text
stringlengths
31
243k
type
stringclasses
1 value
start
int64
36
275k
end
int64
286
280k
depth
int64
0
1
filepath
stringlengths
85
188
parent_class
stringclasses
3 values
class_index
int64
0
10.8k
class RoCBertOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states
class_definition
23,377
23,988
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/roc_bert/modeling_roc_bert.py
null
9,300
class RoCBertLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = RoCBertAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = RoCBertAttention(config, position_embedding_type="absolute") self.intermediate = RoCBertIntermediate(config) self.output = RoCBertOutput(config) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output
class_definition
24,073
27,995
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/roc_bert/modeling_roc_bert.py
null
9,301
class RoCBertEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([RoCBertLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, )
class_definition
28,082
31,878
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/roc_bert/modeling_roc_bert.py
null
9,302
class RoCBertPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output
class_definition
31,964
32,526
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/roc_bert/modeling_roc_bert.py
null
9,303
class RoCBertPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states
class_definition
32,629
33,332
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/roc_bert/modeling_roc_bert.py
null
9,304
class RoCBertLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = RoCBertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def _tie_weights(self): self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states
class_definition
33,428
34,266
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/roc_bert/modeling_roc_bert.py
null
9,305
class RoCBertOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = RoCBertLMPredictionHead(config) def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: prediction_scores = self.predictions(sequence_output) return prediction_scores
class_definition
34,357
34,677
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/roc_bert/modeling_roc_bert.py
null
9,306
class RoCBertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = RoCBertConfig load_tf_weights = load_tf_weights_in_roc_bert base_model_prefix = "roc_bert" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0)
class_definition
34,680
35,844
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/roc_bert/modeling_roc_bert.py
null
9,307
class RoCBertModel(RoCBertPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in [Attention is all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to `True`. To be used in a Seq2Seq model, the model needs to be initialized with both `is_decoder` argument and `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. """ # Copied from transformers.models.clap.modeling_clap.ClapTextModel.__init__ with ClapText->RoCBert def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = RoCBertEmbeddings(config) self.encoder = RoCBertEncoder(config) self.pooler = RoCBertPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.bert.modeling_bert.BertModel.get_input_embeddings def get_input_embeddings(self): return self.embeddings.word_embeddings # Copied from transformers.models.bert.modeling_bert.BertModel.set_input_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def get_pronunciation_embeddings(self): return self.embeddings.pronunciation_embed def set_pronunciation_embeddings(self, value): self.embeddings.pronunciation_embed = value def get_shape_embeddings(self): return self.embeddings.shape_embed def set_shape_embeddings(self, value): self.embeddings.shape_embed = value # Copied from transformers.models.bert.modeling_bert.BertModel._prune_heads def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(ROC_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, input_ids: Optional[torch.Tensor] = None, input_shape_ids: Optional[torch.Tensor] = None, input_pronunciation_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, input_shape_ids=input_shape_ids, input_pronunciation_ids=input_pronunciation_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, )
class_definition
40,016
50,167
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/roc_bert/modeling_roc_bert.py
null
9,308
class RoCBertForPreTraining(RoCBertPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] def __init__(self, config): super().__init__(config) self.roc_bert = RoCBertModel(config) self.cls = RoCBertOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.bert.modeling_bert.BertForPreTraining.get_output_embeddings def get_output_embeddings(self): return self.cls.predictions.decoder # Copied from transformers.models.bert.modeling_bert.BertForPreTraining.set_output_embeddings def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings self.cls.predictions.bias = new_embeddings.bias @add_start_docstrings_to_model_forward(ROC_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, input_shape_ids: Optional[torch.Tensor] = None, input_pronunciation_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, attack_input_ids: Optional[torch.Tensor] = None, attack_input_shape_ids: Optional[torch.Tensor] = None, attack_input_pronunciation_ids: Optional[torch.Tensor] = None, attack_attention_mask: Optional[torch.Tensor] = None, attack_token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels_input_ids: Optional[torch.Tensor] = None, labels_input_shape_ids: Optional[torch.Tensor] = None, labels_input_pronunciation_ids: Optional[torch.Tensor] = None, labels_attention_mask: Optional[torch.Tensor] = None, labels_token_type_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]: r""" attack_input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): attack sample ids for computing the contrastive loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` attack_input_shape_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): attack sample shape ids for computing the contrastive loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` attack_input_pronunciation_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): attack sample pronunciation ids for computing the contrastive loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` labels_input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): target ids for computing the contrastive loss and masked_lm_loss . Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` labels_input_shape_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): target shape ids for computing the contrastive loss and masked_lm_loss . Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` labels_input_pronunciation_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): target pronunciation ids for computing the contrastive loss and masked_lm_loss . Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` kwargs (`Dict[str, any]`, *optional*, defaults to *{}*): Used to hide legacy arguments that have been deprecated. Returns: Example: ```python >>> from transformers import AutoTokenizer, RoCBertForPreTraining >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("weiweishi/roc-bert-base-zh") >>> model = RoCBertForPreTraining.from_pretrained("weiweishi/roc-bert-base-zh") >>> inputs = tokenizer("你好,很高兴认识你", return_tensors="pt") >>> attack_inputs = {} >>> for key in list(inputs.keys()): ... attack_inputs[f"attack_{key}"] = inputs[key] >>> label_inputs = {} >>> for key in list(inputs.keys()): ... label_inputs[f"labels_{key}"] = inputs[key] >>> inputs.update(label_inputs) >>> inputs.update(attack_inputs) >>> outputs = model(**inputs) >>> logits = outputs.logits >>> logits.shape torch.Size([1, 11, 21128]) ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roc_bert( input_ids, input_shape_ids=input_shape_ids, input_pronunciation_ids=input_pronunciation_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output, pooled_output = outputs[:2] prediction_scores = self.cls(sequence_output) loss = None if labels_input_ids is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels_input_ids.view(-1)) if attack_input_ids is not None: batch_size, _ = labels_input_ids.shape device = labels_input_ids.device target_inputs = torch.clone(labels_input_ids) target_inputs[target_inputs == -100] = self.config.pad_token_id labels_output = self.roc_bert( target_inputs, input_shape_ids=labels_input_shape_ids, input_pronunciation_ids=labels_input_pronunciation_ids, attention_mask=labels_attention_mask, token_type_ids=labels_token_type_ids, return_dict=return_dict, ) attack_output = self.roc_bert( attack_input_ids, input_shape_ids=attack_input_shape_ids, input_pronunciation_ids=attack_input_pronunciation_ids, attention_mask=attack_attention_mask, token_type_ids=attack_token_type_ids, return_dict=return_dict, ) labels_pooled_output = labels_output[1] attack_pooled_output = attack_output[1] pooled_output_norm = torch.nn.functional.normalize(pooled_output, dim=-1) labels_pooled_output_norm = torch.nn.functional.normalize(labels_pooled_output, dim=-1) attack_pooled_output_norm = torch.nn.functional.normalize(attack_pooled_output, dim=-1) sim_matrix = torch.matmul(pooled_output_norm, attack_pooled_output_norm.T) # batch_size * hidden_dim sim_matrix_target = torch.matmul(labels_pooled_output_norm, attack_pooled_output_norm.T) batch_labels = torch.tensor(list(range(batch_size)), device=device) contrastive_loss = ( loss_fct(100 * sim_matrix.view(batch_size, -1), batch_labels.view(-1)) + loss_fct(100 * sim_matrix_target.view(batch_size, -1), batch_labels.view(-1)) ) / 2 loss = contrastive_loss + masked_lm_loss else: loss = masked_lm_loss if not return_dict: output = (prediction_scores,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
50,325
59,969
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/roc_bert/modeling_roc_bert.py
null
9,309
class RoCBertForMaskedLM(RoCBertPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] # Copied from transformers.models.bert.modeling_bert.BertForMaskedLM.__init__ with Bert->RoCBert,bert->roc_bert def __init__(self, config): super().__init__(config) if config.is_decoder: logger.warning( "If you want to use `RoCBertForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.roc_bert = RoCBertModel(config, add_pooling_layer=False) self.cls = RoCBertOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.bert.modeling_bert.BertForMaskedLM.get_output_embeddings def get_output_embeddings(self): return self.cls.predictions.decoder # Copied from transformers.models.bert.modeling_bert.BertForMaskedLM.set_output_embeddings def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings self.cls.predictions.bias = new_embeddings.bias @add_start_docstrings_to_model_forward(ROC_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def forward( self, input_ids: Optional[torch.Tensor] = None, input_shape_ids: Optional[torch.Tensor] = None, input_pronunciation_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Example: ```python >>> from transformers import AutoTokenizer, RoCBertForMaskedLM >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("weiweishi/roc-bert-base-zh") >>> model = RoCBertForMaskedLM.from_pretrained("weiweishi/roc-bert-base-zh") >>> inputs = tokenizer("法国是首都[MASK].", return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # retrieve index of {mask} >>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0] >>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1) >>> tokenizer.decode(predicted_token_id) '.' ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roc_bert( input_ids, input_shape_ids=input_shape_ids, input_pronunciation_ids=input_pronunciation_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, input_shape_ids=None, input_pronunciation_ids=None, attention_mask=None, **model_kwargs ): input_shape = input_ids.shape effective_batch_size = input_shape[0] # add a dummy token if self.config.pad_token_id is None: raise ValueError("The PAD token should be defined for generation") attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1) dummy_token = torch.full( (effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device ) input_ids = torch.cat([input_ids, dummy_token], dim=1) if input_shape_ids is not None: input_shape_ids = torch.cat([input_shape_ids, dummy_token], dim=1) if input_pronunciation_ids is not None: input_pronunciation_ids = torch.cat([input_pronunciation_ids, dummy_token], dim=1) return { "input_ids": input_ids, "input_shape_ids": input_shape_ids, "input_pronunciation_ids": input_pronunciation_ids, "attention_mask": attention_mask, }
class_definition
60,081
66,055
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/roc_bert/modeling_roc_bert.py
null
9,310
class RoCBertForCausalLM(RoCBertPreTrainedModel, GenerationMixin): _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] # Copied from transformers.models.bert.modeling_bert.BertLMHeadModel.__init__ with BertLMHeadModel->RoCBertForCausalLM,Bert->RoCBert,bert->roc_bert def __init__(self, config): super().__init__(config) if not config.is_decoder: logger.warning("If you want to use `RoCRoCBertForCausalLM` as a standalone, add `is_decoder=True.`") self.roc_bert = RoCBertModel(config, add_pooling_layer=False) self.cls = RoCBertOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.bert.modeling_bert.BertLMHeadModel.get_output_embeddings def get_output_embeddings(self): return self.cls.predictions.decoder # Copied from transformers.models.bert.modeling_bert.BertLMHeadModel.set_output_embeddings def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings self.cls.predictions.bias = new_embeddings.bias @add_start_docstrings_to_model_forward(ROC_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, input_shape_ids: Optional[torch.Tensor] = None, input_pronunciation_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.Tensor]] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional tensors are only required when the model is used as a decoder in a Sequence to Sequence model. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Returns: Example: ```python >>> from transformers import AutoTokenizer, RoCBertForCausalLM, RoCBertConfig >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("weiweishi/roc-bert-base-zh") >>> config = RoCBertConfig.from_pretrained("weiweishi/roc-bert-base-zh") >>> config.is_decoder = True >>> model = RoCBertForCausalLM.from_pretrained("weiweishi/roc-bert-base-zh", config=config) >>> inputs = tokenizer("你好,很高兴认识你", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.logits ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roc_bert( input_ids, input_shape_ids=input_shape_ids, input_pronunciation_ids=input_pronunciation_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) lm_loss = None if labels is not None: # we are doing next-token prediction; shift prediction scores and input ids by one shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() labels = labels[:, 1:].contiguous() loss_fct = CrossEntropyLoss() lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((lm_loss,) + output) if lm_loss is not None else output return CausalLMOutputWithCrossAttentions( loss=lm_loss, logits=prediction_scores, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def prepare_inputs_for_generation( self, input_ids, input_shape_ids=None, input_pronunciation_ids=None, past_key_values=None, attention_mask=None, **model_kwargs, ): # Overwritten -- `input_pronunciation_ids` input_shape = input_ids.shape # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_shape) # cut decoder_input_ids if past_key_values is used if past_key_values is not None: past_length = past_key_values[0][0].shape[2] # Some generation methods already pass only the last input ID if input_ids.shape[1] > past_length: remove_prefix_length = past_length else: # Default to old behavior: keep only final ID remove_prefix_length = input_ids.shape[1] - 1 input_ids = input_ids[:, remove_prefix_length:] if input_shape_ids is not None: input_shape_ids = input_shape_ids[:, -1:] if input_pronunciation_ids is not None: input_pronunciation_ids = input_pronunciation_ids[:, -1:] return { "input_ids": input_ids, "input_shape_ids": input_shape_ids, "input_pronunciation_ids": input_pronunciation_ids, "attention_mask": attention_mask, "past_key_values": past_key_values, } # Copied from transformers.models.bert.modeling_bert.BertLMHeadModel._reorder_cache def _reorder_cache(self, past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past
class_definition
66,193
75,457
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/roc_bert/modeling_roc_bert.py
null
9,311
class RoCBertForSequenceClassification(RoCBertPreTrainedModel): # Copied from transformers.models.bert.modeling_bert.BertForSequenceClassification.__init__ with Bert->RoCBert,bert->roc_bert def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.roc_bert = RoCBertModel(config) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(ROC_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_SEQ_CLASS_EXPECTED_OUTPUT, expected_loss=_SEQ_CLASS_EXPECTED_LOSS, ) def forward( self, input_ids: Optional[torch.Tensor] = None, input_shape_ids: Optional[torch.Tensor] = None, input_pronunciation_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roc_bert( input_ids, input_shape_ids=input_shape_ids, input_pronunciation_ids=input_pronunciation_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
75,676
80,165
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/roc_bert/modeling_roc_bert.py
null
9,312
class RoCBertForMultipleChoice(RoCBertPreTrainedModel): # Copied from transformers.models.bert.modeling_bert.BertForMultipleChoice.__init__ with Bert->RoCBert,bert->roc_bert def __init__(self, config): super().__init__(config) self.roc_bert = RoCBertModel(config) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward( ROC_BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, input_shape_ids: Optional[torch.Tensor] = None, input_pronunciation_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None input_shape_ids = input_shape_ids.view(-1, input_shape_ids.size(-1)) if input_shape_ids is not None else None input_pronunciation_ids = ( input_pronunciation_ids.view(-1, input_pronunciation_ids.size(-1)) if input_pronunciation_ids is not None else None ) attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.roc_bert( input_ids, input_shape_ids=input_shape_ids, input_pronunciation_ids=input_pronunciation_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
80,393
84,724
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/roc_bert/modeling_roc_bert.py
null
9,313
class RoCBertForTokenClassification(RoCBertPreTrainedModel): # Copied from transformers.models.bert.modeling_bert.BertForTokenClassification.__init__ with Bert->RoCBert,bert->roc_bert def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.roc_bert = RoCBertModel(config, add_pooling_layer=False) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(ROC_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_TOKEN_CLASSIFICATION, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_TOKEN_CLASS_EXPECTED_OUTPUT, expected_loss=_TOKEN_CLASS_EXPECTED_LOSS, ) def forward( self, input_ids: Optional[torch.Tensor] = None, input_shape_ids: Optional[torch.Tensor] = None, input_pronunciation_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roc_bert( input_ids, input_shape_ids=input_shape_ids, input_pronunciation_ids=input_pronunciation_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
84,950
88,273
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/roc_bert/modeling_roc_bert.py
null
9,314
class RoCBertForQuestionAnswering(RoCBertPreTrainedModel): # Copied from transformers.models.bert.modeling_bert.BertForQuestionAnswering.__init__ with Bert->RoCBert,bert->roc_bert def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.roc_bert = RoCBertModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(ROC_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_QA, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, qa_target_start_index=_QA_TARGET_START_INDEX, qa_target_end_index=_QA_TARGET_END_INDEX, expected_output=_QA_EXPECTED_OUTPUT, expected_loss=_QA_EXPECTED_LOSS, ) def forward( self, input_ids: Optional[torch.Tensor] = None, input_shape_ids: Optional[torch.Tensor] = None, input_pronunciation_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roc_bert( input_ids, input_shape_ids=input_shape_ids, input_pronunciation_ids=input_pronunciation_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
88,557
93,294
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/roc_bert/modeling_roc_bert.py
null
9,315
class RoCBertTokenizer(PreTrainedTokenizer): r""" Args: Construct a RoCBert tokenizer. Based on WordPiece. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. vocab_file (`str`): File containing the vocabulary. word_shape_file (`str`): File containing the word => shape info. word_pronunciation_file (`str`): File containing the word => pronunciation info. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. do_basic_tokenize (`bool`, *optional*, defaults to `True`): Whether or not to do basic tokenization before WordPiece. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` unk_token (`str`, *optional*, defaults to `"[UNK]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"[PAD]"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). """ vocab_files_names = VOCAB_FILES_NAMES def __init__( self, vocab_file, word_shape_file, word_pronunciation_file, do_lower_case=True, do_basic_tokenize=True, never_split=None, unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", tokenize_chinese_chars=True, strip_accents=None, **kwargs, ): for cur_file in [vocab_file, word_shape_file, word_pronunciation_file]: if cur_file is None or not os.path.isfile(cur_file): raise ValueError( f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google " "pretrained model use `tokenizer = RoCBertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) self.vocab = load_vocab(vocab_file) with open(word_shape_file, "r", encoding="utf8") as in_file: self.word_shape = json.load(in_file) with open(word_pronunciation_file, "r", encoding="utf8") as in_file: self.word_pronunciation = json.load(in_file) self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) self.do_basic_tokenize = do_basic_tokenize if do_basic_tokenize: self.basic_tokenizer = RoCBertBasicTokenizer( do_lower_case=do_lower_case, never_split=never_split, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, ) self.wordpiece_tokenizer = RoCBertWordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token)) super().__init__( do_lower_case=do_lower_case, do_basic_tokenize=do_basic_tokenize, never_split=never_split, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, **kwargs, ) @property def do_lower_case(self): return self.basic_tokenizer.do_lower_case @property def vocab_size(self): return len(self.vocab) # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_vocab def get_vocab(self): return dict(self.vocab, **self.added_tokens_encoder) # Copied from transformers.models.bert.tokenization_bert.BertTokenizer._tokenize def _tokenize(self, text, split_special_tokens=False): split_tokens = [] if self.do_basic_tokenize: for token in self.basic_tokenizer.tokenize( text, never_split=self.all_special_tokens if not split_special_tokens else None ): # If the token is part of the never_split set if token in self.basic_tokenizer.never_split: split_tokens.append(token) else: split_tokens += self.wordpiece_tokenizer.tokenize(token) else: split_tokens = self.wordpiece_tokenizer.tokenize(text) return split_tokens def _encode_plus( self, text: Union[TextInput, PreTokenizedInput, EncodedInput], text_pair: Optional[Union[TextInput, PreTokenizedInput, EncodedInput]] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, is_split_into_words: bool = False, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: def get_input_ids(text): if isinstance(text, str): tokens = self.tokenize(text, **kwargs) tokens_ids = self.convert_tokens_to_ids(tokens) tokens_shape_ids = self.convert_tokens_to_shape_ids(tokens) tokens_proun_ids = self.convert_tokens_to_pronunciation_ids(tokens) return tokens_ids, tokens_shape_ids, tokens_proun_ids elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], str): if is_split_into_words: tokens = list( itertools.chain(*(self.tokenize(t, is_split_into_words=True, **kwargs) for t in text)) ) tokens_ids = self.convert_tokens_to_ids(tokens) tokens_shape_ids = self.convert_tokens_to_shape_ids(tokens) tokens_proun_ids = self.convert_tokens_to_pronunciation_ids(tokens) return tokens_ids, tokens_shape_ids, tokens_proun_ids else: tokens_ids = self.convert_tokens_to_ids(text) tokens_shape_ids = self.convert_tokens_to_shape_ids(text) tokens_proun_ids = self.convert_tokens_to_pronunciation_ids(text) return tokens_ids, tokens_shape_ids, tokens_proun_ids elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int): return text, [0] * len(text), [0] * len(text) # shape and proun id is pad_value else: if is_split_into_words: raise ValueError( f"Input {text} is not valid. Should be a string or a list/tuple of strings when" " `is_split_into_words=True`." ) else: raise ValueError( f"Input {text} is not valid. Should be a string, a list/tuple of strings or a list/tuple of" " integers." ) if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast. " "More information on available tokenizers at " "https://github.com/huggingface/transformers/pull/2674" ) first_ids, first_shape_ids, first_proun_ids = get_input_ids(text) if text_pair is not None: second_ids, second_shape_ids, second_proun_ids = get_input_ids(text_pair) else: second_ids, second_shape_ids, second_proun_ids = None, None, None return self.prepare_for_model( first_ids, first_shape_ids, first_proun_ids, pair_ids=second_ids, pair_shape_ids=second_shape_ids, pair_pronunciation_ids=second_proun_ids, add_special_tokens=add_special_tokens, padding=padding_strategy.value, truncation=truncation_strategy.value, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_tensors=return_tensors, prepend_batch_axis=True, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, verbose=verbose, ) @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def prepare_for_model( self, ids: List[int], shape_ids: List[int], pronunciation_ids: List[int], pair_ids: Optional[List[int]] = None, pair_shape_ids: Optional[List[int]] = None, pair_pronunciation_ids: Optional[List[int]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, prepend_batch_axis: bool = False, **kwargs, ) -> BatchEncoding: """ Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It adds special tokens, truncates sequences if overflowing while taking into account the special tokens and manages a moving window (with user defined stride) for overflowing tokens. Please Note, for *pair_ids* different than `None` and *truncation_strategy = longest_first* or `True`, it is not possible to return overflowing tokens. Such a combination of arguments will raise an error. Args: ids (`List[int]`): Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and `convert_tokens_to_id` methods. shape_ids (`List[int]`): Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and `convert_token_to_shape_id` methods. pronunciation_ids (`List[int]`): Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and `convert_token_to_pronunciation_id` methods. pair_ids (`List[int]`, *optional*): Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize` and `convert_tokens_to_id` methods. pair_shape_ids (`List[int]`, *optional*): Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize` and `convert_token_to_shape_id` methods. pair_pronunciation_ids (`List[int]`, *optional*): Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize` and `convert_token_to_pronunciation_id` methods. """ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) pair = bool(pair_ids is not None) len_ids = len(ids) len_pair_ids = len(pair_ids) if pair else 0 if return_token_type_ids and not add_special_tokens: raise ValueError( "Asking to return token_type_ids while setting add_special_tokens to False " "results in an undefined behavior. Please set add_special_tokens to True or " "set return_token_type_ids to None." ) if ( return_overflowing_tokens and truncation_strategy == TruncationStrategy.LONGEST_FIRST and pair_ids is not None ): raise ValueError( "Not possible to return overflowing tokens for pair of sequences with the " "`longest_first`. Please select another truncation strategy than `longest_first`, " "for instance `only_second` or `only_first`." ) # Load from model defaults if return_token_type_ids is None: return_token_type_ids = "token_type_ids" in self.model_input_names if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names encoded_inputs = {} # Compute the total size of the returned encodings total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0) # Truncation: Handle max sequence length overflowing_tokens = [] if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length: ids, pair_ids, overflowing_tokens = self.truncate_sequences( ids, pair_ids=pair_ids, num_tokens_to_remove=total_len - max_length, truncation_strategy=truncation_strategy, stride=stride, ) shape_ids, pair_shape_ids, _ = self.truncate_sequences( shape_ids, pair_ids=pair_shape_ids, num_tokens_to_remove=total_len - max_length, truncation_strategy=truncation_strategy, stride=stride, ) pronunciation_ids, pair_pronunciation_ids, _ = self.truncate_sequences( pronunciation_ids, pair_ids=pair_pronunciation_ids, num_tokens_to_remove=total_len - max_length, truncation_strategy=truncation_strategy, stride=stride, ) if return_overflowing_tokens: encoded_inputs["overflowing_tokens"] = overflowing_tokens encoded_inputs["num_truncated_tokens"] = total_len - max_length # Add special tokens if add_special_tokens: sequence = self.build_inputs_with_special_tokens(ids, pair_ids) token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids) input_shape_ids = self.build_inputs_with_special_tokens( shape_ids, pair_shape_ids, self.word_shape["[UNK]"], self.word_shape["[UNK]"] ) input_pronunciation_ids = self.build_inputs_with_special_tokens( pronunciation_ids, pair_pronunciation_ids, self.word_pronunciation["[UNK]"], self.word_pronunciation["[UNK]"], ) else: sequence = ids + pair_ids if pair_ids else ids token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair_ids else []) input_shape_ids = shape_ids + pair_shape_ids if pair_shape_ids else shape_ids input_pronunciation_ids = ( pronunciation_ids + pair_pronunciation_ids if pair_pronunciation_ids else pronunciation_ids ) # Build output dictionary encoded_inputs["input_ids"] = sequence encoded_inputs["input_shape_ids"] = input_shape_ids encoded_inputs["input_pronunciation_ids"] = input_pronunciation_ids if return_token_type_ids: encoded_inputs["token_type_ids"] = token_type_ids if return_special_tokens_mask: if add_special_tokens: encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids) else: encoded_inputs["special_tokens_mask"] = [0] * len(sequence) # Check lengths self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose) # Padding if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask: encoded_inputs = self.pad( encoded_inputs, max_length=max_length, padding=padding_strategy.value, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_attention_mask=return_attention_mask, ) if return_length: encoded_inputs["length"] = len(encoded_inputs["input_ids"]) batch_outputs = BatchEncoding( encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis ) return batch_outputs def _pad( self, encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], max_length: Optional[int] = None, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_attention_mask: Optional[bool] = None, ) -> dict: # Load from model defaults if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names required_input = encoded_inputs[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: max_length = len(required_input) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length # Initialize attention mask if not present. if return_attention_mask and "attention_mask" not in encoded_inputs: encoded_inputs["attention_mask"] = [1] * len(required_input) if needs_to_be_padded: difference = max_length - len(required_input) padding_side = padding_side if padding_side is not None else self.padding_side if padding_side == "right": if return_attention_mask: encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = ( encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference ) if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference for key in ["input_shape_ids", "input_pronunciation_ids"]: if key in encoded_inputs: encoded_inputs[key] = encoded_inputs[key] + [self.pad_token_id] * difference encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference elif padding_side == "left": if return_attention_mask: encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"] if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[ "token_type_ids" ] if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"] for key in ["input_shape_ids", "input_pronunciation_ids"]: if key in encoded_inputs: encoded_inputs[key] = [self.pad_token_id] * difference + encoded_inputs[key] encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input else: raise ValueError("Invalid padding strategy:" + str(padding_side)) return encoded_inputs def _batch_encode_plus( self, batch_text_or_text_pairs: Union[ List[TextInput], List[TextInputPair], List[PreTokenizedInput], List[PreTokenizedInputPair], List[EncodedInput], List[EncodedInputPair], ], add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, is_split_into_words: bool = False, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: def get_input_ids(text): if isinstance(text, str): tokens = self.tokenize(text, **kwargs) tokens_ids = self.convert_tokens_to_ids(tokens) tokens_shape_ids = self.convert_tokens_to_shape_ids(tokens) tokens_proun_ids = self.convert_tokens_to_pronunciation_ids(tokens) return tokens_ids, tokens_shape_ids, tokens_proun_ids elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], str): if is_split_into_words: tokens = list( itertools.chain(*(self.tokenize(t, is_split_into_words=True, **kwargs) for t in text)) ) tokens_ids = self.convert_tokens_to_ids(tokens) tokens_shape_ids = self.convert_tokens_to_shape_ids(tokens) tokens_proun_ids = self.convert_tokens_to_pronunciation_ids(tokens) return tokens_ids, tokens_shape_ids, tokens_proun_ids else: tokens_ids = self.convert_tokens_to_ids(text) tokens_shape_ids = self.convert_tokens_to_shape_ids(text) tokens_proun_ids = self.convert_tokens_to_pronunciation_ids(text) return tokens_ids, tokens_shape_ids, tokens_proun_ids elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int): return text, [0] * len(text), [0] * len(text) # shape and proun id is pad_value else: raise ValueError( "Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers." ) if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast." ) input_ids = [] input_shape_ids = [] input_pronunciation_ids = [] for ids_or_pair_ids in batch_text_or_text_pairs: if not isinstance(ids_or_pair_ids, (list, tuple)): ids, pair_ids = ids_or_pair_ids, None elif is_split_into_words and not isinstance(ids_or_pair_ids[0], (list, tuple)): ids, pair_ids = ids_or_pair_ids, None else: ids, pair_ids = ids_or_pair_ids first_ids, first_shape_ids, first_proun_ids = get_input_ids(ids) if pair_ids is not None: second_ids, second_shape_ids, second_proun_ids = get_input_ids(pair_ids) else: second_ids, second_shape_ids, second_proun_ids = None, None, None input_ids.append((first_ids, second_ids)) input_shape_ids.append((first_shape_ids, second_shape_ids)) input_pronunciation_ids.append((first_proun_ids, second_proun_ids)) batch_outputs = self._batch_prepare_for_model( input_ids, batch_shape_ids_pairs=input_shape_ids, batch_pronunciation_ids_pairs=input_pronunciation_ids, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, return_tensors=return_tensors, verbose=verbose, ) return BatchEncoding(batch_outputs) @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def _batch_prepare_for_model( self, batch_ids_pairs: List[Union[PreTokenizedInputPair, Tuple[List[int], None]]], batch_shape_ids_pairs: List[Union[PreTokenizedInputPair, Tuple[List[int], None]]], batch_pronunciation_ids_pairs: List[Union[PreTokenizedInputPair, Tuple[List[int], None]]], add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_tensors: Optional[str] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_length: bool = False, verbose: bool = True, ) -> BatchEncoding: """ Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It adds special tokens, truncates sequences if overflowing while taking into account the special tokens and manages a moving window (with user defined stride) for overflowing tokens Args: batch_ids_pairs: list of tokenized input ids or input ids pairs batch_shape_ids_pairs: list of tokenized input shape ids or input shape ids pairs batch_pronunciation_ids_pairs: list of tokenized input pronunciation ids or input pronunciation ids pairs """ batch_outputs = {} for i, (first_ids, second_ids) in enumerate(batch_ids_pairs): first_shape_ids, second_shape_ids = batch_shape_ids_pairs[i] first_pronunciation_ids, second_pronunciation_ids = batch_pronunciation_ids_pairs[i] outputs = self.prepare_for_model( first_ids, first_shape_ids, first_pronunciation_ids, pair_ids=second_ids, pair_shape_ids=second_shape_ids, pair_pronunciation_ids=second_pronunciation_ids, add_special_tokens=add_special_tokens, padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterward truncation=truncation_strategy.value, max_length=max_length, stride=stride, pad_to_multiple_of=None, # we pad in batch afterward padding_side=None, # we pad in batch afterward return_attention_mask=False, # we pad in batch afterward return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, return_tensors=None, # We convert the whole batch to tensors at the end prepend_batch_axis=False, verbose=verbose, ) for key, value in outputs.items(): if key not in batch_outputs: batch_outputs[key] = [] batch_outputs[key].append(value) batch_outputs = self.pad( batch_outputs, padding=padding_strategy.value, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_attention_mask=return_attention_mask, ) batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors) return batch_outputs # Copied from transformers.models.bert.tokenization_bert.BertTokenizer._convert_token_to_id def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.vocab.get(token, self.vocab.get(self.unk_token)) def _convert_token_to_shape_id(self, token): """Converts a token (str) in an shape_id using the shape vocab.""" return self.word_shape.get(token, self.word_shape.get(self.unk_token)) def convert_tokens_to_shape_ids(self, tokens: Union[str, List[str]]) -> Union[int, List[int]]: if tokens is None: return None ids = [] for token in tokens: ids.append(self._convert_token_to_shape_id(token)) return ids def _convert_token_to_pronunciation_id(self, token): """Converts a token (str) in an shape_id using the shape vocab.""" return self.word_pronunciation.get(token, self.word_pronunciation.get(self.unk_token)) def convert_tokens_to_pronunciation_ids(self, tokens: Union[str, List[str]]) -> Union[int, List[int]]: if tokens is None: return None ids = [] for token in tokens: ids.append(self._convert_token_to_pronunciation_id(token)) return ids # Copied from transformers.models.bert.tokenization_bert.BertTokenizer._convert_id_to_token def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.ids_to_tokens.get(index, self.unk_token) # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.convert_tokens_to_string def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" out_string = " ".join(tokens).replace(" ##", "").strip() return out_string def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, cls_token_id: int = None, sep_token_id: int = None, ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERT sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ cls = [self.cls_token_id] if cls_token_id is None else [cls_token_id] sep = [self.sep_token_id] if sep_token_id is None else [sep_token_id] if token_ids_1 is None: return cls + token_ids_0 + sep return cls + token_ids_0 + sep + token_ids_1 + sep # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_special_tokens_mask def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.create_token_type_ids_from_sequences def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str, str, str]: index = 0 if os.path.isdir(save_directory): vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"], ) word_shape_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["word_shape_file"], ) word_pronunciation_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["word_pronunciation_file"], ) else: raise ValueError( f"Can't find a directory at path '{save_directory}'. To load the vocabulary from a Google " "pretrained model use `tokenizer = RoCBertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) with open(vocab_file, "w", encoding="utf-8") as writer: for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) index = token_index writer.write(token + "\n") index += 1 with open(word_shape_file, "w", encoding="utf8") as writer: json.dump(self.word_shape, writer, ensure_ascii=False, indent=4, separators=(", ", ": ")) with open(word_pronunciation_file, "w", encoding="utf8") as writer: json.dump(self.word_pronunciation, writer, ensure_ascii=False, indent=4, separators=(", ", ": ")) return ( vocab_file, word_shape_file, word_pronunciation_file, )
class_definition
2,177
41,798
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/roc_bert/tokenization_roc_bert.py
null
9,316
class RoCBertBasicTokenizer: """ Constructs a RoCBertBasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). Args: do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). do_split_on_punc (`bool`, *optional*, defaults to `True`): In some instances we want to skip the basic punctuation splitting so that later tokenization can capture the full context of the words, such as contractions. """ def __init__( self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None, do_split_on_punc=True, ): if never_split is None: never_split = [] self.do_lower_case = do_lower_case self.never_split = set(never_split) self.tokenize_chinese_chars = tokenize_chinese_chars self.strip_accents = strip_accents self.do_split_on_punc = do_split_on_punc def tokenize(self, text, never_split=None): """ Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer. Args: never_split (`List[str]`, *optional*) Kept for backward compatibility purposes. Now implemented directly at the base class level (see [`PreTrainedTokenizer.tokenize`]) List of token not to split. """ # union() returns a new set by concatenating the two sets. never_split = self.never_split.union(set(never_split)) if never_split else self.never_split text = self._clean_text(text) # This was added on November 1st, 2018 for the multilingual and Chinese # models. This is also applied to the English models now, but it doesn't # matter since the English models were not trained on any Chinese data # and generally don't have any Chinese data in them (there are Chinese # characters in the vocabulary because Wikipedia does have some Chinese # words in the English Wikipedia.). if self.tokenize_chinese_chars: text = self._tokenize_chinese_chars(text) # prevents treating the same character with different unicode codepoints as different characters unicode_normalized_text = unicodedata.normalize("NFC", text) orig_tokens = whitespace_tokenize(unicode_normalized_text) split_tokens = [] for token in orig_tokens: if token not in never_split: if self.do_lower_case: token = token.lower() if self.strip_accents is not False: token = self._run_strip_accents(token) elif self.strip_accents: token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token, never_split)) output_tokens = whitespace_tokenize(" ".join(split_tokens)) return output_tokens def _run_strip_accents(self, text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output) def _run_split_on_punc(self, text, never_split=None): """Splits punctuation on a piece of text.""" if not self.do_split_on_punc or (never_split is not None and text in never_split): return [text] chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def _tokenize_chinese_chars(self, text): """Adds whitespace around any CJK character.""" output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(" ") output.append(char) output.append(" ") else: output.append(char) return "".join(output) def _is_chinese_char(self, cp): """Checks whether CP is the codepoint of a CJK character.""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False def _clean_text(self, text): """Performs invalid character removal and whitespace cleanup on text.""" output = [] for char in text: cp = ord(char) if cp == 0 or cp == 0xFFFD or _is_control(char): continue if _is_whitespace(char): output.append(" ") else: output.append(char) return "".join(output)
class_definition
41,917
48,679
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/roc_bert/tokenization_roc_bert.py
null
9,317
class RoCBertWordpieceTokenizer: """Runs WordPiece tokenization.""" def __init__(self, vocab, unk_token, max_input_chars_per_word=100): self.vocab = vocab self.unk_token = unk_token self.max_input_chars_per_word = max_input_chars_per_word def tokenize(self, text): """ Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary. For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`. Args: text: A single token or whitespace separated tokens. This should have already been passed through *BasicTokenizer*. Returns: A list of wordpiece tokens. """ output_tokens = [] for token in whitespace_tokenize(text): chars = list(token) if len(chars) > self.max_input_chars_per_word: output_tokens.append(self.unk_token) continue is_bad = False start = 0 sub_tokens = [] while start < len(chars): end = len(chars) cur_substr = None while start < end: substr = "".join(chars[start:end]) if start > 0: substr = "##" + substr if substr in self.vocab: cur_substr = substr break end -= 1 if cur_substr is None: is_bad = True break sub_tokens.append(cur_substr) start = end if is_bad: output_tokens.append(self.unk_token) else: output_tokens.extend(sub_tokens) return output_tokens
class_definition
48,810
50,705
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/roc_bert/tokenization_roc_bert.py
null
9,318
class RoCBertConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`RoCBertModel`]. It is used to instantiate a RoCBert model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the RoCBert [weiweishi/roc-bert-base-zh](https://huggingface.co/weiweishi/roc-bert-base-zh) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the RoCBert model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`RoCBertModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimension of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`RoCBertModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. is_decoder (`bool`, *optional*, defaults to `False`): Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). classifier_dropout (`float`, *optional*): The dropout ratio for the classification head. enable_pronunciation (`bool`, *optional*, defaults to `True`): Whether or not the model use pronunciation embed when training. enable_shape (`bool`, *optional*, defaults to `True`): Whether or not the model use shape embed when training. pronunciation_embed_dim (`int`, *optional*, defaults to 768): Dimension of the pronunciation_embed. pronunciation_vocab_size (`int`, *optional*, defaults to 910): Pronunciation Vocabulary size of the RoCBert model. Defines the number of different tokens that can be represented by the `input_pronunciation_ids` passed when calling [`RoCBertModel`]. shape_embed_dim (`int`, *optional*, defaults to 512): Dimension of the shape_embed. shape_vocab_size (`int`, *optional*, defaults to 24858): Shape Vocabulary size of the RoCBert model. Defines the number of different tokens that can be represented by the `input_shape_ids` passed when calling [`RoCBertModel`]. concat_input (`bool`, *optional*, defaults to `True`): Defines the way of merging the shape_embed, pronunciation_embed and word_embed, if the value is true, output_embed = torch.cat((word_embed, shape_embed, pronunciation_embed), -1), else output_embed = (word_embed + shape_embed + pronunciation_embed) / 3 Example: ```python >>> from transformers import RoCBertModel, RoCBertConfig >>> # Initializing a RoCBert weiweishi/roc-bert-base-zh style configuration >>> configuration = RoCBertConfig() >>> # Initializing a model from the weiweishi/roc-bert-base-zh style configuration >>> model = RoCBertModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "roc_bert" def __init__( self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, use_cache=True, pad_token_id=0, position_embedding_type="absolute", classifier_dropout=None, enable_pronunciation=True, enable_shape=True, pronunciation_embed_dim=768, pronunciation_vocab_size=910, shape_embed_dim=512, shape_vocab_size=24858, concat_input=True, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.type_vocab_size = type_vocab_size self.layer_norm_eps = layer_norm_eps self.use_cache = use_cache self.enable_pronunciation = enable_pronunciation self.enable_shape = enable_shape self.pronunciation_embed_dim = pronunciation_embed_dim self.pronunciation_vocab_size = pronunciation_vocab_size self.shape_embed_dim = shape_embed_dim self.shape_vocab_size = shape_vocab_size self.concat_input = concat_input self.position_embedding_type = position_embedding_type self.classifier_dropout = classifier_dropout super().__init__(pad_token_id=pad_token_id, **kwargs)
class_definition
797
8,497
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/roc_bert/configuration_roc_bert.py
null
9,319
class BasicTokenizer: """ Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). Args: do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). do_split_on_punc (`bool`, *optional*, defaults to `True`): In some instances we want to skip the basic punctuation splitting so that later tokenization can capture the full context of the words, such as contractions. """ def __init__( self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None, do_split_on_punc=True, ): if never_split is None: never_split = [] self.do_lower_case = do_lower_case self.never_split = set(never_split) self.tokenize_chinese_chars = tokenize_chinese_chars self.strip_accents = strip_accents self.do_split_on_punc = do_split_on_punc def tokenize(self, text, never_split=None): """ Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer. Args: never_split (`List[str]`, *optional*) Kept for backward compatibility purposes. Now implemented directly at the base class level (see [`PreTrainedTokenizer.tokenize`]) List of token not to split. """ # union() returns a new set by concatenating the two sets. never_split = self.never_split.union(set(never_split)) if never_split else self.never_split text = self._clean_text(text) # This was added on November 1st, 2018 for the multilingual and Chinese # models. This is also applied to the English models now, but it doesn't # matter since the English models were not trained on any Chinese data # and generally don't have any Chinese data in them (there are Chinese # characters in the vocabulary because Wikipedia does have some Chinese # words in the English Wikipedia.). if self.tokenize_chinese_chars: text = self._tokenize_chinese_chars(text) # prevents treating the same character with different unicode codepoints as different characters unicode_normalized_text = unicodedata.normalize("NFC", text) orig_tokens = whitespace_tokenize(unicode_normalized_text) split_tokens = [] for token in orig_tokens: if token not in never_split: if self.do_lower_case: token = token.lower() if self.strip_accents is not False: token = self._run_strip_accents(token) elif self.strip_accents: token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token, never_split)) output_tokens = whitespace_tokenize(" ".join(split_tokens)) return output_tokens def _run_strip_accents(self, text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output) def _run_split_on_punc(self, text, never_split=None): """Splits punctuation on a piece of text.""" if not self.do_split_on_punc or (never_split is not None and text in never_split): return [text] chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def _tokenize_chinese_chars(self, text): """Adds whitespace around any CJK character.""" output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(" ") output.append(char) output.append(" ") else: output.append(char) return "".join(output) def _is_chinese_char(self, cp): """Checks whether CP is the codepoint of a CJK character.""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False def _clean_text(self, text): """Performs invalid character removal and whitespace cleanup on text.""" output = [] for char in text: cp = ord(char) if cp == 0 or cp == 0xFFFD or _is_control(char): continue if _is_whitespace(char): output.append(" ") else: output.append(char) return "".join(output)
class_definition
1,323
8,071
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/prophetnet/tokenization_prophetnet.py
null
9,320
class WordpieceTokenizer: """Runs WordPiece tokenization.""" def __init__(self, vocab, unk_token, max_input_chars_per_word=100): self.vocab = vocab self.unk_token = unk_token self.max_input_chars_per_word = max_input_chars_per_word def tokenize(self, text): """ Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary. For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`. Args: text: A single token or whitespace separated tokens. This should have already been passed through *BasicTokenizer*. Returns: A list of wordpiece tokens. """ output_tokens = [] for token in whitespace_tokenize(text): chars = list(token) if len(chars) > self.max_input_chars_per_word: output_tokens.append(self.unk_token) continue is_bad = False start = 0 sub_tokens = [] while start < len(chars): end = len(chars) cur_substr = None while start < end: substr = "".join(chars[start:end]) if start > 0: substr = "##" + substr if substr in self.vocab: cur_substr = substr break end -= 1 if cur_substr is None: is_bad = True break sub_tokens.append(cur_substr) start = end if is_bad: output_tokens.append(self.unk_token) else: output_tokens.extend(sub_tokens) return output_tokens
class_definition
8,150
10,038
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/prophetnet/tokenization_prophetnet.py
null
9,321
class ProphetNetTokenizer(PreTrainedTokenizer): r""" Construct a ProphetNetTokenizer. Based on WordPiece. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): File containing the vocabulary. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. do_basic_tokenize (`bool`, *optional*, defaults to `True`): Whether or not to do basic tokenization before WordPiece. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` unk_token (`str`, *optional*, defaults to `"[UNK]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. x_sep_token (`str`, *optional*, defaults to `"[X_SEP]"`): Special second separator token, which can be generated by [`ProphetNetForConditionalGeneration`]. It is used to separate bullet-point like sentences in summarization, *e.g.*. pad_token (`str`, *optional*, defaults to `"[PAD]"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). clean_up_tokenization_spaces (`bool`, *optional*, defaults to `True`): Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like extra spaces. """ vocab_files_names = VOCAB_FILES_NAMES # first name has to correspond to main model input name # to make sure `tokenizer.pad(...)` works correctly # `ProphetNet` doesn't have `token_type_ids` as argument. model_input_names: List[str] = ["input_ids", "attention_mask"] def __init__( self, vocab_file: str, do_lower_case: Optional[bool] = True, do_basic_tokenize: Optional[bool] = True, never_split: Optional[Iterable] = None, unk_token: Optional[str] = "[UNK]", sep_token: Optional[str] = "[SEP]", x_sep_token: Optional[str] = "[X_SEP]", pad_token: Optional[str] = "[PAD]", mask_token: Optional[str] = "[MASK]", tokenize_chinese_chars: Optional[bool] = True, strip_accents: Optional[bool] = None, clean_up_tokenization_spaces: bool = True, **kwargs, ): if not os.path.isfile(vocab_file): raise ValueError( f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" " model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) self.vocab = load_vocab(vocab_file) self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) self.do_basic_tokenize = do_basic_tokenize if do_basic_tokenize: self.basic_tokenizer = BasicTokenizer( do_lower_case=do_lower_case, never_split=never_split, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, ) self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token)) super().__init__( do_lower_case=do_lower_case, do_basic_tokenize=do_basic_tokenize, never_split=never_split, unk_token=unk_token, sep_token=sep_token, x_sep_token=x_sep_token, pad_token=pad_token, mask_token=mask_token, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs, ) @property def vocab_size(self): return len(self.vocab) def get_vocab(self): return dict(self.vocab, **self.added_tokens_encoder) def _tokenize(self, text): split_tokens = [] if self.do_basic_tokenize: for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens): # If the token is part of the never_split set if token in self.basic_tokenizer.never_split: split_tokens.append(token) else: split_tokens += self.wordpiece_tokenizer.tokenize(token) else: split_tokens = self.wordpiece_tokenizer.tokenize(text) return split_tokens def _convert_token_to_id(self, token: str): """Converts a token (str) in an id using the vocab.""" return self.vocab.get(token, self.vocab.get(self.unk_token)) def _convert_id_to_token(self, index: int): """Converts an index (integer) in a token (str) using the vocab.""" return self.ids_to_tokens.get(index, self.unk_token) def convert_tokens_to_string(self, tokens: str): """Converts a sequence of tokens (string) in a single string.""" out_string = " ".join(tokens).replace(" ##", "").strip() return out_string def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: Optional[bool] = False, ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return ([0] * len(token_ids_0)) + [1] return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A ProphetNet sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] if token_ids_1 is None: return len(token_ids_0 + sep) * [0] return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: index = 0 if os.path.isdir(save_directory): vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory with open(vocab_file, "w", encoding="utf-8") as writer: for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) index = token_index writer.write(token + "\n") index += 1 return (vocab_file,) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERT sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return token_ids_0 + [self.sep_token_id] sep = [self.sep_token_id] return token_ids_0 + sep + token_ids_1 + sep
class_definition
10,382
21,199
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/prophetnet/tokenization_prophetnet.py
null
9,322
class ProphetNetConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`ProphetNetModel`]. It is used to instantiate a ProphetNet model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the ProphetNet [microsoft/prophetnet-large-uncased](https://huggingface.co/microsoft/prophetnet-large-uncased) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: activation_dropout (`float`, *optional*, defaults to 0.1): The dropout ratio for activations inside the fully connected layer. activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the ProphetNET model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`ProphetNetModel`]. hidden_size (`int`, *optional*, defaults to 1024): Dimensionality of the layers and the pooler layer. encoder_ffn_dim (`int`, *optional*, defaults to 4096): Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. num_encoder_layers (`int`, *optional*, defaults to 12): Number of encoder layers. num_encoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. decoder_ffn_dim (`int`, *optional*, defaults to 4096): Dimensionality of the `intermediate` (often named feed-forward) layer in decoder. num_decoder_layers (`int`, *optional*, defaults to 12): Number of decoder layers. num_decoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer decoder. attention_dropout (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). init_std (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. add_cross_attention (`bool`, *optional*, defaults to `True`): Whether cross-attention layers should be added to the model. is_encoder_decoder (`bool`, *optional*, defaults to `True`): Whether this is an encoder/decoder model. pad_token_id (`int`, *optional*, defaults to 1) Padding token id. bos_token_id (`int`, *optional*, defaults to 0) Beginning of stream token id. eos_token_id (`int`, *optional*, defaults to 2) End of stream token id. ngram (`int`, *optional*, defaults to 2) Number of future tokens to predict. Set to 1 to be same as traditional Language model to predict next first token. num_buckets (`int`, *optional*, defaults to 32) The number of buckets to use for each attention layer. This is for relative position calculation. See the [T5 paper](see https://arxiv.org/abs/1910.10683) for more details. relative_max_distance (`int`, *optional*, defaults to 128) Relative distances greater than this number will be put into the last same bucket. This is for relative position calculation. See the [T5 paper](see https://arxiv.org/abs/1910.10683) for more details. disable_ngram_loss (`bool`, *optional*, defaults to `False`): Whether be trained predicting only the next first token. eps (`float`, *optional*, defaults to 0.0): Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). """ model_type = "prophetnet" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = { "num_attention_heads": "num_encoder_attention_heads", } def __init__( self, activation_dropout: Optional[float] = 0.1, activation_function: Optional[Union[str, Callable]] = "gelu", vocab_size: Optional[int] = 30522, hidden_size: Optional[int] = 1024, encoder_ffn_dim: Optional[int] = 4096, num_encoder_layers: Optional[int] = 12, num_encoder_attention_heads: Optional[int] = 16, decoder_ffn_dim: Optional[int] = 4096, num_decoder_layers: Optional[int] = 12, num_decoder_attention_heads: Optional[int] = 16, attention_dropout: Optional[float] = 0.1, dropout: Optional[float] = 0.1, max_position_embeddings: Optional[int] = 512, init_std: Optional[float] = 0.02, is_encoder_decoder: Optional[bool] = True, add_cross_attention: Optional[bool] = True, decoder_start_token_id: Optional[int] = 0, ngram: Optional[int] = 2, num_buckets: Optional[int] = 32, relative_max_distance: Optional[int] = 128, disable_ngram_loss: Optional[bool] = False, eps: Optional[float] = 0.0, use_cache: Optional[bool] = True, pad_token_id: Optional[int] = 0, bos_token_id: Optional[int] = 1, eos_token_id: Optional[int] = 2, **kwargs, ): self.vocab_size = vocab_size self.hidden_size = hidden_size self.encoder_ffn_dim = encoder_ffn_dim self.num_encoder_layers = num_encoder_layers self.num_encoder_attention_heads = num_encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.num_decoder_layers = num_decoder_layers self.num_decoder_attention_heads = num_decoder_attention_heads self.max_position_embeddings = max_position_embeddings self.init_std = init_std # Normal(0, this parameter) self.activation_function = activation_function # parameters for prophetnet self.ngram = ngram self.num_buckets = num_buckets self.relative_max_distance = relative_max_distance self.disable_ngram_loss = disable_ngram_loss self.eps = eps # 3 Types of Dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.dropout = dropout self.use_cache = use_cache super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, is_encoder_decoder=is_encoder_decoder, add_cross_attention=add_cross_attention, decoder_start_token_id=decoder_start_token_id, **kwargs, ) @property def num_hidden_layers(self) -> int: return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def num_hidden_layers(self, value): raise NotImplementedError( "This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and" " `num_decoder_layers`." )
class_definition
838
8,869
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/prophetnet/configuration_prophetnet.py
null
9,323
class ProphetNetSeq2SeqLMOutput(ModelOutput): """ Base class for sequence-to-sequence language models outputs. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss. logits (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, config.vocab_size)`): Prediction scores of the main stream language modeling head (scores for each vocabulary token before SoftMax). logits_ngram (`torch.FloatTensor` of shape `(batch_size, ngram * decoder_sequence_length, config.vocab_size)`): Prediction scores of the predict stream language modeling head (scores for each vocabulary token before SoftMax). past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_attn_heads, decoder_sequence_length, embed_size_per_head)`). Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see `past_key_values` input) to speed up sequential decoding. decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, decoder_sequence_length, hidden_size)`. Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs. decoder_ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`. Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding outputs. decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. decoder_ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, encoder_sequence_length, decoder_sequence_length)`. Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to compute the weighted average in the encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder of the model. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, encoder_sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, encoder_sequence_length, encoder_sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None logits_ngram: Optional[torch.FloatTensor] = None past_key_values: Optional[Tuple[torch.FloatTensor]] = None decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_ngram_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None decoder_ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None encoder_last_hidden_state: Optional[torch.FloatTensor] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None @property def decoder_cross_attentions(self): warnings.warn( "`decoder_cross_attentions` is deprecated and will be removed soon. Please use `cross_attentions`" " instead.", FutureWarning, ) return self.cross_attentions
class_definition
12,152
18,104
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/prophetnet/modeling_prophetnet.py
null
9,324
class ProphetNetSeq2SeqModelOutput(ModelOutput): """ Base class for model encoder's outputs that also contains : pre-computed hidden states that can speed up sequential decoding. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, hidden_size)`): Sequence of main stream hidden-states at the output of the last layer of the decoder of the model. If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1, hidden_size)` is output. last_hidden_state_ngram (`torch.FloatTensor` of shape `(batch_size,ngram * decoder_sequence_length, config.vocab_size)`, *optional*): Sequence of predict stream hidden-states at the output of the last layer of the decoder of the model. past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_attn_heads, decoder_sequence_length, embed_size_per_head)`). Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see `past_key_values` input) to speed up sequential decoding. decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, decoder_sequence_length, hidden_size)`. Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs. decoder_ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`. Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding outputs. decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. decoder_ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the weighted average in the cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, encoder_sequence_length, decoder_sequence_length)`. Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to compute the weighted average in the encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder of the model. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, encoder_sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, encoder_sequence_length, encoder_sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: torch.FloatTensor last_hidden_state_ngram: Optional[torch.FloatTensor] = None past_key_values: Optional[Tuple[torch.FloatTensor]] = None decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_ngram_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None decoder_ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None encoder_last_hidden_state: Optional[torch.FloatTensor] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None @property def decoder_cross_attentions(self): warnings.warn( "`decoder_cross_attentions` is deprecated and will be removed soon. Please use `cross_attentions`" " instead.", FutureWarning, ) return self.cross_attentions
class_definition
18,118
24,095
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/prophetnet/modeling_prophetnet.py
null
9,325
class ProphetNetDecoderModelOutput(ModelOutput): """ Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, hidden_size)`): Sequence of main stream hidden-states at the output of the last layer of the decoder of the model. If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1, hidden_size)` is output. last_hidden_state_ngram (`torch.FloatTensor` of shape `(batch_size, ngram * decoder_sequence_length, config.vocab_size)`): Sequence of predict stream hidden-states at the output of the last layer of the decoder of the model. past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_attn_heads, decoder_sequence_length, embed_size_per_head)`). Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, decoder_sequence_length, hidden_size)`. Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs. ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`. Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the weighted average in the cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, encoder_sequence_length, decoder_sequence_length)`. Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to compute the weighted average in the """ last_hidden_state: torch.FloatTensor last_hidden_state_ngram: Optional[torch.FloatTensor] = None past_key_values: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states_ngram: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
class_definition
24,109
28,325
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/prophetnet/modeling_prophetnet.py
null
9,326
class ProphetNetDecoderLMOutput(ModelOutput): """ Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss. logits (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, config.vocab_size)`): Prediction scores of the main stream language modeling head (scores for each vocabulary token before SoftMax). logits_ngram (`torch.FloatTensor` of shape `(batch_size, ngram * decoder_sequence_length, config.vocab_size)`): Prediction scores of the predict stream language modeling head (scores for each vocabulary token before SoftMax). past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_attn_heads, decoder_sequence_length, embed_size_per_head)`). Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, decoder_sequence_length, hidden_size)`. Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs. ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`. Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the weighted average in the cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, encoder_sequence_length, decoder_sequence_length)`. Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to compute the weighted average in the """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None logits_ngram: Optional[torch.FloatTensor] = None past_key_values: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states_ngram: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
class_definition
28,339
32,601
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/prophetnet/modeling_prophetnet.py
null
9,327
class ProphetNetPreTrainedModel(PreTrainedModel): config_class = ProphetNetConfig base_model_prefix = "prophetnet" supports_gradient_checkpointing = True def _init_weights(self, module): if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.init_std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.init_std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() def _shift_right(self, input_ids): decoder_start_token_id = self.config.decoder_start_token_id pad_token_id = self.config.pad_token_id assert decoder_start_token_id is not None, ( "self.model.config.decoder_start_token_id has to be defined. In ProphetNet it is usually set to the" " pad_token_id. See ProphetNet docs for more information" ) # shift inputs to the right shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() shifted_input_ids[..., 0] = decoder_start_token_id assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined." # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) assert torch.all(shifted_input_ids >= 0).item(), "Verify that `shifted_input_ids` has only positive values" return shifted_input_ids
class_definition
32,604
34,258
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/prophetnet/modeling_prophetnet.py
null
9,328
class ProphetNetPositionalEmbeddings(nn.Embedding): """ This module learns positional embeddings up to a fixed maximum size. Padding ids are ignored by either offsetting based on padding_idx or by setting padding_idx to None and ensuring that the appropriate position ids are passed to the forward function. """ def __init__(self, config: ProphetNetConfig) -> None: self.max_length = config.max_position_embeddings super().__init__(config.max_position_embeddings, config.hidden_size, config.pad_token_id) def forward(self, inputs_shape, device, attention_mask=None, past_key_values=None, position_ids=None): assert (position_ids is None) or ( self.padding_idx is None ), "If position_ids is pre-computed then padding_idx should not be set." if position_ids is None: if past_key_values is not None: # position_ids is the same for every token when decoding a single step # Without the int() cast, it doesn't work in some cases when exporting to ONNX prev_num_input_ids = past_key_values[0][0].shape[2] num_input_ids = inputs_shape[1] + prev_num_input_ids position_ids = torch.ones((1, 1), dtype=torch.long, device=device) * ( int(self.padding_idx + num_input_ids) ) else: if attention_mask is None: attention_mask = torch.ones(inputs_shape, dtype=torch.long, device=device) # retrieve position_ids from input_ids / attention_mask position_ids = ( torch.cumsum(attention_mask, dim=1).type_as(attention_mask) * attention_mask ).long() + self.padding_idx # make sure position_ids are not bigger then max_length position_ids = position_ids.clamp(0, self.max_length - 1) return super().forward(position_ids), position_ids def _forward(self, position_ids): return super().forward(position_ids)
class_definition
34,261
36,329
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/prophetnet/modeling_prophetnet.py
null
9,329
class ProphetNetAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, config: ProphetNetConfig, num_attn_heads: int, ): super().__init__() hidden_size = config.hidden_size self.attention_dropout = config.attention_dropout self.dropout = config.dropout self.num_attn_heads = num_attn_heads self.head_dim = hidden_size // num_attn_heads assert self.head_dim * num_attn_heads == hidden_size, ( "`config.hidden_size` must be divisible by `config.num_encoder_attention_heads` and" " `config.num_decoder_attention_heads`" ) self.key_proj = nn.Linear(hidden_size, hidden_size) self.value_proj = nn.Linear(hidden_size, hidden_size) self.query_proj = nn.Linear(hidden_size, hidden_size) self.out_proj = nn.Linear(hidden_size, hidden_size) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_attn_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states, key_value_states: Optional[Tensor] = None, attention_mask: Optional[Tensor] = None, layer_head_mask: Optional[Tensor] = None, past_key_value: Optional[Tuple[Tensor]] = None, output_attentions: bool = False, ) -> Tuple[Tensor, Optional[Tensor]]: batch_size, tgt_len, hidden_size = hidden_states.size() # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None assert list(hidden_states.size()) == [ batch_size, tgt_len, hidden_size, ], f"Size of hidden states should be {batch_size, tgt_len, hidden_size}, but is {hidden_states.size()}" # previous time steps are cached - no need to recompute key and value if they are static query_states = self.query_proj(hidden_states) / (self.head_dim**0.5) if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.key_proj(key_value_states), -1, batch_size) value_states = self._shape(self.value_proj(key_value_states), -1, batch_size) else: # self_attention key_states = self._shape(self.key_proj(hidden_states), -1, batch_size) value_states = self._shape(self.value_proj(hidden_states), -1, batch_size) if is_cross_attention: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) # project states into the correct shape proj_shape = (batch_size, self.num_attn_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, batch_size).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) src_len = key_states.size(2) attn_weights = torch.einsum("bsij,bsjk->bsik", query_states, key_states.transpose(2, 3)) expected_shape = (batch_size, self.num_attn_heads, tgt_len, src_len) if attn_weights.size() != expected_shape: raise ValueError(f"Attention weights should have size {expected_shape}, but is {attn_weights.size()}") # This is part of a workaround to get around fork/join parallelism not supporting Optional types. if attention_mask is not None and attention_mask.dim() == 0: attention_mask = None expected_shape = (batch_size, self.num_attn_heads, 1, src_len) if attention_mask is not None and attention_mask.size() != expected_shape: raise ValueError(f"Attention mask should have size {expected_shape}, but is {attention_mask.size()}") if attention_mask is not None: # don't attend to padding symbols attn_weights = attn_weights + attention_mask if output_attentions: attn_weights_reshaped = attn_weights else: attn_weights_reshaped = None attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: assert layer_head_mask.size() == (self.num_attn_heads,), ( f"Head mask for a single layer should be of size {(self.num_attn_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view( batch_size, self.num_attn_heads, tgt_len, src_len ) # apply head_mask also on attn_weights_reshaped which is used for n-gram attention inside the model attn_weights_reshaped = layer_head_mask.view(1, -1, 1, 1) * attn_weights_reshaped attn_probs = nn.functional.dropout( attn_weights, p=self.attention_dropout, training=self.training, ) attn_output = torch.einsum("bsij,bsjk->bsik", attn_probs, value_states) expected_shape = (batch_size, self.num_attn_heads, tgt_len, self.head_dim) if attn_output.size() != expected_shape: raise ValueError(f"`attn_output` should have shape {expected_shape}, but is of shape {attn_output.size()}") attn_output = attn_output.transpose(1, 2).reshape(batch_size, tgt_len, hidden_size) attn_output = self.out_proj(attn_output) attn_output = nn.functional.dropout(attn_output, p=self.dropout, training=self.training) return attn_output, attn_weights_reshaped, past_key_value
class_definition
36,332
42,447
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/prophetnet/modeling_prophetnet.py
null
9,330
class ProphetNetFeedForward(nn.Module): """ This is the residual two feed-forward layer block based on the original Transformer implementation. """ def __init__(self, config: ProphetNetConfig, ffn_dim: int): super().__init__() self.activation_fn = ACT2FN[config.activation_function] self.intermediate = nn.Linear(config.hidden_size, ffn_dim) self.output = nn.Linear(ffn_dim, config.hidden_size) self.activation_dropout = config.activation_dropout self.dropout = config.dropout def forward(self, hidden_states): hidden_states = self.intermediate(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.output(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) return hidden_states
class_definition
42,450
43,439
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/prophetnet/modeling_prophetnet.py
null
9,331
class ProphetNetNgramSelfAttention(nn.Module): def __init__(self, config: ProphetNetConfig): super().__init__() self.hidden_size = config.hidden_size self.num_buckets = config.num_buckets self.relative_max_distance = config.relative_max_distance self.num_attn_heads = config.num_decoder_attention_heads self.dropout = config.dropout self.attention_dropout = config.attention_dropout self.head_dim = config.hidden_size // self.num_attn_heads self.ngram = config.ngram assert ( self.head_dim * self.num_attn_heads == config.hidden_size ), "config.hidden_size must be divisible by num_attn_heads" # key, value, query projection self.key_proj = nn.Linear(config.hidden_size, config.hidden_size) self.value_proj = nn.Linear(config.hidden_size, config.hidden_size) self.query_proj = nn.Linear(config.hidden_size, config.hidden_size) # out projection self.out_proj = nn.Linear(config.hidden_size, config.hidden_size) # rel position embeddings self.relative_pos_embeddings = nn.Linear(config.hidden_size, self.num_buckets * self.num_attn_heads) # for onnx runtime self.onnx_trace = False def _shape(self, tensor, seq_len, batch_size): return tensor.view(batch_size, seq_len, self.num_attn_heads, self.head_dim).transpose(1, 2).contiguous() def prepare_for_onnx_export_(self): self.onnx_trace = True def forward( self, hidden_states, past_key_value: Optional[Tuple[Tensor]] = None, attention_mask=None, layer_head_mask=None, extended_predict_attention_mask=None, main_relative_position_buckets=None, predict_relative_position_buckets=None, position_ids=None, ): batch_size, ngram_sequence_length, hidden_size = hidden_states.size() assert list(hidden_states.size()) == [batch_size, ngram_sequence_length, hidden_size], ( f"`hidden_states` should be of shape {batch_size, ngram_sequence_length, hidden_size}, but is of shape" f" {hidden_states.shape}" ) # project query_states = self.query_proj(hidden_states) key_states = self.key_proj(hidden_states) value_states = self.value_proj(hidden_states) # normalize query_states = query_states / (self.head_dim**0.5) # reshape query_states = self._shape(query_states, ngram_sequence_length, batch_size) key_states = self._shape(key_states, -1, batch_size) value_states = self._shape(value_states, -1, batch_size) proj_shape = (batch_size, self.num_attn_heads, -1, self.head_dim) query_states = query_states.view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) # chunk into main stream and predict stream hidden_states_list = hidden_states.chunk(1 + self.ngram, dim=1) query_states_list = query_states.chunk(1 + self.ngram, dim=2) key_states_list = key_states.chunk(1 + self.ngram, dim=2) value_states_list = value_states.chunk(1 + self.ngram, dim=2) main_hidden_states, hidden_states_predict_list = hidden_states_list[0], hidden_states_list[1:] main_query_states, predict_query_states_list = query_states_list[0], query_states_list[1:] main_key_states, predict_key_states_list = key_states_list[0], key_states_list[1:] main_value_states, predict_value_states_list = value_states_list[0], value_states_list[1:] # saved states are stored with shape (batch_size, num_attn_heads, seq_len, head_dim) if past_key_value is not None: prev_main_key_states = past_key_value[0] main_key_states = torch.cat((prev_main_key_states, main_key_states), dim=2) prev_main_value_states = past_key_value[1] main_value_states = torch.cat((prev_main_value_states, main_value_states), dim=2) # Update cache past_key_value = (main_key_states, main_value_states) # get seq_length of main stream only sequence_length = ngram_sequence_length // (1 + self.ngram) # MAIN-STREAM # main attn weights # [batch_size, number_heads, sequence_length, head_dimesion] # x [batch_size, number_heads, head_dimesion, sequence_length] # -> [batch_size, number_heads, sequence_length, sequence_length] main_attn_weights = torch.einsum("bntc,bncs->bnts", main_query_states, main_key_states.transpose(2, 3)) # retrieve relative position embeddings for each layer -> see paper for more details main_relative_pos_embeddings = self.get_main_relative_pos_embeddings( main_hidden_states, main_attn_weights, position_ids, main_relative_position_buckets ) main_attn_weights = main_attn_weights + main_relative_pos_embeddings if attention_mask is not None: main_attn_weights = main_attn_weights + attention_mask main_attn_probs = softmax( main_attn_weights, dim=-1, onnx_trace=self.onnx_trace, ).type_as(main_attn_weights) if layer_head_mask is not None: assert layer_head_mask.size() == (self.num_attn_heads,), ( f"Head mask for a single layer should be of size {(self.num_attn_heads,)}, but is" f" {layer_head_mask.size()}" ) main_attn_probs = layer_head_mask.view(1, -1, 1, 1) * main_attn_probs.view( batch_size, self.num_attn_heads, -1, sequence_length ) main_attn_probs = nn.functional.dropout(main_attn_probs, p=self.attention_dropout, training=self.training) # project to attn_output # [batch_size, number_heads, sequence_length, sequence_length] # x [batch_size, number_heads, sequence_length, head_dimesion] # -> [batch_size, number_heads, sequence_length, head_dimesion] main_attn_output = torch.einsum("bntc,bncs->bnts", main_attn_probs, main_value_states) # reshape so that num_heads dim is merged into last `head_dim` axis main_attn_output = main_attn_output.transpose(1, 2).reshape(batch_size, 1, sequence_length, hidden_size) main_attn_output = self.out_proj(main_attn_output) # PREDICT-STREAM # [batch_size, ngram, number_heads, sequence_length, head_dimesion] predict_query_states = torch.stack(predict_query_states_list, 1).view( batch_size, self.ngram, self.num_attn_heads, sequence_length, self.head_dim ) # [batch_size, ngram, number_heads, 2*sequence_length, head_dimesion] predict_key_states = torch.stack([torch.cat([main_key_states, key], 2) for key in predict_key_states_list], 1) # [batch_size, sequence_length, ngram, hidden_size] predict_hidden_states = torch.stack(hidden_states_predict_list, dim=2) # [batch_size, number_heads, ngram, 2*sequence_length, head_dimesion] predict_value_states = torch.cat( [torch.cat([main_value_states, v_p], 2).unsqueeze(2) for v_p in predict_value_states_list], 2 ) # [batch_size, ngram, number_heads, sequence_length, head_dimesion] # x [batch_size, ngram, number_heads, 2*sequence_length, head_dimesion] # -> [batch_size, ngram, number_heads, sequence_length, 2*sequence_length] predict_attn_weights = torch.einsum("bnhtc,bnhsc->bnhts", (predict_query_states, predict_key_states)) # retrieve relative position embeddings for each layer -> see paper for more details # [batch_size, ngram, number_heads, sequence_length, predict_relative_pos_embeddings] predict_relative_pos_embeddings = self.get_predict_relative_pos_embeddings( predict_hidden_states, predict_attn_weights, position_ids, predict_relative_position_buckets ) # [batch_size, ngram, number_heads, sequence_length, 2*sequence_length] predict_attn_weights = predict_attn_weights + predict_relative_pos_embeddings if extended_predict_attention_mask is not None: # Permuting Predict attention mask to [batch_size, ngram, number_heads, sequence_length, 2*sequence_length] extended_predict_attention_mask = extended_predict_attention_mask.permute(0, 2, 1, 3, 4) extended_predict_attention_mask = extended_predict_attention_mask.to(predict_attn_weights.dtype) predict_attn_weights = predict_attn_weights + extended_predict_attention_mask predict_attn_probs = softmax( predict_attn_weights, dim=-1, onnx_trace=self.onnx_trace, ).type_as(predict_attn_weights) if layer_head_mask is not None: assert layer_head_mask.size() == (self.num_attn_heads,), ( f"Head mask for a single layer should be of size {(self.num_attn_heads,)}, but is" f" {layer_head_mask.size()}" ) predict_attn_probs = layer_head_mask.view(1, 1, -1, 1, 1) * predict_attn_probs predict_attn_probs = nn.functional.dropout( predict_attn_probs, p=self.attention_dropout, training=self.training ) # project to attention output # [batch_size, ngram, number_heads, sequence_length, 2*sequence_length] # x [batch_size, ngram, number_heads, 2*sequence_length, head_dimesion] # -> [batch_size, ngram, number_heads, sequence_length, head_dimesion] predict_attn_output = torch.einsum( "bnhts,bnhsc->bnhtc", (predict_attn_probs, predict_value_states.transpose(1, 2)) ) # reshape so that num_heads dim is merged into last `head_dim` axis # [batch_size, ngram, number_heads, sequence_length, head_dimesion] -> [batch_size, ngram, sequence_length, hidden_size] predict_attn_output = predict_attn_output.transpose(2, 3) predict_attn_output = predict_attn_output.reshape(batch_size, self.ngram, sequence_length, hidden_size) predict_attn_output = self.out_proj(predict_attn_output) # concat to single attn output # [batch_size, (1+ngram)*sequence_length, hidden_size] attn_output = torch.cat([main_attn_output, predict_attn_output], 1).view(batch_size, -1, hidden_size) # reshape into better form for `config.output_attentions` main_attn_probs = main_attn_probs.view(batch_size, self.num_attn_heads, sequence_length, -1) attn_output = nn.functional.dropout(attn_output, p=self.dropout, training=self.training) return attn_output, main_attn_probs, predict_attn_probs, past_key_value def get_main_relative_pos_embeddings( self, hidden_states, attn_weights, position_ids, main_relative_position_buckets ): # input hidden_states [batch_size, sequence_length, hidden_size] # input attn_weights [batch_size, num_heads, sequence_length, sequence_length] # input position_ids [batch_size, sequence_length] or [1,1] batch_size, num_attn_heads, tgt_len, src_len = attn_weights.shape attn_weights = attn_weights.view(batch_size, num_attn_heads, tgt_len, src_len) if main_relative_position_buckets is None: batch_size, sequence_length = hidden_states.shape[:2] relative_positions = ( torch.arange(1, attn_weights.shape[-1] + 1) .unsqueeze(0) .unsqueeze(0) .repeat(batch_size, sequence_length, 1) .to(position_ids.device) ) # [batch_size, sequence_length, sequence_length+1] relative_positions = relative_positions - position_ids.unsqueeze(0).repeat(batch_size, sequence_length, 1) main_relative_position_buckets = compute_relative_buckets( self.num_buckets, self.relative_max_distance, relative_positions, False ) # [batch_size, sequence_length, num_buckets * num_heads] rel_pos_embeddings = self.relative_pos_embeddings(hidden_states) rel_pos_embeddings = rel_pos_embeddings.view( rel_pos_embeddings.shape[:2] + (self.num_buckets, self.num_attn_heads) ) rel_pos_embeddings = rel_pos_embeddings.permute(0, 3, 1, 2) # [batch_size, num_heads, sequence_length, num_buckets] rel_pos_embeddings = rel_pos_embeddings.reshape(attn_weights.shape[:3] + (-1,)) main_relative_position_buckets = main_relative_position_buckets.repeat(1, self.num_attn_heads, 1) # [batch_size * num_heads * sequence_length, sequence_length] main_relative_position_buckets = main_relative_position_buckets.view( -1, main_relative_position_buckets.shape[-1] ) main_relative_position_buckets = main_relative_position_buckets.long() # [batch_size * num_heads * sequence_length, sequence_length] rel_pos_embeddings = rel_pos_embeddings.reshape(-1, rel_pos_embeddings.size(-1)) main_relative_pos_embeddings = torch.gather(rel_pos_embeddings, dim=1, index=main_relative_position_buckets) main_relative_pos_embeddings = main_relative_pos_embeddings.view(batch_size, num_attn_heads, tgt_len, -1) return main_relative_pos_embeddings def get_predict_relative_pos_embeddings( self, hidden_states, attn_weights, position_ids, predict_relative_position_buckets ): # input hidden_states [batch_size, sequence_length, ngram, hidden_size] # input attn_weights [batch_size, ngram, num_heads, sequence_length, 2*sequence_length] # input position_ids [batch_size, sequence_length] or [1,1] # input predict_relative_position_buckets [batch_size, sequence_length, 2*sequence_length] or None batch_size, sequence_length = hidden_states.shape[0:2] if predict_relative_position_buckets is None: key_sequence_length = attn_weights.shape[-1] assert ( position_ids[0][0] == key_sequence_length - 1 ), "`position_ids` are incorrect. They should be of the format 1 2 3 4 5 ... (key_sequence_length - 1)" relative_positions = ( torch.arange(0, key_sequence_length) .unsqueeze(0) .unsqueeze(0) .repeat(batch_size, sequence_length, 1) .to(position_ids.device) ) relative_positions = relative_positions - position_ids.unsqueeze(0).repeat(batch_size, sequence_length, 1) predict_relative_position_buckets = compute_relative_buckets( self.num_buckets, self.relative_max_distance, relative_positions, False ) # [batch_size, ngram, sequence_length, hidden_size] hidden_states = hidden_states.transpose(1, 2) rel_pos_embeddings = self.relative_pos_embeddings(hidden_states) # [batch_size, ngram, sequence_length, num_buckets, num_heads] rel_pos_embeddings = rel_pos_embeddings.view( hidden_states.shape[:-1] + (self.num_buckets, self.num_attn_heads) ) rel_pos_embeddings = rel_pos_embeddings.permute(0, 2, 1, 4, 3) # [batch_size * ngram * sequence_length * num_heads, num_buckets] rel_pos_embeddings = rel_pos_embeddings.reshape(-1, self.num_buckets) # [ngram, batch_size, num_heads * sequence_length, -1] predict_relative_position_buckets = predict_relative_position_buckets.unsqueeze(0) predict_relative_position_buckets = predict_relative_position_buckets.repeat( self.ngram, 1, self.num_attn_heads, 1 ) # [ngram * batch_size * num_heads * sequence_length, -1] predict_relative_position_buckets = predict_relative_position_buckets.view( -1, predict_relative_position_buckets.size(-1) ).long() predict_relative_pos_embeddings = torch.gather( rel_pos_embeddings, dim=1, index=predict_relative_position_buckets ) # [batch_size, gram, num_heads, sequence_length, -1] predict_relative_pos_embeddings = predict_relative_pos_embeddings.view( batch_size, self.ngram, self.num_attn_heads, sequence_length, -1 ) return predict_relative_pos_embeddings
class_definition
43,442
59,796
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/prophetnet/modeling_prophetnet.py
null
9,332
class ProphetNetEncoderLayer(nn.Module): """ Encoder block for Prophetnet """ def __init__(self, config: ProphetNetConfig): super().__init__() # 1st residual block self.self_attn = ProphetNetAttention(config, config.num_encoder_attention_heads) self.self_attn_layer_norm = LayerNorm(config.hidden_size) # 2nd residual block self.feed_forward = ProphetNetFeedForward(config, config.encoder_ffn_dim) self.feed_forward_layer_norm = LayerNorm(config.hidden_size) def forward( self, hidden_states, attention_mask, layer_head_mask, output_attentions: bool = False, ): # 1st residual block attention_output, attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = self.self_attn_layer_norm(attention_output + hidden_states) # 2nd residual block feed_forward_output = self.feed_forward(hidden_states) hidden_states = self.feed_forward_layer_norm(feed_forward_output + hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs
class_definition
59,799
61,157
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/prophetnet/modeling_prophetnet.py
null
9,333
class ProphetNetDecoderLayer(nn.Module): """ Decoder block for Prophetnet """ def __init__(self, config: ProphetNetConfig): super().__init__() # 1st residual block self.self_attn = ProphetNetNgramSelfAttention(config) self.self_attn_layer_norm = LayerNorm(config.hidden_size) # 2nd residual block if config.add_cross_attention: self.cross_attn = ProphetNetAttention(config, config.num_decoder_attention_heads) self.cross_attn_layer_norm = LayerNorm(config.hidden_size) # 3rd residual block self.feed_forward = ProphetNetFeedForward(config, config.decoder_ffn_dim) self.feed_forward_layer_norm = LayerNorm(config.hidden_size) def forward( self, hidden_states, attention_mask=None, encoder_hidden_states=None, encoder_attn_mask=None, layer_head_mask=None, cross_attn_layer_head_mask=None, extended_predict_attention_mask=None, main_relative_position_buckets=None, predict_relative_position_buckets=None, position_ids=None, past_key_value=None, use_cache: bool = True, output_attentions: bool = False, ): # 1st residual block # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None ngram_attention_output, self_attn_weights, self_attn_weights_ngram, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, extended_predict_attention_mask=extended_predict_attention_mask, main_relative_position_buckets=main_relative_position_buckets, predict_relative_position_buckets=predict_relative_position_buckets, position_ids=position_ids, ) hidden_states = self.self_attn_layer_norm(hidden_states + ngram_attention_output) # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attn_weights = None if encoder_hidden_states is not None: # 2nd residual block attention_output, cross_attn_weights, cross_attn_present_key_value = self.cross_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attn_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, ) hidden_states = self.cross_attn_layer_norm(attention_output + hidden_states) # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # 3rd residual block feed_forward_output = self.feed_forward(hidden_states) hidden_states = self.feed_forward_layer_norm(feed_forward_output + hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, self_attn_weights_ngram, cross_attn_weights) if use_cache: outputs += (present_key_value,) return outputs
class_definition
61,160
64,688
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/prophetnet/modeling_prophetnet.py
null
9,334
class ProphetNetEncoder(ProphetNetPreTrainedModel): r""" word_embeddings (`torch.nn.Embeddings` of shape `(config.vocab_size, config.hidden_size)`, *optional*): The word embedding parameters. This can be used to initialize [`ProphetNetEncoder`] with pre-defined word embeddings instead of randomly initialized word embeddings. """ def __init__(self, config: ProphetNetConfig, word_embeddings: nn.Embedding = None): super().__init__(config) self.word_embeddings = ( word_embeddings if word_embeddings is not None else nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) ) self.position_embeddings = ProphetNetPositionalEmbeddings(config) self.embeddings_layer_norm = LayerNorm(config.hidden_size) self.layers = nn.ModuleList([ProphetNetEncoderLayer(config) for _ in range(config.num_encoder_layers)]) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.word_embeddings def set_input_embeddings(self, value): self.word_embeddings = value @add_start_docstrings_to_model_forward(PROPHETNET_STANDALONE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, ProphetNetEncoder >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased") >>> model = ProphetNetEncoder.from_pretrained("patrickvonplaten/prophetnet-large-uncased-standalone") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is None and inputs_embeds is None: raise ValueError("Either input_ids or inputs_embeds has to be passed.") elif input_ids is not None and inputs_embeds is not None: raise ValueError("Make sure to only pass input_ids or inputs_embeds.") elif input_ids is not None and inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) # prepare attention mask if attention_mask is not None: extended_attention_mask = ( 1.0 - attention_mask[:, None, None, :].repeat(1, self.config.num_encoder_attention_heads, 1, 1) ) * torch.finfo(self.dtype).min extended_attention_mask = extended_attention_mask.to(inputs_embeds.dtype) else: extended_attention_mask = None position_embeddings, position_ids = self.position_embeddings(inputs_embeds.shape[:2], inputs_embeds.device) hidden_states = inputs_embeds + position_embeddings hidden_states = self.embeddings_layer_norm(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.config.dropout, training=self.training) encoder_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: assert head_mask.size()[0] == ( len(self.layers) ), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}." for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_hidden_states = encoder_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, extended_attention_mask, (head_mask[idx] if head_mask is not None else None), output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask=extended_attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_hidden_states = encoder_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_hidden_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_hidden_states, attentions=all_attentions )
class_definition
64,807
70,606
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/prophetnet/modeling_prophetnet.py
null
9,335
class ProphetNetDecoder(ProphetNetPreTrainedModel): r""" word_embeddings (`torch.nn.Embeddings` of shape `(config.vocab_size, config.hidden_size)`, *optional*): The word embedding parameters. This can be used to initialize [`ProphetNetEncoder`] with pre-defined word embeddings instead of randomly initialized word embeddings. """ def __init__(self, config: ProphetNetConfig, word_embeddings: Optional[nn.Embedding] = None): super().__init__(config) self.ngram = config.ngram self.num_buckets = config.num_buckets self.relative_max_distance = config.relative_max_distance self.dropout = config.dropout self.max_target_positions = config.max_position_embeddings self.word_embeddings = ( word_embeddings if word_embeddings is not None else nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) ) self.position_embeddings = ProphetNetPositionalEmbeddings(config) self.ngram_embeddings = nn.Embedding(self.ngram, config.hidden_size, None) self.layers = nn.ModuleList([ProphetNetDecoderLayer(config) for _ in range(config.num_decoder_layers)]) self.embeddings_layer_norm = LayerNorm(config.hidden_size) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.word_embeddings def set_input_embeddings(self, value): self.word_embeddings = value @add_start_docstrings_to_model_forward(PROPHETNET_STANDALONE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ProphetNetDecoderModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, inputs_embeds: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ProphetNetDecoderModelOutput]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. Returns: Example: ```python >>> from transformers import AutoTokenizer, ProphetNetDecoder >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased") >>> model = ProphetNetDecoder.from_pretrained("microsoft/prophetnet-large-uncased", add_cross_attention=False) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state ```""" use_cache = use_cache if use_cache is not None else self.config.use_cache output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is None and inputs_embeds is None: raise ValueError("Either `decoder_input_ids` or `decoder_inputs_embeds` has to be passed.") elif input_ids is not None and inputs_embeds is not None: raise ValueError("Make sure to only pass `decoder_input_ids` or `decoder_inputs_embeds`.") elif input_ids is not None and inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) batch_size, sequence_length = inputs_embeds.shape[:2] main_stream_pos_embed, position_ids = self.position_embeddings( (batch_size, sequence_length), device=inputs_embeds.device, past_key_values=past_key_values, ) if past_key_values is not None: main_relative_position_buckets, predict_relative_position_buckets = None, None else: ( main_relative_position_buckets, predict_relative_position_buckets, ) = self.compute_buffered_relative_buckets(position_ids) predicting_stream_pos_embed = self.position_embeddings._forward(position_ids + 1) # add position embeddings hidden_states = inputs_embeds + main_stream_pos_embed ngram_embeddings = self.ngram_embeddings.weight # prepare attention mask if past_key_values is not None: assert ( hidden_states.size(1) == 1 ), "At the moment `use_cache` is only supported for `decoder_input_ids` of length 1" ngram_hidden_states = [ (ngram_embeddings[ngram - 1] + predicting_stream_pos_embed).repeat(batch_size, 1, 1) for ngram in range(self.ngram) ] extended_attention_mask = None extended_predict_attention_mask = None else: ngram_hidden_states = [ (ngram_embeddings[ngram - 1] + predicting_stream_pos_embed) for ngram in range(self.ngram) ] extended_attention_mask = self.prepare_attention_mask(hidden_states, attention_mask) extended_predict_attention_mask = self.prepare_predict_attention_mask(hidden_states, attention_mask) # prepare encoder attention mask if encoder_attention_mask is not None: extended_encoder_attention_mask = ( 1.0 - encoder_attention_mask[:, None, None, :].repeat(1, self.config.num_decoder_attention_heads, 1, 1) ) * torch.finfo(self.dtype).min extended_encoder_attention_mask = extended_encoder_attention_mask.to(inputs_embeds.dtype) else: extended_encoder_attention_mask = None hidden_states = torch.cat([hidden_states] + ngram_hidden_states, 1) if self.embeddings_layer_norm: hidden_states = self.embeddings_layer_norm(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) # init attentions, hidden_states and cache with empty tuples all_main_stream_hidden_states = () if output_hidden_states else None all_ngram_stream_hidden_states = () if output_hidden_states and self.config.ngram > 0 else None all_main_stream_attns = () if output_attentions else None all_ngram_stream_attns = () if output_attentions else None all_cross_attns = () if output_attentions and self.config.add_cross_attention else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False present_key_values = () if use_cache else None # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): if attn_mask is not None: assert attn_mask.size()[0] == (len(self.layers)), ( f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) for idx, decoder_layer in enumerate(self.layers): if output_hidden_states: # grad cannot be kept because tensor is sliced all_main_stream_hidden_states += (hidden_states[:, :sequence_length],) if self.config.ngram > 0: all_ngram_stream_hidden_states += (hidden_states[:, sequence_length:],) past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, extended_attention_mask, encoder_hidden_states, extended_encoder_attention_mask, (head_mask[idx] if head_mask is not None else None), (cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None), extended_predict_attention_mask, main_relative_position_buckets, predict_relative_position_buckets, position_ids, None, use_cache, output_attentions, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=extended_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attn_mask=extended_encoder_attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), cross_attn_layer_head_mask=( cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None ), extended_predict_attention_mask=extended_predict_attention_mask, main_relative_position_buckets=main_relative_position_buckets, predict_relative_position_buckets=predict_relative_position_buckets, position_ids=position_ids, past_key_value=past_key_value, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if use_cache: present_key_values += (layer_outputs[4 if output_attentions else 1],) if output_attentions: all_main_stream_attns += (layer_outputs[1],) all_ngram_stream_attns += (layer_outputs[2],) if self.config.add_cross_attention: all_cross_attns += (layer_outputs[3],) if output_hidden_states: all_main_stream_hidden_states += (hidden_states[:, :sequence_length],) if self.config.ngram > 0: all_ngram_stream_hidden_states += (hidden_states[:, sequence_length:],) # split last_hidden_state for return last_hidden_state = hidden_states[:, :sequence_length] last_hidden_state_ngram = hidden_states[:, sequence_length:] if self.config.ngram > 0 else None if not return_dict: return tuple( v for v in [ last_hidden_state, last_hidden_state_ngram, present_key_values, all_main_stream_hidden_states, all_ngram_stream_hidden_states, all_main_stream_attns, all_ngram_stream_attns, all_cross_attns, ] if v is not None ) return ProphetNetDecoderModelOutput( last_hidden_state=last_hidden_state, last_hidden_state_ngram=last_hidden_state_ngram, past_key_values=present_key_values, hidden_states=all_main_stream_hidden_states, hidden_states_ngram=all_ngram_stream_hidden_states, attentions=all_main_stream_attns, ngram_attentions=all_ngram_stream_attns, cross_attentions=all_cross_attns, ) def compute_buffered_relative_buckets(self, position_ids): batch_size, sequence_length = position_ids.shape position_ids = torch.arange(1, self.max_target_positions).to(position_ids.device).repeat(1, 1) main_relative_buckets, predict_relative_buckets = compute_all_stream_relative_buckets( self.num_buckets, self.relative_max_distance, position_ids ) # buffer relative buckets main_relative_buckets = main_relative_buckets[:, :sequence_length, :sequence_length].repeat(batch_size, 1, 1) predict_relative_buckets = torch.cat( [ predict_relative_buckets[:, :sequence_length, :sequence_length], predict_relative_buckets[ :, :sequence_length, self.max_target_positions : self.max_target_positions + sequence_length ], ], 2, ).repeat(batch_size, 1, 1) return main_relative_buckets, predict_relative_buckets def prepare_attention_mask(self, hidden_states, attention_mask): batch_size, seq_length = hidden_states.shape[:2] # get causal mask causal_mask = torch.full( (seq_length, seq_length), torch.finfo(hidden_states.dtype).min, dtype=hidden_states.dtype, device=hidden_states.device, ) causal_mask = torch.triu(causal_mask, 1) extended_causal_mask = causal_mask[:seq_length, :seq_length][None, None, :, :].expand( (batch_size, self.config.num_decoder_attention_heads) + causal_mask.shape ) # add usual attention mask if attention_mask is not None: extended_attention_mask = (1.0 - attention_mask[:, None, None, :]) * torch.finfo(self.dtype).min extended_attention_mask = extended_causal_mask + extended_attention_mask else: extended_attention_mask = extended_causal_mask return extended_attention_mask.to(hidden_states.dtype) def prepare_predict_attention_mask(self, hidden_states, attention_mask): batch_size, seq_length = hidden_states.shape[:2] # get causal mask predict_causal_mask = ngram_attention_bias( self.max_target_positions, self.ngram, hidden_states.device, hidden_states.dtype ) predict_causal_mask = torch.cat( [ predict_causal_mask[:, :seq_length, :seq_length], predict_causal_mask[ :, :seq_length, self.max_target_positions : self.max_target_positions + seq_length ], ], dim=-1, ) extended_predict_causal_mask = predict_causal_mask[None, None, :, :, :].expand( (batch_size, self.config.num_decoder_attention_heads) + predict_causal_mask.shape ) # add usual attention mask if attention_mask is not None: extended_attention_mask = (1.0 - attention_mask[:, None, None, None, :]) * torch.finfo(self.dtype).min extended_attention_mask = extended_attention_mask.expand( (batch_size, self.config.num_decoder_attention_heads, self.ngram, seq_length, seq_length) ) # predicted stream attention_mask should always be 0 extended_attention_mask = torch.cat( [extended_attention_mask, torch.zeros_like(extended_attention_mask)], dim=-1 ) extended_predict_attention_mask = extended_predict_causal_mask + extended_attention_mask else: extended_predict_attention_mask = extended_predict_causal_mask return extended_predict_attention_mask.to(hidden_states.dtype)
class_definition
70,725
88,290
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/prophetnet/modeling_prophetnet.py
null
9,336
class ProphetNetModel(ProphetNetPreTrainedModel): _tied_weights_keys = ["encoder.word_embeddings.weight", "decoder.word_embeddings.weight"] def __init__(self, config: ProphetNetConfig): super().__init__(config) self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) encoder_config = copy.deepcopy(config) encoder_config.is_encoder_decoder = False encoder_config.use_cache = False self.encoder = ProphetNetEncoder(encoder_config, self.word_embeddings) decoder_config = copy.deepcopy(config) decoder_config.is_decoder = True decoder_config.is_encoder_decoder = False self.decoder = ProphetNetDecoder(decoder_config, self.word_embeddings) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.word_embeddings def set_input_embeddings(self, value): self.word_embeddings = value self.encoder.word_embeddings = self.word_embeddings self.decoder.word_embeddings = self.word_embeddings def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.encoder.word_embeddings, self.word_embeddings) self._tie_or_clone_weights(self.decoder.word_embeddings, self.word_embeddings) def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder @add_start_docstrings_to_model_forward(PROPHETNET_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ProphetNetSeq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.Tensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, inputs_embeds: Optional[torch.Tensor] = None, decoder_inputs_embeds: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ProphetNetSeq2SeqModelOutput]: r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, ProphetNetModel >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased") >>> model = ProphetNetModel.from_pretrained("microsoft/prophetnet-large-uncased") >>> input_ids = tokenizer( ... "Studies have been shown that owning a dog is good for you", return_tensors="pt" ... ).input_ids # Batch size 1 >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) >>> last_hidden_states = outputs.last_hidden_state # main stream hidden states >>> last_hidden_states_ngram = outputs.last_hidden_state_ngram # predict hidden states ```""" use_cache = use_cache if use_cache is not None else self.config.use_cache output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # decoder outputs consists of (dec_features, past_key_values, dec_hidden, dec_attn) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache, return_dict=return_dict, ) if not return_dict: return decoder_outputs + encoder_outputs return ProphetNetSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, last_hidden_state_ngram=decoder_outputs.last_hidden_state_ngram, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_ngram_hidden_states=decoder_outputs.hidden_states_ngram, decoder_attentions=decoder_outputs.attentions, decoder_ngram_attentions=decoder_outputs.ngram_attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, )
class_definition
88,446
94,348
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/prophetnet/modeling_prophetnet.py
null
9,337
class ProphetNetForConditionalGeneration(ProphetNetPreTrainedModel, GenerationMixin): _tied_weights_keys = ["encoder.word_embeddings.weight", "decoder.word_embeddings.weight", "lm_head.weight"] def __init__(self, config: ProphetNetConfig): super().__init__(config) self.prophetnet = ProphetNetModel(config) self.padding_idx = config.pad_token_id self.disable_ngram_loss = config.disable_ngram_loss self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.prophetnet.word_embeddings, self.lm_head) def get_input_embeddings(self): return self.prophetnet.word_embeddings @add_start_docstrings_to_model_forward(PROPHETNET_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ProphetNetSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.Tensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, inputs_embeds: Optional[torch.Tensor] = None, decoder_inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ProphetNetSeq2SeqLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` Returns: Example: ```python >>> from transformers import AutoTokenizer, ProphetNetForConditionalGeneration >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased") >>> model = ProphetNetForConditionalGeneration.from_pretrained("microsoft/prophetnet-large-uncased") >>> input_ids = tokenizer( ... "Studies have been shown that owning a dog is good for you", return_tensors="pt" ... ).input_ids # Batch size 1 >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) >>> logits_next_token = outputs.logits # logits to predict next token as usual >>> logits_ngram_next_tokens = outputs.logits_ngram # logits to predict 2nd, 3rd, ... next tokens ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: # get decoder inputs from shifting lm labels to the right decoder_input_ids = self._shift_right(labels) outputs = self.prophetnet( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) batch_size, sequence_length = ( decoder_input_ids.shape if decoder_input_ids is not None else decoder_inputs_embeds.shape[:2] ) predicting_streams = outputs[1].view(batch_size, self.config.ngram, sequence_length, -1) predict_logits = self.lm_head(predicting_streams) logits = predict_logits[:, 0] logits_ngram = predict_logits[:, 1:] if self.config.ngram > 1 else None # To use .view in loss computation, make sure that logits is contiguous. if not logits.is_contiguous(): logits = logits.contiguous() loss = None if labels is not None: loss = self._compute_loss(predict_logits, labels) if not return_dict: all_logits = tuple(v for v in [logits, logits_ngram] if v is not None) return (loss,) + all_logits + outputs[2:] if loss is not None else all_logits + outputs[2:] else: return ProphetNetSeq2SeqLMOutput( loss=loss, logits=logits, logits_ngram=logits_ngram, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_ngram_hidden_states=outputs.decoder_ngram_hidden_states, decoder_attentions=outputs.decoder_attentions, decoder_ngram_attentions=outputs.decoder_ngram_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) def _compute_loss(self, logits, labels, ignore_index=-100): expend_targets = labels.new_zeros(self.config.ngram, labels.size(0), labels.size(1)).fill_(ignore_index) for i in range(self.config.ngram): if i > 0 and self.disable_ngram_loss: break expend_targets[i, :, :] = labels logits = logits.transpose(0, 1).contiguous() lprobs = nn.functional.log_softmax( logits.view(-1, logits.size(-1)), dim=-1, dtype=torch.float32, ) loss = nn.functional.nll_loss(lprobs, expend_targets.view(-1), reduction="mean") if self.config.eps > 0.0: smooth_loss = -lprobs.sum(dim=-1, keepdim=True) non_masked_tokens = expend_targets.ne(ignore_index).view(-1) smooth_loss = smooth_loss[non_masked_tokens] smooth_loss = smooth_loss.mean() eps_i = self.config.eps / lprobs.size(-1) loss = (1.0 - self.config.eps) * loss + eps_i * smooth_loss return loss def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): return self._shift_right(labels) @staticmethod # Copied from transformers.models.bart.modeling_bart.BartForConditionalGeneration._reorder_cache def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: # cached cross_attention states don't have to be reordered -> they are always the same reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2]) + layer_past[2:], ) return reordered_past def get_encoder(self): return self.prophetnet.encoder def get_decoder(self): return self.prophetnet.decoder
class_definition
94,510
102,568
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/prophetnet/modeling_prophetnet.py
null
9,338
class ProphetNetForCausalLM(ProphetNetPreTrainedModel, GenerationMixin): _tied_weights_keys = [ "prophetnet.word_embeddings.weight", "prophetnet.decoder.word_embeddings.weight", "lm_head.weight", ] def __init__(self, config: ProphetNetConfig): # set config for CLM config = copy.deepcopy(config) config.is_decoder = True config.is_encoder_decoder = False super().__init__(config) self.prophetnet = ProphetNetDecoderWrapper(config) self.padding_idx = config.pad_token_id self.disable_ngram_loss = config.disable_ngram_loss self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.prophetnet.decoder.word_embeddings def set_input_embeddings(self, value): self.prophetnet.decoder.word_embeddings = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.prophetnet.decoder.word_embeddings, self.lm_head) def set_decoder(self, decoder): self.prophetnet.decoder = decoder def get_decoder(self): return self.prophetnet.decoder @add_start_docstrings_to_model_forward(PROPHETNET_STANDALONE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ProphetNetDecoderLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ProphetNetDecoderLMOutput]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]` Returns: Example: ```python >>> from transformers import AutoTokenizer, ProphetNetForCausalLM >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased") >>> model = ProphetNetForCausalLM.from_pretrained("microsoft/prophetnet-large-uncased") >>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder." >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> # Model can also be used with EncoderDecoder framework >>> from transformers import BertTokenizer, EncoderDecoderModel, AutoTokenizer >>> import torch >>> tokenizer_enc = BertTokenizer.from_pretrained("google-bert/bert-large-uncased") >>> tokenizer_dec = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased") >>> model = EncoderDecoderModel.from_encoder_decoder_pretrained( ... "google-bert/bert-large-uncased", "microsoft/prophetnet-large-uncased" ... ) >>> ARTICLE = ( ... "the us state department said wednesday it had received no " ... "formal word from bolivia that it was expelling the us ambassador there " ... "but said the charges made against him are `` baseless ." ... ) >>> input_ids = tokenizer_enc(ARTICLE, return_tensors="pt").input_ids >>> labels = tokenizer_dec( ... "us rejects charges against its ambassador in bolivia", return_tensors="pt" ... ).input_ids >>> outputs = model(input_ids=input_ids, decoder_input_ids=labels[:, :-1], labels=labels[:, 1:]) >>> loss = outputs.loss ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, past_key_values, dec_hidden, dec_attn) outputs = self.prophetnet.decoder( input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, head_mask=head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) batch_size, sequence_length = input_ids.shape if input_ids is not None else inputs_embeds.shape[:2] predicting_streams = outputs[1].view(batch_size, self.config.ngram, sequence_length, -1) predict_logits = self.lm_head(predicting_streams) logits = predict_logits[:, 0] logits_ngram = predict_logits[:, 1:] if self.config.ngram > 1 else None loss = None if labels is not None: loss = self._compute_loss(predict_logits, labels) if not return_dict: all_logits = tuple(v for v in [logits, logits_ngram] if v is not None) return (loss,) + all_logits + outputs[2:] if loss is not None else all_logits + outputs[2:] else: return ProphetNetDecoderLMOutput( loss=loss, logits=logits, logits_ngram=logits_ngram, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, hidden_states_ngram=outputs.hidden_states_ngram, attentions=outputs.attentions, ngram_attentions=outputs.ngram_attentions, cross_attentions=outputs.cross_attentions, ) def _compute_loss(self, logits, labels, ignore_index=-100): expend_targets = labels.new_zeros(self.config.ngram, labels.size(0), labels.size(1)).fill_(ignore_index) for i in range(self.config.ngram): if i > 0 and self.disable_ngram_loss: break expend_targets[i, :, :] = labels logits = logits.transpose(0, 1).contiguous() lprobs = nn.functional.log_softmax( logits.view(-1, logits.size(-1)), dim=-1, dtype=torch.float32, ) loss = nn.functional.nll_loss(lprobs, expend_targets.view(-1), reduction="mean") if self.config.eps > 0.0: smooth_loss = -lprobs.sum(dim=-1, keepdim=True) non_masked_tokens = expend_targets.ne(ignore_index).view(-1) smooth_loss = smooth_loss[non_masked_tokens] smooth_loss = smooth_loss.mean() eps_i = self.config.eps / lprobs.size(-1) loss = (1.0 - self.config.eps) * loss + eps_i * smooth_loss return loss def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, head_mask=None, use_cache=None, **kwargs, ): # Overwritten -- our tests complain if we use GenerationMixin.prepare_inputs_for_generation # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_ids.shape) if past_key_values: input_ids = input_ids[:, -1:] # first step, decoder_cached_states are empty return { "input_ids": input_ids, # encoder_outputs is defined. input_ids not needed "attention_mask": attention_mask, "head_mask": head_mask, "past_key_values": past_key_values, "use_cache": use_cache, } @staticmethod # Copied from transformers.models.bart.modeling_bart.BartForCausalLM._reorder_cache def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past
class_definition
102,768
113,713
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/prophetnet/modeling_prophetnet.py
null
9,339
class ProphetNetDecoderWrapper(ProphetNetPreTrainedModel): """ This is a wrapper class, so that [`ProphetNetForCausalLM`] can correctly be loaded from pretrained prophetnet classes. """ def __init__(self, config: ProphetNetConfig): super().__init__(config) self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.decoder = ProphetNetDecoder(config, word_embeddings=self.word_embeddings) # Initialize weights and apply final processing self.post_init() def _tie_weights(self): self._tie_or_clone_weights(self.word_embeddings, self.decoder.get_input_embeddings()) def forward(self, *args, **kwargs): return self.decoder(*args, **kwargs)
class_definition
113,716
114,496
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/prophetnet/modeling_prophetnet.py
null
9,340
class TextNetImageProcessor(BaseImageProcessor): r""" Constructs a TextNet image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by `do_resize` in the `preprocess` method. size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 640}`): Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess` method. size_divisor (`int`, *optional*, defaults to 32): Ensures height and width are rounded to a multiple of this value after resizing. resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`): Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method. do_center_crop (`bool`, *optional*, defaults to `False`): Whether to center crop the image to the specified `crop_size`. Can be overridden by `do_center_crop` in the `preprocess` method. crop_size (`Dict[str, int]` *optional*, defaults to 224): Size of the output image after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `[0.485, 0.456, 0.406]`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `[0.229, 0.224, 0.225]`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. Can be overridden by the `image_std` parameter in the `preprocess` method. do_convert_rgb (`bool`, *optional*, defaults to `True`): Whether to convert the image to RGB. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, size_divisor: int = 32, resample: PILImageResampling = PILImageResampling.BILINEAR, do_center_crop: bool = False, crop_size: Dict[str, int] = None, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = IMAGENET_DEFAULT_MEAN, image_std: Optional[Union[float, List[float]]] = IMAGENET_DEFAULT_STD, do_convert_rgb: bool = True, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"shortest_edge": 640} size = get_size_dict(size, default_to_square=False) crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224} crop_size = get_size_dict(crop_size, param_name="crop_size") self.do_resize = do_resize self.size = size self.size_divisor = size_divisor self.resample = resample self.do_center_crop = do_center_crop self.crop_size = crop_size self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD self.do_convert_rgb = do_convert_rgb self._valid_processor_keys = [ "images", "do_resize", "size", "size_divisor", "resample", "do_center_crop", "crop_size", "do_rescale", "rescale_factor", "do_normalize", "image_mean", "image_std", "do_convert_rgb", "return_tensors", "data_format", "input_data_format", ] def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BILINEAR, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image. The shortest edge of the image is resized to size["shortest_edge"] , with the longest edge resized to keep the input aspect ratio. Both the height and width are resized to be divisible by 32. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Size of the output image. size_divisor (`int`, *optional*, defaults to `32`): Ensures height and width are rounded to a multiple of this value after resizing. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): Resampling filter to use when resiizing the image. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. default_to_square (`bool`, *optional*, defaults to `False`): The value to be passed to `get_size_dict` as `default_to_square` when computing the image size. If the `size` argument in `get_size_dict` is an `int`, it determines whether to default to a square image or not.Note that this attribute is not used in computing `crop_size` via calling `get_size_dict`. """ if "shortest_edge" in size: size = size["shortest_edge"] elif "height" in size and "width" in size: size = (size["height"], size["width"]) else: raise ValueError("Size must contain either 'shortest_edge' or 'height' and 'width'.") height, width = get_resize_output_image_size( image, size=size, input_data_format=input_data_format, default_to_square=False ) if height % self.size_divisor != 0: height += self.size_divisor - (height % self.size_divisor) if width % self.size_divisor != 0: width += self.size_divisor - (width % self.size_divisor) return resize( image, size=(height, width), resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs, ) def preprocess( self, images: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, size_divisor: int = None, resample: PILImageResampling = None, do_center_crop: bool = None, crop_size: int = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_convert_rgb: bool = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> PIL.Image.Image: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with the longest edge resized to keep the input aspect ratio. size_divisor (`int`, *optional*, defaults to `32`): Ensures height and width are rounded to a multiple of this value after resizing. resample (`int`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only has an effect if `do_resize` is set to `True`. do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`): Whether to center crop the image. crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): Size of the center crop. Only has an effect if `do_center_crop` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to `True`. do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): Whether to convert the image to RGB. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize size = size if size is not None else self.size size = get_size_dict(size, param_name="size", default_to_square=False) size_divisor = size_divisor if size_divisor is not None else self.size_divisor resample = resample if resample is not None else self.resample do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop crop_size = crop_size if crop_size is not None else self.crop_size crop_size = get_size_dict(crop_size, param_name="crop_size", default_to_square=True) do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys) images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_center_crop=do_center_crop, crop_size=crop_size, do_resize=do_resize, size=size, resample=resample, ) if do_convert_rgb: images = [convert_to_rgb(image) for image in images] # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if is_scaled_image(images[0]) and do_rescale: logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) all_images = [] for image in images: if do_resize: image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format) if do_center_crop: image = self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) if do_rescale: image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) if do_normalize: image = self.normalize( image=image, mean=image_mean, std=image_std, input_data_format=input_data_format ) all_images.append(image) images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in all_images ] data = {"pixel_values": images} return BatchFeature(data=data, tensor_type=return_tensors)
class_definition
1,446
17,574
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/textnet/image_processing_textnet.py
null
9,341
class TextNetConvLayer(nn.Module): def __init__(self, config: TextNetConfig): super().__init__() self.kernel_size = config.stem_kernel_size self.stride = config.stem_stride self.activation_function = config.stem_act_func padding = ( (config.kernel_size[0] // 2, config.kernel_size[1] // 2) if isinstance(config.stem_kernel_size, tuple) else config.stem_kernel_size // 2 ) self.conv = nn.Conv2d( config.stem_num_channels, config.stem_out_channels, kernel_size=config.stem_kernel_size, stride=config.stem_stride, padding=padding, bias=False, ) self.batch_norm = nn.BatchNorm2d(config.stem_out_channels, config.batch_norm_eps) self.activation = nn.Identity() if self.activation_function is not None: self.activation = ACT2CLS[self.activation_function]() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.conv(hidden_states) hidden_states = self.batch_norm(hidden_states) return self.activation(hidden_states)
class_definition
1,629
2,814
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/textnet/modeling_textnet.py
null
9,342
class TextNetRepConvLayer(nn.Module): r""" This layer supports re-parameterization by combining multiple convolutional branches (e.g., main convolution, vertical, horizontal, and identity branches) during training. At inference time, these branches can be collapsed into a single convolution for efficiency, as per the re-parameterization paradigm. The "Rep" in the name stands for "re-parameterization" (introduced by RepVGG). """ def __init__(self, config: TextNetConfig, in_channels: int, out_channels: int, kernel_size: int, stride: int): super().__init__() self.num_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride padding = ((kernel_size[0] - 1) // 2, (kernel_size[1] - 1) // 2) self.activation_function = nn.ReLU() self.main_conv = nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=False, ) self.main_batch_norm = nn.BatchNorm2d(num_features=out_channels, eps=config.batch_norm_eps) vertical_padding = ((kernel_size[0] - 1) // 2, 0) horizontal_padding = (0, (kernel_size[1] - 1) // 2) if kernel_size[1] != 1: self.vertical_conv = nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=(kernel_size[0], 1), stride=stride, padding=vertical_padding, bias=False, ) self.vertical_batch_norm = nn.BatchNorm2d(num_features=out_channels, eps=config.batch_norm_eps) else: self.vertical_conv, self.vertical_batch_norm = None, None if kernel_size[0] != 1: self.horizontal_conv = nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=(1, kernel_size[1]), stride=stride, padding=horizontal_padding, bias=False, ) self.horizontal_batch_norm = nn.BatchNorm2d(num_features=out_channels, eps=config.batch_norm_eps) else: self.horizontal_conv, self.horizontal_batch_norm = None, None self.rbr_identity = ( nn.BatchNorm2d(num_features=in_channels, eps=config.batch_norm_eps) if out_channels == in_channels and stride == 1 else None ) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: main_outputs = self.main_conv(hidden_states) main_outputs = self.main_batch_norm(main_outputs) # applies a convolution with a vertical kernel if self.vertical_conv is not None: vertical_outputs = self.vertical_conv(hidden_states) vertical_outputs = self.vertical_batch_norm(vertical_outputs) main_outputs = main_outputs + vertical_outputs # applies a convolution with a horizontal kernel if self.horizontal_conv is not None: horizontal_outputs = self.horizontal_conv(hidden_states) horizontal_outputs = self.horizontal_batch_norm(horizontal_outputs) main_outputs = main_outputs + horizontal_outputs if self.rbr_identity is not None: id_out = self.rbr_identity(hidden_states) main_outputs = main_outputs + id_out return self.activation_function(main_outputs)
class_definition
2,817
6,386
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/textnet/modeling_textnet.py
null
9,343
class TextNetStage(nn.Module): def __init__(self, config: TextNetConfig, depth: int): super().__init__() kernel_size = config.conv_layer_kernel_sizes[depth] stride = config.conv_layer_strides[depth] num_layers = len(kernel_size) stage_in_channel_size = config.hidden_sizes[depth] stage_out_channel_size = config.hidden_sizes[depth + 1] in_channels = [stage_in_channel_size] + [stage_out_channel_size] * (num_layers - 1) out_channels = [stage_out_channel_size] * num_layers stage = [] for stage_config in zip(in_channels, out_channels, kernel_size, stride): stage.append(TextNetRepConvLayer(config, *stage_config)) self.stage = nn.ModuleList(stage) def forward(self, hidden_state): for block in self.stage: hidden_state = block(hidden_state) return hidden_state
class_definition
6,389
7,289
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/textnet/modeling_textnet.py
null
9,344
class TextNetEncoder(nn.Module): def __init__(self, config: TextNetConfig): super().__init__() stages = [] num_stages = len(config.conv_layer_kernel_sizes) for stage_ix in range(num_stages): stages.append(TextNetStage(config, stage_ix)) self.stages = nn.ModuleList(stages) def forward( self, hidden_state: torch.Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> BaseModelOutputWithNoAttention: hidden_states = [hidden_state] for stage in self.stages: hidden_state = stage(hidden_state) hidden_states.append(hidden_state) if not return_dict: output = (hidden_state,) return output + (hidden_states,) if output_hidden_states else output return BaseModelOutputWithNoAttention(last_hidden_state=hidden_state, hidden_states=hidden_states)
class_definition
7,292
8,250
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/textnet/modeling_textnet.py
null
9,345
class TextNetPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = TextNetConfig base_model_prefix = "textnet" main_input_name = "pixel_values" def _init_weights(self, module): if isinstance(module, (nn.Linear, nn.Conv2d)): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.BatchNorm2d): module.weight.data.fill_(1.0) if module.bias is not None: module.bias.data.zero_()
class_definition
9,491
10,217
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/textnet/modeling_textnet.py
null
9,346
class TextNetModel(TextNetPreTrainedModel): def __init__(self, config): super().__init__(config) self.stem = TextNetConvLayer(config) self.encoder = TextNetEncoder(config) self.pooler = nn.AdaptiveAvgPool2d((2, 2)) self.post_init() @add_start_docstrings_to_model_forward(TEXTNET_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndNoAttention, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None ) -> Union[Tuple[Any, List[Any]], Tuple[Any], BaseModelOutputWithPoolingAndNoAttention]: return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) hidden_state = self.stem(pixel_values) encoder_outputs = self.encoder( hidden_state, output_hidden_states=output_hidden_states, return_dict=return_dict ) last_hidden_state = encoder_outputs[0] pooled_output = self.pooler(last_hidden_state) if not return_dict: output = (last_hidden_state, pooled_output) return output + (encoder_outputs[1],) if output_hidden_states else output return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs[1] if output_hidden_states else None, )
class_definition
10,362
12,135
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/textnet/modeling_textnet.py
null
9,347
class TextNetForImageClassification(TextNetPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.textnet = TextNetModel(config) self.avg_pool = nn.AdaptiveAvgPool2d((1, 1)) self.flatten = nn.Flatten() self.fc = nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity() # classification head self.classifier = nn.ModuleList([self.avg_pool, self.flatten]) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(TEXTNET_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ImageClassifierOutputWithNoAttention, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> ImageClassifierOutputWithNoAttention: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> import torch >>> import requests >>> from transformers import TextNetForImageClassification, TextNetImageProcessor >>> from PIL import Image >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> processor = TextNetImageProcessor.from_pretrained("czczup/textnet-base") >>> model = TextNetForImageClassification.from_pretrained("czczup/textnet-base") >>> inputs = processor(images=image, return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) >>> outputs.logits.shape torch.Size([1, 2]) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.textnet(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict) last_hidden_state = outputs[0] for layer in self.classifier: last_hidden_state = layer(last_hidden_state) logits = self.fc(last_hidden_state) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states)
class_definition
12,339
16,353
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/textnet/modeling_textnet.py
null
9,348
class TextNetBackbone(TextNetPreTrainedModel, BackboneMixin): def __init__(self, config): super().__init__(config) super()._init_backbone(config) self.textnet = TextNetModel(config) self.num_features = config.hidden_sizes # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(TEXTNET_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None ) -> Union[Tuple[Tuple], BackboneOutput]: """ Returns: Examples: ```python >>> import torch >>> import requests >>> from PIL import Image >>> from transformers import AutoImageProcessor, AutoBackbone >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> processor = AutoImageProcessor.from_pretrained("czczup/textnet-base") >>> model = AutoBackbone.from_pretrained("czczup/textnet-base") >>> inputs = processor(image, return_tensors="pt") >>> with torch.no_grad(): >>> outputs = model(**inputs) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) outputs = self.textnet(pixel_values, output_hidden_states=True, return_dict=return_dict) hidden_states = outputs.hidden_states if return_dict else outputs[2] feature_maps = () for idx, stage in enumerate(self.stage_names): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: output = (feature_maps,) if output_hidden_states: hidden_states = outputs.hidden_states if return_dict else outputs[2] output += (hidden_states,) return output return BackboneOutput( feature_maps=feature_maps, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=None, )
class_definition
16,502
18,902
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/textnet/modeling_textnet.py
null
9,349
class TextNetConfig(BackboneConfigMixin, PretrainedConfig): r""" This is the configuration class to store the configuration of a [`TextNextModel`]. It is used to instantiate a TextNext model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the [czczup/textnet-base](https://huggingface.co/czczup/textnet-base). Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs.Read the documentation from [`PretrainedConfig`] for more information. Args: stem_kernel_size (`int`, *optional*, defaults to 3): The kernel size for the initial convolution layer. stem_stride (`int`, *optional*, defaults to 2): The stride for the initial convolution layer. stem_num_channels (`int`, *optional*, defaults to 3): The num of channels in input for the initial convolution layer. stem_out_channels (`int`, *optional*, defaults to 64): The num of channels in out for the initial convolution layer. stem_act_func (`str`, *optional*, defaults to `"relu"`): The activation function for the initial convolution layer. image_size (`Tuple[int, int]`, *optional*, defaults to `[640, 640]`): The size (resolution) of each image. conv_layer_kernel_sizes (`List[List[List[int]]]`, *optional*): A list of stage-wise kernel sizes. If `None`, defaults to: `[[[3, 3], [3, 3], [3, 3]], [[3, 3], [1, 3], [3, 3], [3, 1]], [[3, 3], [3, 3], [3, 1], [1, 3]], [[3, 3], [3, 1], [1, 3], [3, 3]]]`. conv_layer_strides (`List[List[int]]`, *optional*): A list of stage-wise strides. If `None`, defaults to: `[[1, 2, 1], [2, 1, 1, 1], [2, 1, 1, 1], [2, 1, 1, 1]]`. hidden_sizes (`List[int]`, *optional*, defaults to `[64, 64, 128, 256, 512]`): Dimensionality (hidden size) at each stage. batch_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the batch normalization layers. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. out_features (`List[str]`, *optional*): If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc. (depending on how many stages the model has). If unset and `out_indices` is set, will default to the corresponding stages. If unset and `out_indices` is unset, will default to the last stage. out_indices (`List[int]`, *optional*): If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how many stages the model has). If unset and `out_features` is set, will default to the corresponding stages. If unset and `out_features` is unset, will default to the last stage. Examples: ```python >>> from transformers import TextNetConfig, TextNetBackbone >>> # Initializing a TextNetConfig >>> configuration = TextNetConfig() >>> # Initializing a model (with random weights) >>> model = TextNetBackbone(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "textnet" def __init__( self, stem_kernel_size=3, stem_stride=2, stem_num_channels=3, stem_out_channels=64, stem_act_func="relu", image_size=[640, 640], conv_layer_kernel_sizes=None, conv_layer_strides=None, hidden_sizes=[64, 64, 128, 256, 512], batch_norm_eps=1e-5, initializer_range=0.02, out_features=None, out_indices=None, **kwargs, ): super().__init__(**kwargs) if conv_layer_kernel_sizes is None: conv_layer_kernel_sizes = [ [[3, 3], [3, 3], [3, 3]], [[3, 3], [1, 3], [3, 3], [3, 1]], [[3, 3], [3, 3], [3, 1], [1, 3]], [[3, 3], [3, 1], [1, 3], [3, 3]], ] if conv_layer_strides is None: conv_layer_strides = [[1, 2, 1], [2, 1, 1, 1], [2, 1, 1, 1], [2, 1, 1, 1]] self.stem_kernel_size = stem_kernel_size self.stem_stride = stem_stride self.stem_num_channels = stem_num_channels self.stem_out_channels = stem_out_channels self.stem_act_func = stem_act_func self.image_size = image_size self.conv_layer_kernel_sizes = conv_layer_kernel_sizes self.conv_layer_strides = conv_layer_strides self.initializer_range = initializer_range self.hidden_sizes = hidden_sizes self.batch_norm_eps = batch_norm_eps self.depths = [len(layer) for layer in self.conv_layer_kernel_sizes] self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, 5)] self._out_features, self._out_indices = get_aligned_output_features_output_indices( out_features=out_features, out_indices=out_indices, stage_names=self.stage_names )
class_definition
912
6,181
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/textnet/configuration_textnet.py
null
9,350
class FalconLinear(nn.Linear): def forward(self, input: torch.Tensor) -> torch.Tensor: hidden_states = input @ self.weight.T if self.bias is None: return hidden_states return hidden_states + self.bias
class_definition
2,303
2,543
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/falcon/modeling_falcon.py
null
9,351
class FalconRotaryEmbedding(nn.Module): def __init__(self, config: FalconConfig, device=None): super().__init__() # BC: "rope_type" was originally "type" if hasattr(config, "rope_scaling") and config.rope_scaling is not None: self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) else: self.rope_type = "default" self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings self.config = config self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq def _dynamic_frequency_update(self, position_ids, device): """ dynamic RoPE layers should recompute `inv_freq` in the following situations: 1 - growing beyond the cached sequence length (allow scaling) 2 - the current sequence length is in the original scale (avoid losing precision with small sequences) """ seq_len = torch.max(position_ids) + 1 if seq_len > self.max_seq_len_cached: # growth inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len) self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation self.max_seq_len_cached = seq_len if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset # This .to() is needed if the model has been moved to a device after being initialized (because # the buffer is automatically moved, but not the original copy) self.original_inv_freq = self.original_inv_freq.to(device) self.register_buffer("inv_freq", self.original_inv_freq, persistent=False) self.max_seq_len_cached = self.original_max_seq_len @torch.no_grad() def forward(self, x, position_ids): if "dynamic" in self.rope_type: self._dynamic_frequency_update(position_ids, device=x.device) # Core RoPE block inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) position_ids_expanded = position_ids[:, None, :].float() # Force float32 (see https://github.com/huggingface/transformers/pull/29285) device_type = x.device.type device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() sin = emb.sin() # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention cos = cos * self.attention_scaling sin = sin * self.attention_scaling return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
class_definition
4,509
7,706
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/falcon/modeling_falcon.py
null
9,352
class FalconAttention(nn.Module): def __init__(self, config: FalconConfig, layer_idx=None): super().__init__() self.config = config self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads self.split_size = self.hidden_size self.hidden_dropout = config.hidden_dropout self.max_position_embeddings = config.max_position_embeddings self.rope_theta = config.rope_theta self.is_causal = True self._use_sdpa = config._attn_implementation == "sdpa" self.layer_idx = layer_idx if layer_idx is None: logger.warning_once( f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " "when creating this class." ) if self.head_dim * self.num_heads != self.hidden_size: raise ValueError( f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:" f" {self.num_heads})." ) # Layer-wise attention scaling self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim) self.beta = self.inv_norm_factor if config.new_decoder_architecture: qkv_out_dim = (config.num_kv_heads * 2 + config.num_attention_heads) * self.head_dim elif config.multi_query: qkv_out_dim = self.hidden_size + 2 * self.head_dim else: qkv_out_dim = 3 * self.hidden_size self.query_key_value = FalconLinear(self.hidden_size, qkv_out_dim, bias=config.bias) self.new_decoder_architecture = config.new_decoder_architecture self.multi_query = config.multi_query self.dense = FalconLinear(self.hidden_size, self.hidden_size, bias=config.bias) self.attention_dropout = nn.Dropout(config.attention_dropout) self.num_kv_heads = config.num_kv_heads if (self.new_decoder_architecture or not self.multi_query) else 1 # TODO (raushan): remove in v4.46 (RoPE is computed in the model, not in the decoder layers) if config.rotary: self.rotary_emb = FalconRotaryEmbedding(config=self.config) def _split_heads(self, fused_qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Split the last dimension into (num_heads, head_dim), results share same memory storage as `fused_qkv` Args: fused_qkv (`torch.tensor`): [batch_size, seq_length, num_heads * 3 * head_dim] Returns: query: [batch_size, seq_length, num_heads, head_dim] key: [batch_size, seq_length, num_heads, head_dim] value: [batch_size, seq_length, num_heads, head_dim] """ if self.new_decoder_architecture: batch, seq_len, _ = fused_qkv.shape qkv = fused_qkv.view(batch, seq_len, -1, self.num_heads // self.num_kv_heads + 2, self.head_dim) query = qkv[:, :, :, :-2] key = qkv[:, :, :, [-2]] value = qkv[:, :, :, [-1]] key = torch.broadcast_to(key, query.shape) value = torch.broadcast_to(value, query.shape) query, key, value = [x.flatten(2, 3) for x in (query, key, value)] return query, key, value elif not self.multi_query: batch_size, seq_length, three_times_hidden_size = fused_qkv.shape fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads, 3, self.head_dim) return fused_qkv[..., 0, :], fused_qkv[..., 1, :], fused_qkv[..., 2, :] else: batch_size, seq_length, three_times_hidden_size = fused_qkv.shape fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads + 2, self.head_dim) return fused_qkv[..., :-2, :], fused_qkv[..., [-2], :], fused_qkv[..., [-1], :] # Copied from transformers.models.bloom.modeling_bloom.BloomAttention._merge_heads def _merge_heads(self, x: torch.Tensor) -> torch.Tensor: """ Merge heads together over the last dimension Args: x (`torch.tensor`): [batch_size * num_heads, seq_length, head_dim] Returns: torch.tensor: [batch_size, seq_length, num_heads * head_dim] """ # What we want to achieve is: # batch_size * num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads * head_dim batch_size_and_num_heads, seq_length, _ = x.shape batch_size = batch_size_and_num_heads // self.num_heads # First view to decompose the batch size # batch_size * num_heads, seq_length, head_dim -> batch_size, num_heads, seq_length, head_dim x = x.view(batch_size, self.num_heads, seq_length, self.head_dim) # batch_size, num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads, head_dim x = x.permute(0, 2, 1, 3) # batch_size, seq_length, num_heads, head_dim -> batch_size, seq_length, num_heads * head_dim return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim) def forward( self, hidden_states: torch.Tensor, alibi: Optional[torch.Tensor], attention_mask: torch.Tensor, position_ids: Optional[torch.LongTensor] = None, layer_past: Optional[Cache] = None, head_mask: Optional[torch.Tensor] = None, use_cache: bool = False, output_attentions: bool = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC ): fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size] num_kv_heads = self.num_heads if self.new_decoder_architecture else self.num_kv_heads # 3 x [batch_size, seq_length, num_heads, head_dim] (query_layer, key_layer, value_layer) = self._split_heads(fused_qkv) batch_size, query_length, _, _ = query_layer.shape query_layer = query_layer.transpose(1, 2).reshape(batch_size, self.num_heads, query_length, self.head_dim) key_layer = key_layer.transpose(1, 2).reshape(batch_size, num_kv_heads, query_length, self.head_dim) value_layer = value_layer.transpose(1, 2).reshape(batch_size, num_kv_heads, query_length, self.head_dim) if alibi is None: cos, sin = position_embeddings query_layer, key_layer = apply_rotary_pos_emb(query_layer, key_layer, cos, sin) if layer_past is not None: cache_kwargs = {"cache_position": cache_position} if alibi is None: cache_kwargs.update({"sin": sin, "cos": cos}) key_layer, value_layer = layer_past.update(key_layer, value_layer, self.layer_idx, cache_kwargs) kv_length = key_layer.shape[-2] if self._use_sdpa and query_layer.device.type == "cuda" and attention_mask is not None: # For torch<=2.1.2, SDPA with memory-efficient backend is bugged with non-contiguous inputs with custom attn_mask, # Reference: https://github.com/pytorch/pytorch/issues/112577. query_layer = query_layer.contiguous() key_layer = key_layer.contiguous() value_layer = value_layer.contiguous() if attention_mask is not None: attention_mask = attention_mask[:, :, :, : key_layer.shape[-2]] if alibi is None: if self._use_sdpa and not output_attentions: # We dispatch to SDPA's Flash Attention or Efficient kernels via this if statement instead of an # inline conditional assignment to support both torch.compile's `dynamic=True` and `fullgraph=True` # The query_length > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not # create a causal mask in case query_length == 1. is_causal = True if self.is_causal and attention_mask is None and query_length > 1 else False attn_output = torch.nn.functional.scaled_dot_product_attention( query_layer, key_layer, value_layer, attn_mask=attention_mask, dropout_p=0.0, is_causal=is_causal, ) attention_scores = None else: attention_scores = query_layer @ key_layer.transpose(-1, -2) attention_scores /= math.sqrt(self.head_dim) attention_scores = F.softmax(attention_scores + attention_mask, dim=-1, dtype=hidden_states.dtype) # It is unclear why neither dropout nor head_mask is applied here (while it is with alibi). attn_output = attention_scores @ value_layer attn_output = attn_output.view(batch_size, self.num_heads, query_length, self.head_dim) attn_output = attn_output.permute(0, 2, 1, 3) attn_output = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim) attn_output = self.dense(attn_output) if output_attentions: return attn_output, layer_past, attention_scores else: return attn_output, layer_past else: if self._use_sdpa and not output_attentions and head_mask is None: # We dispatch to SDPA's Flash Attention or Efficient kernels via this if statement instead of an # inline conditional assignment to support both torch.compile's `dynamic=True` and `fullgraph=True` is_causal = True if self.is_causal and attention_mask is None and query_length > 1 else False attn_output = torch.nn.functional.scaled_dot_product_attention( query_layer, key_layer, value_layer, attn_mask=attention_mask, dropout_p=self.attention_dropout.p if self.training else 0.0, is_causal=is_causal, ) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim) attn_output = self.dense(attn_output) else: matmul_result = query_layer @ key_layer.transpose(-1, -2) # change view to [batch_size, num_heads, q_length, kv_length] attention_scores = matmul_result.view(batch_size, self.num_heads, query_length, kv_length) # cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length] input_dtype = attention_scores.dtype # `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38` if input_dtype == torch.float16 or input_dtype == torch.bfloat16: attention_scores = attention_scores.to(torch.float32) attention_logits = attention_scores + alibi.view(batch_size, self.num_heads, 1, -1) attention_logits *= self.inv_norm_factor attention_probs = F.softmax(attention_logits + attention_mask, dim=-1, dtype=hidden_states.dtype) # [batch_size, num_heads, q_length, kv_length] attention_probs = self.attention_dropout(attention_probs) if head_mask is not None: attention_probs = attention_probs * head_mask # change view [batch_size, num_heads, q_length, kv_length] attention_probs_reshaped = attention_probs.view(batch_size, self.num_heads, query_length, kv_length) # matmul: [batch_size * num_heads, q_length, head_dim] attn_output = (attention_probs_reshaped @ value_layer).flatten(0, 1) # change view [batch_size, q_length, num_heads * head_dim] attn_output = self._merge_heads(attn_output) attn_output = self.dense(attn_output) if output_attentions: return attn_output, layer_past, attention_probs else: return attn_output, layer_past
class_definition
10,051
22,570
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/falcon/modeling_falcon.py
null
9,353
class FalconFlashAttention2(FalconAttention): """ Falcon flash attention module. This module inherits from `FalconAttention` as the weights of the module stays untouched. The only required change would be on the forward pass where it needs to correctly call the public API of flash attention and deal with padding tokens in case the input contains any of them. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() def forward( self, hidden_states: torch.Tensor, alibi: Optional[torch.Tensor], attention_mask: torch.Tensor, position_ids: Optional[torch.LongTensor] = None, layer_past: Optional[Cache] = None, head_mask: Optional[torch.Tensor] = None, use_cache: bool = False, output_attentions: bool = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC ): fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size] num_kv_heads = self.num_heads if self.new_decoder_architecture else self.num_kv_heads # 3 x [batch_size, seq_length, num_heads, head_dim] (query_layer, key_layer, value_layer) = self._split_heads(fused_qkv) batch_size, query_length, _, _ = query_layer.shape query_layer = query_layer.transpose(1, 2).reshape(batch_size, self.num_heads, query_length, self.head_dim) key_layer = key_layer.transpose(1, 2).reshape(batch_size, num_kv_heads, query_length, self.head_dim) value_layer = value_layer.transpose(1, 2).reshape(batch_size, num_kv_heads, query_length, self.head_dim) if alibi is None: cos, sin = position_embeddings query_layer, key_layer = apply_rotary_pos_emb(query_layer, key_layer, cos, sin) if layer_past is not None: cache_kwargs = {"cache_position": cache_position} if alibi is None: cache_kwargs.update({"sin": sin, "cos": cos}) key_layer, value_layer = layer_past.update(key_layer, value_layer, self.layer_idx, cache_kwargs) # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache # to be able to avoid many of these transpose/reshape/view. query_layer = query_layer.transpose(1, 2) key_layer = key_layer.transpose(1, 2) value_layer = value_layer.transpose(1, 2) if alibi is not None: raise ValueError("`alibi` is not supported when `use_flash_attn` is True") attn_dropout = self.config.attention_dropout if self.training else 0.0 # In PEFT, usually we cast the layer norms in float32 for training stability reasons # therefore the input hidden states gets silently casted in float32. Hence, we need # cast them back in float16 just to be sure everything works as expected. input_dtype = query_layer.dtype if input_dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() # Handle the case where the model is quantized elif hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype else: target_dtype = self.query_key_value.weight.dtype logger.warning_once( f"The input hidden states seems to be silently casted in float32, this might be related to" f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" f" {target_dtype}." ) query_layer = query_layer.to(target_dtype) key_layer = key_layer.to(target_dtype) value_layer = value_layer.to(target_dtype) attn_output = _flash_attention_forward( query_layer, key_layer, value_layer, attention_mask, query_length, position_ids=position_ids, dropout=attn_dropout, is_causal=self.is_causal, use_top_left_mask=self._flash_attn_uses_top_left_mask, ) attn_weights = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim) attn_output = self.dense(attn_weights) if not output_attentions: attn_weights = None return attn_output, layer_past, attn_weights
class_definition
22,573
27,822
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/falcon/modeling_falcon.py
null
9,354
class FalconMLP(nn.Module): def __init__(self, config: FalconConfig): super().__init__() hidden_size = config.hidden_size self.dense_h_to_4h = FalconLinear(hidden_size, config.ffn_hidden_size, bias=config.bias) self.act = get_activation(config.activation) self.dense_4h_to_h = FalconLinear(config.ffn_hidden_size, hidden_size, bias=config.bias) self.hidden_dropout = config.hidden_dropout def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.act(self.dense_h_to_4h(x)) x = self.dense_4h_to_h(x) return x
class_definition
27,825
28,418
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/falcon/modeling_falcon.py
null
9,355
class FalconDecoderLayer(nn.Module): def __init__(self, config: FalconConfig, layer_idx=None): super().__init__() hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.self_attention = FALCON_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) self.mlp = FalconMLP(config) self.hidden_dropout = config.hidden_dropout self.config = config if config.num_ln_in_parallel_attn is None and config.new_decoder_architecture: config.num_ln_in_parallel_attn = 2 if not config.parallel_attn: self.post_attention_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.input_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) else: if config.num_ln_in_parallel_attn == 2: # The layer norm before self-attention self.ln_attn = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) # The layer norm before the MLP self.ln_mlp = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) else: self.input_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) def forward( self, hidden_states: torch.Tensor, alibi: Optional[torch.Tensor], attention_mask: torch.Tensor, position_ids: Optional[torch.LongTensor] = None, layer_past: Optional[Union[Cache, Tuple[torch.Tensor, torch.Tensor]]] = None, head_mask: Optional[torch.Tensor] = None, use_cache: bool = False, output_attentions: bool = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC **kwargs, ): residual = hidden_states if self.config.new_decoder_architecture and self.config.num_ln_in_parallel_attn == 2: attention_layernorm_out = self.ln_attn(hidden_states) mlp_layernorm_out = self.ln_mlp(hidden_states) else: attention_layernorm_out = self.input_layernorm(hidden_states) # Self attention. attn_outputs = self.self_attention( attention_layernorm_out, layer_past=layer_past, attention_mask=attention_mask, position_ids=position_ids, alibi=alibi, head_mask=head_mask, use_cache=use_cache, output_attentions=output_attentions, cache_position=cache_position, position_embeddings=position_embeddings, ) attention_output = attn_outputs[0] if not self.config.new_decoder_architecture: if self.config.parallel_attn: mlp_layernorm_out = attention_layernorm_out else: residual = dropout_add( attention_output, residual, self.config.attention_dropout, training=self.training ) mlp_layernorm_out = self.post_attention_layernorm(residual) if ( self.config.new_decoder_architecture and self.config.parallel_attn and self.config.num_ln_in_parallel_attn == 1 ): mlp_layernorm_out = attention_layernorm_out outputs = attn_outputs[1:] # MLP. mlp_output = self.mlp(mlp_layernorm_out) if self.config.new_decoder_architecture or self.config.parallel_attn: mlp_output += attention_output output = dropout_add(mlp_output, residual, self.config.hidden_dropout, training=self.training) if use_cache: outputs = (output,) + outputs else: outputs = (output,) + outputs[1:] return outputs # hidden_states, past_kv, attentions
class_definition
28,638
32,509
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/falcon/modeling_falcon.py
null
9,356
class FalconPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = FalconConfig base_model_prefix = "transformer" supports_gradient_checkpointing = True _no_split_modules = ["FalconDecoderLayer"] _supports_flash_attn_2 = True _supports_sdpa = True _supports_cache_class = True _supports_quantized_cache = True _supports_static_cache = True def __init__(self, *inputs, **kwargs): super().__init__(*inputs, **kwargs) def _init_weights(self, module: nn.Module): """Initialize the weights.""" if isinstance(module, nn.Linear) or isinstance(module, FalconLinear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) # Adapted from transformers.modeling_utils.PreTrainedModel._check_and_enable_sdpa @classmethod def _check_and_enable_sdpa(cls, config, hard_check_only: bool = False) -> "PretrainedConfig": _is_bettertransformer = getattr(cls, "use_bettertransformer", False) if _is_bettertransformer: return config if not hard_check_only: config._attn_implementation = "sdpa" return config
class_definition
38,058
39,960
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/falcon/modeling_falcon.py
null
9,357
class FalconModel(FalconPreTrainedModel): def __init__(self, config: FalconConfig): super().__init__(config) self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.use_alibi = config.alibi # Embedding + LN Embedding self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim) # Transformer blocks self.h = nn.ModuleList([FalconDecoderLayer(config, layer_idx=i) for i in range(config.num_hidden_layers)]) self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" self._use_sdpa = config._attn_implementation == "sdpa" # Final Layer Norm self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) self.rotary_emb = FalconRotaryEmbedding(config=config) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.word_embeddings def set_input_embeddings(self, new_embeddings: torch.Tensor): self.word_embeddings = new_embeddings @add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPastAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.Tensor, torch.Tensor], ...]]] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) # kept for BC (non `Cache` `past_key_values` inputs) return_legacy_cache = False if use_cache and not isinstance(past_key_values, Cache): return_legacy_cache = True if past_key_values is None: past_key_values = DynamicCache() else: past_key_values = DynamicCache.from_legacy_cache(past_key_values) logger.warning_once( "We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and " "will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class " "(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)" ) # Compute alibi tensor: check build_alibi_tensor documentation alibi = None past_key_values_length = past_key_values.get_seq_length() if past_key_values is not None else 0 batch_size, seq_length, _ = inputs_embeds.shape if self.use_alibi: mask = ( torch.ones( (batch_size, seq_length + past_key_values_length), device=inputs_embeds.device, dtype=torch.long ) if attention_mask is None else attention_mask ) alibi = build_alibi_tensor(mask, self.num_heads, dtype=inputs_embeds.dtype) if cache_position is None: cache_position = torch.arange( past_key_values_length, past_key_values_length + seq_length, device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask( attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions, head_mask, alibi ) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape batch_size x num_heads x N x N # head_mask has shape n_layer x batch x num_heads x N x N head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) hidden_states = inputs_embeds # create position embeddings to be shared across the decoder layers position_embeddings = self.rotary_emb(hidden_states, position_ids) next_decoder_cache = None all_self_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for i, block in enumerate(self.h): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: outputs = self._gradient_checkpointing_func( block.__call__, hidden_states, alibi, causal_mask, position_ids, head_mask[i], past_key_values, use_cache, output_attentions, cache_position, position_embeddings, ) else: outputs = block( hidden_states, layer_past=past_key_values, attention_mask=causal_mask, position_ids=position_ids, head_mask=head_mask[i], use_cache=use_cache, output_attentions=output_attentions, alibi=alibi, cache_position=cache_position, position_embeddings=position_embeddings, ) hidden_states = outputs[0] if use_cache is True: next_decoder_cache = outputs[1] if output_attentions: all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) # Add last hidden state hidden_states = self.ln_f(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) next_cache = next_decoder_cache if use_cache else None if return_legacy_cache: next_cache = next_cache.to_legacy_cache() if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attentions] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, ) def _update_causal_mask( self, attention_mask: torch.Tensor, input_tensor: torch.Tensor, cache_position: torch.Tensor, past_key_values: Cache, output_attentions: bool, head_mask: torch.Tensor, alibi: torch.Tensor, ): # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static # KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes. # (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using # `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114 if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and 0.0 in attention_mask: return attention_mask return None # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail # to infer the attention mask. past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 using_static_cache = isinstance(past_key_values, StaticCache) # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward if ( self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions and head_mask is None and alibi is None ): if AttentionMaskConverter._ignore_causal_mask_sdpa( attention_mask, inputs_embeds=input_tensor, past_key_values_length=past_seen_tokens, is_training=self.training, ): return None dtype, device = input_tensor.dtype, input_tensor.device min_dtype = torch.finfo(dtype).min batch_size, sequence_length, _ = input_tensor.shape if using_static_cache: target_length = past_key_values.get_max_cache_shape() else: target_length = ( attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else past_seen_tokens + sequence_length ) # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( attention_mask, sequence_length=sequence_length, target_length=target_length, dtype=dtype, device=device, cache_position=cache_position, batch_size=input_tensor.shape[0], ) # We take care to integrate alibi bias in the causal_mask here if head_mask is None and alibi is not None: alibi = alibi.reshape(batch_size, -1, *alibi.shape[1:]) causal_mask = torch.masked_fill( alibi / math.sqrt(self.config.hidden_size // self.num_heads), causal_mask < -1, min_dtype, ) if ( self.config._attn_implementation == "sdpa" and attention_mask is not None and attention_mask.device.type == "cuda" and not output_attentions ): # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) return causal_mask @staticmethod # Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel._prepare_4d_causal_attention_mask_with_cache_position def _prepare_4d_causal_attention_mask_with_cache_position( attention_mask: torch.Tensor, sequence_length: int, target_length: int, dtype: torch.dtype, device: torch.device, cache_position: torch.Tensor, batch_size: int, **kwargs, ): """ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. Args: attention_mask (`torch.Tensor`): A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. sequence_length (`int`): The sequence length being processed. target_length (`int`): The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. dtype (`torch.dtype`): The dtype to use for the 4D attention mask. device (`torch.device`): The device to plcae the 4D attention mask on. cache_position (`torch.Tensor`): Indices depicting the position of the input sequence tokens in the sequence. batch_size (`torch.Tensor`): Batch size. """ if attention_mask is not None and attention_mask.dim() == 4: # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. causal_mask = attention_mask else: min_dtype = torch.finfo(dtype).min causal_mask = torch.full( (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device ) if sequence_length != 1: causal_mask = torch.triu(causal_mask, diagonal=1) causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit mask_length = attention_mask.shape[-1] padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] padding_mask = padding_mask == 0 causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( padding_mask, min_dtype ) return causal_mask
class_definition
40,120
54,981
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/falcon/modeling_falcon.py
null
9,358
class FalconForCausalLM(FalconPreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config: FalconConfig): super().__init__(config) self.transformer = FalconModel(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings: torch.Tensor): self.lm_head = new_embeddings @add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.Tensor, torch.Tensor], ...]]] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, num_logits_to_keep: int = 0, ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` num_logits_to_keep (`int`, *optional*): Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences or large vocabulary size. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, ) hidden_states = transformer_outputs[0] lm_logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :]) loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() batch_size, seq_length, vocab_size = shift_logits.shape # Flatten the tokens loss_fct = CrossEntropyLoss() loss = loss_fct( shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length) ) if not return_dict: output = (lm_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return CausalLMOutputWithCrossAttentions( loss=loss, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def _reorder_cache( self, past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]: """ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct beam_idx at every generation step. Output shares the same memory storage as `past`. """ # Get a copy of `beam_idx` on all the devices where we need those indices. device_to_beam_idx = { past_state.device: beam_idx.to(past_state.device) for layer_past in past for past_state in layer_past } reordered_past = tuple( ( layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]), layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]), ) for layer_past in past ) return reordered_past
class_definition
55,168
60,400
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/falcon/modeling_falcon.py
null
9,359
class FalconForSequenceClassification(FalconPreTrainedModel): def __init__(self, config: FalconConfig): super().__init__(config) self.num_labels = config.num_labels self.transformer = FalconModel(config) self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutputWithPast, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 sequence_lengths = sequence_lengths % input_ids.shape[-1] sequence_lengths = sequence_lengths.to(logits.device) else: sequence_lengths = -1 logger.warning_once( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " "unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )
class_definition
61,196
66,279
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/falcon/modeling_falcon.py
null
9,360
class FalconForTokenClassification(FalconPreTrainedModel): def __init__(self, config: FalconConfig): super().__init__(config) self.num_labels = config.num_labels self.transformer = FalconModel(config) if getattr(config, "classifier_dropout", None) is not None: classifier_dropout = config.classifier_dropout elif getattr(config, "hidden_dropout", None) is not None: classifier_dropout = config.hidden_dropout else: classifier_dropout = 0.1 self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] hidden_states = self.dropout(hidden_states) logits = self.classifier(hidden_states) loss = None if labels is not None: batch_size, seq_length = labels.shape loss_fct = CrossEntropyLoss() loss = loss_fct( logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length) ) if not return_dict: output = (logits,) + transformer_outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )
class_definition
66,512
69,849
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/falcon/modeling_falcon.py
null
9,361
class FalconForQuestionAnswering(FalconPreTrainedModel): def __init__(self, config): super().__init__(config) self.transformer = FalconModel(config) self.qa_outputs = nn.Linear(config.hidden_size, 2) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.transformer( input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
70,156
73,912
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/falcon/modeling_falcon.py
null
9,362
class FalconConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`FalconModel`]. It is used to instantiate a Falcon model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 65024): Vocabulary size of the Falcon model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`FalconModel`] hidden_size (`int`, *optional*, defaults to 4544): Dimension of the hidden representations. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer decoder. num_attention_heads (`int`, *optional*, defaults to 71): Number of attention heads for each attention layer in the Transformer encoder. num_ln_in_parallel_attn (`int`, *optional*): Set to 2 if separate layer norms are to be used for the MLP and the attention output when using parallel attention, otherwise, 1. layer_norm_epsilon (`float`, *optional*, defaults to 1e-05): The epsilon used by the layer normalization layers. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. use_cache (`bool`, *optional*, defaults to `True`): Whether the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. hidden_dropout (`float`, *optional*, defaults to 0.0): The dropout probability for MLP layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout probability for attention layers. num_kv_heads (`int`, *optional*): Number of key-value heads to use per attention layer. If unset, defaults to the same value as `num_attention_heads`. alibi (`bool`, *optional*, defaults to `False`): Whether to use ALiBi positional biases during self-attention. new_decoder_architecture (`bool`, *optional*, defaults to `False`): Whether to use the new (Falcon-40B) decoder architecture. If `True`, the `multi_query` and `parallel_attn` arguments are ignored, as the new decoder always uses parallel attention. multi_query (`bool`, *optional*, defaults to `True`): Whether to use multi-query attention in the decoder. Ignored when `new_decoder_architecture` is `True`. parallel_attn (`bool`, *optional*, defaults to `True`): Whether to compute attention in parallel with the feedforward layer. If False, they are consecutive instead, as in the original Transformer architecture. Ignored when `new_decoder_architecture` is `True`. bias (`bool`, *optional*, defaults to `False`): Whether to use bias on Linear layers. max_position_embeddings (`int`, *optional*, defaults to 2048): The maximum sequence length that this model might ever be used with, when `alibi` is `False`. Pretrained Falcon models with RoPE support up to 2048 tokens. rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. rope_scaling (`Dict`, *optional*): Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value accordingly. Expected contents: `rope_type` (`str`): The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', 'llama3'], with 'default' being the original RoPE implementation. `factor` (`float`, *optional*): Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In most scaling types, a `factor` of x will enable the model to handle sequences of length x * original maximum pre-trained length. `original_max_position_embeddings` (`int`, *optional*): Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during pretraining. `attention_factor` (`float`, *optional*): Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention computation. If unspecified, it defaults to value recommended by the implementation, using the `factor` field to infer the suggested value. `beta_fast` (`float`, *optional*): Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear ramp function. If unspecified, it defaults to 32. `beta_slow` (`float`, *optional*): Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear ramp function. If unspecified, it defaults to 1. `short_factor` (`List[float]`, *optional*): Only used with 'longrope'. The scaling factor to be applied to short contexts (< `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2 `long_factor` (`List[float]`, *optional*): Only used with 'longrope'. The scaling factor to be applied to long contexts (< `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2 `low_freq_factor` (`float`, *optional*): Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE `high_freq_factor` (`float`, *optional*): Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE bos_token_id (`int`, *optional*, defaults to 11): The id of the "beginning-of-sequence" token. eos_token_id (`int`, *optional*, defaults to 11): The id of the "end-of-sequence" token. ffn_hidden_size (`int`, *optional*): The hidden size of the feedforward layer in the Transformer decoder. defaults to 4x hidden dim activation (`str`, *optional*, defaults to `"gelu"`): The activation function used in the feedforward layer. Example: ```python >>> from transformers import FalconModel, FalconConfig >>> # Initializing a small (2-layer) Falcon configuration >>> configuration = FalconConfig(num_hidden_layers=2) >>> # Initializing a model from the small configuration >>> model = FalconModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "falcon" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=65024, hidden_size=4544, num_hidden_layers=32, num_attention_heads=71, num_ln_in_parallel_attn=None, layer_norm_epsilon=1e-5, initializer_range=0.02, use_cache=True, hidden_dropout=0.0, attention_dropout=0.0, num_kv_heads=None, alibi=False, new_decoder_architecture=False, multi_query=True, parallel_attn=True, bias=False, max_position_embeddings=2048, rope_theta=10000.0, rope_scaling=None, bos_token_id=11, eos_token_id=11, ffn_hidden_size=None, activation="gelu", **kwargs, ): self.vocab_size = vocab_size # Backward compatibility with n_embed kwarg n_embed = kwargs.pop("n_embed", None) self.hidden_size = hidden_size if n_embed is None else n_embed self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.layer_norm_epsilon = layer_norm_epsilon self.initializer_range = initializer_range self.use_cache = use_cache self.hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id self.num_kv_heads = num_attention_heads if num_kv_heads is None else num_kv_heads self.alibi = alibi self.new_decoder_architecture = new_decoder_architecture self.multi_query = multi_query # Ignored when new_decoder_architecture is True self.parallel_attn = parallel_attn self.bias = bias self.num_ln_in_parallel_attn = num_ln_in_parallel_attn self.max_position_embeddings = max_position_embeddings self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.activation = activation if ffn_hidden_size is None: self.ffn_hidden_size = hidden_size * 4 else: self.ffn_hidden_size = ffn_hidden_size super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) @property def head_dim(self): return self.hidden_size // self.num_attention_heads @property def rotary(self): return not self.alibi
class_definition
797
10,887
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/falcon/configuration_falcon.py
null
9,363
class BlenderbotSmallLearnedPositionalEmbedding(nn.Embedding): """ This module learns positional embeddings up to a fixed maximum size. """ def __init__(self, num_embeddings: int, embedding_dim: int): super().__init__(num_embeddings, embedding_dim) def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0): """`input_ids_shape` is expected to be [bsz x seqlen].""" bsz, seq_len = input_ids_shape[:2] positions = torch.arange( past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device ) return super().forward(positions)
class_definition
2,402
3,070
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot_small/modeling_blenderbot_small.py
null
9,364
class BlenderbotSmallAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, is_causal: bool = False, config: Optional[BlenderbotSmallConfig] = None, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads self.config = config if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.is_causal = is_causal self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.reshape(*proj_shape) value_states = value_states.reshape(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value
class_definition
3,167
10,579
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot_small/modeling_blenderbot_small.py
null
9,365
class BlenderbotSmallEncoderLayer(nn.Module): def __init__(self, config: BlenderbotSmallConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = BLENDERBOT_SMALL_ATTENTION_CLASSES[config._attn_implementation]( embed_dim=self.embed_dim, num_heads=config.encoder_attention_heads, dropout=config.attention_dropout, config=config, ) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.FloatTensor, attention_mask: torch.FloatTensor, layer_head_mask: torch.FloatTensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states, attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) if hidden_states.dtype == torch.float16 and ( torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() ): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs
class_definition
10,703
13,935
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot_small/modeling_blenderbot_small.py
null
9,366
class BlenderbotSmallDecoderLayer(nn.Module): def __init__(self, config: BlenderbotSmallConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = BLENDERBOT_SMALL_ATTENTION_CLASSES[config._attn_implementation]( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, is_causal=True, config=config, ) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.encoder_attn = BLENDERBOT_SMALL_ATTENTION_CLASSES[config._attn_implementation]( self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, config=config, ) self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, cross_attn_layer_head_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = True, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)` encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of size `(decoder_attention_heads,)`. past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) if use_cache: outputs += (present_key_value,) return outputs
class_definition
14,206
20,191
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot_small/modeling_blenderbot_small.py
null
9,367
class BlenderbotSmallPreTrainedModel(PreTrainedModel): config_class = BlenderbotSmallConfig base_model_prefix = "model" supports_gradient_checkpointing = True def _init_weights(self, module): std = self.config.init_std if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() @property def dummy_inputs(self): pad_token = self.config.pad_token_id input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device) dummy_inputs = { "attention_mask": input_ids.ne(pad_token), "input_ids": input_ids, "decoder_input_ids": input_ids, } return dummy_inputs
class_definition
20,194
21,218
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot_small/modeling_blenderbot_small.py
null
9,368
class BlenderbotSmallEncoder(BlenderbotSmallPreTrainedModel): """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`BlenderbotSmallEncoderLayer`]. Args: config: BlenderbotSmallConfig embed_tokens (nn.Embedding): output embedding """ def __init__(self, config: BlenderbotSmallConfig, embed_tokens: Optional[nn.Embedding] = None): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.encoder_layerdrop embed_dim = config.d_model self.padding_idx = config.pad_token_id self.max_source_positions = config.max_position_embeddings self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 if embed_tokens is not None: self.embed_tokens = embed_tokens else: self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx) self.embed_positions = BlenderbotSmallLearnedPositionalEmbedding( config.max_position_embeddings, embed_dim, ) self.layers = nn.ModuleList([BlenderbotSmallEncoderLayer(config) for _ in range(config.encoder_layers)]) self.layernorm_embedding = nn.LayerNorm(embed_dim) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def forward( self, input_ids=None, attention_mask=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale embed_pos = self.embed_positions(input_shape) hidden_states = inputs_embeds + embed_pos hidden_states = self.layernorm_embedding(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) # expand attention_mask if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: if head_mask.size()[0] != len(self.layers): raise ValueError( f"The head_mask should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) to_drop = False if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: # skip the layer to_drop = True if to_drop: layer_outputs = (None, None) else: if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, (head_mask[idx] if head_mask is not None else None), output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions )
class_definition
29,582
37,330
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot_small/modeling_blenderbot_small.py
null
9,369
class BlenderbotSmallDecoder(BlenderbotSmallPreTrainedModel): """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`BlenderbotSmallDecoderLayer`] Args: config: BlenderbotSmallConfig embed_tokens (nn.Embedding): output embedding """ def __init__(self, config: BlenderbotSmallConfig, embed_tokens: Optional[nn.Embedding] = None): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.decoder_layerdrop self.padding_idx = config.pad_token_id self.max_target_positions = config.max_position_embeddings self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 if embed_tokens is not None: self.embed_tokens = embed_tokens else: self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx) self.embed_positions = BlenderbotSmallLearnedPositionalEmbedding( config.max_position_embeddings, config.d_model, ) self.layers = nn.ModuleList([BlenderbotSmallDecoderLayer(config) for _ in range(config.decoder_layers)]) self.layernorm_embedding = nn.LayerNorm(config.d_model) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value def forward( self, input_ids=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing cross-attention on hidden heads. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale attention_mask = _prepare_4d_causal_attention_mask( attention_mask, input_shape, inputs_embeds, past_key_values_length ) # expand encoder attention mask if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _prepare_4d_attention_mask( encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] ) # embed positions positions = self.embed_positions(input_shape, past_key_values_length) # BlenderbotSmall applies layer norm on hidden_states inputs_embeds = self.layernorm_embedding(inputs_embeds) hidden_states = inputs_embeds + positions hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None next_decoder_cache = () if use_cache else None # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): if attn_mask is not None: if attn_mask.size()[0] != len(self.layers): raise ValueError( f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: continue past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, head_mask[idx] if head_mask is not None else None, cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, None, output_attentions, use_cache, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), cross_attn_layer_head_mask=( cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None ), past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, )
class_definition
37,333
49,821
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot_small/modeling_blenderbot_small.py
null
9,370
class BlenderbotSmallModel(BlenderbotSmallPreTrainedModel): _tied_weights_keys = ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight"] def __init__(self, config: BlenderbotSmallConfig): super().__init__(config) padding_idx, vocab_size = config.pad_token_id, config.vocab_size self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx) self.encoder = BlenderbotSmallEncoder(config, self.shared) self.decoder = BlenderbotSmallDecoder(config, self.shared) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.shared def set_input_embeddings(self, value): self.shared = value self.encoder.embed_tokens = self.shared self.decoder.embed_tokens = self.shared def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder @add_start_docstrings_to_model_forward(BLENDERBOT_SMALL_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Union[Tuple, BaseModelOutput]] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.Tensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]: r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, BlenderbotSmallModel >>> model = BlenderbotSmallModel.from_pretrained("facebook/blenderbot_small-90M") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M") >>> inputs = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt") >>> decoder_inputs = tokenizer("Studies show that", return_tensors="pt") # Batch size 1 >>> outputs = model(input_ids=inputs.input_ids, decoder_input_ids=decoder_inputs.input_ids) >>> last_hidden_states = outputs.last_hidden_state >>> list(last_hidden_states.shape) [1, 3, 512] ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return decoder_outputs + encoder_outputs return Seq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, )
class_definition
49,988
55,498
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot_small/modeling_blenderbot_small.py
null
9,371
class BlenderbotSmallForConditionalGeneration(BlenderbotSmallPreTrainedModel, GenerationMixin): base_model_prefix = "model" _keys_to_ignore_on_load_missing = ["final_logits_bias"] _tied_weights_keys = ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "lm_head.weight"] def __init__(self, config: BlenderbotSmallConfig): super().__init__(config) self.model = BlenderbotSmallModel(config) self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings))) self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False) # Initialize weights and apply final processing self.post_init() def get_encoder(self): return self.model.get_encoder() def get_decoder(self): return self.model.get_decoder() def resize_token_embeddings(self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None) -> nn.Embedding: new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of) self._resize_final_logits_bias(new_embeddings.weight.shape[0]) return new_embeddings def _resize_final_logits_bias(self, new_num_tokens: int) -> None: old_num_tokens = self.final_logits_bias.shape[-1] if new_num_tokens <= old_num_tokens: new_bias = self.final_logits_bias[:, :new_num_tokens] else: extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device) new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1) self.register_buffer("final_logits_bias", new_bias) def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings @add_start_docstrings_to_model_forward(BLENDERBOT_SMALL_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) @add_end_docstrings(BLENDERBOT_SMALL_GENERATION_EXAMPLE) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Union[Tuple, BaseModelOutput]] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.Tensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: if use_cache: logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.") use_cache = False if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) outputs = self.model( input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, encoder_outputs=encoder_outputs, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return Seq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: # cached cross_attention states don't have to be reordered -> they are always the same reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2]) + layer_past[2:], ) return reordered_past
class_definition
55,659
61,857
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot_small/modeling_blenderbot_small.py
null
9,372
class BlenderbotSmallDecoderWrapper(BlenderbotSmallPreTrainedModel): """ This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is used in combination with the [`EncoderDecoderModel`] framework. """ def __init__(self, config): super().__init__(config) self.decoder = BlenderbotSmallDecoder(config) def forward(self, *args, **kwargs): return self.decoder(*args, **kwargs)
class_definition
61,959
62,433
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot_small/modeling_blenderbot_small.py
null
9,373
class BlenderbotSmallForCausalLM(BlenderbotSmallPreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): config = copy.deepcopy(config) config.is_decoder = True config.is_encoder_decoder = False super().__init__(config) self.model = BlenderbotSmallDecoderWrapper(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.decoder.embed_tokens def set_input_embeddings(self, value): self.model.decoder.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model.decoder = decoder def get_decoder(self): return self.model.decoder @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional tensors are only required when the model is used as a decoder in a Sequence to Sequence model. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. Returns: Example: ```python >>> from transformers import AutoTokenizer, BlenderbotSmallForCausalLM >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M") >>> model = BlenderbotSmallForCausalLM.from_pretrained("facebook/blenderbot_small-90M", add_cross_attention=False) >>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder." >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size] >>> list(logits.shape) == expected_shape True ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model.decoder( input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, head_mask=head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = self.lm_head(outputs[0]) loss = None if labels is not None: labels = labels.to(logits.device) loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithCrossAttentions( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past
class_definition
62,583
71,991
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot_small/modeling_blenderbot_small.py
null
9,374
class FlaxBlenderbotSmallAttention(nn.Module): config: BlenderbotSmallConfig embed_dim: int num_heads: int dropout: float = 0.0 causal: bool = False bias: bool = True dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self) -> None: self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {self.num_heads})." ) dense = partial( nn.Dense, self.embed_dim, use_bias=self.bias, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense() self.out_proj = dense() self.dropout_layer = nn.Dropout(rate=self.dropout) if self.causal: self.causal_mask = make_causal_mask( jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool" ) def _split_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) @nn.compact def _concatenate_to_cache(self, key, value, query, attention_mask): """ This function takes projected key, value states from a single input token and concatenates the states to cached states from previous steps. This function is slighly adapted from the official Flax repository: https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 """ # detect if we're initializing by absence of existing cache data. is_initialized = self.has_variable("cache", "cached_key") cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) if is_initialized: *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape # update key, value caches with our new 1d spatial slices cur_index = cache_index.value indices = (0,) * len(batch_dims) + (cur_index, 0, 0) key = lax.dynamic_update_slice(cached_key.value, key, indices) value = lax.dynamic_update_slice(cached_value.value, value, indices) cached_key.value = key cached_value.value = value num_updated_cache_vectors = query.shape[1] cache_index.value = cache_index.value + num_updated_cache_vectors # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements. pad_mask = jnp.broadcast_to( jnp.arange(max_length) < cur_index + num_updated_cache_vectors, tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), ) attention_mask = combine_masks(pad_mask, attention_mask) return key, value, attention_mask def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None batch_size = hidden_states.shape[0] # get query proj query_states = self.q_proj(hidden_states) # get key, value proj if is_cross_attention: # cross_attentions key_states = self.k_proj(key_value_states) value_states = self.v_proj(key_value_states) else: # self_attention key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = self._split_heads(query_states) key_states = self._split_heads(key_states) value_states = self._split_heads(value_states) # handle cache prepare causal attention mask if self.causal: query_length, key_length = query_states.shape[1], key_states.shape[1] if self.has_variable("cache", "cached_key"): mask_shift = self.variables["cache"]["cache_index"] max_decoder_length = self.variables["cache"]["cached_key"].shape[1] causal_mask = lax.dynamic_slice( self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length) ) else: causal_mask = self.causal_mask[:, :, :query_length, :key_length] causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) # combine masks if needed if attention_mask is not None and self.causal: attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) attention_mask = combine_masks(attention_mask, causal_mask) elif self.causal: attention_mask = causal_mask elif attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.causal and (self.has_variable("cache", "cached_key") or init_cache): key_states, value_states, attention_mask = self._concatenate_to_cache( key_states, value_states, query_states, attention_mask ) # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of attention bias attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), ) else: attention_bias = None dropout_rng = None if not deterministic and self.dropout > 0.0: dropout_rng = self.make_rng("dropout") attn_weights = dot_product_attention_weights( query_states, key_states, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.dropout, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, precision=None, ) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) attn_output = self._merge_heads(attn_output) attn_output = self.out_proj(attn_output) return attn_output, attn_weights
class_definition
12,472
19,887
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot_small/modeling_flax_blenderbot_small.py
null
9,375
class FlaxBlenderbotSmallEncoderLayer(nn.Module): config: BlenderbotSmallConfig dtype: jnp.dtype = jnp.float32 def setup(self) -> None: self.embed_dim = self.config.d_model self.self_attn = FlaxBlenderbotSmallAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.encoder_attention_heads, dropout=self.config.attention_dropout, dtype=self.dtype, ) self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.activation_fn = ACT2FN[self.config.activation_function] self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) self.fc1 = nn.Dense( self.config.encoder_ffn_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.fc2 = nn.Dense( self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) ) self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: residual = hidden_states hidden_states, attn_weights = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs
class_definition
19,996
22,311
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot_small/modeling_flax_blenderbot_small.py
null
9,376
class FlaxBlenderbotSmallEncoderLayerCollection(nn.Module): config: BlenderbotSmallConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layers = [ FlaxBlenderbotSmallEncoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.encoder_layers) ] self.layerdrop = self.config.encoder_layerdrop def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for encoder_layer in self.layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if not deterministic and (dropout_probability < self.layerdrop): # skip the layer layer_outputs = (None, None) else: layer_outputs = encoder_layer( hidden_states, attention_mask, output_attentions, deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states += (hidden_states,) outputs = (hidden_states, all_hidden_states, all_attentions) if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions )
class_definition
22,430
24,414
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot_small/modeling_flax_blenderbot_small.py
null
9,377
class FlaxBlenderbotSmallDecoderLayer(nn.Module): config: BlenderbotSmallConfig dtype: jnp.dtype = jnp.float32 def setup(self) -> None: self.embed_dim = self.config.d_model self.self_attn = FlaxBlenderbotSmallAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, causal=True, dtype=self.dtype, ) self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.activation_fn = ACT2FN[self.config.activation_function] self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.encoder_attn = FlaxBlenderbotSmallAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, dtype=self.dtype, ) self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.fc1 = nn.Dense( self.config.decoder_ffn_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.fc2 = nn.Dense( self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) ) self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: residual = hidden_states # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, init_cache=init_cache ) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Cross-Attention Block cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states, cross_attn_weights = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, ) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # Fully Connected residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) return outputs
class_definition
24,523
28,113
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot_small/modeling_flax_blenderbot_small.py
null
9,378
class FlaxBlenderbotSmallDecoderLayerCollection(nn.Module): config: BlenderbotSmallConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layers = [ FlaxBlenderbotSmallDecoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.decoder_layers) ] self.layerdrop = self.config.decoder_layerdrop def __call__( self, hidden_states, attention_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if not deterministic and (dropout_probability < self.layerdrop): layer_outputs = (None, None, None) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, init_cache=init_cache, output_attentions=output_attentions, deterministic=deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) outputs = [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions] if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, )
class_definition
28,232
30,982
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot_small/modeling_flax_blenderbot_small.py
null
9,379
class FlaxBlenderbotSmallEncoder(nn.Module): config: BlenderbotSmallConfig embed_tokens: nn.Embed dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dropout_layer = nn.Dropout(rate=self.config.dropout) embed_dim = self.config.d_model self.padding_idx = self.config.pad_token_id self.max_source_positions = self.config.max_position_embeddings self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0 self.embed_positions = nn.Embed( self.config.max_position_embeddings, embed_dim, embedding_init=jax.nn.initializers.normal(self.config.init_std), ) self.layers = FlaxBlenderbotSmallEncoderLayerCollection(self.config, self.dtype) self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, input_ids, attention_mask, position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): input_shape = input_ids.shape input_ids = input_ids.reshape(-1, input_shape[-1]) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale embed_pos = self.embed_positions(position_ids) hidden_states = inputs_embeds + embed_pos hidden_states = self.layernorm_embedding(hidden_states) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) outputs = self.layers( hidden_states, attention_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return outputs return FlaxBaseModelOutput( last_hidden_state=outputs.last_hidden_state, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
30,985
33,088
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot_small/modeling_flax_blenderbot_small.py
null
9,380
class FlaxBlenderbotSmallDecoder(nn.Module): config: BlenderbotSmallConfig embed_tokens: nn.Embed dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dropout_layer = nn.Dropout(rate=self.config.dropout) embed_dim = self.config.d_model self.padding_idx = self.config.pad_token_id self.max_target_positions = self.config.max_position_embeddings self.embed_scale = math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0 self.embed_positions = nn.Embed( self.config.max_position_embeddings, embed_dim, embedding_init=jax.nn.initializers.normal(self.config.init_std), ) self.layers = FlaxBlenderbotSmallDecoderLayerCollection(self.config, self.dtype) self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, input_ids, attention_mask, position_ids, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): input_shape = input_ids.shape input_ids = input_ids.reshape(-1, input_shape[-1]) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale # embed positions positions = self.embed_positions(position_ids) # BlenderbotSmall applies layer norm on inputs_embeds in decoder inputs_embeds = self.layernorm_embedding(inputs_embeds) hidden_states = inputs_embeds + positions hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) outputs = self.layers( hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return outputs return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=outputs.last_hidden_state, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, )
class_definition
33,091
35,649
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot_small/modeling_flax_blenderbot_small.py
null
9,381
class FlaxBlenderbotSmallModule(nn.Module): config: BlenderbotSmallConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.shared = nn.Embed( self.config.vocab_size, self.config.d_model, embedding_init=jax.nn.initializers.normal(self.config.init_std), dtype=self.dtype, ) self.encoder = FlaxBlenderbotSmallEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared) self.decoder = FlaxBlenderbotSmallDecoder(self.config, dtype=self.dtype, embed_tokens=self.shared) def _get_encoder_module(self): return self.encoder def _get_decoder_module(self): return self.decoder def __call__( self, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) if not return_dict: return decoder_outputs + encoder_outputs return FlaxSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, )
class_definition
35,752
38,233
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot_small/modeling_flax_blenderbot_small.py
null
9,382
class FlaxBlenderbotSmallPreTrainedModel(FlaxPreTrainedModel): config_class = BlenderbotSmallConfig base_model_prefix: str = "model" module_class: nn.Module = None def __init__( self, config: BlenderbotSmallConfig, input_shape: Tuple[int] = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_ids = jnp.zeros(input_shape, dtype="i4") # make sure initialization pass will work for FlaxBlenderbotSmallForSequenceClassificationModule input_ids = input_ids.at[(..., -1)].set(self.config.eos_token_id) attention_mask = jnp.ones_like(input_ids) decoder_input_ids = input_ids decoder_attention_mask = jnp.ones_like(input_ids) batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init( rngs, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, )["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params def init_cache(self, batch_size, max_length, encoder_outputs): r""" Args: batch_size (`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`): `encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. """ # init input variables to retrieve cache decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4") decoder_attention_mask = jnp.ones_like(decoder_input_ids) decoder_position_ids = jnp.broadcast_to( jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape ) def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() return decoder_module( decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs, ) init_variables = self.module.init( jax.random.PRNGKey(0), decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], init_cache=True, method=_decoder_forward, # we only need to call the decoder to init the cache ) return unfreeze(init_variables["cache"]) @add_start_docstrings(BLENDERBOT_SMALL_ENCODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=BlenderbotSmallConfig) def encode( self, input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, position_ids: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxBlenderbotSmallForConditionalGeneration >>> model = FlaxBlenderbotSmallForConditionalGeneration.from_pretrained("facebook/blenderbot_small-90M") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, max_length=1024, return_tensors="np") >>> encoder_outputs = model.encode(**inputs) ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict if attention_mask is None: attention_mask = jnp.ones_like(input_ids) if position_ids is None: batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng def _encoder_forward(module, input_ids, attention_mask, position_ids, **kwargs): encode_module = module._get_encoder_module() return encode_module(input_ids, attention_mask, position_ids, **kwargs) return self.module.apply( {"params": params or self.params}, input_ids=jnp.array(input_ids, dtype="i4"), attention_mask=jnp.array(attention_mask, dtype="i4"), position_ids=jnp.array(position_ids, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, method=_encoder_forward, ) @add_start_docstrings(BLENDERBOT_SMALL_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings( output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=BlenderbotSmallConfig ) def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> import jax.numpy as jnp >>> from transformers import AutoTokenizer, FlaxBlenderbotSmallForConditionalGeneration >>> model = FlaxBlenderbotSmallForConditionalGeneration.from_pretrained("facebook/blenderbot_small-90M") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, max_length=1024, return_tensors="np") >>> encoder_outputs = model.encode(**inputs) >>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> last_decoder_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] if encoder_attention_mask is None: batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) batch_size, sequence_length = decoder_input_ids.shape if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) if decoder_position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxBlenderbotSmallAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() return decoder_module( decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs, ) outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past = outputs outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past = outputs outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs def __call__( self, input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, decoder_input_ids: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, position_ids: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # prepare encoder inputs if attention_mask is None: attention_mask = jnp.ones_like(input_ids) if position_ids is None: batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) # prepare decoder inputs if decoder_input_ids is None: decoder_input_ids = shift_tokens_right( input_ids, self.config.pad_token_id, decoder_start_token_id=self.config.decoder_start_token_id ) if decoder_attention_mask is None: decoder_attention_mask = jnp.ones_like(decoder_input_ids) if decoder_position_ids is None: batch_size, sequence_length = decoder_input_ids.shape decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {"dropout": dropout_rng} if dropout_rng is not None else {} return self.module.apply( {"params": params or self.params}, input_ids=jnp.array(input_ids, dtype="i4"), attention_mask=jnp.array(attention_mask, dtype="i4"), position_ids=jnp.array(position_ids, dtype="i4"), decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, )
class_definition
38,236
52,841
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot_small/modeling_flax_blenderbot_small.py
null
9,383
class FlaxBlenderbotSmallModel(FlaxBlenderbotSmallPreTrainedModel): config: BlenderbotSmallConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation module_class = FlaxBlenderbotSmallModule
class_definition
53,020
53,233
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot_small/modeling_flax_blenderbot_small.py
null
9,384
class FlaxBlenderbotSmallForConditionalGenerationModule(nn.Module): config: BlenderbotSmallConfig dtype: jnp.dtype = jnp.float32 bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros def setup(self): self.model = FlaxBlenderbotSmallModule(config=self.config, dtype=self.dtype) self.lm_head = nn.Dense( self.model.shared.num_embeddings, use_bias=False, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, self.model.shared.num_embeddings)) def _get_encoder_module(self): return self.model.encoder def _get_decoder_module(self): return self.model.decoder def __call__( self, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, position_ids=position_ids, decoder_position_ids=decoder_position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = self.model.variables["params"]["shared"]["embedding"] lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) else: lm_logits = self.lm_head(hidden_states) lm_logits += jax.lax.stop_gradient(self.final_logits_bias.astype(self.dtype)) if not return_dict: output = (lm_logits,) + outputs[1:] return output return FlaxSeq2SeqLMOutput( logits=lm_logits, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, )
class_definition
53,479
56,099
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot_small/modeling_flax_blenderbot_small.py
null
9,385
class FlaxBlenderbotSmallForConditionalGeneration(FlaxBlenderbotSmallPreTrainedModel): module_class = FlaxBlenderbotSmallForConditionalGenerationModule dtype: jnp.dtype = jnp.float32 @add_start_docstrings(BLENDERBOT_SMALL_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=BlenderbotSmallConfig) def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, deterministic: bool = True, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> import jax.numpy as jnp >>> from transformers import AutoTokenizer, FlaxBlenderbotSmallForConditionalGeneration >>> model = FlaxBlenderbotSmallForConditionalGeneration.from_pretrained("facebook/blenderbot_small-90M") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, max_length=1024, return_tensors="np") >>> encoder_outputs = model.encode(**inputs) >>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> logits = outputs.logits ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] if encoder_attention_mask is None: batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) batch_size, sequence_length = decoder_input_ids.shape if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) if decoder_position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxBlenderbotSmallAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() outputs = decoder_module( decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = module.model.variables["params"]["shared"]["embedding"] lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) else: lm_logits = module.lm_head(hidden_states) lm_logits += module.final_logits_bias.astype(self.dtype) return lm_logits, outputs outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, rngs=rngs, mutable=mutable, method=_decoder_forward, ) if past_key_values is None: lm_logits, decoder_outputs = outputs else: (lm_logits, decoder_outputs), past = outputs if return_dict: outputs = FlaxCausalLMOutputWithCrossAttentions( logits=lm_logits, hidden_states=decoder_outputs.hidden_states, attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, ) else: outputs = (lm_logits,) + decoder_outputs[1:] # add updated cache to model output if past_key_values is not None and return_dict: outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs def prepare_inputs_for_generation( self, decoder_input_ids, max_length, attention_mask: Optional[jax.Array] = None, decoder_attention_mask: Optional[jax.Array] = None, encoder_outputs=None, **kwargs, ): # initializing the cache batch_size, seq_length = decoder_input_ids.shape past_key_values = self.init_cache(batch_size, max_length, encoder_outputs) # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. # But since the decoder uses a causal mask, those positions are masked anyways. # Thus we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") if decoder_attention_mask is not None: position_ids = decoder_attention_mask.cumsum(axis=-1) - 1 extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0)) else: position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) return { "past_key_values": past_key_values, "encoder_outputs": encoder_outputs, "encoder_attention_mask": attention_mask, "decoder_attention_mask": extended_attention_mask, "decoder_position_ids": position_ids, } def update_inputs_for_generation(self, model_outputs, model_kwargs): model_kwargs["past_key_values"] = model_outputs.past_key_values model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1 return model_kwargs
class_definition
56,261
64,073
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot_small/modeling_flax_blenderbot_small.py
null
9,386
class BlenderbotSmallConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`BlenderbotSmallModel`]. It is used to instantiate an BlenderbotSmall model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the BlenderbotSmall [facebook/blenderbot_small-90M](https://huggingface.co/facebook/blenderbot_small-90M) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50265): Vocabulary size of the BlenderbotSmall model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`BlenderbotSmallModel`] or [`TFBlenderbotSmallModel`]. d_model (`int`, *optional*, defaults to 512): Dimensionality of the layers and the pooler layer. encoder_layers (`int`, *optional*, defaults to 8): Number of encoder layers. decoder_layers (`int`, *optional*, defaults to 8): Number of decoder layers. encoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. decoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer decoder. decoder_ffn_dim (`int`, *optional*, defaults to 2048): Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. encoder_ffn_dim (`int`, *optional*, defaults to 2048): Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. activation_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for activations inside the fully connected layer. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). init_std (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. encoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. decoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. scale_embedding (`bool`, *optional*, defaults to `False`): Scale embeddings by diving by sqrt(d_model). use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models) forced_eos_token_id (`int`, *optional*, defaults to 2): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. Example: ```python >>> from transformers import BlenderbotSmallConfig, BlenderbotSmallModel >>> # Initializing a BlenderbotSmall facebook/blenderbot_small-90M style configuration >>> configuration = BlenderbotSmallConfig() >>> # Initializing a model (with random weights) from the facebook/blenderbot_small-90M style configuration >>> model = BlenderbotSmallModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "blenderbot-small" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self, vocab_size=50265, max_position_embeddings=512, encoder_layers=8, encoder_ffn_dim=2048, encoder_attention_heads=16, decoder_layers=8, decoder_ffn_dim=2048, decoder_attention_heads=16, encoder_layerdrop=0.0, decoder_layerdrop=0.0, use_cache=True, is_encoder_decoder=True, activation_function="gelu", d_model=512, dropout=0.1, attention_dropout=0.0, activation_dropout=0.0, init_std=0.02, decoder_start_token_id=1, scale_embedding=False, pad_token_id=0, bos_token_id=1, eos_token_id=2, forced_eos_token_id=2, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.d_model = d_model self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.init_std = init_std self.encoder_layerdrop = encoder_layerdrop self.decoder_layerdrop = decoder_layerdrop self.use_cache = use_cache self.num_hidden_layers = encoder_layers self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, is_encoder_decoder=is_encoder_decoder, decoder_start_token_id=decoder_start_token_id, forced_eos_token_id=forced_eos_token_id, **kwargs, )
class_definition
1,124
7,817
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot_small/configuration_blenderbot_small.py
null
9,387
class BlenderbotSmallOnnxConfig(OnnxSeq2SeqConfigWithPast): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: common_inputs = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: common_inputs["decoder_input_ids"] = {0: "batch"} common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"} else: common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"} common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(common_inputs, direction="inputs") elif self.task == "causal-lm": # TODO: figure this case out. common_inputs = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: num_encoder_layers, _ = self.num_layers for i in range(num_encoder_layers): common_inputs[f"past_key_values.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"} common_inputs[f"past_key_values.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"} else: common_inputs = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def outputs(self) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: common_outputs = super().outputs else: common_outputs = super(OnnxConfigWithPast, self).outputs if self.use_past: num_encoder_layers, _ = self.num_layers for i in range(num_encoder_layers): common_outputs[f"present.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"} common_outputs[f"present.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def _generate_dummy_inputs_for_default_and_seq2seq_lm( self, tokenizer: PreTrainedTokenizer, batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, ) -> Mapping[str, Any]: encoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( tokenizer, batch_size, seq_length, is_pair, framework ) # Generate decoder inputs decoder_seq_length = seq_length if not self.use_past else 1 decoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( tokenizer, batch_size, decoder_seq_length, is_pair, framework ) decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} common_inputs = dict(**encoder_inputs, **decoder_inputs) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch batch, encoder_seq_length = common_inputs["input_ids"].shape decoder_seq_length = common_inputs["decoder_input_ids"].shape[1] num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads encoder_shape = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) decoder_past_length = decoder_seq_length + 3 decoder_shape = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) common_inputs["decoder_attention_mask"] = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(batch, decoder_past_length)], dim=1 ) common_inputs["past_key_values"] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered num_encoder_layers, num_decoder_layers = self.num_layers min_num_layers = min(num_encoder_layers, num_decoder_layers) max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(min_num_layers): common_inputs["past_key_values"].append( ( torch.zeros(decoder_shape), torch.zeros(decoder_shape), torch.zeros(encoder_shape), torch.zeros(encoder_shape), ) ) # TODO: test this. shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(min_num_layers, max_num_layers): common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape))) return common_inputs def _generate_dummy_inputs_for_causal_lm( self, tokenizer: PreTrainedTokenizer, batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, ) -> Mapping[str, Any]: common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( tokenizer, batch_size, seq_length, is_pair, framework ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch batch, seqlen = common_inputs["input_ids"].shape # Not using the same length for past_key_values past_key_values_length = seqlen + 2 num_encoder_layers, _ = self.num_layers num_encoder_attention_heads, _ = self.num_attention_heads past_shape = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) mask_dtype = common_inputs["attention_mask"].dtype common_inputs["attention_mask"] = torch.cat( [common_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1 ) common_inputs["past_key_values"] = [ (torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(num_encoder_layers) ] return common_inputs def _generate_dummy_inputs_for_sequence_classification_and_question_answering( self, tokenizer: PreTrainedTokenizer, batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX batch_size = compute_effective_axis_dimension( batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX token_to_add = tokenizer.num_special_tokens_to_add(is_pair) seq_length = compute_effective_axis_dimension( seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add ) # Generate dummy inputs according to compute batch and sequence dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size common_inputs = dict(tokenizer(dummy_input, return_tensors=framework)) return common_inputs def generate_dummy_inputs( self, tokenizer: PreTrainedTokenizer, batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: common_inputs = self._generate_dummy_inputs_for_default_and_seq2seq_lm( tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework ) elif self.task == "causal-lm": common_inputs = self._generate_dummy_inputs_for_causal_lm( tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework ) else: common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework ) return common_inputs def _flatten_past_key_values_(self, flattened_output, name, idx, t): if self.task in ["default", "seq2seq-lm"]: flattened_output = super()._flatten_past_key_values_(flattened_output, name, idx, t) else: flattened_output = super(OnnxSeq2SeqConfigWithPast, self)._flatten_past_key_values_( flattened_output, name, idx, t )
class_definition
7,893
18,212
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot_small/configuration_blenderbot_small.py
null
9,388
class TFBlenderbotSmallLearnedPositionalEmbedding(keras.layers.Embedding): """ This module learns positional embeddings up to a fixed maximum size. """ def __init__(self, num_embeddings: int, embedding_dim: int, **kwargs): super().__init__(num_embeddings, embedding_dim, **kwargs) def call( self, input_shape: tf.TensorShape, past_key_values_length: int = 0, position_ids: tf.Tensor | None = None ): """Input is expected to be of size [bsz x seqlen].""" if position_ids is None: seq_len = input_shape[1] position_ids = tf.range(seq_len, delta=1, name="range") position_ids += past_key_values_length return super().call(tf.cast(position_ids, dtype=tf.int32))
class_definition
4,252
5,012
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot_small/modeling_tf_blenderbot_small.py
null
9,389
class TFBlenderbotSmallAttention(keras.layers.Layer): """Multi-headed attention from "Attention Is All You Need""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, **kwargs, ): super().__init__(**kwargs) self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = keras.layers.Dropout(dropout) self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj") self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj") self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj") self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj") def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int): return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3)) def call( self, hidden_states: tf.Tensor, key_value_states: tf.Tensor | None = None, past_key_value: Tuple[Tuple[tf.Tensor]] | None = None, attention_mask: tf.Tensor | None = None, layer_head_mask: tf.Tensor | None = None, training: Optional[bool] = False, ) -> Tuple[tf.Tensor, tf.Tensor | None]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, embed_dim = shape_list(hidden_states) # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = tf.concat([past_key_value[0], key_states], axis=2) value_states = tf.concat([past_key_value[1], value_states], axis=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape) key_states = tf.reshape(key_states, proj_shape) value_states = tf.reshape(value_states, proj_shape) src_len = shape_list(key_states)[1] attn_weights = tf.matmul(query_states, key_states, transpose_b=True) tf.debugging.assert_equal( shape_list(attn_weights), [bsz * self.num_heads, tgt_len, src_len], message=( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {shape_list(attn_weights)}" ), ) if attention_mask is not None: tf.debugging.assert_equal( shape_list(attention_mask), [bsz, 1, tgt_len, src_len], message=( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" f" {shape_list(attention_mask)}" ), ) attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype) attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_weights = stable_softmax(attn_weights, axis=-1) if layer_head_mask is not None: tf.debugging.assert_equal( shape_list(layer_head_mask), [self.num_heads], message=( f"Head mask for a single layer should be of size {(self.num_heads)}, but is" f" {shape_list(layer_head_mask)}" ), ) attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape( attn_weights, (bsz, self.num_heads, tgt_len, src_len) ) attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_probs = self.dropout(attn_weights, training=training) attn_output = tf.matmul(attn_probs, value_states) tf.debugging.assert_equal( shape_list(attn_output), [bsz * self.num_heads, tgt_len, self.head_dim], message=( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {shape_list(attn_output)}" ), ) attn_output = tf.transpose( tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3) ) attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim)) attn_output = self.out_proj(attn_output) attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) return attn_output, attn_weights, past_key_value def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "k_proj", None) is not None: with tf.name_scope(self.k_proj.name): self.k_proj.build([None, None, self.embed_dim]) if getattr(self, "q_proj", None) is not None: with tf.name_scope(self.q_proj.name): self.q_proj.build([None, None, self.embed_dim]) if getattr(self, "v_proj", None) is not None: with tf.name_scope(self.v_proj.name): self.v_proj.build([None, None, self.embed_dim]) if getattr(self, "out_proj", None) is not None: with tf.name_scope(self.out_proj.name): self.out_proj.build([None, None, self.embed_dim])
class_definition
5,114
12,699
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot_small/modeling_tf_blenderbot_small.py
null
9,390
class TFBlenderbotSmallEncoderLayer(keras.layers.Layer): def __init__(self, config: BlenderbotSmallConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.d_model self.self_attn = TFBlenderbotSmallAttention( self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn" ) self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") self.dropout = keras.layers.Dropout(config.dropout) self.activation_fn = get_tf_activation(config.activation_function) self.activation_dropout = keras.layers.Dropout(config.activation_dropout) self.fc1 = keras.layers.Dense(config.encoder_ffn_dim, name="fc1") self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") self.config = config def call( self, hidden_states: tf.Tensor, attention_mask: np.ndarray | tf.Tensor | None, layer_head_mask: tf.Tensor | None, training: Optional[bool] = False, ) -> tf.Tensor: """ Args: hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`tf.Tensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)` """ residual = hidden_states hidden_states, self_attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask ) tf.debugging.assert_equal( shape_list(hidden_states), shape_list(residual), message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}", ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout(hidden_states, training=training) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) return hidden_states, self_attn_weights def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self_attn", None) is not None: with tf.name_scope(self.self_attn.name): self.self_attn.build(None) if getattr(self, "self_attn_layer_norm", None) is not None: with tf.name_scope(self.self_attn_layer_norm.name): self.self_attn_layer_norm.build([None, None, self.embed_dim]) if getattr(self, "fc1", None) is not None: with tf.name_scope(self.fc1.name): self.fc1.build([None, None, self.embed_dim]) if getattr(self, "fc2", None) is not None: with tf.name_scope(self.fc2.name): self.fc2.build([None, None, self.config.encoder_ffn_dim]) if getattr(self, "final_layer_norm", None) is not None: with tf.name_scope(self.final_layer_norm.name): self.final_layer_norm.build([None, None, self.embed_dim])
class_definition
12,804
16,544
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot_small/modeling_tf_blenderbot_small.py
null
9,391
class TFBlenderbotSmallDecoderLayer(keras.layers.Layer): def __init__(self, config: BlenderbotSmallConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.d_model self.self_attn = TFBlenderbotSmallAttention( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, name="self_attn", is_decoder=True, ) self.dropout = keras.layers.Dropout(config.dropout) self.activation_fn = get_tf_activation(config.activation_function) self.activation_dropout = keras.layers.Dropout(config.activation_dropout) self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") self.encoder_attn = TFBlenderbotSmallAttention( self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout, name="encoder_attn", is_decoder=True, ) self.encoder_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm") self.fc1 = keras.layers.Dense(config.decoder_ffn_dim, name="fc1") self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") self.config = config def call( self, hidden_states: tf.Tensor, attention_mask: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, layer_head_mask: tf.Tensor | None = None, cross_attn_layer_head_mask: tf.Tensor | None = None, past_key_value: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, training: Optional[bool] = False, ) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]: """ Args: hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`tf.Tensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. encoder_hidden_states (`tf.Tensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)` encoder_attention_mask (`tf.Tensor`): encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size `(decoder_attention_heads,)` cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module. `(decoder_attention_heads,)` past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states """ residual = hidden_states # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout(hidden_states, training=training) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) return ( hidden_states, self_attn_weights, cross_attn_weights, present_key_value, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self_attn", None) is not None: with tf.name_scope(self.self_attn.name): self.self_attn.build(None) if getattr(self, "self_attn_layer_norm", None) is not None: with tf.name_scope(self.self_attn_layer_norm.name): self.self_attn_layer_norm.build([None, None, self.embed_dim]) if getattr(self, "encoder_attn", None) is not None: with tf.name_scope(self.encoder_attn.name): self.encoder_attn.build(None) if getattr(self, "encoder_attn_layer_norm", None) is not None: with tf.name_scope(self.encoder_attn_layer_norm.name): self.encoder_attn_layer_norm.build([None, None, self.embed_dim]) if getattr(self, "fc1", None) is not None: with tf.name_scope(self.fc1.name): self.fc1.build([None, None, self.embed_dim]) if getattr(self, "fc2", None) is not None: with tf.name_scope(self.fc2.name): self.fc2.build([None, None, self.config.decoder_ffn_dim]) if getattr(self, "final_layer_norm", None) is not None: with tf.name_scope(self.final_layer_norm.name): self.final_layer_norm.build([None, None, self.embed_dim])
class_definition
16,649
23,545
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot_small/modeling_tf_blenderbot_small.py
null
9,392
class TFBlenderbotSmallPreTrainedModel(TFPreTrainedModel): config_class = BlenderbotSmallConfig base_model_prefix = "model"
class_definition
23,548
23,679
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot_small/modeling_tf_blenderbot_small.py
null
9,393
class TFBlenderbotSmallEncoder(keras.layers.Layer): config_class = BlenderbotSmallConfig """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`TFBlenderbotSmallEncoderLayer`]. Args: config: BlenderbotSmallConfig """ def __init__(self, config: BlenderbotSmallConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs): super().__init__(**kwargs) self.config = config self.dropout = keras.layers.Dropout(config.dropout) self.layerdrop = config.encoder_layerdrop self.padding_idx = config.pad_token_id self.max_source_positions = config.max_position_embeddings self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0 self.embed_tokens = embed_tokens self.embed_positions = TFBlenderbotSmallLearnedPositionalEmbedding( config.max_position_embeddings, config.d_model, name="embed_positions", ) self.layers = [TFBlenderbotSmallEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)] self.layernorm_embedding = keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding") self.embed_dim = config.d_model def get_embed_tokens(self): return self.embed_tokens def set_embed_tokens(self, embed_tokens): self.embed_tokens = embed_tokens @unpack_inputs def call( self, input_ids=None, inputs_embeds=None, attention_mask=None, head_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): """ Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, `optional): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs_embeds is None: check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale embed_pos = self.embed_positions(input_shape) hidden_states = inputs_embeds + embed_pos hidden_states = self.layernorm_embedding(hidden_states) hidden_states = self.dropout(hidden_states, training=training) # check attention mask and invert if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _expand_mask(attention_mask) else: attention_mask = None encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: tf.debugging.assert_equal( shape_list(head_mask)[0], len(self.layers), message=( f"The head_mask should be specified for {len(self.layers)} layers, but it is for" f" {shape_list(head_mask)[0]}." ), ) # encoder layers for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if training and (dropout_probability < self.layerdrop): # skip the layer continue hidden_states, attn = encoder_layer( hidden_states, attention_mask, head_mask[idx] if head_mask is not None else None, ) if output_attentions: all_attentions += (attn,) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embed_positions", None) is not None: with tf.name_scope(self.embed_positions.name): self.embed_positions.build(None) if getattr(self, "layernorm_embedding", None) is not None: with tf.name_scope(self.layernorm_embedding.name): self.layernorm_embedding.build([None, None, self.embed_dim]) if getattr(self, "layers", None) is not None: for layer in self.layers: with tf.name_scope(layer.name): layer.build(None)
class_definition
32,431
40,376
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot_small/modeling_tf_blenderbot_small.py
null
9,394
class TFBlenderbotSmallDecoder(keras.layers.Layer): config_class = BlenderbotSmallConfig """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFBlenderbotSmallDecoderLayer`] Args: config: BlenderbotSmallConfig embed_tokens: output embedding """ def __init__(self, config: BlenderbotSmallConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs): super().__init__(**kwargs) self.config = config self.padding_idx = config.pad_token_id self.embed_tokens = embed_tokens self.layerdrop = config.decoder_layerdrop self.embed_positions = TFBlenderbotSmallLearnedPositionalEmbedding( config.max_position_embeddings, config.d_model, name="embed_positions", ) self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0 self.layers = [TFBlenderbotSmallDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)] self.layernorm_embedding = keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding") self.dropout = keras.layers.Dropout(config.dropout) def get_embed_tokens(self): return self.embed_tokens def set_embed_tokens(self, embed_tokens): self.embed_tokens = embed_tokens @unpack_inputs def call( self, input_ids=None, inputs_embeds=None, attention_mask=None, position_ids=None, encoder_hidden_states=None, encoder_attention_mask=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): r""" Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0 if inputs_embeds is None: check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] if input_shape[-1] > 1: combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length) else: combined_attention_mask = _expand_mask( tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1] ) if attention_mask is not None: combined_attention_mask = combined_attention_mask + _expand_mask(attention_mask, tgt_len=input_shape[-1]) if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1]) # embed positions if position_ids is None: positions = self.embed_positions(input_shape, past_key_values_length) else: positions = self.embed_positions(input_shape, position_ids=position_ids) hidden_states = self.layernorm_embedding(inputs_embeds) + positions hidden_states = self.dropout(hidden_states, training=training) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attns = () if (output_attentions and encoder_hidden_states is not None) else None present_key_values = () if use_cache else None # check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]: if attn_mask is not None: tf.debugging.assert_equal( shape_list(attn_mask)[0], len(self.layers), message=( f"The {attn_mask_name} should be specified for {len(self.layers)} layers, but it is for" f" {shape_list(attn_mask)[0]}." ), ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) dropout_probability = random.uniform(0, 1) if training and (dropout_probability < self.layerdrop): continue past_key_value = past_key_values[idx] if past_key_values is not None else None hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer( hidden_states, attention_mask=combined_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, layer_head_mask=head_mask[idx] if head_mask is not None else None, cross_attn_layer_head_mask=cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, past_key_value=past_key_value, ) if use_cache: present_key_values += (present_key_value,) if output_attentions: all_self_attns += (layer_self_attn,) if encoder_hidden_states is not None: all_cross_attns += (layer_cross_attn,) if output_hidden_states: all_hidden_states += (hidden_states,) if not return_dict: return hidden_states, present_key_values, all_hidden_states, all_self_attns, all_cross_attns else: return TFBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=present_key_values, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attns, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embed_positions", None) is not None: with tf.name_scope(self.embed_positions.name): self.embed_positions.build(None) if getattr(self, "layernorm_embedding", None) is not None: with tf.name_scope(self.layernorm_embedding.name): self.layernorm_embedding.build([None, None, self.config.d_model]) if getattr(self, "layers", None) is not None: for layer in self.layers: with tf.name_scope(layer.name): layer.build(None)
class_definition
40,399
52,489
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot_small/modeling_tf_blenderbot_small.py
null
9,395
class TFBlenderbotSmallMainLayer(keras.layers.Layer): config_class = BlenderbotSmallConfig def __init__(self, config: BlenderbotSmallConfig, **kwargs): super().__init__(**kwargs) self.config = config self.shared = keras.layers.Embedding( input_dim=config.vocab_size, output_dim=config.d_model, embeddings_initializer=keras.initializers.TruncatedNormal(stddev=self.config.init_std), name="model.shared", ) # Additional attribute to specify the expected name scope of the layer (for loading/storing weights) self.shared.load_weight_prefix = "model.shared" self.encoder = TFBlenderbotSmallEncoder(config, self.shared, name="encoder") self.decoder = TFBlenderbotSmallDecoder(config, self.shared, name="decoder") def get_input_embeddings(self): return self.shared def set_input_embeddings(self, new_embeddings): self.shared = new_embeddings self.encoder.embed_tokens = self.shared self.decoder.embed_tokens = self.shared @unpack_inputs def call( self, input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, decoder_position_ids=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs, ): output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) # If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, TFBaseModelOutput): encoder_outputs = TFBaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # If the user passed a TFBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False elif not return_dict and not isinstance(encoder_outputs, tuple): encoder_outputs = encoder_outputs.to_tuple() decoder_outputs = self.decoder( decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) if not return_dict: return decoder_outputs + encoder_outputs return TFSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True # The shared/tied weights expect to be in the model base namespace # Adding "/" to the end (not the start!) of a tf.name_scope puts it in the root namespace rather than # the current one. with tf.name_scope(self.shared.load_weight_prefix + "/" + self.shared.name + "/"): self.shared.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "decoder", None) is not None: with tf.name_scope(self.decoder.name): self.decoder.build(None)
class_definition
52,512
57,613
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot_small/modeling_tf_blenderbot_small.py
null
9,396
class TFBlenderbotSmallModel(TFBlenderbotSmallPreTrainedModel): def __init__(self, config: BlenderbotSmallConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.model = TFBlenderbotSmallMainLayer(config, name="model") def get_encoder(self): return self.model.encoder def get_decoder(self): return self.model.decoder @unpack_inputs @add_start_docstrings_to_model_forward(BLENDERBOT_SMALL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSeq2SeqModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: tf.Tensor | None = None, attention_mask: tf.Tensor | None = None, decoder_input_ids: tf.Tensor | None = None, decoder_attention_mask: tf.Tensor | None = None, decoder_position_ids: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, decoder_head_mask: tf.Tensor | None = None, cross_attn_head_mask: tf.Tensor | None = None, encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None, past_key_values: List[tf.Tensor] | None = None, inputs_embeds: tf.Tensor | None = None, decoder_inputs_embeds: tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, **kwargs, ) -> Union[Tuple[tf.Tensor], TFSeq2SeqModelOutput]: outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs # Copied from transformers.models.bart.modeling_tf_bart.TFBartModel.serving_output def serving_output(self, output): pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None return TFSeq2SeqModelOutput( last_hidden_state=output.last_hidden_state, past_key_values=pkv, decoder_hidden_states=dec_hs, decoder_attentions=dec_attns, cross_attentions=cross_attns, encoder_last_hidden_state=output.encoder_last_hidden_state, encoder_hidden_states=enc_hs, encoder_attentions=enc_attns, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "model", None) is not None: with tf.name_scope(self.model.name): self.model.build(None)
class_definition
57,781
61,709
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot_small/modeling_tf_blenderbot_small.py
null
9,397
class BiasLayer(keras.layers.Layer): """ Bias as a layer. It is used for serialization purposes: `keras.Model.save_weights` stores on a per-layer basis, so all weights have to be registered in a layer. """ def __init__(self, shape, initializer, trainable, name, **kwargs): super().__init__(name=name, **kwargs) # Note: the name of this variable will NOT be scoped when serialized, i.e. it will not be in the format of # "outer_layer/inner_layer/.../name:0". Instead, it will be "name:0". For further details, see: # https://github.com/huggingface/transformers/pull/18833#issuecomment-1233090214 self.bias = self.add_weight(name=name, shape=shape, initializer=initializer, trainable=trainable) def call(self, x): return x + self.bias
class_definition
61,778
62,584
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot_small/modeling_tf_blenderbot_small.py
null
9,398
class TFBlenderbotSmallForConditionalGeneration(TFBlenderbotSmallPreTrainedModel, TFCausalLanguageModelingLoss): _keys_to_ignore_on_load_unexpected = [ r"model.encoder.embed_tokens.weight", r"model.decoder.embed_tokens.weight", ] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.model = TFBlenderbotSmallMainLayer(config, name="model") self.use_cache = config.use_cache # final_bias_logits is registered as a buffer in pytorch, so not trainable for the sake of consistency. self.bias_layer = BiasLayer( name="final_logits_bias", shape=[1, config.vocab_size], initializer="zeros", trainable=False ) def get_decoder(self): return self.model.decoder def get_encoder(self): return self.model.encoder def get_output_embeddings(self): return self.get_input_embeddings() def set_output_embeddings(self, value): self.set_input_embeddings(value) def get_bias(self): return {"final_logits_bias": self.bias_layer.bias} def set_bias(self, value): # Replaces the existing layers containing bias for correct (de)serialization. vocab_size = value["final_logits_bias"].shape[-1] self.bias_layer = BiasLayer( name="final_logits_bias", shape=[1, vocab_size], initializer="zeros", trainable=False ) self.bias_layer.bias.assign(value["final_logits_bias"]) @unpack_inputs @add_start_docstrings_to_model_forward(BLENDERBOT_SMALL_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) @add_end_docstrings(BLENDERBOT_SMALL_GENERATION_EXAMPLE) def call( self, input_ids: tf.Tensor | None = None, attention_mask: tf.Tensor | None = None, decoder_input_ids: tf.Tensor | None = None, decoder_attention_mask: tf.Tensor | None = None, decoder_position_ids: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, decoder_head_mask: tf.Tensor | None = None, cross_attn_head_mask: tf.Tensor | None = None, encoder_outputs: Optional[TFBaseModelOutput] = None, past_key_values: List[tf.Tensor] | None = None, inputs_embeds: tf.Tensor | None = None, decoder_inputs_embeds: tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple[tf.Tensor], TFSeq2SeqLMOutput]: r""" labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: """ if labels is not None: labels = tf.where( labels == self.config.pad_token_id, tf.cast(tf.fill(shape_list(labels), -100), labels.dtype), labels, ) use_cache = False if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) outputs = self.model( input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) lm_logits = tf.matmul(outputs[0], self.model.shared.weights, transpose_b=True) lm_logits = self.bias_layer(lm_logits) masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits) if not return_dict: output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return TFSeq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=outputs.past_key_values, # index 1 of d outputs decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs cross_attentions=outputs.cross_attentions, # index 4 of d outputs encoder_last_hidden_state=outputs.encoder_last_hidden_state, # index 0 of encoder outputs encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out encoder_attentions=outputs.encoder_attentions, # 2 of e out ) # Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.serving_output def serving_output(self, output): pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None return TFSeq2SeqLMOutput( logits=output.logits, past_key_values=pkv, decoder_hidden_states=dec_hs, decoder_attentions=dec_attns, cross_attentions=cross_attns, encoder_last_hidden_state=output.encoder_last_hidden_state, encoder_hidden_states=enc_hs, encoder_attentions=enc_attns, ) # Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.prepare_inputs_for_generation def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, use_cache=None, encoder_outputs=None, **kwargs, ): # cut decoder_input_ids if past_key_values is used if past_key_values is not None: decoder_input_ids = decoder_input_ids[:, -1:] if decoder_attention_mask is not None: # xla decoder_position_ids = tf.math.cumsum(decoder_attention_mask, axis=-1, exclusive=True)[:, -1:] elif past_key_values is not None: # no xla + past_key_values decoder_position_ids = past_key_values[0][0].shape[2] else: # no xla + no past_key_values decoder_position_ids = tf.range(decoder_input_ids.shape[1]) return { "input_ids": None, # encoder_outputs is defined. input_ids not needed "encoder_outputs": encoder_outputs, "past_key_values": past_key_values, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "decoder_position_ids": decoder_position_ids, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, "use_cache": use_cache, # change this to avoid caching (presumably for debugging) } def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "model", None) is not None: with tf.name_scope(self.model.name): self.model.build(None) if getattr(self, "bias_layer", None) is not None: with tf.name_scope(self.bias_layer.name): self.bias_layer.build(None)
class_definition
62,746
71,605
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot_small/modeling_tf_blenderbot_small.py
null
9,399