputs = outputs + (encoder_outputs[1] + decoder_outputs[idx],) if output_attentions: idx += 1 outputs = outputs + (encoder_outputs[2] + decoder_outputs[idx],) return outputs return BaseModelOutput( last_hidden_state=decoder_outputs[0], hidden_states=(encoder_outputs.hidden_states + decoder_outputs.hidden_states) if output_hidden_states else None, attentions=(encoder_outputs.attentions + decoder_outputs.attentions) if output_attentions else None, )
class_definition
44,239
48,299
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/modeling_funnel.py
null
9,478
class FunnelForPreTraining(FunnelPreTrainedModel): def __init__(self, config: FunnelConfig) -> None: super().__init__(config) self.funnel = FunnelModel(config) self.discriminator_predictions = FunnelDiscriminatorPredictions(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=FunnelForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, FunnelForPreTrainingOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the ELECTRA-style loss. Input should be a sequence of tokens (see `input_ids` docstring) Indices should be in `[0, 1]`: - 0 indicates the token is an original token, - 1 indicates the token was replaced. Returns: Examples: ```python >>> from transformers import AutoTokenizer, FunnelForPreTraining >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("funnel-transformer/small") >>> model = FunnelForPreTraining.from_pretrained("funnel-transformer/small") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> logits = model(**inputs).logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict discriminator_hidden_states = self.funnel( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) discriminator_sequence_output = discriminator_hidden_states[0] logits = self.discriminator_predictions(discriminator_sequence_output) loss = None if labels is not None: loss_fct = nn.BCEWithLogitsLoss() if attention_mask is not None: active_loss = attention_mask.view(-1, discriminator_sequence_output.shape[1]) == 1 active_logits = logits.view(-1, discriminator_sequence_output.shape[1])[active_loss] active_labels = labels[active_loss] loss = loss_fct(active_logits, active_labels.float()) else: loss = loss_fct(logits.view(-1, discriminator_sequence_output.shape[1]), labels.float()) if not return_dict: output = (logits,) + discriminator_hidden_states[1:] return ((loss,) + output) if loss is not None else output return FunnelForPreTrainingOutput( loss=loss, logits=logits, hidden_states=discriminator_hidden_states.hidden_states, attentions=discriminator_hidden_states.attentions, )
class_definition
48,508
51,967
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/modeling_funnel.py
null
9,479
class FunnelForMaskedLM(FunnelPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config: FunnelConfig) -> None: super().__init__(config) self.funnel = FunnelModel(config) self.lm_head = nn.Linear(config.d_model, config.vocab_size) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self) -> nn.Linear: return self.lm_head def set_output_embeddings(self, new_embeddings: nn.Embedding) -> None: self.lm_head = new_embeddings @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, mask="<mask>", ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.funnel( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = outputs[0] prediction_logits = self.lm_head(last_hidden_state) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
52,088
54,996
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/modeling_funnel.py
null
9,480
class FunnelForSequenceClassification(FunnelPreTrainedModel): def __init__(self, config: FunnelConfig) -> None: super().__init__(config) self.num_labels = config.num_labels self.config = config self.funnel = FunnelBaseModel(config) self.classifier = FunnelClassificationHead(config, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="funnel-transformer/small-base", output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.funnel( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = outputs[0] pooled_output = last_hidden_state[:, 0] logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
55,250
58,899
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/modeling_funnel.py
null
9,481
class FunnelForMultipleChoice(FunnelPreTrainedModel): def __init__(self, config: FunnelConfig) -> None: super().__init__(config) self.funnel = FunnelBaseModel(config) self.classifier = FunnelClassificationHead(config, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( checkpoint="funnel-transformer/small-base", output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.funnel( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = outputs[0] pooled_output = last_hidden_state[:, 0] logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
59,175
62,357
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/modeling_funnel.py
null
9,482
class FunnelForTokenClassification(FunnelPreTrainedModel): def __init__(self, config: FunnelConfig) -> None: super().__init__(config) self.num_labels = config.num_labels self.funnel = FunnelModel(config) self.dropout = nn.Dropout(config.hidden_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.funnel( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = outputs[0] last_hidden_state = self.dropout(last_hidden_state) logits = self.classifier(last_hidden_state) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
62,602
65,122
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/modeling_funnel.py
null
9,483
class FunnelForQuestionAnswering(FunnelPreTrainedModel): def __init__(self, config: FunnelConfig) -> None: super().__init__(config) self.num_labels = config.num_labels self.funnel = FunnelModel(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.funnel( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = outputs[0] logits = self.qa_outputs(last_hidden_state) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[1:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
65,424
69,449
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/funnel/modeling_funnel.py
null
9,484
class PhiAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: PhiConfig, layer_idx: int): super().__init__() self.config = config self.layer_idx = layer_idx self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads self.scaling = self.head_dim**-0.5 self.attention_dropout = config.attention_dropout self.is_causal = True self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=True) self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True) self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True) self.dense = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=True) self.rotary_ndims = int(self.head_dim * config.partial_rotary_factor) self.qk_layernorm = config.qk_layernorm if self.qk_layernorm: self.q_layernorm = nn.LayerNorm( config.hidden_size // config.num_attention_heads, eps=config.layer_norm_eps, elementwise_affine=True ) self.k_layernorm = nn.LayerNorm( config.hidden_size // config.num_attention_heads, eps=config.layer_norm_eps, elementwise_affine=True ) def forward( self, hidden_states: torch.Tensor, position_embeddings: Tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor], past_key_value: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) if self.qk_layernorm: query_states = self.q_layernorm(query_states) key_states = self.k_layernorm(key_states) cos, sin = position_embeddings # Partial rotary embedding query_rot, query_pass = ( query_states[..., : self.rotary_ndims], query_states[..., self.rotary_ndims :], ) key_rot, key_pass = ( key_states[..., : self.rotary_ndims], key_states[..., self.rotary_ndims :], ) # [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor] query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin) # [batch_size, seq_length, num_heads, head_dim] query_states = torch.cat((query_rot, query_pass), dim=-1) key_states = torch.cat((key_rot, key_pass), dim=-1) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): logger.warning_once( "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) else: attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.dense(attn_output) return attn_output, attn_weights
class_definition
5,113
9,720
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/phi/modeling_phi.py
null
9,485
class PhiMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.activation_fn = ACT2FN[config.hidden_act] self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states
class_definition
9,723
10,292
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/phi/modeling_phi.py
null
9,486
class PhiDecoderLayer(nn.Module): def __init__(self, config: PhiConfig, layer_idx: int): super().__init__() self.self_attn = PhiAttention(config, layer_idx=layer_idx) self.mlp = PhiMLP(config) self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.resid_dropout = nn.Dropout(config.resid_pdrop) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention attn_outputs, self_attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **kwargs, ) attn_outputs = self.resid_dropout(attn_outputs) feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states)) hidden_states = attn_outputs + feed_forward_hidden_states + residual outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) return outputs
class_definition
10,295
12,189
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/phi/modeling_phi.py
null
9,487
class PhiRotaryEmbedding(nn.Module): def __init__(self, config: PhiConfig, device=None): super().__init__() # BC: "rope_type" was originally "type" if hasattr(config, "rope_scaling") and config.rope_scaling is not None: self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) else: self.rope_type = "default" self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings self.config = config self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq def _dynamic_frequency_update(self, position_ids, device): """ dynamic RoPE layers should recompute `inv_freq` in the following situations: 1 - growing beyond the cached sequence length (allow scaling) 2 - the current sequence length is in the original scale (avoid losing precision with small sequences) """ seq_len = torch.max(position_ids) + 1 if seq_len > self.max_seq_len_cached: # growth inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len) self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation self.max_seq_len_cached = seq_len if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset # This .to() is needed if the model has been moved to a device after being initialized (because # the buffer is automatically moved, but not the original copy) self.original_inv_freq = self.original_inv_freq.to(device) self.register_buffer("inv_freq", self.original_inv_freq, persistent=False) self.max_seq_len_cached = self.original_max_seq_len @torch.no_grad() def forward(self, x, position_ids): if "dynamic" in self.rope_type: self._dynamic_frequency_update(position_ids, device=x.device) # Core RoPE block inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) position_ids_expanded = position_ids[:, None, :].float() # Force float32 (see https://github.com/huggingface/transformers/pull/29285) device_type = x.device.type device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() sin = emb.sin() # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention cos = cos * self.attention_scaling sin = sin * self.attention_scaling return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
class_definition
12,192
15,383
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/phi/modeling_phi.py
null
9,488
class PhiPreTrainedModel(PreTrainedModel): config_class = PhiConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["PhiDecoderLayer"] _skip_keys_device_placement = ["past_key_values"] _supports_flash_attn_2 = True _supports_sdpa = True _supports_flex_attn = True _supports_cache_class = True _supports_quantized_cache = True _supports_static_cache = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_()
class_definition
16,397
17,314
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/phi/modeling_phi.py
null
9,489
class PhiModel(PhiPreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`PhiDecoderLayer`] Args: config: PhiConfig """ def __init__(self, config: PhiConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [PhiDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.rotary_emb = PhiRotaryEmbedding(config=config) self.gradient_checkpointing = False self.embed_dropout = nn.Dropout(config.embd_pdrop) self.final_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **flash_attn_kwargs: Unpack[FlashAttentionKwargs], ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if use_cache and past_key_values is None: past_key_values = DynamicCache() if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask( attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions ) inputs_embeds = self.embed_dropout(inputs_embeds) # diff with Llama hidden_states = inputs_embeds # create position embeddings to be shared across the decoder layers position_embeddings = self.rotary_emb(hidden_states, position_ids) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None for decoder_layer in self.layers[: self.config.num_hidden_layers]: if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, causal_mask, position_ids, past_key_values, output_attentions, use_cache, cache_position, position_embeddings, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **flash_attn_kwargs, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.final_layernorm(hidden_states) # diff with Llama # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) output = BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values if use_cache else None, hidden_states=all_hidden_states, attentions=all_self_attns, ) return output if return_dict else output.to_tuple() def _update_causal_mask( self, attention_mask: torch.Tensor, input_tensor: torch.Tensor, cache_position: torch.Tensor, past_key_values: Cache, output_attentions: bool, ): if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and (attention_mask == 0.0).any(): return attention_mask return None # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail # to infer the attention mask. past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 using_static_cache = isinstance(past_key_values, StaticCache) # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions: if AttentionMaskConverter._ignore_causal_mask_sdpa( attention_mask, inputs_embeds=input_tensor, past_key_values_length=past_seen_tokens, is_training=self.training, ): return None dtype, device = input_tensor.dtype, input_tensor.device sequence_length = input_tensor.shape[1] if using_static_cache: target_length = past_key_values.get_max_cache_shape() else: target_length = ( attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else past_seen_tokens + sequence_length + 1 ) # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( attention_mask, sequence_length=sequence_length, target_length=target_length, dtype=dtype, device=device, cache_position=cache_position, batch_size=input_tensor.shape[0], ) if ( self.config._attn_implementation == "sdpa" and attention_mask is not None and attention_mask.device.type == "cuda" and not output_attentions ): # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 min_dtype = torch.finfo(dtype).min causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) return causal_mask @staticmethod def _prepare_4d_causal_attention_mask_with_cache_position( attention_mask: torch.Tensor, sequence_length: int, target_length: int, dtype: torch.dtype, device: torch.device, cache_position: torch.Tensor, batch_size: int, **kwargs, ): """ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. Args: attention_mask (`torch.Tensor`): A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. sequence_length (`int`): The sequence length being processed. target_length (`int`): The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. dtype (`torch.dtype`): The dtype to use for the 4D attention mask. device (`torch.device`): The device to plcae the 4D attention mask on. cache_position (`torch.Tensor`): Indices depicting the position of the input sequence tokens in the sequence. batch_size (`torch.Tensor`): Batch size. """ if attention_mask is not None and attention_mask.dim() == 4: # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. causal_mask = attention_mask else: min_dtype = torch.finfo(dtype).min causal_mask = torch.full( (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device ) if sequence_length != 1: causal_mask = torch.triu(causal_mask, diagonal=1) causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit mask_length = attention_mask.shape[-1] padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] padding_mask = padding_mask == 0 causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( padding_mask, min_dtype ) return causal_mask
class_definition
22,112
33,500
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/phi/modeling_phi.py
null
9,490
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
class_definition
33,503
33,565
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/phi/modeling_phi.py
null
9,491
class PhiForCausalLM(PhiPreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] _tp_plan = {"lm_head": "colwise_rep"} def __init__(self, config): super().__init__(config) self.model = PhiModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=True) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, num_logits_to_keep: int = 0, **kwargs: Unpack[KwargsForCausalLM], ) -> Union[Tuple, CausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. num_logits_to_keep (`int`, *optional*): Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences or large vocabulary size. Returns: Example: ```python >>> from transformers import AutoTokenizer, PhiForCausalLM >>> model = PhiForCausalLM.from_pretrained("meta-phi/Phi-2-7b-hf") >>> tokenizer = AutoTokenizer.from_pretrained("meta-phi/Phi-2-7b-hf") >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, **kwargs, ) hidden_states = outputs[0] # Only compute necessary logits, and do not upcast them to float if we are not computing the loss logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :]) loss = None if labels is not None: loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
33,568
38,674
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/phi/modeling_phi.py
null
9,492
class PhiForSequenceClassification(PhiPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = PhiModel(config) self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 sequence_lengths = sequence_lengths % input_ids.shape[-1] sequence_lengths = sequence_lengths.to(logits.device) else: sequence_lengths = -1 pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] loss = None if labels is not None: loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )
class_definition
39,461
43,265
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/phi/modeling_phi.py
null
9,493
class PhiForTokenClassification(PhiPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = PhiModel(config) if getattr(config, "classifier_dropout", None) is not None: classifier_dropout = config.classifier_dropout elif getattr(config, "hidden_dropout", None) is not None: classifier_dropout = config.hidden_dropout else: classifier_dropout = 0.1 self.dropout = nn.Dropout(classifier_dropout) self.score = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.score(sequence_output) loss = None if labels is not None: loss = self.loss_function(logits, labels, self.config) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
43,508
46,712
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/phi/modeling_phi.py
null
9,494
class PhiConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`PhiModel`]. It is used to instantiate an Phi model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Phi [microsoft/phi-1](https://huggingface.co/microsoft/phi-1). Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 51200): Vocabulary size of the Phi model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`PhiModel`]. hidden_size (`int`, *optional*, defaults to 2048): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 8192): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 24): Number of hidden layers in the Transformer decoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer decoder. num_key_value_heads (`int`, *optional*): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `num_attention_heads`. resid_pdrop (`float`, *optional*, defaults to 0.0): Dropout probability for mlp outputs. embd_pdrop (`int`, *optional*, defaults to 0.0): The dropout ratio for the embeddings. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio after computing the attention scores. hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to 2048): The maximum sequence length that this model might ever be used with. Phi-1 and Phi-1.5 supports up to 2048 tokens. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether to tie weight embeddings rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. rope_scaling (`Dict`, *optional*): Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value accordingly. Expected contents: `rope_type` (`str`): The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', 'llama3'], with 'default' being the original RoPE implementation. `factor` (`float`, *optional*): Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In most scaling types, a `factor` of x will enable the model to handle sequences of length x * original maximum pre-trained length. `original_max_position_embeddings` (`int`, *optional*): Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during pretraining. `attention_factor` (`float`, *optional*): Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention computation. If unspecified, it defaults to value recommended by the implementation, using the `factor` field to infer the suggested value. `beta_fast` (`float`, *optional*): Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear ramp function. If unspecified, it defaults to 32. `beta_slow` (`float`, *optional*): Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear ramp function. If unspecified, it defaults to 1. `short_factor` (`List[float]`, *optional*): Only used with 'longrope'. The scaling factor to be applied to short contexts (< `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2 `long_factor` (`List[float]`, *optional*): Only used with 'longrope'. The scaling factor to be applied to long contexts (< `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2 `low_freq_factor` (`float`, *optional*): Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE `high_freq_factor` (`float`, *optional*): Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE partial_rotary_factor (`float`, *optional*, defaults to 0.5): Percentage of the query and keys which will have rotary embedding. qk_layernorm (`bool`, *optional*, defaults to `False`): Whether or not to normalize the Queries and Keys after projecting the hidden states. bos_token_id (`int`, *optional*, defaults to 1): Denotes beginning of sequences token id. eos_token_id (`int`, *optional*, defaults to 2): Denotes end of sequences token id. Example: ```python >>> from transformers import PhiModel, PhiConfig >>> # Initializing a Phi-1 style configuration >>> configuration = PhiConfig.from_pretrained("microsoft/phi-1") >>> # Initializing a model from the configuration >>> model = PhiModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "phi" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=51200, hidden_size=2048, intermediate_size=8192, num_hidden_layers=24, num_attention_heads=32, num_key_value_heads=None, resid_pdrop=0.0, embd_pdrop=0.0, attention_dropout=0.0, hidden_act="gelu_new", max_position_embeddings=2048, initializer_range=0.02, layer_norm_eps=1e-5, use_cache=True, tie_word_embeddings=False, rope_theta=10000.0, rope_scaling=None, partial_rotary_factor=0.5, qk_layernorm=False, bos_token_id=1, eos_token_id=2, **kwargs, ): self.vocab_size = vocab_size self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.resid_pdrop = resid_pdrop self.embd_pdrop = embd_pdrop self.attention_dropout = attention_dropout self.hidden_act = hidden_act self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.partial_rotary_factor = partial_rotary_factor self.qk_layernorm = qk_layernorm # Validate the correctness of rotary position embeddings parameters # BC: if there is a 'type' field, move it to 'rope_type'. if self.rope_scaling is not None and "type" in self.rope_scaling: self.rope_scaling["rope_type"] = self.rope_scaling["type"] rope_config_validation(self) super().__init__( bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, )
class_definition
853
10,536
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/phi/configuration_phi.py
null
9,495
class PhiAttention(LlamaAttention): def __init__(self, config: PhiConfig, layer_idx: int): super().__init__(config, layer_idx) self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=True) self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True) self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True) self.dense = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=True) del self.o_proj self.rotary_ndims = int(self.head_dim * config.partial_rotary_factor) self.qk_layernorm = config.qk_layernorm if self.qk_layernorm: self.q_layernorm = nn.LayerNorm( config.hidden_size // config.num_attention_heads, eps=config.layer_norm_eps, elementwise_affine=True ) self.k_layernorm = nn.LayerNorm( config.hidden_size // config.num_attention_heads, eps=config.layer_norm_eps, elementwise_affine=True ) def forward( self, hidden_states: torch.Tensor, position_embeddings: Tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor], past_key_value: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) if self.qk_layernorm: query_states = self.q_layernorm(query_states) key_states = self.k_layernorm(key_states) cos, sin = position_embeddings # Partial rotary embedding query_rot, query_pass = ( query_states[..., : self.rotary_ndims], query_states[..., self.rotary_ndims :], ) key_rot, key_pass = ( key_states[..., : self.rotary_ndims], key_states[..., self.rotary_ndims :], ) # [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor] query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin) # [batch_size, seq_length, num_heads, head_dim] query_states = torch.cat((query_rot, query_pass), dim=-1) key_states = torch.cat((key_rot, key_pass), dim=-1) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): logger.warning_once( "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) else: attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.dense(attn_output) return attn_output, attn_weights
class_definition
756
4,946
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/phi/modular_phi.py
null
9,496
class PhiMLP(CLIPMLP): pass
class_definition
4,949
4,980
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/phi/modular_phi.py
null
9,497
class PhiDecoderLayer(nn.Module): def __init__(self, config: PhiConfig, layer_idx: int): super().__init__() self.self_attn = PhiAttention(config, layer_idx=layer_idx) self.mlp = PhiMLP(config) self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.resid_dropout = nn.Dropout(config.resid_pdrop) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention attn_outputs, self_attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **kwargs, ) attn_outputs = self.resid_dropout(attn_outputs) feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states)) hidden_states = attn_outputs + feed_forward_hidden_states + residual outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) return outputs
class_definition
4,983
6,877
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/phi/modular_phi.py
null
9,498
class PhiModel(LlamaModel): def __init__(self, config: PhiConfig): super().__init__(config) self.layers = nn.ModuleList( [PhiDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.embed_dropout = nn.Dropout(config.embd_pdrop) self.final_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) del self.norm def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **flash_attn_kwargs: Unpack[FlashAttentionKwargs], ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if use_cache and past_key_values is None: past_key_values = DynamicCache() if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask( attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions ) inputs_embeds = self.embed_dropout(inputs_embeds) # diff with Llama hidden_states = inputs_embeds # create position embeddings to be shared across the decoder layers position_embeddings = self.rotary_emb(hidden_states, position_ids) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None for decoder_layer in self.layers[: self.config.num_hidden_layers]: if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, causal_mask, position_ids, past_key_values, output_attentions, use_cache, cache_position, position_embeddings, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **flash_attn_kwargs, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.final_layernorm(hidden_states) # diff with Llama # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) output = BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values if use_cache else None, hidden_states=all_hidden_states, attentions=all_self_attns, ) return output if return_dict else output.to_tuple()
class_definition
6,880
11,776
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/phi/modular_phi.py
null
9,499