text
stringlengths
31
243k
type
stringclasses
1 value
start
int64
36
275k
end
int64
286
280k
depth
int64
0
1
filepath
stringlengths
85
188
parent_class
stringclasses
3 values
class_index
int64
0
10.8k
class BrosSelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.is_decoder = config.is_decoder def transpose_for_scores(self, x: torch.Tensor): new_x_shape = x.size()[:-1] + ( self.num_attention_heads, self.attention_head_size, ) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, bbox_pos_emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[torch.Tensor] = False, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": seq_length = hidden_states.size()[1] position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key # bbox positional encoding batch_size, n_head, seq_length, d_head = query_layer.shape bbox_pos_emb = bbox_pos_emb.view(seq_length, seq_length, batch_size, d_head) bbox_pos_emb = bbox_pos_emb.permute([2, 0, 1, 3]) bbox_pos_scores = torch.einsum("bnid,bijd->bnij", (query_layer, bbox_pos_emb)) attention_scores = attention_scores + bbox_pos_scores attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BrosModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs
class_definition
12,400
19,806
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bros/modeling_bros.py
null
9,000
class BrosSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states
class_definition
19,893
20,499
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bros/modeling_bros.py
null
9,001
class BrosAttention(nn.Module): def __init__(self, config): super().__init__() self.self = BrosSelfAttention(config) self.output = BrosSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads, ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, bbox_pos_emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self( hidden_states=hidden_states, bbox_pos_emb=bbox_pos_emb, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs
class_definition
20,502
22,693
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bros/modeling_bros.py
null
9,002
class BrosIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states
class_definition
22,782
23,347
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bros/modeling_bros.py
null
9,003
class BrosOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states
class_definition
23,350
23,958
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bros/modeling_bros.py
null
9,004
class BrosLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = BrosAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise Exception(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = BrosAttention(config) self.intermediate = BrosIntermediate(config) self.output = BrosOutput(config) def forward( self, hidden_states: torch.Tensor, bbox_pos_emb: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, bbox_pos_emb=bbox_pos_emb, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if hasattr(self, "crossattention"): raise Exception( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output, ) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output
class_definition
23,961
27,940
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bros/modeling_bros.py
null
9,005
class BrosEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([BrosLayer(config) for _ in range(config.num_hidden_layers)]) def forward( self, hidden_states: torch.Tensor, bbox_pos_emb: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if getattr(self.config, "gradient_checkpointing", False) and self.training: if use_cache: logger.warning( "`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting " "`use_cache=False`..." ) use_cache = False layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, bbox_pos_emb, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, output_attentions, ) else: layer_outputs = layer_module( hidden_states=hidden_states, bbox_pos_emb=bbox_pos_emb, attention_mask=attention_mask, head_mask=layer_head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, )
class_definition
27,943
31,910
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bros/modeling_bros.py
null
9,006
class BrosPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output
class_definition
31,993
32,552
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bros/modeling_bros.py
null
9,007
class BrosRelationExtractor(nn.Module): def __init__(self, config): super().__init__() self.n_relations = config.n_relations self.backbone_hidden_size = config.hidden_size self.head_hidden_size = config.hidden_size self.classifier_dropout_prob = config.classifier_dropout_prob self.drop = nn.Dropout(self.classifier_dropout_prob) self.query = nn.Linear(self.backbone_hidden_size, self.n_relations * self.head_hidden_size) self.key = nn.Linear(self.backbone_hidden_size, self.n_relations * self.head_hidden_size) self.dummy_node = nn.Parameter(torch.zeros(1, self.backbone_hidden_size)) def forward(self, query_layer: torch.Tensor, key_layer: torch.Tensor): query_layer = self.query(self.drop(query_layer)) dummy_vec = self.dummy_node.unsqueeze(0).repeat(1, key_layer.size(1), 1) key_layer = torch.cat([key_layer, dummy_vec], axis=0) key_layer = self.key(self.drop(key_layer)) query_layer = query_layer.view( query_layer.size(0), query_layer.size(1), self.n_relations, self.head_hidden_size ) key_layer = key_layer.view(key_layer.size(0), key_layer.size(1), self.n_relations, self.head_hidden_size) relation_score = torch.matmul( query_layer.permute(2, 1, 0, 3), key_layer.permute(2, 1, 3, 0) ) # equivalent to torch.einsum("ibnd,jbnd->nbij", (query_layer, key_layer)) return relation_score
class_definition
32,555
34,037
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bros/modeling_bros.py
null
9,008
class BrosPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = BrosConfig base_model_prefix = "bros" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0)
class_definition
34,040
35,101
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bros/modeling_bros.py
null
9,009
class BrosModel(BrosPreTrainedModel): def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = BrosTextEmbeddings(config) self.bbox_embeddings = BrosBboxEmbeddings(config) self.encoder = BrosEncoder(config) self.pooler = BrosPooler(config) if add_pooling_layer else None self.init_weights() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(BROS_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, bbox: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: r""" Returns: Examples: ```python >>> import torch >>> from transformers import BrosProcessor, BrosModel >>> processor = BrosProcessor.from_pretrained("jinho8345/bros-base-uncased") >>> model = BrosModel.from_pretrained("jinho8345/bros-base-uncased") >>> encoding = processor("Hello, my dog is cute", add_special_tokens=False, return_tensors="pt") >>> bbox = torch.tensor([[[0, 0, 1, 1]]]).repeat(1, encoding["input_ids"].shape[-1], 1) >>> encoding["bbox"] = bbox >>> outputs = model(**encoding) >>> last_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if bbox is None: raise ValueError("You have to specify bbox") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) # if bbox has 2 points (4 float tensors) per token, convert it to 4 points (8 float tensors) per token if bbox.shape[-1] == 4: bbox = bbox[:, :, [0, 1, 2, 1, 2, 3, 0, 3]] scaled_bbox = bbox * self.config.bbox_scale bbox_position_embeddings = self.bbox_embeddings(scaled_bbox) encoder_outputs = self.encoder( embedding_output, bbox_pos_emb=bbox_position_embeddings, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, )
class_definition
35,257
43,042
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bros/modeling_bros.py
null
9,010
class BrosForTokenClassification(BrosPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.bros = BrosModel(config) classifier_dropout = ( config.classifier_dropout if hasattr(config, "classifier_dropout") else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.init_weights() @add_start_docstrings_to_model_forward(BROS_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, bbox: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, bbox_first_token_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: r""" Returns: Examples: ```python >>> import torch >>> from transformers import BrosProcessor, BrosForTokenClassification >>> processor = BrosProcessor.from_pretrained("jinho8345/bros-base-uncased") >>> model = BrosForTokenClassification.from_pretrained("jinho8345/bros-base-uncased") >>> encoding = processor("Hello, my dog is cute", add_special_tokens=False, return_tensors="pt") >>> bbox = torch.tensor([[[0, 0, 1, 1]]]).repeat(1, encoding["input_ids"].shape[-1], 1) >>> encoding["bbox"] = bbox >>> outputs = model(**encoding) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bros( input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() if bbox_first_token_mask is not None: bbox_first_token_mask = bbox_first_token_mask.view(-1) loss = loss_fct( logits.view(-1, self.num_labels)[bbox_first_token_mask], labels.view(-1)[bbox_first_token_mask] ) else: loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
43,271
46,879
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bros/modeling_bros.py
null
9,011
class BrosSpadeEEForTokenClassification(BrosPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] def __init__(self, config): super().__init__(config) self.config = config self.num_labels = config.num_labels self.n_relations = config.n_relations self.backbone_hidden_size = config.hidden_size self.bros = BrosModel(config) classifier_dropout = ( config.classifier_dropout if hasattr(config, "classifier_dropout") else config.hidden_dropout_prob ) # Initial token classification for Entity Extraction (NER) self.initial_token_classifier = nn.Sequential( nn.Dropout(classifier_dropout), nn.Linear(config.hidden_size, config.hidden_size), nn.Dropout(classifier_dropout), nn.Linear(config.hidden_size, config.num_labels), ) # Subsequent token classification for Entity Extraction (NER) self.subsequent_token_classifier = BrosRelationExtractor(config) self.init_weights() @add_start_docstrings_to_model_forward(BROS_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=BrosSpadeOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, bbox: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, bbox_first_token_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, initial_token_labels: Optional[torch.Tensor] = None, subsequent_token_labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BrosSpadeOutput]: r""" Returns: Examples: ```python >>> import torch >>> from transformers import BrosProcessor, BrosSpadeEEForTokenClassification >>> processor = BrosProcessor.from_pretrained("jinho8345/bros-base-uncased") >>> model = BrosSpadeEEForTokenClassification.from_pretrained("jinho8345/bros-base-uncased") >>> encoding = processor("Hello, my dog is cute", add_special_tokens=False, return_tensors="pt") >>> bbox = torch.tensor([[[0, 0, 1, 1]]]).repeat(1, encoding["input_ids"].shape[-1], 1) >>> encoding["bbox"] = bbox >>> outputs = model(**encoding) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bros( input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_states = outputs[0] last_hidden_states = last_hidden_states.transpose(0, 1).contiguous() initial_token_logits = self.initial_token_classifier(last_hidden_states).transpose(0, 1).contiguous() subsequent_token_logits = self.subsequent_token_classifier(last_hidden_states, last_hidden_states).squeeze(0) # make subsequent token (sequence token classification) mask inv_attention_mask = 1 - attention_mask batch_size, max_seq_length = inv_attention_mask.shape device = inv_attention_mask.device invalid_token_mask = torch.cat([inv_attention_mask, torch.zeros([batch_size, 1]).to(device)], axis=1).bool() subsequent_token_logits = subsequent_token_logits.masked_fill( invalid_token_mask[:, None, :], torch.finfo(subsequent_token_logits.dtype).min ) self_token_mask = torch.eye(max_seq_length, max_seq_length + 1).to(device).bool() subsequent_token_logits = subsequent_token_logits.masked_fill( self_token_mask[None, :, :], torch.finfo(subsequent_token_logits.dtype).min ) subsequent_token_mask = attention_mask.view(-1).bool() loss = None if initial_token_labels is not None and subsequent_token_labels is not None: loss_fct = CrossEntropyLoss() # get initial token loss initial_token_labels = initial_token_labels.view(-1) if bbox_first_token_mask is not None: bbox_first_token_mask = bbox_first_token_mask.view(-1) initial_token_loss = loss_fct( initial_token_logits.view(-1, self.num_labels)[bbox_first_token_mask], initial_token_labels[bbox_first_token_mask], ) else: initial_token_loss = loss_fct(initial_token_logits.view(-1, self.num_labels), initial_token_labels) subsequent_token_labels = subsequent_token_labels.view(-1) subsequent_token_loss = loss_fct( subsequent_token_logits.view(-1, max_seq_length + 1)[subsequent_token_mask], subsequent_token_labels[subsequent_token_mask], ) loss = initial_token_loss + subsequent_token_loss if not return_dict: output = (initial_token_logits, subsequent_token_logits) + outputs[2:] return ((loss,) + output) if loss is not None else output return BrosSpadeOutput( loss=loss, initial_token_logits=initial_token_logits, subsequent_token_logits=subsequent_token_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
47,463
53,410
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bros/modeling_bros.py
null
9,012
class BrosSpadeELForTokenClassification(BrosPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] def __init__(self, config): super().__init__(config) self.config = config self.num_labels = config.num_labels self.n_relations = config.n_relations self.backbone_hidden_size = config.hidden_size self.bros = BrosModel(config) (config.classifier_dropout if hasattr(config, "classifier_dropout") else config.hidden_dropout_prob) self.entity_linker = BrosRelationExtractor(config) self.init_weights() @add_start_docstrings_to_model_forward(BROS_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, bbox: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, bbox_first_token_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: r""" Returns: Examples: ```python >>> import torch >>> from transformers import BrosProcessor, BrosSpadeELForTokenClassification >>> processor = BrosProcessor.from_pretrained("jinho8345/bros-base-uncased") >>> model = BrosSpadeELForTokenClassification.from_pretrained("jinho8345/bros-base-uncased") >>> encoding = processor("Hello, my dog is cute", add_special_tokens=False, return_tensors="pt") >>> bbox = torch.tensor([[[0, 0, 1, 1]]]).repeat(1, encoding["input_ids"].shape[-1], 1) >>> encoding["bbox"] = bbox >>> outputs = model(**encoding) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bros( input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_states = outputs[0] last_hidden_states = last_hidden_states.transpose(0, 1).contiguous() logits = self.entity_linker(last_hidden_states, last_hidden_states).squeeze(0) loss = None if labels is not None: loss_fct = CrossEntropyLoss() batch_size, max_seq_length = attention_mask.shape device = attention_mask.device self_token_mask = torch.eye(max_seq_length, max_seq_length + 1).to(device).bool() mask = bbox_first_token_mask.view(-1) bbox_first_token_mask = torch.cat( [ ~bbox_first_token_mask, torch.zeros([batch_size, 1], dtype=torch.bool).to(device), ], axis=1, ) logits = logits.masked_fill(bbox_first_token_mask[:, None, :], torch.finfo(logits.dtype).min) logits = logits.masked_fill(self_token_mask[None, :, :], torch.finfo(logits.dtype).min) loss = loss_fct(logits.view(-1, max_seq_length + 1)[mask], labels.view(-1)[mask]) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
53,712
57,837
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bros/modeling_bros.py
null
9,013
class BrosProcessor(ProcessorMixin): r""" Constructs a Bros processor which wraps a BERT tokenizer. [`BrosProcessor`] offers all the functionalities of [`BertTokenizerFast`]. See the docstring of [`~BrosProcessor.__call__`] and [`~BrosProcessor.decode`] for more information. Args: tokenizer (`BertTokenizerFast`, *optional*): An instance of ['BertTokenizerFast`]. The tokenizer is a required input. """ attributes = ["tokenizer"] tokenizer_class = ("BertTokenizer", "BertTokenizerFast") def __init__(self, tokenizer=None, **kwargs): if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(tokenizer) def __call__( self, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs, ) -> BatchEncoding: """ This method uses [`BertTokenizerFast.__call__`] to prepare text for the model. Please refer to the docstring of the above two methods for more information. """ encoding = self.tokenizer( text=text, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, return_tensors=return_tensors, **kwargs, ) return encoding def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names return list(dict.fromkeys(tokenizer_input_names))
class_definition
883
4,192
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bros/processing_bros.py
null
9,014
class BrosConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`BrosModel`] or a [`TFBrosModel`]. It is used to instantiate a Bros model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Bros [jinho8345/bros-base-uncased](https://huggingface.co/jinho8345/bros-base-uncased) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the Bros model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`BrosModel`] or [`TFBrosModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`BrosModel`] or [`TFBrosModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. pad_token_id (`int`, *optional*, defaults to 0): The index of the padding token in the token vocabulary. dim_bbox (`int`, *optional*, defaults to 8): The dimension of the bounding box coordinates. (x0, y1, x1, y0, x1, y1, x0, y1) bbox_scale (`float`, *optional*, defaults to 100.0): The scale factor of the bounding box coordinates. n_relations (`int`, *optional*, defaults to 1): The number of relations for SpadeEE(entity extraction), SpadeEL(entity linking) head. classifier_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the classifier head. Examples: ```python >>> from transformers import BrosConfig, BrosModel >>> # Initializing a BROS jinho8345/bros-base-uncased style configuration >>> configuration = BrosConfig() >>> # Initializing a model from the jinho8345/bros-base-uncased style configuration >>> model = BrosModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "bros" def __init__( self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, dim_bbox=8, bbox_scale=100.0, n_relations=1, classifier_dropout_prob=0.1, **kwargs, ): super().__init__( vocab_size=vocab_size, hidden_size=hidden_size, num_hidden_layers=num_hidden_layers, num_attention_heads=num_attention_heads, intermediate_size=intermediate_size, hidden_act=hidden_act, hidden_dropout_prob=hidden_dropout_prob, attention_probs_dropout_prob=attention_probs_dropout_prob, max_position_embeddings=max_position_embeddings, type_vocab_size=type_vocab_size, initializer_range=initializer_range, layer_norm_eps=layer_norm_eps, pad_token_id=pad_token_id, **kwargs, ) self.dim_bbox = dim_bbox self.bbox_scale = bbox_scale self.n_relations = n_relations self.dim_bbox_sinusoid_emb_2d = self.hidden_size // 4 self.dim_bbox_sinusoid_emb_1d = self.dim_bbox_sinusoid_emb_2d // self.dim_bbox self.dim_bbox_projection = self.hidden_size // self.num_attention_heads self.classifier_dropout_prob = classifier_dropout_prob
class_definition
834
6,390
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bros/configuration_bros.py
null
9,015
class DetrFeatureExtractor(DetrImageProcessor): def __init__(self, *args, **kwargs) -> None: warnings.warn( "The class DetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use DetrImageProcessor instead.", FutureWarning, ) super().__init__(*args, **kwargs)
class_definition
1,111
1,473
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/detr/feature_extraction_detr.py
null
9,016
class DetrImageProcessorFast(BaseImageProcessorFast): r""" Constructs a fast Detr image processor. Args: format (`str`, *optional*, defaults to `AnnotationFormat.COCO_DETECTION`): Data format of the annotations. One of "coco_detection" or "coco_panoptic". do_resize (`bool`, *optional*, defaults to `True`): Controls whether to resize the image's `(height, width)` dimensions to the specified `size`. Can be overridden by the `do_resize` parameter in the `preprocess` method. size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 800, "longest_edge": 1333}`): Size of the image's `(height, width)` dimensions after resizing. Can be overridden by the `size` parameter in the `preprocess` method. Available options are: - `{"height": int, "width": int}`: The image will be resized to the exact size `(height, width)`. Do NOT keep the aspect ratio. - `{"shortest_edge": int, "longest_edge": int}`: The image will be resized to a maximum size respecting the aspect ratio and keeping the shortest edge less or equal to `shortest_edge` and the longest edge less or equal to `longest_edge`. - `{"max_height": int, "max_width": int}`: The image will be resized to the maximum size respecting the aspect ratio and keeping the height less or equal to `max_height` and the width less or equal to `max_width`. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): Resampling filter to use if resizing the image. do_rescale (`bool`, *optional*, defaults to `True`): Controls whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `True`): Controls whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_MEAN`): Mean values to use when normalizing the image. Can be a single value or a list of values, one for each channel. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_STD`): Standard deviation values to use when normalizing the image. Can be a single value or a list of values, one for each channel. Can be overridden by the `image_std` parameter in the `preprocess` method. do_convert_annotations (`bool`, *optional*, defaults to `True`): Controls whether to convert the annotations to the format expected by the DETR model. Converts the bounding boxes to the format `(center_x, center_y, width, height)` and in the range `[0, 1]`. Can be overridden by the `do_convert_annotations` parameter in the `preprocess` method. do_pad (`bool`, *optional*, defaults to `True`): Controls whether to pad the image. Can be overridden by the `do_pad` parameter in the `preprocess` method. If `True`, padding will be applied to the bottom and right of the image with zeros. If `pad_size` is provided, the image will be padded to the specified dimensions. Otherwise, the image will be padded to the maximum height and width of the batch. pad_size (`Dict[str, int]`, *optional*): The size `{"height": int, "width" int}` to pad the images to. Must be larger than any image size provided for preprocessing. If `pad_size` is not provided, images will be padded to the largest height and width in the batch. """ model_input_names = ["pixel_values", "pixel_mask"] def __init__( self, format: Union[str, AnnotationFormat] = AnnotationFormat.COCO_DETECTION, do_resize: bool = True, size: Dict[str, int] = None, resample: Union[PILImageResampling, "F.InterpolationMode"] = PILImageResampling.BILINEAR, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Union[float, List[float]] = None, image_std: Union[float, List[float]] = None, do_convert_annotations: Optional[bool] = None, do_pad: bool = True, pad_size: Optional[Dict[str, int]] = None, **kwargs, ) -> None: if "pad_and_return_pixel_mask" in kwargs: do_pad = kwargs.pop("pad_and_return_pixel_mask") if "max_size" in kwargs: logger.warning_once( "The `max_size` parameter is deprecated and will be removed in v4.26. " "Please specify in `size['longest_edge'] instead`.", ) max_size = kwargs.pop("max_size") else: max_size = None if size is None else 1333 size = size if size is not None else {"shortest_edge": 800, "longest_edge": 1333} size = get_size_dict(size, max_size=max_size, default_to_square=False) # Backwards compatibility if do_convert_annotations is None: do_convert_annotations = do_normalize super().__init__(**kwargs) self.format = format self.do_resize = do_resize self.size = size self.resample = resample self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.do_convert_annotations = do_convert_annotations self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD self.do_pad = do_pad self.pad_size = pad_size self._valid_processor_keys = [ "images", "annotations", "return_segmentation_masks", "masks_path", "do_resize", "size", "resample", "do_rescale", "rescale_factor", "do_normalize", "do_convert_annotations", "image_mean", "image_std", "do_pad", "pad_size", "format", "return_tensors", "data_format", "input_data_format", ] @classmethod def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs): """ Overrides the `from_dict` method from the base class to make sure parameters are updated if image processor is created using from_dict and kwargs e.g. `DetrImageProcessorFast.from_pretrained(checkpoint, size=600, max_size=800)` """ image_processor_dict = image_processor_dict.copy() if "max_size" in kwargs: image_processor_dict["max_size"] = kwargs.pop("max_size") if "pad_and_return_pixel_mask" in kwargs: image_processor_dict["pad_and_return_pixel_mask"] = kwargs.pop("pad_and_return_pixel_mask") return super().from_dict(image_processor_dict, **kwargs) def prepare_annotation( self, image: torch.Tensor, target: Dict, format: Optional[AnnotationFormat] = None, return_segmentation_masks: bool = None, masks_path: Optional[Union[str, pathlib.Path]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> Dict: """ Prepare an annotation for feeding into DETR model. """ format = format if format is not None else self.format if format == AnnotationFormat.COCO_DETECTION: return_segmentation_masks = False if return_segmentation_masks is None else return_segmentation_masks target = prepare_coco_detection_annotation( image, target, return_segmentation_masks, input_data_format=input_data_format ) elif format == AnnotationFormat.COCO_PANOPTIC: return_segmentation_masks = True if return_segmentation_masks is None else return_segmentation_masks target = prepare_coco_panoptic_annotation( image, target, masks_path=masks_path, return_masks=return_segmentation_masks, input_data_format=input_data_format, ) else: raise ValueError(f"Format {format} is not supported.") return target def resize( self, image: torch.Tensor, size: SizeDict, interpolation: "F.InterpolationMode" = None, **kwargs, ) -> torch.Tensor: """ Resize the image to the given size. Size can be `min_size` (scalar) or `(height, width)` tuple. If size is an int, smaller edge of the image will be matched to this number. Args: image (`torch.Tensor`): Image to resize. size (`SizeDict`): Size of the image's `(height, width)` dimensions after resizing. Available options are: - `{"height": int, "width": int}`: The image will be resized to the exact size `(height, width)`. Do NOT keep the aspect ratio. - `{"shortest_edge": int, "longest_edge": int}`: The image will be resized to a maximum size respecting the aspect ratio and keeping the shortest edge less or equal to `shortest_edge` and the longest edge less or equal to `longest_edge`. - `{"max_height": int, "max_width": int}`: The image will be resized to the maximum size respecting the aspect ratio and keeping the height less or equal to `max_height` and the width less or equal to `max_width`. interpolation (`InterpolationMode`, *optional*, defaults to `InterpolationMode.BILINEAR`): Resampling filter to use if resizing the image. """ interpolation = interpolation if interpolation is not None else F.InterpolationMode.BILINEAR if size.shortest_edge and size.longest_edge: # Resize the image so that the shortest edge or the longest edge is of the given size # while maintaining the aspect ratio of the original image. new_size = get_size_with_aspect_ratio( image.size()[-2:], size["shortest_edge"], size["longest_edge"], ) elif size.max_height and size.max_width: new_size = get_image_size_for_max_height_width(image.size()[-2:], size["max_height"], size["max_width"]) elif size.height and size.width: new_size = (size["height"], size["width"]) else: raise ValueError( "Size must contain 'height' and 'width' keys or 'shortest_edge' and 'longest_edge' keys. Got" f" {size.keys()}." ) image = F.resize( image, size=new_size, interpolation=interpolation, **kwargs, ) return image def resize_annotation( self, annotation: Dict[str, Any], orig_size: Tuple[int, int], target_size: Tuple[int, int], threshold: float = 0.5, interpolation: "F.InterpolationMode" = None, ): """ Resizes an annotation to a target size. Args: annotation (`Dict[str, Any]`): The annotation dictionary. orig_size (`Tuple[int, int]`): The original size of the input image. target_size (`Tuple[int, int]`): The target size of the image, as returned by the preprocessing `resize` step. threshold (`float`, *optional*, defaults to 0.5): The threshold used to binarize the segmentation masks. resample (`InterpolationMode`, defaults to `InterpolationMode.NEAREST`): The resampling filter to use when resizing the masks. """ interpolation = interpolation if interpolation is not None else F.InterpolationMode.NEAREST ratio_height, ratio_width = [target / orig for target, orig in zip(target_size, orig_size)] new_annotation = {} new_annotation["size"] = target_size for key, value in annotation.items(): if key == "boxes": boxes = value scaled_boxes = boxes * torch.as_tensor( [ratio_width, ratio_height, ratio_width, ratio_height], dtype=torch.float32, device=boxes.device ) new_annotation["boxes"] = scaled_boxes elif key == "area": area = value scaled_area = area * (ratio_width * ratio_height) new_annotation["area"] = scaled_area elif key == "masks": masks = value[:, None] masks = [F.resize(mask, target_size, interpolation=interpolation) for mask in masks] masks = torch.stack(masks).to(torch.float32) masks = masks[:, 0] > threshold new_annotation["masks"] = masks elif key == "size": new_annotation["size"] = target_size else: new_annotation[key] = value return new_annotation def normalize_annotation(self, annotation: Dict, image_size: Tuple[int, int]) -> Dict: image_height, image_width = image_size norm_annotation = {} for key, value in annotation.items(): if key == "boxes": boxes = value boxes = corners_to_center_format(boxes) boxes /= torch.as_tensor( [image_width, image_height, image_width, image_height], dtype=torch.float32, device=boxes.device ) norm_annotation[key] = boxes else: norm_annotation[key] = value return norm_annotation def _update_annotation_for_padded_image( self, annotation: Dict, input_image_size: Tuple[int, int], output_image_size: Tuple[int, int], padding, update_bboxes, ) -> Dict: """ Update the annotation for a padded image. """ new_annotation = {} new_annotation["size"] = output_image_size ratio_height, ratio_width = (input / output for output, input in zip(output_image_size, input_image_size)) for key, value in annotation.items(): if key == "masks": masks = value masks = F.pad( masks, padding, fill=0, ) masks = safe_squeeze(masks, 1) new_annotation["masks"] = masks elif key == "boxes" and update_bboxes: boxes = value boxes *= torch.as_tensor([ratio_width, ratio_height, ratio_width, ratio_height], device=boxes.device) new_annotation["boxes"] = boxes elif key == "size": new_annotation["size"] = output_image_size else: new_annotation[key] = value return new_annotation def pad( self, image: torch.Tensor, padded_size: Tuple[int, int], annotation: Optional[Dict[str, Any]] = None, update_bboxes: bool = True, fill: int = 0, ): original_size = image.size()[-2:] padding_bottom = padded_size[0] - original_size[0] padding_right = padded_size[1] - original_size[1] if padding_bottom < 0 or padding_right < 0: raise ValueError( f"Padding dimensions are negative. Please make sure that the padded size is larger than the " f"original size. Got padded size: {padded_size}, original size: {original_size}." ) if original_size != padded_size: padding = [0, 0, padding_right, padding_bottom] image = F.pad(image, padding, fill=fill) if annotation is not None: annotation = self._update_annotation_for_padded_image( annotation, original_size, padded_size, padding, update_bboxes ) # Make a pixel mask for the image, where 1 indicates a valid pixel and 0 indicates padding. pixel_mask = torch.zeros(padded_size, dtype=torch.int64, device=image.device) pixel_mask[: original_size[0], : original_size[1]] = 1 return image, pixel_mask, annotation @functools.lru_cache(maxsize=1) def _validate_input_arguments( self, do_rescale: bool, rescale_factor: float, do_normalize: bool, image_mean: Union[float, List[float]], image_std: Union[float, List[float]], do_resize: bool, size: Dict[str, int], resample: "PILImageResampling", data_format: Union[str, ChannelDimension], return_tensors: Union[TensorType, str], ): if return_tensors != "pt": raise ValueError("Only returning PyTorch tensors is currently supported.") if data_format != ChannelDimension.FIRST: raise ValueError("Only channel first data format is currently supported.") if do_resize and None in (size, resample): raise ValueError("Size and resample must be specified if do_resize is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and None in (image_mean, image_std): raise ValueError("Image mean and standard deviation must be specified if do_normalize is True.") def preprocess( self, images: ImageInput, annotations: Optional[Union[AnnotationType, List[AnnotationType]]] = None, return_segmentation_masks: bool = None, masks_path: Optional[Union[str, pathlib.Path]] = None, do_resize: Optional[bool] = None, size: Optional[Dict[str, int]] = None, resample: Optional[Union[PILImageResampling, "F.InterpolationMode"]] = None, do_rescale: Optional[bool] = None, rescale_factor: Optional[Union[int, float]] = None, do_normalize: Optional[bool] = None, do_convert_annotations: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_pad: Optional[bool] = None, format: Optional[Union[str, AnnotationFormat]] = None, return_tensors: Optional[Union[TensorType, str]] = None, data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, pad_size: Optional[Dict[str, int]] = None, **kwargs, ) -> BatchFeature: """ Preprocess an image or a batch of images so that it can be used by the model. Args: images (`ImageInput`): Image or batch of images to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. annotations (`AnnotationType` or `List[AnnotationType]`, *optional*): List of annotations associated with the image or batch of images. If annotation is for object detection, the annotations should be a dictionary with the following keys: - "image_id" (`int`): The image id. - "annotations" (`List[Dict]`): List of annotations for an image. Each annotation should be a dictionary. An image can have no annotations, in which case the list should be empty. If annotation is for segmentation, the annotations should be a dictionary with the following keys: - "image_id" (`int`): The image id. - "segments_info" (`List[Dict]`): List of segments for an image. Each segment should be a dictionary. An image can have no segments, in which case the list should be empty. - "file_name" (`str`): The file name of the image. return_segmentation_masks (`bool`, *optional*, defaults to self.return_segmentation_masks): Whether to return segmentation masks. masks_path (`str` or `pathlib.Path`, *optional*): Path to the directory containing the segmentation masks. do_resize (`bool`, *optional*, defaults to self.do_resize): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to self.size): Size of the image's `(height, width)` dimensions after resizing. Available options are: - `{"height": int, "width": int}`: The image will be resized to the exact size `(height, width)`. Do NOT keep the aspect ratio. - `{"shortest_edge": int, "longest_edge": int}`: The image will be resized to a maximum size respecting the aspect ratio and keeping the shortest edge less or equal to `shortest_edge` and the longest edge less or equal to `longest_edge`. - `{"max_height": int, "max_width": int}`: The image will be resized to the maximum size respecting the aspect ratio and keeping the height less or equal to `max_height` and the width less or equal to `max_width`. resample (`PILImageResampling` or `InterpolationMode`, *optional*, defaults to self.resample): Resampling filter to use when resizing the image. do_rescale (`bool`, *optional*, defaults to self.do_rescale): Whether to rescale the image. rescale_factor (`float`, *optional*, defaults to self.rescale_factor): Rescale factor to use when rescaling the image. do_normalize (`bool`, *optional*, defaults to self.do_normalize): Whether to normalize the image. do_convert_annotations (`bool`, *optional*, defaults to self.do_convert_annotations): Whether to convert the annotations to the format expected by the model. Converts the bounding boxes from the format `(top_left_x, top_left_y, width, height)` to `(center_x, center_y, width, height)` and in relative coordinates. image_mean (`float` or `List[float]`, *optional*, defaults to self.image_mean): Mean to use when normalizing the image. image_std (`float` or `List[float]`, *optional*, defaults to self.image_std): Standard deviation to use when normalizing the image. do_pad (`bool`, *optional*, defaults to self.do_pad): Whether to pad the image. If `True`, padding will be applied to the bottom and right of the image with zeros. If `pad_size` is provided, the image will be padded to the specified dimensions. Otherwise, the image will be padded to the maximum height and width of the batch. format (`str` or `AnnotationFormat`, *optional*, defaults to self.format): Format of the annotations. return_tensors (`str` or `TensorType`, *optional*, defaults to self.return_tensors): Type of tensors to return. If `None`, will return the list of images. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. pad_size (`Dict[str, int]`, *optional*): The size `{"height": int, "width" int}` to pad the images to. Must be larger than any image size provided for preprocessing. If `pad_size` is not provided, images will be padded to the largest height and width in the batch. """ if "pad_and_return_pixel_mask" in kwargs: logger.warning_once( "The `pad_and_return_pixel_mask` argument is deprecated and will be removed in a future version, " "use `do_pad` instead." ) do_pad = kwargs.pop("pad_and_return_pixel_mask") if "max_size" in kwargs: logger.warning_once( "The `max_size` argument is deprecated and will be removed in a future version, use" " `size['longest_edge']` instead." ) size = kwargs.pop("max_size") do_resize = self.do_resize if do_resize is None else do_resize size = self.size if size is None else size size = get_size_dict(size=size, default_to_square=False) resample = self.resample if resample is None else resample do_rescale = self.do_rescale if do_rescale is None else do_rescale rescale_factor = self.rescale_factor if rescale_factor is None else rescale_factor do_normalize = self.do_normalize if do_normalize is None else do_normalize image_mean = self.image_mean if image_mean is None else image_mean image_std = self.image_std if image_std is None else image_std do_convert_annotations = ( self.do_convert_annotations if do_convert_annotations is None else do_convert_annotations ) do_pad = self.do_pad if do_pad is None else do_pad pad_size = self.pad_size if pad_size is None else pad_size format = self.format if format is None else format device = kwargs.pop("device", None) # Make hashable for cache size = SizeDict(**size) image_mean = tuple(image_mean) if isinstance(image_mean, list) else image_mean image_std = tuple(image_std) if isinstance(image_std, list) else image_std images = make_list_of_images(images) image_type = get_image_type(images[0]) if image_type not in [ImageType.PIL, ImageType.TORCH, ImageType.NUMPY]: raise ValueError(f"Unsupported input image type {image_type}") validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys) self._validate_input_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_resize=do_resize, size=size, resample=resample, return_tensors=return_tensors, data_format=data_format, ) if annotations is not None and isinstance(annotations, dict): annotations = [annotations] if annotations is not None and len(images) != len(annotations): raise ValueError( f"The number of images ({len(images)}) and annotations ({len(annotations)}) do not match." ) format = AnnotationFormat(format) if annotations is not None: validate_annotations(format, SUPPORTED_ANNOTATION_FORMATS, annotations) if ( masks_path is not None and format == AnnotationFormat.COCO_PANOPTIC and not isinstance(masks_path, (pathlib.Path, str)) ): raise ValueError( "The path to the directory containing the mask PNG files should be provided as a" f" `pathlib.Path` or string object, but is {type(masks_path)} instead." ) data = {} if image_type == ImageType.PIL: images = [F.pil_to_tensor(image) for image in images] elif image_type == ImageType.NUMPY: # not using F.to_tensor as it doesn't handle (C, H, W) numpy arrays images = [torch.from_numpy(image).contiguous() for image in images] if device is not None: images = [image.to(device) for image in images] # We assume that all images have the same channel dimension format. if input_data_format is None: input_data_format = infer_channel_dimension_format(images[0]) if input_data_format == ChannelDimension.LAST: images = [image.permute(2, 0, 1).contiguous() for image in images] input_data_format = ChannelDimension.FIRST if do_rescale and do_normalize: # fused rescale and normalize new_mean = torch.tensor(image_mean, device=images[0].device) * (1.0 / rescale_factor) new_std = torch.tensor(image_std, device=images[0].device) * (1.0 / rescale_factor) processed_images = [] processed_annotations = [] pixel_masks = [] # Initialize pixel_masks here for image, annotation in zip(images, annotations if annotations is not None else [None] * len(images)): # prepare (COCO annotations as a list of Dict -> DETR target as a single Dict per image) if annotations is not None: annotation = self.prepare_annotation( image, annotation, format, return_segmentation_masks=return_segmentation_masks, masks_path=masks_path, input_data_format=input_data_format, ) if do_resize: interpolation = ( pil_torch_interpolation_mapping[resample] if isinstance(resample, (PILImageResampling, int)) else resample ) resized_image = self.resize(image, size=size, interpolation=interpolation) if annotations is not None: annotation = self.resize_annotation( annotation, orig_size=image.size()[-2:], target_size=resized_image.size()[-2:], ) image = resized_image if do_rescale and do_normalize: # fused rescale and normalize image = F.normalize(image.to(dtype=torch.float32), new_mean, new_std) elif do_rescale: image = image * rescale_factor elif do_normalize: image = F.normalize(image, image_mean, image_std) if do_convert_annotations and annotations is not None: annotation = self.normalize_annotation(annotation, get_image_size(image, input_data_format)) processed_images.append(image) processed_annotations.append(annotation) images = processed_images annotations = processed_annotations if annotations is not None else None if do_pad: # depends on all resized image shapes so we need another loop if pad_size is not None: padded_size = (pad_size["height"], pad_size["width"]) else: padded_size = get_max_height_width(images) padded_images = [] padded_annotations = [] for image, annotation in zip(images, annotations if annotations is not None else [None] * len(images)): # Pads images and returns their mask: {'pixel_values': ..., 'pixel_mask': ...} if padded_size == image.size()[-2:]: padded_images.append(image) pixel_masks.append(torch.ones(padded_size, dtype=torch.int64, device=image.device)) padded_annotations.append(annotation) continue image, pixel_mask, annotation = self.pad( image, padded_size, annotation=annotation, update_bboxes=do_convert_annotations ) padded_images.append(image) padded_annotations.append(annotation) pixel_masks.append(pixel_mask) images = padded_images annotations = padded_annotations if annotations is not None else None data.update({"pixel_mask": torch.stack(pixel_masks, dim=0)}) data.update({"pixel_values": torch.stack(images, dim=0)}) encoded_inputs = BatchFeature(data, tensor_type=return_tensors) if annotations is not None: encoded_inputs["labels"] = [ BatchFeature(annotation, tensor_type=return_tensors) for annotation in annotations ] return encoded_inputs # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.post_process def post_process(self, outputs, target_sizes): """ Converts the raw output of [`DetrForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y, bottom_right_x, bottom_right_y) format. Only supports PyTorch. Args: outputs ([`DetrObjectDetectionOutput`]): Raw outputs of the model. target_sizes (`torch.Tensor` of shape `(batch_size, 2)`): Tensor containing the size (height, width) of each image of the batch. For evaluation, this must be the original image size (before any data augmentation). For visualization, this should be the image size after data augment, but before padding. Returns: `List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image in the batch as predicted by the model. """ logger.warning_once( "`post_process` is deprecated and will be removed in v5 of Transformers, please use" " `post_process_object_detection` instead, with `threshold=0.` for equivalent results.", ) out_logits, out_bbox = outputs.logits, outputs.pred_boxes if len(out_logits) != len(target_sizes): raise ValueError("Make sure that you pass in as many target sizes as the batch dimension of the logits") if target_sizes.shape[1] != 2: raise ValueError("Each element of target_sizes must contain the size (h, w) of each image of the batch") prob = nn.functional.softmax(out_logits, -1) scores, labels = prob[..., :-1].max(-1) # convert to [x0, y0, x1, y1] format boxes = center_to_corners_format(out_bbox) # and from relative [0, 1] to absolute [0, height] coordinates img_h, img_w = target_sizes.unbind(1) scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device) boxes = boxes * scale_fct[:, None, :] results = [{"scores": s, "labels": l, "boxes": b} for s, l, b in zip(scores, labels, boxes)] return results # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.post_process_segmentation def post_process_segmentation(self, outputs, target_sizes, threshold=0.9, mask_threshold=0.5): """ Converts the output of [`DetrForSegmentation`] into image segmentation predictions. Only supports PyTorch. Args: outputs ([`DetrSegmentationOutput`]): Raw outputs of the model. target_sizes (`torch.Tensor` of shape `(batch_size, 2)` or `List[Tuple]` of length `batch_size`): Torch Tensor (or list) corresponding to the requested final size (h, w) of each prediction. threshold (`float`, *optional*, defaults to 0.9): Threshold to use to filter out queries. mask_threshold (`float`, *optional*, defaults to 0.5): Threshold to use when turning the predicted masks into binary values. Returns: `List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels, and masks for an image in the batch as predicted by the model. """ logger.warning_once( "`post_process_segmentation` is deprecated and will be removed in v5 of Transformers, please use" " `post_process_semantic_segmentation`.", ) out_logits, raw_masks = outputs.logits, outputs.pred_masks empty_label = out_logits.shape[-1] - 1 preds = [] def to_tuple(tup): if isinstance(tup, tuple): return tup return tuple(tup.cpu().tolist()) for cur_logits, cur_masks, size in zip(out_logits, raw_masks, target_sizes): # we filter empty queries and detection below threshold cur_scores, cur_labels = cur_logits.softmax(-1).max(-1) keep = cur_labels.ne(empty_label) & (cur_scores > threshold) cur_scores = cur_scores[keep] cur_labels = cur_labels[keep] cur_masks = cur_masks[keep] cur_masks = nn.functional.interpolate(cur_masks[:, None], to_tuple(size), mode="bilinear").squeeze(1) cur_masks = (cur_masks.sigmoid() > mask_threshold) * 1 predictions = {"scores": cur_scores, "labels": cur_labels, "masks": cur_masks} preds.append(predictions) return preds # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.post_process_instance def post_process_instance(self, results, outputs, orig_target_sizes, max_target_sizes, threshold=0.5): """ Converts the output of [`DetrForSegmentation`] into actual instance segmentation predictions. Only supports PyTorch. Args: results (`List[Dict]`): Results list obtained by [`~DetrImageProcessor.post_process`], to which "masks" results will be added. outputs ([`DetrSegmentationOutput`]): Raw outputs of the model. orig_target_sizes (`torch.Tensor` of shape `(batch_size, 2)`): Tensor containing the size (h, w) of each image of the batch. For evaluation, this must be the original image size (before any data augmentation). max_target_sizes (`torch.Tensor` of shape `(batch_size, 2)`): Tensor containing the maximum size (h, w) of each image of the batch. For evaluation, this must be the original image size (before any data augmentation). threshold (`float`, *optional*, defaults to 0.5): Threshold to use when turning the predicted masks into binary values. Returns: `List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels, boxes and masks for an image in the batch as predicted by the model. """ logger.warning_once( "`post_process_instance` is deprecated and will be removed in v5 of Transformers, please use" " `post_process_instance_segmentation`.", ) if len(orig_target_sizes) != len(max_target_sizes): raise ValueError("Make sure to pass in as many orig_target_sizes as max_target_sizes") max_h, max_w = max_target_sizes.max(0)[0].tolist() outputs_masks = outputs.pred_masks.squeeze(2) outputs_masks = nn.functional.interpolate( outputs_masks, size=(max_h, max_w), mode="bilinear", align_corners=False ) outputs_masks = (outputs_masks.sigmoid() > threshold).cpu() for i, (cur_mask, t, tt) in enumerate(zip(outputs_masks, max_target_sizes, orig_target_sizes)): img_h, img_w = t[0], t[1] results[i]["masks"] = cur_mask[:, :img_h, :img_w].unsqueeze(1) results[i]["masks"] = nn.functional.interpolate( results[i]["masks"].float(), size=tuple(tt.tolist()), mode="nearest" ).byte() return results # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.post_process_panoptic def post_process_panoptic(self, outputs, processed_sizes, target_sizes=None, is_thing_map=None, threshold=0.85): """ Converts the output of [`DetrForSegmentation`] into actual panoptic predictions. Only supports PyTorch. Args: outputs ([`DetrSegmentationOutput`]): Raw outputs of the model. processed_sizes (`torch.Tensor` of shape `(batch_size, 2)` or `List[Tuple]` of length `batch_size`): Torch Tensor (or list) containing the size (h, w) of each image of the batch, i.e. the size after data augmentation but before batching. target_sizes (`torch.Tensor` of shape `(batch_size, 2)` or `List[Tuple]` of length `batch_size`, *optional*): Torch Tensor (or list) corresponding to the requested final size `(height, width)` of each prediction. If left to None, it will default to the `processed_sizes`. is_thing_map (`torch.Tensor` of shape `(batch_size, 2)`, *optional*): Dictionary mapping class indices to either True or False, depending on whether or not they are a thing. If not set, defaults to the `is_thing_map` of COCO panoptic. threshold (`float`, *optional*, defaults to 0.85): Threshold to use to filter out queries. Returns: `List[Dict]`: A list of dictionaries, each dictionary containing a PNG string and segments_info values for an image in the batch as predicted by the model. """ logger.warning_once( "`post_process_panoptic is deprecated and will be removed in v5 of Transformers, please use" " `post_process_panoptic_segmentation`.", ) if target_sizes is None: target_sizes = processed_sizes if len(processed_sizes) != len(target_sizes): raise ValueError("Make sure to pass in as many processed_sizes as target_sizes") if is_thing_map is None: # default to is_thing_map of COCO panoptic is_thing_map = {i: i <= 90 for i in range(201)} out_logits, raw_masks, raw_boxes = outputs.logits, outputs.pred_masks, outputs.pred_boxes if not len(out_logits) == len(raw_masks) == len(target_sizes): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits and masks" ) empty_label = out_logits.shape[-1] - 1 preds = [] def to_tuple(tup): if isinstance(tup, tuple): return tup return tuple(tup.cpu().tolist()) for cur_logits, cur_masks, cur_boxes, size, target_size in zip( out_logits, raw_masks, raw_boxes, processed_sizes, target_sizes ): # we filter empty queries and detection below threshold cur_scores, cur_labels = cur_logits.softmax(-1).max(-1) keep = cur_labels.ne(empty_label) & (cur_scores > threshold) cur_scores = cur_scores[keep] cur_labels = cur_labels[keep] cur_masks = cur_masks[keep] cur_masks = nn.functional.interpolate(cur_masks[:, None], to_tuple(size), mode="bilinear").squeeze(1) cur_boxes = center_to_corners_format(cur_boxes[keep]) h, w = cur_masks.shape[-2:] if len(cur_boxes) != len(cur_labels): raise ValueError("Not as many boxes as there are classes") # It may be that we have several predicted masks for the same stuff class. # In the following, we track the list of masks ids for each stuff class (they are merged later on) cur_masks = cur_masks.flatten(1) stuff_equiv_classes = defaultdict(lambda: []) for k, label in enumerate(cur_labels): if not is_thing_map[label.item()]: stuff_equiv_classes[label.item()].append(k) def get_ids_area(masks, scores, dedup=False): # This helper function creates the final panoptic segmentation image # It also returns the area of the masks that appears on the image m_id = masks.transpose(0, 1).softmax(-1) if m_id.shape[-1] == 0: # We didn't detect any mask :( m_id = torch.zeros((h, w), dtype=torch.long, device=m_id.device) else: m_id = m_id.argmax(-1).view(h, w) if dedup: # Merge the masks corresponding to the same stuff class for equiv in stuff_equiv_classes.values(): if len(equiv) > 1: for eq_id in equiv: m_id.masked_fill_(m_id.eq(eq_id), equiv[0]) final_h, final_w = to_tuple(target_size) seg_img = PIL.Image.fromarray(id_to_rgb(m_id.view(h, w).cpu().numpy())) seg_img = seg_img.resize(size=(final_w, final_h), resample=PILImageResampling.NEAREST) np_seg_img = torch.ByteTensor(torch.ByteStorage.from_buffer(seg_img.tobytes())) np_seg_img = np_seg_img.view(final_h, final_w, 3) np_seg_img = np_seg_img.numpy() m_id = torch.from_numpy(rgb_to_id(np_seg_img)) area = [] for i in range(len(scores)): area.append(m_id.eq(i).sum().item()) return area, seg_img area, seg_img = get_ids_area(cur_masks, cur_scores, dedup=True) if cur_labels.numel() > 0: # We know filter empty masks as long as we find some while True: filtered_small = torch.as_tensor( [area[i] <= 4 for i, c in enumerate(cur_labels)], dtype=torch.bool, device=keep.device ) if filtered_small.any().item(): cur_scores = cur_scores[~filtered_small] cur_labels = cur_labels[~filtered_small] cur_masks = cur_masks[~filtered_small] area, seg_img = get_ids_area(cur_masks, cur_scores) else: break else: cur_labels = torch.ones(1, dtype=torch.long, device=cur_labels.device) segments_info = [] for i, a in enumerate(area): cat = cur_labels[i].item() segments_info.append({"id": i, "isthing": is_thing_map[cat], "category_id": cat, "area": a}) del cur_labels with io.BytesIO() as out: seg_img.save(out, format="PNG") predictions = {"png_string": out.getvalue(), "segments_info": segments_info} preds.append(predictions) return preds # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.post_process_object_detection def post_process_object_detection( self, outputs, threshold: float = 0.5, target_sizes: Union[TensorType, List[Tuple]] = None ): """ Converts the raw output of [`DetrForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y, bottom_right_x, bottom_right_y) format. Only supports PyTorch. Args: outputs ([`DetrObjectDetectionOutput`]): Raw outputs of the model. threshold (`float`, *optional*): Score threshold to keep object detection predictions. target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*): Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size `(height, width)` of each image in the batch. If unset, predictions will not be resized. Returns: `List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image in the batch as predicted by the model. """ out_logits, out_bbox = outputs.logits, outputs.pred_boxes if target_sizes is not None: if len(out_logits) != len(target_sizes): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) prob = nn.functional.softmax(out_logits, -1) scores, labels = prob[..., :-1].max(-1) # Convert to [x0, y0, x1, y1] format boxes = center_to_corners_format(out_bbox) # Convert from relative [0, 1] to absolute [0, height] coordinates if target_sizes is not None: if isinstance(target_sizes, List): img_h = torch.Tensor([i[0] for i in target_sizes]) img_w = torch.Tensor([i[1] for i in target_sizes]) else: img_h, img_w = target_sizes.unbind(1) scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device) boxes = boxes * scale_fct[:, None, :] results = [] for s, l, b in zip(scores, labels, boxes): score = s[s > threshold] label = l[s > threshold] box = b[s > threshold] results.append({"scores": score, "labels": label, "boxes": box}) return results # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.post_process_semantic_segmentation def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple[int, int]] = None): """ Converts the output of [`DetrForSegmentation`] into semantic segmentation maps. Only supports PyTorch. Args: outputs ([`DetrForSegmentation`]): Raw outputs of the model. target_sizes (`List[Tuple[int, int]]`, *optional*): A list of tuples (`Tuple[int, int]`) containing the target size (height, width) of each image in the batch. If unset, predictions will not be resized. Returns: `List[torch.Tensor]`: A list of length `batch_size`, where each item is a semantic segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is specified). Each entry of each `torch.Tensor` correspond to a semantic class id. """ class_queries_logits = outputs.logits # [batch_size, num_queries, num_classes+1] masks_queries_logits = outputs.pred_masks # [batch_size, num_queries, height, width] # Remove the null class `[..., :-1]` masks_classes = class_queries_logits.softmax(dim=-1)[..., :-1] masks_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width] # Semantic segmentation logits of shape (batch_size, num_classes, height, width) segmentation = torch.einsum("bqc, bqhw -> bchw", masks_classes, masks_probs) batch_size = class_queries_logits.shape[0] # Resize logits and compute semantic segmentation maps if target_sizes is not None: if batch_size != len(target_sizes): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) semantic_segmentation = [] for idx in range(batch_size): resized_logits = nn.functional.interpolate( segmentation[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False ) semantic_map = resized_logits[0].argmax(dim=0) semantic_segmentation.append(semantic_map) else: semantic_segmentation = segmentation.argmax(dim=1) semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.post_process_instance_segmentation def post_process_instance_segmentation( self, outputs, threshold: float = 0.5, mask_threshold: float = 0.5, overlap_mask_area_threshold: float = 0.8, target_sizes: Optional[List[Tuple[int, int]]] = None, return_coco_annotation: Optional[bool] = False, ) -> List[Dict]: """ Converts the output of [`DetrForSegmentation`] into instance segmentation predictions. Only supports PyTorch. Args: outputs ([`DetrForSegmentation`]): Raw outputs of the model. threshold (`float`, *optional*, defaults to 0.5): The probability score threshold to keep predicted instance masks. mask_threshold (`float`, *optional*, defaults to 0.5): Threshold to use when turning the predicted masks into binary values. overlap_mask_area_threshold (`float`, *optional*, defaults to 0.8): The overlap mask area threshold to merge or discard small disconnected parts within each binary instance mask. target_sizes (`List[Tuple]`, *optional*): List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested final size (height, width) of each prediction. If unset, predictions will not be resized. return_coco_annotation (`bool`, *optional*): Defaults to `False`. If set to `True`, segmentation maps are returned in COCO run-length encoding (RLE) format. Returns: `List[Dict]`: A list of dictionaries, one per image, each dictionary containing two keys: - **segmentation** -- A tensor of shape `(height, width)` where each pixel represents a `segment_id` or `List[List]` run-length encoding (RLE) of the segmentation map if return_coco_annotation is set to `True`. Set to `None` if no mask if found above `threshold`. - **segments_info** -- A dictionary that contains additional information on each segment. - **id** -- An integer representing the `segment_id`. - **label_id** -- An integer representing the label / semantic class id corresponding to `segment_id`. - **score** -- Prediction score of segment with `segment_id`. """ class_queries_logits = outputs.logits # [batch_size, num_queries, num_classes+1] masks_queries_logits = outputs.pred_masks # [batch_size, num_queries, height, width] batch_size = class_queries_logits.shape[0] num_labels = class_queries_logits.shape[-1] - 1 mask_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width] # Predicted label and score of each query (batch_size, num_queries) pred_scores, pred_labels = nn.functional.softmax(class_queries_logits, dim=-1).max(-1) # Loop over items in batch size results: List[Dict[str, TensorType]] = [] for i in range(batch_size): mask_probs_item, pred_scores_item, pred_labels_item = remove_low_and_no_objects( mask_probs[i], pred_scores[i], pred_labels[i], threshold, num_labels ) # No mask found if mask_probs_item.shape[0] <= 0: height, width = target_sizes[i] if target_sizes is not None else mask_probs_item.shape[1:] segmentation = torch.zeros((height, width)) - 1 results.append({"segmentation": segmentation, "segments_info": []}) continue # Get segmentation map and segment information of batch item target_size = target_sizes[i] if target_sizes is not None else None segmentation, segments = compute_segments( mask_probs=mask_probs_item, pred_scores=pred_scores_item, pred_labels=pred_labels_item, mask_threshold=mask_threshold, overlap_mask_area_threshold=overlap_mask_area_threshold, label_ids_to_fuse=[], target_size=target_size, ) # Return segmentation map in run-length encoding (RLE) format if return_coco_annotation: segmentation = convert_segmentation_to_rle(segmentation) results.append({"segmentation": segmentation, "segments_info": segments}) return results # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.post_process_panoptic_segmentation def post_process_panoptic_segmentation( self, outputs, threshold: float = 0.5, mask_threshold: float = 0.5, overlap_mask_area_threshold: float = 0.8, label_ids_to_fuse: Optional[Set[int]] = None, target_sizes: Optional[List[Tuple[int, int]]] = None, ) -> List[Dict]: """ Converts the output of [`DetrForSegmentation`] into image panoptic segmentation predictions. Only supports PyTorch. Args: outputs ([`DetrForSegmentation`]): The outputs from [`DetrForSegmentation`]. threshold (`float`, *optional*, defaults to 0.5): The probability score threshold to keep predicted instance masks. mask_threshold (`float`, *optional*, defaults to 0.5): Threshold to use when turning the predicted masks into binary values. overlap_mask_area_threshold (`float`, *optional*, defaults to 0.8): The overlap mask area threshold to merge or discard small disconnected parts within each binary instance mask. label_ids_to_fuse (`Set[int]`, *optional*): The labels in this state will have all their instances be fused together. For instance we could say there can only be one sky in an image, but several persons, so the label ID for sky would be in that set, but not the one for person. target_sizes (`List[Tuple]`, *optional*): List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested final size (height, width) of each prediction in batch. If unset, predictions will not be resized. Returns: `List[Dict]`: A list of dictionaries, one per image, each dictionary containing two keys: - **segmentation** -- a tensor of shape `(height, width)` where each pixel represents a `segment_id` or `None` if no mask if found above `threshold`. If `target_sizes` is specified, segmentation is resized to the corresponding `target_sizes` entry. - **segments_info** -- A dictionary that contains additional information on each segment. - **id** -- an integer representing the `segment_id`. - **label_id** -- An integer representing the label / semantic class id corresponding to `segment_id`. - **was_fused** -- a boolean, `True` if `label_id` was in `label_ids_to_fuse`, `False` otherwise. Multiple instances of the same class / label were fused and assigned a single `segment_id`. - **score** -- Prediction score of segment with `segment_id`. """ if label_ids_to_fuse is None: logger.warning_once("`label_ids_to_fuse` unset. No instance will be fused.") label_ids_to_fuse = set() class_queries_logits = outputs.logits # [batch_size, num_queries, num_classes+1] masks_queries_logits = outputs.pred_masks # [batch_size, num_queries, height, width] batch_size = class_queries_logits.shape[0] num_labels = class_queries_logits.shape[-1] - 1 mask_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width] # Predicted label and score of each query (batch_size, num_queries) pred_scores, pred_labels = nn.functional.softmax(class_queries_logits, dim=-1).max(-1) # Loop over items in batch size results: List[Dict[str, TensorType]] = [] for i in range(batch_size): mask_probs_item, pred_scores_item, pred_labels_item = remove_low_and_no_objects( mask_probs[i], pred_scores[i], pred_labels[i], threshold, num_labels ) # No mask found if mask_probs_item.shape[0] <= 0: height, width = target_sizes[i] if target_sizes is not None else mask_probs_item.shape[1:] segmentation = torch.zeros((height, width)) - 1 results.append({"segmentation": segmentation, "segments_info": []}) continue # Get segmentation map and segment information of batch item target_size = target_sizes[i] if target_sizes is not None else None segmentation, segments = compute_segments( mask_probs=mask_probs_item, pred_scores=pred_scores_item, pred_labels=pred_labels_item, mask_threshold=mask_threshold, overlap_mask_area_threshold=overlap_mask_area_threshold, label_ids_to_fuse=label_ids_to_fuse, target_size=target_size, ) results.append({"segmentation": segmentation, "segments_info": segments}) return results
class_definition
9,927
72,621
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/detr/image_processing_detr_fast.py
null
9,017
class DetrDecoderOutput(BaseModelOutputWithCrossAttentions): """ Base class for outputs of the DETR decoder. This class adds one attribute to BaseModelOutputWithCrossAttentions, namely an optional stack of intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a layernorm. This is useful when training the model with auxiliary decoding losses. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads. intermediate_hidden_states (`torch.FloatTensor` of shape `(config.decoder_layers, batch_size, num_queries, hidden_size)`, *optional*, returned when `config.auxiliary_loss=True`): Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a layernorm. """ intermediate_hidden_states: Optional[torch.FloatTensor] = None
class_definition
1,556
3,929
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/detr/modeling_detr.py
null
9,018
class DetrModelOutput(Seq2SeqModelOutput): """ Base class for outputs of the DETR encoder-decoder model. This class adds one attribute to Seq2SeqModelOutput, namely an optional stack of intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a layernorm. This is useful when training the model with auxiliary decoding losses. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the decoder of the model. decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each layer plus the initial embedding outputs. decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads. encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder of the model. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. intermediate_hidden_states (`torch.FloatTensor` of shape `(config.decoder_layers, batch_size, sequence_length, hidden_size)`, *optional*, returned when `config.auxiliary_loss=True`): Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a layernorm. """ intermediate_hidden_states: Optional[torch.FloatTensor] = None
class_definition
3,943
7,433
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/detr/modeling_detr.py
null
9,019
class DetrObjectDetectionOutput(ModelOutput): """ Output type of [`DetrForObjectDetection`]. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)): Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized scale-invariant IoU loss. loss_dict (`Dict`, *optional*): A dictionary containing the individual losses. Useful for logging. logits (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes + 1)`): Classification logits (including no-object) for all queries. pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`): Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding possible padding). You can use [`~DetrImageProcessor.post_process_object_detection`] to retrieve the unnormalized bounding boxes. auxiliary_outputs (`list[Dict]`, *optional*): Optional, only returned when auxilary losses are activated (i.e. `config.auxiliary_loss` is set to `True`) and labels are provided. It is a list of dictionaries containing the two above keys (`logits` and `pred_boxes`) for each decoder layer. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the decoder of the model. decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each layer plus the initial embedding outputs. decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads. encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder of the model. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None loss_dict: Optional[Dict] = None logits: torch.FloatTensor = None pred_boxes: torch.FloatTensor = None auxiliary_outputs: Optional[List[Dict]] = None last_hidden_state: Optional[torch.FloatTensor] = None decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None encoder_last_hidden_state: Optional[torch.FloatTensor] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
class_definition
7,447
12,396
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/detr/modeling_detr.py
null
9,020
class DetrSegmentationOutput(ModelOutput): """ Output type of [`DetrForSegmentation`]. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)): Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized scale-invariant IoU loss. loss_dict (`Dict`, *optional*): A dictionary containing the individual losses. Useful for logging. logits (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes + 1)`): Classification logits (including no-object) for all queries. pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`): Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding possible padding). You can use [`~DetrImageProcessor.post_process_object_detection`] to retrieve the unnormalized bounding boxes. pred_masks (`torch.FloatTensor` of shape `(batch_size, num_queries, height/4, width/4)`): Segmentation masks logits for all queries. See also [`~DetrImageProcessor.post_process_semantic_segmentation`] or [`~DetrImageProcessor.post_process_instance_segmentation`] [`~DetrImageProcessor.post_process_panoptic_segmentation`] to evaluate semantic, instance and panoptic segmentation masks respectively. auxiliary_outputs (`list[Dict]`, *optional*): Optional, only returned when auxiliary losses are activated (i.e. `config.auxiliary_loss` is set to `True`) and labels are provided. It is a list of dictionaries containing the two above keys (`logits` and `pred_boxes`) for each decoder layer. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the decoder of the model. decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each layer plus the initial embedding outputs. decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads. encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder of the model. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None loss_dict: Optional[Dict] = None logits: torch.FloatTensor = None pred_boxes: torch.FloatTensor = None pred_masks: torch.FloatTensor = None auxiliary_outputs: Optional[List[Dict]] = None last_hidden_state: Optional[torch.FloatTensor] = None decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None encoder_last_hidden_state: Optional[torch.FloatTensor] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
class_definition
12,410
17,862
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/detr/modeling_detr.py
null
9,021
class DetrFrozenBatchNorm2d(nn.Module): """ BatchNorm2d where the batch statistics and the affine parameters are fixed. Copy-paste from torchvision.misc.ops with added eps before rqsrt, without which any other models than torchvision.models.resnet[18,34,50,101] produce nans. """ def __init__(self, n): super().__init__() self.register_buffer("weight", torch.ones(n)) self.register_buffer("bias", torch.zeros(n)) self.register_buffer("running_mean", torch.zeros(n)) self.register_buffer("running_var", torch.ones(n)) def _load_from_state_dict( self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs ): num_batches_tracked_key = prefix + "num_batches_tracked" if num_batches_tracked_key in state_dict: del state_dict[num_batches_tracked_key] super()._load_from_state_dict( state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs ) def forward(self, x): # move reshapes to the beginning # to make it user-friendly weight = self.weight.reshape(1, -1, 1, 1) bias = self.bias.reshape(1, -1, 1, 1) running_var = self.running_var.reshape(1, -1, 1, 1) running_mean = self.running_mean.reshape(1, -1, 1, 1) epsilon = 1e-5 scale = weight * (running_var + epsilon).rsqrt() bias = bias - running_mean * scale return x * scale + bias
class_definition
17,963
19,475
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/detr/modeling_detr.py
null
9,022
class DetrConvEncoder(nn.Module): """ Convolutional backbone, using either the AutoBackbone API or one from the timm library. nn.BatchNorm2d layers are replaced by DetrFrozenBatchNorm2d as defined above. """ def __init__(self, config): super().__init__() self.config = config # For backwards compatibility we have to use the timm library directly instead of the AutoBackbone API if config.use_timm_backbone: # We default to values which were previously hard-coded. This enables configurability from the config # using backbone arguments, while keeping the default behavior the same. requires_backends(self, ["timm"]) kwargs = getattr(config, "backbone_kwargs", {}) kwargs = {} if kwargs is None else kwargs.copy() out_indices = kwargs.pop("out_indices", (1, 2, 3, 4)) num_channels = kwargs.pop("in_chans", config.num_channels) if config.dilation: kwargs["output_stride"] = kwargs.get("output_stride", 16) backbone = create_model( config.backbone, pretrained=config.use_pretrained_backbone, features_only=True, out_indices=out_indices, in_chans=num_channels, **kwargs, ) else: backbone = load_backbone(config) # replace batch norm by frozen batch norm with torch.no_grad(): replace_batch_norm(backbone) self.model = backbone self.intermediate_channel_sizes = ( self.model.feature_info.channels() if config.use_timm_backbone else self.model.channels ) backbone_model_type = None if config.backbone is not None: backbone_model_type = config.backbone elif config.backbone_config is not None: backbone_model_type = config.backbone_config.model_type else: raise ValueError("Either `backbone` or `backbone_config` should be provided in the config") if "resnet" in backbone_model_type: for name, parameter in self.model.named_parameters(): if config.use_timm_backbone: if "layer2" not in name and "layer3" not in name and "layer4" not in name: parameter.requires_grad_(False) else: if "stage.1" not in name and "stage.2" not in name and "stage.3" not in name: parameter.requires_grad_(False) def forward(self, pixel_values: torch.Tensor, pixel_mask: torch.Tensor): # send pixel_values through the model to get list of feature maps features = self.model(pixel_values) if self.config.use_timm_backbone else self.model(pixel_values).feature_maps out = [] for feature_map in features: # downsample pixel_mask to match shape of corresponding feature_map mask = nn.functional.interpolate(pixel_mask[None].float(), size=feature_map.shape[-2:]).to(torch.bool)[0] out.append((feature_map, mask)) return out
class_definition
20,296
23,451
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/detr/modeling_detr.py
null
9,023
class DetrConvModel(nn.Module): """ This module adds 2D position embeddings to all intermediate feature maps of the convolutional encoder. """ def __init__(self, conv_encoder, position_embedding): super().__init__() self.conv_encoder = conv_encoder self.position_embedding = position_embedding def forward(self, pixel_values, pixel_mask): # send pixel_values and pixel_mask through backbone to get list of (feature_map, pixel_mask) tuples out = self.conv_encoder(pixel_values, pixel_mask) pos = [] for feature_map, mask in out: # position encoding pos.append(self.position_embedding(feature_map, mask).to(feature_map.dtype)) return out, pos
class_definition
23,454
24,205
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/detr/modeling_detr.py
null
9,024
class DetrSinePositionEmbedding(nn.Module): """ This is a more standard version of the position embedding, very similar to the one used by the Attention is all you need paper, generalized to work on images. """ def __init__(self, embedding_dim=64, temperature=10000, normalize=False, scale=None): super().__init__() self.embedding_dim = embedding_dim self.temperature = temperature self.normalize = normalize if scale is not None and normalize is False: raise ValueError("normalize should be True if scale is passed") if scale is None: scale = 2 * math.pi self.scale = scale def forward(self, pixel_values, pixel_mask): if pixel_mask is None: raise ValueError("No pixel mask provided") y_embed = pixel_mask.cumsum(1, dtype=torch.float32) x_embed = pixel_mask.cumsum(2, dtype=torch.float32) if self.normalize: y_embed = y_embed / (y_embed[:, -1:, :] + 1e-6) * self.scale x_embed = x_embed / (x_embed[:, :, -1:] + 1e-6) * self.scale dim_t = torch.arange(self.embedding_dim, dtype=torch.int64, device=pixel_values.device).float() dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / self.embedding_dim) pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) return pos
class_definition
24,208
25,912
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/detr/modeling_detr.py
null
9,025
class DetrLearnedPositionEmbedding(nn.Module): """ This module learns positional embeddings up to a fixed maximum size. """ def __init__(self, embedding_dim=256): super().__init__() self.row_embeddings = nn.Embedding(50, embedding_dim) self.column_embeddings = nn.Embedding(50, embedding_dim) def forward(self, pixel_values, pixel_mask=None): height, width = pixel_values.shape[-2:] width_values = torch.arange(width, device=pixel_values.device) height_values = torch.arange(height, device=pixel_values.device) x_emb = self.column_embeddings(width_values) y_emb = self.row_embeddings(height_values) pos = torch.cat([x_emb.unsqueeze(0).repeat(height, 1, 1), y_emb.unsqueeze(1).repeat(1, width, 1)], dim=-1) pos = pos.permute(2, 0, 1) pos = pos.unsqueeze(0) pos = pos.repeat(pixel_values.shape[0], 1, 1, 1) return pos
class_definition
25,915
26,856
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/detr/modeling_detr.py
null
9,026
class DetrAttention(nn.Module): """ Multi-headed attention from 'Attention Is All You Need' paper. Here, we add position embeddings to the queries and keys (as explained in the DETR paper). """ def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, bias: bool = True, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads if self.head_dim * num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {num_heads})." ) self.scaling = self.head_dim**-0.5 self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int): return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def with_pos_embed(self, tensor: torch.Tensor, object_queries: Optional[Tensor]): return tensor if object_queries is None else tensor + object_queries def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, object_queries: Optional[torch.Tensor] = None, key_value_states: Optional[torch.Tensor] = None, spatial_position_embeddings: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None batch_size, target_len, embed_dim = hidden_states.size() # add position embeddings to the hidden states before projecting to queries and keys if object_queries is not None: hidden_states_original = hidden_states hidden_states = self.with_pos_embed(hidden_states, object_queries) # add key-value position embeddings to the key value states if spatial_position_embeddings is not None: key_value_states_original = key_value_states key_value_states = self.with_pos_embed(key_value_states, spatial_position_embeddings) # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj if is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, batch_size) value_states = self._shape(self.v_proj(key_value_states_original), -1, batch_size) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, batch_size) value_states = self._shape(self.v_proj(hidden_states_original), -1, batch_size) proj_shape = (batch_size * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, target_len, batch_size).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) source_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (batch_size * self.num_heads, target_len, source_len): raise ValueError( f"Attention weights should be of size {(batch_size * self.num_heads, target_len, source_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (batch_size, 1, target_len, source_len): raise ValueError( f"Attention mask should be of size {(batch_size, 1, target_len, source_len)}, but is" f" {attention_mask.size()}" ) attn_weights = attn_weights.view(batch_size, self.num_heads, target_len, source_len) + attention_mask attn_weights = attn_weights.view(batch_size * self.num_heads, target_len, source_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(batch_size, self.num_heads, target_len, source_len) attn_weights = attn_weights_reshaped.view(batch_size * self.num_heads, target_len, source_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (batch_size * self.num_heads, target_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(batch_size, self.num_heads, target_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(batch_size, self.num_heads, target_len, self.head_dim) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(batch_size, target_len, embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped
class_definition
27,360
33,235
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/detr/modeling_detr.py
null
9,027
class DetrEncoderLayer(nn.Module): def __init__(self, config: DetrConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = DetrAttention( embed_dim=self.embed_dim, num_heads=config.encoder_attention_heads, dropout=config.attention_dropout, ) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, object_queries: torch.Tensor = None, output_attentions: bool = False, ): """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative values. object_queries (`torch.FloatTensor`, *optional*): Object queries (also called content embeddings), to be added to the hidden states. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, object_queries=object_queries, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) if self.training: if torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any(): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs
class_definition
33,238
36,301
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/detr/modeling_detr.py
null
9,028
class DetrDecoderLayer(nn.Module): def __init__(self, config: DetrConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = DetrAttention( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, ) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.encoder_attn = DetrAttention( self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout, ) self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, object_queries: Optional[torch.Tensor] = None, query_position_embeddings: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ): """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative values. object_queries (`torch.FloatTensor`, *optional*): object_queries that are added to the hidden states in the cross-attention layer. query_position_embeddings (`torch.FloatTensor`, *optional*): position embeddings that are added to the queries and keys in the self-attention layer. encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)` encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size `(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative values. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, object_queries=query_position_embeddings, attention_mask=attention_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Cross-Attention Block cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states, cross_attn_weights = self.encoder_attn( hidden_states=hidden_states, object_queries=query_position_embeddings, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, spatial_position_embeddings=object_queries, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # Fully Connected residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) return outputs
class_definition
36,304
41,008
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/detr/modeling_detr.py
null
9,029
class DetrPreTrainedModel(PreTrainedModel): config_class = DetrConfig base_model_prefix = "model" main_input_name = "pixel_values" _no_split_modules = [r"DetrConvEncoder", r"DetrEncoderLayer", r"DetrDecoderLayer"] def _init_weights(self, module): std = self.config.init_std xavier_std = self.config.init_xavier_std if isinstance(module, DetrMHAttentionMap): nn.init.zeros_(module.k_linear.bias) nn.init.zeros_(module.q_linear.bias) nn.init.xavier_uniform_(module.k_linear.weight, gain=xavier_std) nn.init.xavier_uniform_(module.q_linear.weight, gain=xavier_std) elif isinstance(module, DetrLearnedPositionEmbedding): nn.init.uniform_(module.row_embeddings.weight) nn.init.uniform_(module.column_embeddings.weight) if isinstance(module, (nn.Linear, nn.Conv2d, nn.BatchNorm2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_()
class_definition
41,011
42,437
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/detr/modeling_detr.py
null
9,030
class DetrEncoder(DetrPreTrainedModel): """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`DetrEncoderLayer`]. The encoder updates the flattened feature map through multiple self-attention layers. Small tweak for DETR: - object_queries are added to the forward pass. Args: config: DetrConfig """ def __init__(self, config: DetrConfig): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.encoder_layerdrop self.layers = nn.ModuleList([DetrEncoderLayer(config) for _ in range(config.encoder_layers)]) # in the original DETR, no layernorm is used at the end of the encoder, as "normalize_before" is set to False by default # Initialize weights and apply final processing self.post_init() def forward( self, inputs_embeds=None, attention_mask=None, object_queries=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Flattened feature map (output of the backbone + projection layer) that is passed to the encoder. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding pixel features. Mask values selected in `[0, 1]`: - 1 for pixel features that are real (i.e. **not masked**), - 0 for pixel features that are padding (i.e. **masked**). [What are attention masks?](../glossary#attention-mask) object_queries (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Object queries that are added to the queries in each self-attention layer. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict hidden_states = inputs_embeds hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) # expand attention_mask if attention_mask is not None: # [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len] attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for i, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) to_drop = False if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: # skip the layer to_drop = True if to_drop: layer_outputs = (None, None) else: # we add object_queries as extra input to the encoder_layer layer_outputs = encoder_layer( hidden_states, attention_mask, object_queries=object_queries, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions )
class_definition
45,747
50,553
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/detr/modeling_detr.py
null
9,031
class DetrDecoder(DetrPreTrainedModel): """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`DetrDecoderLayer`]. The decoder updates the query embeddings through multiple self-attention and cross-attention layers. Some small tweaks for DETR: - object_queries and query_position_embeddings are added to the forward pass. - if self.config.auxiliary_loss is set to True, also returns a stack of activations from all decoding layers. Args: config: DetrConfig """ def __init__(self, config: DetrConfig): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.decoder_layerdrop self.layers = nn.ModuleList([DetrDecoderLayer(config) for _ in range(config.decoder_layers)]) # in DETR, the decoder uses layernorm after the last decoder layer output self.layernorm = nn.LayerNorm(config.d_model) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def forward( self, inputs_embeds=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, object_queries=None, query_position_embeddings=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): The query embeddings that are passed into the decoder. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on certain queries. Mask values selected in `[0, 1]`: - 1 for queries that are **not masked**, - 0 for queries that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding pixel_values of the encoder. Mask values selected in `[0, 1]`: - 1 for pixels that are real (i.e. **not masked**), - 0 for pixels that are padding (i.e. **masked**). object_queries (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Object queries that are added to the queries and keys in each cross-attention layer. query_position_embeddings (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`): , *optional*): Position embeddings that are added to the values and keys in each self-attention layer. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if inputs_embeds is not None: hidden_states = inputs_embeds input_shape = inputs_embeds.size()[:-1] combined_attention_mask = None if attention_mask is not None and combined_attention_mask is not None: # [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len] combined_attention_mask = combined_attention_mask + _prepare_4d_attention_mask( attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] ) # expand encoder attention mask if encoder_hidden_states is not None and encoder_attention_mask is not None: # [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len] encoder_attention_mask = _prepare_4d_attention_mask( encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] ) # optional intermediate hidden states intermediate = () if self.config.auxiliary_loss else None # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: continue if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, combined_attention_mask, encoder_hidden_states, encoder_attention_mask, None, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=combined_attention_mask, object_queries=object_queries, query_position_embeddings=query_position_embeddings, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if self.config.auxiliary_loss: hidden_states = self.layernorm(hidden_states) intermediate += (hidden_states,) if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) # finally, apply layernorm hidden_states = self.layernorm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) # stack intermediate decoder activations if self.config.auxiliary_loss: intermediate = torch.stack(intermediate) if not return_dict: return tuple( v for v in [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions, intermediate] if v is not None ) return DetrDecoderOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, intermediate_hidden_states=intermediate, )
class_definition
50,556
58,438
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/detr/modeling_detr.py
null
9,032
class DetrModel(DetrPreTrainedModel): def __init__(self, config: DetrConfig): super().__init__(config) # Create backbone + positional encoding backbone = DetrConvEncoder(config) object_queries = build_position_encoding(config) self.backbone = DetrConvModel(backbone, object_queries) # Create projection layer self.input_projection = nn.Conv2d(backbone.intermediate_channel_sizes[-1], config.d_model, kernel_size=1) self.query_position_embeddings = nn.Embedding(config.num_queries, config.d_model) self.encoder = DetrEncoder(config) self.decoder = DetrDecoder(config) # Initialize weights and apply final processing self.post_init() def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder def freeze_backbone(self): for name, param in self.backbone.conv_encoder.model.named_parameters(): param.requires_grad_(False) def unfreeze_backbone(self): for name, param in self.backbone.conv_encoder.model.named_parameters(): param.requires_grad_(True) @add_start_docstrings_to_model_forward(DETR_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=DetrModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: torch.FloatTensor, pixel_mask: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.FloatTensor] = None, encoder_outputs: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], DetrModelOutput]: r""" Returns: Examples: ```python >>> from transformers import AutoImageProcessor, DetrModel >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("facebook/detr-resnet-50") >>> model = DetrModel.from_pretrained("facebook/detr-resnet-50") >>> # prepare image for the model >>> inputs = image_processor(images=image, return_tensors="pt") >>> # forward pass >>> outputs = model(**inputs) >>> # the last hidden states are the final query embeddings of the Transformer decoder >>> # these are of shape (batch_size, num_queries, hidden_size) >>> last_hidden_states = outputs.last_hidden_state >>> list(last_hidden_states.shape) [1, 100, 256] ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict batch_size, num_channels, height, width = pixel_values.shape device = pixel_values.device if pixel_mask is None: pixel_mask = torch.ones(((batch_size, height, width)), device=device) # First, sent pixel_values + pixel_mask through Backbone to obtain the features # pixel_values should be of shape (batch_size, num_channels, height, width) # pixel_mask should be of shape (batch_size, height, width) features, object_queries_list = self.backbone(pixel_values, pixel_mask) # get final feature map and downsampled mask feature_map, mask = features[-1] if mask is None: raise ValueError("Backbone does not return downsampled pixel mask") # Second, apply 1x1 convolution to reduce the channel dimension to d_model (256 by default) projected_feature_map = self.input_projection(feature_map) # Third, flatten the feature map + position embeddings of shape NxCxHxW to NxCxHW, and permute it to NxHWxC # In other words, turn their shape into (batch_size, sequence_length, hidden_size) flattened_features = projected_feature_map.flatten(2).permute(0, 2, 1) object_queries = object_queries_list[-1].flatten(2).permute(0, 2, 1) flattened_mask = mask.flatten(1) # Fourth, sent flattened_features + flattened_mask + position embeddings through encoder # flattened_features is a Tensor of shape (batch_size, heigth*width, hidden_size) # flattened_mask is a Tensor of shape (batch_size, heigth*width) if encoder_outputs is None: encoder_outputs = self.encoder( inputs_embeds=flattened_features, attention_mask=flattened_mask, object_queries=object_queries, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # Fifth, sent query embeddings + object_queries through the decoder (which is conditioned on the encoder output) query_position_embeddings = self.query_position_embeddings.weight.unsqueeze(0).repeat(batch_size, 1, 1) queries = torch.zeros_like(query_position_embeddings) # decoder outputs consists of (dec_features, dec_hidden, dec_attn) decoder_outputs = self.decoder( inputs_embeds=queries, attention_mask=None, object_queries=object_queries, query_position_embeddings=query_position_embeddings, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=flattened_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return decoder_outputs + encoder_outputs return DetrModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, intermediate_hidden_states=decoder_outputs.intermediate_hidden_states, )
class_definition
58,659
65,858
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/detr/modeling_detr.py
null
9,033
class DetrMLPPredictionHead(nn.Module): """ Very simple multi-layer perceptron (MLP, also called FFN), used to predict the normalized center coordinates, height and width of a bounding box w.r.t. an image. Copied from https://github.com/facebookresearch/detr/blob/master/models/detr.py """ def __init__(self, input_dim, hidden_dim, output_dim, num_layers): super().__init__() self.num_layers = num_layers h = [hidden_dim] * (num_layers - 1) self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) def forward(self, x): for i, layer in enumerate(self.layers): x = nn.functional.relu(layer(x)) if i < self.num_layers - 1 else layer(x) return x
class_definition
65,942
66,715
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/detr/modeling_detr.py
null
9,034
class DetrForObjectDetection(DetrPreTrainedModel): def __init__(self, config: DetrConfig): super().__init__(config) # DETR encoder-decoder model self.model = DetrModel(config) # Object detection heads self.class_labels_classifier = nn.Linear( config.d_model, config.num_labels + 1 ) # We add one for the "no object" class self.bbox_predictor = DetrMLPPredictionHead( input_dim=config.d_model, hidden_dim=config.d_model, output_dim=4, num_layers=3 ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(DETR_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=DetrObjectDetectionOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: torch.FloatTensor, pixel_mask: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.FloatTensor] = None, encoder_outputs: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[List[dict]] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], DetrObjectDetectionOutput]: r""" labels (`List[Dict]` of len `(batch_size,)`, *optional*): Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the following 2 keys: 'class_labels' and 'boxes' (the class labels and bounding boxes of an image in the batch respectively). The class labels themselves should be a `torch.LongTensor` of len `(number of bounding boxes in the image,)` and the boxes a `torch.FloatTensor` of shape `(number of bounding boxes in the image, 4)`. Returns: Examples: ```python >>> from transformers import AutoImageProcessor, DetrForObjectDetection >>> import torch >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("facebook/detr-resnet-50") >>> model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50") >>> inputs = image_processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> # convert outputs (bounding boxes and class logits) to Pascal VOC format (xmin, ymin, xmax, ymax) >>> target_sizes = torch.tensor([image.size[::-1]]) >>> results = image_processor.post_process_object_detection(outputs, threshold=0.9, target_sizes=target_sizes)[ ... 0 ... ] >>> for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): ... box = [round(i, 2) for i in box.tolist()] ... print( ... f"Detected {model.config.id2label[label.item()]} with confidence " ... f"{round(score.item(), 3)} at location {box}" ... ) Detected remote with confidence 0.998 at location [40.16, 70.81, 175.55, 117.98] Detected remote with confidence 0.996 at location [333.24, 72.55, 368.33, 187.66] Detected couch with confidence 0.995 at location [-0.02, 1.15, 639.73, 473.76] Detected cat with confidence 0.999 at location [13.24, 52.05, 314.02, 470.93] Detected cat with confidence 0.999 at location [345.4, 23.85, 640.37, 368.72] ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict # First, sent images through DETR base model to obtain encoder + decoder outputs outputs = self.model( pixel_values, pixel_mask=pixel_mask, decoder_attention_mask=decoder_attention_mask, encoder_outputs=encoder_outputs, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] # class logits + predicted bounding boxes logits = self.class_labels_classifier(sequence_output) pred_boxes = self.bbox_predictor(sequence_output).sigmoid() loss, loss_dict, auxiliary_outputs = None, None, None if labels is not None: outputs_class, outputs_coord = None, None if self.config.auxiliary_loss: intermediate = outputs.intermediate_hidden_states if return_dict else outputs[4] outputs_class = self.class_labels_classifier(intermediate) outputs_coord = self.bbox_predictor(intermediate).sigmoid() loss, loss_dict, auxiliary_outputs = self.loss_function( logits, labels, self.device, pred_boxes, self.config, outputs_class, outputs_coord ) if not return_dict: if auxiliary_outputs is not None: output = (logits, pred_boxes) + auxiliary_outputs + outputs else: output = (logits, pred_boxes) + outputs return ((loss, loss_dict) + output) if loss is not None else output return DetrObjectDetectionOutput( loss=loss, loss_dict=loss_dict, logits=logits, pred_boxes=pred_boxes, auxiliary_outputs=auxiliary_outputs, last_hidden_state=outputs.last_hidden_state, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, )
class_definition
66,934
73,133
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/detr/modeling_detr.py
null
9,035
class DetrForSegmentation(DetrPreTrainedModel): def __init__(self, config: DetrConfig): super().__init__(config) # object detection model self.detr = DetrForObjectDetection(config) # segmentation head hidden_size, number_of_heads = config.d_model, config.encoder_attention_heads intermediate_channel_sizes = self.detr.model.backbone.conv_encoder.intermediate_channel_sizes self.mask_head = DetrMaskHeadSmallConv( hidden_size + number_of_heads, intermediate_channel_sizes[::-1][-3:], hidden_size ) self.bbox_attention = DetrMHAttentionMap( hidden_size, hidden_size, number_of_heads, dropout=0.0, std=config.init_xavier_std ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(DETR_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=DetrSegmentationOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: torch.FloatTensor, pixel_mask: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.FloatTensor] = None, encoder_outputs: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[List[dict]] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], DetrSegmentationOutput]: r""" labels (`List[Dict]` of len `(batch_size,)`, *optional*): Labels for computing the bipartite matching loss, DICE/F-1 loss and Focal loss. List of dicts, each dictionary containing at least the following 3 keys: 'class_labels', 'boxes' and 'masks' (the class labels, bounding boxes and segmentation masks of an image in the batch respectively). The class labels themselves should be a `torch.LongTensor` of len `(number of bounding boxes in the image,)`, the boxes a `torch.FloatTensor` of shape `(number of bounding boxes in the image, 4)` and the masks a `torch.FloatTensor` of shape `(number of bounding boxes in the image, height, width)`. Returns: Examples: ```python >>> import io >>> import requests >>> from PIL import Image >>> import torch >>> import numpy >>> from transformers import AutoImageProcessor, DetrForSegmentation >>> from transformers.image_transforms import rgb_to_id >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("facebook/detr-resnet-50-panoptic") >>> model = DetrForSegmentation.from_pretrained("facebook/detr-resnet-50-panoptic") >>> # prepare image for the model >>> inputs = image_processor(images=image, return_tensors="pt") >>> # forward pass >>> outputs = model(**inputs) >>> # Use the `post_process_panoptic_segmentation` method of the `image_processor` to retrieve post-processed panoptic segmentation maps >>> # Segmentation results are returned as a list of dictionaries >>> result = image_processor.post_process_panoptic_segmentation(outputs, target_sizes=[(300, 500)]) >>> # A tensor of shape (height, width) where each value denotes a segment id, filled with -1 if no segment is found >>> panoptic_seg = result[0]["segmentation"] >>> # Get prediction score and segment_id to class_id mapping of each segment >>> panoptic_segments_info = result[0]["segments_info"] ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict batch_size, num_channels, height, width = pixel_values.shape device = pixel_values.device if pixel_mask is None: pixel_mask = torch.ones((batch_size, height, width), device=device) # First, get list of feature maps and position embeddings features, object_queries_list = self.detr.model.backbone(pixel_values, pixel_mask=pixel_mask) # Second, apply 1x1 convolution to reduce the channel dimension to d_model (256 by default) feature_map, mask = features[-1] batch_size, num_channels, height, width = feature_map.shape projected_feature_map = self.detr.model.input_projection(feature_map) # Third, flatten the feature map + position embeddings of shape NxCxHxW to NxCxHW, and permute it to NxHWxC # In other words, turn their shape into (batch_size, sequence_length, hidden_size) flattened_features = projected_feature_map.flatten(2).permute(0, 2, 1) object_queries = object_queries_list[-1].flatten(2).permute(0, 2, 1) flattened_mask = mask.flatten(1) # Fourth, sent flattened_features + flattened_mask + position embeddings through encoder # flattened_features is a Tensor of shape (batch_size, heigth*width, hidden_size) # flattened_mask is a Tensor of shape (batch_size, heigth*width) if encoder_outputs is None: encoder_outputs = self.detr.model.encoder( inputs_embeds=flattened_features, attention_mask=flattened_mask, object_queries=object_queries, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # Fifth, sent query embeddings + position embeddings through the decoder (which is conditioned on the encoder output) query_position_embeddings = self.detr.model.query_position_embeddings.weight.unsqueeze(0).repeat( batch_size, 1, 1 ) queries = torch.zeros_like(query_position_embeddings) # decoder outputs consists of (dec_features, dec_hidden, dec_attn) decoder_outputs = self.detr.model.decoder( inputs_embeds=queries, attention_mask=None, object_queries=object_queries, query_position_embeddings=query_position_embeddings, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=flattened_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = decoder_outputs[0] # Sixth, compute logits, pred_boxes and pred_masks logits = self.detr.class_labels_classifier(sequence_output) pred_boxes = self.detr.bbox_predictor(sequence_output).sigmoid() memory = encoder_outputs[0].permute(0, 2, 1).view(batch_size, self.config.d_model, height, width) mask = flattened_mask.view(batch_size, height, width) # FIXME h_boxes takes the last one computed, keep this in mind # important: we need to reverse the mask, since in the original implementation the mask works reversed # bbox_mask is of shape (batch_size, num_queries, number_of_attention_heads in bbox_attention, height/32, width/32) bbox_mask = self.bbox_attention(sequence_output, memory, mask=~mask) seg_masks = self.mask_head(projected_feature_map, bbox_mask, [features[2][0], features[1][0], features[0][0]]) pred_masks = seg_masks.view(batch_size, self.detr.config.num_queries, seg_masks.shape[-2], seg_masks.shape[-1]) loss, loss_dict, auxiliary_outputs = None, None, None if labels is not None: outputs_class, outputs_coord = None, None if self.config.auxiliary_loss: intermediate = decoder_outputs.intermediate_hidden_states if return_dict else decoder_outputs[-1] outputs_class = self.detr.class_labels_classifier(intermediate) outputs_coord = self.detr.bbox_predictor(intermediate).sigmoid() loss, loss_dict, auxiliary_outputs = self.loss_function( logits, labels, device, pred_boxes, pred_masks, self.config, outputs_class, outputs_coord ) if not return_dict: if auxiliary_outputs is not None: output = (logits, pred_boxes, pred_masks) + auxiliary_outputs + decoder_outputs + encoder_outputs else: output = (logits, pred_boxes, pred_masks) + decoder_outputs + encoder_outputs return ((loss, loss_dict) + output) if loss is not None else output return DetrSegmentationOutput( loss=loss, loss_dict=loss_dict, logits=logits, pred_boxes=pred_boxes, pred_masks=pred_masks, auxiliary_outputs=auxiliary_outputs, last_hidden_state=decoder_outputs.last_hidden_state, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, )
class_definition
73,349
83,217
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/detr/modeling_detr.py
null
9,036
class DetrMaskHeadSmallConv(nn.Module): """ Simple convolutional head, using group norm. Upsampling is done using a FPN approach """ def __init__(self, dim, fpn_dims, context_dim): super().__init__() if dim % 8 != 0: raise ValueError( "The hidden_size + number of attention heads must be divisible by 8 as the number of groups in" " GroupNorm is set to 8" ) inter_dims = [dim, context_dim // 2, context_dim // 4, context_dim // 8, context_dim // 16, context_dim // 64] self.lay1 = nn.Conv2d(dim, dim, 3, padding=1) self.gn1 = nn.GroupNorm(8, dim) self.lay2 = nn.Conv2d(dim, inter_dims[1], 3, padding=1) self.gn2 = nn.GroupNorm(min(8, inter_dims[1]), inter_dims[1]) self.lay3 = nn.Conv2d(inter_dims[1], inter_dims[2], 3, padding=1) self.gn3 = nn.GroupNorm(min(8, inter_dims[2]), inter_dims[2]) self.lay4 = nn.Conv2d(inter_dims[2], inter_dims[3], 3, padding=1) self.gn4 = nn.GroupNorm(min(8, inter_dims[3]), inter_dims[3]) self.lay5 = nn.Conv2d(inter_dims[3], inter_dims[4], 3, padding=1) self.gn5 = nn.GroupNorm(min(8, inter_dims[4]), inter_dims[4]) self.out_lay = nn.Conv2d(inter_dims[4], 1, 3, padding=1) self.dim = dim self.adapter1 = nn.Conv2d(fpn_dims[0], inter_dims[1], 1) self.adapter2 = nn.Conv2d(fpn_dims[1], inter_dims[2], 1) self.adapter3 = nn.Conv2d(fpn_dims[2], inter_dims[3], 1) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_uniform_(m.weight, a=1) nn.init.constant_(m.bias, 0) def forward(self, x: Tensor, bbox_mask: Tensor, fpns: List[Tensor]): # here we concatenate x, the projected feature map, of shape (batch_size, d_model, heigth/32, width/32) with # the bbox_mask = the attention maps of shape (batch_size, n_queries, n_heads, height/32, width/32). # We expand the projected feature map to match the number of heads. x = torch.cat([_expand(x, bbox_mask.shape[1]), bbox_mask.flatten(0, 1)], 1) x = self.lay1(x) x = self.gn1(x) x = nn.functional.relu(x) x = self.lay2(x) x = self.gn2(x) x = nn.functional.relu(x) cur_fpn = self.adapter1(fpns[0]) if cur_fpn.size(0) != x.size(0): cur_fpn = _expand(cur_fpn, x.size(0) // cur_fpn.size(0)) x = cur_fpn + nn.functional.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest") x = self.lay3(x) x = self.gn3(x) x = nn.functional.relu(x) cur_fpn = self.adapter2(fpns[1]) if cur_fpn.size(0) != x.size(0): cur_fpn = _expand(cur_fpn, x.size(0) // cur_fpn.size(0)) x = cur_fpn + nn.functional.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest") x = self.lay4(x) x = self.gn4(x) x = nn.functional.relu(x) cur_fpn = self.adapter3(fpns[2]) if cur_fpn.size(0) != x.size(0): cur_fpn = _expand(cur_fpn, x.size(0) // cur_fpn.size(0)) x = cur_fpn + nn.functional.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest") x = self.lay5(x) x = self.gn5(x) x = nn.functional.relu(x) x = self.out_lay(x) return x
class_definition
83,422
86,765
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/detr/modeling_detr.py
null
9,037
class DetrMHAttentionMap(nn.Module): """This is a 2D attention module, which only returns the attention softmax (no multiplication by value)""" def __init__(self, query_dim, hidden_dim, num_heads, dropout=0.0, bias=True, std=None): super().__init__() self.num_heads = num_heads self.hidden_dim = hidden_dim self.dropout = nn.Dropout(dropout) self.q_linear = nn.Linear(query_dim, hidden_dim, bias=bias) self.k_linear = nn.Linear(query_dim, hidden_dim, bias=bias) self.normalize_fact = float(hidden_dim / self.num_heads) ** -0.5 def forward(self, q, k, mask: Optional[Tensor] = None): q = self.q_linear(q) k = nn.functional.conv2d(k, self.k_linear.weight.unsqueeze(-1).unsqueeze(-1), self.k_linear.bias) queries_per_head = q.view(q.shape[0], q.shape[1], self.num_heads, self.hidden_dim // self.num_heads) keys_per_head = k.view(k.shape[0], self.num_heads, self.hidden_dim // self.num_heads, k.shape[-2], k.shape[-1]) weights = torch.einsum("bqnc,bnchw->bqnhw", queries_per_head * self.normalize_fact, keys_per_head) if mask is not None: weights.masked_fill_(mask.unsqueeze(1).unsqueeze(1), torch.finfo(weights.dtype).min) weights = nn.functional.softmax(weights.flatten(2), dim=-1).view(weights.size()) weights = self.dropout(weights) return weights
class_definition
86,768
88,172
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/detr/modeling_detr.py
null
9,038
class DetrImageProcessor(BaseImageProcessor): r""" Constructs a Detr image processor. Args: format (`str`, *optional*, defaults to `"coco_detection"`): Data format of the annotations. One of "coco_detection" or "coco_panoptic". do_resize (`bool`, *optional*, defaults to `True`): Controls whether to resize the image's `(height, width)` dimensions to the specified `size`. Can be overridden by the `do_resize` parameter in the `preprocess` method. size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 800, "longest_edge": 1333}`): Size of the image's `(height, width)` dimensions after resizing. Can be overridden by the `size` parameter in the `preprocess` method. Available options are: - `{"height": int, "width": int}`: The image will be resized to the exact size `(height, width)`. Do NOT keep the aspect ratio. - `{"shortest_edge": int, "longest_edge": int}`: The image will be resized to a maximum size respecting the aspect ratio and keeping the shortest edge less or equal to `shortest_edge` and the longest edge less or equal to `longest_edge`. - `{"max_height": int, "max_width": int}`: The image will be resized to the maximum size respecting the aspect ratio and keeping the height less or equal to `max_height` and the width less or equal to `max_width`. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): Resampling filter to use if resizing the image. do_rescale (`bool`, *optional*, defaults to `True`): Controls whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to True): Controls whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_MEAN`): Mean values to use when normalizing the image. Can be a single value or a list of values, one for each channel. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_STD`): Standard deviation values to use when normalizing the image. Can be a single value or a list of values, one for each channel. Can be overridden by the `image_std` parameter in the `preprocess` method. do_convert_annotations (`bool`, *optional*, defaults to `True`): Controls whether to convert the annotations to the format expected by the DETR model. Converts the bounding boxes to the format `(center_x, center_y, width, height)` and in the range `[0, 1]`. Can be overridden by the `do_convert_annotations` parameter in the `preprocess` method. do_pad (`bool`, *optional*, defaults to `True`): Controls whether to pad the image. Can be overridden by the `do_pad` parameter in the `preprocess` method. If `True`, padding will be applied to the bottom and right of the image with zeros. If `pad_size` is provided, the image will be padded to the specified dimensions. Otherwise, the image will be padded to the maximum height and width of the batch. pad_size (`Dict[str, int]`, *optional*): The size `{"height": int, "width" int}` to pad the images to. Must be larger than any image size provided for preprocessing. If `pad_size` is not provided, images will be padded to the largest height and width in the batch. """ model_input_names = ["pixel_values", "pixel_mask"] def __init__( self, format: Union[str, AnnotationFormat] = AnnotationFormat.COCO_DETECTION, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BILINEAR, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Union[float, List[float]] = None, image_std: Union[float, List[float]] = None, do_convert_annotations: Optional[bool] = None, do_pad: bool = True, pad_size: Optional[Dict[str, int]] = None, **kwargs, ) -> None: if "pad_and_return_pixel_mask" in kwargs: do_pad = kwargs.pop("pad_and_return_pixel_mask") if "max_size" in kwargs: logger.warning_once( "The `max_size` parameter is deprecated and will be removed in v4.26. " "Please specify in `size['longest_edge'] instead`.", ) max_size = kwargs.pop("max_size") else: max_size = None if size is None else 1333 size = size if size is not None else {"shortest_edge": 800, "longest_edge": 1333} size = get_size_dict(size, max_size=max_size, default_to_square=False) # Backwards compatibility if do_convert_annotations is None: do_convert_annotations = do_normalize super().__init__(**kwargs) self.format = format self.do_resize = do_resize self.size = size self.resample = resample self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.do_convert_annotations = do_convert_annotations self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD self.do_pad = do_pad self.pad_size = pad_size self._valid_processor_keys = [ "images", "annotations", "return_segmentation_masks", "masks_path", "do_resize", "size", "resample", "do_rescale", "rescale_factor", "do_normalize", "do_convert_annotations", "image_mean", "image_std", "do_pad", "pad_size", "format", "return_tensors", "data_format", "input_data_format", ] @classmethod def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs): """ Overrides the `from_dict` method from the base class to make sure parameters are updated if image processor is created using from_dict and kwargs e.g. `DetrImageProcessor.from_pretrained(checkpoint, size=600, max_size=800)` """ image_processor_dict = image_processor_dict.copy() if "max_size" in kwargs: image_processor_dict["max_size"] = kwargs.pop("max_size") if "pad_and_return_pixel_mask" in kwargs: image_processor_dict["pad_and_return_pixel_mask"] = kwargs.pop("pad_and_return_pixel_mask") return super().from_dict(image_processor_dict, **kwargs) def prepare_annotation( self, image: np.ndarray, target: Dict, format: Optional[AnnotationFormat] = None, return_segmentation_masks: bool = None, masks_path: Optional[Union[str, pathlib.Path]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> Dict: """ Prepare an annotation for feeding into DETR model. """ format = format if format is not None else self.format if format == AnnotationFormat.COCO_DETECTION: return_segmentation_masks = False if return_segmentation_masks is None else return_segmentation_masks target = prepare_coco_detection_annotation( image, target, return_segmentation_masks, input_data_format=input_data_format ) elif format == AnnotationFormat.COCO_PANOPTIC: return_segmentation_masks = True if return_segmentation_masks is None else return_segmentation_masks target = prepare_coco_panoptic_annotation( image, target, masks_path=masks_path, return_masks=return_segmentation_masks, input_data_format=input_data_format, ) else: raise ValueError(f"Format {format} is not supported.") return target def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BILINEAR, data_format: Optional[ChannelDimension] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize the image to the given size. Size can be `min_size` (scalar) or `(height, width)` tuple. If size is an int, smaller edge of the image will be matched to this number. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Size of the image's `(height, width)` dimensions after resizing. Available options are: - `{"height": int, "width": int}`: The image will be resized to the exact size `(height, width)`. Do NOT keep the aspect ratio. - `{"shortest_edge": int, "longest_edge": int}`: The image will be resized to a maximum size respecting the aspect ratio and keeping the shortest edge less or equal to `shortest_edge` and the longest edge less or equal to `longest_edge`. - `{"max_height": int, "max_width": int}`: The image will be resized to the maximum size respecting the aspect ratio and keeping the height less or equal to `max_height` and the width less or equal to `max_width`. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): Resampling filter to use if resizing the image. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ if "max_size" in kwargs: logger.warning_once( "The `max_size` parameter is deprecated and will be removed in v4.26. " "Please specify in `size['longest_edge'] instead`.", ) max_size = kwargs.pop("max_size") else: max_size = None size = get_size_dict(size, max_size=max_size, default_to_square=False) if "shortest_edge" in size and "longest_edge" in size: new_size = get_resize_output_image_size( image, size["shortest_edge"], size["longest_edge"], input_data_format=input_data_format ) elif "max_height" in size and "max_width" in size: new_size = get_image_size_for_max_height_width( image, size["max_height"], size["max_width"], input_data_format=input_data_format ) elif "height" in size and "width" in size: new_size = (size["height"], size["width"]) else: raise ValueError( "Size must contain 'height' and 'width' keys or 'shortest_edge' and 'longest_edge' keys. Got" f" {size.keys()}." ) image = resize( image, size=new_size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs, ) return image def resize_annotation( self, annotation, orig_size, size, resample: PILImageResampling = PILImageResampling.NEAREST, ) -> Dict: """ Resize the annotation to match the resized image. If size is an int, smaller edge of the mask will be matched to this number. """ return resize_annotation(annotation, orig_size=orig_size, target_size=size, resample=resample) # TODO (Amy) - update to use `rescale_factor` instead of `scale` def rescale( self, image: np.ndarray, rescale_factor: float, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """ Rescale the image by the given factor. image = image * rescale_factor. Args: image (`np.ndarray`): Image to rescale. rescale_factor (`float`): The value to use for rescaling. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. input_data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the input image. If unset, is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. """ return rescale(image, rescale_factor, data_format=data_format, input_data_format=input_data_format) def normalize_annotation(self, annotation: Dict, image_size: Tuple[int, int]) -> Dict: """ Normalize the boxes in the annotation from `[top_left_x, top_left_y, bottom_right_x, bottom_right_y]` to `[center_x, center_y, width, height]` format and from absolute to relative pixel values. """ return normalize_annotation(annotation, image_size=image_size) def _update_annotation_for_padded_image( self, annotation: Dict, input_image_size: Tuple[int, int], output_image_size: Tuple[int, int], padding, update_bboxes, ) -> Dict: """ Update the annotation for a padded image. """ new_annotation = {} new_annotation["size"] = output_image_size for key, value in annotation.items(): if key == "masks": masks = value masks = pad( masks, padding, mode=PaddingMode.CONSTANT, constant_values=0, input_data_format=ChannelDimension.FIRST, ) masks = safe_squeeze(masks, 1) new_annotation["masks"] = masks elif key == "boxes" and update_bboxes: boxes = value boxes *= np.asarray( [ input_image_size[1] / output_image_size[1], input_image_size[0] / output_image_size[0], input_image_size[1] / output_image_size[1], input_image_size[0] / output_image_size[0], ] ) new_annotation["boxes"] = boxes elif key == "size": new_annotation["size"] = output_image_size else: new_annotation[key] = value return new_annotation def _pad_image( self, image: np.ndarray, output_size: Tuple[int, int], annotation: Optional[Dict[str, Any]] = None, constant_values: Union[float, Iterable[float]] = 0, data_format: Optional[ChannelDimension] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, update_bboxes: bool = True, ) -> np.ndarray: """ Pad an image with zeros to the given size. """ input_height, input_width = get_image_size(image, channel_dim=input_data_format) output_height, output_width = output_size pad_bottom = output_height - input_height pad_right = output_width - input_width padding = ((0, pad_bottom), (0, pad_right)) padded_image = pad( image, padding, mode=PaddingMode.CONSTANT, constant_values=constant_values, data_format=data_format, input_data_format=input_data_format, ) if annotation is not None: annotation = self._update_annotation_for_padded_image( annotation, (input_height, input_width), (output_height, output_width), padding, update_bboxes ) return padded_image, annotation def pad( self, images: List[np.ndarray], annotations: Optional[Union[AnnotationType, List[AnnotationType]]] = None, constant_values: Union[float, Iterable[float]] = 0, return_pixel_mask: bool = True, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Optional[ChannelDimension] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, update_bboxes: bool = True, pad_size: Optional[Dict[str, int]] = None, ) -> BatchFeature: """ Pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width in the batch and optionally returns their corresponding pixel mask. Args: images (List[`np.ndarray`]): Images to pad. annotations (`AnnotationType` or `List[AnnotationType]`, *optional*): Annotations to transform according to the padding that is applied to the images. constant_values (`float` or `Iterable[float]`, *optional*): The value to use for the padding if `mode` is `"constant"`. return_pixel_mask (`bool`, *optional*, defaults to `True`): Whether to return a pixel mask. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. update_bboxes (`bool`, *optional*, defaults to `True`): Whether to update the bounding boxes in the annotations to match the padded images. If the bounding boxes have not been converted to relative coordinates and `(centre_x, centre_y, width, height)` format, the bounding boxes will not be updated. pad_size (`Dict[str, int]`, *optional*): The size `{"height": int, "width" int}` to pad the images to. Must be larger than any image size provided for preprocessing. If `pad_size` is not provided, images will be padded to the largest height and width in the batch. """ pad_size = pad_size if pad_size is not None else self.pad_size if pad_size is not None: padded_size = (pad_size["height"], pad_size["width"]) else: padded_size = get_max_height_width(images, input_data_format=input_data_format) annotation_list = annotations if annotations is not None else [None] * len(images) padded_images = [] padded_annotations = [] for image, annotation in zip(images, annotation_list): padded_image, padded_annotation = self._pad_image( image, padded_size, annotation, constant_values=constant_values, data_format=data_format, input_data_format=input_data_format, update_bboxes=update_bboxes, ) padded_images.append(padded_image) padded_annotations.append(padded_annotation) data = {"pixel_values": padded_images} if return_pixel_mask: masks = [ make_pixel_mask(image=image, output_size=padded_size, input_data_format=input_data_format) for image in images ] data["pixel_mask"] = masks encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors) if annotations is not None: encoded_inputs["labels"] = [ BatchFeature(annotation, tensor_type=return_tensors) for annotation in padded_annotations ] return encoded_inputs def preprocess( self, images: ImageInput, annotations: Optional[Union[AnnotationType, List[AnnotationType]]] = None, return_segmentation_masks: bool = None, masks_path: Optional[Union[str, pathlib.Path]] = None, do_resize: Optional[bool] = None, size: Optional[Dict[str, int]] = None, resample=None, # PILImageResampling do_rescale: Optional[bool] = None, rescale_factor: Optional[Union[int, float]] = None, do_normalize: Optional[bool] = None, do_convert_annotations: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_pad: Optional[bool] = None, format: Optional[Union[str, AnnotationFormat]] = None, return_tensors: Optional[Union[TensorType, str]] = None, data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, pad_size: Optional[Dict[str, int]] = None, **kwargs, ) -> BatchFeature: """ Preprocess an image or a batch of images so that it can be used by the model. Args: images (`ImageInput`): Image or batch of images to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. annotations (`AnnotationType` or `List[AnnotationType]`, *optional*): List of annotations associated with the image or batch of images. If annotation is for object detection, the annotations should be a dictionary with the following keys: - "image_id" (`int`): The image id. - "annotations" (`List[Dict]`): List of annotations for an image. Each annotation should be a dictionary. An image can have no annotations, in which case the list should be empty. If annotation is for segmentation, the annotations should be a dictionary with the following keys: - "image_id" (`int`): The image id. - "segments_info" (`List[Dict]`): List of segments for an image. Each segment should be a dictionary. An image can have no segments, in which case the list should be empty. - "file_name" (`str`): The file name of the image. return_segmentation_masks (`bool`, *optional*, defaults to self.return_segmentation_masks): Whether to return segmentation masks. masks_path (`str` or `pathlib.Path`, *optional*): Path to the directory containing the segmentation masks. do_resize (`bool`, *optional*, defaults to self.do_resize): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to self.size): Size of the image's `(height, width)` dimensions after resizing. Available options are: - `{"height": int, "width": int}`: The image will be resized to the exact size `(height, width)`. Do NOT keep the aspect ratio. - `{"shortest_edge": int, "longest_edge": int}`: The image will be resized to a maximum size respecting the aspect ratio and keeping the shortest edge less or equal to `shortest_edge` and the longest edge less or equal to `longest_edge`. - `{"max_height": int, "max_width": int}`: The image will be resized to the maximum size respecting the aspect ratio and keeping the height less or equal to `max_height` and the width less or equal to `max_width`. resample (`PILImageResampling`, *optional*, defaults to self.resample): Resampling filter to use when resizing the image. do_rescale (`bool`, *optional*, defaults to self.do_rescale): Whether to rescale the image. rescale_factor (`float`, *optional*, defaults to self.rescale_factor): Rescale factor to use when rescaling the image. do_normalize (`bool`, *optional*, defaults to self.do_normalize): Whether to normalize the image. do_convert_annotations (`bool`, *optional*, defaults to self.do_convert_annotations): Whether to convert the annotations to the format expected by the model. Converts the bounding boxes from the format `(top_left_x, top_left_y, width, height)` to `(center_x, center_y, width, height)` and in relative coordinates. image_mean (`float` or `List[float]`, *optional*, defaults to self.image_mean): Mean to use when normalizing the image. image_std (`float` or `List[float]`, *optional*, defaults to self.image_std): Standard deviation to use when normalizing the image. do_pad (`bool`, *optional*, defaults to self.do_pad): Whether to pad the image. If `True`, padding will be applied to the bottom and right of the image with zeros. If `pad_size` is provided, the image will be padded to the specified dimensions. Otherwise, the image will be padded to the maximum height and width of the batch. format (`str` or `AnnotationFormat`, *optional*, defaults to self.format): Format of the annotations. return_tensors (`str` or `TensorType`, *optional*, defaults to self.return_tensors): Type of tensors to return. If `None`, will return the list of images. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. pad_size (`Dict[str, int]`, *optional*): The size `{"height": int, "width" int}` to pad the images to. Must be larger than any image size provided for preprocessing. If `pad_size` is not provided, images will be padded to the largest height and width in the batch. """ if "pad_and_return_pixel_mask" in kwargs: logger.warning_once( "The `pad_and_return_pixel_mask` argument is deprecated and will be removed in a future version, " "use `do_pad` instead." ) do_pad = kwargs.pop("pad_and_return_pixel_mask") max_size = None if "max_size" in kwargs: logger.warning_once( "The `max_size` argument is deprecated and will be removed in a future version, use" " `size['longest_edge']` instead." ) size = kwargs.pop("max_size") do_resize = self.do_resize if do_resize is None else do_resize size = self.size if size is None else size size = get_size_dict(size=size, max_size=max_size, default_to_square=False) resample = self.resample if resample is None else resample do_rescale = self.do_rescale if do_rescale is None else do_rescale rescale_factor = self.rescale_factor if rescale_factor is None else rescale_factor do_normalize = self.do_normalize if do_normalize is None else do_normalize image_mean = self.image_mean if image_mean is None else image_mean image_std = self.image_std if image_std is None else image_std do_convert_annotations = ( self.do_convert_annotations if do_convert_annotations is None else do_convert_annotations ) do_pad = self.do_pad if do_pad is None else do_pad pad_size = self.pad_size if pad_size is None else pad_size format = self.format if format is None else format images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys) # Here, the pad() method pads to the maximum of (width, height). It does not need to be validated. validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_resize=do_resize, size=size, resample=resample, ) if annotations is not None and isinstance(annotations, dict): annotations = [annotations] if annotations is not None and len(images) != len(annotations): raise ValueError( f"The number of images ({len(images)}) and annotations ({len(annotations)}) do not match." ) format = AnnotationFormat(format) if annotations is not None: validate_annotations(format, SUPPORTED_ANNOTATION_FORMATS, annotations) if ( masks_path is not None and format == AnnotationFormat.COCO_PANOPTIC and not isinstance(masks_path, (pathlib.Path, str)) ): raise ValueError( "The path to the directory containing the mask PNG files should be provided as a" f" `pathlib.Path` or string object, but is {type(masks_path)} instead." ) # All transformations expect numpy arrays images = [to_numpy_array(image) for image in images] if do_rescale and is_scaled_image(images[0]): logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) # prepare (COCO annotations as a list of Dict -> DETR target as a single Dict per image) if annotations is not None: prepared_images = [] prepared_annotations = [] for image, target in zip(images, annotations): target = self.prepare_annotation( image, target, format, return_segmentation_masks=return_segmentation_masks, masks_path=masks_path, input_data_format=input_data_format, ) prepared_images.append(image) prepared_annotations.append(target) images = prepared_images annotations = prepared_annotations del prepared_images, prepared_annotations # transformations if do_resize: if annotations is not None: resized_images, resized_annotations = [], [] for image, target in zip(images, annotations): orig_size = get_image_size(image, input_data_format) resized_image = self.resize( image, size=size, max_size=max_size, resample=resample, input_data_format=input_data_format ) resized_annotation = self.resize_annotation( target, orig_size, get_image_size(resized_image, input_data_format) ) resized_images.append(resized_image) resized_annotations.append(resized_annotation) images = resized_images annotations = resized_annotations del resized_images, resized_annotations else: images = [ self.resize(image, size=size, resample=resample, input_data_format=input_data_format) for image in images ] if do_rescale: images = [self.rescale(image, rescale_factor, input_data_format=input_data_format) for image in images] if do_normalize: images = [ self.normalize(image, image_mean, image_std, input_data_format=input_data_format) for image in images ] if do_convert_annotations and annotations is not None: annotations = [ self.normalize_annotation(annotation, get_image_size(image, input_data_format)) for annotation, image in zip(annotations, images) ] if do_pad: # Pads images and returns their mask: {'pixel_values': ..., 'pixel_mask': ...} encoded_inputs = self.pad( images, annotations=annotations, return_pixel_mask=True, data_format=data_format, input_data_format=input_data_format, update_bboxes=do_convert_annotations, return_tensors=return_tensors, pad_size=pad_size, ) else: images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images ] encoded_inputs = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors) if annotations is not None: encoded_inputs["labels"] = [ BatchFeature(annotation, tensor_type=return_tensors) for annotation in annotations ] return encoded_inputs # POSTPROCESSING METHODS - TODO: add support for other frameworks # inspired by https://github.com/facebookresearch/detr/blob/master/models/detr.py#L258 def post_process(self, outputs, target_sizes): """ Converts the raw output of [`DetrForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y, bottom_right_x, bottom_right_y) format. Only supports PyTorch. Args: outputs ([`DetrObjectDetectionOutput`]): Raw outputs of the model. target_sizes (`torch.Tensor` of shape `(batch_size, 2)`): Tensor containing the size (height, width) of each image of the batch. For evaluation, this must be the original image size (before any data augmentation). For visualization, this should be the image size after data augment, but before padding. Returns: `List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image in the batch as predicted by the model. """ logger.warning_once( "`post_process` is deprecated and will be removed in v5 of Transformers, please use" " `post_process_object_detection` instead, with `threshold=0.` for equivalent results.", ) out_logits, out_bbox = outputs.logits, outputs.pred_boxes if len(out_logits) != len(target_sizes): raise ValueError("Make sure that you pass in as many target sizes as the batch dimension of the logits") if target_sizes.shape[1] != 2: raise ValueError("Each element of target_sizes must contain the size (h, w) of each image of the batch") prob = nn.functional.softmax(out_logits, -1) scores, labels = prob[..., :-1].max(-1) # convert to [x0, y0, x1, y1] format boxes = center_to_corners_format(out_bbox) # and from relative [0, 1] to absolute [0, height] coordinates img_h, img_w = target_sizes.unbind(1) scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device) boxes = boxes * scale_fct[:, None, :] results = [{"scores": s, "labels": l, "boxes": b} for s, l, b in zip(scores, labels, boxes)] return results def post_process_segmentation(self, outputs, target_sizes, threshold=0.9, mask_threshold=0.5): """ Converts the output of [`DetrForSegmentation`] into image segmentation predictions. Only supports PyTorch. Args: outputs ([`DetrSegmentationOutput`]): Raw outputs of the model. target_sizes (`torch.Tensor` of shape `(batch_size, 2)` or `List[Tuple]` of length `batch_size`): Torch Tensor (or list) corresponding to the requested final size (h, w) of each prediction. threshold (`float`, *optional*, defaults to 0.9): Threshold to use to filter out queries. mask_threshold (`float`, *optional*, defaults to 0.5): Threshold to use when turning the predicted masks into binary values. Returns: `List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels, and masks for an image in the batch as predicted by the model. """ logger.warning_once( "`post_process_segmentation` is deprecated and will be removed in v5 of Transformers, please use" " `post_process_semantic_segmentation`.", ) out_logits, raw_masks = outputs.logits, outputs.pred_masks empty_label = out_logits.shape[-1] - 1 preds = [] def to_tuple(tup): if isinstance(tup, tuple): return tup return tuple(tup.cpu().tolist()) for cur_logits, cur_masks, size in zip(out_logits, raw_masks, target_sizes): # we filter empty queries and detection below threshold cur_scores, cur_labels = cur_logits.softmax(-1).max(-1) keep = cur_labels.ne(empty_label) & (cur_scores > threshold) cur_scores = cur_scores[keep] cur_labels = cur_labels[keep] cur_masks = cur_masks[keep] cur_masks = nn.functional.interpolate(cur_masks[:, None], to_tuple(size), mode="bilinear").squeeze(1) cur_masks = (cur_masks.sigmoid() > mask_threshold) * 1 predictions = {"scores": cur_scores, "labels": cur_labels, "masks": cur_masks} preds.append(predictions) return preds # inspired by https://github.com/facebookresearch/detr/blob/master/models/segmentation.py#L218 def post_process_instance(self, results, outputs, orig_target_sizes, max_target_sizes, threshold=0.5): """ Converts the output of [`DetrForSegmentation`] into actual instance segmentation predictions. Only supports PyTorch. Args: results (`List[Dict]`): Results list obtained by [`~DetrImageProcessor.post_process`], to which "masks" results will be added. outputs ([`DetrSegmentationOutput`]): Raw outputs of the model. orig_target_sizes (`torch.Tensor` of shape `(batch_size, 2)`): Tensor containing the size (h, w) of each image of the batch. For evaluation, this must be the original image size (before any data augmentation). max_target_sizes (`torch.Tensor` of shape `(batch_size, 2)`): Tensor containing the maximum size (h, w) of each image of the batch. For evaluation, this must be the original image size (before any data augmentation). threshold (`float`, *optional*, defaults to 0.5): Threshold to use when turning the predicted masks into binary values. Returns: `List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels, boxes and masks for an image in the batch as predicted by the model. """ logger.warning_once( "`post_process_instance` is deprecated and will be removed in v5 of Transformers, please use" " `post_process_instance_segmentation`.", ) if len(orig_target_sizes) != len(max_target_sizes): raise ValueError("Make sure to pass in as many orig_target_sizes as max_target_sizes") max_h, max_w = max_target_sizes.max(0)[0].tolist() outputs_masks = outputs.pred_masks.squeeze(2) outputs_masks = nn.functional.interpolate( outputs_masks, size=(max_h, max_w), mode="bilinear", align_corners=False ) outputs_masks = (outputs_masks.sigmoid() > threshold).cpu() for i, (cur_mask, t, tt) in enumerate(zip(outputs_masks, max_target_sizes, orig_target_sizes)): img_h, img_w = t[0], t[1] results[i]["masks"] = cur_mask[:, :img_h, :img_w].unsqueeze(1) results[i]["masks"] = nn.functional.interpolate( results[i]["masks"].float(), size=tuple(tt.tolist()), mode="nearest" ).byte() return results # inspired by https://github.com/facebookresearch/detr/blob/master/models/segmentation.py#L241 def post_process_panoptic(self, outputs, processed_sizes, target_sizes=None, is_thing_map=None, threshold=0.85): """ Converts the output of [`DetrForSegmentation`] into actual panoptic predictions. Only supports PyTorch. Args: outputs ([`DetrSegmentationOutput`]): Raw outputs of the model. processed_sizes (`torch.Tensor` of shape `(batch_size, 2)` or `List[Tuple]` of length `batch_size`): Torch Tensor (or list) containing the size (h, w) of each image of the batch, i.e. the size after data augmentation but before batching. target_sizes (`torch.Tensor` of shape `(batch_size, 2)` or `List[Tuple]` of length `batch_size`, *optional*): Torch Tensor (or list) corresponding to the requested final size `(height, width)` of each prediction. If left to None, it will default to the `processed_sizes`. is_thing_map (`torch.Tensor` of shape `(batch_size, 2)`, *optional*): Dictionary mapping class indices to either True or False, depending on whether or not they are a thing. If not set, defaults to the `is_thing_map` of COCO panoptic. threshold (`float`, *optional*, defaults to 0.85): Threshold to use to filter out queries. Returns: `List[Dict]`: A list of dictionaries, each dictionary containing a PNG string and segments_info values for an image in the batch as predicted by the model. """ logger.warning_once( "`post_process_panoptic is deprecated and will be removed in v5 of Transformers, please use" " `post_process_panoptic_segmentation`.", ) if target_sizes is None: target_sizes = processed_sizes if len(processed_sizes) != len(target_sizes): raise ValueError("Make sure to pass in as many processed_sizes as target_sizes") if is_thing_map is None: # default to is_thing_map of COCO panoptic is_thing_map = {i: i <= 90 for i in range(201)} out_logits, raw_masks, raw_boxes = outputs.logits, outputs.pred_masks, outputs.pred_boxes if not len(out_logits) == len(raw_masks) == len(target_sizes): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits and masks" ) empty_label = out_logits.shape[-1] - 1 preds = [] def to_tuple(tup): if isinstance(tup, tuple): return tup return tuple(tup.cpu().tolist()) for cur_logits, cur_masks, cur_boxes, size, target_size in zip( out_logits, raw_masks, raw_boxes, processed_sizes, target_sizes ): # we filter empty queries and detection below threshold cur_scores, cur_labels = cur_logits.softmax(-1).max(-1) keep = cur_labels.ne(empty_label) & (cur_scores > threshold) cur_scores = cur_scores[keep] cur_labels = cur_labels[keep] cur_masks = cur_masks[keep] cur_masks = nn.functional.interpolate(cur_masks[:, None], to_tuple(size), mode="bilinear").squeeze(1) cur_boxes = center_to_corners_format(cur_boxes[keep]) h, w = cur_masks.shape[-2:] if len(cur_boxes) != len(cur_labels): raise ValueError("Not as many boxes as there are classes") # It may be that we have several predicted masks for the same stuff class. # In the following, we track the list of masks ids for each stuff class (they are merged later on) cur_masks = cur_masks.flatten(1) stuff_equiv_classes = defaultdict(lambda: []) for k, label in enumerate(cur_labels): if not is_thing_map[label.item()]: stuff_equiv_classes[label.item()].append(k) def get_ids_area(masks, scores, dedup=False): # This helper function creates the final panoptic segmentation image # It also returns the area of the masks that appears on the image m_id = masks.transpose(0, 1).softmax(-1) if m_id.shape[-1] == 0: # We didn't detect any mask :( m_id = torch.zeros((h, w), dtype=torch.long, device=m_id.device) else: m_id = m_id.argmax(-1).view(h, w) if dedup: # Merge the masks corresponding to the same stuff class for equiv in stuff_equiv_classes.values(): if len(equiv) > 1: for eq_id in equiv: m_id.masked_fill_(m_id.eq(eq_id), equiv[0]) final_h, final_w = to_tuple(target_size) seg_img = PIL.Image.fromarray(id_to_rgb(m_id.view(h, w).cpu().numpy())) seg_img = seg_img.resize(size=(final_w, final_h), resample=PILImageResampling.NEAREST) np_seg_img = torch.ByteTensor(torch.ByteStorage.from_buffer(seg_img.tobytes())) np_seg_img = np_seg_img.view(final_h, final_w, 3) np_seg_img = np_seg_img.numpy() m_id = torch.from_numpy(rgb_to_id(np_seg_img)) area = [] for i in range(len(scores)): area.append(m_id.eq(i).sum().item()) return area, seg_img area, seg_img = get_ids_area(cur_masks, cur_scores, dedup=True) if cur_labels.numel() > 0: # We know filter empty masks as long as we find some while True: filtered_small = torch.as_tensor( [area[i] <= 4 for i, c in enumerate(cur_labels)], dtype=torch.bool, device=keep.device ) if filtered_small.any().item(): cur_scores = cur_scores[~filtered_small] cur_labels = cur_labels[~filtered_small] cur_masks = cur_masks[~filtered_small] area, seg_img = get_ids_area(cur_masks, cur_scores) else: break else: cur_labels = torch.ones(1, dtype=torch.long, device=cur_labels.device) segments_info = [] for i, a in enumerate(area): cat = cur_labels[i].item() segments_info.append({"id": i, "isthing": is_thing_map[cat], "category_id": cat, "area": a}) del cur_labels with io.BytesIO() as out: seg_img.save(out, format="PNG") predictions = {"png_string": out.getvalue(), "segments_info": segments_info} preds.append(predictions) return preds # inspired by https://github.com/facebookresearch/detr/blob/master/models/detr.py#L258 def post_process_object_detection( self, outputs, threshold: float = 0.5, target_sizes: Union[TensorType, List[Tuple]] = None ): """ Converts the raw output of [`DetrForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y, bottom_right_x, bottom_right_y) format. Only supports PyTorch. Args: outputs ([`DetrObjectDetectionOutput`]): Raw outputs of the model. threshold (`float`, *optional*): Score threshold to keep object detection predictions. target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*): Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size `(height, width)` of each image in the batch. If unset, predictions will not be resized. Returns: `List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image in the batch as predicted by the model. """ out_logits, out_bbox = outputs.logits, outputs.pred_boxes if target_sizes is not None: if len(out_logits) != len(target_sizes): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) prob = nn.functional.softmax(out_logits, -1) scores, labels = prob[..., :-1].max(-1) # Convert to [x0, y0, x1, y1] format boxes = center_to_corners_format(out_bbox) # Convert from relative [0, 1] to absolute [0, height] coordinates if target_sizes is not None: if isinstance(target_sizes, List): img_h = torch.Tensor([i[0] for i in target_sizes]) img_w = torch.Tensor([i[1] for i in target_sizes]) else: img_h, img_w = target_sizes.unbind(1) scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device) boxes = boxes * scale_fct[:, None, :] results = [] for s, l, b in zip(scores, labels, boxes): score = s[s > threshold] label = l[s > threshold] box = b[s > threshold] results.append({"scores": score, "labels": label, "boxes": box}) return results def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple[int, int]] = None): """ Converts the output of [`DetrForSegmentation`] into semantic segmentation maps. Only supports PyTorch. Args: outputs ([`DetrForSegmentation`]): Raw outputs of the model. target_sizes (`List[Tuple[int, int]]`, *optional*): A list of tuples (`Tuple[int, int]`) containing the target size (height, width) of each image in the batch. If unset, predictions will not be resized. Returns: `List[torch.Tensor]`: A list of length `batch_size`, where each item is a semantic segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is specified). Each entry of each `torch.Tensor` correspond to a semantic class id. """ class_queries_logits = outputs.logits # [batch_size, num_queries, num_classes+1] masks_queries_logits = outputs.pred_masks # [batch_size, num_queries, height, width] # Remove the null class `[..., :-1]` masks_classes = class_queries_logits.softmax(dim=-1)[..., :-1] masks_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width] # Semantic segmentation logits of shape (batch_size, num_classes, height, width) segmentation = torch.einsum("bqc, bqhw -> bchw", masks_classes, masks_probs) batch_size = class_queries_logits.shape[0] # Resize logits and compute semantic segmentation maps if target_sizes is not None: if batch_size != len(target_sizes): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) semantic_segmentation = [] for idx in range(batch_size): resized_logits = nn.functional.interpolate( segmentation[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False ) semantic_map = resized_logits[0].argmax(dim=0) semantic_segmentation.append(semantic_map) else: semantic_segmentation = segmentation.argmax(dim=1) semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation # inspired by https://github.com/facebookresearch/detr/blob/master/models/segmentation.py#L218 def post_process_instance_segmentation( self, outputs, threshold: float = 0.5, mask_threshold: float = 0.5, overlap_mask_area_threshold: float = 0.8, target_sizes: Optional[List[Tuple[int, int]]] = None, return_coco_annotation: Optional[bool] = False, ) -> List[Dict]: """ Converts the output of [`DetrForSegmentation`] into instance segmentation predictions. Only supports PyTorch. Args: outputs ([`DetrForSegmentation`]): Raw outputs of the model. threshold (`float`, *optional*, defaults to 0.5): The probability score threshold to keep predicted instance masks. mask_threshold (`float`, *optional*, defaults to 0.5): Threshold to use when turning the predicted masks into binary values. overlap_mask_area_threshold (`float`, *optional*, defaults to 0.8): The overlap mask area threshold to merge or discard small disconnected parts within each binary instance mask. target_sizes (`List[Tuple]`, *optional*): List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested final size (height, width) of each prediction. If unset, predictions will not be resized. return_coco_annotation (`bool`, *optional*): Defaults to `False`. If set to `True`, segmentation maps are returned in COCO run-length encoding (RLE) format. Returns: `List[Dict]`: A list of dictionaries, one per image, each dictionary containing two keys: - **segmentation** -- A tensor of shape `(height, width)` where each pixel represents a `segment_id` or `List[List]` run-length encoding (RLE) of the segmentation map if return_coco_annotation is set to `True`. Set to `None` if no mask if found above `threshold`. - **segments_info** -- A dictionary that contains additional information on each segment. - **id** -- An integer representing the `segment_id`. - **label_id** -- An integer representing the label / semantic class id corresponding to `segment_id`. - **score** -- Prediction score of segment with `segment_id`. """ class_queries_logits = outputs.logits # [batch_size, num_queries, num_classes+1] masks_queries_logits = outputs.pred_masks # [batch_size, num_queries, height, width] batch_size = class_queries_logits.shape[0] num_labels = class_queries_logits.shape[-1] - 1 mask_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width] # Predicted label and score of each query (batch_size, num_queries) pred_scores, pred_labels = nn.functional.softmax(class_queries_logits, dim=-1).max(-1) # Loop over items in batch size results: List[Dict[str, TensorType]] = [] for i in range(batch_size): mask_probs_item, pred_scores_item, pred_labels_item = remove_low_and_no_objects( mask_probs[i], pred_scores[i], pred_labels[i], threshold, num_labels ) # No mask found if mask_probs_item.shape[0] <= 0: height, width = target_sizes[i] if target_sizes is not None else mask_probs_item.shape[1:] segmentation = torch.zeros((height, width)) - 1 results.append({"segmentation": segmentation, "segments_info": []}) continue # Get segmentation map and segment information of batch item target_size = target_sizes[i] if target_sizes is not None else None segmentation, segments = compute_segments( mask_probs=mask_probs_item, pred_scores=pred_scores_item, pred_labels=pred_labels_item, mask_threshold=mask_threshold, overlap_mask_area_threshold=overlap_mask_area_threshold, label_ids_to_fuse=[], target_size=target_size, ) # Return segmentation map in run-length encoding (RLE) format if return_coco_annotation: segmentation = convert_segmentation_to_rle(segmentation) results.append({"segmentation": segmentation, "segments_info": segments}) return results # inspired by https://github.com/facebookresearch/detr/blob/master/models/segmentation.py#L241 def post_process_panoptic_segmentation( self, outputs, threshold: float = 0.5, mask_threshold: float = 0.5, overlap_mask_area_threshold: float = 0.8, label_ids_to_fuse: Optional[Set[int]] = None, target_sizes: Optional[List[Tuple[int, int]]] = None, ) -> List[Dict]: """ Converts the output of [`DetrForSegmentation`] into image panoptic segmentation predictions. Only supports PyTorch. Args: outputs ([`DetrForSegmentation`]): The outputs from [`DetrForSegmentation`]. threshold (`float`, *optional*, defaults to 0.5): The probability score threshold to keep predicted instance masks. mask_threshold (`float`, *optional*, defaults to 0.5): Threshold to use when turning the predicted masks into binary values. overlap_mask_area_threshold (`float`, *optional*, defaults to 0.8): The overlap mask area threshold to merge or discard small disconnected parts within each binary instance mask. label_ids_to_fuse (`Set[int]`, *optional*): The labels in this state will have all their instances be fused together. For instance we could say there can only be one sky in an image, but several persons, so the label ID for sky would be in that set, but not the one for person. target_sizes (`List[Tuple]`, *optional*): List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested final size (height, width) of each prediction in batch. If unset, predictions will not be resized. Returns: `List[Dict]`: A list of dictionaries, one per image, each dictionary containing two keys: - **segmentation** -- a tensor of shape `(height, width)` where each pixel represents a `segment_id` or `None` if no mask if found above `threshold`. If `target_sizes` is specified, segmentation is resized to the corresponding `target_sizes` entry. - **segments_info** -- A dictionary that contains additional information on each segment. - **id** -- an integer representing the `segment_id`. - **label_id** -- An integer representing the label / semantic class id corresponding to `segment_id`. - **was_fused** -- a boolean, `True` if `label_id` was in `label_ids_to_fuse`, `False` otherwise. Multiple instances of the same class / label were fused and assigned a single `segment_id`. - **score** -- Prediction score of segment with `segment_id`. """ if label_ids_to_fuse is None: logger.warning_once("`label_ids_to_fuse` unset. No instance will be fused.") label_ids_to_fuse = set() class_queries_logits = outputs.logits # [batch_size, num_queries, num_classes+1] masks_queries_logits = outputs.pred_masks # [batch_size, num_queries, height, width] batch_size = class_queries_logits.shape[0] num_labels = class_queries_logits.shape[-1] - 1 mask_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width] # Predicted label and score of each query (batch_size, num_queries) pred_scores, pred_labels = nn.functional.softmax(class_queries_logits, dim=-1).max(-1) # Loop over items in batch size results: List[Dict[str, TensorType]] = [] for i in range(batch_size): mask_probs_item, pred_scores_item, pred_labels_item = remove_low_and_no_objects( mask_probs[i], pred_scores[i], pred_labels[i], threshold, num_labels ) # No mask found if mask_probs_item.shape[0] <= 0: height, width = target_sizes[i] if target_sizes is not None else mask_probs_item.shape[1:] segmentation = torch.zeros((height, width)) - 1 results.append({"segmentation": segmentation, "segments_info": []}) continue # Get segmentation map and segment information of batch item target_size = target_sizes[i] if target_sizes is not None else None segmentation, segments = compute_segments( mask_probs=mask_probs_item, pred_scores=pred_scores_item, pred_labels=pred_labels_item, mask_threshold=mask_threshold, overlap_mask_area_threshold=overlap_mask_area_threshold, label_ids_to_fuse=label_ids_to_fuse, target_size=target_size, ) results.append({"segmentation": segmentation, "segments_info": segments}) return results
class_definition
28,739
93,998
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/detr/image_processing_detr.py
null
9,039
class DetrConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`DetrModel`]. It is used to instantiate a DETR model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the DETR [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: use_timm_backbone (`bool`, *optional*, defaults to `True`): Whether or not to use the `timm` library for the backbone. If set to `False`, will use the [`AutoBackbone`] API. backbone_config (`PretrainedConfig` or `dict`, *optional*): The configuration of the backbone model. Only used in case `use_timm_backbone` is set to `False` in which case it will default to `ResNetConfig()`. num_channels (`int`, *optional*, defaults to 3): The number of input channels. num_queries (`int`, *optional*, defaults to 100): Number of object queries, i.e. detection slots. This is the maximal number of objects [`DetrModel`] can detect in a single image. For COCO, we recommend 100 queries. d_model (`int`, *optional*, defaults to 256): Dimension of the layers. encoder_layers (`int`, *optional*, defaults to 6): Number of encoder layers. decoder_layers (`int`, *optional*, defaults to 6): Number of decoder layers. encoder_attention_heads (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer in the Transformer encoder. decoder_attention_heads (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer in the Transformer decoder. decoder_ffn_dim (`int`, *optional*, defaults to 2048): Dimension of the "intermediate" (often named feed-forward) layer in decoder. encoder_ffn_dim (`int`, *optional*, defaults to 2048): Dimension of the "intermediate" (often named feed-forward) layer in decoder. activation_function (`str` or `function`, *optional*, defaults to `"relu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. activation_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for activations inside the fully connected layer. init_std (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. init_xavier_std (`float`, *optional*, defaults to 1): The scaling factor used for the Xavier initialization gain in the HM Attention map module. encoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. decoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. auxiliary_loss (`bool`, *optional*, defaults to `False`): Whether auxiliary decoding losses (loss at each decoder layer) are to be used. position_embedding_type (`str`, *optional*, defaults to `"sine"`): Type of position embeddings to be used on top of the image features. One of `"sine"` or `"learned"`. backbone (`str`, *optional*, defaults to `"resnet50"`): Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone` is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights. use_pretrained_backbone (`bool`, *optional*, `True`): Whether to use pretrained weights for the backbone. backbone_kwargs (`dict`, *optional*): Keyword arguments to be passed to AutoBackbone when loading from a checkpoint e.g. `{'out_indices': (0, 1, 2, 3)}`. Cannot be specified if `backbone_config` is set. dilation (`bool`, *optional*, defaults to `False`): Whether to replace stride with dilation in the last convolutional block (DC5). Only supported when `use_timm_backbone` = `True`. class_cost (`float`, *optional*, defaults to 1): Relative weight of the classification error in the Hungarian matching cost. bbox_cost (`float`, *optional*, defaults to 5): Relative weight of the L1 error of the bounding box coordinates in the Hungarian matching cost. giou_cost (`float`, *optional*, defaults to 2): Relative weight of the generalized IoU loss of the bounding box in the Hungarian matching cost. mask_loss_coefficient (`float`, *optional*, defaults to 1): Relative weight of the Focal loss in the panoptic segmentation loss. dice_loss_coefficient (`float`, *optional*, defaults to 1): Relative weight of the DICE/F-1 loss in the panoptic segmentation loss. bbox_loss_coefficient (`float`, *optional*, defaults to 5): Relative weight of the L1 bounding box loss in the object detection loss. giou_loss_coefficient (`float`, *optional*, defaults to 2): Relative weight of the generalized IoU loss in the object detection loss. eos_coefficient (`float`, *optional*, defaults to 0.1): Relative classification weight of the 'no-object' class in the object detection loss. Examples: ```python >>> from transformers import DetrConfig, DetrModel >>> # Initializing a DETR facebook/detr-resnet-50 style configuration >>> configuration = DetrConfig() >>> # Initializing a model (with random weights) from the facebook/detr-resnet-50 style configuration >>> model = DetrModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "detr" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self, use_timm_backbone=True, backbone_config=None, num_channels=3, num_queries=100, encoder_layers=6, encoder_ffn_dim=2048, encoder_attention_heads=8, decoder_layers=6, decoder_ffn_dim=2048, decoder_attention_heads=8, encoder_layerdrop=0.0, decoder_layerdrop=0.0, is_encoder_decoder=True, activation_function="relu", d_model=256, dropout=0.1, attention_dropout=0.0, activation_dropout=0.0, init_std=0.02, init_xavier_std=1.0, auxiliary_loss=False, position_embedding_type="sine", backbone="resnet50", use_pretrained_backbone=True, backbone_kwargs=None, dilation=False, class_cost=1, bbox_cost=5, giou_cost=2, mask_loss_coefficient=1, dice_loss_coefficient=1, bbox_loss_coefficient=5, giou_loss_coefficient=2, eos_coefficient=0.1, **kwargs, ): # We default to values which were previously hard-coded in the model. This enables configurability of the config # while keeping the default behavior the same. if use_timm_backbone and backbone_kwargs is None: backbone_kwargs = {} if dilation: backbone_kwargs["output_stride"] = 16 backbone_kwargs["out_indices"] = [1, 2, 3, 4] backbone_kwargs["in_chans"] = num_channels # Backwards compatibility elif not use_timm_backbone and backbone in (None, "resnet50"): if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") backbone_config = CONFIG_MAPPING["resnet"](out_features=["stage4"]) elif isinstance(backbone_config, dict): backbone_model_type = backbone_config.get("model_type") config_class = CONFIG_MAPPING[backbone_model_type] backbone_config = config_class.from_dict(backbone_config) backbone = None # set timm attributes to None dilation = None verify_backbone_config_arguments( use_timm_backbone=use_timm_backbone, use_pretrained_backbone=use_pretrained_backbone, backbone=backbone, backbone_config=backbone_config, backbone_kwargs=backbone_kwargs, ) self.use_timm_backbone = use_timm_backbone self.backbone_config = backbone_config self.num_channels = num_channels self.num_queries = num_queries self.d_model = d_model self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.init_std = init_std self.init_xavier_std = init_xavier_std self.encoder_layerdrop = encoder_layerdrop self.decoder_layerdrop = decoder_layerdrop self.num_hidden_layers = encoder_layers self.auxiliary_loss = auxiliary_loss self.position_embedding_type = position_embedding_type self.backbone = backbone self.use_pretrained_backbone = use_pretrained_backbone self.backbone_kwargs = backbone_kwargs self.dilation = dilation # Hungarian matcher self.class_cost = class_cost self.bbox_cost = bbox_cost self.giou_cost = giou_cost # Loss coefficients self.mask_loss_coefficient = mask_loss_coefficient self.dice_loss_coefficient = dice_loss_coefficient self.bbox_loss_coefficient = bbox_loss_coefficient self.giou_loss_coefficient = giou_loss_coefficient self.eos_coefficient = eos_coefficient super().__init__(is_encoder_decoder=is_encoder_decoder, **kwargs) @property def num_attention_heads(self) -> int: return self.encoder_attention_heads @property def hidden_size(self) -> int: return self.d_model @classmethod def from_backbone_config(cls, backbone_config: PretrainedConfig, **kwargs): """Instantiate a [`DetrConfig`] (or a derived class) from a pre-trained backbone model configuration. Args: backbone_config ([`PretrainedConfig`]): The backbone configuration. Returns: [`DetrConfig`]: An instance of a configuration object """ return cls(backbone_config=backbone_config, **kwargs)
class_definition
1,035
12,965
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/detr/configuration_detr.py
null
9,040
class DetrOnnxConfig(OnnxConfig): torch_onnx_minimum_version = version.parse("1.11") @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def atol_for_validation(self) -> float: return 1e-5 @property def default_onnx_opset(self) -> int: return 12
class_definition
12,968
13,485
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/detr/configuration_detr.py
null
9,041
class BartphoTokenizer(PreTrainedTokenizer): """ Adapted from [`XLMRobertaTokenizer`]. Based on [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. This vocabulary is the pre-trained SentencePiece model available from the multilingual XLM-RoBERTa, also used in mBART, consisting of 250K types. monolingual_vocab_file (`str`): Path to the monolingual vocabulary file. This monolingual vocabulary consists of Vietnamese-specialized types extracted from the multilingual vocabulary vocab_file of 250K types. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. Attributes: sp_model (`SentencePieceProcessor`): The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, monolingual_vocab_file, bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", sp_model_kwargs: Optional[Dict[str, Any]] = None, **kwargs, ) -> None: # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs self.vocab_file = vocab_file self.monolingual_vocab_file = monolingual_vocab_file self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(vocab_file)) # Load the reduced vocab # Keep order of special tokens for backward compatibility self.fairseq_tokens_to_ids = {} cnt = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(token) not in self.fairseq_tokens_to_ids: self.fairseq_tokens_to_ids[str(token)] = cnt cnt += 1 with open(monolingual_vocab_file, "r", encoding="utf-8") as f: for line in f.readlines(): token = line.strip().split()[0] self.fairseq_tokens_to_ids[token] = len(self.fairseq_tokens_to_ids) if str(mask_token) not in self.fairseq_tokens_to_ids: self.fairseq_tokens_to_ids[str(mask_token)] = len(self.fairseq_tokens_to_ids) self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()} super().__init__( bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, sp_model_kwargs=self.sp_model_kwargs, **kwargs, ) def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None state["sp_model_proto"] = self.sp_model.serialized_model_proto() return state def __setstate__(self, d): self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An BARTPho sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s></s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. BARTPho does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] @property def vocab_size(self): return len(self.fairseq_ids_to_tokens) def get_vocab(self): vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _tokenize(self, text: str) -> List[str]: return self.sp_model.encode(text, out_type=str) def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.fairseq_ids_to_tokens[index] def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (strings for sub-words) in a single string.""" out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip() return out_string def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) out_monolingual_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["monolingual_vocab_file"], ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) if os.path.abspath(self.monolingual_vocab_file) != os.path.abspath( out_monolingual_vocab_file ) and os.path.isfile(self.monolingual_vocab_file): copyfile(self.monolingual_vocab_file, out_monolingual_vocab_file) elif not os.path.isfile(self.monolingual_vocab_file): with open(out_monolingual_vocab_file, "w", encoding="utf-8") as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f"{str(token)} \n") return out_vocab_file, out_monolingual_vocab_file
class_definition
1,063
13,522
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bartpho/tokenization_bartpho.py
null
9,042
class MraConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MraModel`]. It is used to instantiate an MRA model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Mra [uw-madison/mra-base-512-4](https://huggingface.co/uw-madison/mra-base-512-4) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50265): Vocabulary size of the Mra model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`MraModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimension of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 1): The vocabulary size of the `token_type_ids` passed when calling [`MraModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon used by the layer normalization layers. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. block_per_row (`int`, *optional*, defaults to 4): Used to set the budget for the high resolution scale. approx_mode (`str`, *optional*, defaults to `"full"`): Controls whether both low and high resolution approximations are used. Set to `"full"` for both low and high resolution and `"sparse"` for only low resolution. initial_prior_first_n_blocks (`int`, *optional*, defaults to 0): The initial number of blocks for which high resolution is used. initial_prior_diagonal_n_blocks (`int`, *optional*, defaults to 0): The number of diagonal blocks for which high resolution is used. Example: ```python >>> from transformers import MraConfig, MraModel >>> # Initializing a Mra uw-madison/mra-base-512-4 style configuration >>> configuration = MraConfig() >>> # Initializing a model (with random weights) from the uw-madison/mra-base-512-4 style configuration >>> model = MraModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "mra" def __init__( self, vocab_size=50265, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=1, initializer_range=0.02, layer_norm_eps=1e-5, position_embedding_type="absolute", block_per_row=4, approx_mode="full", initial_prior_first_n_blocks=0, initial_prior_diagonal_n_blocks=0, pad_token_id=1, bos_token_id=0, eos_token_id=2, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.type_vocab_size = type_vocab_size self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.block_per_row = block_per_row self.approx_mode = approx_mode self.initial_prior_first_n_blocks = initial_prior_first_n_blocks self.initial_prior_diagonal_n_blocks = initial_prior_diagonal_n_blocks
class_definition
780
6,509
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mra/configuration_mra.py
null
9,043
class MraSampledDenseMatMul(torch.autograd.Function): @staticmethod def forward(ctx, dense_query, dense_key, indices, block_size): sparse_qk_prod = mm_to_sparse(dense_query, dense_key, indices, block_size) ctx.save_for_backward(dense_query, dense_key, indices) ctx.block_size = block_size return sparse_qk_prod @staticmethod def backward(ctx, grad): dense_query, dense_key, indices = ctx.saved_tensors block_size = ctx.block_size query_num_block = dense_query.size(1) // block_size key_num_block = dense_key.size(1) // block_size indices_T = transpose_indices(indices, query_num_block, key_num_block) grad_key = sparse_dense_mm(grad.transpose(-1, -2), indices_T, dense_query, key_num_block) grad_query = sparse_dense_mm(grad, indices, dense_key, query_num_block) return grad_query, grad_key, None, None @staticmethod def operator_call(dense_query, dense_key, indices, block_size=32): return MraSampledDenseMatMul.apply(dense_query, dense_key, indices, block_size)
class_definition
7,228
8,321
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mra/modeling_mra.py
null
9,044
class MraSparseDenseMatMul(torch.autograd.Function): @staticmethod def forward(ctx, sparse_query, indices, dense_key, query_num_block): sparse_qk_prod = sparse_dense_mm(sparse_query, indices, dense_key, query_num_block) ctx.save_for_backward(sparse_query, indices, dense_key) ctx.query_num_block = query_num_block return sparse_qk_prod @staticmethod def backward(ctx, grad): sparse_query, indices, dense_key = ctx.saved_tensors query_num_block = ctx.query_num_block key_num_block = dense_key.size(1) // sparse_query.size(-1) indices_T = transpose_indices(indices, query_num_block, key_num_block) grad_key = sparse_dense_mm(sparse_query.transpose(-1, -2), indices_T, grad, key_num_block) grad_query = mm_to_sparse(grad, dense_key, indices) return grad_query, None, grad_key, None @staticmethod def operator_call(sparse_query, indices, dense_key, query_num_block): return MraSparseDenseMatMul.apply(sparse_query, indices, dense_key, query_num_block)
class_definition
8,324
9,393
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mra/modeling_mra.py
null
9,045
class MraReduceSum: @staticmethod def operator_call(sparse_query, indices, query_num_block, key_num_block): batch_size, num_block, block_size, _ = sparse_query.size() if len(sparse_query.size()) != 4: raise ValueError("sparse_query must be a 4-dimensional tensor.") if len(indices.size()) != 2: raise ValueError("indices must be a 2-dimensional tensor.") _, _, block_size, _ = sparse_query.size() batch_size, num_block = indices.size() sparse_query = sparse_query.sum(dim=2).reshape(batch_size * num_block, block_size) batch_idx = torch.arange(indices.size(0), dtype=torch.long, device=indices.device) global_idxes = ( torch.div(indices, key_num_block, rounding_mode="floor").long() + batch_idx[:, None] * query_num_block ).reshape(batch_size * num_block) temp = torch.zeros( (batch_size * query_num_block, block_size), dtype=sparse_query.dtype, device=sparse_query.device ) output = temp.index_add(0, global_idxes, sparse_query).reshape(batch_size, query_num_block, block_size) output = output.reshape(batch_size, query_num_block * block_size) return output
class_definition
9,396
10,628
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mra/modeling_mra.py
null
9,046
class MraEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings + 2, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)) + 2) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device), persistent=False, ) def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, :seq_length] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings
class_definition
18,536
21,461
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mra/modeling_mra.py
null
9,047
class MraSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) kernel_loaded = mra_cuda_kernel is not None if is_torch_cuda_available() and is_ninja_available() and not kernel_loaded: try: load_cuda_kernels() except Exception as e: logger.warning(f"Could not load the custom kernel for multi-scale deformable attention: {e}") self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = ( position_embedding_type if position_embedding_type is not None else config.position_embedding_type ) self.num_block = (config.max_position_embeddings // 32) * config.block_per_row self.num_block = min(self.num_block, int((config.max_position_embeddings // 32) ** 2)) self.approx_mode = config.approx_mode self.initial_prior_first_n_blocks = config.initial_prior_first_n_blocks self.initial_prior_diagonal_n_blocks = config.initial_prior_diagonal_n_blocks def transpose_for_scores(self, layer): new_layer_shape = layer.size()[:-1] + (self.num_attention_heads, self.attention_head_size) layer = layer.view(*new_layer_shape) return layer.permute(0, 2, 1, 3) def forward(self, hidden_states, attention_mask=None): mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) batch_size, num_heads, seq_len, head_dim = query_layer.size() # revert changes made by get_extended_attention_mask attention_mask = 1.0 + attention_mask / 10000.0 attention_mask = ( attention_mask.squeeze().repeat(1, num_heads, 1).reshape(batch_size * num_heads, seq_len).int() ) # The CUDA kernels are most efficient with inputs whose size is a multiple of a GPU's warp size (32). Inputs # smaller than this are padded with zeros. gpu_warp_size = 32 if head_dim < gpu_warp_size: pad_size = batch_size, num_heads, seq_len, gpu_warp_size - head_dim query_layer = torch.cat([query_layer, torch.zeros(pad_size, device=query_layer.device)], dim=-1) key_layer = torch.cat([key_layer, torch.zeros(pad_size, device=key_layer.device)], dim=-1) value_layer = torch.cat([value_layer, torch.zeros(pad_size, device=value_layer.device)], dim=-1) context_layer = mra2_attention( query_layer.float(), key_layer.float(), value_layer.float(), attention_mask.float(), self.num_block, approx_mode=self.approx_mode, initial_prior_first_n_blocks=self.initial_prior_first_n_blocks, initial_prior_diagonal_n_blocks=self.initial_prior_diagonal_n_blocks, ) if head_dim < gpu_warp_size: context_layer = context_layer[:, :, :, :head_dim] context_layer = context_layer.reshape(batch_size, num_heads, seq_len, head_dim) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer,) return outputs
class_definition
21,464
25,721
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mra/modeling_mra.py
null
9,048
class MraSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states
class_definition
25,792
26,397
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mra/modeling_mra.py
null
9,049
class MraAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() self.self = MraSelfAttention(config, position_embedding_type=position_embedding_type) self.output = MraSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward(self, hidden_states, attention_mask=None): self_outputs = self.self(hidden_states, attention_mask) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs
class_definition
26,400
27,856
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mra/modeling_mra.py
null
9,050
class MraIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states
class_definition
27,929
28,493
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mra/modeling_mra.py
null
9,051
class MraOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states
class_definition
28,560
29,167
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mra/modeling_mra.py
null
9,052
class MraLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = MraAttention(config) self.add_cross_attention = config.add_cross_attention self.intermediate = MraIntermediate(config) self.output = MraOutput(config) def forward(self, hidden_states, attention_mask=None): self_attention_outputs = self.attention(hidden_states, attention_mask) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output
class_definition
29,170
30,298
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mra/modeling_mra.py
null
9,053
class MraEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([MraLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, head_mask=None, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, ) else: layer_outputs = layer_module(hidden_states, attention_mask) hidden_states = layer_outputs[0] if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) return BaseModelOutputWithCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, )
class_definition
30,301
31,738
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mra/modeling_mra.py
null
9,054
class MraPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states
class_definition
31,822
32,521
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mra/modeling_mra.py
null
9,055
class MraLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = MraPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def _tie_weights(self): self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states
class_definition
32,613
33,443
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mra/modeling_mra.py
null
9,056
class MraOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = MraLMPredictionHead(config) def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: prediction_scores = self.predictions(sequence_output) return prediction_scores
class_definition
33,530
33,842
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mra/modeling_mra.py
null
9,057
class MraPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MraConfig base_model_prefix = "mra" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0)
class_definition
33,943
35,044
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mra/modeling_mra.py
null
9,058
class MraModel(MraPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.embeddings = MraEmbeddings(config) self.encoder = MraEncoder(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(MRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithCrossAttentions]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length)), device=device) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] if not return_dict: return (sequence_output,) + encoder_outputs[1:] return BaseModelOutputWithCrossAttentions( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, )
class_definition
38,255
42,939
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mra/modeling_mra.py
null
9,059
class MraForMaskedLM(MraPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] def __init__(self, config): super().__init__(config) self.mra = MraModel(config) self.cls = MraOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings self.cls.predictions.bias = new_embeddings.bias @add_start_docstrings_to_model_forward(MRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mra( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
43,042
46,031
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mra/modeling_mra.py
null
9,060
class MraClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) self.config = config def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = ACT2FN[self.config.hidden_act](x) x = self.dropout(x) x = self.out_proj(x) return x
class_definition
46,125
46,800
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mra/modeling_mra.py
null
9,061
class MraForSequenceClassification(MraPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.mra = MraModel(config) self.classifier = MraClassificationHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mra( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
47,010
50,579
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mra/modeling_mra.py
null
9,062
class MraForMultipleChoice(MraPreTrainedModel): def __init__(self, config): super().__init__(config) self.mra = MraModel(config) self.pre_classifier = nn.Linear(config.hidden_size, config.hidden_size) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MRA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.mra( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_state = outputs[0] # (bs * num_choices, seq_len, dim) pooled_output = hidden_state[:, 0] # (bs * num_choices, dim) pooled_output = self.pre_classifier(pooled_output) # (bs * num_choices, dim) pooled_output = nn.ReLU()(pooled_output) # (bs * num_choices, dim) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
50,798
54,400
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mra/modeling_mra.py
null
9,063
class MraForTokenClassification(MraPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.mra = MraModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mra( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() # Only keep active parts of the loss if attention_mask is not None: active_loss = attention_mask.view(-1) == 1 active_logits = logits.view(-1, self.num_labels) active_labels = torch.where( active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels) ) loss = loss_fct(active_logits, active_labels) else: loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
54,617
57,636
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mra/modeling_mra.py
null
9,064
class MraForQuestionAnswering(MraPreTrainedModel): def __init__(self, config): super().__init__(config) config.num_labels = 2 self.num_labels = config.num_labels self.mra = MraModel(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mra( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[1:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
57,911
61,974
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mra/modeling_mra.py
null
9,065
class LlavaCausalLMOutputWithPast(ModelOutput): """ Base class for Llava causal language model (or autoregressive) outputs. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss (for next-token prediction). logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. image_hidden_states (`torch.FloatTensor`, *optional*): A `torch.FloatTensor` of size (batch_size, num_images, sequence_length, hidden_size)`. image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None past_key_values: Optional[List[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None image_hidden_states: Optional[torch.FloatTensor] = None
class_definition
1,355
3,941
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/llava/modeling_llava.py
null
9,066
class LlavaMultiModalProjector(nn.Module): def __init__(self, config: LlavaConfig): super().__init__() self.linear_1 = nn.Linear( config.vision_config.hidden_size, config.text_config.hidden_size, bias=config.multimodal_projector_bias ) self.act = ACT2FN[config.projector_hidden_act] self.linear_2 = nn.Linear( config.text_config.hidden_size, config.text_config.hidden_size, bias=config.multimodal_projector_bias ) def forward(self, image_features): hidden_states = self.linear_1(image_features) hidden_states = self.act(hidden_states) hidden_states = self.linear_2(hidden_states) return hidden_states
class_definition
3,944
4,657
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/llava/modeling_llava.py
null
9,067
class LlavaPreTrainedModel(PreTrainedModel): config_class = LlavaConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["LlavaVisionAttention"] _skip_keys_device_placement = "past_key_values" _supports_cache_class = True _supports_flash_attn_2 = True _supports_sdpa = True def _init_weights(self, module): # important: this ported version of Llava isn't meant for training from scratch - only # inference and fine-tuning - so the proper init weights code has been removed - the original codebase # https://github.com/haotian-liu/LLaVA/tree/main/llava should serve for that purpose std = ( self.config.initializer_range if hasattr(self.config, "initializer_range") else self.config.text_config.initializer_range ) if hasattr(module, "class_embedding"): module.class_embedding.data.normal_(mean=0.0, std=std) if isinstance(module, (nn.Linear, nn.Conv2d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_()
class_definition
5,704
7,094
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/llava/modeling_llava.py
null
9,068
class LlavaForConditionalGeneration(LlavaPreTrainedModel, GenerationMixin): def __init__(self, config: LlavaConfig): super().__init__(config) self.vision_tower = AutoModel.from_config(config.vision_config) self.multi_modal_projector = LlavaMultiModalProjector(config) self.vocab_size = config.text_config.vocab_size self.language_model = AutoModelForCausalLM.from_config(config.text_config) if self.language_model._tied_weights_keys is not None: self._tied_weights_keys = [f"language_model.{k}" for k in self.language_model._tied_weights_keys] self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1 self.post_init() def get_input_embeddings(self): return self.language_model.get_input_embeddings() def set_input_embeddings(self, value): self.language_model.set_input_embeddings(value) def get_output_embeddings(self): return self.language_model.get_output_embeddings() def set_output_embeddings(self, new_embeddings): self.language_model.set_output_embeddings(new_embeddings) def set_decoder(self, decoder): self.language_model.set_decoder(decoder) def get_decoder(self): return self.language_model.get_decoder() def get_image_features( self, pixel_values: torch.FloatTensor, vision_feature_layer: int, vision_feature_select_strategy: str ): """ Obtains image last hidden states from the vision tower and apply multimodal projection. Args: pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`) The tensors corresponding to the input images. vision_feature_layer (`int`): The index of the layer to select the vision feature. vision_feature_select_strategy (`str`): The feature selection strategy used to select the vision feature from the vision backbone. Can be one of `"default"` or `"full"` Returns: image_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`). """ image_outputs = self.vision_tower(pixel_values, output_hidden_states=True) # this is not memory efficient at all (output_hidden_states=True) will save all the hidden stated. selected_image_feature = image_outputs.hidden_states[vision_feature_layer] if vision_feature_select_strategy == "default": selected_image_feature = selected_image_feature[:, 1:] elif vision_feature_select_strategy == "full": selected_image_feature = selected_image_feature else: raise ValueError(f"Unexpected select feature strategy: {self.config.vision_feature_select_strategy}") image_features = self.multi_modal_projector(selected_image_feature) return image_features def _merge_input_ids_with_image_features(self, image_features, inputs_embeds, input_ids, attention_mask, labels): num_images, num_image_patches, embed_dim = image_features.shape batch_size, sequence_length = input_ids.shape left_padding = not torch.sum(input_ids[:, -1] == torch.tensor(self.pad_token_id)) # 1. Create a mask to know where special image tokens are special_image_token_mask = input_ids == self.config.image_token_index num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1) # Compute the maximum embed dimension max_embed_dim = (num_special_image_tokens.max() * (num_image_patches - 1)) + sequence_length batch_indices, non_image_indices = torch.where(input_ids != self.config.image_token_index) # 2. Compute the positions where text should be written # Calculate new positions for text tokens in merged image-text sequence. # `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images - 1` text tokens. # `torch.cumsum` computes how each image token shifts subsequent text token positions. # - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one. new_token_positions = torch.cumsum((special_image_token_mask * (num_image_patches - 1) + 1), -1) - 1 nb_image_pad = max_embed_dim - 1 - new_token_positions[:, -1] if left_padding: new_token_positions += nb_image_pad[:, None] # offset for left padding text_to_overwrite = new_token_positions[batch_indices, non_image_indices] # 3. Create the full embedding, already padded to the maximum position final_embedding = torch.zeros( batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device ) final_attention_mask = torch.zeros( batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device ) if labels is not None: final_labels = torch.full( (batch_size, max_embed_dim), self.config.ignore_index, dtype=input_ids.dtype, device=input_ids.device ) # In case the Vision model or the Language model has been offloaded to CPU, we need to manually # set the corresponding tensors into their correct target device. target_device = inputs_embeds.device batch_indices, non_image_indices, text_to_overwrite = ( batch_indices.to(target_device), non_image_indices.to(target_device), text_to_overwrite.to(target_device), ) attention_mask = attention_mask.to(target_device) # 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"] # we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices] final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices] if labels is not None: final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices] # 5. Fill the embeddings corresponding to the images. Anything that is not `text_positions` needs filling (#29835) image_to_overwrite = torch.full( (batch_size, max_embed_dim), True, dtype=torch.bool, device=inputs_embeds.device ) image_to_overwrite[batch_indices, text_to_overwrite] = False if left_padding: image_to_overwrite &= image_to_overwrite.cumsum(-1) - 1 >= nb_image_pad[:, None].to(target_device) else: mask = torch.ones_like(image_to_overwrite, dtype=torch.bool).cumsum(-1) - 1 padding_mask = mask <= new_token_positions[:, -1:].to(target_device) image_to_overwrite &= padding_mask if image_to_overwrite.sum() != image_features.shape[:-1].numel(): raise ValueError( f"The input provided to the model are wrong. The number of image tokens is {torch.sum(special_image_token_mask)} while" f" the number of image given to the model is {num_images}. This prevents correct indexing and breaks batch generation." ) final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device) final_attention_mask |= image_to_overwrite position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1) # 6. Mask out the embedding at padding positions, as we later use the past_key_value value to determine the non-attended tokens. batch_indices, pad_indices = torch.where(input_ids == self.pad_token_id) indices_to_mask = new_token_positions[batch_indices, pad_indices] final_embedding[batch_indices, indices_to_mask] = 0 if labels is None: final_labels = None return final_embedding, final_attention_mask, final_labels, position_ids @add_start_docstrings_to_model_forward(LLAVA_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=LlavaCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, pixel_values: torch.FloatTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, vision_feature_layer: Optional[int] = None, vision_feature_select_strategy: Optional[str] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, num_logits_to_keep: int = 0, ) -> Union[Tuple, LlavaCausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. num_logits_to_keep (`int`, *optional*): Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences or large vocabulary size. Returns: Example: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, LlavaForConditionalGeneration >>> model = LlavaForConditionalGeneration.from_pretrained("llava-hf/llava-1.5-7b-hf") >>> processor = AutoProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf") >>> prompt = "USER: <image>\nWhat's the content of the image? ASSISTANT:" >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, text=prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(**inputs, max_new_tokens=15) >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "USER: \nWhat's the content of the image? ASSISTANT: The image features a busy city street with a stop sign prominently displayed" ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_feature_layer = ( vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer ) vision_feature_select_strategy = ( vision_feature_select_strategy if vision_feature_select_strategy is not None else self.config.vision_feature_select_strategy ) if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if pixel_values is not None and inputs_embeds is not None: raise ValueError( "You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one" ) if inputs_embeds is None: inputs_embeds = self.get_input_embeddings()(input_ids) if pixel_values is not None: image_features = self.get_image_features( pixel_values=pixel_values, vision_feature_layer=vision_feature_layer, vision_feature_select_strategy=vision_feature_select_strategy, ) n_image_tokens = (input_ids == self.config.image_token_index).sum().item() n_image_features = image_features.shape[0] * image_features.shape[1] if n_image_tokens != n_image_features: raise ValueError( f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}" ) special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1) special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device) image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype) inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features) outputs = self.language_model( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, num_logits_to_keep=num_logits_to_keep, ) logits = outputs[0] loss = None if labels is not None: # Shift so that tokens < n predict n if attention_mask is not None: # we use the input attention mask to shift the logits and labels, because it is 2D. # we also crop attn mask in case it is longer, which happens in PrefixTuning with peft shift_attention_mask = attention_mask[:, -(logits.shape[1] - 1) :].to(logits.device) shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous() shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous() else: shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = nn.CrossEntropyLoss() loss = loss_fct( shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device) ) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return LlavaCausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, image_hidden_states=image_features if pixel_values is not None else None, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, inputs_embeds=None, pixel_values=None, attention_mask=None, cache_position=None, num_logits_to_keep=None, **kwargs, ): # Overwritten -- in specific circumstances we don't want to forward image inputs to the model model_inputs = self.language_model.prepare_inputs_for_generation( input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, attention_mask=attention_mask, cache_position=cache_position, num_logits_to_keep=num_logits_to_keep, **kwargs, ) if cache_position[0] == 0: # If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore # Otherwise we need pixel values to be passed to model model_inputs["pixel_values"] = pixel_values return model_inputs
class_definition
12,287
28,693
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/llava/modeling_llava.py
null
9,069
class LlavaProcessorKwargs(ProcessingKwargs, total=False): _defaults = { "text_kwargs": { "padding": False, }, "images_kwargs": {}, }
class_definition
1,043
1,220
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/llava/processing_llava.py
null
9,070
class LlavaProcessor(ProcessorMixin): r""" Constructs a Llava processor which wraps a Llava image processor and a Llava tokenizer into a single processor. [`LlavaProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`LlamaTokenizerFast`]. See the [`~LlavaProcessor.__call__`] and [`~LlavaProcessor.decode`] for more information. Args: image_processor ([`CLIPImageProcessor`], *optional*): The image processor is a required input. tokenizer ([`LlamaTokenizerFast`], *optional*): The tokenizer is a required input. patch_size (`int`, *optional*): Patch size from the vision tower. vision_feature_select_strategy (`str`, *optional*): The feature selection strategy used to select the vision feature from the vision backbone. Shoudl be same as in model's config chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages in a chat into a tokenizable string. image_token (`str`, *optional*, defaults to `"<image>"`): Special token used to denote image location. num_additional_image_tokens (`int`, *optional*, defaults to 0): Number of additional tokens added to the image embeddings, such as CLS (+1). If the backbone has no CLS or other extra tokens appended, no need to set this arg. """ attributes = ["image_processor", "tokenizer"] valid_kwargs = [ "chat_template", "patch_size", "vision_feature_select_strategy", "image_token", "num_additional_image_tokens", ] image_processor_class = "AutoImageProcessor" tokenizer_class = "AutoTokenizer" def __init__( self, image_processor=None, tokenizer=None, patch_size=None, vision_feature_select_strategy=None, chat_template=None, image_token="<image>", # set the default and let users change if they have peculiar special tokens in rare cases num_additional_image_tokens=0, **kwargs, ): self.patch_size = patch_size self.num_additional_image_tokens = num_additional_image_tokens self.vision_feature_select_strategy = vision_feature_select_strategy self.image_token = tokenizer.image_token if hasattr(tokenizer, "image_token") else image_token super().__init__(image_processor, tokenizer, chat_template=chat_template) def __call__( self, images: ImageInput = None, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, audio=None, videos=None, **kwargs: Unpack[LlavaProcessorKwargs], ) -> BatchFeature: """ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring of the above two methods for more information. Args: images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. Both channels-first and channels-last formats are supported. text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. """ if images is None and text is None: raise ValueError("You have to specify at least one of `images` or `text`.") # check if images and text inputs are reversed for BC images, text = _validate_images_text_input_order(images, text) output_kwargs = self._merge_kwargs( LlavaProcessorKwargs, tokenizer_init_kwargs=self.tokenizer.init_kwargs, **kwargs, ) if images is not None: image_inputs = self.image_processor(images, **output_kwargs["images_kwargs"]) else: image_inputs = {} if isinstance(text, str): text = [text] elif not isinstance(text, list) and not isinstance(text[0], str): raise ValueError("Invalid input text. Please provide a string, or a list of strings") # try to expand inputs in processing if we have the necessary parts prompt_strings = text if image_inputs.get("pixel_values") is not None: # Replace the image token with the expanded image token sequence pixel_values = image_inputs["pixel_values"] height, width = get_image_size(to_numpy_array(pixel_values[0])) num_image_tokens = (height // self.patch_size) * ( width // self.patch_size ) + self.num_additional_image_tokens if self.vision_feature_select_strategy == "default": num_image_tokens -= 1 prompt_strings = [] for sample in text: sample = sample.replace(self.image_token, self.image_token * num_image_tokens) prompt_strings.append(sample) text_inputs = self.tokenizer(prompt_strings, **output_kwargs["text_kwargs"]) return BatchFeature(data={**text_inputs, **image_inputs}) # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama def decode(self, *args, **kwargs): """ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
class_definition
1,223
9,271
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/llava/processing_llava.py
null
9,071
class LlavaConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`LlavaForConditionalGeneration`]. It is used to instantiate an Llava model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Llava-9B. e.g. [llava-hf/llava-9b](https://huggingface.co/llava-hf/llava-9b) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vision_config (`Union[AutoConfig, dict]`, *optional*, defaults to `CLIPVisionConfig`): The config object or dictionary of the vision backbone. text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `LlamaConfig`): The config object or dictionary of the text backbone. ignore_index (`int`, *optional*, defaults to -100): The ignore index for the loss function. image_token_index (`int`, *optional*, defaults to 32000): The image token index to encode the image prompt. projector_hidden_act (`str`, *optional*, defaults to `"gelu"`): The activation function used by the multimodal projector. vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`): The feature selection strategy used to select the vision feature from the vision backbone. Can be one of `"default"` or `"full"`. vision_feature_layer (`int`, *optional*, defaults to -2): The index of the layer to select the vision feature. image_seq_length (`int`, *optional*, defaults to 576): Sequence length of one image embedding. multimodal_projector_bias (`bool`, *optional*, defaults to `True`): Whether to use bias in the multimodal projector. Example: ```python >>> from transformers import LlavaForConditionalGeneration, LlavaConfig, CLIPVisionConfig, LlamaConfig >>> # Initializing a CLIP-vision config >>> vision_config = CLIPVisionConfig() >>> # Initializing a Llama config >>> text_config = LlamaConfig() >>> # Initializing a Llava llava-1.5-7b style configuration >>> configuration = LlavaConfig(vision_config, text_config) >>> # Initializing a model from the llava-1.5-7b style configuration >>> model = LlavaForConditionalGeneration(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "llava" sub_configs = {"text_config": AutoConfig, "vision_config": AutoConfig} def __init__( self, vision_config=None, text_config=None, ignore_index=-100, image_token_index=32000, projector_hidden_act="gelu", vision_feature_select_strategy="default", vision_feature_layer=-2, image_seq_length=576, multimodal_projector_bias=True, **kwargs, ): self.ignore_index = ignore_index self.image_token_index = image_token_index self.projector_hidden_act = projector_hidden_act self.image_seq_length = image_seq_length if vision_feature_select_strategy not in ["default", "full"]: raise ValueError( "vision_feature_select_strategy should be one of 'default', 'full'." f"Got: {vision_feature_select_strategy}" ) self.vision_feature_select_strategy = vision_feature_select_strategy self.vision_feature_layer = vision_feature_layer if isinstance(vision_config, dict): vision_config["model_type"] = ( vision_config["model_type"] if "model_type" in vision_config else "clip_vision_model" ) vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config) elif vision_config is None: vision_config = CONFIG_MAPPING["clip_vision_model"]( intermediate_size=4096, hidden_size=1024, patch_size=14, image_size=336, num_hidden_layers=24, num_attention_heads=16, vocab_size=32000, projection_dim=768, ) self.vision_config = vision_config if isinstance(text_config, dict): text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama" text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config) elif text_config is None: text_config = CONFIG_MAPPING["llama"]() self.text_config = text_config self.multimodal_projector_bias = multimodal_projector_bias super().__init__(**kwargs)
class_definition
883
5,758
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/llava/configuration_llava.py
null
9,072
class PerceiverModelOutput(ModelOutput): """ Base class for Perceiver base model's outputs, with potential hidden states, attentions and cross-attentions. Args: logits (`torch.FloatTensor` of shape `(batch_size, num_labels)`): Classification (or regression if config.num_labels==1) scores (before SoftMax). last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads. """ logits: torch.FloatTensor = None last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
class_definition
1,863
4,000
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/perceiver/modeling_perceiver.py
null
9,073
class PerceiverDecoderOutput(ModelOutput): """ Base class for Perceiver decoder outputs, with potential cross-attentions. Args: logits (`torch.FloatTensor` of shape `(batch_size, num_labels)`): Output of the basic decoder. cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads. """ logits: torch.FloatTensor = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
class_definition
4,014
4,847
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/perceiver/modeling_perceiver.py
null
9,074
class PerceiverMaskedLMOutput(ModelOutput): """ Base class for Perceiver's masked language model outputs. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Masked language modeling (MLM) loss. logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, num_latents, num_latents)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
class_definition
4,861
6,943
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/perceiver/modeling_perceiver.py
null
9,075
class PerceiverClassifierOutput(ModelOutput): """ Base class for Perceiver's outputs of sequence/image classification models, optical flow and multimodal autoencoding. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Classification (or regression if config.num_labels==1) loss. logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): Classification (or regression if config.num_labels==1) scores (before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
class_definition
6,957
9,101
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/perceiver/modeling_perceiver.py
null
9,076
class PerceiverEmbeddings(nn.Module): """Construct the latent embeddings.""" def __init__(self, config): super().__init__() self.latents = nn.Parameter(torch.randn(config.num_latents, config.d_latents)) def forward(self, batch_size: int): return self.latents.expand(batch_size, -1, -1) # Thanks, Phil Wang
class_definition
9,104
9,448
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/perceiver/modeling_perceiver.py
null
9,077
class PerceiverSelfAttention(nn.Module): """Multi-headed {cross, self}-attention. Can be used both in the encoder as well as in the decoder.""" def __init__( self, config, is_cross_attention=False, qk_channels=None, v_channels=None, num_heads=1, q_dim=None, kv_dim=None, ): super().__init__() self.num_heads = num_heads # Q and K must have the same number of channels. # Default to preserving Q's input's shape. if qk_channels is None: qk_channels = q_dim # V's num_channels determines the shape of the output of QKV-attention. # Default to the same number of channels used in the key-query operation. if v_channels is None: v_channels = qk_channels if qk_channels % num_heads != 0: raise ValueError(f"qk_channels ({qk_channels}) must be divisible by num_heads ({num_heads}).") if v_channels % num_heads != 0: raise ValueError(f"v_channels ({v_channels}) must be divisible by num_heads ({num_heads}).") self.qk_channels = qk_channels self.v_channels = v_channels self.qk_channels_per_head = self.qk_channels // num_heads self.v_channels_per_head = self.v_channels // num_heads # Layer normalization self.layernorm1 = nn.LayerNorm(q_dim) self.layernorm2 = nn.LayerNorm(kv_dim) if is_cross_attention else nn.Identity() # Projection matrices self.query = nn.Linear(q_dim, qk_channels) self.key = nn.Linear(kv_dim, qk_channels) self.value = nn.Linear(kv_dim, v_channels) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x, channels_per_head): new_x_shape = x.size()[:-1] + (self.num_heads, channels_per_head) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs: Optional[torch.FloatTensor] = None, inputs_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: hidden_states = self.layernorm1(hidden_states) inputs = self.layernorm2(inputs) # Project queries, keys and values to a common feature dimension. If this is instantiated as a cross-attention module, # the keys and values come from the inputs; the attention mask needs to be such that the inputs's non-relevant tokens are not attended to. is_cross_attention = inputs is not None queries = self.query(hidden_states) if is_cross_attention: keys = self.key(inputs) values = self.value(inputs) attention_mask = inputs_mask else: keys = self.key(hidden_states) values = self.value(hidden_states) # Reshape channels for multi-head attention. # We reshape from (batch_size, time, channels) to (batch_size, num_heads, time, channels per head) queries = self.transpose_for_scores(queries, self.qk_channels_per_head) keys = self.transpose_for_scores(keys, self.qk_channels_per_head) values = self.transpose_for_scores(values, self.v_channels_per_head) # Take the dot product between the queries and keys to get the raw attention scores. attention_scores = torch.matmul(queries, keys.transpose(-1, -2)) batch_size, num_heads, seq_len, q_head_dim = queries.shape _, _, _, v_head_dim = values.shape hiddens = self.num_heads * v_head_dim attention_scores = attention_scores / math.sqrt(q_head_dim) if attention_mask is not None: # Apply the attention mask (precomputed for all layers in PerceiverModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, values) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (hiddens,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs
class_definition
9,451
14,337
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/perceiver/modeling_perceiver.py
null
9,078
class PerceiverSelfOutput(nn.Module): def __init__(self, config, input_channels, output_channels): super().__init__() self.dense = nn.Linear(input_channels, output_channels) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) return hidden_states
class_definition
14,340
14,681
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/perceiver/modeling_perceiver.py
null
9,079
class PerceiverAttention(nn.Module): """Attention module, including a dense block.""" def __init__( self, config, is_cross_attention=False, qk_channels=None, v_channels=None, num_heads=1, q_dim=None, kv_dim=None, use_query_residual=True, ): super().__init__() # MultiHead attention if is_cross_attention and qk_channels is None: if config.cross_attention_shape_for_attention == "q": qk_channels = q_dim elif config.cross_attention_shape_for_attention == "kv": qk_channels = kv_dim else: raise ValueError( f"Unknown value {config.cross_attention_shape_for_attention} for " "cross_attention_shape_for_attention." ) else: if qk_channels is None: qk_channels = q_dim if v_channels is None: v_channels = qk_channels self.self = PerceiverSelfAttention( config, is_cross_attention=is_cross_attention, qk_channels=qk_channels, v_channels=v_channels, num_heads=num_heads, q_dim=q_dim, kv_dim=kv_dim, ) # dense block output_channels = None if is_cross_attention: output_channels = q_dim else: if output_channels is None: output_channels = v_channels self.output = PerceiverSelfOutput(config, input_channels=self.self.v_channels, output_channels=output_channels) self.use_query_residual = use_query_residual self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs: Optional[torch.FloatTensor] = None, inputs_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self( hidden_states, attention_mask, head_mask, inputs, inputs_mask, output_attentions, ) # Output projection attention_output = self.output(self_outputs[0]) # Optionally include a residual to the original queries. # Consider omitting the residual if the semantics of query and output # are different, e.g. if queries are positions and outputs are pixels. if self.use_query_residual: attention_output = attention_output + hidden_states outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs
class_definition
14,684
18,366
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/perceiver/modeling_perceiver.py
null
9,080
class PerceiverMLP(nn.Module): """A Transformer-style dense module to follow attention.""" def __init__(self, config, input_size, widening_factor): super().__init__() self.dense1 = nn.Linear(input_size, widening_factor * input_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act self.dense2 = nn.Linear(widening_factor * input_size, input_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense1(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.dense2(hidden_states) return hidden_states
class_definition
18,369
19,147
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/perceiver/modeling_perceiver.py
null
9,081
class PerceiverLayer(nn.Module): def __init__( self, config, is_cross_attention=False, qk_channels=None, v_channels=None, num_heads=1, q_dim=None, kv_dim=None, widening_factor=4, use_query_residual=True, ): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = PerceiverAttention( config, is_cross_attention=is_cross_attention, qk_channels=qk_channels, v_channels=v_channels, num_heads=num_heads, q_dim=q_dim, kv_dim=kv_dim, use_query_residual=use_query_residual, ) self.layernorm = nn.LayerNorm(q_dim) self.mlp = PerceiverMLP(config, input_size=q_dim, widening_factor=widening_factor) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs: Optional[torch.FloatTensor] = None, inputs_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: attention_outputs = self.attention( hidden_states, attention_mask, head_mask, inputs, inputs_mask, output_attentions, ) attention_output = attention_outputs[0] outputs = attention_outputs[1:] # add attentions if we output attention weights layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) layer_output = layer_output + attention_output # residual connection outputs = (layer_output,) + outputs return outputs def feed_forward_chunk(self, attention_output): layer_output = self.layernorm(attention_output) layer_output = self.mlp(layer_output) return layer_output
class_definition
19,150
21,254
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/perceiver/modeling_perceiver.py
null
9,082
class PerceiverEncoder(nn.Module): """The Perceiver Encoder: a scalable, fully attentional encoder.""" def __init__(self, config, kv_dim=None): super().__init__() self.config = config # Check that we can use multihead-attention with these shapes. if config.d_latents % config.num_self_attention_heads != 0: raise ValueError( f"num_z_channels ({config.d_latents}) must be divisible by" f" num_self_attend_heads ({config.num_self_attention_heads})." ) if config.d_latents % config.num_cross_attention_heads != 0: raise ValueError( f"num_z_channels ({config.d_latents}) must be divisible by" f" num_cross_attend_heads ({config.num_cross_attention_heads})." ) # Construct the cross attention layer. self.cross_attention = PerceiverLayer( config, is_cross_attention=True, qk_channels=config.qk_channels, v_channels=config.v_channels, num_heads=config.num_cross_attention_heads, q_dim=config.d_latents, kv_dim=kv_dim, widening_factor=config.cross_attention_widening_factor, use_query_residual=config.use_query_residual, ) # Construct a single block of self-attention layers. # We get deeper architectures by applying this block more than once. self_attention_layers = [] for _ in range(config.num_self_attends_per_block): layer = PerceiverLayer( config, is_cross_attention=False, qk_channels=config.qk_channels, v_channels=config.v_channels, num_heads=config.num_self_attention_heads, q_dim=config.d_latents, kv_dim=config.d_latents, widening_factor=config.self_attention_widening_factor, ) self_attention_layers.append(layer) self.self_attends = nn.ModuleList(self_attention_layers) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs: Optional[torch.FloatTensor] = None, inputs_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple, BaseModelOutputWithCrossAttentions]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions else None # Apply the cross-attention between the latents (hidden_states) and inputs: layer_outputs = self.cross_attention( hidden_states, attention_mask=attention_mask, head_mask=None, inputs=inputs, inputs_mask=inputs_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_cross_attentions = all_cross_attentions + (layer_outputs[1],) # Apply the block of self-attention layers more than once: for _ in range(self.config.num_blocks): for i, layer_module in enumerate(self.self_attends): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None layer_outputs = layer_module( hidden_states, attention_mask=attention_mask, head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [hidden_states, all_hidden_states, all_self_attentions, all_cross_attentions] if v is not None ) return BaseModelOutputWithCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, )
class_definition
21,257
25,921
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/perceiver/modeling_perceiver.py
null
9,083
class PerceiverPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = PerceiverConfig base_model_prefix = "perceiver" main_input_name = "inputs" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif hasattr(module, "latents"): module.latents.data.normal_(mean=0.0, std=self.config.initializer_range) elif hasattr(module, "position_embeddings") and isinstance(module, PerceiverTrainablePositionEncoding): module.position_embeddings.data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, nn.ParameterDict): for modality in module.keys(): module[modality].data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0)
class_definition
25,924
27,564
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/perceiver/modeling_perceiver.py
null
9,084
class PerceiverModel(PerceiverPreTrainedModel): def __init__( self, config, decoder=None, input_preprocessor: PreprocessorType = None, output_postprocessor: PostprocessorType = None, ): super().__init__(config) self.config = config self.input_preprocessor = input_preprocessor self.output_postprocessor = output_postprocessor self.embeddings = PerceiverEmbeddings(config) self.encoder = PerceiverEncoder( config, kv_dim=input_preprocessor.num_channels if input_preprocessor is not None else config.d_model ) self.decoder = decoder # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.latents def set_input_embeddings(self, value): self.embeddings.latents = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")) @replace_return_docstrings(output_type=PerceiverModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, inputs: torch.FloatTensor, attention_mask: Optional[torch.FloatTensor] = None, subsampled_output_points: Optional[Dict[str, torch.Tensor]] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: bool = False, return_dict: Optional[bool] = None, ) -> Union[Tuple, PerceiverModelOutput]: r""" Returns: Examples: ```python >>> from transformers import PerceiverConfig, PerceiverTokenizer, PerceiverImageProcessor, PerceiverModel >>> from transformers.models.perceiver.modeling_perceiver import ( ... PerceiverTextPreprocessor, ... PerceiverImagePreprocessor, ... PerceiverClassificationDecoder, ... ) >>> import torch >>> import requests >>> from PIL import Image >>> # EXAMPLE 1: using the Perceiver to classify texts >>> # - we define a TextPreprocessor, which can be used to embed tokens >>> # - we define a ClassificationDecoder, which can be used to decode the >>> # final hidden states of the latents to classification logits >>> # using trainable position embeddings >>> config = PerceiverConfig() >>> preprocessor = PerceiverTextPreprocessor(config) >>> decoder = PerceiverClassificationDecoder( ... config, ... num_channels=config.d_latents, ... trainable_position_encoding_kwargs=dict(num_channels=config.d_latents, index_dims=1), ... use_query_residual=True, ... ) >>> model = PerceiverModel(config, input_preprocessor=preprocessor, decoder=decoder) >>> # you can then do a forward pass as follows: >>> tokenizer = PerceiverTokenizer() >>> text = "hello world" >>> inputs = tokenizer(text, return_tensors="pt").input_ids >>> with torch.no_grad(): ... outputs = model(inputs=inputs) >>> logits = outputs.logits >>> list(logits.shape) [1, 2] >>> # to train, one can train the model using standard cross-entropy: >>> criterion = torch.nn.CrossEntropyLoss() >>> labels = torch.tensor([1]) >>> loss = criterion(logits, labels) >>> # EXAMPLE 2: using the Perceiver to classify images >>> # - we define an ImagePreprocessor, which can be used to embed images >>> config = PerceiverConfig(image_size=224) >>> preprocessor = PerceiverImagePreprocessor( ... config, ... prep_type="conv1x1", ... spatial_downsample=1, ... out_channels=256, ... position_encoding_type="trainable", ... concat_or_add_pos="concat", ... project_pos_dim=256, ... trainable_position_encoding_kwargs=dict( ... num_channels=256, ... index_dims=config.image_size**2, ... ), ... ) >>> model = PerceiverModel( ... config, ... input_preprocessor=preprocessor, ... decoder=PerceiverClassificationDecoder( ... config, ... num_channels=config.d_latents, ... trainable_position_encoding_kwargs=dict(num_channels=config.d_latents, index_dims=1), ... use_query_residual=True, ... ), ... ) >>> # you can then do a forward pass as follows: >>> image_processor = PerceiverImageProcessor() >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = image_processor(image, return_tensors="pt").pixel_values >>> with torch.no_grad(): ... outputs = model(inputs=inputs) >>> logits = outputs.logits >>> list(logits.shape) [1, 2] >>> # to train, one can train the model using standard cross-entropy: >>> criterion = torch.nn.CrossEntropyLoss() >>> labels = torch.tensor([1]) >>> loss = criterion(logits, labels) ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.input_preprocessor is not None: inputs, modality_sizes, inputs_without_pos = self.input_preprocessor( inputs, interpolate_pos_encoding=interpolate_pos_encoding ) else: modality_sizes = None inputs_without_pos = None if inputs.size()[-1] != self.config.d_model: raise ValueError( f"Last dimension of the inputs: {inputs.size()[-1]} doesn't correspond to config.d_model:" f" {self.config.d_model}. Make sure to set config.d_model appropriately." ) batch_size, seq_length, _ = inputs.size() device = inputs.device # If no attention mask is provided, make them all ones if attention_mask is None: attention_mask = torch.ones((batch_size, seq_length), device=device) # Make the attention mask broadcastable to [batch_size, num_heads, seq_length, seq_length] extended_attention_mask = self.invert_attention_mask(attention_mask) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_blocks x num_heads] # and head_mask is converted to shape [num_blocks x batch x num_heads x N x N] head_mask = self.get_head_mask(head_mask, self.config.num_blocks * self.config.num_self_attends_per_block) embedding_output = self.embeddings(batch_size=batch_size) encoder_outputs = self.encoder( embedding_output, attention_mask=None, head_mask=head_mask, inputs=inputs, inputs_mask=extended_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] logits = None if self.decoder: if subsampled_output_points is not None: output_modality_sizes = { "audio": subsampled_output_points["audio"].shape[0], "image": subsampled_output_points["image"].shape[0], "label": 1, } else: output_modality_sizes = modality_sizes decoder_query = self.decoder.decoder_query( inputs, modality_sizes, inputs_without_pos, subsampled_points=subsampled_output_points ) decoder_outputs = self.decoder( decoder_query, z=sequence_output, query_mask=extended_attention_mask, output_attentions=output_attentions, ) logits = decoder_outputs.logits # add cross-attentions of decoder if output_attentions and decoder_outputs.cross_attentions is not None: if return_dict: encoder_outputs.cross_attentions = ( encoder_outputs.cross_attentions + decoder_outputs.cross_attentions ) else: encoder_outputs = encoder_outputs + decoder_outputs.cross_attentions if self.output_postprocessor: logits = self.output_postprocessor(logits, modality_sizes=output_modality_sizes) if not return_dict: if logits is not None: return (logits, sequence_output) + encoder_outputs[1:] else: return (sequence_output,) + encoder_outputs[1:] return PerceiverModelOutput( logits=logits, last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, )
class_definition
32,436
42,407
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/perceiver/modeling_perceiver.py
null
9,085
class PerceiverForMaskedLM(PerceiverPreTrainedModel): def __init__(self, config: PerceiverConfig): super().__init__(config) text_preprocessor = PerceiverTextPreprocessor(config) trainable_position_encoding_kwargs_decoder = { "num_channels": text_preprocessor.num_channels, "index_dims": config.max_position_embeddings, } self.perceiver = PerceiverModel( config, input_preprocessor=text_preprocessor, decoder=PerceiverBasicDecoder( config, output_num_channels=config.d_latents, output_index_dims=config.max_position_embeddings, # we need to define the seq_len of the inputs beforehand num_channels=text_preprocessor.num_channels, qk_channels=8 * 32, v_channels=text_preprocessor.num_channels, num_heads=8, use_query_residual=False, final_project=False, trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_decoder, ), ) self.embedding_decoder = PerceiverEmbeddingDecoder(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=PerceiverMaskedLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, inputs: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, labels: Optional[torch.Tensor] = None, return_dict: Optional[bool] = None, input_ids: Optional[torch.Tensor] = None, ) -> Union[Tuple, PerceiverMaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` Returns: Examples: ```python >>> from transformers import AutoTokenizer, PerceiverForMaskedLM >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("deepmind/language-perceiver") >>> model = PerceiverForMaskedLM.from_pretrained("deepmind/language-perceiver") >>> # training >>> text = "This is an incomplete sentence where some words are missing." >>> inputs = tokenizer(text, padding="max_length", return_tensors="pt") >>> # mask " missing." >>> inputs["input_ids"][0, 52:61] = tokenizer.mask_token_id >>> labels = tokenizer(text, padding="max_length", return_tensors="pt").input_ids >>> outputs = model(**inputs, labels=labels) >>> loss = outputs.loss >>> round(loss.item(), 2) 19.87 >>> logits = outputs.logits >>> list(logits.shape) [1, 2048, 262] >>> # inference >>> text = "This is an incomplete sentence where some words are missing." >>> encoding = tokenizer(text, padding="max_length", return_tensors="pt") >>> # mask bytes corresponding to " missing.". Note that the model performs much better if the masked span starts with a space. >>> encoding["input_ids"][0, 52:61] = tokenizer.mask_token_id >>> # forward pass >>> with torch.no_grad(): ... outputs = model(**encoding) >>> logits = outputs.logits >>> list(logits.shape) [1, 2048, 262] >>> masked_tokens_predictions = logits[0, 52:61].argmax(dim=-1).tolist() >>> tokenizer.decode(masked_tokens_predictions) ' missing.' ```""" if inputs is not None and input_ids is not None: raise ValueError("You cannot use both `inputs` and `input_ids`") elif inputs is None and input_ids is not None: inputs = input_ids return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.perceiver( inputs=inputs, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = self.embedding_decoder( outputs.logits if return_dict else outputs[0], embedding_layer=self.perceiver.input_preprocessor.embeddings ) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return PerceiverMaskedLMOutput( loss=masked_lm_loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, )
class_definition
42,521
48,019
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/perceiver/modeling_perceiver.py
null
9,086
class PerceiverForSequenceClassification(PerceiverPreTrainedModel): def __init__(self, config): super().__init__(config) trainable_position_encoding_kwargs_decoder = {"num_channels": config.d_latents, "index_dims": 1} self.num_labels = config.num_labels self.perceiver = PerceiverModel( config, input_preprocessor=PerceiverTextPreprocessor(config), decoder=PerceiverClassificationDecoder( config, num_channels=config.d_latents, trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_decoder, use_query_residual=True, ), ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, inputs: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, labels: Optional[torch.Tensor] = None, return_dict: Optional[bool] = None, input_ids: Optional[torch.Tensor] = None, ) -> Union[Tuple, PerceiverClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoTokenizer, PerceiverForSequenceClassification >>> tokenizer = AutoTokenizer.from_pretrained("deepmind/language-perceiver") >>> model = PerceiverForSequenceClassification.from_pretrained("deepmind/language-perceiver") >>> text = "hello world" >>> inputs = tokenizer(text, return_tensors="pt").input_ids >>> outputs = model(inputs=inputs) >>> logits = outputs.logits >>> list(logits.shape) [1, 2] ```""" if inputs is not None and input_ids is not None: raise ValueError("You cannot use both `inputs` and `input_ids`") elif inputs is None and input_ids is not None: inputs = input_ids return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.perceiver( inputs=inputs, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = outputs.logits if return_dict else outputs[0] loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return PerceiverClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, )
class_definition
48,128
52,756
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/perceiver/modeling_perceiver.py
null
9,087
class PerceiverForImageClassificationLearned(PerceiverPreTrainedModel): def __init__(self, config): super().__init__(config) trainable_position_encoding_kwargs_preprocessor = {"num_channels": 256, "index_dims": config.image_size**2} trainable_position_encoding_kwargs_decoder = {"num_channels": config.d_latents, "index_dims": 1} self.num_labels = config.num_labels self.perceiver = PerceiverModel( config, input_preprocessor=PerceiverImagePreprocessor( config, prep_type="conv1x1", spatial_downsample=1, out_channels=256, position_encoding_type="trainable", concat_or_add_pos="concat", project_pos_dim=256, trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_preprocessor, ), decoder=PerceiverClassificationDecoder( config, num_channels=config.d_latents, trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_decoder, use_query_residual=True, ), ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, inputs: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, labels: Optional[torch.Tensor] = None, interpolate_pos_encoding: bool = False, return_dict: Optional[bool] = None, pixel_values: Optional[torch.Tensor] = None, ) -> Union[Tuple, PerceiverClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, PerceiverForImageClassificationLearned >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("deepmind/vision-perceiver-learned") >>> model = PerceiverForImageClassificationLearned.from_pretrained("deepmind/vision-perceiver-learned") >>> inputs = image_processor(images=image, return_tensors="pt").pixel_values >>> outputs = model(inputs=inputs) >>> logits = outputs.logits >>> list(logits.shape) [1, 1000] >>> # model predicts one of the 1000 ImageNet classes >>> predicted_class_idx = logits.argmax(-1).item() >>> print("Predicted class:", model.config.id2label[predicted_class_idx]) Predicted class: tabby, tabby cat ```""" if inputs is not None and pixel_values is not None: raise ValueError("You cannot use both `inputs` and `pixel_values`") elif inputs is None and pixel_values is not None: inputs = pixel_values return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.perceiver( inputs=inputs, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, interpolate_pos_encoding=interpolate_pos_encoding, return_dict=return_dict, ) logits = outputs.logits if return_dict else outputs[0] loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return PerceiverClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, )
class_definition
53,475
59,202
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/perceiver/modeling_perceiver.py
null
9,088
class PerceiverForImageClassificationFourier(PerceiverPreTrainedModel): def __init__(self, config): super().__init__(config) fourier_position_encoding_kwargs_preprocessor = { "concat_pos": True, "max_resolution": (224, 224), "num_bands": 64, "sine_only": False, } trainable_position_encoding_kwargs_decoder = {"num_channels": config.d_latents, "index_dims": 1} self.num_labels = config.num_labels self.perceiver = PerceiverModel( config, input_preprocessor=PerceiverImagePreprocessor( config, prep_type="pixels", spatial_downsample=1, fourier_position_encoding_kwargs=fourier_position_encoding_kwargs_preprocessor, ), decoder=PerceiverClassificationDecoder( config, num_channels=config.d_latents, trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_decoder, use_query_residual=True, ), ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, inputs: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, labels: Optional[torch.Tensor] = None, return_dict: Optional[bool] = None, pixel_values: Optional[torch.Tensor] = None, ) -> Union[Tuple, PerceiverClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, PerceiverForImageClassificationFourier >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("deepmind/vision-perceiver-fourier") >>> model = PerceiverForImageClassificationFourier.from_pretrained("deepmind/vision-perceiver-fourier") >>> inputs = image_processor(images=image, return_tensors="pt").pixel_values >>> outputs = model(inputs=inputs) >>> logits = outputs.logits >>> list(logits.shape) [1, 1000] >>> # model predicts one of the 1000 ImageNet classes >>> predicted_class_idx = logits.argmax(-1).item() >>> print("Predicted class:", model.config.id2label[predicted_class_idx]) Predicted class: tabby, tabby cat ```""" if inputs is not None and pixel_values is not None: raise ValueError("You cannot use both `inputs` and `pixel_values`") elif inputs is None and pixel_values is not None: inputs = pixel_values return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.perceiver( inputs=inputs, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = outputs.logits if return_dict else outputs[0] loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return PerceiverClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, )
class_definition
59,894
65,424
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/perceiver/modeling_perceiver.py
null
9,089
class PerceiverForImageClassificationConvProcessing(PerceiverPreTrainedModel): def __init__(self, config): super().__init__(config) fourier_position_encoding_kwargs_preprocessor = { "concat_pos": True, "max_resolution": (56, 56), "num_bands": 64, "sine_only": False, } trainable_position_encoding_kwargs_decoder = {"num_channels": config.d_latents, "index_dims": 1} self.num_labels = config.num_labels self.perceiver = PerceiverModel( config, input_preprocessor=PerceiverImagePreprocessor( config, prep_type="conv", spatial_downsample=1, position_encoding_type="fourier", fourier_position_encoding_kwargs=fourier_position_encoding_kwargs_preprocessor, ), decoder=PerceiverClassificationDecoder( config, num_channels=config.d_latents, trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_decoder, use_query_residual=True, ), ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, inputs: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, labels: Optional[torch.Tensor] = None, return_dict: Optional[bool] = None, pixel_values: Optional[torch.Tensor] = None, ) -> Union[Tuple, PerceiverClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, PerceiverForImageClassificationConvProcessing >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("deepmind/vision-perceiver-conv") >>> model = PerceiverForImageClassificationConvProcessing.from_pretrained("deepmind/vision-perceiver-conv") >>> inputs = image_processor(images=image, return_tensors="pt").pixel_values >>> outputs = model(inputs=inputs) >>> logits = outputs.logits >>> list(logits.shape) [1, 1000] >>> # model predicts one of the 1000 ImageNet classes >>> predicted_class_idx = logits.argmax(-1).item() >>> print("Predicted class:", model.config.id2label[predicted_class_idx]) Predicted class: tabby, tabby cat ```""" if inputs is not None and pixel_values is not None: raise ValueError("You cannot use both `inputs` and `pixel_values`") elif inputs is None and pixel_values is not None: inputs = pixel_values return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.perceiver( inputs=inputs, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = outputs.logits if return_dict else outputs[0] loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return PerceiverClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, )
class_definition
66,054
71,645
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/perceiver/modeling_perceiver.py
null
9,090
class PerceiverForOpticalFlow(PerceiverPreTrainedModel): def __init__(self, config): super().__init__(config) fourier_position_encoding_kwargs_preprocessor = { "num_bands": 64, "max_resolution": config.train_size, "sine_only": False, "concat_pos": True, } fourier_position_encoding_kwargs_decoder = { "concat_pos": True, "max_resolution": config.train_size, "num_bands": 64, "sine_only": False, } image_preprocessor = PerceiverImagePreprocessor( config, prep_type="patches", spatial_downsample=1, conv_after_patching=True, conv_after_patching_in_channels=54, temporal_downsample=2, position_encoding_type="fourier", # position_encoding_kwargs fourier_position_encoding_kwargs=fourier_position_encoding_kwargs_preprocessor, ) self.perceiver = PerceiverModel( config, input_preprocessor=image_preprocessor, decoder=PerceiverOpticalFlowDecoder( config, num_channels=image_preprocessor.num_channels, output_image_shape=config.train_size, rescale_factor=100.0, # decoder kwargs use_query_residual=False, output_num_channels=2, # We query the decoder using the first frame features # rather than a standard decoder position encoding. position_encoding_type="fourier", fourier_position_encoding_kwargs=fourier_position_encoding_kwargs_decoder, ), ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, inputs: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, labels: Optional[torch.Tensor] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, PerceiverClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the optical flow loss. Indices should be in `[0, ..., config.num_labels - 1]`. Returns: Examples: ```python >>> from transformers import PerceiverForOpticalFlow >>> import torch >>> model = PerceiverForOpticalFlow.from_pretrained("deepmind/optical-flow-perceiver") >>> # in the Perceiver IO paper, the authors extract a 3 x 3 patch around each pixel, >>> # leading to 3 x 3 x 3 = 27 values for each pixel (as each pixel also has 3 color channels) >>> # patches have shape (batch_size, num_frames, num_channels, height, width) >>> # the authors train on resolutions of 368 x 496 >>> patches = torch.randn(1, 2, 27, 368, 496) >>> outputs = model(inputs=patches) >>> logits = outputs.logits >>> list(logits.shape) [1, 368, 496, 2] ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict loss = None if labels is not None: raise NotImplementedError("Optical flow training is not yet supported") outputs = self.perceiver( inputs=inputs, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = outputs.logits if return_dict else outputs[0] if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return PerceiverClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, )
class_definition
72,492
76,923
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/perceiver/modeling_perceiver.py
null
9,091
class PerceiverForMultimodalAutoencoding(PerceiverPreTrainedModel): def __init__(self, config: PerceiverConfig): super().__init__(config) n_audio_samples = config.num_frames * config.audio_samples_per_frame input_preprocessor = PerceiverMultimodalPreprocessor( min_padding_size=4, modalities={ "audio": PerceiverAudioPreprocessor( config, position_encoding_type="fourier", fourier_position_encoding_kwargs={ "num_bands": 192, "max_resolution": (n_audio_samples,), "sine_only": False, "concat_pos": True, }, prep_type="patches", samples_per_patch=config.samples_per_patch, ), "image": PerceiverImagePreprocessor( config, position_encoding_type="fourier", fourier_position_encoding_kwargs={ "num_bands": 32, "max_resolution": (config.num_frames, config.image_size, config.image_size), "sine_only": False, "concat_pos": True, }, prep_type="patches", spatial_downsample=4, temporal_downsample=1, ), "label": PerceiverOneHotPreprocessor(config), }, mask_probs={"image": 0.0, "audio": 0.0, "label": 1.0}, ) image_decoder = PerceiverBasicVideoAutoencodingDecoder( config, # Autoencoding, don't pass inputs to the queries. concat_preprocessed_input=False, output_shape=config.output_shape, output_num_channels=config.output_num_channels, use_query_residual=False, position_encoding_only=True, position_encoding_type="fourier", fourier_position_encoding_kwargs={ "num_bands": 32, "max_resolution": (config.num_frames, config.image_size, config.image_size), "sine_only": False, "concat_pos": True, }, ) decoder = PerceiverMultimodalDecoder( config, # Autoencoding, don't pass inputs to the queries. concat_preprocessed_input=False, # Modality specific decoders are used ONLY to generate queries. # All modalties are decoded together using a unified decoder. modalities={ "audio": PerceiverBasicDecoder( config, # Autoencoding, don't pass inputs to the queries. concat_preprocessed_input=False, output_index_dims=(n_audio_samples // config.samples_per_patch,), output_num_channels=config.output_num_channels, use_query_residual=False, position_encoding_only=True, position_encoding_type="fourier", fourier_position_encoding_kwargs={ "num_bands": 192, "max_resolution": (n_audio_samples,), "sine_only": False, "concat_pos": True, }, ), "image": image_decoder, "label": PerceiverClassificationDecoder( config, # Autoencoding, don't pass inputs to the queries. concat_preprocessed_input=False, use_query_residual=False, position_encoding_only=True, position_encoding_type="trainable", trainable_position_encoding_kwargs={ "num_channels": config._label_trainable_num_channels, "index_dims": 1, }, ), }, num_outputs=None, output_num_channels=config.output_num_channels, use_query_residual=False, ) output_postprocessor = PerceiverMultimodalPostprocessor( modalities={ "audio": PerceiverAudioPostprocessor(config, in_channels=config.output_num_channels), "image": PerceiverProjectionPostprocessor(in_channels=config.output_num_channels, out_channels=3), "label": PerceiverClassificationPostprocessor(config, in_channels=config.output_num_channels), } ) self.perceiver = PerceiverModel( config, input_preprocessor=input_preprocessor, decoder=decoder, output_postprocessor=output_postprocessor, ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, inputs: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, subsampled_output_points: Optional[Dict[str, torch.Tensor]] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, labels: Optional[torch.Tensor] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, PerceiverClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import PerceiverForMultimodalAutoencoding >>> import torch >>> import numpy as np >>> # create multimodal inputs >>> images = torch.randn((1, 16, 3, 224, 224)) >>> audio = torch.randn((1, 30720, 1)) >>> inputs = dict(image=images, audio=audio, label=torch.zeros((images.shape[0], 700))) >>> model = PerceiverForMultimodalAutoencoding.from_pretrained("deepmind/multimodal-perceiver") >>> # in the Perceiver IO paper, videos are auto-encoded in chunks >>> # each chunk subsamples different index dimensions of the image and audio modality decoder queries >>> nchunks = 128 >>> image_chunk_size = np.prod((16, 224, 224)) // nchunks >>> audio_chunk_size = audio.shape[1] // model.config.samples_per_patch // nchunks >>> # process the first chunk >>> chunk_idx = 0 >>> subsampling = { ... "image": torch.arange(image_chunk_size * chunk_idx, image_chunk_size * (chunk_idx + 1)), ... "audio": torch.arange(audio_chunk_size * chunk_idx, audio_chunk_size * (chunk_idx + 1)), ... "label": None, ... } >>> outputs = model(inputs=inputs, subsampled_output_points=subsampling) >>> logits = outputs.logits >>> list(logits["audio"].shape) [1, 240] >>> list(logits["image"].shape) [1, 6272, 3] >>> list(logits["label"].shape) [1, 700] ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict loss = None if labels is not None: raise NotImplementedError("Multimodal autoencoding training is not yet supported") outputs = self.perceiver( inputs=inputs, attention_mask=attention_mask, subsampled_output_points=subsampled_output_points, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = outputs.logits if return_dict else outputs[0] if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return PerceiverClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, )
class_definition
79,000
87,668
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/perceiver/modeling_perceiver.py
null
9,092
class PerceiverAbstractDecoder(nn.Module, metaclass=abc.ABCMeta): """Perceiver abstract decoder.""" @abc.abstractmethod def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None): raise NotImplementedError @property @abc.abstractmethod def num_query_channels(self): raise NotImplementedError @abc.abstractmethod def forward(self, query, z, query_mask=None): raise NotImplementedError
class_definition
89,137
89,622
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/perceiver/modeling_perceiver.py
null
9,093
class PerceiverProjectionDecoder(PerceiverAbstractDecoder): """ Baseline projection decoder (no cross-attention). Args: config ([`PerceiverConfig`]): Model configuration. """ def __init__(self, config): super().__init__() self.classifier = nn.Linear(config.d_latents, config.num_labels) def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None): return None def forward( self, query: torch.Tensor, z: torch.FloatTensor, query_mask: Optional[torch.FloatTensor] = None ) -> torch.FloatTensor: # (batch_size, num_latents, d_latents) -> (batch_size, d_latents) z = torch.mean(z, dim=1) # (batch_size, d_latents) -> (batch_size, config.num_labels) logits = self.classifier(z) return logits
class_definition
89,625
90,481
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/perceiver/modeling_perceiver.py
null
9,094
class PerceiverBasicDecoder(PerceiverAbstractDecoder): """ Cross-attention-based decoder. This class can be used to decode the final hidden states of the latents using a cross-attention operation, in which the latents produce keys and values. The shape of the output of this class depends on how one defines the output queries (also called decoder queries). Args: config ([*PerceiverConfig*]): Model configuration. output_num_channels (`int`, *optional*): The number of channels in the output. Will only be used in case *final_project* is set to `True`. position_encoding_type (`str`, *optional*, defaults to "trainable"): The type of position encoding to use. Can be either "trainable", "fourier", or "none". output_index_dims (`int`, *optional*): The number of dimensions of the output queries. Ignored if 'position_encoding_type' == 'none'. num_channels (`int`, *optional*, defaults to 128): The number of channels of the decoder queries. Ignored if 'position_encoding_type' == 'none'. qk_channels (`int`, *optional*): The number of channels of the queries and keys in the cross-attention layer. v_channels (`int`, *optional*): The number of channels of the values in the cross-attention layer. num_heads (`int`, *optional*, defaults to 1): The number of attention heads in the cross-attention layer. widening_factor (`int`, *optional*, defaults to 1): The widening factor of the cross-attention layer. use_query_residual (`bool`, *optional*, defaults to `False`): Whether to use a residual connection between the query and the output of the cross-attention layer. concat_preprocessed_input (`bool`, *optional*, defaults to `False`): Whether to concatenate the preprocessed input to the query. final_project (`bool`, *optional*, defaults to `True`): Whether to project the output of the cross-attention layer to a target dimension. position_encoding_only (`bool`, *optional*, defaults to `False`): Whether to only use this class to define output queries. """ def __init__( self, config: PerceiverConfig, output_num_channels: int, position_encoding_type: Optional[str] = "trainable", # The following 2 arguments are ignored if position_encoding_type == 'none': output_index_dims: Optional[int] = None, num_channels: Optional[int] = 128, subsampled_index_dims: Optional[int] = None, qk_channels: Optional[int] = None, v_channels: Optional[int] = None, num_heads: Optional[int] = 1, widening_factor: Optional[int] = 1, use_query_residual: Optional[bool] = False, concat_preprocessed_input: Optional[bool] = False, final_project: Optional[bool] = True, position_encoding_only: Optional[bool] = False, **position_encoding_kwargs, ) -> None: super().__init__() self.output_num_channels = output_num_channels # If `none`, the decoder will not construct any position encodings. # You should construct your own when querying the decoder. self.output_position_encodings = None self.position_encoding_type = position_encoding_type self.position_encoding_kwargs = position_encoding_kwargs if position_encoding_type != "none": self.output_position_encodings, self.positions_projection = build_position_encoding( position_encoding_type=position_encoding_type, **position_encoding_kwargs ) self.output_index_dims = output_index_dims self.num_channels = num_channels if subsampled_index_dims is None: subsampled_index_dims = output_index_dims self.subsampled_index_dims = subsampled_index_dims self.concat_preprocessed_input = concat_preprocessed_input self.final_project = final_project self.position_encoding_only = position_encoding_only # for multimodal autoencoding, we don't need the decoder cross-attention and final layer # so then we will set position_encoding_only to True if not self.position_encoding_only: self.decoding_cross_attention = PerceiverLayer( config, is_cross_attention=True, qk_channels=qk_channels, v_channels=v_channels, num_heads=num_heads, q_dim=num_channels, kv_dim=config.d_latents, widening_factor=widening_factor, use_query_residual=use_query_residual, ) self.final_layer = nn.Linear(num_channels, output_num_channels) if final_project else nn.Identity() @property def num_query_channels(self) -> int: if self.position_encoding_type == "none": # Queries come from elsewhere raise ValueError( "You cannot calculate number of decoder query channels when position_encoding_type is set to none" ) if self.position_encoding_only: if "project_pos_dim" in self.position_encoding_kwargs: return self.position_encoding_kwargs["project_pos_dim"] return self.output_position_encodings.output_size() if self.final_project: return self.output_num_channels return self.num_channels def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None): if self.position_encoding_type == "none": # Queries come from elsewhere raise ValueError("You cannot construct decoder queries when position_encoding_type is set to none") if subsampled_points is not None: # subsampled_points are the indices if the inputs would be flattened # however, the inputs aren't flattened, that's why we use unravel_index # to get the indices for the unflattened array # unravel_index returns a tuple (x_idx, y_idx, ...) # stack to get the [n, d] tensor of coordinates indices = [torch.from_numpy(x) for x in np.unravel_index(subsampled_points.cpu(), self.output_index_dims)] pos = torch.stack(indices, dim=1) batch_size = inputs.shape[0] # Map these coordinates to [-1, 1] pos = -1 + 2 * pos / torch.tensor(self.output_index_dims)[None, :] pos = torch.broadcast_to(pos[None], [batch_size, pos.shape[0], pos.shape[1]]) # Construct the position encoding. if self.position_encoding_type == "trainable": pos_emb = self.output_position_encodings(batch_size) elif self.position_encoding_type == "fourier": pos_emb = self.output_position_encodings( self.output_index_dims, batch_size=batch_size, device=inputs.device, dtype=inputs.dtype, pos=pos ) # Optionally project them to a target dimension. pos_emb = self.positions_projection(pos_emb) pos_emb = torch.reshape(pos_emb, [pos_emb.shape[0], -1, pos_emb.shape[-1]]) else: batch_size = inputs.shape[0] index_dims = inputs.shape[2:] # Construct the position encoding. if self.position_encoding_type == "trainable": pos_emb = self.output_position_encodings(batch_size) elif self.position_encoding_type == "fourier": pos_emb = self.output_position_encodings( index_dims, batch_size, device=inputs.device, dtype=inputs.dtype ) # Optionally project them to a target dimension. pos_emb = self.positions_projection(pos_emb) if self.concat_preprocessed_input: if inputs_without_pos is None: raise ValueError("Value is required for inputs_without_pos if concat_preprocessed_input is True") pos_emb = torch.cat([inputs_without_pos, pos_emb], dim=-1) return pos_emb def forward( self, query: torch.Tensor, z: torch.FloatTensor, query_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> PerceiverDecoderOutput: # Cross-attention decoding. # key, value: B x N x K; query: B x M x K # Attention maps -> B x N x M # Output -> B x M x K cross_attentions = () if output_attentions else None layer_outputs = self.decoding_cross_attention( query, attention_mask=query_mask, head_mask=None, inputs=z, inputs_mask=None, output_attentions=output_attentions, ) output = layer_outputs[0] if output_attentions: cross_attentions = cross_attentions + (layer_outputs[1],) logits = self.final_layer(output) return PerceiverDecoderOutput(logits=logits, cross_attentions=cross_attentions)
class_definition
90,484
99,636
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/perceiver/modeling_perceiver.py
null
9,095
class PerceiverClassificationDecoder(PerceiverAbstractDecoder): """ Cross-attention based classification decoder. Light-weight wrapper of [`PerceiverBasicDecoder`] for logit output. Will turn the output of the Perceiver encoder which is of shape (batch_size, num_latents, d_latents) to a tensor of shape (batch_size, num_labels). The queries are of shape (batch_size, 1, num_labels). Args: config ([`PerceiverConfig`]): Model configuration. """ def __init__(self, config, **decoder_kwargs): super().__init__() self.num_labels = config.num_labels self.decoder = PerceiverBasicDecoder( config, output_num_channels=self.num_labels, output_index_dims=1, # Predict a single logit array. **decoder_kwargs, ) @property def num_query_channels(self) -> int: return self.decoder.num_query_channels def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None): return self.decoder.decoder_query( inputs, modality_sizes, inputs_without_pos, subsampled_points=subsampled_points ) def forward( self, query: torch.Tensor, z: torch.FloatTensor, query_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> PerceiverDecoderOutput: decoder_outputs = self.decoder(query, z, output_attentions=output_attentions) # B x 1 x num_classes -> B x num_classes logits = decoder_outputs.logits[:, 0, :] return PerceiverDecoderOutput(logits=logits, cross_attentions=decoder_outputs.cross_attentions)
class_definition
99,639
101,349
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/perceiver/modeling_perceiver.py
null
9,096
class PerceiverOpticalFlowDecoder(PerceiverAbstractDecoder): """Cross-attention based optical flow decoder.""" def __init__(self, config, output_image_shape, output_num_channels=2, rescale_factor=100.0, **decoder_kwargs): super().__init__() self.output_image_shape = output_image_shape self.output_num_channels = output_num_channels self.rescale_factor = rescale_factor self.decoder = PerceiverBasicDecoder(config, output_num_channels=output_num_channels, **decoder_kwargs) @property def num_query_channels(self) -> int: return self.decoder.num_query_channels def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None): if subsampled_points is not None: raise ValueError("FlowDecoder doesn't support subsampling yet.") return inputs def forward( self, query: torch.Tensor, z: torch.FloatTensor, query_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> PerceiverDecoderOutput: decoder_outputs = self.decoder(query, z, output_attentions=output_attentions) preds = decoder_outputs.logits # Output flow and rescale. preds /= self.rescale_factor preds = preds.reshape([preds.shape[0]] + list(self.output_image_shape) + [preds.shape[-1]]) return PerceiverDecoderOutput(logits=preds, cross_attentions=decoder_outputs.cross_attentions)
class_definition
101,352
102,858
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/perceiver/modeling_perceiver.py
null
9,097
class PerceiverBasicVideoAutoencodingDecoder(PerceiverAbstractDecoder): """ Cross-attention based video-autoencoding decoder. Light-weight wrapper of [*PerceiverBasicDecoder*] with video reshaping logic. Args: config ([*PerceiverConfig*]): Model configuration. output_shape (`List[int]`): Shape of the output as (batch_size, num_frames, height, width), excluding the channel dimension. position_encoding_type (`str`): The type of position encoding to use. Can be either "trainable", "fourier", or "none". """ def __init__( self, config: PerceiverConfig, output_shape: List[int], position_encoding_type: str, **decoder_kwargs ) -> None: super().__init__() if len(output_shape) != 4: # B, T, H, W raise ValueError(f"Expected rank 4 output_shape, got {output_shape}.") # Build the decoder components: self.output_shape = output_shape self.output_num_channels = decoder_kwargs["output_num_channels"] self.decoder = PerceiverBasicDecoder( config, output_index_dims=self.output_shape[1:4], # T*H*W position_encoding_type=position_encoding_type, **decoder_kwargs, ) @property def num_query_channels(self) -> int: return self.decoder.num_query_channels def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None): return self.decoder.decoder_query( inputs, modality_sizes=modality_sizes, inputs_without_pos=inputs_without_pos, subsampled_points=subsampled_points, ) def forward( self, query: torch.Tensor, z: torch.FloatTensor, query_mask: Optional[torch.FloatTensor] = None ) -> PerceiverDecoderOutput: decoder_outputs = self.decoder(query, z) logits = decoder_outputs.logits logits = torch.reshape(logits, self.output_shape + [logits.shape[-1]]) return PerceiverDecoderOutput(logits=logits, cross_attentions=decoder_outputs.cross_attentions)
class_definition
102,861
104,991
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/perceiver/modeling_perceiver.py
null
9,098
class PerceiverMultimodalDecoder(PerceiverAbstractDecoder): """ Multimodal decoding by composing uni-modal decoders. The *modalities* argument of the constructor is a dictionary mapping modality name to the decoder of that modality. That decoder will be used to construct queries for that modality. Modality-specific queries are padded with trainable modality-specific parameters, after which they are concatenated along the time dimension. Next, there is a shared cross attention operation across all modalities. Args: config ([*PerceiverConfig*]): Model configuration. modalities (`Dict[str, PerceiverAbstractDecoder]`): Dictionary mapping modality name to the decoder of that modality. num_outputs (`int`): The number of outputs of the decoder. output_num_channels (`int`): The number of channels in the output. min_padding_size (`int`, *optional*, defaults to 2): The minimum padding size for all modalities. The final output will have num_channels equal to the maximum channels across all modalities plus min_padding_size. subsampled_index_dims (`Dict[str, PerceiverAbstractDecoder]`, *optional*): Dictionary mapping modality name to the subsampled index dimensions to use for the decoder query of that modality. """ def __init__( self, config: PerceiverConfig, modalities: Dict[str, PerceiverAbstractDecoder], num_outputs: int, output_num_channels: int, min_padding_size: Optional[int] = 2, subsampled_index_dims: Optional[Dict[str, PerceiverAbstractDecoder]] = None, **decoder_kwargs, ) -> None: super().__init__() self.modalities = nn.ModuleDict(modalities) self.subsampled_index_dims = subsampled_index_dims self.min_padding_size = min_padding_size self.output_num_channels = output_num_channels self.num_outputs = num_outputs self.decoder = PerceiverBasicDecoder( config, output_index_dims=(num_outputs,), output_num_channels=output_num_channels, position_encoding_type="none", num_channels=self.num_query_channels, **decoder_kwargs, ) self.padding = nn.ParameterDict( { modality: nn.Parameter(torch.randn(1, self.num_query_channels - decoder.num_query_channels)) for modality, decoder in modalities.items() } ) @property def num_query_channels(self) -> int: max_channel_size = max(decoder.num_query_channels for _, decoder in self.modalities.items()) common_channel_size = max_channel_size + self.min_padding_size return common_channel_size def decoder_query(self, inputs, modality_sizes, inputs_without_pos=None, subsampled_points=None): # Partition the flat inputs among the different modalities inputs = restructure(modality_sizes, inputs) # Obtain modality-specific decoders' queries subsampled_points = subsampled_points or {} decoder_queries = {} for modality, decoder in self.modalities.items(): # Get input_without_pos for this modality if it exists. input_without_pos = None if inputs_without_pos is not None: input_without_pos = inputs_without_pos.get(modality, None) query = decoder.decoder_query( inputs=inputs[modality], modality_sizes=None, inputs_without_pos=input_without_pos, subsampled_points=subsampled_points.get(modality, None), ) decoder_queries[modality] = query # Pad all queries with trainable position encodings to make them have the same channels def embed(modality, x): x = torch.reshape(x, [x.shape[0], np.prod(x.shape[1:-1]), x.shape[-1]]) pos = self.padding[modality] pos = torch.broadcast_to(pos, [x.shape[0], x.shape[1], self.num_query_channels - x.shape[2]]) return torch.cat([x, pos], dim=2) # Apply a predictable ordering to the modalities return torch.cat( [embed(modality, decoder_queries[modality]) for modality in sorted(self.modalities.keys())], dim=1 ) def forward( self, query: torch.Tensor, z: torch.FloatTensor, query_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> torch.Tensor: # B x 1 x num_classes -> B x num_classes decoder_outputs = self.decoder(query, z, output_attentions=output_attentions) return decoder_outputs
class_definition
105,681
110,476
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/perceiver/modeling_perceiver.py
null
9,099