max_stars_repo_path
stringlengths
4
182
max_stars_repo_name
stringlengths
6
116
max_stars_count
int64
0
191k
id
stringlengths
7
7
content
stringlengths
100
10k
size
int64
100
10k
datasets/postprocess.py
Zumo09/Feedback-Prize
0
2025197
from typing import Optional from sklearn.preprocessing import OrdinalEncoder import torch import torch.nn.functional as F import pandas as pd import numpy as np from util import box_ops class FBPPostProcess: """This module converts the model's output into the format expected by the Kaggle api""" def __init__( self, encoder: OrdinalEncoder, tags: pd.DataFrame, no_obj_class: int ) -> None: super().__init__() self.encoder = encoder self.tags = tags self.no_obj_class = no_obj_class self.reset_results() @property def results(self) -> pd.DataFrame: """The DataFrame to be submitted for the challenge""" if len(self._results) == 0: return pd.DataFrame(columns=["id", "class", "predictionstring", "score"]) return pd.DataFrame(self._results) def reset_results(self): self._results = [] @staticmethod def _predstr_to_set(pred: str): return set(int(i) for i in pred.split()) @staticmethod def prec_rec_f1(tp, fp, fn): prec = tp / (tp + fp + 1e-3) recall = tp / (tp + fn + 1e-3) f1 = tp / (tp + 0.5 * (fp + fn) + 1e-3) return {"precision": prec, "recall": recall, "f1": f1} def _evaluate_doc_class(self, pred, tags): lp = len(pred) lt = len(tags) overlaps_pt = np.zeros(shape=(lp, lt)) overlaps_tp = np.zeros(shape=(lp, lt)) p_sets = [self._predstr_to_set(ps) for ps in pred["predictionstring"]] t_sets = [self._predstr_to_set(ps) for ps in tags["predictionstring"]] for p in range(lp): p_set = p_sets[p] for t in range(lt): t_set = t_sets[t] overlaps_pt[p, t] = len(p_set.intersection(t_set)) / len(t_set) overlaps_tp[p, t] = len(t_set.intersection(p_set)) / len(p_set) tp = 0 fn = 0 pred_matched = [] for t in range(lt): larger = 0 selected = None for p in range(lp): if p in pred_matched: continue opt = overlaps_pt[p, t] otp = overlaps_tp[p, t] if opt >= 0.5 and otp >= 0.5: if (opt + otp) > larger: larger = opt + otp selected = p if selected is None: fn += 1 else: pred_matched.append(selected) tp += 1 fp = lp - tp return tp, fp, fn def evaluate(self, results: Optional[pd.DataFrame] = None): """ Evaluation metric defined by the Kaggle Challenge """ if results is None: results = self.results gb_res = results.groupby(by="id") gb_tag = self.tags.groupby(by="id") report = {} for cls in self.tags["discourse_type"].unique(): tp, fp, fn = 0, 0, 0 for doc_id in results["id"].unique(): pred = gb_res.get_group(doc_id) tags = gb_tag.get_group(doc_id) pred = pred[pred["class"] == cls] tags = tags[tags["discourse_type"] == cls] a, b, c = self._evaluate_doc_class(pred, tags) tp += a fp += b fn += c report[cls] = self.prec_rec_f1(tp, fp, fn) report["macro_avg"] = { "precision": sum(cls_rep["precision"] for cls_rep in report.values()) / len(report), "recall": sum(cls_rep["recall"] for cls_rep in report.values()) / len(report), "f1": sum(cls_rep["f1"] for cls_rep in report.values()) / len(report), } return pd.DataFrame(report).transpose() @torch.no_grad() def add_outputs(self, outputs, infos): """Format the outputs and save them to a dataframe Parameters: outputs: raw outputs of the model infos: list of dictionaries of length [batch_size] containing the length of each document of the batch For evaluation, this must be the original image size (before any data augmentation) For visualization, this should be the image size after data augment, but before padding """ out_logits, out_bbox = outputs["pred_logits"].cpu(), outputs["pred_boxes"].cpu() target_sizes = torch.Tensor([info["length"] for info in infos]) assert len(out_logits) == len(target_sizes) prob = F.softmax(out_logits, -1) scores, labels = prob.max(-1) # from relative [0, 1] to absolute [0, tarx_len] coordinates scale_fct = torch.stack([target_sizes, target_sizes], dim=1) boxes = out_bbox * scale_fct[:, None, :] # and convert to [start, end] format boxes = box_ops.box_cl_to_se(boxes) # round and positive boxes = torch.round(boxes) boxes = torch.relu(boxes).int() for i, l, s, b in zip(infos, labels, scores, boxes): self._add(i, l, s, b) def _add(self, info, labels, scores, boxes): doc_id = info["id"] for l, s, b in zip(labels, scores, boxes): if l != self.no_obj_class: l = self.encoder.inverse_transform(l.reshape(-1, 1)) self._results.append( { "id": doc_id, "class": l[0][0], "predictionstring": self.prediction_string(b), "score": s.item(), } ) @staticmethod def prediction_string(box): start, end = box return " ".join(str(i) for i in range(start, end + 1))
5,815
apps/odoo/lib/odoo-10.0.post20170615-py2.7.egg/odoo/addons/website_livechat/models/im_livechat.py
gtfarng/Odoo_migrade
1
2022625
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. from odoo import api, models, fields from odoo.addons.website.models.website import slug from odoo.tools.translate import html_translate class ImLivechatChannel(models.Model): _name = 'im_livechat.channel' _inherit = ['im_livechat.channel', 'website.published.mixin'] @api.multi def _compute_website_url(self): super(ImLivechatChannel, self)._compute_website_url() for channel in self: channel.website_url = "/livechat/channel/%s" % (slug(channel),) website_description = fields.Html("Website description", default=False, help="Description of the channel displayed on the website page", sanitize_attributes=False, translate=html_translate)
793
buildserver/main.py
Cal-CS-61A-Staff/cs61a-apps
5
2022849
import hmac from flask import Flask, abort, redirect, request from github import Github import api from common.db import connect_db from common.html import html from common.oauth_client import create_oauth_client, get_user, is_staff, login from common.rpc.auth import is_admin from common.rpc.buildserver import ( clear_queue, deploy_prod_app_sync, get_base_hostname, trigger_build_sync, ) from common.rpc.secrets import get_secret, only, validates_master_secret from common.url_for import url_for from conf import GITHUB_REPO from github_utils import BuildStatus, get_github, pack, set_pr_comment from rebuilder import create_rebuilder from scheduling import report_build_status from service_management import delete_unused_services from target_determinator import determine_targets from worker import dequeue_and_build, land_commit DO_NOT_BUILD = "DO NOT BUILD" app = Flask(__name__) if __name__ == "__main__": app.debug = True create_oauth_client(app, "61a-buildserver") create_rebuilder(app) with connect_db() as db: db( """CREATE TABLE IF NOT EXISTS services ( app varchar(128), pr_number int, locked boolean, is_web_service boolean ) """ ) db( """CREATE TABLE IF NOT EXISTS apps ( app varchar(128), repo varchar(128), autobuild boolean )""" ) db( """CREATE TABLE IF NOT EXISTS mysql_users ( app varchar(128), mysql_pw varchar(128) )""" ) def deploy_prod_app_description(app): if app == "website-base": return "<p>Redeploy cs61a.org</p>" return "" @app.route("/") def index(): if not is_staff("cs61a"): return login() email = get_user()["email"] if not is_admin(course="cs61a", email=email): abort(401) with connect_db() as db: apps = db("SELECT app FROM services WHERE pr_number=0", []).fetchall() pr_apps = db( "SELECT app, pr_number FROM services WHERE pr_number>0 ORDER BY pr_number DESC", [], ).fetchall() return html( f""" This service manages the deployment of the 61A website and various apps. {"".join(f''' <form action="/deploy_prod_app"> {deploy_prod_app_description(app)} <input type="submit" name="app" value="{app}" /> </form> ''' for [app] in apps)} {"".join(f''' <form action="/trigger_build"> <input type="hidden" name="app" value="{app}" /> <input type="hidden" name="pr_number" value="{pr_number}" /> <input type="submit" value="{app + "-pr" + str(pr_number)}" /> </form> ''' for [app, pr_number] in pr_apps)} <form action="/delete_unused_services" method="post"> <input type="submit" value="Delete unused services" /> </form> """ ) @app.route("/deploy_prod_app") def deploy_prod_app(): if not is_staff("cs61a"): return login() email = get_user()["email"] if not is_admin(course="cs61a", email=email): abort(401) app = request.args["app"] deploy_prod_app_sync(target_app=app, noreply=True) return html(f"Deploying <code>{app}</code> from master!") @deploy_prod_app_sync.bind(app) @validates_master_secret def handle_deploy_prod_app_sync(app, is_staging, target_app): if app != "buildserver" or is_staging: abort(401) g = Github(get_secret(secret_name="GITHUB_ACCESS_TOKEN")) repo = g.get_repo(GITHUB_REPO) land_commit( repo.get_branch(repo.default_branch).commit.sha, repo, repo, None, [f"{target_app}/main.py"], ) @app.route("/trigger_build") def trigger_build(): if not is_staff("cs61a"): return login() email = get_user()["email"] if not is_admin(course="cs61a", email=email): abort(401) if "app" in request.args: target = request.args["app"] else: target = None pr_number = int(request.args["pr_number"]) g = Github(get_secret(secret_name="GITHUB_ACCESS_TOKEN")) repo = g.get_repo(GITHUB_REPO) pr = repo.get_pull(pr_number) if DO_NOT_BUILD in [l.name for l in pr.labels]: return html( f"PR <code>{pr_number}</code> has a DO NOT BUILD label on it, so it cannot be built. Remove this label to build the PR." ) trigger_build_sync(pr_number=pr_number, target_app=target, noreply=True) return html(f"Building PR <code>{pr_number}</code>!") @trigger_build_sync.bind(app) @validates_master_secret def handle_trigger_build_sync(app, is_staging, pr_number, target_app=None): if app not in ("slack", "buildserver") or is_staging: raise PermissionError g = Github(get_secret(secret_name="GITHUB_ACCESS_TOKEN")) repo = g.get_repo(GITHUB_REPO) pr = repo.get_pull(pr_number) if DO_NOT_BUILD in [l.name for l in pr.labels]: raise PermissionError land_commit(pr.head.sha, repo, repo, pr, pr.get_files(), target_app=target_app) @clear_queue.bind(app) @only("buildserver", allow_staging=True) def clear_queue(): dequeue_and_build(get_github().get_repo(GITHUB_REPO)) @app.route("/delete_unused_services", methods=["POST"]) def delete_unused_services_handler(): if not is_staff("cs61a"): return login() email = get_user()["email"] if not is_admin(course="cs61a", email=email): return login() delete_unused_services() return redirect(url_for("index")) @app.route("/webhook", methods=["POST"]) def webhook(): if not hmac.compare_digest( "sha1=" + hmac.new( get_secret(secret_name="GITHUB_WEBHOOK_SECRET").encode("ascii"), request.get_data(), "sha1", ).hexdigest(), request.headers["X-Hub-Signature"], ): abort(401) payload = request.json g = Github(get_secret(secret_name="GITHUB_ACCESS_TOKEN")) if "pusher" in payload and payload["ref"] == "refs/heads/master": base_repo = g.get_repo(GITHUB_REPO) repo = g.get_repo(payload["repository"]["id"]) sha = payload["after"] land_commit( sha, repo, base_repo, None, [ file for commit in payload["commits"] for file in commit["added"] + commit["modified"] + commit["removed"] ], ) delete_unused_services() if "pull_request" in payload: repo_id = payload["repository"]["id"] repo = g.get_repo(repo_id) pr = repo.get_pull(payload["pull_request"]["number"]) if payload["action"] in ("opened", "synchronize", "reopened"): if repo.full_name != GITHUB_REPO: land_commit(pr.head.sha, repo, g.get_repo(GITHUB_REPO), pr, []) else: for target in determine_targets(repo, pr.get_files()): report_build_status( target, pr.number, pack(repo.clone_url, pr.head.sha), BuildStatus.pushed, None, None, private=True, ) elif payload["action"] == "closed": set_pr_comment("PR closed, shutting down PR builds...", pr) delete_unused_services(pr.number) set_pr_comment("All PR builds shut down.", pr) return "" @get_base_hostname.bind(app) @only("domains", allow_staging=True) def get_base_hostname(target_app): return api.get_base_hostname(target_app) if __name__ == "__main__": app.run(host="127.0.0.1", port=8080, debug=True, threaded=False)
7,706
usr_scripts/UnsentMessageExample.py
Gamma749/IrohaFileHashing
1
2026104
#! /bin/python from IrohaUtils import * from IrohaHashCustodian import Custodian import logging import grpc import json from time import sleep def wait_point(msg): input(f"{bcolors.OKGREEN}===> {msg}{bcolors.ENDC}") # INFO gives descriptions of steps # DEBUG gives information on transactions and queries too logging.basicConfig(level=logging.INFO) logging.info("Create hash custodian") while True: try: custodian = Custodian() break except grpc._channel._InactiveRpcError: logging.info("Network unreachable, retrying") sleep(2) logging.info("Create user Jack") user_a = custodian.new_hashing_user("jack") logging.info("Create user Jill") user_b = custodian.new_hashing_user("jill") logging.info("Create user Victoria") user_c = custodian.new_hashing_user("victoria") wait_point("Jack sends message1 to Jill, logging the hash") message1_hash = custodian.get_file_hash("messages/message1.secret") logging.info(f"{message1_hash=}") logging.info("Storing on chain...") status = custodian.store_hash_on_chain(user_a, message1_hash) assert status[0] == "COMMITTED" logging.info("Jack successfully stored message1 hash") wait_point("Jill replies to Jack and also logs the hash") message2_hash = custodian.get_file_hash("messages/message2.secret") logging.info(f"{message2_hash=}") logging.info("Storing on chain...") status = custodian.store_hash_on_chain(user_b, message2_hash) assert status[0] == "COMMITTED" logging.info("Jill successfully stored message2 hash") wait_point("Jack, receiving Jill's reply, creates reply message3 but does not send it") print("\n\n") wait_point("Some time later, Victoria is called in to verify the communications have occurred") logging.info("Victoria gets the chain hashes") domain_hashes = custodian.get_domain_hashes() logging.info(json.dumps(domain_hashes, indent=2)) wait_point("Victoria gets message1 and checks if the hash exists on the chain") file_hash = custodian.get_file_hash("messages/message1.secret") logging.info(f"Searching for hash {file_hash}...") assert custodian.find_hash_on_chain(user_c, file_hash) logging.info("Victoria found message1 hash on chain") wait_point("Victoria gets message2 and checks if the hash exists on the chain") file_hash = custodian.get_file_hash("messages/message2.secret") logging.info(f"Searching for hash {file_hash}...") assert custodian.find_hash_on_chain(user_c, file_hash) logging.info("Victoria found message2 hash on chain") wait_point("Victoria is asked to verify if message3 is on chain\nJack claims he sent message3 but actually did not") file_hash = custodian.get_file_hash("messages/message3.secret") logging.info(f"Searching for hash {file_hash}...") assert not custodian.find_hash_on_chain(user_c, file_hash) logging.info("Victoria did not find message3 hash on chain, verifies that message3 was not sent") wait_point("Valid communications are verified, unsent messages are identified!") log_all_blocks("node1.log")
2,965
src/rtrc_split_csv/RtrcSplitCsv.py
Arteric-Jeff-Knight/rtrc_split_csv
0
2025963
import io from typing import Callable import pandas as pd class RtrcSplitCsv: """A helper to split an incoming csv file into a DataFrame with data and configs in a dict. """ defaults = {} data = None def __init(self, the_csv=None, defaults=None, config_name: str = 'config'): if the_csv is not None: self.data, self.defaults = self.split_data_and_configs(the_csv, defaults, config_name) @staticmethod def split_data_and_configs(df, defaults=None, config_name: str = 'config', validator: Callable = None): if defaults is None or type(defaults) == dict: defaults = {} # Get everything with 'config' (or custom config_name) in first column configs = df[df[0] == config_name] # Build a dictionary from the key in the second column with values from the third defaults.update(dict(zip(configs[1], configs[2]))) if validator is not None: defaults = validator(defaults) # Everything else that isn't a config, is data data = df[df[0] != config_name].reset_index(drop=True) # Assume that the first row is the column names now that configs are gone data.columns = data.iloc[0] # Drop the row with the column names data.drop(df.index[0], inplace=True) # Reset the index, so zero works below data = data.reset_index(drop=True) return data, defaults @staticmethod def split_from_csv(the_csv, defaults=None, config_name: str = 'config', validator: Callable = None): df = pd.read_csv(the_csv, header=None) return RtrcSplitCsv.split_data_and_configs(df, defaults, config_name, validator) @staticmethod def split_from_colab_upload(uploaded, defaults=None, config_name: str = 'config', validator: Callable = None): filename = list(uploaded.keys())[0] df = pd.read_csv(io.BytesIO(uploaded[filename]), header=None) return RtrcSplitCsv.split_data_and_configs(df, defaults, config_name, validator)
2,040
AlexNet/data_provider.py
wondervictor/DeepLearningWithPaddle
5
2026284
# -*- coding: utf-8 -*- """ MIT License Copyright (c) 2017 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import cPickle as pickle import numpy as np import os def data_reader(path, n): def reader(): with open(path, 'r') as f: datadict = pickle.load(f) X = datadict['data'] Y = datadict['labels'] X = X.reshape(n, 3072).astype("float") Y = np.array(Y) size = n for i in range(size): yield X[i] / 255.0, int(Y[i]) return reader
1,530
drned/common/test_common.py
micnovak/drned-xmnr
7
2024623
import os import re import subprocess # Compare two config files but ignore comments def filecmp(a, b): return os.system("diff -I '^ *!' -I '^ */\*' %s %s" % (a, b)) == 0 def check_output(command, **args): return subprocess.check_output(command, universal_newlines=True, shell=True, **args) def path_in_prefixes(path, prefixes): pathnons = path if path.startswith("/{"): pathnons = re.sub("{[^}]+?}", "", path) for p in prefixes: if path.startswith(p) or pathnons.startswith(p): return True return False def gen_nodes(schema, skip_nodes, include_prefixes, exclude_prefixes, ntype): nodes = schema.list_nodes(ntype=ntype) for node in nodes: p = node.get_path() if (p not in skip_nodes and not path_in_prefixes(p, exclude_prefixes) and (not include_prefixes or path_in_prefixes(p, include_prefixes))): yield node
1,040
agentnet/learning/qlearning.py
mraihan19/AgentNet
337
2026287
""" Q-learning implementation. Works with discrete action space. Supports n-step updates and custom state value function (max(Q(s,a)), double q-learning, boltzmann, mellowmax, expected value sarsa,...) """ from __future__ import division, print_function, absolute_import import theano.tensor as T from lasagne.objectives import squared_error from .generic import get_n_step_value_reference, get_values_for_actions from ..utils.grad import consider_constant __author__ = "<NAME>(partobs-mdp), justheuristic" def get_elementwise_objective(qvalues, actions, rewards, is_alive="always", qvalues_target=None, state_values_target=None, n_steps=1, gamma_or_gammas=0.99, crop_last=True, state_values_target_after_end="zeros", consider_reference_constant=True, aggregation_function="deprecated", force_end_at_last_tick=False, return_reference=False, loss_function=squared_error): """ Returns squared error between predicted and reference Q-values according to n-step Q-learning algorithm Qreference(state,action) = reward(state,action) + gamma*reward(state_1,action_1) + ... + gamma^n * max[action_n]( Q(state_n,action_n) loss = mean over (Qvalues - Qreference)**2 :param qvalues: [batch,tick,actions] - predicted qvalues :param actions: [batch,tick] - commited actions :param rewards: [batch,tick] - immediate rewards for taking actions at given time ticks :param is_alive: [batch,tick] - whether given session is still active at given tick. Defaults to always active. :param qvalues_target: Q-values used when computing reference (e.g. r+gamma*Q(s',a_max). shape [batch,tick,actions] examples: (default) If None, uses current Qvalues. Older snapshot Qvalues (e.g. from a target network) :param state_values_target: state values V(s), used when computing reference (e.g. r+gamma*V(s'), shape [batch_size,seq_length,1] double q-learning V(s) = Q_old(s,argmax Q_new(s,a)) expected_value_sarsa V(s) = E_a~pi(a|s) Q(s,a) state values from teacher network (knowledge transfer) Must provide either nothing or qvalues_target or state_values_target, not both at once :param n_steps: if an integer is given, uses n-step q-learning algorithm If 1 (default), this works exactly as normal q-learning If None: propagating rewards throughout the whole sequence of state-action pairs. :param gamma_or_gammas: delayed reward discounts: a single value or array[batch,tick](can broadcast dimensions). :param crop_last: if True, zeros-out loss at final tick, if False - computes loss VS Qvalues_after_end :param state_values_target_after_end: [batch,1] - symbolic expression for "next best q-values" for last tick used when computing reference Q-values only. Defaults at T.zeros_like(Q-values[:,0,None,0]). if crop_last=True, simply does not penalize at last tick. If you wish to simply ignore the last tick, use defaults and crop output's last tick ( qref[:,:-1] ) :param consider_reference_constant: whether or not zero-out gradient flow through reference_qvalues (True is highly recommended) :param force_end_at_last_tick: if True, forces session end at last tick unless ended otehrwise :param return_reference: if True, returns reference Qvalues. If False, returns squared_error(action_qvalues, reference_qvalues) :param loss_function: loss_function(V_reference,V_predicted). Defaults to (V_reference-V_predicted)**2. Use to override squared error with different loss (e.g. Huber or MAE) :return: mean squared error over Q-values (using formula above for loss) """ if aggregation_function != "deprecated": raise NotImplementedError("aggregation function has beed deprecated and removed. You can now manually compute " "any V(s) and pass it as state_state_values_target. By default it's qvalues.max(axis=-1)") #set defaults and assert shapes if is_alive == 'always': is_alive = T.ones_like(rewards) assert qvalues_target is None or state_values_target is None, "Please provide only one of (qvalues_target," \ "state_values_target) or none of them, not both" assert actions.ndim == rewards.ndim == is_alive.ndim == 2, "actions, rewards and is_alive must have shape [batch,time]" assert qvalues.ndim == 3, "q-values must have shape [batch,time,n_actions]" assert qvalues_target is None or qvalues_target.ndim == 3,"qvalues_target must have shape[batch,time,n_actions]]" assert state_values_target is None or state_values_target.ndim ==2, "state values must have shape [batch,time]" #unless already given V(s), compute V(s) as Qvalues of best actions state_values_target = state_values_target or T.max(qvalues_target or qvalues, axis=-1) # get predicted Q-values for committed actions by both current and target networks action_qvalues = get_values_for_actions(qvalues, actions) # get reference Q-values via Q-learning algorithm reference_qvalues = get_n_step_value_reference( state_values=state_values_target, rewards=rewards, is_alive=is_alive, n_steps=n_steps, gamma_or_gammas=gamma_or_gammas, state_values_after_end=state_values_target_after_end, end_at_tmax=force_end_at_last_tick, crop_last=crop_last, ) if consider_reference_constant: # do not pass gradient through reference Qvalues (since they DO depend on Qvalues by default) reference_qvalues = consider_constant(reference_qvalues) #If asked, make sure loss equals 0 for the last time-tick. if crop_last: reference_qvalues = T.set_subtensor(reference_qvalues[:,-1],action_qvalues[:,-1]) if return_reference: return reference_qvalues else: # tensor of elementwise squared errors elwise_squared_error = loss_function(reference_qvalues, action_qvalues) return elwise_squared_error * is_alive
6,526
TF_Lab_12_3.py
leedongminAI/DL_Tensorflow_Lab
1
2025905
# Long Sequence RNN import tensorflow as tf import numpy as np tf.set_random_seed(777) sample = "if you want you" # string 문자열을 하나 둔다. idx2char = list(set(sample)) # set을 주면 유니크한 문자열이 만들어지고 # list를 쓰면 그것이 밑에 보이는 것과 같이 list형식으로 출력이 이루어진다. # 계속 랜덤으로 재생할 것이다. # idx2char output test print(idx2char) ''' ['o', 'f', 'u', 'y', 'w', 't', 'a', 'n', ' ', 'i'] ''' char2idx = {c: i for i, c in enumerate(idx2char)} # 문자열을 주면 char형으로 바꾼 것에 번호를 매긴다. # char2idx output test print(char2idx) ''' {'o': 0, 'f': 1, 'u': 2, 'y': 3, 'w': 4, 't': 5, 'a': 6, 'n': 7, ' ': 8, 'i': 9} ''' # hyper parameters # hyper parameters을 정해주는 이유는 input이 아무 단어가 와도 알아서 정해주도록 만들기 위해서이다. dic_size = len(char2idx) # RNN 'input' size (one hot size) # 10, 문장전체에서 쓰일 단어(입력될 글자)의 size # 'o': 0, 'f': 1, 'u': 2, 'y': 3, 'w': 4, 't': 5, 'a': 6, 'n': 7, ' ': 8, 'i': 9 hidden_size = len(char2idx) # RNN 'output' size # 10, RNN하고 나서 출력의 size # Cell에서 통과하고 나서 one_hot으로 했을 때 몇 size로 출력할꺼야? num_classes = len(char2idx) # final 'output' size (RNN or 'softmax', etc.) # 10, 출력의 class의 size, 최종적으로 나올 size, 알파벳의 개수 batch_size = 1 # one sample data, one batch # 1, 한 번 최종단어가 나올 때 Yt가 나올때 이걸 몇번으로 끊어서 할 것인가. # 문장나누기. Enter역할 sequence_length = len(sample) - 1 # number of LSTM rollings # 14, 한번에 단어를 몇개 넣을 것인가? or 셀을 몇 개 둘 것인가? # 14개니까 처음에 ex) 'if you want yo'까지 learning_rate = 0.1 sample_idx = [char2idx[c] for c in sample] # char2dix으로 index를 지정한 것으로 sample에 있는 것들을 번호를 매긴다. # sample_idx output test print(sample_idx) ''' [9, 1, 8, 3, 0, 2, 8, 4, 6, 7, 5, 8, 3, 0, 2] ''' x_data = [sample_idx[:-1]] y_data = [sample_idx[1:]] # x_data는 처음부터 마지막전까지 # y_data는 두번째부터 마지막까지 # 1차원이라 행만 있음. # ex) "if you want you"라면 # x_data는 if you want yo까지 # y_data는 f you want you이다. # x_data, y_data output test print(x_data) print(y_data) ''' [[9, 1, 8, 3, 0, 2, 8, 4, 6, 7, 5, 8, 3, 0]] [[1, 8, 3, 0, 2, 8, 4, 6, 7, 5, 8, 3, 0, 2]] ''' X = tf.placeholder(tf.int32, [None, sequence_length]) # X data Y = tf.placeholder(tf.int32, [None, sequence_length]) # Y label x_one_hot = tf.one_hot(X, num_classes) # one hot: 1 -> 0 1 0 0 0 0 0 0 0 0 # ont hot함수를 사용하면 알아서 one hot처리를 해준다. # one hot을 만들 때 주의점 # dim에 주의하라. # shape이 어떻게 변하는지 잘 살펴봐야한다. cell = tf.contrib.rnn.BasicLSTMCell(num_units=hidden_size, state_is_tuple=True) initial_state = cell.zero_state(batch_size, tf.float32) outputs, _states = tf.nn.dynamic_rnn(cell, x_one_hot, initial_state=initial_state, dtype=tf.float32) # cell이 input # x_one_hot이 target 각 H1, H2에서 나올 값 # FC layer(Softmax) X_for_fc = tf.reshape(outputs, [-1, hidden_size]) outputs = tf.contrib.layers.fully_connected(X_for_fc, num_classes, activation_fn=None) # reshape out for sequence_loss outputs = tf.reshape(outputs, [batch_size, sequence_length, num_classes]) weights = tf.ones([batch_size, sequence_length]) sequence_loss = tf.contrib.seq2seq.sequence_loss(logits=outputs, targets=Y, weights=weights) loss = tf.reduce_mean(sequence_loss) train = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(loss) prediction = tf.argmax(outputs, axis=2) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for i in range(300): l, _ = sess.run([loss, train], feed_dict={X: x_data, Y: y_data}) result = sess.run(prediction, feed_dict={X: x_data}) # print char using dic result_str = [idx2char[c] for c in np.squeeze(result)] print(i, "loss:", l, "Prediction:", ''.join(result_str))
3,571
src/isanlp_rst/features_extractor.py
IINemo/isanlp_rst
6
2025907
import numpy as np import pandas as pd def get_embeddings(embedder, x, maxlen=100): x_ = [text[:text.rfind('_')] for text in x.split()] result = np.zeros((embedder.vector_size, maxlen)) for i in range(min(len(x_), maxlen)): try: result[i] = embedder[x_[i]] except KeyError: continue return result class FeaturesExtractor: DROP_COLUMNS = ['snippet_x', 'snippet_y', 'snippet_x_tmp', 'snippet_y_tmp', 'postags_x', 'postags_y'] def __init__(self, processor, scaler=None, categorical_cols=None, one_hot_encoder=None, label_encoder=None): self.processor = processor self.scaler = scaler self._categorical_cols = categorical_cols self.one_hot_encoder = one_hot_encoder self.label_encoder = label_encoder def __call__(self, df, annot_text, annot_tokens, annot_sentences, annot_lemma, annot_morph, annot_postag, annot_syntax_dep_tree): x = self.processor(df, annot_text, annot_tokens, annot_sentences, annot_lemma, annot_morph, annot_postag, annot_syntax_dep_tree) if self._categorical_cols: if self.label_encoder: x[self._categorical_cols] = x[self._categorical_cols].apply( lambda col: self.label_encoder.fit_transform(col)) if self.one_hot_encoder: x_ohe = self.one_hot_encoder.transform(x[self._categorical_cols].values) x_ohe = pd.DataFrame(x_ohe, x.index, columns=self.one_hot_encoder.get_feature_names(self._categorical_cols)) x = x.join( pd.DataFrame(x_ohe, x.index).add_prefix('cat_'), how='right' ).drop(columns=self._categorical_cols).drop(columns=self.DROP_COLUMNS) if self.scaler: return pd.DataFrame(self.scaler.transform(x.values), index=x.index, columns=x.columns) return x
2,019
index/__init__.py
andrei-alpha/search
0
2026224
__all__ = [] # The SearchIndex class is the only class most implementations would need from SearchIndex import SearchIndex
123
admin_autoregister/apps.py
janezkranjc/django-admin-autoregister
3
2023533
from django.apps import AppConfig class AdminAutoregisterConfig(AppConfig): name = 'admin_autoregister'
110
main/migrations/0001_initial.py
jsmnbom/htxaarhuslan
1
2025815
# -*- coding: utf-8 -*- # Generated by Django 1.10.2 on 2016-10-31 11:15 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Lan', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('start', models.DateTimeField()), ('end', models.DateTimeField()), ('name', models.CharField(max_length=255)), ('schedule', models.TextField()), ], ), migrations.CreateModel( name='LanProfile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('lan', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='main.Lan')), ], ), migrations.CreateModel( name='Profile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('picture', models.ImageField(upload_to='profile/')), ('bio', models.TextField()), ('grade', models.CharField(choices=[('teacher', 'Lærer'), ('none', 'Ukendt'), ('13xa', '13xa'), ('14xaa', '14xaa'), ('14xab', '14xab'), ('14abc', '14xac'), ('14xad', '14xad'), ('14xar', '14xar'), ('14xaj', '14xaj')], default='none', max_length=32)), ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Seat', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('table', models.CharField(max_length=8)), ('row', models.SmallIntegerField()), ('num', models.CharField(max_length=8)), ], ), migrations.AddField( model_name='lanprofile', name='profile', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='main.Profile'), ), migrations.AddField( model_name='lanprofile', name='seat', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='main.Seat'), ), migrations.AddField( model_name='lan', name='profiles', field=models.ManyToManyField(through='main.LanProfile', to='main.Profile'), ), migrations.AddField( model_name='lan', name='seats', field=models.ManyToManyField(to='main.Seat'), ), ]
3,020
accounts/urls.py
devfrb4/kip
0
2025670
from django.conf.urls import url urlpatterns = [ url(r'^$', 'accounts.views.example', name='example'), ]
107
app/tests/test_comments.py
ChegeDaniella/Pitches
0
2025311
import unittest from app.main.models import Comments from app import db class CommentsModelTest(unittest.TestCase): def setUp(self): self.new_comments=Comments( comment_content='new',pitches_id ='I love darkness',user_id = 123) def tearDown(self): Comments.query.delete() def test __init__(self): self.assertEquals(self.new_comments.comment_content,'new') self.assertEquals(self.new_comments.pitches_id,'I love darkness',) self.assertEquals(self.new_comments.user_id, 123)
557
src/processing/result.py
code-critic/codecritic2
0
2025867
#!/bin/python3 # author: <NAME> import pathlib import typing from entities.crates import CaseResult, TestResult from loguru import logger from processing import ExecutorStatus, ProcessRequestType from utils.crypto import sha1 from utils.strings import ensure_iterable class RequestResult(object): """ :type solution: typing.Optional[str] :type lang: typing.Optional[Languages] :type result: ExecutorResult :type results: typing.List[ExecutorResult] """ def __init__(self, request): """ :type request: processing.request.ProcessRequest """ self.lang = request.lang self.solution = request.solution if request.solution else None self.docker = request.docker self.action = request.type self.user = request.user self.course = request.course self.problem = request.problem self.result = ExecutorResult.empty_result(ExecutorResult.RESULT) self.results = list() self.subcases = list(self._walk_cases()) if self.action is ProcessRequestType.SOLVE: if self.lang.compile: self.results.append(ExecutorResult.empty_result(ExecutorResult.COMPILATION)) else: p = self.problem.reference if p and p.lang_ref and p.lang_ref.compile: self.results.append(ExecutorResult.empty_result(ExecutorResult.COMPILATION)) for subcase in self.subcases: self.results.append(ExecutorResult.empty_result(subcase.id)) def _walk_cases(self): for case in self.problem.tests: for subcase in case.cases(): yield subcase def __getitem__(self, id): for test in self.results: if test.id == id: return test if id is not ExecutorResult.COMPILATION: logger.warning('Could not find test {} in {}', id, self.results) def __setitem__(self, id, value): for i, test in enumerate(self.results): if test.id == id: self.results[i] = value return if id is not ExecutorResult.COMPILATION: logger.warning('Could not find test {} in {}', id, self.results) def __iter__(self): return iter(self.subcases) @property def compilation(self): return self[ExecutorResult.COMPILATION] @compilation.setter def compilation(self, value): self[ExecutorResult.COMPILATION] = value def peek(self, full=True): return TestResult( lang=self.lang.id if self.lang else None, solution=self.solution, docker=self.docker, action=self.action.value, user=self.user.id, course=self.course.id, problem=self.problem.id, result=self.result.peek(full), results=[x.peek(full) for x in self.results], ) class ExecutorResult(object): """ :type stdin: pathlib.Path :type stdout: pathlib.Path :type stderr: pathlib.Path """ COMPILATION = 'Compilation' RESULT = 'Result' def __init__(self, cmd=None, status=ExecutorStatus.IN_QUEUE, returncode=None, error=None): self.cmd = cmd self.status = status self.returncode = returncode self.error = error self.uuid = None self.id = None self.duration = 0.0 self.message = None self.message_details = None self.console = None self.attachments = list() # score of the test self.score = 0 self.scores = list() self.stdin = None self.stdout = None self.stderr = None @staticmethod def try_read(stream: pathlib.Path) -> typing.List[str]: try: return ensure_iterable(stream.read_text().splitlines()) except: return [] def read_stdout(self): return self.try_read(self.stdout) def read_stdin(self): return self.try_read(self.stdin) def read_stderr(self): return self.try_read(self.stderr) def register(self, id): self.id = id self.uuid = sha1(id) return self def __call__(self, status=None, returncode=None, error=None, duration=None): if status is not None: self.status = status if returncode is not None: self.returncode = returncode if error is not None: self.error = error if duration is not None: self.duration = duration return self def __repr__(self): return 'Result([%s], status=%s, rc=%s, duration=%1.3f)' % ( self.id, self.status.name, str(self.returncode), self.duration ) def failed(self): return self.returncode != 0 def peek(self, full=True) -> CaseResult: if full: return CaseResult( uuid=self.uuid, id=self.id, status=self.status.str, cmd=self.cmd, duration=self.duration, returncode=self.returncode, console=ensure_iterable(self.console)[:100], message=self.message, message_details=ensure_iterable(self.message_details)[:100], attachments=ensure_iterable(self.attachments), score=self.score, scores=self.scores, ) return CaseResult( id=self.id, status=self.status.str, cmd=' '.join(ensure_iterable(self.cmd)), duration=self.duration, returncode=self.returncode, message=self.message, message_details=ensure_iterable(self.message_details), score=self.score, scores=self.scores, ) # for p in ('cmd', 'message', 'message_details'): # if p in doc and not doc[p]: # doc.pop(p) # return doc @classmethod def empty_result(cls, id, status=ExecutorStatus.IN_QUEUE): return ExecutorResult([], status).register(id) @classmethod def _showcase(cls): for status in ExecutorStatus: result = cls.empty_result(str(status), status) result.message = str(status) yield result
6,356
toko/schemas/demanda_schema.py
erickotsuka/sistema-contratacao-backend
0
2025600
from marshmallow_sqlalchemy import ModelSchema from marshmallow import fields from toko.models.demanda_model import DemandaModel class DemandaSchema(ModelSchema): class Meta: model = DemandaModel
209
tests/crow/test_eigen_svd.py
rinelson456/raven
159
2026273
# Copyright 2017 Battelle Energy Alliance, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This tests is used to verify the svd decomposition calculated inside crow # the svd module from numpy.linalg is used as gold solution. #For future compatibility with Python 3 from __future__ import division, print_function, unicode_literals, absolute_import import warnings warnings.simplefilter('default',DeprecationWarning) #!/usr/bin/env python import sys import crowTestUtils as utils import numpy as np from math import sqrt from numpy import linalg as LA distribution1D = utils.findCrowModule('distribution1D') # input data, random matrix can also be used. mu = [1.0,2.0,3.0,4.0,5.0] cov = [1.36, -0.16, 0.21, 0.43, -0.144, -0.16, 6.59, 0.794, -0.173, -0.406, 0.21, 0.794, 5.41, 0.461, 0.179, 0.43, -0.173, 0.461, 14.3, 0.822, -0.144, -0.406, 0.179, 0.822, 3.75] #dim = 5 # Transform 'mu' and 'cov' to the c++ vector muCpp = distribution1D.vectord_cxx(len(mu)) for i in range(len(mu)): muCpp[i] = mu[i] covCpp = distribution1D.vectord_cxx(len(cov)) for i in range(len(cov)): covCpp[i] = cov[i] # call the functions from the crow to compute the svd covType = "abs" rank = 5 mvnDistribution = distribution1D.BasicMultivariateNormal(covCpp,muCpp,str(covType),5) dim = mvnDistribution.getSingularValuesDimension() sCpp_vector = mvnDistribution.getSingularValues() sCpp = [sCpp_vector[i] for i in range(dim)] sCpp = np.asarray(sCpp) dimVectorLeft = mvnDistribution.getLeftSingularVectorsDimensions() uCpp_vector = mvnDistribution.getLeftSingularVectors() uCpp = [uCpp_vector[i] for i in range(dimVectorLeft[0]*dimVectorLeft[1])] uCpp = np.asarray(uCpp) uCpp = np.reshape(uCpp,(dimVectorLeft[0],dimVectorLeft[1])) dimVectorRight = mvnDistribution.getRightSingularVectorsDimensions() vCpp_vector = mvnDistribution.getRightSingularVectors() vCpp = [vCpp_vector[i] for i in range(dimVectorRight[0]*dimVectorRight[1])] vCpp = np.asarray(vCpp) vCpp = np.reshape(vCpp,(dimVectorRight[0],dimVectorRight[1])) # using numpy to compute the svd covNp = np.asarray(cov).reshape(-1,int(sqrt(len(cov)))) uNp,sNp,vNp = LA.svd(covNp,full_matrices=False) # reconstruct the matrix using A = U*S*V.T covReCompute = np.dot(uCpp,np.dot(np.diag(sCpp),vCpp.T)) results = {"pass":0,"fail":0} utils.checkArrayAllClose("MVN singular values",sCpp,sNp,results) utils.checkArrayAllClose("MVN left singular vectors",np.absolute(uCpp),np.absolute(uNp),results) utils.checkArrayAllClose("MVN right singular vectors", np.absolute(vCpp),np.absolute(vNp.T),results) utils.checkArrayAllClose("MVN singular value decomposition",covNp,covReCompute,results) utils.checkAnswer("MVN dimensions of singular values",dim,5,results) utils.checkAnswer("MVN row dimensions of left singular vectors",dimVectorLeft[0],5,results) utils.checkAnswer("MVN col dimensions of left singular vectors",dimVectorLeft[1],5,results) utils.checkAnswer("MVN row dimensions of right singular vectors",dimVectorRight[0],5,results) utils.checkAnswer("MVN col dimensions of right singular vectors",dimVectorRight[1],5,results) print(results) sys.exit(results["fail"]) """ <TestInfo> <name>crow.test_svd</name> <author>cogljj</author> <created>2017-03-24</created> <classesTested>crow</classesTested> <description> This test is a Unit Test for the crow swig classes. It tests that the MultiVariate Normal distribution is accessable by Python and that the SVD on the covariance is performable in Python </description> <revisions> <revision author="alfoa" date="2018-05-15">Adding this test description.</revision> </revisions> </TestInfo> """
4,196
Lab_02/Python/copy Oranges HSV.py
MoElaSec/Practical-Image-Processing
0
2025307
import cv2 import numpy as np def copy_orange(img): """A Function to Copy/extract Oranges only to a new img""" result = np.zeros(img.shape, np.uint8) hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) # v = np.array([]) for i in range(result.shape[0]): for j in range(result.shape[1]): # v = np.append(v, np.array(img[r, c]), axis=0) c = img[i, j] c2 = hsv[i, j] if c2[0] < 30 and c2[1] > 5: # only the Hue & Saturation to be guessed result[i, j] = c return result def main(): path = "Oranges.jpg" img = cv2.imread(path) if img is None: print('Could not open or find the image: ', path) exit(0) result = copy_orange(img) cv2.imshow("Oranges", result) cv2.waitKey(0) cv2.destroyAllWindows() ##################################### if __name__ == '__main__': main()
908
neighborhood_App/forms.py
Tito-74/Neighborhood-App
0
2025890
from django.contrib.auth.models import User from django import forms from django.contrib.auth.forms import UserCreationForm from .models import Profile, Post, Business,Neighbourhood class SignUpForm(UserCreationForm): # email = forms.EmailField() class meta: model = User fields = ('username','email','password1','<PASSWORD>') def __init__(self, *args, **kwargs): super(SignUpForm,self).__init__(*args, **kwargs) self.fields['username'].widget.attrs.update({'class':'form-control'}) # self.fields['email'].widget.attrs.update({'class':'form-control'}) self.fields['password1'].widget.attrs.update({'class':'form-control'}) self.fields['password2'].widget.attrs.update({'class':'form-control'}) class UpdateProfileForm(forms.ModelForm): class Meta: model=Profile exclude=['user',] class UpdateUserForm(forms.ModelForm): class Meta: model=User exclude=['user',] class AddEventForm(forms.ModelForm): class Meta: model = Post template_name = "add.html" fields = ['user','title','image','content','neighbourhood'] class PostForm(forms.ModelForm): class Meta: model=Post exclude=['username','neighbourhood','avatar'] class AddBusinessForm(forms.ModelForm): class Meta: model = Business template_name = "buzpost.html" fields = ['user','name','bizzhood','bizz_email','desc'] class AddBusinessForm(forms.ModelForm): class Meta: model = Business template_name = "buzpost.html" fields = ['user','name','bizzhood','bizz_email','desc'] class AddNeighbourhoodForm(forms.ModelForm): class Meta: model = Neighbourhood template_name = "neighbourhood.html" fields = ['name','hood_location','description','hood_photo']
1,868
ajeita_lista/questao.py
Arthurnevs/E7
0
2025418
def ajeita_lista(lista): cont1 = 0 for i in range(len(lista)): if lista[i] % 2 == 0: lista[i],lista[cont1] = lista[cont1], lista[i] cont1 += 1 for a in range(cont1-1,0,-1): for j in range(cont1-1,0,-1): if lista[j] > lista[j-1]: lista[j],lista[j-1] = lista[j-1], lista[j] for b in range(cont1,len(lista)-1): for k in range(cont1,len(lista)-1): if lista[k] > lista[k+1]: lista[k],lista[k+1] = lista[k+1],lista[k] l = [1,-8,3,2,0]
468
fern/items/migrations/0001_initial.py
Eslamhathout/Fern
0
2025040
# Generated by Django 3.0.5 on 2020-06-19 19:25 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Item', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(help_text='Item name', max_length=255)), ('price', models.PositiveIntegerField()), ('expiry_time', models.DateTimeField(blank=True, null=True)), ], ), ]
643
build.py
m0zes/z3randomizer
1
2026198
import os import sys import hashlib from asar import init as asar_init, close as asar_close, patch as asar_patch, geterrors as asar_errors, getprints as asar_prints, getwarnings as asar_warnings JAP10HASH = '03a63945398191337e896e5771f77173' try: from yaml import CLoader as Loader except ImportError: from yaml import Loader def int16_as_bytes(value): value = value & 0xFFFF return [value & 0xFF, (value >> 8) & 0xFF] def int32_as_bytes(value): value = value & 0xFFFFFFFF return [value & 0xFF, (value >> 8) & 0xFF, (value >> 16) & 0xFF, (value >> 24) & 0xFF] def is_bundled(): return getattr(sys, 'frozen', False) def local_path(path): if local_path.cached_path: return os.path.join(local_path.cached_path, path) elif is_bundled(): if hasattr(sys, "_MEIPASS"): # we are running in a PyInstaller bundle local_path.cached_path = sys._MEIPASS # pylint: disable=protected-access,no-member else: # cx_Freeze local_path.cached_path = os.path.dirname(os.path.abspath(sys.argv[0])) else: # we are running in a normal Python environment import __main__ local_path.cached_path = os.path.dirname(os.path.abspath(__main__.__file__)) return os.path.join(local_path.cached_path, path) local_path.cached_path = None def make_new_base2current(old_rom_data, new_rom_data): from collections import OrderedDict import json # extend to 2 mb old_rom_data.extend(bytearray([0x00]) * (2097152 - len(old_rom_data))) out_data = OrderedDict() for idx, old in enumerate(old_rom_data): new = new_rom_data[idx] if old != new: out_data[idx] = [int(new)] for offset in reversed(list(out_data.keys())): if offset - 1 in out_data: out_data[offset-1].extend(out_data.pop(offset)) with open('../base2current.json', 'wt') as outfile: json.dump([{key: value} for key, value in out_data.items()], outfile, separators=(",", ":")) basemd5 = hashlib.md5() basemd5.update(new_rom_data) return "New Rom Hash: " + basemd5.hexdigest() if __name__ == '__main__': try: asar_init() print("Asar DLL initialized") print("Opening Base rom") with open('../alttp.sfc', 'rb') as stream: old_rom_data = bytearray(stream.read()) if len(old_rom_data) % 0x400 == 0x200: old_rom_data = old_rom_data[0x200:] basemd5 = hashlib.md5() basemd5.update(old_rom_data) if JAP10HASH != basemd5.hexdigest(): raise Exception("Base rom is not 'Zelda no Densetsu - Kamigami no Triforce (J) (V1.0)'") print("Patching Base Rom") result, new_rom_data = asar_patch(os.path.abspath('LTTP_RND_GeneralBugfixes.asm'), old_rom_data) if result: with open('../working.sfc', 'wb') as stream: stream.write(new_rom_data) print("Success\n") print(make_new_base2current(old_rom_data, new_rom_data)) prints = asar_prints() for p in prints: print(p) else: errors = asar_errors() print("\nErrors: " + str(len(errors))) for error in errors: print (error) warnings = asar_warnings() print("\nWarnings: " + str(len(warnings))) for w in warnings: print(w) asar_close() except: import traceback traceback.print_exc()
3,594
likes.py
juanchoabdon/insta-data-science
0
2025281
from instapy import InstaPy session = InstaPy(username='juanchoabdon', password='<PASSWORD>', nogui=True) session.login() session.set_do_follow(enabled=True, percentage=10) session.follow_user_followers(['freddiervega'], amount=500, random=False, sleep_delay=01) session.set_sleep_reduce(01) session.end()
308
src/051-100/P076.py
lord483/Project-Euler-Solutions
0
2023322
def solve(n): mem = [0 for _ in range(n + 1)] mem[0] = 1 for i in range(1, n): for j in range(i, n + 1): mem[j] += mem[j - i] return mem[-1] if __name__ == "__main__": n = 100 print(solve(n))
239
notifier.py
andrewlawhh/amazon-price-drop-notifier
2
2025175
import requests import bs4 as bs import smtplib from email.message import EmailMessage from credentials import * import sqlite3 import datetime import time from typing import List ''' Main function ''' def update_and_notify() -> None : ''' For each URL in database: get the price if it is different, update the dictionary if it is lower than it was before, email the user ''' while True: url_price_email_list = read_database() for dict in url_price_email_list: url = dict['url'] old_price = dict['price'] email = dict['email'] price_and_item = get_price_and_item(url) new_price = price_and_item[0] item_name = price_and_item[1] if old_price != new_price: update_table(url, new_price) if new_price < old_price: notify(url, item_name, new_price, email) # Run every four hours time.sleep(14400) def get_price_and_item(url : str) -> (float, str) : # Scrapes and returns the price of a given amazon url # Set up web scraper page = requests.get(url) html = page.content soup = bs.BeautifulSoup(html, 'html.parser') # Price tags on amazon are marked with id of #priceblock_ourprice price_tag = str(soup.find(id = 'priceblock_ourprice')) # Item titles are marked with id of #productTitle # Strip product title text of white space and line breaks item_name = strip(soup.find(id = 'productTitle').text) # Get the relevant information ($ amount) from the price tag price = price_tag[price_tag.index('$'):price_tag.index('</')] # Handle ranged vs flat if '-' in price: # Ranged price case : manipulate string to find low and high ends low_end = float(price[1:price.index(' ')]) high_end = float(price[price.index('- $') + 3:]) return (low_end + high_end) // 2, item_name else: # Flat price case : Remove dollar sign and return the number as a float price = float(price[1:]) return price, item_name def get_price(url : str) -> float : return get_price_and_item(url)[0] def get_name(url : str) -> str : return get_price_and_item(url)[1] ''' Database handling ''' def read_database() -> List[dict] : # Reads from a database and returns list of dictionaries database_list = [] conn = sqlite3.connect('tracked_items.db') c = conn.cursor() for row in c.execute('SELECT * FROM items'): database_list.append({'url' : row[0], 'price' : row[1], 'email' : row[2]}) conn.close() return database_list def update_table(url : str, price : float) -> None : # Updates database with the new price where url column = url parameter conn = sqlite3.connect('tracked_items.db') c = conn.cursor() c.execute('UPDATE items SET price = ? WHERE url = ?', (price, url)) conn.commit() conn.close() c.close() ''' Notify functions ''' def notify(url : str, name : str, price : float, recipient : str) -> None : # Email the recipient notifying him / her of a price drop # Format date and time for the email message date = datetime.datetime.now().isoformat()[:10] time = datetime.datetime.now().isoformat()[11:19] content = ' '.join(['Item', name, 'at', url, 'just dropped to $', str(price), 'at', time, 'on', date]) send_email(content, recipient) def subscribe_notify(url : str, name : str, recipient : str) -> None : # Email the person when he / she tracks a new item price = get_price(url) content = ' '.join(('You have signed up to receive notifications for', name, 'at', url, '.', 'The price is currently', str(price))) send_email(content, recipient) def unsubscribe_notify(recipient : str) -> None : # Email the person who is unsubscribing content = 'Thank you for using the Amazon Price Drop Notifier Service. You have unsubscribed from the mailing list.' send_email(content, recipient) def untrack_notify(url : str, name : str, recipient : str) -> None : content = ' '.join(('You have untracked', name, 'at', url)) send_email(content, recipient) def send_email(content : str, recipient : str) -> None : # Send email to recipient with body as content # Initialize SMTP and login to Gmail server = smtplib.SMTP('smtp.gmail.com', 587) server.ehlo() server.starttls() server.login(email_username, email_password) # Create email message msg = EmailMessage() msg.set_content(content) msg['Subject'] = 'Amazon Price Drop' msg['From'] = '<EMAIL>' msg['To'] = recipient # Send email and quit server.send_message(msg) server.quit() ''' Utility functions ''' def strip(str : str) -> str : ''' Returns a copy of the String argument with white space and line breaks removed :param str: String :return: String ''' stripped = str for char in stripped: if char in '\n ': stripped = stripped.replace(char, '') return stripped ''' Main ''' def main(): update_and_notify() if __name__ == '__main__': main()
5,157
code/doubanboardcast.py
zefengdaguo/douban_crawler
116
2024993
from bs4 import BeautifulSoup import re import time import requests import random def getwords(item): txt=item.get_text(strip=False).replace(' ','').replace('\r','\n')\ .replace('\n\n\n\n\n\n','\$#n').replace('\n\n\n\n',' ').replace('\n','')\ .replace('$#','').replace('\xa0','').replace('\\n','\n').replace('+','') try: pic=item(class_=re.compile('view-large'))[0]['href'] except: pic='' return txt+pic def madeBox(txt): box='\t------------------------------------------------------------------------------------------\n'+'\t'+\ txt+'\n\t'+'------------------------------------------------------------------------------------------\n' return box def dealwithshare(txt1,txt2): li=txt1.split('\n') li[-4]=li[-4]+' @'+li[-3] for word in li: word.replace(' ','') li.remove(li[-3]) li2=txt2.split('\n') li.insert(-2,madeBox(''.join(li2[0:-3]))) return '\n'.join(li) headers = { 'Uesr-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/66.0.3359.181 Safari/537.36', } rawji_america='ll="108297"; bid=TFLDE9t44mY; _pk_ses.100001.8cb4=*; __utmc=30149280; __utma=30149280.995009761.1561041533.1561041533.1561042634.2; __utmz=30149280.1561042634.2.2.utmcsr=google|utmccn=(organic)|utmcmd=organic|utmctr=(not%20provided); __utmt=1; dbcl2="198268851:+gNufdpzGAw"; ck=AnNe; ap_v=0,6.0; douban-profile-remind=1; push_noty_num=0; push_doumail_num=0; __utmv=30149280.19826; __yadk_uid=nFY3eG607ZoqEtBaMMWYVuqNCXZIycd6; douban-fav-remind=1; __utmb=30149280.12.10.1561042634; _pk_id.100001.8cb4=9f8810e4b7a61874.1561041531.1.1561043477.1561041531.' rawji='ll="108297"; bid=BQLi_2UIMh8; __utmc=30149280; __yadk_uid=Fl0aRuIUatWP1JCilVDTUzW1h2R71qWN; push_noty_num=0; push_doumail_num=0; __utmv=30149280.19826; ps=y; _vwo_uuid_v2=DD4476A9DC58A854DCFFF0D91547908DA|534c6354fc5886543fd8704a8eb02aeb; _pk_ref.100001.8cb4=%5B%22%22%2C%22%22%2C1561087673%2C%22https%3A%2F%2Faccounts.douban.com%2Faccounts%2Fsafety%2Funlock_phone%22%5D; _pk_ses.100001.8cb4=*; __utma=30149280.1984600914.1561080464.1561080464.1561087675.2; __utmz=30149280.1561087675.2.2.utmcsr=accounts.douban.com|utmccn=(referral)|utmcmd=referral|utmcct=/accounts/safety/unlock_phone; __utmt=1; dbcl2="198268851:Co+RFApa9xQ"; ck=g0Bz; douban-profile-remind=1; ap_v=0,6.0; douban-fav-remind=1; __gads=ID=750f05eb1a424666:T=1561087843:S=ALNI_MaWUrys775-4HBWVFaGDarZgSJRCA; _pk_id.100001.8cb4=3db8de030f64f76f.1561080462.2.1561087888.1561080727.; __utmb=30149280.21.10.1561087675' def getCookie(raw_cookies): cookies={} for line in raw_cookies.split(';'): key,value=line.split('=',1) #1代表只分一次,得到两个数据 cookies[key]=value return cookies def getHtml(douid,raw_cookies=rawji,beg=1,end=10): html_list=[] cookies={} cookies=getCookie(raw_cookies) firstpage='https://www.douban.com/people/'+douid+'/statuses?p='+str(beg) s=requests.Session() res=s.get(firstpage,headers=headers,cookies=cookies) html_list.append(res.text) print(f'第{beg}页',res.status_code,res.reason) while beg<end: beg+=1 time.sleep(random.uniform(1,5)) try: nextpage='https://www.douban.com/people/'+douid+'/statuses?p='+str(beg) res2=s.get(nextpage,headers=headers,cookies=cookies) soup=BeautifulSoup(res2.text,"html.parser") items=soup.find_all(class_=re.compile('status-item')) print(f'第{beg}页',res2.status_code,res.reason) except: print('网页请求错误') else: html_list.append(res2.text) return html_list def saveHtml(douid,html_list,beg,end): file_name=douid+"'s_board_cast_page_"+str(beg)+'-'+str(end) with open (file_name.replace('/','_')+".html","wb") as f: for file_content in html_list: #写文件用bytes而不是str,所以要转码 f.write(bytes(file_content+'\n',encoding='utf-8')) print(f'第{beg}页HTML完成') beg+=1 def saveTXT(douid,htmlList,beg,end): with open(douid+'board_cast_'+str(beg)+'-'+str(end)+'.txt','w',encoding='utf-8_sig') as f: for text in htmlList: soup=BeautifulSoup(text,"html.parser") items=soup.find_all(class_=re.compile('status-item')) t=0 for i in range(len(items)): if t>=len(items): break txt=getwords(items[t]) if '转发:' in txt: origin=getwords(items[t+1]) txt=dealwithshare(txt,origin) t+=1 f.write(str(txt)+'\n') t+=1 print(f'第{beg}页TXT完成') beg+=1 def main(): print('hello,这是一个备份豆瓣广播的程序。\n需要你自己的cookie用来爬取广播。') choice=input('该过程有风险,请确定你要开始备份(yes/no):') if choice=='yes': user_raw=input('请输入你的cookie(最后不要带空格):') doubanid=input('请输入你的豆瓣id:') begin=eval(input('请输入你开始备份的页码(比如1):')) endpage=eval(input('请输入你结束备份的页码:')) Hlist=getHtml(douid=doubanid,raw_cookies=user_raw,beg=begin,end=endpage) print(type(Hlist[0])) print(f'爬取了{len(Hlist)}页') choice2=input('请选择你要输出html结果(a)还是文本txt结果(b)或者我全都要(all):') choice2=choice2.lower() if choice2 == 'a': try: saveHtml(doubanid,Hlist,beg=begin,end=endpage) except Exception as e: print(e) print('储存html文件出错') print('问题反馈:<EMAIL> | https://github.com/JimSunJing/douban_clawer') over=input('按任意键退出') else: print('成功') elif choice2 == 'b': try: saveTXT(doubanid,Hlist,beg=begin,end=endpage) except Exception as e: print(e) print('储存txt文件出错') print('问题反馈:<EMAIL> | https://github.com/JimSunJing/douban_clawer') over=input('按任意键退出') else: print('成功') elif choice2 == 'all': try: saveHtml(doubanid,Hlist,beg=begin,end=endpage) saveTXT(doubanid,Hlist,beg=begin,end=endpage) except Exception as e: print(e) print('出错') print('程序结束,文件已存在该exe目录中') print('问题反馈:<EMAIL> | https://github.com/JimSunJing/douban_clawer') over=input('按任意键退出') main()
6,426
src/management/app/migrations/0002_auto_20210329_2151.py
mnimmny/Project-Security-Metrics
47
2025354
# Generated by Django 3.1.7 on 2021-03-30 04:51 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('app', '0001_initial'), ] operations = [ migrations.RenameField( model_name='package', old_name='name', new_name='package_url', ), migrations.CreateModel( name='Metric', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('key', models.CharField(max_length=256)), ('value_integer', models.IntegerField(blank=True, null=True)), ('value_text', models.TextField(blank=True, null=True)), ('properties', models.JSONField(blank=True, null=True)), ('timestamp', models.DateTimeField(blank=True, null=True)), ('package', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='app.package')), ], ), ]
1,085
config/__init__.py
Ebryx/S3Rec0n
38
2025270
""" ___________________________ __ ________ / _____/\_____ \______ \__ __ _______/ |\_____ \______ \_____ \ _(__ <| | _/ | \/ ___/\ __\_(__ <_ __ \ / \ / \ | \ | /\___ \ | | / \ | \/ /_______ //______ /______ /____//____ > |__|/______ /__| \/ \/ \/ \/ \/ """ from config.functions import * from config.colors import * from config.config import * from config.banner import * from config.footer import *
547
UserDetails/users/views.py
Adutta1998/django_rest_api
0
2026309
from django.shortcuts import render,HttpResponse from .models import UserData # Create your views here. def AddData(request): return render(request,'index.html') def DataSubmit(request): if(request.method == 'POST'): fname = request.POST['fname'] lname = request.POST['lname'] adrs = request.POST['adrs'] dob = request.POST['dob'] wght = request.POST['wght'] hght = request.POST['hght'] bld_grp = request.POST['bld_grp'] model = UserData(first_name=fname,last_name=lname,dob=dob,address=adrs,height=hght,weight=wght,blood_grp=bld_grp) model.save() return HttpResponse(request.POST['fname']) else: return render(request,'index.html')
734
hackerrank/1. introduction/5.py
Eurydia/Xian-assignment
0
2026173
from sys import stdin, stdout if __name__ == '__main__': n = int(stdin.readline()) for i in range(n): stdout.write(f'{i*i}\n')
143
FlaskAppAML/views.py
ZGrinacoff/ufc_fightclub
0
2025648
""" Routes and views for the flask application. """ import json import urllib.request import os from datetime import datetime from flask import render_template, request, redirect from FlaskAppAML import app from FlaskAppAML.forms import SubmissionForm UFC_ML_KEY=os.environ.get('API_KEY', "<KEY>) UFC_URL = os.environ.get('URL', "https://ussouthcentral.services.azureml.net/workspaces/4a71219c29084463a3cc6a1f420b86e7/services/3161dc4890504d8d898afff2e6cd335b/execute?api-version=2.0&details=true") # Deployment environment variables defined on Azure (pull in with os.environ) # Construct the HTTP request header # HEADERS = {'Content-Type':'application/json', 'Authorization':('Bearer '+ API_KEY)} HEADERS = {'Content-Type':'application/json', 'Authorization':('Bearer '+ UFC_ML_KEY)} # Our main app page/route @app.route('/', methods=['GET', 'POST']) @app.route('/home', methods=['GET', 'POST']) def home(): """Renders the home page which is the CNS of the web app currently, nothing pretty.""" form = SubmissionForm(request.form) # Form has been submitted if request.method == 'POST' and form.validate(): # Plug in the data into a dictionary object # - data from the input form # - text data must be converted to lowercase # form.title.data.lower() ---> Use for input form. data = { "Inputs": { "input1": { "ColumnNames": ["Winner", "B_Height_cms", "B_Reach_cms", "B_Weight_lbs", "R_Height_cms", "R_Reach_cms", "R_Weight_lbs", "B_age", "R_age"], "Values": [ [ "value", form.blue_height.data.lower(), form.blue_reach.data.lower(), form.blue_weight.data.lower(), form.red_height.data.lower(), form.red_reach.data.lower(), form.red_weight.data.lower(), form.blue_age.data.lower(), form.red_age.data.lower() ] ] }, }, "GlobalParameters": { } } # Serialize the input data into json string body = str.encode(json.dumps(data)) # Formulate the request #req = urllib.request.Request(URL, body, HEADERS) req = urllib.request.Request(UFC_URL, body, HEADERS) # print(UFC_URL + body + HEADERS) # Send this request to the AML service and render the results on page try: # response = requests.post(URL, headers=HEADERS, data=body) response = urllib.request.urlopen(req) print(response) respdata = response.read() result = json.loads(str(respdata, 'utf-8')) result = do_something_pretty(result) # bar = create_chart() # result = json.dumps(result, indent=4, sort_keys=True) return render_template( 'result.html', title="This is the result from AzureML running our UFC Fight Predictor:", result=result) # An HTTP error except urllib.error.HTTPError as err: result="The request failed with status code: " + str(err.reason) return render_template( 'result.html', title='There was an error', result=result) #print(err) # Just serve up the input form return render_template( 'form.html', form=form, title='Run App', year=datetime.now().year, message='Demonstrating a website using Azure ML Api') @app.route('/contact') def contact(): """Renders the contact page.""" return render_template( 'contact.html', title='Contact', year=datetime.now().year, message='UFC Fightclub contact page.' ) @app.route('/about') def about(): """Renders the about page.""" return render_template( 'about.html', title='About', year=datetime.now().year, message='Your application description page.' ) def do_something_pretty(jsondata): """We want to process the AML json result to be more human readable and understandable""" import itertools # for flattening a list of tuples below # We only want the first array from the array of arrays under "Value" # - it's cluster assignment and distances from all centroid centers from k-means model value = jsondata["Results"]["output1"]["value"]["Values"][0] #valuelen = len(value) print(value) # Convert values (a list) to a list of tuples [(cluster#,distance),...] # valuetuple = list(zip(range(valuelen-1), value[1:(valuelen)])) # Convert the list of tuples to one long list (flatten it) # valuelist = list(itertools.chain(*valuetuple)) # Convert to a tuple for the list # data = tuple(list(value[0]) + valuelist) # Build a placeholder for the cluster#,distance values #repstr = '<tr><td>%d</td><td>%s</td></tr>' * (valuelen-1) # print(repstr) output='With a prediction accuracy of ' + value[10] + ' the winner of the fight was: '+value[9] + "." # def create_plot(): import plotly.graph_objects as go import plotly fighter_stats=['Height', 'Reach', 'Weight'] fig = go.Figure(data=[ go.Bar(name='Blue Fighter', x=fighter_stats, y=[value[1], value[2], value[3]]), go.Bar(name='Red Fighter', x=fighter_stats, y=[value[4], value[5], value[6]]) ]) # Change the bar mode fig.update_layout(barmode='group', title='UFC Fighter Stats Bar') fig.show() # graphJSON = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) # return graphJSON # Build the entire html table for the results data representation #tablestr = 'Cluster assignment: %s<br><br><table border="1"><tr><th>Cluster</th><th>Distance From Center</th></tr>'+ repstr + "</table>" #return tablestr % data return output
5,861
Knapsack-Problem/knapsack.py
Uljibuh/Genetic-Algorithm-in-Python
0
2024777
import numpy as np class Knapsack01Problem: def __init__(self): # initialize instance variables: self.items = [] self.maxCapacity = 0 # initialize the data self.__initData() def __len__(self): """ :return: the total number of items defined in the problem """ return len(self.items) def __initData(self): """ initializes the problem data """ self.items = [ ("map", 9, 150), ("compass", 13, 35), ("water", 153, 35), ("sandwich", 50, 160), ("glucose", 15, 60), ("tin", 15, 45), ("banana", 27, 60), ("apple", 39, 40), ("cheess", 23, 30), ("beer", 52, 10), ("suntan cream", 11, 70), ("camera", 32, 30), ("t-shirt", 24, 15), ("trousers", 48, 10), ("umbrella", 73, 40), ("waterproof trousers", 42, 70), ("waterproof overcloths", 43, 75), ("note-case", 22, 80), ("sunglasses", 7, 80), ("towel", 18, 12), ("socks", 4, 50), ("book", 30, 10), ] self.maxCapacity = 400 def getValue(self, zeroOneList): """ calculate the value of the selected items in the list, while ignoring items that will cause the accumulating weight to exceed the maximun weight :param zeroOneList: a list of 0/1 values corresponding to the list of the problem's items, '1' means that item was selected, :return: the calculated value """ totalWeight = totalValue = 0 for i in range(len(zeroOneList)): item, weight, value = self.items[i] if totalWeight + weight <= self.maxCapacity: totalWeight += zeroOneList[i] * weight totalValue += zeroOneList[i] * value return totalValue def printItems(self,zeroOneList): """ print selected items in the lsit, while ignoring item that will cause the accumulating weight to exceed the maximum weight :param zeroOneList: a list of 0/1 value corresponding to the list of the problem's items, '1' mean that item was selected. """ totalWeight = totalValue = 0 for i in range(len(zeroOneList)): item, weight, value = self.items[i] if totalWeight + weight <= self.maxCapacity: if zeroOneList[i] > 0: totalWeight += weight totalValue += value print("- adding {}: weight = {}, value = {}, accumulated weight = {}, accumulated value = {}". format(item, weight, value, totalWeight, totalValue)) print("- total weight = {}, total value = {}".format(totalWeight, totalValue)) # test the class using randam generated solution def main(): # create a problem instance: knapsack = Knapsack01Problem() # create a random solution and evaluate it: randomSolution = np.random.randint(2, size=len(knapsack)) print("Random solution = ") print(randomSolution) knapsack.printItems(randomSolution) if __name__ == "__main__": main()
3,463
src/server.py
klingj3/subreddit_suggestor
8
2024775
import tensorflow as tf from model_generation.suggester import Suggester from flask import Flask, send_file app = Flask(__name__) @app.before_first_request def load_model(): # Load the model for speed in subsequent calls. app.suggester = Suggester() @app.route("/api/suggestions/<username>") def suggestions(username): return app.suggester.get_estimates_for_user(username) @app.route("/") def landing(): return send_file('static/index.html') if __name__ == '__main__': app.run(threaded=False)
520
DailyProgrammer/DP20141105B.py
DayGitH/Python-Challenges
2
2026093
""" [11/05/2014] Challenge #187 [Intermediate] Finding Time to Reddit https://www.reddit.com/r/dailyprogrammer/comments/2ledaj/11052014_challenge_187_intermediate_finding_time/ #Description: I cover the border of my monitor with post it notes with tasks I have to do during the week. I am very unorganized. Each day I want to find the biggest block of free time to go on to Reddit. But I am not sure when that time is. I am also curious how I spend my days. This challenge you will help me get organized and find that time for me to be on Reddit. #Input: I will give you a listing of the post it notes around my monitor. Each line represents a single post it note. Sorry but they are not in any order but I was at least smart enough to date them and put the times of my daily events. #Output: Get me organized. I need to see my schedule for the week. For each day you must find the 1 block of time that is the most time between events on the post its that I can Reddit. Please help maximize my time on Reddit. Assume my start time at work is the beginning of the first event and my end time at work is the end time of the last event for that day. Then show me my final schedule. And while you are at it show me across the week how many minutes I dedicate to each task with a percentage of time it takes up my time. Hopefully I don't spend most of my time on Reddit. #Challenge Input: 11-6-2014: 05:18 AM to 06:00 AM -- code review 11-9-2014: 08:52 AM to 09:15 AM -- food 11-8-2014: 07:00 PM to 08:05 PM -- meeting 11-8-2014: 05:30 PM to 06:36 PM -- personal appointment 11-6-2014: 02:47 PM to 03:23 PM -- work 11-11-2014: 07:14 AM to 08:32 AM -- meeting 11-11-2014: 11:22 AM to 12:10 PM -- code review 11-8-2014: 01:39 PM to 02:06 PM -- food 11-9-2014: 07:12 AM to 08:06 AM -- meeting 11-9-2014: 02:14 PM to 03:15 PM -- code review 11-8-2014: 05:13 AM to 06:05 AM -- food 11-6-2014: 05:54 PM to 06:17 PM -- personal appointment 11-7-2014: 08:24 AM to 09:23 AM -- personal appointment 11-8-2014: 11:28 AM to 12:44 PM -- meeting 11-7-2014: 09:35 AM to 10:35 AM -- workout 11-9-2014: 10:05 AM to 11:15 AM -- code review 11-11-2014: 05:02 PM to 06:09 PM -- work 11-6-2014: 06:16 AM to 07:32 AM -- food 11-10-2014: 10:08 AM to 11:14 AM -- workout 11-8-2014: 04:33 PM to 05:12 PM -- meeting 11-10-2014: 01:38 PM to 02:10 PM -- workout 11-11-2014: 03:03 PM to 03:40 PM -- food 11-11-2014: 05:03 AM to 06:12 AM -- food 11-9-2014: 09:49 AM to 10:09 AM -- meeting 11-8-2014: 06:49 AM to 07:34 AM -- work 11-7-2014: 07:29 AM to 08:22 AM -- food 11-10-2014: 03:08 PM to 03:29 PM -- code review 11-9-2014: 03:27 PM to 04:39 PM -- food 11-7-2014: 05:38 AM to 06:49 AM -- meeting 11-7-2014: 03:28 PM to 04:06 PM -- code review 11-8-2014: 02:44 PM to 03:35 PM -- meeting 11-6-2014: 08:53 AM to 09:55 AM -- workout 11-11-2014: 02:05 PM to 02:49 PM -- meeting 11-10-2014: 08:29 AM to 09:23 AM -- code review 11-10-2014: 11:09 AM to 11:35 AM -- sales call 11-6-2014: 11:29 AM to 12:18 PM -- code review 11-11-2014: 08:04 AM to 08:45 AM -- work 11-9-2014: 12:27 PM to 01:29 PM -- sales call 11-7-2014: 11:04 AM to 12:07 PM -- code review 11-11-2014: 09:21 AM to 10:37 AM -- food 11-8-2014: 09:34 AM to 10:53 AM -- meeting 11-11-2014: 12:36 PM to 01:30 PM -- meeting 11-10-2014: 05:44 AM to 06:30 AM -- personal appointment 11-6-2014: 04:22 PM to 05:05 PM -- code review 11-6-2014: 01:30 PM to 01:59 PM -- sales call 11-10-2014: 06:54 AM to 07:41 AM -- code review 11-9-2014: 11:56 AM to 12:17 PM -- work 11-10-2014: 12:20 PM to 01:17 PM -- personal appointment 11-8-2014: 07:57 AM to 09:08 AM -- meeting 11-7-2014: 02:34 PM to 03:06 PM -- work 11-9-2014: 05:13 AM to 06:25 AM -- workout 11-11-2014: 04:04 PM to 04:40 PM -- food 11-9-2014: 06:03 AM to 06:26 AM -- code review 11-6-2014: 10:32 AM to 11:22 AM -- sales call 11-6-2014: 07:51 AM to 08:25 AM -- personal appointment 11-7-2014: 01:07 PM to 02:14 PM -- meeting #FAQ: Dates are mm-dd-yyyy #Check this out: If you have ideas for challenges - please visit and post on /r/dailyprogrammer_ideas Check out side bar -- we have an IRC channel. A listing of past challenges and much more. """ def main(): pass if __name__ == "__main__": main()
4,469
docs/conftest.py
goerz-testing/pypkg_rtd_02
0
2025444
"""This file is automatically executed by pytest when testing anything in the docs folder""" import pytest import pypkg_rtd_02 @pytest.fixture(autouse=True) def set_doctest_env(doctest_namespace): """Inject package itself into doctest namespace. This is so we don't need .. doctest:: >>> import pypkg_rtd_02 in any doctests """ doctest_namespace['pypkg_rtd_02'] = pypkg_rtd_02
424
PID.py
michaelchi08/visual_navigation
2
2025982
""" A simple PID controller class. This is a mostly literal C++ -> Python translation of the ROS control_toolbox Pid class: http://ros.org/wiki/control_toolbox. """ #******************************************************************* # Translated from pid.cpp by <NAME> # December 2017 # See below for original license information: #******************************************************************* #******************************************************************* # Software License Agreement (BSD License) # # Copyright (c) 2008, <NAME>, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of the <NAME> nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. #******************************************************************* import time import math class PID(object): """ This class implements a generic structure that can be used to create a wide range of pid controllers. It can function independently or be subclassed to provide more specific controls based on a particular control loop. In particular, this class implements the standard pid equation: $command = -p_{term} - i_{term} - d_{term} $ where: $ p_{term} = p_{gain} * p_{error} $ $ i_{term} = i_{gain} * i_{error} $ $ d_{term} = d_{gain} * d_{error} $ $ i_{error} = i_{error} + p_{error} * dt $ $ d_{error} = (p_{error} - p_{error last}) / dt $ given: $ p_{error} = p_{state} - p_{target} $. """ def __init__(self, pGain, iGain, dGain, iMax, iMin): """Constructor, zeros out error values when created and initialize Pid-gains and integral term limits. Parameters: pGain The proportional gain. iGain The integral gain. dGain The derivative gain. iMax The integral upper limit. iMin The integral lower limit. """ self.set_gains(pGain, iGain, dGain, iMax, iMin) self.reset() def reset(self): """ Reset the state of this PID controller """ self._pErrorLast = 0.0 # LAst saved postition for derivative gain self._pError = 0.0 # Position error self._dError = 0.0 # Derivative error self._iError = 0.0 # Integator error self._cmd = 0.0 # Command to send self._lastTime = None # Used for automatic calculation of dt def set_gains(self, pGain, iGain, dGain, iMax, iMin): """ Set PID gains for the controller. Parameters: p_gain The proportional gain. iGain The integral gain. dGain The derivative gain. iMax The integral upper limit. iMin The integral lower limit. """ self._pGain = pGain self._iGain = iGain self._dGain = dGain self._iMax = iMax self._iMin = iMin @property def pGain(self): """ Read-only access to p_gain. """ return self._pGain @property def iGain(self): """ Read-only access to iGain. """ return self._iGain @property def dGain(self): """ Read-only access to dGain. """ return self._dGain @property def iMax(self): """ Read-only access to iMax. """ return self._iMax @property def iMin(self): """ Read-only access to iMin. """ return self._iMin @property def pError(self): """ Read-only access to pError. """ return self._pError @property def iError(self): """ Read-only access to iError. """ return self._iError @property def dError(self): """ Read-only access to dError. """ return self._dError @property def cmd(self): """ Read-only access to the latest command. """ return self._cmd def __str__(self): """ String representation of the current state of the controller. """ result = "" result += "p_gain: " + str(self._pGain) + "\n" result += "iGain: " + str(self._iGain) + "\n" result += "dGain: " + str(self._dGain) + "\n" result += "iMax: " + str(self._iMax) + "\n" result += "iMin: " + str(self._iMin) + "\n" result += "pError: " + str(self._pError) + "\n" result += "iError: " + str(self._iError) + "\n" result += "dError: " + str(self._dError) + "\n" result += "cmd: " + str(self._cmd) + "\n" return result def update_PID(self, pError, dt=None): """ Update the Pid loop with nonuniform time step size. Parameters: pError Error since last call (p_state - p_target) dt Change in time since last call, in seconds, or None. If dt is None, then the system clock will be used to calculate the time since the last update. """ if dt == None: curTime = time.time() if self._lastTime is None: self._lastTime = curTime dt = curTime - self._lastTime self._lastTime = curTime self._pError = pError # this is pError = pState-pTarget if dt == 0 or math.isnan(dt) or math.isinf(dt): return 0.0 # Calculate proportional contribution to command pTerm = self._pGain * self._pError # Calculate the integral error self._iError += dt * self._pError # Calculate integral contribution to command iTerm = self._iGain * self._iError # Limit iTerm so that the limit is meaningful in the output if iTerm > self._iMax and self._iGain != 0: iTerm = self._iMax self._iError = iTerm / self._iGain elif iTerm < self._iMin and self._iGain != 0: iTerm = self._iMin self._iError = iTerm / self._iGain # Calculate the derivative error self._dError = (self._pError - self._pErrorLast) / dt self._pError_last = self._pError # Calculate derivative contribution to command dTerm = self._dGain * self._dError self._cmd = -pTerm - iTerm - dTerm return self._cmd if __name__ == "__main__": controller = PID(1.0, 2.0, 3.0, 1.0, -1.0) print controller controller.update_PID(-1) print controller controller.update_PID(-.5) print controller
7,838
src/repo_peek/fetch.py
rahulunair/repo-peek
44
2026268
"""fetch a remote repo and open in a local editor.""" import asyncio import os from pathlib import Path import shutil import uvloop from .logging import logger from .config import Config from .config import EDITORS from .config import init_dir from .utils import fetch_repo from .utils import clone_repo from .utils import extract uvloop.install() async def open_editor(editor="vim", path: Path = Path("")): """open editor with source.""" editor = os.getenv("EDITOR", editor) if not editor in EDITORS: editor = "vim" logger.info("EDITOR not support, defaulting to vim") logger.info("opening in : {}".format(editor)) process = await asyncio.create_subprocess_exec(editor, str(path)) await process.communicate() def is_old(config_file: Path) -> bool: """if count is zero, return True, else False""" with open(config_file, "r") as fh: line = fh.readline() count = int(line.split("=")[1]) if count == 0: return True else: return False def rm_stored_repos(home_dir): logger.info("removing cached dir: {}".format(home_dir)) shutil.rmtree(home_dir, ignore_errors=True) async def peek_repo(repo: str, service="github", cache=False): parsed_config = Config(".repk.ini") cache_dir = Path.home() / ".repk" if not cache: rm_stored_repos(cache_dir) repo_dir = init_dir(cache_dir / "repos" / repo) # readme_path = await readme_from_cdn(repo, repo_dir) if os.path.isdir(repo_dir) and os.listdir(repo_dir): await open_editor(path=repo_dir) else: parsed_config = Config(".repk.ini") tar_dirs = init_dir(cache_dir / "tars") logger.info("fetching repo: {}".format(repo)) parsed_config.config.remove_section(repo) parsed_config.cache_repo(repo) if service == "github": repo_name = await fetch_repo(repo, tar_dirs) await extract(repo_name, repo_dir) elif service == "gitlab": await clone_repo(repo, repo_dir) await open_editor(path=repo_dir) if parsed_config.is_repo_stale(repo): rm_stored_repos(cache_dir) parsed_config.config.remove_section(repo) # download readme from cdn to the dir in which editor is openend # extract files to the same dir # types # profile and imporve loading time def main(repo="rahulunair/cloudstore", service="github"): asyncio.run(peek_repo(repo, service))
2,459
export_assignment_responses.py
MuckRock/API-examples
42
2025620
#!/usr/bin/env python2 # -- coding: utf-8 -- import requests import unicodecsv from utils import get_api_key token = get_api_key() url = 'https://www.muckrock.com/api_v1/' headers = {'Authorization': 'Token %s' % token, 'content-type': 'application/json'} assignmentID = raw_input('What assignment are you trying to export? Look at the numbers at the end of the URL: ') next_ = url + "assignment-responses/?crowdsource=" + str(assignmentID) basic_fields = [ "id", "user", "datetime", "tags", "skip", "number", "flag", "gallery", "crowdsource" ] assignment_fields = [] page = 1 csv_file = open('assignment ' + str(assignmentID) + ' export.csv', 'w') csv_file.seek(0) csv_writer = unicodecsv.writer(csv_file) r = requests.get(next_, headers=headers) json = r.json() for column in json['results'][0]['values']: assignment_fields.append(column['field']) csv_writer.writerow(basic_fields + assignment_fields) while next_ is not None: r = requests.get(next_, headers=headers) try: json = r.json() next_ = json['next'] for datum in json['results']: submissions = [] for field in basic_fields: submissions.append(datum[field]) for entry in datum["values"]: submissions.append(entry["value"]) csv_writer.writerow(submissions) # csv_writer.writerow(datum[field] for field in basic_fields + ) # + datum['values'][assignment_fields] for field in assignment_fields print 'Page %d of %d' % (page, json['count'] / 40) page += 1 except Exception as e: print e
1,626
regulations/templatetags/in_context.py
contolini/regulations-site
0
2025595
from django import template register = template.Library() class InContextNode(template.Node): def __init__(self, nodelist, subcontext_names): self.nodelist = nodelist self.subcontext_names = subcontext_names def render(self, context): new_context = {} for field in self.subcontext_names: value = context.get(field, {}) if isinstance(value, dict): new_context.update(context.get(field, {})) else: new_context[field] = value return self.nodelist.render(template.Context(new_context)) @register.tag('begincontext') def in_context(parser, token): """ Replaces the context (inside of this block) for easy (and safe) inclusion of sub-content. For example, if the context is {'name': 'Kitty', 'sub': {'size': 5}} 1: {{ name }} {{ size }} {% begincontext sub %} 2: {{ name }} {{ size }} {% endcontext %} 3: {{ name }} {{ size }} Will print 1: Kitty 2: 5 3: Kitty Arguments which are not dictionaries will 'cascade' into the inner context. """ nodelist = parser.parse(('endcontext',)) parser.delete_first_token() return InContextNode(nodelist, token.split_contents()[1:])
1,298
main.py
mingewang/dmn-pytorch
15
2025594
import torch import argparse import pickle import pprint import numpy as np import os from dataset import Dataset, Config from model import DMN from run import run_epoch argparser = argparse.ArgumentParser() # run settings argparser.add_argument('--data_path', type=str, default='./data/babi(tmp).pkl') argparser.add_argument('--model_name', type=str, default='m') argparser.add_argument('--checkpoint_dir', type=str, default='./results/') argparser.add_argument('--batch_size', type=int, default=32) argparser.add_argument('--epoch', type=int, default=100) argparser.add_argument('--train', type=int, default=1) argparser.add_argument('--valid', type=int, default=1) argparser.add_argument('--test', type=int, default=1) argparser.add_argument('--early_stop', type=int, default=0) argparser.add_argument('--resume', action='store_true', default=False) argparser.add_argument('--save', action='store_true', default=False) argparser.add_argument('--print_step', type=float, default=128) # model hyperparameters argparser.add_argument('--lr', type=float, default=0.0003) argparser.add_argument('--lr_decay', type=float, default=1.0) argparser.add_argument('--wd', type=float, default=0) argparser.add_argument('--grad_max_norm', type=int, default=5) argparser.add_argument('--s_rnn_hdim', type=int, default=100) argparser.add_argument('--s_rnn_ln', type=int, default=1) argparser.add_argument('--s_rnn_dr', type=float, default=0.0) argparser.add_argument('--q_rnn_hdim', type=int, default=100) argparser.add_argument('--q_rnn_ln', type=int, default=1) argparser.add_argument('--q_rnn_dr', type=float, default=0.0) argparser.add_argument('--e_cell_hdim', type=int, default=100) argparser.add_argument('--m_cell_hdim', type=int, default=100) argparser.add_argument('--a_cell_hdim', type=int, default=100) argparser.add_argument('--word_dr', type=float, default=0.2) argparser.add_argument('--g1_dim', type=int, default=500) argparser.add_argument('--max_episode', type=int, default=10) argparser.add_argument('--beta_cnt', type=int, default=10) argparser.add_argument('--set_num', type=int, default=1) argparser.add_argument('--max_alen', type=int, default=2) args = argparser.parse_args() def run_experiment(model, dataset, set_num): best_metric = np.zeros(2) early_stop = False if model.config.train: if model.config.resume: model.load_checkpoint() for ep in range(model.config.epoch): if early_stop: break print('- Training Epoch %d' % (ep+1)) run_epoch(model, dataset, ep, 'tr', set_num) if model.config.valid: print('- Validation') met = run_epoch(model, dataset, ep, 'va', set_num, False) if best_metric[1] < met[1]: best_metric = met model.save_checkpoint({ 'config': model.config, 'state_dict': model.state_dict(), 'optimizer': model.optimizer.state_dict()}) if best_metric[1] == 100: break else: # model.decay_lr() if model.config.early_stop: early_stop = True print('\tearly stop applied') print('\tbest metrics:\t%s' % ('\t'.join(['{:.2f}'.format(k) for k in best_metric]))) if model.config.test: print('- Testing') run_epoch(model, dataset, ep, 'te', set_num, False) print() if model.config.test: print('- Load Validation/Testing') if model.config.resume or model.config.train: model.load_checkpoint() run_epoch(model, dataset, 0, 'va', set_num, False) run_epoch(model, dataset, 0, 'te', set_num, False) print() return best_metric def main(): if not os.path.exists('./results'): os.makedirs('./results') print('### load dataset') dataset = pickle.load(open(args.data_path, 'rb')) # update args dataset.config.__dict__.update(args.__dict__) args.__dict__.update(dataset.config.__dict__) pp = lambda x: pprint.PrettyPrinter().pprint(x) pp(args.__dict__) # new model experiment for set_num in range(args.set_num, args.set_num+1): print('\n[QA set %d]' % (set_num)) model = DMN(args, dataset.idx2vec, set_num).cuda() results = run_experiment(model, dataset, set_num) print('### end of experiment') if __name__ == '__main__': main()
4,606
examples/pitch_setup/plot_pitches.py
ElJdP/mplsoccer
0
2025580
""" ====== Basics ====== First we import the Pitch classes and matplotlib """ import matplotlib.pyplot as plt from mplsoccer import Pitch, VerticalPitch ############################################################################## # Draw a pitch on a new axis # -------------------------- # Let's plot on a new axis first. pitch = Pitch() # specifying figure size (width, height) fig, ax = pitch.draw(figsize=(8, 4)) ############################################################################## # Draw on an existing axis # ------------------------ # mplsoccer also plays nicely with other matplotlib figures. To draw a pitch on an # existing matplotlib axis specify an ``ax`` in the ``draw`` method. fig, axs = plt.subplots(nrows=1, ncols=2) pitch = Pitch() pie = axs[0].pie(x=[5, 15]) pitch.draw(ax=axs[1]) ############################################################################## # Supported data providers # ------------------------ # mplsoccer supports 9 pitch types by specifying the ``pitch_type`` argument: # 'statsbomb', 'opta', 'tracab', 'wyscout', 'uefa', 'metricasports', 'custom', # 'skillcorner' and 'secondspectrum'. # If you are using tracking data or the custom pitch ('metricasports', 'tracab', # 'skillcorner', 'secondspectrum' or 'custom'), you also need to specify the # ``pitch_length`` and ``pitch_width``, which are typically 105 and 68 respectively. pitch = Pitch(pitch_type='opta') # example plotting an Opta/ Stats Perform pitch fig, ax = pitch.draw() ############################################################################## pitch = Pitch(pitch_type='tracab', # example plotting a tracab pitch pitch_length=105, pitch_width=68, axis=True, label=True) # showing axis labels is optional fig, ax = pitch.draw() ############################################################################## # Adjusting the plot layout # ------------------------- # mplsoccer also plots on grids by specifying nrows and ncols. # The default is to use # tight_layout. See: https://matplotlib.org/stable/tutorials/intermediate/tight_layout_guide.html. pitch = Pitch() fig, axs = pitch.draw(nrows=2, ncols=3) ############################################################################## # But you can also use constrained layout # by setting ``constrained_layout=True`` and ``tight_layout=False``, which may look better. # See: https://matplotlib.org/stable/tutorials/intermediate/constrainedlayout_guide.html. pitch = Pitch() fig, axs = pitch.draw(nrows=2, ncols=3, tight_layout=False, constrained_layout=True) ############################################################################## # If you want more control over how pitches are placed # you can use the grid method. This also works for one pitch (nrows=1 and ncols=1). # It also plots axes for an endnote and title (see the plot_grid example for more information). pitch = Pitch() fig, axs, ax_title, ax_endnote = pitch.grid(nrows=3, ncols=3, figheight=10, # the grid takes up 71.5% of the figure height grid_height=0.715, # 5% of grid_height is reserved for space between axes space=0.05, # centers the grid horizontally left=None, # grid starts 2.5% up from the bottom of the figure bottom=0.025) ############################################################################## # Pitch orientation # ----------------- # There are four basic pitch orientations. # To get vertical pitches use the VerticalPitch class. # To get half pitches use the half=True argument. # # Horizontal full pitch = Pitch(half=False) fig, ax = pitch.draw() ############################################################################## # Vertical full pitch = VerticalPitch(half=False) fig, ax = pitch.draw() ############################################################################## # Horizontal half pitch = Pitch(half=True) fig, ax = pitch.draw() ############################################################################## # Vertical half pitch = VerticalPitch(half=True) fig, ax = pitch.draw() ############################################################################## # You can also adjust the pitch orientations with the ``pad_left``, ``pad_right``, # ``pad_bottom`` and ``pad_top`` arguments to make arbitrary pitch shapes. pitch = VerticalPitch(half=True, pad_left=-10, # bring the left axis in 10 data units (reduce the size) pad_right=-10, # bring the right axis in 10 data units (reduce the size) pad_top=10, # extend the top axis 10 data units pad_bottom=20) # extend the bottom axis 20 data units fig, ax = pitch.draw() ############################################################################## # Pitch appearance # ---------------- # The pitch appearance is adjustable. # Use ``pitch_color`` and ``line_color``, and ``stripe_color`` (if ``stripe=True``) # to adjust the colors. pitch = Pitch(pitch_color='#aabb97', line_color='white', stripe_color='#c2d59d', stripe=True) # optional stripes fig, ax = pitch.draw() ############################################################################## # Juego de Posición # ----------------- # You can add the Juego de Posición pitch lines and shade the middle third pitch = Pitch(positional=True, shade_middle=True, positional_color='#eadddd', shade_color='#f2f2f2') fig, ax = pitch.draw() ############################################################################## # mplsoccer can also plot grass pitches by setting ``pitch_color='grass'``. pitch = Pitch(pitch_color='grass', line_color='white', stripe=True) # optional stripes fig, ax = pitch.draw() ############################################################################## # Three goal types are included ``goal_type='line'``, ``goal_type='box'``, # and ``goal_type='circle'`` fig, axs = plt.subplots(nrows=3, figsize=(10, 18)) pitch = Pitch(goal_type='box', goal_alpha=1) # you can also adjust the transparency (alpha) pitch.draw(axs[0]) pitch = Pitch(goal_type='line') pitch.draw(axs[1]) pitch = Pitch(goal_type='circle', linewidth=1) pitch.draw(axs[2]) ############################################################################## # The line markings and spot size can be adjusted via ``linewidth`` and ``spot_scale``. # Spot scale also adjusts the size of the circle goal posts. pitch = Pitch(linewidth=3, # the size of the penalty and center spots relative to the pitch_length spot_scale=0.01) fig, ax = pitch.draw() ############################################################################## # If you need to lift the pitch markings above other elements of the chart. # You can do this via ``line_zorder``, ``stripe_zorder``, # ``positional_zorder``, and ``shade_zorder``. pitch = Pitch(line_zorder=2) # e.g. useful if you want to plot pitch lines over heatmaps fig, ax = pitch.draw() ############################################################################## # Axis # ---- # By default mplsoccer turns of the axis (border), ticks, and labels. # You can use them by setting the ``axis``, ``label`` and ``tick`` arguments. pitch = Pitch(axis=True, label=True, tick=True) fig, ax = pitch.draw() ############################################################################## # xkcd # ---- # Finally let's use matplotlib's xkcd theme. plt.xkcd() pitch = Pitch(pitch_color='grass', stripe=True) fig, ax = pitch.draw(figsize=(8, 4)) annotation = ax.annotate('Who can resist this?', (60, 10), fontsize=30, ha='center')
7,888
src/ParserForSHEN.py
demidko/FefuParser
0
2023707
from bs4 import BeautifulSoup import urllib3 def pars(url): http = urllib3.PoolManager() #url = 'https://www.dvfu.ru/schools/school_of_natural_sciences/structures/department/cluster-physics-and-mathematics-departments/' #url = 'https://www.dvfu.ru/schools/school_of_natural_sciences/structures/department/the-chemical-cluster-of-departments/' response = http.request('GET', url) soup = BeautifulSoup(response.data) #print('---------------------------------------------') #print(soup.find_all('table')[0].find_all('td')) #print('---------------------------------------------') data = [] table = soup.find('table') table_body = table.find('tbody') rows = table_body.find_all('tr') for row in rows: cols = row.find_all('td') cols = [ele.text.strip() for ele in cols] data.append([ele for ele in cols if ele]) # Get rid of empty values m_data = [] for j in range(len(data)-1): i = j+1 data_ = dict.fromkeys(['Name', 'Post', 'Phone', 'Email', 'School', 'Department']) data_['School'] = 'ШЕН' data_['Department'] = data[i][0] data_['Post'] = data[i][1].split('\n')[0] data_['Name'] = data[i][1].split('\n')[1] if (data[i][2].find('Тел.') > 0): temp = data[i][2][data[i][2].find('Тел.')+6:data[i][2].find('Тел.')+23].split() temp[1] = temp[1][1:4] temp = '-'.join(temp) data_['Phone'] = temp if (data[i][2].find('E-mail:') > 0): temp = data[i][2][data[i][2].find('E-mail:')+8:] data_['Email'] = temp m_data.append(data_) return m_data #print('\n'.join(data_)) #print(m_data) m_data = [] urls = ['https://www.dvfu.ru/schools/school_of_natural_sciences/structures/department/cluster-physics-and-mathematics-departments/', 'https://www.dvfu.ru/schools/school_of_natural_sciences/structures/department/the-cluster-of-biological-departments/', 'https://www.dvfu.ru/schools/school_of_natural_sciences/structures/department/the-chemical-cluster-of-departments/', 'https://www.dvfu.ru/schools/school_of_natural_sciences/structures/department/the-cluster-of-the-departments-of-earth-sciences/'] with open('out.txt', 'w') as f: for u in urls: for i in pars(u): s = '' s += '{\n' for j in i.keys(): if (i[j] != None): s += ' ' s += j + ': "'+i[j]+'"' s += '\n' s = s[0:len(s)-1] s += '\n} ' f.write(s)
2,312
bme280.py
jamisonderek/waterconsumption
0
2025791
import adafruit_bme280 class Bme280: def __init__(self, i2c): self.__bme280 = adafruit_bme280.Adafruit_BME280_I2C(i2c, 0x76) def get_temperature(self): return self.__bme280.temperature temperature = property(get_temperature) def get_humidity(self): return self.__bme280.relative_humidity humidity = property(get_humidity) def set_sea_level_pressure(self, hPa): self.__bme280.sea_level_pressure = hPa
463
blizzardapi/api.py
trevorphillipscoding/python-blizzardapi
10
2022755
"""api.py file.""" import requests class Api: """Base API class. Attributes: _client_id: A string client id supplied by Blizzard. _client_secret: A string client secret supplied by Blizzard. _access_token: A string access token that is used to access Blizzard's API. _api_url: A string url used to call the API endpoints. _api_url_cn: A string url used to call the china API endpoints. _oauth_url: A string url used to call the OAuth API endpoints. _oauth_url_cn: A string url used to call the china OAuth API endpoints. _session: An open requests.Session instance. """ def __init__(self, client_id, client_secret): """Init Api.""" self._client_id = client_id self._client_secret = client_secret self._access_token = None self._api_url = "https://{0}.api.blizzard.com{1}" self._api_url_cn = "https://gateway.battlenet.com.cn{0}" self._oauth_url = "https://{0}.battle.net{1}" self._oauth_url_cn = "https://www.battlenet.com.cn{0}" self._session = requests.Session() def _get_client_token(self, region): """Fetch an access token based on client id and client secret credentials. Args: region: A string containing a region. """ url = self._format_oauth_url("/oauth/token", region) query_params = {"grant_type": "client_credentials"} response = self._session.post( url, params=query_params, auth=(self._client_id, self._client_secret), ) return self._response_handler(response) def _response_handler(self, response): """Handle the response.""" return response.json() def _request_handler(self, url, region, query_params): """Handle the request.""" if self._access_token is None: json = self._get_client_token(region) self._access_token = json["access_token"] if query_params.get("access_token") is None: query_params["access_token"] = self._access_token response = self._session.get(url, params=query_params) return self._response_handler(response) def _format_api_url(self, resource, region): """Format the API url into a usable url.""" if region == "cn": url = self._api_url_cn.format(resource) else: url = self._api_url.format(region, resource) return url def get_resource(self, resource, region, query_params={}): """Direction handler for when fetching resources.""" url = self._format_api_url(resource, region) return self._request_handler(url, region, query_params) def _format_oauth_url(self, resource, region): """Format the oauth url into a usable url.""" if region == "cn": url = self._oauth_url_cn.format(resource) else: url = self._oauth_url.format(region, resource) return url def get_oauth_resource(self, resource, region, query_params={}): """Direction handler for when fetching oauth resources.""" url = self._format_oauth_url(resource, region) return self._request_handler(url, region, query_params)
3,295
web/api/serializers.py
PauBatlle/NewsMultirank
0
2024482
from rest_framework.serializers import ModelSerializer from web.api.models import Prediction class PredictionSerializer(ModelSerializer): class Meta: model = Prediction fields = ('id', 'result') extra_kwargs = { 'id': {'read_only': True} }
291
tools/metrics/structured/compile_time_validation.py
sarang-apps/darshan_browser
0
2025753
# Copyright 2020 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Verifies that structured.xml is well-structured.""" from collections import Counter from model import _METRIC_TYPE from model import _EVENT_TYPE, _EVENTS_TYPE from model import _PROJECT_TYPE, _PROJECTS_TYPE def eventsReferenceValidProjects(data): """Check that any project referenced by an event exists.""" projects = { project['name']: project for project in data[_PROJECTS_TYPE.tag][_PROJECT_TYPE.tag] } for event in data[_EVENTS_TYPE.tag][_EVENT_TYPE.tag]: project_name = event.get('project') project = projects.get(project_name) if project is None and project_name is not None: raise Exception(("Structured metrics event '{}' references " "nonexistent project '{}'.").format( event['name'], project_name)) def projectAndEventNamesDontCollide(data): """Check that there are no events with the same name as a project.""" projects = { project['name'] for project in data[_PROJECTS_TYPE.tag][_PROJECT_TYPE.tag] } for event in data[_EVENTS_TYPE.tag][_EVENT_TYPE.tag]: if event['name'] in projects: raise Exception(("Structured metrics event and project have the same " "name: '{}'.").format(event['name'])) def eventNamesUnique(data): """Check that no two events have the same name.""" name_counts = Counter( event['name'] for event in data[_EVENTS_TYPE.tag][_EVENT_TYPE.tag]) for name, count in name_counts.items(): if count != 1: raise Exception( "Structured metrics events have duplicate name '{}'.".format(name)) def projectNamesUnique(data): """Check that no two projects have the same name.""" name_counts = Counter( project['name'] for project in data[_PROJECTS_TYPE.tag][_PROJECT_TYPE.tag]) for name, count in name_counts.items(): if count != 1: raise Exception( "Structured metrics projects have duplicate name '{}'.".format(name)) def metricNamesUniqueWithinEvent(data): """Check that no two metrics within an event have the same name.""" for event in data[_EVENTS_TYPE.tag][_EVENT_TYPE.tag]: name_counts = Counter(metric['name'] for metric in event[_METRIC_TYPE.tag]) for name, count in name_counts.items(): if count != 1: raise Exception(("Structured metrics event '{}' has duplicated metric " "name '{}'.").format(event['name'], name)) def validate(data): eventsReferenceValidProjects(data) projectAndEventNamesDontCollide(data) eventNamesUnique(data) projectNamesUnique(data) metricNamesUniqueWithinEvent(data)
2,774
montepython/ccl_tools.py
Maquiner/Monte_Python_2CCL
1
2024897
import re, os import random import numpy as np import pymaster as nmt import pyccl as ccl default_pars = { 'h' : 0.67, 'Omega_c' : 0.27, 'Omega_b' : 0.045, # 'ln10_A_s' : 3.044522, 'sigma_8' : 0.840421163375, 'n_s' : 0.96, 'w_0' : -1.0, 'w_a' : 0.0 } def nofz(z,z0,sz,ndens): return np.exp(-0.5*((z-z0)/sz)**2)*ndens/np.sqrt(2*np.pi*sz**2) def flatten_cls(cls, n_bte, n_ells): flat_cls = np.moveaxis(cls,[-3,-2,-1],[0,1,2]) flat_cls = flat_cls[np.triu_indices(n_bte)] flat_cls = flat_cls.reshape(((n_bte+1)*n_bte*n_ells/2,)+cls.shape[:-3]) return flat_cls def get_cosmo_ccl(pars): cosmo = ccl.Cosmology( h = pars['h'], Omega_c = pars['Omega_c'], Omega_b = pars['Omega_b'], sigma8 = pars['sigma_8'], # A_s = (10.**(-10.))*np.exp(pars['ln10_A_s']), n_s = pars['n_s'], w0 = pars['w_0'], wa = pars['w_a'] ) ccl.linear_matter_power(cosmo,0.1,0.5) return cosmo def get_tracers_ccl(cosmo, z, pz, bz): n_bins = pz.shape[0] # Tracers tracers = [] for i in range(n_bins): tracers.append( ccl.NumberCountsTracer(cosmo,has_rsd=False,dndz=(z[i],pz[i]),bias=(z[i],bz[i])) ) tracers.append( ccl.WeakLensingTracer(cosmo,dndz=(z[i],pz[i])) ) return np.array(tracers) def get_cls_ccl(cosmo, tracers, ell_bp): n_bte = tracers.shape[0] n_ells = len(ell_bp) cls = np.zeros([n_bte, n_bte, n_ells]) for c1 in range(n_bte): # c1=te1+b1*n_te for c2 in range(c1, n_bte): cls[c1,c2,:] = ccl.angular_cl(cosmo,tracers[c1],tracers[c2],ell_bp) cls[c2,c1,:] = cls[c1,c2,:] cls_flat = flatten_cls(cls, n_bte, n_ells) return cls_flat # Get data dir = os.path.abspath('.')+'/data/covfefe/' # Ells ell_bp = np.load(os.path.join(dir, 'ell_bp.npz'))['lsims'] for n_bins in range(1,3): # Build photo_z z = np.tile(np.linspace(0,3,512),[n_bins,1]) cosmo = get_cosmo_ccl(default_pars) bz_ref=0.95*ccl.growth_factor(cosmo,1.)/ccl.growth_factor(cosmo,1./(1+z[0])) if n_bins==1: pz = np.array([ nofz(z[0],0.955,0.13,7.55) ]) bz = np.tile(0.65*bz_ref,[1,1]) elif n_bins==2: pz = np.array([ nofz(z[0],0.955,0.13,7.55), nofz(z[1],0.755,0.13,7.55) ]) bz = np.tile(bz_ref,[2,1]) np.savez_compressed(os.path.join(dir, 'z_{}'.format(n_bins)), z) np.savez_compressed(dir+'pz_{}'.format(n_bins), pz) np.savez_compressed(dir+'bz_{}'.format(n_bins), bz) # Build data tracers = get_tracers_ccl(cosmo, z, pz, bz) data = get_cls_ccl(cosmo, tracers, ell_bp) cov = np.load(os.path.join(dir, 'cov_sim_{}.npz'.format(n_bins)))['arr_0'] L = np.linalg.cholesky(cov) u = np.random.randn(2*n_bins*(2*n_bins+1)/2*len(ell_bp)) data = data# + L.dot(u) np.savez_compressed(dir+'cls_{}'.format(n_bins), data)
3,109
crypto/tasks.py
palakshivlani-11/cryptorium
1
2024048
from celery.task.schedules import crontab from celery.decorators import periodic_task from .models import * import requests import json from django.shortcuts import render from django.template.loader import render_to_string from django.core.mail import EmailMessage def send_buy_notifications(name,email,coin,coinprice,fetchprice): html_version = 'buynotification.html' context = { 'title':"Knock! Knock! Great Opportunity", 'name' : name } html_message = render_to_string(html_version,context) subject = "Knock Knock! Great Opportunity is waiting!" to_email = email text = "Hey! " + name + ", Your coin" + coin + " has reached price "+" ₹" + str(fetchprice) + " .Its best time to buy your favourite coin." message = EmailMessage(subject, text,'<EMAIL>', [to_email]) #message.content_subtype = 'html' # this is required because there is no plain text email version message.send() def send_sell_notifications(name,email,coin,coinprice,fetchprice): html_version = 'sellnotification.html' context = { 'title':"Knock! Knock! Great Opportunity", 'name' : name } html_message = render_to_string(html_version,context) subject = "Knock Knock! Great Opportunity is waiting!" to_email = email text = "Hey! " + name + ", Your coin" + coin + " has reached price "+" ₹" + str(fetchprice) + " .Its best time to sell your favourite coin." message = EmailMessage(subject, text,'<EMAIL>', [to_email]) #message.content_subtype = 'html' # this is required because there is no plain text email version message.send() def send_notifications(name,email): html_version = 'normalnotification.html' context = { 'title':"Knock! Knock! Keep Updating Yourself", 'name' : name } html_message = render_to_string(html_version,context) subject = "Knock Knock! Keep Updating Yourself" to_email = email text = " Hey ! " + name + " Keep Updating Yourself " message = EmailMessage(subject, text,'<EMAIL>', [to_email]) #message.content_subtype = 'html' # this is required because there is no plain text email version message.send() #@periodic_task(run_every=crontab(minute='*/1', day_of_week="*")) def cryptoprices(quote): price_request = requests.get("https://min-api.cryptocompare.com/data/pricemultifull?fsyms=" + quote + "&tsyms=INR") price = json.loads(price_request.content) #print(price['RAW'][quote]['INR']['PRICE']) return price['RAW'][quote]['INR']['PRICE'] @periodic_task(run_every=crontab(minute='*/240', day_of_week="*")) def compare(): obj = Notification.objects.all() for i in obj: user = i.us.username mail = i.us.email c = i.coin p = i.coinprice fetch = cryptoprices(c) if fetch < p: send_buy_notifications(user,mail,c,p,fetch) elif fetch > p: send_sell_notifications(user,mail,c,p,fetch) else: send_notifications(user,mail) print(obj)
3,111
day01b.py
vvvictoire/advent_of_code_2019
0
2025366
#!/usr/bin/python3 from math import floor def compute_fuel(weight): fuel = floor(weight / 3) - 2 if fuel > 0: return fuel + compute_fuel(fuel) return 0 total_fuel = 0 with open('data/01a_input') as f: lines = f.readlines() for line in lines: module_weight = int(line) fuel_needed = compute_fuel(module_weight) total_fuel += fuel_needed print(total_fuel)
410
example/test-factories/data_provider.py
AutomatedOwl/ptf-pytest
1
2023489
from ctr_table import CtrTable from lpm_table import LpmTable from sp_table import SpTable from collections import namedtuple from ptf.testutils import * import consts import allure class DataProvider: # Create data bundles for tests PacketBundle = namedtuple("PacketBundle", ["ports", "packet"]) LpmEntry = namedtuple("LpmEntry", ["sai_def", "ports", "vlan"]) ScratchEntry = namedtuple("ScratchEntry", ["sai_def", "ports", "vlan"]) CounterEntry = namedtuple("CounterEntry", ["sai_def", "ports", "vlan"]) # Create test data bundle as namedtuple TestDataBundle = namedtuple("TestDataBundle", ["lpm_entries", "sp_entries", "ctr_entries", "packets"]) TestDataBundle.__new__.__defaults__ = (None,) * len(TestDataBundle._fields) def __init__(self, device, topology, layer): self.device = device self.topology = topology self.test_config_map = self.config_data_for_tests() def config_data_for_tests(self): # Map each test to configuration return { "test_send_one_pkt": self.get_common_data(), "test_send_two_pkts": self.get_common_data(), "test_send_receive_pkt": self.TestDataBundle(packets = [ self.PacketBundle(consts.PORT_0, self.generate_packet(consts.IP_ID_0)), self.PacketBundle(consts.PORT_2, self.generate_packet(consts.IP_ID_2))], lpm_entries = [self.LpmEntry(consts.SAI_DEF, consts.PORT_0, consts.VLAN_0), self.LpmEntry(consts.SAI_DEF, consts.PORT_1, consts.VLAN_1)]) } def get_common_data(self): return self.TestDataBundle(packets = [ self.PacketBundle(consts.PORT_0, self.generate_packet(consts.IP_ID_0)), self.PacketBundle(consts.PORT_1, self.generate_packet(consts.IP_ID_1))], lpm_entries = [self.LpmEntry(consts.SAI_DEF, consts.PORT_0, consts.VLAN_0), self.LpmEntry(consts.SAI_DEF, consts.PORT_1, consts.VLAN_1)]) @allure.step def get_data_per_test(self, test_method): print("Test method: " + test_method) #print("TEST CONFIG: " + str(self.test_config_map)) return self.test_config_map[test_method] def generate_packet(self, id): return simple_tcp_packet(eth_dst='00:11:11:11:11:11', eth_src='00:22:22:22:22:22', ip_dst='10.0.0.1', ip_id=id, ip_ttl=64)
2,550
classFraction.py
bourneagain/pythonBytes
1
2026023
class fraction(object): def __init__(self,n,d): self.n,self.d=n,d def __repr__(self): return "X/Y=" + str(self.n) +"/" +str(self.d) number=fraction(2,3) print number
175
src/komtet_kassa_sdk/v2/employee.py
Motmom/komtet-kassa-python-sdk
4
2023092
# coding: utf-8 class EmployeeType(object): """Тип Сотрудника""" COURIER = 'courier' """Курьер""" CASHIER = 'cashier' """Кассир""" DRIVER = 'driver' """Водитель""" class Employee(object): """ :param EmployeeType type: Тип сотрудника :param str name: ФИО сотрудника :param str login: Логин сотрудника :param str password: <PASSWORD> сотрудника :param str pos_id: ID кассы :param str inn: ИНН сотрудника :param str phone: Телефон сотрудника :param str email: Email сотрудника """ def __init__(self, type, name, login, password, pos_id, inn=None, phone=None, email=None): self.__data = { 'type': type, 'name': name, 'login': login, 'password': password, 'pos_id': pos_id } if inn: self.__data['inn'] = inn if phone: self.__data['phone'] = phone if email: self.__data['email'] = email def __iter__(self): for item in self.__data.items(): yield item def __getitem__(self, item): return self.__data[item] def set_payment_address(self, payment_address): """ Установка адреса места рассчета :param str payment_address: Адрес места рассчета """ self.__data['payment_address'] = payment_address def set_access_settings(self, is_manager=None, is_can_assign_order=None, is_app_fast_basket=None): """ Установка настроек доступа :param bool is_manager: Разрешить в приложении редактировать и создавать заказы :param bool is_can_assign_order: Разрешить просматривать весь список свободных заказов и выбирать из него :param bool is_app_fast_basket: Переходить в корзину сразу после выбора товара """ if is_manager: self.__data['is_manager'] = is_manager if is_can_assign_order: self.__data['is_can_assign_order'] = is_can_assign_order if is_app_fast_basket: self.__data['is_app_fast_basket'] = is_app_fast_basket
2,181
cloudknot/aws/ecr.py
36000/cloudknot
0
2024668
from __future__ import absolute_import, division, print_function import cloudknot.config import logging from collections import namedtuple from .base_classes import NamedObject, clients, get_ecr_repo __all__ = [] def registered(fn): __all__.append(fn.__name__) return fn mod_logger = logging.getLogger(__name__) # noinspection PyPropertyAccess,PyAttributeOutsideInit @registered class DockerRepo(NamedObject): """Class for creating and managing remote docker repositories""" def __init__(self, name): """Initialize a Docker repo object. User may provide only `name` input, indicating that they would like to retrieve a pre-existing repo/image from AWS ECR. Or, if the repo does not exist, it will be created. Parameters ---------- name : str Name of the remote repository """ super(DockerRepo, self).__init__(name=name) # Create repo repo_info = self._create_repo() self._repo_uri = repo_info.uri self._repo_registry_id = repo_info.registry_id # Add to config file self._section_name = self._get_section_name("docker-repos") cloudknot.config.add_resource(self._section_name, self.name, self.repo_uri) # Declare read only properties @property def repo_uri(self): """URI for this AWS ECR repository""" return self._repo_uri @property def repo_registry_id(self): """Registry ID for this AWS ECR repository""" return self._repo_registry_id def _create_repo(self): """Create or retrieve an AWS ECR repository Returns ------- RepoInfo : namedtuple a namedtuple with fields name, uri, and registry_id """ try: # If repo exists, retrieve its info response = clients["ecr"].describe_repositories(repositoryNames=[self.name]) repo_name = response["repositories"][0]["repositoryName"] repo_uri = response["repositories"][0]["repositoryUri"] repo_registry_id = response["repositories"][0]["registryId"] mod_logger.info( "Repository {name:s} already exists at " "{uri:s}".format(name=self.name, uri=repo_uri) ) except clients["ecr"].exceptions.RepositoryNotFoundException: # If it doesn't exists already, then create it response = clients["ecr"].create_repository(repositoryName=self.name) repo_name = response["repository"]["repositoryName"] repo_uri = response["repository"]["repositoryUri"] repo_registry_id = response["repository"]["registryId"] mod_logger.info( "Created repository {name:s} at {uri:s}".format( name=self.name, uri=repo_uri ) ) # Define and return namedtuple with repo info RepoInfo = namedtuple("RepoInfo", ["name", "uri", "registry_id"]) return RepoInfo(name=repo_name, uri=repo_uri, registry_id=repo_registry_id) def clobber(self): """Delete this remote repository""" if self.clobbered: return self.check_profile_and_region() if self.name != get_ecr_repo(): try: # Remove the remote docker image clients["ecr"].delete_repository( registryId=self.repo_registry_id, repositoryName=self.name, force=True, ) except clients["ecr"].exceptions.RepositoryNotFoundException: # It doesn't exist anyway, so carry on pass # Remove from the config file cloudknot.config.remove_resource(self._section_name, self.name) # Set the clobbered parameter to True, # preventing subsequent method calls self._clobbered = True mod_logger.info("Clobbered docker repo {name:s}".format(name=self.name))
4,032
tests/manual_test_idpmodem_thread.py
Inmarsat/idpmodem
3
2026081
#!/usr/bin/env python import argparse import inspect import pprint import sys import time import unittest from idpmodem.atcommand_thread import get_modem_thread, IdpModemBusy, AtException, AtCrcConfigError, AtCrcError, AtTimeout DEFAULT_PORT = '/dev/ttyUSB1' class IdpModemTestCase(unittest.TestCase): @classmethod def setUpClass(cls): user_options = parse_args(sys.argv) port = user_options['port'] print("Setting up modem for test cases...") (modem, thread) = get_modem_thread() cls.modem = modem cls.modem_thread = thread cls.event_callback = None cls.new_mt_messages = False cls.mt_message_being_retrieved = None cls.mo_msg_complete = False cls.mt_messages = [] cls.mo_messages = [] cls.location_pending = False cls.tracking_count = 0 cls.on_message_pending = False cls.test_case = 0 def setUp(self): sleep_time = 3 print("\n*** NEXT TEST CASE STARTING IN {}s ***".format(sleep_time)) time.sleep(sleep_time) def tearDown(self): print("*** TEST CASE {} COMPLETE ***".format(self.test_case)) def display_tc_header(self, more_info=None): calling_function = inspect.stack()[1][3] func_tags = calling_function.split('_') self.test_case = int(func_tags[1]) func_name = func_tags[2].upper() if len(func_tags) > 2: for i in range(3, len(func_tags)): func_name += ' ' + func_tags[i].upper() if more_info is not None and isinstance(more_info, dict): for k, v in more_info.iteritems(): func_name += ' ({}={})'.format(k, v) print("\n*** TEST CASE {} - {} ***".format(self.test_case, func_name)) def action_prompt(self, message, ref_time, tick=5): if time.time() - ref_time >= tick: ref_time = time.time() message = '\n** ' + 'TEST CASE {} - '.format(self.test_case) + message + ' **\n' wrapper = '*' * len(message.strip()) print('{}{}{}'.format(wrapper, message, wrapper)) return ref_time def test_01_connection(self): self.display_tc_header() while not self.modem.connected: pass self.assertTrue(self.modem.connected) def test_02_sregisters(self): self.display_tc_header() at_config, reg_config = self.modem.config_report() print('{}\n{}'.format(at_config, reg_config)) self.assertTrue(at_config and reg_config) def test_03_crc_enable(self): self.display_tc_header() self.modem.config_crc_enable(True) self.assertTrue(self.modem.crc) def test_04_crc_disable(self): self.display_tc_header() self.modem.config_crc_enable(False) self.assertFalse(self.modem.crc) def test_05_device_mobile_id(self): self.display_tc_header() mobile_id = self.modem.device_mobile_id() print('Mobile ID: {}'.format(mobile_id)) self.assertTrue(len(mobile_id) == 15) def test_06_device_versions(self): self.display_tc_header() versions = self.modem.device_version() pprint.pprint(versions) self.assertTrue(isinstance(versions, object)) def test_07_location_get(self): self.display_tc_header() location = self.modem.location_get() print(pprint.pformat(vars(location), indent=2, width=1)) self.assertTrue(isinstance(location, object)) def test_08_lowpower_notifications_set(self): self.display_tc_header() notifications = self.modem.lowpower_notifications_enable() self.assertTrue(notifications) def test_09_notification_check(self): self.display_tc_header() notifications = self.modem.lowpower_notification_check() print('{}'.format(notifications)) self.assertTrue(isinstance(notifications, list)) def test_10_message_mo_send(self): self.display_tc_header() msg_name = self.modem.message_mo_send(data='TEST10', data_format=1, sin=128) print('MO message assigned name: {}'.format(msg_name)) self.mo_messages.append(msg_name) self.assertTrue(isinstance(msg_name, str)) def test_11_message_mo_state(self): self.display_tc_header() states = self.modem.message_mo_state() pprint.pprint(states) self.assertTrue(isinstance(states, list)) def parse_args(argv): """ Parses the command line arguments. :param argv: An array containing the command line arguments :returns: A dictionary containing the command line arguments and their values """ parser = argparse.ArgumentParser(description="Interface with an IDP modem.") parser.add_argument('-p', '--port', dest='port', type=str, default=DEFAULT_PORT, help="the serial port of the IDP modem") return vars(parser.parse_args(args=argv[1:])) def suite(): suite = unittest.TestSuite() available_tests = unittest.defaultTestLoader.getTestCaseNames(IdpModemTestCase) tests = [ 'test_02_sregisters', # Add test cases above as strings or leave empty to test all cases ] if len(tests) > 0: for test in tests: for available_test in available_tests: if test in available_test: suite.addTest(IdpModemTestCase(available_test)) else: for available_test in available_tests: suite.addTest(IdpModemTestCase(available_test)) return suite if __name__ == '__main__': runner = unittest.TextTestRunner() runner.run(suite())
5,759
problems/egions-cut-by-slashes.py
sailikhithk/tech-interview-prep
0
2025138
class Solution(object): def regionsBySlashes(self, grid): region = 1 dsu = DSU() N = len(grid) #Union the border lines for i in xrange(N): dsu.union((i, 0), (i+1, 0)) dsu.union((i, N), (i+1, N)) for j in xrange(N): dsu.union((0, j), (0, j+1)) dsu.union((N, j), (N, j+1)) #Iterate through slashes and connect the dots #If the slash connects two already connected dots, the region will increament by one for i, row in enumerate(grid): for j, slash in enumerate(row): if slash=='/': if not dsu.union((j+1, i), (j, i+1)): region += 1 elif slash=='\\': if not dsu.union((j, i), (j+1, i+1)): region += 1 return region class DSU(object): def __init__(self): self.parant = {} def find(self, x): if x not in self.parant: self.parant[x] = x if self.parant[x]!=x: self.parant[x] = self.find(self.parant[x]) return self.parant[x] def union(self, x, y): xr, yr = self.find(x), self.find(y) if xr==yr: return False self.parant[yr] = xr return True
1,316
src/plot.py
astrophys/elements-of-stat-learn
0
2025615
import matplotlib.pyplot as plt from error import exit_w_error def plot_data(ScatterDataL = None, LineDataL = None, Comment = None): """ ARGS: ScatterDataL = List of groups' x,y data e.g [ [grp1x, grp1y], [grp2x,grp2y], ...] LineDataL = (Optional) preferably the line data generated by using beta from linear_regression RETURN: DESCRIPTION: Plots data from ESL by Hastie, Fig. 2.1 NOTES: DEBUG: FUTURE: """ print("{}".format(Comment)) colors = ['blue', '#ffa500', 'red'] ### Will plot arbitrary number of data sets up to len(colors) ### for grpIdx in range(len(ScatterDataL)): plt.scatter(x=ScatterDataL[grpIdx][0], y=ScatterDataL[grpIdx][1], edgecolors=colors[grpIdx], marker="o", facecolors='none', label='group {}'.format(grpIdx)) ### Plot regressed line fit ### if(len(LineDataL) != 0): #for lnIdx in range(len(LineDataL)): plt.plot(LineDataL[0], LineDataL[1], 'r-') plt.legend() plt.show()
1,102
building tree model from input 2/main.py
sihyunglee26/Program-Machine-2022
0
2026214
import argparse import command if __name__ == '__main__': parser = argparse.ArgumentParser(description='-c filename') parser.add_argument('-c', help='input file that describes usable commands', default='command-1-line.txt') args = parser.parse_args() print(args) expressions = command.read_file(args.c) # parse expressions # display each parsed expressions for i in expressions: print(str(i)+':') print(expressions[i].toString()) print() # create a single tree that combines all expressions tree = command.deepcopyExpression(expressions['e0'], 0, 20) #print(tree.toString())
683
app/core/models.py
indrajeetzade/recipe-app-api
0
2026255
from django.db import models from django.contrib.auth.models import AbstractBaseUser,BaseUserManager,PermissionsMixin from django.conf import settings import uuid import os def recipe_image_file_path(instance, filename): """Generate file path for new recipe image""" ext = filename.split('.')[-1] filename = f'{uuid.uuid4()}.{ext}' return os.path.join('uploads/recipe/', filename) class UserManager(BaseUserManager): def create_user(self,email,password=None,**extra_fields): """ Creates and saves new user""" if not email: raise ValueError("User must have email address") user=self.model(email=self.normalize_email(email),**extra_fields) user.set_password(password) user.save(using=self._db) return user def create_superuser(self,email,password): """Creates super user and save""" user=self.create_user(email,password) user.is_superuser=True user.is_staff=True user.save(using=self._db) return user class User(AbstractBaseUser,PermissionsMixin): """Custome user model that uses email in place of username""" email=models.EmailField(max_length=255,unique=True) name=models.CharField(max_length=255) is_active=models.BooleanField(default=True) is_staff=models.BooleanField(default=False) objects=UserManager() USERNAME_FIELD='email' class Tag(models.Model): """Tag to be used for recipe""" name=models.CharField(max_length=255) user=models.ForeignKey( settings.AUTH_USER_MODEL, on_delete=models.CASCADE, ) def __str__(self): return self.name class Ingredient(models.Model): """Ingredient to be used in a recipe""" name=models.CharField(max_length=255) user=models.ForeignKey( settings.AUTH_USER_MODEL, on_delete=models.CASCADE, ) def __str__(self): return self.name class Recipe(models.Model): """ Recipe object """ user=models.ForeignKey( settings.AUTH_USER_MODEL, on_delete=models.CASCADE ) title=models.CharField(max_length=255) time_minutes=models.IntegerField() price=models.DecimalField(max_digits=5,decimal_places=2) link=models.CharField(max_length=255,blank=True) ingredients=models.ManyToManyField('Ingredient') tags=models.ManyToManyField('Tag') image = models.ImageField(null=True, upload_to=recipe_image_file_path) def __str__(self): return self.title
2,275
setup.py
WaYdotNET/urllib_s3
6
2025352
# coding: utf-8 import sys from setuptools import find_packages, setup with open("README.md") as f: long_description = f.read() NAME = "urllib_s3" VERSION = '0.0.6' REQUIRES = [ 'setuptools >= 21.0.0', 'six >= 1.9.0', 'boto3 == 1.9.97' ] needs_pytest = {'pytest', 'test', 'ptr'}.intersection(sys.argv) pytest_runner = ['pytest-runner'] if needs_pytest else [] setup( name=NAME, version=VERSION, description="S3 handler for urllib", author='<NAME>', author_email="<EMAIL>", url='https://github.com/WaYdotNET/urllib_s3', license='MIT License', keywords=["urllib", "s3", "urllib handler", 'minio', "aws", "boto3"], package_dir={'': 'lib'}, install_requires=REQUIRES, packages=find_packages('lib'), long_description=long_description, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', 'Operating System :: POSIX :: Linux', 'Programming Language :: Python', 'Topic :: Internet :: WWW/HTTP', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', ], setup_requires=pytest_runner, tests_require=[ 'pytest', 'pytest-mock', 'pytest-cov', 'pytest-flake8', 'pytest-isort', 'pytest-runner' ], )
1,467
helpdesk/api.py
sagar30051991/helpdesk
1
2026311
import frappe import handler from response import get_response from validate import validate_request def handle(): """ Handler for `/helpdesk` methods ### Examples: `/helpdesk/method/{methodname}` will call a whitelisted method """ try: validate_request() return handler.handle() except Exception, e: import traceback print traceback.format_exc() return get_response(message=str(e))
402
setup.py
joshtronic/python-holidayapi
18
2026030
from setuptools import setup setup( name='python-holidayapi', version='1.1.0', description='Official Python library for Holiday API', url='https://holidayapi.com', author='<NAME>', author_email='<EMAIL>', keywords=['python','holidayapi','holiday','api'], license='MIT', packages=['holidayapi'] )
334
harvester/gene_enricher.py
Shane-Neeley/g2p-aggregator
0
2025639
#!/usr/bin/python # -*- coding: utf-8 -*- import json # load gene names # ftp://ftp.ebi.ac.uk/pub/databases/genenames/new/json/non_alt_loci_set.json GENES = {} ALIASES = {} # trim payload, we only need symbol and ensembl data = json.load(open('../data/non_alt_loci_set.json')) for doc in data['response']['docs']: gene = { 'symbol': doc['symbol'], 'ensembl_gene_id': doc.get('ensembl_gene_id', None), 'entrez_id': doc.get('entrez_id', None) } GENES[doc['symbol']] = [gene] if gene['ensembl_gene_id']: if gene['ensembl_gene_id'] not in ALIASES: ALIASES[gene['ensembl_gene_id']] = [] ALIASES[gene['ensembl_gene_id']].append(gene) if gene['entrez_id']: if gene['entrez_id'] not in ALIASES: ALIASES[gene['entrez_id']] = [] ALIASES[gene['entrez_id']].append(gene) for alias in doc.get('alias_symbol', []): if alias not in ALIASES: ALIASES[alias] = [] ALIASES[alias].append(gene) for prev in doc.get('prev_symbol', []): if prev not in ALIASES: ALIASES[prev] = [] ALIASES[prev].append(gene) data = None def get_gene(identifier): """ return gene for identifier """ for store in [GENES, ALIASES]: genes = store.get(identifier, None) if genes and len(genes) == 1: return genes else: raise ValueError('gene reference does not exist or refers to multiple genes') def normalize_feature_association(feature_association): """ add gene_identifiers array to feature_association """ gene_identifiers = [] for gene_symbol in feature_association['genes']: try: gene = get_gene(gene_symbol) except: gene = None if (gene): gene_identifiers.extend(gene) feature_association['gene_identifiers'] = gene_identifiers
1,895
bezier2arc/__init__.py
phenaff/bezier2arc
0
2023966
from .bezier2arc import (convert_file, list_paths, colorize,get_parser, circle_from_points, convert_to_svg)
108
tests/metrics/test_core.py
fangchenli/zipline
1
2026197
from types import MappingProxyType from zipline.finance.metrics.core import _make_metrics_set_core from zipline.testing.fixtures import ZiplineTestCase from zipline.testing.predicates import ( assert_equal, assert_is, assert_raises_str, ) class MetricsSetCoreTestCase(ZiplineTestCase): def init_instance_fixtures(self): super().init_instance_fixtures() self.metrics_sets, self.register, self.unregister, self.load = ( _make_metrics_set_core() ) # make sure this starts empty assert_equal(self.metrics_sets, MappingProxyType({})) def test_load_not_registered(self): msg = "no metrics set registered as 'ayy-lmao', options are: []" with assert_raises_str(ValueError, msg): self.load('ayy-lmao') # register in reverse order to test the sorting of the options self.register('c', set) self.register('b', set) self.register('a', set) msg = ( "no metrics set registered as 'ayy-lmao', options are: " "['a', 'b', 'c']" ) with assert_raises_str(ValueError, msg): self.load('ayy-lmao') def test_register_decorator(self): ayy_lmao_set = set() @self.register('ayy-lmao') def ayy_lmao(): return ayy_lmao_set expected_metrics_sets = MappingProxyType({'ayy-lmao': ayy_lmao}) assert_equal(self.metrics_sets, expected_metrics_sets) assert_is(self.load('ayy-lmao'), ayy_lmao_set) msg = "metrics set 'ayy-lmao' is already registered" with assert_raises_str(ValueError, msg): @self.register('ayy-lmao') def other(): # pragma: no cover raise AssertionError('dead') # ensure that the failed registration didn't break the previously # registered set assert_equal(self.metrics_sets, expected_metrics_sets) assert_is(self.load('ayy-lmao'), ayy_lmao_set) self.unregister('ayy-lmao') assert_equal(self.metrics_sets, MappingProxyType({})) msg = "no metrics set registered as 'ayy-lmao', options are: []" with assert_raises_str(ValueError, msg): self.load('ayy-lmao') msg = "metrics set 'ayy-lmao' was not already registered" with assert_raises_str(ValueError, msg): self.unregister('ayy-lmao') def test_register_non_decorator(self): ayy_lmao_set = set() def ayy_lmao(): return ayy_lmao_set self.register('ayy-lmao', ayy_lmao) expected_metrics_sets = MappingProxyType({'ayy-lmao': ayy_lmao}) assert_equal(self.metrics_sets, expected_metrics_sets) assert_is(self.load('ayy-lmao'), ayy_lmao_set) def other(): # pragma: no cover raise AssertionError('dead') msg = "metrics set 'ayy-lmao' is already registered" with assert_raises_str(ValueError, msg): self.register('ayy-lmao', other) # ensure that the failed registration didn't break the previously # registered set assert_equal(self.metrics_sets, expected_metrics_sets) assert_is(self.load('ayy-lmao'), ayy_lmao_set) self.unregister('ayy-lmao') assert_equal(self.metrics_sets, MappingProxyType({})) msg = "no metrics set registered as 'ayy-lmao', options are: []" with assert_raises_str(ValueError, msg): self.load('ayy-lmao') msg = "metrics set 'ayy-lmao' was not already registered" with assert_raises_str(ValueError, msg): self.unregister('ayy-lmao')
3,635
tests/integration/test_integration.py
ofples/thinglang
5
2026165
import glob import os import subprocess import pytest from tests.infrastructure.test_utils import ProgramTestCase from thinglang import pipeline from thinglang.utils import logging_utils from thinglang.utils.source_context import SourceContext BASE_PATH = os.path.dirname(os.path.abspath(__file__)) SEARCH_PATTERN = os.path.join(BASE_PATH, '**/*.thing') def collect_tests(): for path in glob.glob(SEARCH_PATTERN, recursive=True): #if 'nested_thing_access' in path: yield ProgramTestCase(path) def split_lines(param): return param.replace('\r', '').split('\n') @pytest.mark.parametrize('test_file', collect_tests(), ids=lambda x: x.name) def test_thing_program(test_file: ProgramTestCase): expected_output = test_file.metadata['expected_output'] test_input = bytes('\n'.join(test_file.metadata['input']) if 'input' in test_file.metadata else '', 'utf-8') bytecode = pipeline.compile(SourceContext.wrap(test_file.code)) logging_utils.print_header('VM execution') with open(test_file.target_path, 'wb') as f: f.write(bytecode.bytes()) vm = subprocess.Popen(["thinglang", test_file.target_path], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = (stream.decode('utf-8').strip() for stream in vm.communicate(test_input)) print(stderr) logging_utils.print_header('VM output') print(stdout) if not isinstance(expected_output, str): stdout = split_lines(stdout) assert vm.returncode == 0, 'VM process crashed' assert stdout == expected_output, 'VM output did not match expected output'
1,629
tests/python/unittest/test_multi_device_exec.py
axbaretto/mxnet
36
2025450
import os import mxnet as mx def test_ctx_group(): with mx.AttrScope(ctx_group='stage1'): data = mx.symbol.Variable('data') fc1 = mx.symbol.FullyConnected(data = data, name='fc1', num_hidden=128) act1 = mx.symbol.Activation(data = fc1, name='relu1', act_type="relu") set_stage1 = set(act1.list_arguments()) with mx.AttrScope(ctx_group='stage2'): fc2 = mx.symbol.FullyConnected(data = act1, name = 'fc2', num_hidden = 64) act2 = mx.symbol.Activation(data = fc2, name='relu2', act_type="relu") fc3 = mx.symbol.FullyConnected(data = act2, name='fc3', num_hidden=10) fc3 = mx.symbol.BatchNorm(fc3) mlp = mx.symbol.SoftmaxOutput(data = fc3, name = 'softmax') set_stage2 = set(mlp.list_arguments()) - set_stage1 group2ctx = { 'stage1' : mx.cpu(1), 'stage2' : mx.cpu(2) } texec = mlp.simple_bind(mx.cpu(0), group2ctx=group2ctx, data=(1,200)) for arr, name in zip(texec.arg_arrays, mlp.list_arguments()): if name in set_stage1: assert arr.context == group2ctx['stage1'] else: assert arr.context == group2ctx['stage2'] if __name__ == '__main__': test_ctx_group()
1,277
0x11-python-network_1/3-error_code.py
flourishcodes/holbertonschool-higher_level_programming
0
2025654
#!/usr/bin/python3 # Python script to send request to URL and display error code if __name__ == "__main__": import urllib.request as ur import urllib.error as ure from sys import argv req = ur.Request(argv[1]) try: with ur.urlopen(req) as response: print(str(response.read(), 'utf-8')) except ure.HTTPError as err: print('Error code: {}'.format(err.getcode()))
414
RCT_VOLUME_CHANGE.py
yatharthahuja/Volume-of-Tooth-RCT-by-Segmentation
0
2024584
if __name__ == "__main__": file_pre = open("./results/pre-scan-results.txt","r") file_post = open("./results/post-scan-results.txt","r") pre_scan_vol = float(file_pre.readline()) post_scan_vol = float(file_post.readline()) vol_change = post_scan_vol - pre_scan_vol percent_change = (vol_change*100)/pre_scan_vol file_pre.close() file_post.close() print("**********************************") print("TOTAL TOOTH RCT VOLUME CHANGE: "+ str(vol_change) + " cubic microns") print("TOTAL TOOTH RCT VOLUME PERCENTAGE CHANGE: "+ str(percent_change) + " %") print("**********************************") file = open("./results/final-scan-results.txt","w") L = ["Volume Change ="+str(vol_change), " | Percentage Volume Change ="+str(percent_change)] file.writelines(L) file.close()
794
app/home/urls.py
ankitoscar/anxdoc
0
2023515
from django.urls import path from . import views urlpatterns = [ path('', views.home, name='home'), path('video_feed/', views.video_feed, name='video_feed'), ]
168
dash_carbon_components/_imports_.py
Matheus-Rangel/dash-carbon-components
4
2025380
from .Button import Button from .Card import Card from .Checkbox import Checkbox from .Column import Column from .DatePicker import DatePicker from .DatePickerRange import DatePickerRange from .Dropdown import Dropdown from .Grid import Grid from .Link import Link from .MultiSelect import MultiSelect from .NumberInput import NumberInput from .RadioButtonGroup import RadioButtonGroup from .Row import Row from .Slider import Slider from .Tab import Tab from .Tabs import Tabs from .UIShell import UIShell __all__ = [ "Button", "Card", "Checkbox", "Column", "DatePicker", "DatePickerRange", "Dropdown", "Grid", "Link", "MultiSelect", "NumberInput", "RadioButtonGroup", "Row", "Slider", "Tab", "Tabs", "UIShell" ]
782
class_multiclass/multiclass.py
jmhernan/NIreland_NLP
1
2025334
import os from pathlib import Path import re import pandas as pd import numpy as np import nltk from sklearn.pipeline import Pipeline from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.naive_bayes import MultinomialNB from sklearn.metrics import confusion_matrix from sklearn.metrics import plot_confusion_matrix from sklearn.metrics import accuracy_score, confusion_matrix, classification_report import matplotlib.pyplot as plt from nltk.corpus import stopwords import nltk from nltk.tokenize import word_tokenize nltk.download('stopwords') this_file_path = os.path.abspath(__file__) folder_root = os.path.split(this_file_path)[0] repo_root = os.path.split(folder_root)[0] repo_path = os.path.join(repo_root) df_just = pd.read_csv(os.path.join(repo_path, 'justifications_clean_text_ohe.csv')) # Create a unique number id for each justification category from io import StringIO col = ['justification_cat', 'clean_text'] df = df_just[col] df = df[pd.notnull(df['clean_text'])] #df.columns = ['justification_cat', 'clean_text'] # this line not necessary df['category_id'] = df['justification_cat'].factorize()[0] category_id_df = df[['justification_cat', 'category_id']].drop_duplicates().sort_values('category_id') category_to_id = dict(category_id_df.values) id_to_category = dict(category_id_df[['category_id', 'justification_cat']].values) df.head # Collapse justification categories from 12 to 7 df['category_id2'] = df['justification_cat'] df['category_id2'] = df['category_id2'].replace('J_Intl-Domestic_Precedent', 'J_Denial') df['category_id2'] = df['category_id2'].replace(['J_Utilitarian-Deterrence', 'J_Intelligence', 'J_Law-and-order', 'J_Development-Unity'], 'J_Outcome') df['category_id2'] = df['category_id2'].replace('J_Last-resort', 'J_Emergency-Policy') df['category_id2'].unique() ### If you want to look at aggregate categories rather than original, rename as follows: df['justification_cat'] = df['category_id2'] df['category_id'] = df['justification_cat'].factorize()[0] category_id_df = df[['justification_cat', 'category_id']].drop_duplicates().sort_values('category_id') category_to_id = dict(category_id_df.values) id_to_category = dict(category_id_df[['category_id', 'justification_cat']].values) df.head ###### Function to remove stopwords (optional) ###### def rmv_stopwords(sent): STOPWORDS = set(stopwords.words("english")) sent = [' '.join(word for word in x.split() if word not in STOPWORDS) for x in sent.tolist()] return sent sentences_nosw = rmv_stopwords(df['clean_text']) ### Set X and Y for training and testing set sentences = pd.Series(sentences_nosw).values # exclude stopwords # sentences = df['clean_text'].values # include stopwords y = df['justification_cat'].values sentences_train, sentences_test, y_train, y_test = train_test_split( sentences, y, test_size=0.25, random_state=1000) multinom = Pipeline([('vect', CountVectorizer()), #vectorizes ('tfidf', TfidfTransformer()), #term frequency inverse document frequency #('tfidf', TfidfVectorizer(sublinear_tf=True, min_df=5, norm='l2', encoding='latin-1', ngram_range=(1, 2), stop_words='english')), ('multiclass', MultinomialNB()), #model (Naive Bayes) ]) classifier = multinom.fit(sentences_train, y_train) y_pred = multinom.predict(sentences_test) print('accuracy %s' % accuracy_score(y_pred, y_test)) print(classification_report(y_test, y_pred)) print(confusion_matrix(y_test, y_pred)) # Precision: Percentage related to true positives, taking false positives into consideration # Recall: True positives while taking into consideration false negatives # F1 score: Balance between recall and precision; measure of true positives, balancing false positives and false negatives # Accuracy: Limited metric, only looking at true positives and true negatives; this is good if you have well-balanced data (bw classes) # Support: True number of incidents in a given category in the TESTING data np.unique(y_test, return_counts=True) ## Visualize confusion matrix np.set_printoptions(precision=2) # Plot non-normalized and normalized confusion matrix titles_options = [("Confusion matrix, without normalization", None, "not_normalized"), ("Normalized confusion matrix", 'true', "normalized")] for title, normalize, short_title in titles_options: disp = plot_confusion_matrix(classifier, sentences_test, y_test, #display_labels=id_to_category, display_labels=category_to_id, cmap=plt.cm.Blues, normalize=normalize) disp.ax_.set_title(title) plt.xticks(np.arange(0, len(category_to_id)), category_to_id, rotation=60, ha='right') print(title) print(disp.confusion_matrix) #plt.savefig('multiclass_NB/confusion_matrix12_' + short_title + '.png') plt.savefig('multiclass_NB/confusion_matrix7_' + short_title + '.png') plt.close() ######################################################## #### Grid search hyperparameters + features ############ ######################################################## # From website: from sklearn.feature_extraction.text import TfidfVectorizer tfidf = TfidfVectorizer(sublinear_tf=True, min_df=5, norm='l2', encoding='latin-1', ngram_range=(1, 2), stop_words='english') #min_df: mindocuments a word must be present in to be kept #norm: l2 to ensure all our feature vectors have a euclidian norm of 1. #ngram_range is set to (1, 2) to indicate that we want to consider both unigrams and bigrams. #stop_words is set to "english" features = tfidf.fit_transform(sentences).toarray() labels = df.justification_cat features.shape
5,866
utils/compressed_sensing.py
bencottier/Deep-MRI-Reconstruction
0
2025925
import numpy as np from . import mymath from numpy.lib.stride_tricks import as_strided def soft_thresh(u, lmda): """Soft-threshing operator for complex valued input""" Su = (abs(u) - lmda) / abs(u) * u Su[abs(u) < lmda] = 0 return Su def normal_pdf(length, sensitivity): return np.exp(-sensitivity * (np.arange(length) - length / 2)**2) def var_dens_mask(shape, ivar, sample_high_freq=True): """Variable Density Mask (2D undersampling)""" if len(shape) == 3: Nt, Nx, Ny = shape else: Nx, Ny = shape Nt = 1 pdf_x = normal_pdf(Nx, ivar) pdf_y = normal_pdf(Ny, ivar) pdf = np.outer(pdf_x, pdf_y) size = pdf.itemsize strided_pdf = as_strided(pdf, (Nt, Nx, Ny), (0, Ny * size, size)) # this must be false if undersampling rate is very low (around 90%~ish) if sample_high_freq: strided_pdf = strided_pdf / 1.25 + 0.02 mask = np.random.binomial(1, strided_pdf) xc = Nx / 2 yc = Ny / 2 mask[:, xc - 4:xc + 5, yc - 4:yc + 5] = True if Nt == 1: return mask.reshape((Nx, Ny)) return mask def cartesian_mask(shape, acc, sample_n=10, centred=False): """ Sampling density estimated from implementation of kt FOCUSS shape: tuple - of form (..., nx, ny) acc: float - doesn't have to be integer 4, 8, etc.. """ N, Nx, Ny = int(np.prod(shape[:-2])), shape[-2], shape[-1] pdf_x = normal_pdf(Nx, 0.5/(Nx/10.)**2) lmda = Nx/(2.*acc) n_lines = int(Nx / acc) # add uniform distribution pdf_x += lmda * 1./Nx if sample_n: pdf_x[Nx/2-sample_n/2:Nx/2+sample_n/2] = 0 pdf_x /= np.sum(pdf_x) n_lines -= sample_n mask = np.zeros((N, Nx)) for i in xrange(N): idx = np.random.choice(Nx, n_lines, False, pdf_x) mask[i, idx] = 1 if sample_n: mask[:, Nx/2-sample_n/2:Nx/2+sample_n/2] = 1 size = mask.itemsize mask = as_strided(mask, (N, Nx, Ny), (size * Nx, size, 0)) mask = mask.reshape(shape) if not centred: mask = mymath.ifftshift(mask, axes=(-1, -2)) return mask def shear_grid_mask(shape, acceleration_rate, sample_low_freq=True, centred=False, sample_n=10): ''' Creates undersampling mask which samples in sheer grid Parameters ---------- shape: (nt, nx, ny) acceleration_rate: int Returns ------- array ''' Nt, Nx, Ny = shape start = np.random.randint(0, acceleration_rate) mask = np.zeros((Nt, Nx)) for t in xrange(Nt): mask[t, (start+t)%acceleration_rate::acceleration_rate] = 1 xc = Nx / 2 xl = sample_n / 2 if sample_low_freq and centred: xh = xl if sample_n % 2 == 0: xh += 1 mask[:, xc - xl:xc + xh+1] = 1 elif sample_low_freq: xh = xl if sample_n % 2 == 1: xh -= 1 if xl > 0: mask[:, :xl] = 1 if xh > 0: mask[:, -xh:] = 1 mask_rep = np.repeat(mask[..., np.newaxis], Ny, axis=-1) return mask_rep def perturbed_shear_grid_mask(shape, acceleration_rate, sample_low_freq=True, centred=False, sample_n=10): Nt, Nx, Ny = shape start = np.random.randint(0, acceleration_rate) mask = np.zeros((Nt, Nx)) for t in xrange(Nt): mask[t, (start+t)%acceleration_rate::acceleration_rate] = 1 # brute force rand_code = np.random.randint(0, 3, size=Nt*Nx) shift = np.array([-1, 0, 1])[rand_code] new_mask = np.zeros_like(mask) for t in xrange(Nt): for x in xrange(Nx): if mask[t, x]: new_mask[t, (x + shift[t*x])%Nx] = 1 xc = Nx / 2 xl = sample_n / 2 if sample_low_freq and centred: xh = xl if sample_n % 2 == 0: xh += 1 new_mask[:, xc - xl:xc + xh+1] = 1 elif sample_low_freq: xh = xl if sample_n % 2 == 1: xh -= 1 new_mask[:, :xl] = 1 new_mask[:, -xh:] = 1 mask_rep = np.repeat(new_mask[..., np.newaxis], Ny, axis=-1) return mask_rep def undersample(x, mask, centred=False, norm='ortho', noise=0): ''' Undersample x. FFT2 will be applied to the last 2 axis Parameters ---------- x: array_like data mask: array_like undersampling mask in fourier domain norm: 'ortho' or None if 'ortho', performs unitary transform, otherwise normal dft noise_power: float simulates acquisition noise, complex AWG noise. must be percentage of the peak signal Returns ------- xu: array_like undersampled image in image domain. Note that it is complex valued x_fu: array_like undersampled data in k-space ''' assert x.shape == mask.shape # zero mean complex Gaussian noise noise_power = noise nz = np.sqrt(.5)*(np.random.normal(0, 1, x.shape) + 1j * np.random.normal(0, 1, x.shape)) nz = nz * np.sqrt(noise_power) if norm == 'ortho': # multiplicative factor nz = nz * np.sqrt(np.prod(mask.shape[-2:])) else: nz = nz * np.prod(mask.shape[-2:]) if centred: x_f = mymath.fft2c(x, norm=norm) x_fu = mask * (x_f + nz) x_u = mymath.ifft2c(x_fu, norm=norm) return x_u, x_fu else: x_f = mymath.fft2(x, norm=norm) x_fu = mask * (x_f + nz) x_u = mymath.ifft2(x_fu, norm=norm) return x_u, x_fu def data_consistency(x, y, mask, centered=False, norm='ortho'): ''' x is in image space, y is in k-space ''' if centered: xf = mymath.fft2c(x, norm=norm) xm = (1 - mask) * xf + y xd = mymath.ifft2c(xm, norm=norm) else: xf = mymath.fft2(x, norm=norm) xm = (1 - mask) * xf + y xd = mymath.ifft2(xm, norm=norm) return xd def get_phase(x): xr = np.real(x) xi = np.imag(x) phase = np.arctan(xi / (xr + 1e-12)) return phase def undersampling_rate(mask): return float(mask.sum()) / mask.size
6,114
instructors/migrations/0002_alter_language_user_alter_user_phone.py
bastoune57/gokiting_back_end
0
2025479
# Generated by Django 4.0.2 on 2022-03-01 08:52 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import phonenumber_field.modelfields class Migration(migrations.Migration): dependencies = [ ('instructors', '0001_initial'), ] operations = [ migrations.AlterField( model_name='language', name='user', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='languages', to=settings.AUTH_USER_MODEL), ), migrations.AlterField( model_name='user', name='phone', field=phonenumber_field.modelfields.PhoneNumberField(default='+12125552368', max_length=128, region=None), ), ]
786
tests/dingtalk_test.py
culiutudousi/kim-voice-assistant
75
2025474
# -*- coding: utf-8-*- import unittest import os os.sys.path.append(os.path.join(os.path.dirname(__file__), '../')) from src.components import logger import logging import json import wave import time from src.config.path import CACHE_WAVE_PATH from src.components.dingtalk import DingRobot class TestDingtalk(unittest.TestCase): """ 函数计算单元测试 """ def setUp(self): pass def test_dingtalk_handle(self): DingRobot.dingtalk_handle('ip地址发送到钉钉', '11111') def atest_send_message(self): res = DingRobot.send_message(title='## 撒地方\n阿斯蒂芬', markdown_content='## 撒地方\n阿斯蒂芬') assert res is True if __name__ == '__main__': logger.init(info=True, debug=True) unittest.main()
732
gnome/gnome2/gedit/plugins.symlink/ViGedit/bindings/change.py
icebreaker/dotfiles
4
2022652
from base import VIG_ModeBase class Mode(VIG_ModeBase): def setup(self, act): self.reg(None, act.gtk.keysyms.a) self.reg(self.nop, act.gtk.keysyms.B, after=(act.modes.block, ["change", "numLines"])) self.reg(self.nop, act.gtk.keysyms.t, after=(act.modes.t, ["change", "numLines", "f"])) self.reg(act.text.cut_TillEndOfWord, act.gtk.keysyms.w, after=act.modes.insert, **self.fr) self.reg(act.text.cut_NextWord, act.gtk.keysyms.w, after=act.modes.insert, stack="a", **self.fr) self.reg(act.text.cut_Line, act.gtk.keysyms.l, after=act.modes.insert, stack="a", **self.fr)
665
test2.py
retorrano/sms
0
2026125
import sms2 sms = sms2.TextMessage("+639959064795","BAL") sms.connectPhone() sms.sendMessage() sms.disconnectPhone() print("message sent successfully")
152
utils.py
sumukhaithal6/Enduro-Imitation-Learning
1
2025165
#!/usr/bin/env python3 """ Simple utilities. Authors: LICENCE: """ from argparse import Namespace from time import sleep import gym import torch from gym.wrappers.monitoring.video_recorder import VideoRecorder from torchvision import transforms from games import Game_type from datasets import crop def model_play(model: torch.nn.Module, game: Game_type, args: Namespace): """Make model play game and store video.""" env = gym.make(game.name) video = VideoRecorder( env, str( args.model_path / args.train_run_name / (args.train_run_name + ".mp4"), ), ) model.eval() data_transforms = transforms.Compose([crop, transforms.ToTensor()]) cur_state = data_transforms(env.reset()).unsqueeze(0) total_reward = 0.0 steps = 0 while True: with torch.no_grad(): action = model(cur_state.to(args.device)).cpu() action = action.argmax(dim=1) state, reward, done, _ = env.step(action) cur_state = data_transforms(state).unsqueeze(0) total_reward += reward if steps % 200 == 0 or done: print("\naction ", action) print(f"step {steps} total_reward {total_reward:+0.2f}") steps += 1 video.capture_frame() # sleep(0.01) if args.watch: isopen = env.render(mode="human") if not isopen: break if done: break
1,448
KerbalStuff/blueprints/lists.py
toadicus/KerbalStuff
1
2025745
from flask import Blueprint, render_template, abort, request, redirect, session, url_for from flask.ext.login import current_user, login_user, logout_user from datetime import datetime, timedelta from KerbalStuff.email import send_confirmation, send_reset from KerbalStuff.objects import User, Mod, ModList, ModListItem from KerbalStuff.database import db from KerbalStuff.common import * import bcrypt import re import random import base64 import binascii import os lists = Blueprint('lists', __name__, template_folder='../../templates/lists') @lists.route("/create/pack") def create_list(): return render_template("create_list.html") @lists.route("/pack/<list_id>/<list_name>") def view_list(list_id, list_name): mod_list = ModList.query.filter(ModList.id == list_id).first() if not mod_list: abort(404) editable = False if current_user: if current_user.admin: editable = True if current_user.id == mod_list.user_id: editable = True return render_template("mod_list.html", **{ 'mod_list': mod_list, 'editable': editable }) @lists.route("/pack/<list_id>/<list_name>/edit", methods=['GET', 'POST']) @with_session @loginrequired def edit_list(list_id, list_name): mod_list = ModList.query.filter(ModList.id == list_id).first() if not mod_list: abort(404) editable = False if current_user: if current_user.admin: editable = True if current_user.id == mod_list.user_id: editable = True if not editable: abort(401) if request.method == 'GET': return render_template("edit_list.html", **{ 'mod_list': mod_list, 'mod_ids': [m.mod.id for m in mod_list.mods] }) else: description = request.form.get('description') background = request.form.get('background') bgOffsetY = request.form.get('bg-offset-y') mods = json.loads(request.form.get('mods')) mod_list.description = description if background and background != '': mod_list.background = background try: mod_list.bgOffsetY = int(bgOffsetY) except: pass # Remove mods removed_mods = [m for m in mod_list.mods if not m.mod_id in mods] for mod in removed_mods: mod_list.mods.remove(mod) # Add mods added_mods = [m for m in mods if not m in [mod.mod.id for mod in mod_list.mods]] for m in added_mods: mod = Mod.query.filter(Mod.id == m).first() mli = ModListItem() mli.mod_id = mod.id mli.mod_list = mod_list mod_list.mods.append(mli) db.add(mli) db.commit() for mod in mod_list.mods: mod.sort_index = mods.index(mod.mod.id) return redirect(url_for("lists.view_list", list_id=mod_list.id, list_name=mod_list.name))
2,992
modis/helptools.py
Benny84/discord-music-bot-modis
0
2026088
from collections import OrderedDict import json as _json import logging logger = logging.getLogger(__name__) def get_help_data(filepath): """ Get the json data from a help file Args: filepath (str): The file path for the help file Returns: data: The json data from a help file """ try: with open(filepath, 'r') as file: return _json.load(file, object_pairs_hook=OrderedDict) except Exception as e: logger.error("Could not load file {}".format(filepath)) logger.exception(e) return {} def get_help_datapacks(filepath, prefix="!"): """ Load help text from a file and give it as datapacks Args: filepath (str): The file to load help text from prefix (str): The prefix to use for commands Returns: datapacks (list): The datapacks from the file """ help_contents = get_help_data(filepath) datapacks = [] # Add the content for d in help_contents: heading = d content = "" if d == "Commands": for c in help_contents[d]: if "name" not in c: continue content += "`" command = prefix + c["name"] content += "{}".format(command) if "params" in c: for param in c["params"]: content += " [{}]".format(param) content += "`: " if "description" in c: content += c["description"] content += "\n" else: content += help_contents[d] datapacks.append((heading, content, True)) return datapacks
1,720
old_fcn/utils.py
Camixxx/segmentation
0
2024806
from torchvision.utils import make_grid import torch import torch.nn.functional as F import torch.nn as nn import numpy as np def make_image_grid(img, mean, std): img = make_grid(img) for i in range(3): img[i] *= std[i] img[i] += mean[i] return img def make_label_grid(label): label = make_grid(label.unsqueeze(1).expand(-1, 3, -1, -1))[0:1] return label # def get_pic(image): # if isinstance(image, str): # return Image.open(image) # return image # def get_classes(pic): # classes = [] # color_list = pic.getcolors() # for color in range(len(color_list)): # classes.append(color_list[color][1]) # return classes ## iou def compute_mean_iou(pred, label): pred = pred.data.numpy() label = label.data.numpy() unique_labels = np.unique(label) num_unique_labels = len(unique_labels) I = np.zeros(num_unique_labels) U = np.zeros(num_unique_labels) for index, val in enumerate(unique_labels): pred_i = pred == val label_i = label == val I[index] = float(np.sum(np.logical_and(label_i, pred_i))) U[index] = float(np.sum(np.logical_or(label_i, pred_i))) # mean_iou = np.mean(I / U) return np.mean(I / U) def get_IU(pred, label): pred = pred.data.numpy() label = label.data.numpy() unique_labels = np.unique(label) num_unique_labels = len(unique_labels) I = np.zeros(num_unique_labels) U = np.zeros(num_unique_labels) for index, val in enumerate(unique_labels): pred_i = pred == val label_i = label == val I[index] = float(np.sum(np.logical_and(label_i, pred_i))) U[index] = float(np.sum(np.logical_or(label_i, pred_i))) return I,U def get_total(pred, label): lb = label.data.numpy() pd = pred.data.numpy() total = pd == lb return total def get_union(pred, label): pred = pred.data.numpy() label = label.data.numpy() unique_labels = np.unique(label) classes_num = len(unique_labels) unions = np.zeros(classes_num) for index, val in enumerate(unique_labels): pred_i = pred == val label_i = label == val unions[index] = float(np.sum(np.logical_or(label_i, pred_i))) return unions def pixel_accuarcy(label, pred): t = get_total(pred, label) pa = float(np.sum(t))/t.size return pa def mean_pixel_accuracy(label, pred): I,U = get_IU(pred, label) label = label.data.numpy() unique_labels = np.unique(label) num_unique_labels = len(unique_labels) T = np.zeros(num_unique_labels) mpa = np.sum(I/U)/I.size return mpa def mean_IU(label, pred): I,U = get_IU(pred, label) unions = get_union(pred, label) mIoU = float(np.sum(I/U))/I.size return mIoU def frequency_weighted_IU(label, pred): I,U = get_IU(pred, label) total = get_total(pred, label) unions = get_union(pred, label) s = float(np.sum(total*I/U)) FWIoU = s/I.size return FWIoU def FCN_metric(label, pred): PA = pixel_accuarcy(label, pred) MPA = mean_pixel_accuracy(label, pred) MIU = mean_IU(label, pred) # FWIoU = frequency_weighted_IU(label, pred) result = {'PA':PA, 'MPA':MPA, 'MIU':MIU} #, 'FWIoU':FWIoU return result #def test(): # dir1 = 'D:/9527/2018.4.12 语义分割评估(未完成)/DJI_0605.png' # dir2 = 'D:/9527/2018.4.12 语义分割评估(未完成)/pred_9.png' # dir3 = 'D:/FCN.tensorflow-master-123/test2018.4.26/A/gt/gt_5.png' # dir4 = 'D:/FCN.tensorflow-master-123/test2018.4.26/A/pred/pred_5.png' # print('PA = ',pixel_accuarcy(dir1, dir2)) # print('MPA = ',mean_pixel_accuracy(dir3, dir4)) # print('MIoU = ',mean_IU(dir3, dir4)) # print('FWIoU = ',frequency_weighted_IU(dir1, dir2)) def FCN_evaluate(dir1): PA = 0 MPA = 0 MIU = 0 FWIoU = 0 print('the directory is:',dir1) image_lists = create_image_lists(dir1) for i in range(len(image_lists['gt'])): print(i) ground_truth = dir1 +'/gt/'+image_lists['gt'][i] prediction = dir1 + '/pred/' + image_lists['pred'][i] result = {'name': name, 'PA':PA, 'MPA':MPA, 'MIU':MIU, 'FWIoU':FWIoU} return result # Recommend class CrossEntropyLoss2d(nn.Module): def __init__(self, weight=None, size_average=True): super(CrossEntropyLoss2d, self).__init__() self.nll_loss = nn.NLLLoss2d(weight, size_average) def forward(self, inputs, targets): return self.nll_loss(F.log_softmax(inputs), targets)
4,499
airbyte-integrations/connectors/source-linkedin-ads/unit_tests/analytics_tests/test_chunk_analytics_fields.py
harshithmullapudi/airbyte
0
2022791
# # MIT License # # Copyright (c) 2020 Airbyte # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # from source_linkedin_ads.analytics import chunk_analytics_fields # Test chunk size for each field set TEST_FIELDS_CHUNK_SIZE = 3 # Test fields assuming they are really available for the fetch TEST_ANALYTICS_FIELDS = [ "field_1", "base_field_1", "field_2", "base_field_2", "field_3", "field_4", "field_5", "field_6", "field_7", "field_8", ] # Fields that are always present in fields_set chunks TEST_BASE_ANALLYTICS_FIELDS = ["base_field_1", "base_field_2"] def test_chunk_analytics_fields(): """ We expect to truncate the fields list into the chunks of equal size, with TEST_BASE_ANALLYTICS_FIELDS presence in each chunk, order is not matter. """ expected_output = [ ["field_1", "base_field_1", "field_2", "base_field_2"], ["base_field_2", "field_3", "field_4", "base_field_1"], ["field_5", "field_6", "field_7", "base_field_1", "base_field_2"], ["field_8", "base_field_1", "base_field_2"], ] assert list(chunk_analytics_fields(TEST_ANALYTICS_FIELDS, TEST_BASE_ANALLYTICS_FIELDS, TEST_FIELDS_CHUNK_SIZE)) == expected_output
2,239
ServerlessController/providers_app/models.py
pacslab/ChainFaaS
7
2026182
from django.db import models from profiles.models import Developer, User, Provider from developers_app.models import Services from datetime import datetime from pytz import timezone from MSc_Research_Django.settings import TIME_ZONE # Create your models here. class Job(models.Model): provider = models.ForeignKey(Provider, on_delete=models.CASCADE) service = models.ForeignKey(Services, on_delete=models.CASCADE) start_time = models.DateTimeField(default=datetime(2018, 7, 1, tzinfo=timezone(TIME_ZONE))) ack_time = models.DateTimeField(default=datetime(2018, 7, 1, tzinfo=timezone(TIME_ZONE))) pull_time = models.IntegerField(default=0) run_time = models.IntegerField(default=0) total_time = models.IntegerField(default=0) cost = models.FloatField(default=0.0) finished = models.BooleanField(default=False) corr_id = models.UUIDField(default=0, db_index=True) response = models.TextField(default='')
947
examples/dynamic_lgp_humoro.py
humans-to-robots-motion/lgp
1
2024040
import sys import argparse import time import yaml import logging from os.path import join, dirname, abspath, expanduser logging.basicConfig(level=logging.INFO) ROOT_DIR = join(dirname(abspath(__file__)), '..') DATA_DIR = join(ROOT_DIR, 'data', 'scenarios') MODEL_DIR = join(expanduser("~"), '.qibullet', '1.4.3') DATASET_DIR = join(ROOT_DIR, 'datasets', 'mogaze') sys.path.append(ROOT_DIR) from lgp.core.dynamic import HumoroDynamicLGP from lgp.utils.helpers import load_yaml_config parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter, description='Example run: python lgp_planner_humoro.py set_table') parser.add_argument('scenario', help='The scenario name of the domain, problem file', type=str) parser.add_argument('-p', help='problem number', type=str, default='1') parser.add_argument('-v', help='verbose', type=bool, default=False) args = parser.parse_args() domain_file = join(DATA_DIR, 'domain_' + args.scenario + '.pddl') problem_file = join(DATA_DIR, 'problem_' + args.scenario + args.p + '.pddl') config_file = join(DATA_DIR, args.scenario + args.p + '.yaml') config = load_yaml_config(config_file) robot_model_file = join(MODEL_DIR, 'pepper.urdf') start_time = time.time() engine = HumoroDynamicLGP(domain_file=domain_file, problem_file=problem_file, robot_model_file=robot_model_file, path_to_mogaze=DATASET_DIR, enable_viewer=args.v, verbose=args.v) engine.init_planner(**config) init_time = time.time() print('Init time: ' + str(init_time - start_time) + 's') engine.run(replan=True)
1,601
python/code_challenges/quick-sort/quick_sort/quick_sort.py
AnasAGc/data-structures-and-algorithms
0
2025984
def QuickSort(arr, left, right): if left < right: position = Partition(arr, left, right) QuickSort(arr, left, position - 1) QuickSort(arr, position + 1, right) return arr def Partition(arr, left, right): pivot = arr[right] # 16 low = left - 1 for i in range(left,right): if arr[i] <= pivot : low += 1 # print(low) Swap(arr, i, low) print(low) print(arr) Swap(arr, right, low + 1) return low + 1 def Swap(arr, i, low): temp = arr[i] arr[i] = arr[low] arr[low] = temp
635
examples/rabbitmq/yunpian.py
ilaotan/epush
0
2026133
#!/usr/bin/env python #coding:utf-8 import pika import json HOST = 'localhost' USERNAME = 'hisir' PASSWORD = '<PASSWORD>' class Yunpian(): def __init__(self): credentials = pika.PlainCredentials(USERNAME, PASSWORD) self.connection = pika.BlockingConnection(pika.ConnectionParameters(host=HOST, credentials=credentials)) self.channel = self.connection.channel() self.queue = 'yunpian' def single_send(self): data = {'type': 'single', 'mobile': '+861510202', 'content':'【广州科技】验证码8888,请您尽快验证,完成sir注册。如非本人操作请忽略。'} self.in_mq(data) def batch_send(self): data = {'type': 'batch', 'mobile': '1510202', 'content':'【广州科技】验证码6666,请您尽快验证,完成sir注册。如非本人操作请忽略。'} self.in_mq(data) def end(self): self.channel.close() self.connection.close() def in_mq(self, data): self.channel.basic_publish(exchange='', routing_key=self.queue, body=json.dumps(data)) if __name__ == "__main__": yunpian = Yunpian() yunpian.single_send() #yunpian.batch_send() yunpian.end()
1,145
tests/compositepingertest.py
Global-Biofoundries-Alliance/DNA-scanner
12
2026233
import unittest from Pinger import Pinger, Entities from dummy.pinger import DummyPinger from dummy.pinger import NotAvailablePinger from dummy.pinger import AlwaysRunningPinger class TestCompositePinger(unittest.TestCase): name = "CompositePinger" # Checks the isRunning() method. def test_is_running(self): print ("--->>> Start test for: " + TestCompositePinger.name + " - isRunning()") # Create CompositePinge with 2 registered DummyPinger pingerDummy1 = DummyPinger() pingerDummy2 = DummyPinger() p = Pinger.CompositePinger() p.registerVendor(Entities.VendorInformation(name="Dummy", shortName="Dummy", key=1), pingerDummy1) p.registerVendor(Entities.VendorInformation(name="Dummy", shortName="Dummy", key=2), pingerDummy2) # No Pinger is Running pingerDummy1.running = False pingerDummy2.running = False self.assertFalse(p.isRunning()) # DummyPinger1 is running pingerDummy1.running = True pingerDummy2.running = False self.assertTrue(p.isRunning()) # DummyPinger2 is running pingerDummy1.running = False pingerDummy2.running = True self.assertTrue(p.isRunning()) # Both DummyPinger are running pingerDummy1.running = True pingerDummy2.running = True self.assertTrue(p.isRunning()) # Check the getVendor method def test_get_vendor(self): print ("--->>> Start test for: " + TestCompositePinger.name + " - getVendor") # Create Dummy Pinger pingerDummy1 = DummyPinger() pingerDummy2 = DummyPinger() # Without registered vendor/vendorpinger p = Pinger.CompositePinger() self.assertEqual(0, len(p.getVendors())) # With 1 registered vendor p.registerVendor(Entities.VendorInformation(name="Dummy", shortName="Dummy", key=1), pingerDummy1) self.assertEqual(1, len(p.getVendors())) vendor = p.getVendors()[0] self.assertEqual(vendor.name, "Dummy") self.assertEqual(vendor.shortName, "Dummy") self.assertEqual(vendor.key, 1) # with 2 registered vendor p.registerVendor(Entities.VendorInformation(name="Dummy", shortName="Dummy", key=2), pingerDummy2) self.assertEqual(2, len(p.getVendors())) vendor = p.getVendors()[1] self.assertEqual(vendor.name, "Dummy") self.assertEqual(vendor.shortName, "Dummy") self.assertEqual(vendor.key, 2) # Test with duplicate key. Old one should be replaced with the new one p.registerVendor(Entities.VendorInformation(name="DummyDuplicate", shortName="DummyDuplicate", key=2), pingerDummy2) self.assertEqual(2, len(p.getVendors())) vendor = p.getVendors()[1] self.assertEqual(vendor.name, "DummyDuplicate") self.assertEqual(vendor.shortName, "DummyDuplicate") self.assertEqual(vendor.key, 2) # Checks the getorders method def test_getorders(self): print ("--->>> Start test for: " + TestCompositePinger.name + " - getOrders") # Intitialize Pinger and DummyPinger pingerDummy1 = DummyPinger() pingerDummy2 = DummyPinger() p = Pinger.CompositePinger() # Without search it should return a empty list self.assertEqual(0, len(p.getOffers())) self.assertFalse(p.isRunning()) # Start search with 1 Sequence and without vendors p.searchOffers([Entities.SequenceInformation("ACTG", "TestSequence", "ts1")]) self.assertEqual(1, len(p.getOffers())) self.assertEqual(0, len(p.getOffers()[0].vendorOffers)) # search with 2 sequences and 1 vendor p.registerVendor(Entities.VendorInformation(name="Dummy", shortName="Dummy", key=1), pingerDummy1) p.searchOffers([Entities.SequenceInformation("ACTG", "TestSequence", "ts1"), Entities.SequenceInformation("ACTG", "TestSequence", "ts2")]) self.assertEqual(2, len(p.getOffers())) self.assertEqual(1, len(p.getOffers()[0].vendorOffers)) self.assertEqual(1, len(p.getOffers()[0].vendorOffers[0].offers)) # Create a correct order order = p.order(vendor = 1, offerIds = [p.getOffers()[0].vendorOffers[0].offers[0].key]) self.assertEqual(Entities.OrderType.NOT_SUPPORTED, order.getType()) # search with 1 sequence and 2 vendors p.registerVendor(Entities.VendorInformation(name="Dummy", shortName="Dummy", key=2), pingerDummy2) p.searchOffers([Entities.SequenceInformation("ACTG", "TestSequence", "ts1")]) self.assertEqual(1, len(p.getOffers())) self.assertEqual(2, len(p.getOffers()[0].vendorOffers)) self.assertEqual(1, len(p.getOffers()[0].vendorOffers[0].offers)) self.assertEqual(1, len(p.getOffers()[0].vendorOffers[1].offers)) # Filter Vendor 1 p.searchOffers([Entities.SequenceInformation("ACTG", "TestSequence", "ts1")], vendors=[1]) self.assertEqual(1, len(p.getOffers())) self.assertEqual(1, len(p.getOffers()[0].vendorOffers)) self.assertEqual(1, p.getOffers()[0].vendorOffers[0].vendorInformation.key) self.assertEqual(1, len(p.getOffers()[0].vendorOffers[0].offers)) # Filter Vendor 2 p.searchOffers([Entities.SequenceInformation("ACTG", "TestSequence", "ts1")], vendors=[2]) self.assertEqual(1, len(p.getOffers())) self.assertEqual(1, len(p.getOffers()[0].vendorOffers)) self.assertEqual(2, p.getOffers()[0].vendorOffers[0].vendorInformation.key) self.assertEqual(1, len(p.getOffers()[0].vendorOffers[0].offers)) # search with 2 sequences, 1 vendor with orders and 1 vendor without orders p.searchOffers([Entities.SequenceInformation("ACTG", "TestSequence", "ts1"), Entities.SequenceInformation("ACTG", "TestSequence", "ts2")]) pingerDummy2.offers = [] self.assertEqual(2, len(p.getOffers())) self.assertEqual(2, len(p.getOffers()[0].vendorOffers)) self.assertEqual(1, len(p.getOffers()[0].vendorOffers[0].offers)) self.assertEqual(0, len(p.getOffers()[0].vendorOffers[1].offers)) # Test that CompositePinger ignores output of a VendorPinger, if invalid pingerDummy1.offers = [1,2,3] self.assertEqual(2, len(p.getOffers())) self.assertEqual(1, len(p.getOffers()[0].vendorOffers)) # # Desc: Test the following szenarios: # - VendorPinger are temporary Unavailable # - Try to search while Pinger is running # def testVendorOffers(self): # Define Sequences for searchOffers call sequences = [ Entities.SequenceInformation("ACTG", "TestSequence", "ts1") ] # Define CompositePinger (Object to test) p = Pinger.CompositePinger() # Pinger with success response successPinger = DummyPinger() p.registerVendor(Entities.VendorInformation(name="DummySuccess", shortName="DummySucc", key=1), successPinger) p.searchOffers(sequences) res = p.getOffers() # 1 Sequence ... self.assertEqual(1, len(res)) # with 1 vendor ... self.assertEqual(1, len(res[0].vendorOffers)) # with 1 offer self.assertEqual(1, len(res[0].vendorOffers[0].offers)) # and 0 messages self.assertEqual(0, len(res[0].vendorOffers[0].messages)) # register Pinger who is unavailable unavailablePinger = NotAvailablePinger() p.registerVendor(Entities.VendorInformation(name="DummyNotAvailable", shortName="DummyNA", key=2), unavailablePinger) p.searchOffers(sequences) res = p.getOffers() # 1 Sequence ... self.assertEqual(1, len(res)) # with 2 vendor ... self.assertEqual(2, len(res[0].vendorOffers)) # 1 vendor ... # with 1 offer self.assertEqual(1, len(res[0].vendorOffers[0].offers)) # and 0 messages self.assertEqual(0, len(res[0].vendorOffers[0].messages)) # 1 vendor ... # with 0 offer self.assertEqual(1, len(res[0].vendorOffers[0].offers)) # and 1 messages self.assertEqual(1, len(res[0].vendorOffers[1].messages)) self.assertEqual(Entities.MessageType.API_CURRENTLY_UNAVAILABLE, res[0].vendorOffers[1].messages[0].messageType) # register Pinger who is always running runningPinger = AlwaysRunningPinger() p.registerVendor(Entities.VendorInformation(name="DummyRunning", shortName="DummyRunning", key=3), runningPinger) # Expect IsRunningError with self.assertRaises(Entities.IsRunningError): p.searchOffers(sequences) # # Desc: Test the following scenarios: # - Try to search with different keys with equal keys # def testDuplicatedSequences(self): # Define Sequences for searchOffers call sequences = [ Entities.SequenceInformation("ACTG", "TestSequence", "ts1"), Entities.SequenceInformation("ACTG2", "TestSequence2", "ts1") ] # Define CompositePinger (Object to test) p = Pinger.CompositePinger() # Pinger with success response successPinger = DummyPinger() p.registerVendor(Entities.VendorInformation(name="DummySuccess", shortName="DummySucc", key=1), successPinger) # Expect error because auf duplicated keys of sequences with self.assertRaises(Entities.InvalidInputError): p.searchOffers(sequences) if __name__ == '__main__': unittest.main()
9,732
scripts/misc/config_abl_3dassembly_optimal_bc_loss.py
clvrai/mopa-pd
6
2025694
# for this figure, we need to multiple all y values by 1e6 (y_data = y_data * 1e6) and set # y-tick labels directly plt.yticks([1.3, 1.4, 1.6, 2.0], fontsize=12). filename_prefix = 'SawyerAssembly-Abl-Optimal-BC-Loss' xlabel = 'Epoch' ylabel = 'Mean Square Error (x 1e-6)' max_step = 40 min_y_axis_value = 1e-6 max_y_axis_value = 2e-6 legend = True data_key = ["Action Prediction Loss (Train)", "Action Prediction Loss (Test)"] bc_y_value = 0 smoothing = False smoothing_weight = 0 legend_loc = 'upper right' wandb_api_path = 'arthur801031/mopa-rl-bc-visual' num_points = 40 x_scale = 1 divide_max_step_by_1mill = False build_log_from_multiple_keys = True limit_y_max = True limit_y_max_value = 2e-6 plot_labels = { 'Train': ['BC Visual Stochastic_3DAssembly_curious-spaceship-136'], 'Test': ['BC Visual Stochastic_3DAssembly_curious-spaceship-136'], } line_labels = {} line_colors = { 'Train': 'C0', 'Test': 'C1', }
936
insurancedb/file_processor.py
ifr1m/insurance-db
0
2025858
import logging from pathlib import Path from typing import List import pdfplumber from insurancedb.extractors.registry import extractors_registry_map from insurancedb.extractors.extractor_methods import diff_months logger = logging.getLogger(__name__) def process_paths(paths: List[Path]): logger.info("Processing %d files.", len(paths)) data = [] for pdf_path in paths: with pdfplumber.open(pdf_path) as pdf: processed = False for extractor_key, extractor_cls in extractors_registry_map.items(): extractor = extractor_cls(pdf_path.name, pdf) if extractor.is_match(): processed = True logger.info("%s :-> %s", extractor_cls.__name__, {str(pdf_path)}) # NR.CRT # ASIGURATOR # NUMAR POLITA # CLASA B/M # DATA EMITERE # DATA EXPIRARE # NUME CLIENT # NUMAR DE TELEFON # TIP ASIGURARE # NUMAR INMATRICULARE # PERIODA DE ASIGURARE # VALOARE POLITA - prima de asigurare (totala) # PDF start_date = extractor.get_start_date() expiration_date = extractor.get_expiration_date() interval = diff_months(expiration_date, start_date) pdf_data = [extractor.get_insurer_short_name(), extractor.get_insurance_number(), extractor.get_insurance_class(), extractor.get_contract_date(), expiration_date, extractor.get_person_name(), None, extractor.get_type(), extractor.get_car_number(), interval, extractor.get_insurance_amount(), str(pdf_path)] data.append(pdf_data) break if not processed: pdf_data = [f"Unprocessed {str(pdf_path)}", None, None, None, None, None, None, None, None, None, None, pdf_path.name] data.append(pdf_data) return data
2,266
day-05/part-1/chloe.py
lypnol/adventofcode-2017
16
2024718
from submission import Submission class ChloeSubmission(Submission): def run(self, s): input = list(map(int, s.split('\n'))) jump_index = 0 steps = 0 while jump_index < len(input) : jump = input[jump_index] input[jump_index] += 1 jump_index += jump steps +=1 return steps
296
tests/server/main/match_ror_test.py
dataesr/matcher-affiliation
1
2025454
import pytest from project.server.main.load_ror import load_ror from project.server.main.match_ror import match_ror from project.server.main.metrics import compute_precision_recall from project.server.main.my_elastic import MyElastic @pytest.fixture(scope='module') def elasticsearch() -> dict: index_prefix = 'test' es = MyElastic() load_ror(index_prefix=index_prefix) yield {'index_prefix': index_prefix, 'es': es} es.delete_index(index=f'{index_prefix}*') class TestMatchRor: @pytest.mark.parametrize( 'query,strategies,expected_results,expected_logs', [ ('institut pasteur shanghai', [[['ror_name']]], ['0495fxg12'], ''), ('02feahw73', [[['ror_id']]], ['02feahw73'], ''), ('grid.4444.0', [[['ror_grid_id']]], ['02feahw73'], '') ] ) def test_match_ror(self, elasticsearch, query, strategies, expected_results, expected_logs) -> None: args = {'index_prefix': elasticsearch['index_prefix'], 'verbose': True, 'strategies': strategies, 'query': query} response = match_ror(conditions=args) results = response['results'] results.sort() assert results == expected_results assert expected_logs in response['logs'] def test_precision_recall(self, elasticsearch) -> None: precision_recall = compute_precision_recall(match_type='ror', index_prefix=elasticsearch['index_prefix']) assert precision_recall['precision'] >= 0.81 assert precision_recall['recall'] >= 0.16
1,541
examples/supervision_example.py
tamland/actors
15
2024320
# -*- coding: utf-8 -*- import logging import time import random from actors import Actor, ActorSystem, Directive logging.basicConfig(level=logging.DEBUG) class Crash(Exception): pass StartGreeting = object() class Greeter(Actor): def post_restart(self): print("Greeter restarted") def receive(self, message): if random.randint(0, 3) == 0: raise Crash() print("Hello %s" % message) class Supervisor(Actor): @staticmethod def supervisor_strategy(exception): try: raise exception except Crash: return Directive.Restart except: return Directive.Stop def __init__(self): self._greeter = None def receive(self, message): if message is StartGreeting: self._greeter = self.context.actor_of(Greeter) else: # Forward the message to greeter self._greeter.tell(message, self.context.sender) system = ActorSystem() supervisor = system.actor_of(Supervisor) supervisor.tell(StartGreeting) try: while True: supervisor.tell("world") time.sleep(0.5) except KeyboardInterrupt: pass system.terminate()
1,207
opencae2020B13/test_bunny_org.py
tkoyama010/tkoyama010
1
2025424
import vtk # create reader reader = vtk.vtkOBJReader() reader.SetFileName("bunny.obj") mapper = vtk.vtkPolyDataMapper() if vtk.VTK_MAJOR_VERSION <= 5: mapper.SetInput(reader.GetOutput()) else: mapper.SetInputConnection( reader.GetOutputPort() ) # create actor actor = vtk.vtkActor() actor.SetMapper(mapper) # Create a rendering window and renderer ren = vtk.vtkRenderer() renWin = vtk.vtkRenderWindow() renWin.AddRenderer(ren) # Create a renderwindowinteractor iren = vtk.vtkRenderWindowInteractor() iren.SetRenderWindow(renWin) # Assign actor to the renderer ren.AddActor(actor) # Enable user interface interactor iren.Initialize() renWin.Render() iren.Start() # clean up objects del iren del renWin
729
prime/prime_finder/scripts/prime_finder.py
abrahamrhoffman/math
0
2025878
class PrimeFinder(object): def find(self, number): if isinstance(number, int): pass else: print("Number must be of type: integer") raise SystemExit if number <= 0: print("A non-negative, non-zero integer is required") raise SystemExit if number == 1: print(1) for n in range(2, number): for n in range(2, number): print(aList) def main(): pf = PrimeFinder() pf.find(10) if __name__ == "__main__": main()
589
django_distill/renderer.py
tback/django-distill
0
2025707
# -*- coding: utf-8 -*- import os import sys import types import errno from shutil import copy2 from future.utils import raise_from from django.utils import (six, translation) from django.conf import settings from django.conf.urls import include as include_urls from django.http import HttpResponse from django.template.response import TemplateResponse from django.test import RequestFactory from django.urls import reverse from django.core.management import call_command from django_distill.errors import (DistillError, DistillWarning) class DistillRender(object): ''' Renders a complete static site from all urls registered with distill_url() and then copies over all static media. ''' def __init__(self, output_dir, urls_to_distill): self.output_dir = output_dir self.urls_to_distill = urls_to_distill # activate the default translation translation.activate(settings.LANGUAGE_CODE) def render(self): for distill_func, file_name, view_name, a, k in self.urls_to_distill: for param_set in self.get_uri_values(distill_func): if not param_set: param_set = () elif self._is_str(param_set): param_set = param_set, uri = self.generate_uri(view_name, param_set) render = self.render_view(uri, param_set, a) # rewrite URIs ending with a slash to ../index.html if file_name is None and uri.endswith('/'): if uri.startswith('/'): uri = uri[1:] yield uri, uri + 'index.html', render continue yield uri, file_name, render def _is_str(self, s): return isinstance(s, six.string_types) def get_uri_values(self, func): try: v = func() except Exception as e: raise DistillError('Failed to call distill function: {}'.format(e)) if not v: return (None,) elif isinstance(v, (list, tuple)): return v elif isinstance(v, types.GeneratorType): return list(v) else: err = 'Distill function returned an invalid type: {}' raise DistillError(err.format(type(v))) def generate_uri(self, view_name, param_set): if isinstance(param_set, (list, tuple)): uri = reverse(view_name, args=param_set) elif isinstance(param_set, dict): uri = reverse(view_name, kwargs=param_set) else: err = 'Distill function returned an invalid type: {}' raise DistillError(err.format(type(param_set))) return uri def render_view(self, uri, param_set, args): if len(args) < 2: raise DistillError('Invalid view arguments') view_regex, view_func = args[0], args[1] request_factory = RequestFactory() request = request_factory.get(uri) if isinstance(param_set, dict): a, k = (), param_set else: a, k = param_set, {} try: response = view_func(request, *a, **k) except Exception as err: e = 'Failed to render view: {}'.format(err) raise_from(DistillError(e), err) if self._is_str(response): response = HttpResponse(response) elif isinstance(response, TemplateResponse): response.render() if response.status_code != 200: err = 'View returned a non-200 status code: {}' raise DistillError(err.format(response.status_code)) return response def copy_static(self, dir_from, dir_to): # we need to ignore some static dirs such as 'admin' so this is a # little more complex than a straight shutil.copytree() if not dir_from.endswith(os.sep): dir_from = dir_from + os.sep if not dir_to.endswith(os.sep): dir_to = dir_to + os.sep for root, dirs, files in os.walk(dir_from): dirs[:] = filter_dirs(dirs) for f in files: from_path = os.path.join(root, f) base_path = from_path[len(dir_from):] to_path = os.path.join(dir_to, base_path) to_path_dir = os.path.dirname(to_path) if not os.path.isdir(to_path_dir): os.makedirs(to_path_dir) copy2(from_path, to_path) yield from_path, to_path def run_collectstatic(stdout): stdout('Distill is running collectstatic...') call_command('collectstatic') stdout('') stdout('collectstatic complete, continuing...') _ignore_dirs = ('admin', 'grappelli') def filter_dirs(dirs): return [d for d in dirs if d not in _ignore_dirs] def load_urls(stdout): stdout('Loading site URLs') site_urls = getattr(settings, 'ROOT_URLCONF') if site_urls: include_urls(site_urls) def render_to_dir(output_dir, urls_to_distill, stdout): mimes = {} load_urls(stdout) renderer = DistillRender(output_dir, urls_to_distill) for page_uri, file_name, http_response in renderer.render(): if file_name: local_uri = file_name full_path = os.path.join(output_dir, file_name) else: local_uri = page_uri if page_uri.startswith(os.sep): page_uri = page_uri[1:] full_path = os.path.join(output_dir, page_uri) content = http_response.content mime = http_response.get('Content-Type') renamed = ' (renamed from "{}")'.format(page_uri) if file_name else '' msg = 'Rendering page: {} -> {} ["{}", {} bytes] {}' stdout(msg.format(local_uri, full_path, mime, len(content), renamed)) try: dirname = os.path.dirname(full_path) if not os.path.isdir(dirname): os.makedirs(dirname) with open(full_path, 'wb') as f: f.write(content) except IOError as e: if e.errno == errno.EISDIR: err = ('Output path: {} is a directory! Try adding a ' '"distill_file" arg to your distill_url()') raise DistillError(err.format(full_path)) else: raise mimes[full_path] = mime.split(';')[0].strip() static_url = settings.STATIC_URL static_url = static_url[1:] if static_url.startswith('/') else static_url static_output_dir = os.path.join(output_dir, static_url) for file_from, file_to in renderer.copy_static(settings.STATIC_ROOT, static_output_dir): stdout('Copying static: {} -> {}'.format(file_from, file_to)) media_url = settings.MEDIA_URL if media_url: media_url = media_url[1:] if media_url.startswith('/') else media_url media_output_dir = os.path.join(output_dir, media_url) for file_from, file_to in renderer.copy_static(settings.MEDIA_URL, media_output_dir): stdout('Copying media: {} -> {}'.format(file_from, file_to)) return True # eof
7,227
springer/urls.py
JnyJny/springer_downloader
6
2025962
"""Springer URLS """ from .constants import Language, Topic, FileFormat SPRINGER_ANNOUNCEMENT_URL = "https://www.springernature.com/gp/librarians/news-events/all-news-articles/industry-news-initiatives/free-access-to-textbooks-for-institutions-affected-by-coronaviru/17855960" SPRINGER_REST_URL = "https://resource-cms.springernature.com/springer-cms/rest" SPRINGER_CATALOG_EN_URL = f"{SPRINGER_REST_URL}/v1/content/17858272/data/v8" SPRINGER_CATALOG_DE_URL = f"{SPRINGER_REST_URL}/v1/content/17863240/data/v3" SPRINGER_NURSING_CATALOG_DE_URL = f"{SPRINGER_REST_URL}/v1/content/17856246/data/v3" SPRINGER_PDF_URL = "https://link.springer.com/content/pdf" SPRINGER_EPUB_URL = "https://link.springer.com/download/epub" urls = { "announcement": SPRINGER_ANNOUNCEMENT_URL, "catalogs": { Language.English: {Topic.All_Disciplines: SPRINGER_CATALOG_EN_URL}, Language.German: { Topic.All_Disciplines: SPRINGER_CATALOG_DE_URL, Topic.Emergency_Nursing: SPRINGER_NURSING_CATALOG_DE_URL, }, }, "content": {FileFormat.pdf: SPRINGER_PDF_URL, FileFormat.epub: SPRINGER_EPUB_URL,}, }
1,140
cvutils/misc/iterators.py
MercierLucas/cv_utils
0
2026206
class SquareSlider2D: def __init__(self, field, stride, image) -> None: self.field = field self.stride = stride self.image = image self.height = image.shape[0] self.width = image.shape[1] def __iter__(self): for y in range(0, self.height - self.field + 1, self.stride): for x in range(0, self.width - self.field + 1, self.stride): yield y//self.stride, x//self.stride, self.image[y : y + self.field, x : x + self.field] class Slider: def __init__(self, field, stride, image) -> None: self.field_y = field[0] self.field_x = field[1] self.stride = stride self.image = image self.height = image.shape[0] self.width = image.shape[1] def __iter__(self): for y in range(0, self.height - self.field_y + 1, self.stride): for x in range(0, self.width - self.field_x + 1, self.stride): yield y//self.stride, x//self.stride, self.image[y : y + self.field_y, x : x + self.field_x]
1,058
pyrc/utils/hooks.py
JamesWrigley/pyrc
0
2026170
import re import functools class command(object): def __init__(self, matcher=None): self._matcher = matcher def __call__(self, func): # Default the command's name to an exact match of the function's name. # ^func_name$ matcher = self._matcher if matcher is None: matcher = r'^%s$' % func.__name__ # convert matcher to regular expression matcher = re.compile(matcher) @functools.wraps(func) def wrapped_command(*args, **kwargs): return func(*args, **kwargs) wrapped_command._type = "COMMAND" wrapped_command._matcher = matcher return wrapped_command class privmsg(object): def __init__(self, matcher=None): self._matcher = matcher def __call__(self, func): # convert matcher to regular expression matcher = re.compile(self._matcher) @functools.wraps(func) def wrapped_command(*args, **kwargs): return func(*args, **kwargs) wrapped_command._type = "PRIVMSG" wrapped_command._matcher = matcher return wrapped_command def interval(milliseconds): def wrapped(func): @functools.wraps(func) def wrapped_command(*args, **kwargs): return func(*args, **kwargs) wrapped_command._type = "REPEAT" wrapped_command._interval = milliseconds return wrapped_command return wrapped
1,443
show/dropcounters.py
sg893052/sonic-utilities
91
2025361
import click import utilities_common.cli as clicommon # # 'dropcounters' group ### # @click.group(cls=clicommon.AliasedGroup) def dropcounters(): """Show drop counter related information""" pass # 'configuration' subcommand ("show dropcounters configuration") @dropcounters.command() @click.option('-g', '--group', required=False) @click.option('--verbose', is_flag=True, help="Enable verbose output") def configuration(group, verbose): """Show current drop counter configuration""" cmd = "dropconfig -c show_config" if group: cmd += " -g '{}'".format(group) clicommon.run_command(cmd, display_cmd=verbose) # 'capabilities' subcommand ("show dropcounters capabilities") @dropcounters.command() @click.option('--verbose', is_flag=True, help="Enable verbose output") def capabilities(verbose): """Show device drop counter capabilities""" cmd = "dropconfig -c show_capabilities" clicommon.run_command(cmd, display_cmd=verbose) # 'counts' subcommand ("show dropcounters counts") @dropcounters.command() @click.option('-g', '--group', required=False) @click.option('-t', '--counter_type', required=False) @click.option('--verbose', is_flag=True, help="Enable verbose output") def counts(group, counter_type, verbose): """Show drop counts""" cmd = "dropstat -c show" if group: cmd += " -g '{}'".format(group) if counter_type: cmd += " -t '{}'".format(counter_type) clicommon.run_command(cmd, display_cmd=verbose)
1,502
EasyDeep/net_structures/__init__.py
strawsyz/straw
2
2025647
from .Alex import AlexNet from .FNN import FNNWithDropout from .CNN1D import MyCNN1D from .FCN import FCNVgg16
111