max_stars_repo_path
stringlengths
4
182
max_stars_repo_name
stringlengths
6
116
max_stars_count
int64
0
191k
id
stringlengths
7
7
content
stringlengths
100
10k
size
int64
100
10k
src/cv2r.py
BarqueroGerman/metrabs
208
2024002
"""Convenience wrappers over OpenCV functions.""" import os import cv2 import numpy as np def undistortPoints(src, cameraMatrix, distCoeffs, R=None, P=None): src = np.expand_dims(np.asarray(src, dtype=np.float32), 0) return cv2.undistortPoints(src, cameraMatrix, distCoeffs, None, R, P)[0] def convertPointsToHomogeneous(src): return np.squeeze(cv2.convertPointsToHomogeneous(src), axis=1) def convertPointsFromHomogeneous(src): return np.squeeze(cv2.convertPointsFromHomogeneous(src), axis=1) def warpPerspective(src, M, dsize, dst=None, flags=None, borderMode=None, borderValue=None): fun = cv2.cuda.warpPerspective if isinstance(src, cv2.cuda_GpuMat) else cv2.warpPerspective return fun(src, M, dsize, dst, flags, borderMode, borderValue) def remap(src, map1, map2, interpolation, dst=None, borderMode=None, borderValue=None): fun = cv2.cuda.remap if isinstance(src, cv2.cuda_GpuMat) else cv2.remap return fun(src, map1, map2, interpolation, dst, borderMode, borderValue) def warpAffine(src, M, dsize, dst=None, flags=None, borderMode=None, borderValue=None): fun = cv2.cuda.warpAffine if isinstance(src, cv2.cuda_GpuMat) else cv2.warpAffine return fun(src, M, dsize, dst, flags, borderMode, borderValue) def resize(src, dsize, dst=None, fx=None, fy=None, interpolation=None): fun = cv2.cuda.resize if isinstance(src, cv2.cuda_GpuMat) else cv2.resize return fun(src, dsize, dst, fx, fy, interpolation)
1,469
cs15211/SelfCrossing.py
JulyKikuAkita/PythonPrac
1
2025784
__source__ = 'https://leetcode.com/problems/self-crossing/' # https://github.com/kamyu104/LeetCode/blob/master/Python/self-crossing.py # Time: O(n) # Space: O(1) # # Description: Leetcode # 335. Self Crossing # # You are given an array x of n positive numbers. # You start at point (0,0) and moves x[0] metres to the north, # then x[1] metres to the west, x[2] metres to the south, # x[3] metres to the east and so on. In other words, # after each move your direction changes counter-clockwise. # # Write a one-pass algorithm with O(1) extra space to determine, # if your path crosses itself, or not. # # Example 1: # Given x = [2, 1, 1, 2], # ┌───┐ # │ │ # └───┼──> # │ # # Return true (self crossing) # Example 2: # Given x = [1, 2, 3, 4], # ┌──────┐ # │ │ # │ # │ # └────────────> # # Return false (not self crossing) # Example 3: # Given x = [1, 1, 1, 1], # ┌───┐ # │ │ # └───┼> # # Return true (self crossing) # # Related Topics # Math # import unittest class Solution(object): def isSelfCrossing(self, x): """ :type x: List[int] :rtype: bool """ if len(x) >= 5 and x[3] == x[1] and x[4] + x[0] >= x[2]: # Crossing in a loop: # 2 # 3 ┌────┐ # └─══>┘1 # 4 0 (overlapped) return True for i in xrange(3, len(x)): if x[i] >= x[i - 2] and x[i - 3] >= x[i - 1]: # Case 1: # i-2 # i-1┌─┐ # └─┼─>i # i-3 return True elif i >= 5 and x[i - 4] <= x[i - 2] and x[i] + x[i - 4] >= x[i - 2] and \ x[i - 1] <= x[i - 3] and x[i - 5] + x[i - 1] >= x[i - 3]: # Case 2: # i-4 # ┌──┐ # │i<┼─┐ # i-3│ i-5│i-1 # └────┘ # i-2 return True return False class TestMethods(unittest.TestCase): def test_Local(self): self.assertEqual(1, 1) if __name__ == '__main__': unittest.main() Java = ''' # Thought: # # Categorize the self-crossing scenarios, there are 3 of them: # 1. Fourth line crosses first line and works for fifth line crosses second line and so on... # 2. Fifth line meets first line and works for the lines after # 3. Sixth line crosses first line and works for the lines after # Suppose i is the current line, then: # # i and i-3 can cross # i and i-4 can cross # i and i-5 can cross # no more or no less just exactly the right combination. # # Now it's time for us to restrict the conditions to make them just happen. # # i and i-3 # # i>=i-2 && i-1<=i-3 # i and i-4 # # i+i-4>=i-2 && i-1==i-3 # i and i-5 # # i+i-4>=i-2 && i-2>=i-4 && i-1+i-5>=i-3 && i-1<=i-3 # # 0ms 100% class Solution { public boolean isSelfCrossing(int[] x) { int len = x.length; if (len < 4) { return false; } for (int i = 3; i < len; i++) { if (check4(x, i) || (i > 3 && check5(x, i)) || (i > 4 && check6(x, i))) { return true; } } return false; } private boolean check4(int[] x, int i) { return x[i] >= x[i - 2] && x[i - 1] <= x[i - 3]; } private boolean check5(int[] x, int i) { return x[i - 1] == x[i - 3] && x[i] + x[i - 4] >= x[i - 2]; } private boolean check6(int[] x, int i) { return x[i - 5] - x[i - 3] + x[i - 1] >= 0 && x[i - 4] <= x[i - 2] && x[i - 3] >= x[i - 1] && x[i - 4] - x[i - 2] + x[i] >= 0; } } # 0ms 100% class Solution { public boolean isSelfCrossing(int[] x) { int n = x.length; if (n <= 3) return false; for (int i = 3; i < n; i++) { //4th line cross 1st if (x[i] >= x[i-2] && x[i-1] <= x[i-3]) return true; //5th cross 1st if (i >= 4) { if (x[i] + x[i-4] >= x[i-2] && x[i-1] == x[i-3]) return true; } //6th cross 1st if (i >= 5) { //ex: [3,3,3,2,1,1] if (x[i] + x[i-4] >= x[i-2] && x[i-1] + x[i-5] >= x[i-3] && x[i-1] <= x[i-3] && x[i - 4] < x[i-2]) return true; } } return false; } } '''
4,323
run.py
pjmedina/client-insight-wealth-management
8
2024205
# Copyright 2015 IBM Corp. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from flask import Flask, jsonify, render_template, json, Response, request import os import client app = Flask(__name__) ### Build the Client Profile # Feel free to try any of the following customer_ids to see different results. #customer_ids customer_ids = ['1489','1285','1015','1725','1880'] #get desc for life events with open('values_desc/life_events_desc.json') as json_file: life_events_desc = json.load(json_file) json_file.close(); #get desc for attrition features, customer segments with open('values_desc/feature_desc.json') as json_file: features_desc = json.load(json_file) json_file.close(); @app.route('/') def run(): return render_template('index.html') @app.route('/api/getcustomerids',methods=['GET']) def get_customer_ids(): return json.dumps(customer_ids) @app.route('/api/retrieve', methods =['GET','POST']) def retrieve(): output = {} #retrieve the json from the ajax call json_file = '' if request.method == 'POST': json_file = request.json print ("post request") #if json_file successfully posted.. if json_file != '': # check all required arguments are present: if not all(arg in json_file for arg in ["customerId"]): print("Missing arguments in post request") return json.dumps({"error":"Missing arguments"}) inputCustomerId = json_file["customerId"] print("retreived data: " + str(inputCustomerId) ) data_array = [] client_info_obj = {} client_attrition_score_obj = {} client_examine_segement_obj = {} client_profile_all = client.retrieve_entire_client_profile(inputCustomerId) client_profile = client_profile_all[0] if ("error" in client_profile): return json.dumps({"error": client_profile["error"]}) #profile = json.dumps(client_profile, indent=4, sort_keys=True) #print(profile) #get client info, returns a list with first element contatining client info client_info_obj = client_profile["customer"] if ("error" in client_info_obj): return json.dumps({"error": client_info_obj["error"]}) #get client life events client_life_events = client_profile["event_scores"] if (len(client_life_events) > 0): if ("error" in client_life_events[0]): return json.dumps({"error": client_life_events["error"]}) #get client_attrition_score, returns a list with first element contatining info client_attrition_scores = client_profile["scores"] if (len(client_attrition_scores) > 0): if ("error" in client_attrition_scores[0]): return json.dumps({"error": client_attrition_scores[0]["error"]}) for i in range(len(client_attrition_scores)): if (client_attrition_scores[i]["score_code"] == "ATTRITION" and client_attrition_scores[i]["model_scope_forecast_horizon"] == 1 ): client_attrition_score_obj = client_attrition_scores[i] if (client_attrition_scores[i]["score_code"] == "DYNAMIC_SEGMENTATION"): client_examine_segement_obj = client_attrition_scores[i] #get segment description, returns a list segment_description = client.segment_description() if (len(segment_description) > 0): if ("error" in segment_description[0]): return json.dumps({"error": segment_description[0]["error"]}) #create the output json output = {"clientInfo": client_info_obj, "clientAttritionScore": client_attrition_score_obj, "clientLifeEvents": client_life_events, "clientExamineSegment": client_examine_segement_obj, "segmentDescription": segment_description, "customerId": inputCustomerId, "lifeEventsDescription": life_events_desc, "featuresDescription": features_desc} #return output json return json.dumps(output) port = int(os.getenv('VCAP_APP_PORT', 8080)) host='0.0.0.0' if __name__ == "__main__": app.run(host='0.0.0.0', port=int(port))
4,513
Mesh/System/Entity/Concrete/Switch.py
ys-warble/Mesh
0
2023257
import numpy as np from Mesh.System.Entity.Concrete import Concrete from Mesh.System.Entity.Function import Function from Mesh.System.Entity.Function.Powered import PowerInput, PowerOutput, Powered, ElectricPower from Mesh.System.Entity.Function.Tasked import Tasked, TaskLevel, TaskResponse, Status, TaskName from Mesh.System.SpaceFactor import MatterType class Switch(Concrete): identifier = 'switch' default_dimension = (1, 1, 2) default_orientation = (0, 1, 0) default_consume_power_ratings = [ElectricPower(110)] def __init__(self, uuid, dimension_x=(1, 1, 1), selected_functions=(Function.POWERED, Function.TASKED)): super().__init__(uuid=uuid, dimension_x=dimension_x, matter_type=MatterType.PLASTIC, selected_functions=selected_functions) self.active = False def get_default_shape(self): i = self.matter_type.value shape = np.array([ [[i, i]] ]) return shape def validate_functions(self, selected_functions): if Function.POWERED in selected_functions and Function.TASKED in selected_functions: return True else: return False def define_functions(self, selected_functions): if Function.POWERED: powered = Powered(self) powered.power_inputs.append(PowerInput(self)) powered.power_outputs.append(PowerOutput(self)) powered.input_power_ratings.extend(Switch.default_consume_power_ratings) self.functions[Function.POWERED] = powered if Function.TASKED: self.functions[Function.TASKED] = SwitchTasked(self) class SwitchTasked(Tasked): tasks = [ TaskName.GET_SYSTEM_INFO, TaskName.ACTIVE, TaskName.DEACTIVATE, ] def handle(self, task): def get_info(): return { 'uuid': str(self.entity.uuid), 'identifier': type(self.entity).identifier, 'type': { 'actuator': [ 'LUMINOSITY' ], 'sensor': [], 'accessor': [] } } if self.entity.active and task.level == TaskLevel.ENTITY: task_response = TaskResponse(Status.ERROR, {'error': 'Not Implemented'}) elif task.level == TaskLevel.SYSTEM: if task.name == TaskName.GET_SYSTEM_INFO: system_info = get_info() system_info['active'] = self.entity.active task_response = TaskResponse(status=Status.OK, value={'system_info': system_info}) elif task.name == TaskName.ACTIVE: self.entity.active = True if self.entity.has_function(Function.POWERED): powered = self.entity.get_function(Function.POWERED) for i in powered.power_outputs: i.set_power(powered.power_inputs[0].get_power()) task_response = TaskResponse(status=Status.OK, value=None) elif task.name == TaskName.DEACTIVATE: self.entity.active = False if self.entity.has_function(Function.POWERED): powered = self.entity.get_function(Function.POWERED) for i in powered.power_outputs: i.set_power() task_response = TaskResponse(status=Status.OK, value=None) else: task_response = TaskResponse(Status.ERROR, {'error': 'Not Implemented'}) elif task.level == TaskLevel.PROGRAM: task_response = TaskResponse(Status.ERROR, {'error': 'Not Implemented'}) else: task_response = TaskResponse(Status.ERROR, {'error': 'Not Implemented'}) return task_response
3,848
language_apps/expr2/expr2listener.py
SadraGoudarzdashti/IUSTCompiler
3
2025198
""" Example of three address language_apps generator with listener """ __version__ = '0.1.0' __author__ = 'Morteza' from language_apps.expr2.gen.Expr2Parser import Expr2Parser from language_apps.expr2.gen.Expr2Listener import Expr2Listener class DummyListener(Expr2Listener): def exitExpr1(self, ctx: Expr2Parser.Expr1Context): print('I enter plus with first operand {0} second operand {1}:'.format(ctx.expr().getText(), ctx.term().getText())) def exitFact2(self, ctx:Expr2Parser.Fact2Context): print('When exist fact2', ctx.Number()) class TreeAddressCode(Expr2Listener): """ Generate three address language_apps for part of expression rule of CPP14 grammar """ def __init__(self): self.temp_counter = 0 # self.value = 0 def create_temp(self): self.temp_counter += 1 return 'T' + str(self.temp_counter) def remove_temp(self): self.temp_counter -= 1 def get_temp(self): return 'T' + str(self.temp_counter) # Rule: #fact1 def exitFact1(self, ctx: Expr2Parser.Fact1Context): ctx.code = ctx.getText() def exitFact2(self, ctx: Expr2Parser.Fact2Context): ctx.code = ctx.getText() def exitFact3(self, ctx: Expr2Parser.Fact3Context): ctx.code = ctx.expr().code def exitTerm1(self, ctx: Expr2Parser.Term1Context): temp = self.create_temp() print(temp, '=', ctx.term().code, '*', ctx.fact().code) ctx.code = temp # self.value = int(ctx.term().language_apps) * int(ctx.fact().language_apps) # ctx.language_apps = self.value def exitTerm2(self, ctx: Expr2Parser.Term1Context): temp = self.create_temp() print(temp, '=', ctx.term().code, '/', ctx.fact().code) ctx.code = temp # self.value = int(ctx.term().language_apps) / int(ctx.fact().language_apps) # ctx.language_apps = self.value def exitTerm3(self, ctx: Expr2Parser.Term3Context): ctx.code = ctx.fact().code def exitExpr1(self, ctx: Expr2Parser.Expr1Context): temp = self.create_temp() print(temp, '=', ctx.expr().code, '+', ctx.term().code) ctx.code = temp # self.value = int(ctx.expr().language_apps) + int(ctx.term().language_apps) # ctx.language_apps = self.value def exitExpr2(self, ctx: Expr2Parser.Expr1Context): temp = self.create_temp() print(temp, '=', ctx.expr().code, '-', ctx.term().code) ctx.code = temp # self.value = int(ctx.expr().language_apps) - int(ctx.term().language_apps) # ctx.language_apps = self.value def exitExpr3(self, ctx: Expr2Parser.Expr1Context): ctx.code = ctx.term().code def exitStart(self, ctx: Expr2Parser.StartContext): # pass print(ctx.Id(), '=', ctx.expr().code) # print(ctx.Id(), '=', self.value)
2,962
hydra_client/codes.py
Project-Dream-Weaver/Hydra
3
2025931
from dataclasses import dataclass @dataclass(frozen=True) class OpCodes: IDENTIFY = 0 HTTP_REQUEST = 1 MESSAGE = 2
129
exercises/exercise85.py
djangojeng-e/TIL
0
2024557
def numbers(n): for number in range(0, n + 1): if number % 5 == 0 and number % 7 == 0: yield number n = int(input("Please enter your number")) values = [] for i in numbers(n): values.append(str(i)) print(",".join(values))
256
myvenv/Lib/site-packages/graphene/utils/tests/test_annotate.py
Fa67/saleor-shop
1
2023731
import pytest from ..annotate import annotate def func(a, b, *c, **d): pass annotations = { 'a': int, 'b': str, 'c': list, 'd': dict } def func_with_annotations(a, b, *c, **d): pass func_with_annotations.__annotations__ = annotations def test_annotate_with_no_params(): annotated_func = annotate(func, _trigger_warning=False) assert annotated_func.__annotations__ == {} def test_annotate_with_params(): annotated_func = annotate(_trigger_warning=False, **annotations)(func) assert annotated_func.__annotations__ == annotations def test_annotate_with_wront_params(): with pytest.raises(Exception) as exc_info: annotated_func = annotate(p=int, _trigger_warning=False)(func) assert str(exc_info.value) == 'The key p is not a function parameter in the function "func".'
832
DynamicGestures/dlib-18.5/python_examples/max_cost_assignment.py
uiuyuty/vsfh
36
2025792
#!/usr/bin/python # The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt # # # This simple example shows how to call dlib's optimal linear assignment problem solver. # It is an implementation of the famous Hungarian algorithm and is quite fast, operating in # O(N^3) time. # # COMPILING THE DLIB PYTHON INTERFACE # Dlib comes with a compiled python interface for python 2.7 on MS Windows. If # you are using another python version or operating system then you need to # compile the dlib python interface before you can use this file. To do this, # run compile_dlib_python_module.bat. This should work on any operating system # so long as you have CMake and boost-python installed. On Ubuntu, this can be # done easily by running the command: sudo apt-get install libboost-python-dev cmake import dlib # Lets imagine you need to assign N people to N jobs. Additionally, each person will make # your company a certain amount of money at each job, but each person has different skills # so they are better at some jobs and worse at others. You would like to find the best way # to assign people to these jobs. In particular, you would like to maximize the amount of # money the group makes as a whole. This is an example of an assignment problem and is # what is solved by the dlib.max_cost_assignment() routine. # So in this example, lets imagine we have 3 people and 3 jobs. We represent the amount of # money each person will produce at each job with a cost matrix. Each row corresponds to a # person and each column corresponds to a job. So for example, below we are saying that # person 0 will make $1 at job 0, $2 at job 1, and $6 at job 2. cost = dlib.matrix([[1, 2, 6], [5, 3, 6], [4, 5, 0]]) # To find out the best assignment of people to jobs we just need to call this function. assignment = dlib.max_cost_assignment(cost) # This prints optimal assignments: [2, 0, 1] # which indicates that we should assign the person from the first row of the cost matrix to # job 2, the middle row person to job 0, and the bottom row person to job 1. print "optimal assignments: ", assignment # This prints optimal cost: 16.0 # which is correct since our optimal assignment is 6+5+5. print "optimal cost: ", dlib.assignment_cost(cost, assignment)
2,357
figures.py
ejnnr/steerable_pdo_experiments
0
2026020
# The # %% lines denote cells, allowing this file to be run using # the interactive mode of the Python VS Code extension. But you # can also run it simply as a normal python script. # %% import matplotlib.pyplot as plt import numpy as np import os import seaborn as sns from scipy.signal import correlate2d from e2cnn.diffops.utils import discretize_homogeneous_polynomial as dp from e2cnn import nn from e2cnn import gspaces # %% sns.set_theme(context="paper") os.makedirs("fig", exist_ok=True) # %% x = np.linspace(0, np.pi, 128) xx, yy = np.meshgrid(x[32:], x[:64]) zz_x = np.sin(xx + yy) + 0.5 * (xx - 2) zz_y = np.cos(xx - yy) + 0.5 * (yy - 2) zz_mag = np.sqrt(zz_x**2 + zz_y**2) plt.figure(figsize=(6, 4)) plt.gcf().set_facecolor((0.95, 0.95, 0.95)) plt.quiver(zz_x[::8, ::8], zz_y[::8, ::8], zz_mag[::8, ::8]) plt.axis("equal") plt.axis("off") plt.gcf().tight_layout() plt.savefig("fig/vector_input.pdf", bbox_inches="tight", facecolor=plt.gcf().get_facecolor()) # %% # the order is like that ... for reasons # y_grad, x_grad = np.gradient(zz) # gradient_mag = np.sqrt(x_grad**2 + y_grad**2) # Laplacian of the divergence: x_filter = dp([-2, -1, 0, 1, 2], np.array([0, 1, 0, 1])).reshape(5, 5) # curl: x_filter += dp([-2, -1, 0, 1, 2], np.array([1, 0])).reshape(5, 5) y_filter = dp([-2, -1, 0, 1, 2], np.array([1, 0, 1, 0])).reshape(5, 5) y_filter += dp([-2, -1, 0, 1, 2], np.array([0, -1])).reshape(5, 5) out = correlate2d(zz_x, x_filter, mode="valid") + correlate2d(zz_y, y_filter, mode="valid") plt.figure(figsize=(6, 4)) plt.imshow(out, origin="lower") plt.axis("off") plt.axis("equal") plt.gcf().tight_layout() plt.savefig("fig/scalar_output.pdf", bbox_inches="tight") # %% plt.imshow(x_filter, cmap="gray") plt.axis("off") plt.gcf().tight_layout() plt.savefig("fig/laplacian_divergence_filter_x.pdf", bbox_inches="tight") plt.imshow(y_filter, cmap="gray") plt.axis("off") plt.gcf().tight_layout() plt.savefig("fig/laplacian_divergence_filter_y.pdf", bbox_inches="tight") # %% gs = gspaces.Rot2dOnR2(8) in_type = nn.FieldType(gs, [gs.trivial_repr]) out_type = nn.FieldType(gs, [gs.regular_repr]) # %% models = {} for kernel_size in [3, 5]: models[("Kernel", kernel_size)] = nn.R2Conv(in_type, out_type, kernel_size) max_order = 2 if kernel_size == 3 else 3 models[("FD", kernel_size)] = nn.R2Diffop(in_type, out_type, kernel_size, maximum_order=max_order) models[("RBF-FD", kernel_size)] = nn.R2Diffop(in_type, out_type, kernel_size, rbffd=True, maximum_order=max_order) smoothing = 1 if kernel_size == 3 else 1.3 models[("Gauss", kernel_size)] = nn.R2Diffop(in_type, out_type, kernel_size, smoothing=smoothing, maximum_order=max_order) # %% filters = {} for k, model in models.items(): exp = getattr(model.basisexpansion, "block_expansion_('irrep_0', 'regular')") size = k[1] filters[k] = exp.sampled_basis.numpy().reshape(-1, 8, size, size) # %% methods = ["Kernel", "FD", "RBF-FD", "Gauss"] for size in [3, 5]: fig, ax = plt.subplots(4, 6) vmin = min(np.min(filters[(method, size)]) for method in methods) vmax = max(np.max(filters[(method, size)]) for method in methods) for i, method in enumerate(methods): ax[i, 0].set_ylabel(method, size="large") for j in range(6): ax[i, j].imshow( filters[(method, size)][-j-1, 1], cmap="bwr", vmin=vmin, vmax=vmax, ) ax[i, j].axis("equal") # ax[i, j].axis("off") ax[i, j].get_xaxis().set_ticks([]) ax[i, j].get_yaxis().set_ticks([]) # fig.tight_layout() fig.subplots_adjust(hspace=.5) fig.subplots_adjust(wspace=.5) fig.savefig(f"fig/stencils_{size}.pdf")
3,738
scripts/performance/perf_load/perf_client_runner.py
Rob-S/indy-node
627
2025880
import logging from perf_load.perf_client_msgs import ClientRun, ClientGetStat class ClientRunner: ClientError = 0 ClientCreated = 1 ClientReady = 2 ClientRun = 3 ClientStopped = 4 def __init__(self, name, conn, out_file): self.status = ClientRunner.ClientCreated self.name = name self.conn = conn self.total_sent = 0 self.total_succ = 0 self.total_failed = 0 self.total_nack = 0 self.total_reject = 0 self._out_file = out_file self._logger = logging.getLogger(name) def stop_client(self): self._logger.debug("stop_client") self.status = ClientRunner.ClientStopped def is_finished(self): return self.status == ClientRunner.ClientStopped def refresh_stat(self, stat): if not isinstance(stat, dict): return self.total_sent = stat.get("total_sent", self.total_sent) self.total_succ = stat.get("total_succ", self.total_succ) self.total_failed = stat.get("total_fail", self.total_failed) self.total_nack = stat.get("total_nacked", self.total_nack) self.total_reject = stat.get("total_rejected", self.total_reject) def run_client(self): self._logger.debug("run_client {}".format(self)) try: if self.conn and self.status == ClientRunner.ClientReady: self.conn.send(ClientRun()) self.status = ClientRunner.ClientRun except Exception as e: self._logger.exception("Sent Run to client {} error {}".format(self.name, e)) self.status = ClientRunner.ClientError def req_stats(self): self._logger.debug("req_stats {}".format(self)) try: if self.conn and self.status == ClientRunner.ClientRun: self.conn.send(ClientGetStat()) except Exception as e: self._logger.exception("Sent ClientGetStat to client {} error {}".format(self.name, e), file=self._out_file) self.status = ClientRunner.ClientError
2,065
twoway_example.py
ContinuumBridge/spur_twoway_example
0
2025776
#!/usr/bin/env python # twoway_example.py # Copyright (C) ContinuumBridge Limited, 2017 # Written by <NAME> # import json import os.path import signal import ibmiotf.application HOME = os.getcwd() #api watson={"org": "adqdih", "auth-key": "<KEY>", "auth-token": <KEY>"} config = { "org": "adqdih", "auth-key": "<KEY>", "auth-token": "<KEY>", "screensetName": "Watson_Clean", "listName": "Test", "buttonName": "Test_Button_703" } deviceTypeId = config["screensetName"] deviceId = config["listName"] + "-" + config["buttonName"] print("deviceTypeId: {}, deviceId: {}".format(deviceTypeId, deviceId)) def watsonCallback(event): data = json.dumps(event.data) print("{} event received from button {}, data: {}".format(event.event, event.device, data)) commandData={"test_response" : "test"} watsonClient.publishCommand(deviceTypeId, deviceId, "test", "json", commandData) print("Successfully publishted update") try: options = { "org": config["org"], "id": "spur", "auth-method": "apikey", "auth-key": config["auth-key"], "auth-token": config["auth-token"] } watsonClient = ibmiotf.application.Client(options) print("Created Watson client") except ibmiotf.ConnectionException as e: print("Watson Client creation exception: {}, organsiation: {}".format(e, watsonParams)) exit() deviceTypeInfo = watsonClient.api.getDeviceType(deviceTypeId) print("Got deviceTypeInfo") print("devieTupeInfo: {}".format(deviceTypeInfo)) try: watsonClient.connect() print("Watson client connected") except ibmiotf.ConnectionException as e: print("Unable to connect to Watson, exception: {}".format(e)) exit() watsonClient.deviceEventCallback = watsonCallback print("Watson client callback registered") watsonClient.subscribeToDeviceEvents(deviceType=deviceTypeId) print("Watson client subscribed to events") signal.pause()
1,955
src/SCTA/System/LocalOscillator.py
DougMHu/SCTA_repo
0
2025557
import logging logger = logging.getLogger(__name__) class LocalOscillator(object): def __init__(self, id='LO', freq=0): """Constructor. ~~~~~ Possibilities ~~~~~ id: string freq: positive (float) [MHz] """ self.id = id # identifier string self.freq = freq # LO freq
350
configtamer/compat.py
rbp/configtamer
8
2025432
"""Python 2/3 compatibility utils""" from __future__ import division from __future__ import print_function from __future__ import absolute_import from __future__ import unicode_literals import sys python_version = sys.version_info[0] def raise_(exception_type, message=None, traceback=None): if python_version == 2: # Trying to mimic "raise exception_type, message, traceback" if traceback is not None: from traceback import print_tb print_tb(traceback) raise exception_type(message) else: raise exception_type(message).with_traceback(traceback)
616
Hackerrank_codes/find_runner_up_score.py
Vyshnavmt94/HackerRankTasks
0
2024794
""" Given the participants' score sheet for your University Sports Day, you are required to find the runner-up score. You are given scores. Store them in a list and find the score of the runner-up. Input Format The first line contains . The second line contains an array of integers each separated by a space. Constraints Output Format Print the runner-up score. Sample Input 0 5 2 3 6 6 5 Sample Output 0 5 Explanation 0 Given list is . The maximum score is , second maximum is . Hence, we print as the runner-up score. """ def check_number(num): if num >= 2 and num <= 10: return True def check_array(arr): if not False in [True if a >= -100 and a <= 100 else False for a in arr]: return True #k = kth largest number to be found def runner_up(arr,k): for i in range(k): m = max(arr) arr = [a for a in arr if a != m] return m
892
tcp_server.py
26huitailang/socket-service
0
2023070
#!/usr/bin/env python3 # coding=utf-8 import socketserver import logging logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(name)-12s %(levelname)-8s %(message)s', datefmt='%m-%d %H:%M', filename='/tmp/myapp.log', filemode='w') logger = logging.getLogger(__file__) class MyServer(socketserver.BaseRequestHandler): def handle(self): # 创建一个链接,继承于socketserver中的BaseRequestHandler类 conn = self.request # 发送登录提示 conn.sendall(b"Welcome to login...") logger.info("Client connect...") while True: logger.info("Waitting for recving message...") # 接收消息 message = conn.recv(1024) # print(message.decode('utf-8')) logger.info(message.decode('utf-8')) # 收到exit就退出 if message == "exit": break # 回复消息 data = (message.decode('utf-8') + ' Done!') # 发送消息 conn.sendall(data.encode('utf-8')) if __name__ == "__main__": # 实例化 # server = socketserver.ThreadingTCPServer(('0.0.0.0', 9999,), MyServer) # 线程 server = socketserver.ForkingTCPServer(('0.0.0.0', 9999,), MyServer) # 进程 # 调用serve_forever方法 server.serve_forever()
1,320
Image Classification/CGIAR Wheat Growth Stage Challenge/neurofitting/zindi_cgiar_wheat_growth_stage_challenge/src_ensemble/dataset.py
ZindiAfrica/Computer-Vision
0
2026033
from torch.utils.data import Dataset import albumentations as A from albumentations.pytorch.transforms import ToTensorV2 import numpy as np class ZCTESTDataset(Dataset): def __init__(self, imgs): super(ZCTESTDataset).__init__() self.imgs = imgs self.transform = A.Compose([ToTensorV2(always_apply=True, p=1.0)], p=1.0) self.transform_hflip = A.Compose([ A.HorizontalFlip(p=1.0), ToTensorV2(always_apply=True, p=1.0) ], p=1.0) def __len__(self): return self.imgs.shape[0] def __getitem__(self, index): img = self.imgs[index].copy() img = (img/255).astype(np.float32) img_hflip = self.transform_hflip(**{'image': img})['image'] img = self.transform(**{'image': img})['image'] return img.float(), img_hflip.float()
949
git.py
vikian050194/py
0
2025158
#!/usr/bin/env python3 """Interactive tool for repositories cloning from GitHub""" import os import sys import requests import subprocess def get_repos_metadata(user = "vikian050194"): """Info about get_repos_metadata. Args: user: GitHub user name Returns: List of repositories metadata """ url = f"https://api.github.com/users/{user}/repos" r = requests.get(url = url) return r.json() def repo_name_to_dir(repo_name: str): return repo_name.lower().replace('-', '/', 1) def do_interactive_clone(repos, url_type): """Go through list of repositories and clone some of them according to user response Args: repos: List of repositories metadata """ url = None if url_type == "ssh": url = "ssh_url" if url_type == "http": url = "clone_url" for repo in repos: print("%s: %s"%(repo["name"], repo["language"])) target_dir = repo_name_to_dir(repo["name"]) if os.path.exists(target_dir): print("This repo is already cloned") continue print("Clone this repo? (y/n/exit)") response = input() if response == "y": bashCommand = ["git", "clone" , repo[url], target_dir] process = subprocess.Popen(bashCommand, stdout=subprocess.PIPE) output, error = process.communicate() print(output) if response == "exit": break def clone_repos(url_type): """Entry point""" try: repos = get_repos_metadata() reposCount = len(repos) print(f"{reposCount} repositories are discovered") if len(repos) != 0: do_interactive_clone(repos, url_type) except Exception as e: print(e) if __name__ == "__main__": url_type = "ssh" if len(sys.argv) == 2: url_type = sys.argv[1]; clone_repos(url_type)
1,908
run_model.py
mkneierV/kaggle_avazu_benchmark
39
2025698
import logging import numpy as np from sklearn.feature_extraction import FeatureHasher from sklearn.linear_model import SGDClassifier import lib.ml as ml import lib.preprocessing as pp def main(neg_rate, submission_num, n_iter, train_path): ids = [x for x in pp.get_int_field('id', 'original_data/test')] clicks = pp.get_int_field('click', train_path) # Get Data Generators train = pp.data_generator(pp.clean_parse_row, train_path) test = pp.data_generator(pp.clean_parse_row, 'original_data/test') # Define estimators fh = FeatureHasher(n_features=2 ** 20, input_type='pair') sgd = SGDClassifier(loss='log', n_iter=1, alpha=.003, penalty='l2') #Fit pipeline pipeline = ml.PartialFitter([fh, sgd], batch_size=10000, logging=True, n_iter=n_iter, neg_rate=neg_rate) pipeline.partial_fit(X=train, y=clicks) # Correct Intercept pipeline.steps[-1].intercept_[0] += np.log(neg_rate) preds = pipeline.predict_proba(newX=test)[:, 1] pp.write_submission(number=submission_num, ids=ids, preds=preds) if __name__ == '__main__': logging.basicConfig(filename='train_errors.log', level=logging.WARNING) from docopt import docopt import sys usage = '''Train SGD model and create entry for Kaggle Avazu Competition. Usage: %(program_name)s --neg_rate=<r> --submission_num=<s> --n_iter=<n> --train_path=<p> %(program_name)s (-h | --help) Options: -h --help Show this screen. --neg_rate=<r> Rate at which to sample negative cases --submission_num=<s> Submission number. --n_iter=<n> Number of fitting iterations over training data --train_path=<p> Path to training dataset ''' % {'program_name': sys.argv[0]} arguments = docopt(usage) main(np.float(arguments['--neg_rate']), arguments['--submission_num'], np.int(arguments['--n_iter']), arguments['--train_path'] )
2,124
bingads/v12/bulk/entities/audiences/bulk_ad_group_audience_association.py
channable/BingAds-Python-SDK
0
2024938
from bingads.v12.bulk.entities import * from bingads.service_client import _CAMPAIGN_OBJECT_FACTORY_V12 from bingads.v12.internal.bulk.entities.single_record_bulk_entity import _SingleRecordBulkEntity from bingads.v12.internal.bulk.mappings import _SimpleBulkMapping from bingads.v12.internal.bulk.string_table import _StringTable from bingads.v12.internal.extensions import * class BulkAdGroupAudienceAssociation(_SingleRecordBulkEntity): """ Base class for all Ad Group Audience Association subclasses that can be read or written in a bulk file. *See also:* * :class:`.BulkAdGroupCustomAudienceAssociation` * :class:`.BulkAdGroupInMarketAudienceAssociation` * :class:`.BulkAdGroupProductAudienceAssociation` * :class:`.BulkAdGroupRemarketingListAssociation` * :class:`.BulkAdGroupSimilarRemarketingListAssociation` """ def __init__(self, biddable_ad_group_criterion=None, campaign_name=None, ad_group_name=None, audience_name=None): super(BulkAdGroupAudienceAssociation, self).__init__() self._biddable_ad_group_criterion = biddable_ad_group_criterion self._campaign_name = campaign_name self._ad_group_name = ad_group_name self._audience_name = audience_name self._performance_data = None _MAPPINGS = [ _SimpleBulkMapping( _StringTable.Status, field_to_csv=lambda c: bulk_str(c.biddable_ad_group_criterion.Status), csv_to_field=lambda c, v: setattr(c.biddable_ad_group_criterion, 'Status', v if v else None) ), _SimpleBulkMapping( _StringTable.Id, field_to_csv=lambda c: bulk_str(c.biddable_ad_group_criterion.Id), csv_to_field=lambda c, v: setattr(c.biddable_ad_group_criterion, 'Id', int(v) if v else None) ), _SimpleBulkMapping( _StringTable.ParentId, field_to_csv=lambda c: bulk_str(c.biddable_ad_group_criterion.AdGroupId), csv_to_field=lambda c, v: setattr(c.biddable_ad_group_criterion, 'AdGroupId', int(v) if v else None) ), _SimpleBulkMapping( _StringTable.Campaign, field_to_csv=lambda c: c.campaign_name, csv_to_field=lambda c, v: setattr(c, 'campaign_name', v) ), _SimpleBulkMapping( _StringTable.AdGroup, field_to_csv=lambda c: c.ad_group_name, csv_to_field=lambda c, v: setattr(c, 'ad_group_name', v) ), _SimpleBulkMapping( _StringTable.Audience, field_to_csv=lambda c: c.audience_name, csv_to_field=lambda c, v: setattr(c, 'audience_name', v) ), _SimpleBulkMapping( _StringTable.BidAdjustment, field_to_csv=lambda c: field_to_csv_BidAdjustment(c.biddable_ad_group_criterion), csv_to_field=lambda c, v: csv_to_field_BidAdjustment(c.biddable_ad_group_criterion, float(v) if v else None) ), _SimpleBulkMapping( _StringTable.AudienceId, field_to_csv=lambda c: field_to_csv_CriterionAudienceId(c.biddable_ad_group_criterion), csv_to_field=lambda c, v: csv_to_field_CriterionAudienceId(c.biddable_ad_group_criterion, int(v) if v else None) ), ] @property def biddable_ad_group_criterion(self): """ Defines a Biddable Ad Group Criterion """ return self._biddable_ad_group_criterion @biddable_ad_group_criterion.setter def biddable_ad_group_criterion(self, biddable_ad_group_criterion): self._biddable_ad_group_criterion = biddable_ad_group_criterion @property def campaign_name(self): """ Defines the name of the Campaign. :rtype: str """ return self._campaign_name @campaign_name.setter def campaign_name(self, campaign_name): self._campaign_name = campaign_name @property def ad_group_name(self): """ Defines the name of the Ad Group :rtype: str """ return self._ad_group_name @ad_group_name.setter def ad_group_name(self, ad_group_name): self._ad_group_name = ad_group_name @property def audience_name(self): """ Defines the name of the Audience :rtype: str """ return self._audience_name @audience_name.setter def audience_name(self, audience_name): self._audience_name = audience_name @property def performance_data(self): return self._performance_data def process_mappings_from_row_values(self, row_values): self._biddable_ad_group_criterion = _CAMPAIGN_OBJECT_FACTORY_V12.create('BiddableAdGroupCriterion') self._biddable_ad_group_criterion.Type = 'BiddableAdGroupCriterion' self._biddable_ad_group_criterion.Criterion = _CAMPAIGN_OBJECT_FACTORY_V12.create('AudienceCriterion') self._biddable_ad_group_criterion.Criterion.Type = 'AudienceCriterion' self._biddable_ad_group_criterion.CriterionBid = _CAMPAIGN_OBJECT_FACTORY_V12.create('BidMultiplier') self._biddable_ad_group_criterion.CriterionBid.Type = 'BidMultiplier' row_values.convert_to_entity(self, BulkAdGroupAudienceAssociation._MAPPINGS) self._performance_data = PerformanceData.read_from_row_values_or_null(row_values) def process_mappings_to_row_values(self, row_values, exclude_readonly_data): self._validate_property_not_null(self.biddable_ad_group_criterion, 'biddable_ad_group_criterion') self.convert_to_values(row_values, BulkAdGroupAudienceAssociation._MAPPINGS) PerformanceData.write_to_row_values_if_not_null(self._performance_data, row_values) def read_additional_data(self, stream_reader): super(BulkAdGroupAudienceAssociation, self).read_additional_data(stream_reader)
5,901
cfnlp/tools/connector/es_connector.py
invoker4zoo/cf-nlp-py
0
2023105
# coding=utf-8 """ @ license: Apache Licence @ github: invoker4zoo @ author: invoker/cc @ wechart: whatshowlove @ software: PyCharm @ file: es_connector.py @ time: $19-2-21 上午9:29 """ import sys from elasticsearch import Elasticsearch from cfnlp.tools.logger import logger reload(sys) sys.setdefaultencoding('utf-8') class esConnector(object): def __init__(self, url, index, doc_type): """ 暂时没有分布式, url为单个链接 :param url: Elasticsearch fun es.index """ self.es = Elasticsearch([url]) self.index = index self.doc_type = doc_type self.re_connect = 3 def search_all(self, size=1000): """ 可复写此方法 查询示例 :return: """ try: dsl_query = { 'query':{ 'match_all':{} }, 'size':size } result = self.es.search(self.index, self.doc_type, body=dsl_query) return result except Exception, e: logger.error('search all doc failed for %s' % str(e)) return None def search_doc_by_id(self, id): """ 可复写此方法 查询示例 search doc by id :param id: :return: """ try: dsl_query = { 'query': { 'match': { '_id': id } } } result = self.es.search(self.index, self.doc_type, body=dsl_query) if len(result.get('hits', {}).get('hits', [])): return result.get('hits', {}).get('hits', [])[0] else: return [] except Exception, e: logger.error('search doc by id failed for %s' % str(e)) return None def insert_single_info(self, info): """ 可复写此方法 查询示例 :param info: :return: """ try: result = self.es.index(self.index, self.doc_type, body=info) return result except Exception, e: logger.error('insert single info failed for %s' % str(e)) return None def check_info_exist(self, title): """ 可复写此方法 查询示例 由于为对插入操作指定id,需要使用title查询文件信息是否存在 :param title: :return: """ try: # elasticsearch中的字符串精确匹配 # 参考 https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-match-query.html dsl_query = { 'query': { 'match_phrase': { 'title': title } } } result = self.es.search(self.index, self.doc_type, body=dsl_query) if len(result.get('hits', {}).get('hits', [])): return True else: return False except Exception, e: logger.error('check info existed failed for %s' % str(e)) return None if __name__ == '__main__': es_db = esConnector(url='localhost:9200', index='test', doc_type='finace')
3,157
__database__/config.py
Zxayler/WeVibinLove
0
2025779
import json from PIL.ImageColor import getrgb from discord import Embed, Color with open("./__database__/config.json") as f: data = json.load(f) color = 0xE65C9C token = data['token'] invite = "https://discord.com/api/oauth2/authorize?client_id=849177419520147496&permissions=17826832&scope=bot" vote = "https://top.gg/bot/849177419520147496/vote" def get_color(color): r,g,b = getrgb(color) return Color.from_rgb(r,g,b)
427
packages/google/src/RPA/Cloud/Google/keywords/natural_language.py
pavelee/rpaframework
0
2025658
from typing import Dict, Optional from google.cloud import language_v1 from . import LibraryContext, keyword, TextType, to_texttype class NaturalLanguageKeywords(LibraryContext): """Keywords for Google Cloud Natural Language API""" def __init__(self, ctx): super().__init__(ctx) self.service = None @keyword(tags=["init", "natural language"]) def init_natural_language( self, service_account: str = None, use_robocorp_vault: Optional[bool] = None, token_file: str = None, ) -> None: """Initialize Google Cloud Natural Language client :param service_account: file path to service account file :param use_robocorp_vault: use credentials in `Robocorp Vault` :param token_file: file path to token file """ self.service = self.init_service_with_object( language_v1.LanguageServiceClient, service_account, use_robocorp_vault, token_file, ) @keyword(tags=["natural language"]) def analyze_sentiment( self, text: str = None, text_file: str = None, file_type: TextType = TextType.TEXT, json_file: str = None, lang: str = None, ) -> Dict: """Analyze sentiment in a text file :param text: source text :param text_file: source text file :param file_type: type of text, PLAIN_TEXT (default) or HTML :param json_file: json target to save result, defaults to None :param lang: language code of the source, defaults to None :return: analysis response # For list of supported languages: # https://cloud.google.com/natural-language/docs/languages **Examples** **Robot Framework** .. code-block:: robotframework ${result}= Analyze Sentiment ${text} ${result}= Analyze Sentiment text_file=${CURDIR}${/}test.txt """ return self._analyze_handler( text, text_file, file_type, json_file, lang, "sentiment" ) @keyword(tags=["natural language"]) def classify_text( self, text: str = None, text_file: str = None, file_type: TextType = TextType.TEXT, json_file: str = None, lang: str = None, ) -> Dict: """Classify text :param text: source text :param text_file: source text file :param file_type: type of text, PLAIN_TEXT (default) or HTML :param json_file: json target to save result, defaults to None :param lang: language code of the source, defaults to None :return: classify response # For list of supported languages: # https://cloud.google.com/natural-language/docs/languages **Examples** **Robot Framework** .. code-block:: robotframework ${result}= Classify Text ${text} ${result}= Classify Text text_file=${CURDIR}${/}test.txt """ return self._analyze_handler( text, text_file, file_type, json_file, lang, "classify" ) def _analyze_handler( self, text, text_file, file_type, json_file, lang, analyze_method ): file_type = to_texttype(file_type) parameters = {"type_": file_type} if text: parameters["content"] = text elif text_file: with open(text_file, "r") as f: parameters["content"] = f.read() else: raise AttributeError("Either 'text' or 'text_file' must be given") if lang is not None: parameters["language"] = lang document = language_v1.Document(**parameters) if analyze_method == "classify": response = self.service.classify_text(document=document) elif analyze_method == "sentiment": # Available values: NONE, UTF8, UTF16, UTF32 # encoding_type = enums.EncodingType.UTF8 response = self.service.analyze_sentiment( document=document, encoding_type="UTF8" ) self.write_json(json_file, response) return response
4,186
lemur/certificates/utils.py
jramosf/lemur
0
2024750
""" Utils to parse certificate data. .. module: lemur.certificates.hooks :platform: Unix :copyright: (c) 2019 by <NAME>, see AUTHORS for more :license: Apache, see LICENSE for more details. .. moduleauthor:: <NAME> <<EMAIL>> """ from cryptography import x509 from cryptography.hazmat.backends import default_backend from marshmallow.exceptions import ValidationError def get_sans_from_csr(data): """ Fetches SubjectAlternativeNames from CSR. Works with any kind of SubjectAlternativeName :param data: PEM-encoded string with CSR :return: List of LemurAPI-compatible subAltNames """ sub_alt_names = [] try: request = x509.load_pem_x509_csr(data.encode('utf-8'), default_backend()) except Exception: raise ValidationError('CSR presented is not valid.') try: alt_names = request.extensions.get_extension_for_class(x509.SubjectAlternativeName) for alt_name in alt_names.value: sub_alt_names.append({ 'nameType': type(alt_name).__name__, 'value': alt_name.value }) except x509.ExtensionNotFound: pass return sub_alt_names
1,180
laundrymeter/telegram_bot.py
M4a1x/laundrymeter
0
2025997
# -*- coding: utf-8 -*- """Telegram Bot responding to commands different commands. Defines callbacks to Telegram commands, providing a subset of the REST Api. Authentication is provided via a start token that has to be obtained via the REST API first. """ from __future__ import annotations from flask import g from sqlalchemy import desc from telegram.ext import Updater, CommandHandler from functools import wraps import atexit from .models import User, WashingMachine, WashingMachineSchema def telegram_auth_required(func): """Function wrapper to provide authentication on telegram commands.""" @wraps(func) def wrapped(bot, update, *args, **kwargs): with app.app_context(): user = User.query.filter_by(telegram_chat_id=update.message.chat_id).one() if not user: app.logger.info('Unauthorized Telegram message received from %d', update.message.chat_id) update.message.reply_text("Unauthorized. Please authenticate first.") return g.user = user app.logger.debug('User %s (%s) successfully authenticated command call', user.username, user.name) # Return inside app_context() to use same app context in called function. (to be able to use g) return func(bot, update, *args, **kwargs) return wrapped def start(bot, update, args): """Telegram callback for the '/start' command send as first command in every chat.""" with app.app_context(): if not args: app.logger.debug("A user %s (%s) tried to start a chat with the telegram bot, without providing a token.", update.message.from_user.full_name, update.message.from_user.username) update.message.reply_text("Missing token. Please call `/start \{token\}` with the correct token to authenticate.") return update.message user = User.verify_telegram_token(token=args[0], chat_id=update.message.chat_id) if not user: app.logger.debug("A user %s (%s) provided an invalid token for authentication when calling /start", update.message.from_user.full_name, update.message.from_user.username) update.message.reply_text("Invalid token. Please call `/start \{token\}` with the correct token to authenticate.") return app.logger.debug('User %s (%s) successfully authenticated via telegram.', user.username, user.name) update.message.reply_text("Successfully authenticated!") @telegram_auth_required def notify(bot, update): """Telegram callback for `/notify` to regsiter a user to be notified when the laundry is ready.""" try: g.user.register_notification(telegram=True) app.logger.debug('User %s (%s) successfully called notify(). He will be notified when the laundry is ready.', g.user.username, g.user.name) update.message.reply_text("You will be notified as soon as the laundry is ready.") except Exception as e: update.message.reply_text("There was an error registering you.") app.logger.exception("User %s (%s) raised an error on notify(). He couldn't be added for notification.", g.user.username, g.user.name) @telegram_auth_required def status(bot, update): """Telegram callback for `/status` to query the current simple status of the washing machine.""" try: washing_machine = WashingMachine.query.order_by(desc('timestamp')).first() app.logger.debug('User %s (%s) successfully called status(). Current Wasching Machine status was returned: %s', g.user.username, g.user.name, washing_machine.running) update.message.reply_text("The Washing Machine is currently " + ("Running" if washing_machine.running else "Stopped")) except Exception as e: app.logger.exception("User %s (%s) raised an exception on status(). Couldn't retrieve it from the Database.", g.user.username, g.user.name) update.message.reply_text("Couldn't retrieve the current machine status.") @telegram_auth_required def debug(bot, update): """Telegram callback for `/debug` to query the current extended status of the washing machine.""" try: washing_machine = WashingMachine.query.order_by(desc('timestamp')).first() wm_debug_schema = WashingMachineSchema() app.logger.debug('User %s (%s) successfully called debug(). Current Wasching Machine status was returned: %s', g.user.username, g.user.name, wm_debug_schema) update.message.reply_text(wm_debug_schema.dumps(washing_machine)) except Exception as e: app.logger.exception("User %s (%s) raised an exception on debug(). Couldn't retrieve it from the Database.", g.user.username, g.user.name) update.message.reply_text("Couldn't retrieve the current machine status.") def init_app(flask_app: Flask) -> None: """Initializing the telegram app with app context and registering callbacks""" flask_app.logger.debug('Initializing Telegram Bot...') global updater global app updater = Updater(flask_app.config['TELEGRAM_BOT_TOKEN']) app = flask_app updater.dispatcher.add_handler(CommandHandler('notify', notify)) updater.dispatcher.add_handler(CommandHandler('start', start, pass_args=True)) updater.dispatcher.add_handler(CommandHandler('status', status)) updater.dispatcher.add_handler(CommandHandler('debug', debug)) flask_app.logger.debug('Starting Telegram Message Poller...') updater.start_polling() atexit.register(lambda: updater.stop()) flask_app.logger.debug('Finished setting up Telegram Bot.')
5,690
research/experiment1/log/teacher-fmeasure.py
rusucosmin/bsc
1
2024795
#!/usr/local/bin/python3 import json with open("2.txt") as f: lines = f.readlines() mat = "".join(lines[:-1]) mat += lines[-1][:-1] mat = mat[:-1] a = json.loads(mat) prec = [0] * 10 rec = [0] * 10 for c in range(10): prec[c] = a[c][c] / sum(a[c]) rec[c] = a[c][c] / sum([a[x][c] for x in range(10)]) acc = sum([a[c][c] for c in range(10)]) / sum([sum(a[i]) for i in range(10)]) total_prec = sum(prec) / 10 total_rec = sum(rec) / 10 fmeasure = 2 * total_prec * total_rec / (total_prec + total_rec) # print(acc) # print(total_prec) # print(total_rec) print(fmeasure)
608
WLANderlust/captiveportals/impl/Waveloc.py
rrooggiieerr/WLANderlust.py
1
2025914
from WLANderlust.captiveportals import CaptivePortalSolverImpl class Waveloc(CaptivePortalSolverImpl): name = "Waveloc" def detect(self, bssid, ssid, location = None, body = None): # Placeholder for future implementation return False def solve(self, bssid, ssid, location, body): # Placeholder for future implementation return False
358
gollyx_python/counters.py
golly-splorts/gollyx-python
0
2026012
class XCounterStore(object): """ Small utilty class used by XYCounterStore to store counters for a set of x values. Wraps a hash map of x values to integer counts. """ __slots__ = ['mapp'] def __init__(self): self.mapp = dict() def __repr__(self): s = "[" s += ", ".join([f"{j}: {self.mapp[j]}" for j in self.sorted_values()]) s += "]" return s def accumulate(self, x): if x not in self.mapp: self.mapp[x] = 1 else: self.mapp[x] += 1 def filter_lohi(self, lo, hi): for x in list(self.mapp.keys()): if not (self.mapp[x] >= lo and self.mapp[x] <= hi): del self.mapp[x] def filter_values(self, bag): for x in list(self.mapp.keys()): if not (self.mapp[x] in bag): del self.mapp[x] def count(self, x): if x not in self.mapp: return 0 else: return self.mapp[x] def sorted_values(self): return sorted(list(self.mapp.keys())) class XYCounterStore(object): """ Small utility class storing counters for (x,y) values. Wraps a hash map of y values to x counter stores. """ __slots__ = ['mapp'] def __init__(self): self.mapp = dict() def __repr__(self): return str(self.mapp) def accumulate(self, x, y): if y not in self.mapp: self.mapp[y] = XCounterStore() self.mapp[y].accumulate(x) def count(self, x, y): if y not in self.mapp: return 0 xstore = self.mapp[y] if x not in xstore.mapp: return 0 count = xstore.mapp[x] return count def sorted_values(self): return sorted(list(self.mapp.keys())) def sorted_xvalues(self, y): """Return a list of sorted x values for the given y""" if y not in self.mapp: return None xstore = self.mapp[y] return xstore.sorted_values() def filter_lohi(self, lo, hi): """Filter all counts in this XYCounterStore to values that are between lo and hi""" for y in list(self.mapp.keys()): self.mapp[y].filter_lohi(lo, hi) x_values = self.mapp[y].mapp if len(x_values) == 0: del self.mapp[y] def filter_values(self, bag): """Filter all counts in this XYCounterStore to values that are between lo and hi""" for y in list(self.mapp.keys()): self.mapp[y].filter_values(bag) x_values = self.mapp[y].mapp if len(x_values) == 0: del self.mapp[y] class DeadNeighborCounter(XYCounterStore): """ Used to count the number of times a dead cell has been a neighbor of a live cell (used in determining which cells come alive). Wraps a hash map of (x, y) locations to integer counters. """ pass class AliveNeighborCounter(XYCounterStore): """ Used to count the number of live neighbors of a given live cell. """ pass
3,082
events/scheduler/tests.py
totaki/learn-python-pnz-00
0
2026059
from django.test import TestCase from scheduler.task import Task from fetcher.fetcher import Fetcher from scheduler.save_event import save_event from parsers.bar60 import BarParser from parsers.rostokhall_parser import RostokhallParser from datetime import datetime PARSER_MAP = { 'parsers': [RostokhallParser(), BarParser()] } class BaseTaskTest(TestCase): def setUp(self): self.task = Task(30, Fetcher(PARSER_MAP['parsers']), save_event) self.datetime = datetime.utcnow() def test_need_run(self): """Тест проверки работы функции need_run, если текущее время больше записанного в self.task.next - возвращается True""" self.assertEqual(self.task.need_run(self.datetime), True) def test_update_next(self): """Тест проверки работы функции update_next, всё верно, если в результате значение, self.task.next увеличивается на self.timedelta""" seconds = 0 self.task.next = datetime.strptime( f'2019-12-25 12:20:{seconds}', '%Y-%m-%d %H:%M:%S' ) self.task.update_next() plus_delta = self.task.next result = datetime.strptime( f'2019-12-25 12:20:{seconds + self.task.timeout}', '%Y-%m-%d %H:%M:%S' ) self.assertEqual(plus_delta, result)
1,297
master/tutorials/linkedin-placements/linkedin-practice-bitwise-and/solution.py
bitnot/hackerrank-solutions
0
2025154
#!/bin/python3 import sys t = int(input().strip()) for t0 in range(t): n, k = [int(tmp) for tmp in input().strip().split(' ')] a = k-1 b = ~a & -~a #least significant 0 bit to set if a | b > n: print(a - 1) else: print(a)
265
duro/scheduler/checks.py
TargetProcess/duro
4
2025728
from abc import ABC, abstractmethod from typing import Optional, Iterable from utils.file_utils import ( load_query, list_processors, load_select_query, list_tests, test_postfix, load_ddl_query, ) class Check(ABC): def __init__(self, views_path: str): self.views_path = views_path @abstractmethod def check(self, table): pass @abstractmethod def _list_tables(self) -> Iterable[str]: pass @property @abstractmethod def message(self) -> str: pass def run(self) -> Optional[str]: tables = self._list_tables() failures = [] for table in tables: try: check_result = self.check(table) except (OSError, ValueError): failures.append(table) continue if not check_result: failures.append(table) if not failures: return None return f'{self.message}: {", ".join(failures)}.' class TestsWithoutQuery(Check): def _list_tables(self): tests = list_tests(self.views_path) return (t.replace(f"{test_postfix}", "") for t in tests) def check(self, table): return load_query(self.views_path, table) @property def message(self) -> str: return "Some tables have tests, but not a SELECT query" class ProcessorsWithoutSelect(Check): def _list_tables(self) -> Iterable[str]: return list_processors(self.views_path) def check(self, table): return load_select_query(self.views_path, table) @property def message(self) -> str: return "Some processors don’t have a SELECT query" class ProcessorsWithoutDDL(Check): def _list_tables(self) -> Iterable[str]: return list_processors(self.views_path) def check(self, table): return load_ddl_query(self.views_path, table) @property def message(self) -> str: return "Some processors don’t have a CREATE TABLE query" enabled_checks = (TestsWithoutQuery, ProcessorsWithoutSelect, ProcessorsWithoutDDL) def find_tables_with_missing_files(views_path: str) -> Optional[str]: check_results = [check(views_path).run() for check in enabled_checks] failed = (result for result in check_results if result) return "\n".join(failed)
2,345
libcardet/__init__.py
0x0is1/cardet
1
2026062
# Author: https://github.com/0x0is1 import urllib3 # Disables ssl warning as host do not support ssl urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
170
tools/variables.py
Open-Digital-Twin/scholar-fetch
0
2026064
# The ID and range of a sample spreadsheet. SPREADSHEET_ID = '' UPLOAD_FOLDER_ID = '' RANGE_NAME = '\'pagename\'!$B2:O' SCRAPER_API_KEY = ''
146
src/utils/errors.py
cgDeepLearn/pyserver
0
2024637
#!/usr/bin/env python # -*- coding: utf-8 -*- # @File : errors.py # @Author : cgDeepLearn # @Create Date : 2020/11/12-2:53 下午 class gServerError(Exception): pass class PostError(Exception): ''' 不是post请求或者post_data为空 ''' def __init__(self, value): self.value = value def __str__(self): return repr(self.value) class ParameterError(gServerError): ''' 参数错误 ''' def __init__(self, value): self.value = value def __str__(self): return repr(self.value) class HttpPathError(Exception): def __init__(self, value): self.value = value def __str__(self): return repr(self.value) class ApplyDetailLack(gServerError): ''' apply detail获取中关键参数没有 ''' def __init__(self, value): self.value = value def __str__(self): return repr(self.value) class ServerProcessError(gServerError): def __init__(self, desc): self.desc = desc def __str__(self): return "错误: [%s] " % (self.desc)
1,040
2016/day_04/main.py
lbellomo/adventure_of_code
0
2025891
from typing import List, Iterator, Tuple, Optional from itertools import cycle from functools import partial from collections import Counter from string import ascii_lowercase RawData = List[str] def read_data(path: str) -> RawData: with open(path) as f: return [line.strip() for line in f.readlines()] def process_data( raw_data: RawData, remove_dash: bool = True ) -> Iterator[Tuple[str, int, str]]: for line in raw_data: letters, other = line.rsplit("-", maxsplit=1) if remove_dash: letters = letters.replace("-", "") ids, checksum = other[:-1].split("[") yield letters, int(ids), checksum def check_checksum(letters: str, checksum: str) -> bool: counter = Counter(letters) # sort alfabetical first, and then by count sorted_counter = sorted( sorted(counter.items(), key=lambda x: x[0]), key=lambda x: x[1], reverse=True ) # keep only the fisrt 5 (the checksum len) most_common = "".join(i[0] for i in sorted_counter[:5]) if most_common == checksum: return True return False def solve_a(raw_data: RawData) -> int: sum_ids = 0 for letters, ids, checksum in process_data(raw_data): if check_checksum(letters, checksum): sum_ids += ids return sum_ids def decode_ch(ch_input: str, ids: int) -> str: ch = "" if ch_input == "-": cycle_letters = cycle("- ") else: cycle_letters = cycle(ascii_lowercase) while ch != ch_input: ch = next(cycle_letters) for _ in range(ids): ch = next(cycle_letters) return ch def decode_letters(letters: str, ids: int) -> str: partial_decode_ch = partial(decode_ch, ids=ids) return "".join(map(partial_decode_ch, letters)) def solve_b(raw_data: RawData) -> Optional[int]: for letters, ids, _ in process_data(raw_data, remove_dash=False): real_name = decode_letters(letters, ids) if real_name == "northpole-object-storage": return ids return None if __name__ == "__main__": raw_data = read_data("input.txt") sol_a = solve_a(raw_data) print(f"sol a: {sol_a}") sol_b = solve_b(raw_data) print(f"sol b: {sol_b}") def test_check_checksum(): test_raw_data = [ "aaaaa-bbb-z-y-x-123[abxyz]", "a-b-c-d-e-f-g-h-987[abcde]", "not-a-real-room-404[oarel]", "totally-real-room-200[decoy]", ] test_result = [True, True, True, False] for raw_data, result in zip(test_raw_data, test_result): letters, _, checksum = next(process_data([raw_data])) assert check_checksum(letters, checksum) == result def test_decode_letters(): letters = "qzmt-zixmtkozy-ivhz" ids = 343 assert decode_letters(letters, ids) == "very encrypted name"
2,808
Asymptotic Properties of cLD/genedistance.py
QingrunZhangLab/cLD
0
2024782
import time import os import pandas as pd #This code is to calculate the gene distance based on the cLD file. openfile = open(r'/PATH/namedcld.txt','r') #named cLD file openfile2 = open(r'/PATH/genemid.txt','r') #gene mid point file outfile = '/PATH/genedistance.txt' #gene distance file outfile2 = '/PATH/distseq.txt' #distance sequence file, a string with open(outfile,'w',newline='') as fdo: fdo.write('') with open(outfile2,'w',newline='') as fdo: fdo.write('') line = openfile2.readline() print(line) print('process start') mid = [] while line: mid.append(float(line)) line = openfile2.readline() np = len(mid) openfile.seek(0,0) totaldist = [] line = openfile.readline() line_list = line.split(',') num = 0 while line: newline = [line_list[0],line_list[1],line_list[2],line_list[3],line_list[4]] for i in range(num+1,np): newline.append(str(float(mid[i])-float(mid[num]))) totaldist.append(str(float(mid[i])-float(mid[num]))) str_cur = ','.join(newline) with open(outfile,'a',newline='') as fdo: fdo.write(str_cur+'\n') num = num + 1 line = openfile.readline() line_list = line.split(',') str_cur = ','.join(totaldist) with open(outfile2,'a',newline='') as fdo: fdo.write(str_cur+'\n') print('process over') openfile.close() openfile2.close()
1,378
api_site/src/api_x/zyt/user_mapping/auth.py
webee/pay
1
2025258
# coding=utf-8 from api_x.config import etc as config from api_x.zyt.user_mapping import get_channel_by_name from pytoolbox.util.sign import SignType, Signer from pytoolbox.util import public_key, aes from pytoolbox.util.strings import gen_rand_str from api_x.constant import TransactionType def add_sign_for_params(channel_name, params, sign_type=SignType.RSA): if params is None: return params channel = get_channel_by_name(channel_name) # 这里的主要作用是签名,只需要lvye_pri_key或md5_key signer = Signer('key', 'sign', channel.md5_key, config.LVYE_PRI_KEY, None) # 用来加密lvye_pub_key channel_pub_key = public_key.loads_b64encoded_key(channel.public_key) params['channel_name'] = channel_name params['sign_type'] = sign_type params['sign'] = signer.sign(params, sign_type) # 每次动态生成此密码 lvye_aes_key = gen_rand_str(16) params['_lvye_pub_key'] = aes.encrypt_to_base64(config.LVYE_PUB_KEY, lvye_aes_key) params['_lvye_aes_key'] = channel_pub_key.encrypt_to_base64(lvye_aes_key) return params def vas_payment_is_enabled(payment_entity, vas_name): from api_x.zyt.vas import NAME if NAME == vas_name: channel = get_channel_by_name(payment_entity.channel_name) # 只支持支付 return channel.zyt_pay_enabled and payment_entity.source in [TransactionType.PAYMENT] return True
1,352
numba/core/targetconfig.py
ashrielbrian/numba
3
2026051
""" This module contains utils for manipulating target configurations such as compiler flags. """ from types import MappingProxyType from numba.core import utils class Option: """An option to be used in ``TargetConfig``. """ __slots__ = "_type", "_default", "_doc" def __init__(self, type, *, default, doc): """ Parameters ---------- type : Type of the option value. It can be a callable. The setter always calls ``self._type(value)``. default : The default value for the option. doc : str Docstring for the option. """ self._type = type self._default = default self._doc = doc @property def type(self): return self._type @property def default(self): return self._default @property def doc(self): return self._doc class _MetaTargetConfig(type): """Metaclass for ``TargetConfig``. When a subclass of ``TargetConfig`` is created, all ``Option`` defined as class members will be parsed and corresponding getters, setters, and delters will be inserted. """ def __init__(cls, name, bases, dct): """Invoked when subclass is created. Insert properties for each ``Option`` that are class members. All the options will be grouped inside the ``.options`` class attribute. """ # Gather options from base classes and class dict opts = {} # Reversed scan into the base classes to follow MRO ordering such that # the closest base class is overriding for base_cls in reversed(bases): opts.update(base_cls.options) opts.update(cls.find_options(dct)) # Store the options into class attribute as a ready-only mapping. cls.options = MappingProxyType(opts) # Make properties for each of the options def make_prop(name, option): def getter(self): return self._values.get(name, option.default) def setter(self, val): self._values[name] = option.type(val) def delter(self): del self._values[name] return property(getter, setter, delter, option.doc) for name, option in cls.options.items(): setattr(cls, name, make_prop(name, option)) def find_options(cls, dct): """Returns a new dict with all the items that are a mapping to an ``Option``. """ return {k: v for k, v in dct.items() if isinstance(v, Option)} class _NotSetType: def __repr__(self): return "<NotSet>" _NotSet = _NotSetType() class TargetConfig(metaclass=_MetaTargetConfig): """Base class for ``TargetConfig``. Subclass should fill class members with ``Option``. For example: >>> class MyTargetConfig(TargetConfig): >>> a_bool_option = Option(type=bool, default=False, doc="a bool") >>> an_int_option = Option(type=int, default=0, doc="an int") The metaclass will insert properties for each ``Option``. For exapmle: >>> tc = MyTargetConfig() >>> tc.a_bool_option = True # invokes the setter >>> print(tc.an_int_option) # print the default """ def __init__(self, copy_from=None): """ Parameters ---------- copy_from : TargetConfig or None if None, creates an empty ``TargetConfig``. Otherwise, creates a copy. """ self._values = {} if copy_from is not None: assert isinstance(copy_from, TargetConfig) self._values.update(copy_from._values) def __repr__(self): # NOTE: default options will be placed at the end and grouped inside # a square bracket; i.e. [optname=optval, ...] args = [] defs = [] for k in self.options: msg = f"{k}={getattr(self, k)}" if not self.is_set(k): defs.append(msg) else: args.append(msg) clsname = self.__class__.__name__ return f"{clsname}({', '.join(args)}, [{', '.join(defs)}])" def __hash__(self): return hash(tuple(sorted(self.values()))) def __eq__(self, other): if isinstance(other, TargetConfig): return self.values() == other.values() else: return NotImplemented def __ne__(self, other): eq = self.__eq__(other) if eq is NotImplemented: return NotImplemented else: return eq def values(self): """Returns a dict of all the values """ return {k: getattr(self, k) for k in self.options} def is_set(self, name): """Is the option set? """ self._guard_option(name) return name in self._values def discard(self, name): """Remove the option by name if it is defined. After this, the value for the option will be set to its default value. """ self._guard_option(name) self._values.pop(name, None) def inherit_if_not_set(self, name, default=_NotSet): """Inherit flag from ``ConfigStack``. Parameters ---------- name : str Option name. default : optional When given, it overrides the default value. It is only used when the flag is not defined locally and there is no entry in the ``ConfigStack``. """ self._guard_option(name) if not self.is_set(name): cstk = utils.ConfigStack() if cstk: # inherit top = cstk.top() setattr(self, name, getattr(top, name)) elif default is not _NotSet: setattr(self, name, default) def copy(self): """Clone this instance. """ return type(self)(self) def summary(self): """Returns a ``str`` that summarizes this instance. In contrast to ``__repr__``, only options that are explicitly set will be shown. """ args = [] for k in self.options: msg = f"{k}={getattr(self, k)}" if self.is_set(k): args.append(msg) clsname = self.__class__.__name__ return f"{clsname}({', '.join(args)})" def _guard_option(self, name): if name not in self.options: msg = f"{name!r} is not a valid option for {type(self)}" raise ValueError(msg)
6,562
code/seir_model.py
ion-g-ion/paper-cme-tt
0
2025364
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Jul 2 22:31:30 2020 @author: ion """ import tensorflow as tf import t3f import numpy as np import matplotlib.pyplot as plt from CME import CME,Gillespie import timeit import scipy.integrate import numba import scipy.sparse from tt_extra import mat_to_tt import tt import tt.amen import tt.eigb from ttInt import ttInt #%% REaction cooefficeints # define reaction rates = np.array([0.1,0.5,1.0,0.01,0.01,0.01,0.4]) Pre =np.array( [[1,0,1,0],[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,0]]) Post = np.array([[0,1,1,0],[0,0,1,0],[1,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,1],[1,0,0,0]]) Props = [ lambda x: x[:,0]*x[:,2] , lambda x: x[:,1] , lambda x: x[:,2] , lambda x: x[:,0] , lambda x: x[:,1] , lambda x: x[:,2] , lambda x: x[:,0]*0+1 ] # construct the model and the CME operator N = 4*[80] # state truncation mdl = CME(N, Pre,Post,rates,Props) # model # mdl = CME(N, np.array( [[1,0,1,0]]),np.array([[0,1,1,0]]), np.array([0.1]),[ lambda x: x[:,0]*x[:,2]]) Ns = 20000 x0 = np.array([50,4,0,0]) sigma = 1.0 p1 = np.exp(-0.5*(x0[0]-np.arange(N[0]))**2/sigma) ch1 = np.random.choice(np.arange(N[0]),(Ns,1),p=p1/np.sum(p1)) p2 = np.exp(-0.5*(x0[1]-np.arange(N[1]))**2/sigma) ch2 = np.random.choice(np.arange(N[1]),(Ns,1),p=p2/np.sum(p2)) p3 = np.exp(-0.5*(x0[2]-np.arange(N[2]))**2/sigma) ch3 = np.random.choice(np.arange(N[2]),(Ns,1),p=p3/np.sum(p3)) p4 = np.exp(-0.5*(x0[3]-np.arange(N[3]))**2/sigma) ch4 = np.random.choice(np.arange(N[3]),(Ns,1),p=p4/np.sum(p4)) #%% Monte Carlo # time scale Nt = 70 dT = 10.0/100 time_sample = np.arange(Nt+1) * dT # draw sample sample = mdl.ssa(np.concatenate((ch1,ch2,ch3,ch4),axis=1), time_sample,Ns ) # plot sample plt.figure() plt.title('Sample') plt.plot(time_sample,sample[:,0,0],'b') plt.plot(time_sample,sample[:,1,0],'orange') plt.plot(time_sample,sample[:,2,0],'r') plt.plot(time_sample,sample[:,3,0],'g') plt.legend(['Susceptible','Exposed','Infected','Recovered']) plt.ylabel(r'#individuals') plt.xlabel(r'$t$ [d]') # plot sample plt.figure() plt.title('Means') plt.plot(time_sample,np.mean(sample[:,0,:],1),'b') plt.plot(time_sample,np.mean(sample[:,1,:],1),'orange') plt.plot(time_sample,np.mean(sample[:,2,:],1),'r') plt.plot(time_sample,np.mean(sample[:,3,:],1),'g') plt.legend(['Susceptible','Exposed','Infected','Recovered']) plt.ylabel(r'#individuals') plt.xlabel(r'$t$ [d]') #%% Integrate ODE A_tt = mdl.construct_generator_tt() # A_tt = tt.reshape(A_tt,np.array(2*[[15]*8]).transpose()) P = tt.kron(tt.kron(tt.tensor(p1),tt.tensor(p2)),tt.kron(tt.tensor(p3),tt.tensor(p4))) P = P * (1/tt.sum(P)) P0 = P # P = tt.reshape(P,[15]*8) x_S = tt.kron(tt.tensor(np.arange(N[0])),tt.ones(N[1:])) x_E = tt.kron(tt.ones([N[0]]),tt.kron(tt.tensor(np.arange(N[1])),tt.ones(N[2:]))) x_I = tt.kron(tt.ones(N[:2]),tt.kron(tt.tensor(np.arange(N[2])),tt.ones([N[3]]))) x_R = tt.kron(tt.ones(N[:3]),tt.tensor(np.arange(N[3]))) epsilon = 1e-10 rmax = 30 #%% reference ode solution # print('Reference...') # tme_ode45 = timeit.time.time() # mdl.construct_generator2(to_tf=False) # Gen = mdl.gen # def func(t,y): # print(t) # return Gen.dot(y) # # solve CME # print('ODE solver...') # res = scipy.integrate.solve_ivp(func,[0,Nt*dT],P0.full().flatten(),t_eval=[0,Nt*dT]) # Pt = res.y.reshape(N+[-1]) # tme_ode45 = timeit.time.time() - tme_ode45 # P_ref = Pt[:,:,:,:,-1] print('Loading reference....') P_mc = np.load('./reference_ode.dat',allow_pickle = True) P_ref = P_mc #%% TT print('TT integration...') fwd_int = ttInt(A_tt, epsilon = 1e-6, N_max = 64, dt_max = 1e-1,method='crank–nicolson') time = 0.0 tme_total = timeit.time.time() Pms_SE = [] Pms_EI = [] for i in range(Nt): tme = timeit.time.time() P = fwd_int.solve(P, dT, intervals = 4) tme = timeit.time.time() - tme P = P.round(1e-10,100) P = P * (1/tt.sum(P)) time += dT Pms_SE.append(tt.sum(tt.sum(P,3),2).full()) Pms_EI.append(tt.sum(tt.sum(P,0),2).full()) print('k = ',i,'/',Nt,' at time ',time, ' rank ',P.r,' time ',tme) tme_total = timeit.time.time()-tme_total # print('TT time ',tme_total,' vs ODE solver time ',tme_ode45) Pend = P.full() residual = (Pend-P_ref)[:60,:60,:60,:60] # residual = residual[:40,:40,:40,:40] print('Mean rel error ',np.mean(np.abs(residual))/np.max(np.abs(Pend))) print('Max rel error ',np.max(np.abs(residual))/np.max(np.abs(Pend))) P_ref[66:,:,:,:] = 0 P_ref[:,66:,:,:] = 0 P_ref[:,:,66:,:] = 0 P_ref[:,:,:,66:] = 0 # P = tt.reshape(P,N) # P1_end = np.zeros((N[0])) # P2_end = np.zeros((N[1])) # P3_end = np.zeros((N[2])) # P4_end = np.zeros((N[3])) # for i in range(Ns): # P1_end[sample[-1,0,i]] += 1 # P2_end[sample[-1,1,i]] += 1 # P3_end[sample[-1,2,i]] += 1 # P4_end[sample[-1,3,i]] += 1 # P1_end = P1_end / np.sum(P1_end) # P2_end = P2_end / np.sum(P2_end) # P3_end = P3_end / np.sum(P3_end) # P4_end = P4_end / np.sum(P4_end) # P1_end_tt = tt.sum(tt.sum(tt.sum(P,1),1),1) # P2_end_tt = tt.sum(tt.sum(tt.sum(P,0),1),1) # P3_end_tt = tt.sum(tt.sum(tt.sum(P,0),0),1) # P4_end_tt = tt.sum(tt.sum(tt.sum(P,0),0),0) # plt.figure() # plt.plot(np.arange(N[0]),P1_end) # plt.plot(np.arange(N[0]),P1_end_tt.full()) # plt.title('Marginal PMF for S') # plt.figure() # plt.plot(np.arange(N[1]),P2_end) # plt.plot(np.arange(N[1]),P2_end_tt.full()) # plt.title('Marginal PMF for E') # plt.figure() # plt.plot(np.arange(N[2]),P3_end) # plt.plot(np.arange(N[2]),P3_end_tt.full()) # plt.title('Marginal PMF for I') # plt.figure() # plt.plot(np.arange(N[3]),P4_end) # plt.plot(np.arange(N[3]),P4_end_tt.full()) # plt.title('Marginal PMF for R') # plt.figure() # time = 0.0 # for img in Pms_SE: # plt.clf() # plt.imshow(img,origin='lower') # plt.axis('equal') # plt.xlabel('Susceptible') # plt.ylabel('Exposed') # plt.colorbar() # plt.pause(0.1) # time+=dT # print(time) # # Pref = P.full().reshape([-1,1]) # time_total = 0 # Exp = x0.reshape([1,-1]) # import sys # sys.exit()<0): # tme = timeit.time.time() # h = time[i] - time[i-1] # tme = timeit.time.time() # k1 = tt.matvec(Att,P).round(epsilon,rmax) # k2 = tt.matvec(Att,( P + 0.5 * h * k1 ).round(epsilon,rmax)).round(epsilon,rmax) # k3 = tt.matvec(Att,( P + 0.5 * h * k2 ).round(epsilon,rmax)).round(epsilon,rmax) # k4 = tt.matvec(Att,( P + h * k3 ).round(epsilon,rmax)).round(epsilon,rmax) # P = (P + (1/6)*k1 + (1/3)*k2 + (1/3)*k3 + (1/6)*k4).round(epsilon,rmax) # P = P*(1/tt.sum(P)) # time_total += h # tme = timeit.time.time() - tme # E = np.array([[tt.sum(P*x_S),tt.sum(P*x_E),tt.sum(P*x_I),tt.sum(P*x_R)]]) # Exp = np.concatenate((Exp,E)) # print('%4d/%4d time %5.3f s' %(i+1,Nt,tme),' rank ',P.r,flush = True) # plt.figure() # plt.title('Means') # plt.plot(time[:100],Exp) # plt.legend(['S','E','I','R']) #%% MC # print('Monte Carlo....') # N1 = 100000 # N2 = 100 # P_mc = np.zeros(N) # for i in range(N2): # print(i) # sample = mdl.ssa(np.concatenate((ch1,ch2,ch3,ch4),axis=1), np.arrat([0,Nt*dT]),N1 ) # for k in range(N1): # P_mc[sample[-1,0,k],sample[-1,1,k],sample[-1,2,k],sample[-1,3,k]] += 1 # P_mc = P_mc / np.sum(P_mc) #%% plots plt.figure() plt.imshow(Pend.sum(2).sum(2).transpose(),origin='lower') plt.colorbar() plt.xlabel(r'$x_1$') plt.ylabel(r'$x_2$') tikzplotlib.save('./plots/SE_marginal.tex') plt.figure() plt.imshow((Pend-P_ref).sum(2).sum(2).transpose(),origin='lower') plt.colorbar() plt.xlabel(r'$x_1$') plt.ylabel(r'$x_2$') tikzplotlib.save('./plots/SE_marginal_err.tex') plt.figure() plt.imshow(Pend.sum(0).sum(2).transpose(),origin='lower') plt.colorbar() plt.xlabel(r'$x_2$') plt.ylabel(r'$x_3$') tikzplotlib.save('./plots/EI_marginal.tex') plt.figure() plt.imshow((Pend-P_ref).sum(0).sum(2).transpose(),origin='lower') plt.colorbar() plt.xlabel(r'$x_2$') plt.ylabel(r'$x_3$') tikzplotlib.save('./plots/EI_marginal_err.tex') plt.figure() plt.imshow(Pend.sum(0).sum(0).transpose(),origin='lower') plt.colorbar() plt.xlabel(r'$x_3$') plt.ylabel(r'$x_4$') tikzplotlib.save('./plots/IR_marginal.tex') plt.figure() plt.imshow((Pend-P_ref).sum(0).sum(0).transpose(),origin='lower') plt.colorbar() plt.xlabel(r'$x_3$') plt.ylabel(r'$x_4$') tikzplotlib.save('./plots/IR_marginal_err.tex') plt.figure() plt.imshow(Pend.sum(1).sum(1).transpose(),origin='lower') plt.colorbar() plt.xlabel(r'$x_1$') plt.ylabel(r'$x_4$') tikzplotlib.save('./plots/SR_marginal.tex') plt.figure() plt.imshow((Pend-P_ref).sum(1).sum(1).transpose(),origin='lower') plt.colorbar() plt.xlabel(r'$x_1$') plt.ylabel(r'$x_4$') tikzplotlib.save('./plots/SR_marginal_err.tex')
8,773
amulet/world_interface/chunk/translators/java/java_numerical/java_numerical_translator.py
Podshot/Amulet-Core
0
2024485
from __future__ import annotations from typing import Tuple, Union import numpy from amulet.world_interface.chunk.translators import Translator from PyMCTranslate.py3.translation_manager import Version class JavaNumericalTranslator(Translator): def _translator_key( self, version_number: int ) -> Tuple[str, Union[int, Tuple[int, int, int]]]: return "java", version_number def _unpack_palette(self, version: Version, palette: numpy.ndarray): """ Unpacks an int array of block ids and block data values [[1, 0], [2, 0]] into a numpy array of Block objects. :param version: :param palette: :return: """ palette = numpy.array([version.ints_to_block(*entry) for entry in palette]) return palette def _pack_palette(self, version: Version, palette: numpy.ndarray) -> numpy.ndarray: """ Packs a numpy array of Block objects into an int array of block ids and block data values [[1, 0], [2, 0]]. :param version: :param palette: :return: """ palette = [version.block_to_ints(entry) for entry in palette] for index, value in enumerate(palette): if value is None: palette[index] = ( 0, 0, ) # TODO: find some way for the user to specify this return numpy.array(palette) @staticmethod def is_valid(key): if key[0] != "anvil": return False if key[1] > 1343: return False return True TRANSLATOR_CLASS = JavaNumericalTranslator
1,632
day_7/part_2.py
ITachiLab/adventofcode2017
0
2025837
import re class Disk(): def __init__(self, name): self.name = name self.parents = [] self.subnodes = [] self.weight = 0 self.__total_weight = None @property def total_weight(self): if self.__total_weight is None: self.__total_weight = sum([sub.total_weight for sub in self.subnodes]) + self.weight return self.__total_weight @property def child_count(self): return len(self.subnodes) suspicious = None def search(node): global suspicious if node.child_count > 1: weight_pairs = [(sub, sub.total_weight) for sub in node.subnodes] weight_pairs.sort(key=lambda x: x[1]) weights = [x[1] for x in weight_pairs] if len(set(weights)) != 1: first_node = weight_pairs[0] second_node = weight_pairs[-1] if weights.count(first_node[1]) > weights.count(second_node[1]): selected = second_node other = first_node else: selected = first_node other = second_node if selected[0].child_count > 0: suspicious = (selected[0], (other[0].total_weight - selected[0].total_weight) + selected[0].weight) search(suspicious[0]) else: return else: return def main(): pattern = '^(?P<name>\\w+)\\s\\((?P<weight>\\d+)\\)$|^(?P<name2>\\w+)\\s\\((?P<weight2>\\d+)\\)\\s->\\s(?P<sub>.*)$' entries = {} with open('day_7.in', 'r') as f: for l in f.readlines(): match = re.match(pattern, l) groups = match.groupdict() name = groups['name'] or groups['name2'] weight = groups['weight'] or groups['weight2'] sub = groups['sub'].replace(' ', '').split(',') if groups['sub'] is not None else [] disk = Disk(name) if name not in entries else entries[name] disk.weight = int(weight) entries[name] = disk for node in sub: if node in entries: disk.subnodes.append(entries[node]) entries[node].parents.append(disk) else: new_disk = Disk(node) entries[node] = new_disk disk.subnodes.append(new_disk) new_disk.parents.append(disk) base = next(d for d in entries.values() if len(d.parents) == 0) search(base) print(f'{suspicious[0].name} -> {suspicious[1]}') if __name__ == '__main__': main()
2,621
tests/conftest.py
ludwigschubert/flow-simulator
0
2025178
import pytest # Paths from flow.path import RelativePath, AbsolutePath, AbsoluteURL @pytest.fixture def relative_path(): return RelativePath("a/relative/path.ext") @pytest.fixture def absolute_path(): return AbsolutePath("/an/absolute/path.ext") @pytest.fixture def absolute_url(): return AbsoluteURL("gs://bucket/an/absolute/path.ext") # PathTemplate from flow.task_spec import PathTemplate PathTemplate.path_template_prefix = "" @pytest.fixture def path_template(): return PathTemplate("/data/{group_id}/names/{name_id}.txt") # InputSpec from flow.task_spec import ( IterableInputSpec, PathTemplateInputSpec, AggregatingInputSpec, DependentInputSpec, ) @pytest.fixture def iterable_input_spec(): return IterableInputSpec("iterable_input_spec", range(10)) @pytest.fixture def path_template_input_spec(path_template): return PathTemplateInputSpec("path_template_input_spec", path_template) @pytest.fixture def aggregating_input_spec(): name = "aggregating_input_spec" dictionary = {"{neuron}": "/data/{layer}/{neuron}.jpg"} return AggregatingInputSpec(name, dictionary) @pytest.fixture def dependent_input_spec(): name = "dependent_input_spec" function = lambda model_name: [model_name + str(i) for i in range(10)] return DependentInputSpec(name, function) # OutputSpec from flow.task_spec import OutputSpec, PathTemplateOutputSpec @pytest.fixture def simple_output(): return "/some/file/path/{glob}/test.txt" @pytest.fixture def output_spec(simple_output): return OutputSpec.build(simple_output) # JobSpec from flow.job_spec import JobSpec @pytest.fixture def noop_job_spec(): return JobSpec({"unity": 1}, "/data/noop", "/tasks/noop.py") # TaskSpec from flow.task_spec import TaskSpec @pytest.fixture def trivial_task_spec(): iis1 = IterableInputSpec("iis1", [0, 1]) iis2 = IterableInputSpec("iis2", ["a", "b"]) output_spec = OutputSpec.build("/{iis1}/{iis2}.txt") a_path = "/tasks/trivial_task_spec.py" name = "trivial_task_spec.py" return TaskSpec([iis1, iis2], output_spec, a_path, name) @pytest.fixture def task_spec_repetetive(): iis1 = IterableInputSpec("iis1", [0, 1]) iis2 = IterableInputSpec("iis2", ["a", "b"]) output_spec = OutputSpec.build("/{iis1}/{iis2}.txt") a_path = "/tasks/trivial_task_spec.py" name = "trivial_task_spec.py" return TaskSpec([iis1, iis2], output_spec, a_path, name) @pytest.fixture def full_task_spec( iterable_input_spec, aggregating_input_spec, dependent_input_spec, output_spec ): path_template = PathTemplate( "/data/models/{model_name}/checkpoints/{checkpoint_folder}" ) path_template_input_spec = PathTemplateInputSpec("checkpoint_path", path_template) inputs = [ iterable_input_spec, path_template_input_spec, aggregating_input_spec, dependent_input_spec, ] output = output_spec a_path = "/tasks/full_task_spec.py" name = "full_task_spec.py" return TaskSpec(inputs, output, a_path, name)
3,076
policies.py
hari-sikchi/LOOP
20
2025733
# Policy definitions for Online, Offline and Safe RL from controllers import arc, arc_offline, arc_safety import numpy as np import gym from models.model_PETS import EnsembleDynamicsModel from models.predict_env_pets import PredictEnv as PredictEnvPETS import sac import torch # Default termination function that outputs done=False def default_termination_function(state,action,next_state): if (torch.is_tensor(next_state)): done = torch.zeros((next_state.shape[0],1)) else: done = np.zeros((next_state.shape[0],1)) return done def get_policy(all_args, env, replay_buffer, config, policy_name='LOOP_SAC',env_fn=None): policy,sac_policy = None, None dynamics_config = config['dynamics_config'] mpc_config = config['mpc_config'] state_dim = env.observation_space.shape[0] action_dim = env.action_space.shape[0] hidden_dim= dynamics_config['hidden_dim'] if all_args.policy == 'LOOP_SAC_ARC': env_model = EnsembleDynamicsModel(7, 5, state_dim, action_dim, 1, hidden_dim, use_decay=True) dynamics = PredictEnvPETS(env_model,replay_buffer, all_args.env, 'pytorch') sac_policy = sac.SAC(lambda:gym.make(all_args.env), dynamics, replay_buffer, env.termination_function) sac_policy.update_every=50 sac_policy.update_after=1000 policy = arc.ARC( env, dynamics, sac_policy,env.termination_function) elif all_args.policy == 'LOOP_OFFLINE_ARC': env_model = EnsembleDynamicsModel(7, 5, state_dim, action_dim, 1, hidden_dim, use_decay=True) dynamics = PredictEnvPETS(env_model,replay_buffer, all_args.env, 'pytorch') sac_policy = sac.SAC(lambda:gym.make(all_args.env),replay_buffer) sac_policy.update_every=50 sac_policy.update_after=1000 if hasattr(env, 'termination_function:'): policy = arc_offline.ARC_offline( env, dynamics, sac_policy,env.termination_function) else: policy = arc_offline.ARC_offline( env, dynamics, sac_policy,default_termination_function) elif all_args.policy == 'safeLOOP_CEM': env_model = EnsembleDynamicsModel(7, 5, state_dim, action_dim, 1, hidden_dim, use_decay=True) dynamics = PredictEnvPETS(env_model,replay_buffer, all_args.env, 'pytorch') sac_policy = sac.SAC(env_fn,dynamics,replay_buffer,default_termination_function) sac_policy.update_every=50 sac_policy.update_after=1000 policy = arc_safety.safeCEM( env, dynamics, sac_policy,default_termination_function) elif all_args.policy == 'safeLOOP_ARC': env_model = EnsembleDynamicsModel(7, 5, state_dim, action_dim, 1, hidden_dim, use_decay=True) dynamics = PredictEnvPETS(env_model,replay_buffer, all_args.env, 'pytorch') sac_policy = sac.SAC(env_fn,dynamics,replay_buffer,default_termination_function) sac_policy.update_every=50 sac_policy.update_after=1000 policy = arc_safety.safeARC( env, dynamics, sac_policy,default_termination_function) if 'OFFLINE' not in all_args.policy and 'CEM' in all_args.policy: policy.horizon = mpc_config['horizon'] policy.sol_dim = env.action_space.shape[0] * mpc_config['horizon'] policy.ub = np.repeat(env.action_space.high,mpc_config['horizon'],axis=0) policy.lb = np.repeat(env.action_space.low,mpc_config['horizon'],axis=0) policy.mean = np.zeros((policy.sol_dim,)) policy.N = mpc_config['CEM']['popsize'] policy.mixture_coefficient = mpc_config['CEM']['mixture_coefficient'] policy.particles = mpc_config['CEM']['particles'] policy.max_iters = mpc_config['CEM']['max_iters'] policy.num_elites = mpc_config['CEM']['num_elites'] policy.alpha = mpc_config['CEM']['alpha'] if 'reward_horizon' in mpc_config['CEM'].keys(): policy.reward_horizon = mpc_config['CEM']['reward_horizon'] elif 'OFFLINE' not in all_args.policy and 'ARC' in all_args.policy: policy.horizon = mpc_config['horizon'] policy.sol_dim = env.action_space.shape[0] * mpc_config['horizon'] policy.ub = np.repeat(env.action_space.high,mpc_config['horizon'],axis=0) policy.lb = np.repeat(env.action_space.low,mpc_config['horizon'],axis=0) policy.mean = np.zeros((policy.sol_dim,)) policy.N = mpc_config['ARC']['popsize'] policy.mixture_coefficient = mpc_config['ARC']['mixture_coefficient'] policy.particles = mpc_config['ARC']['particles'] policy.max_iters = mpc_config['ARC']['max_iters'] policy.alpha = mpc_config['ARC']['alpha'] policy.kappa = mpc_config['ARC']['kappa'] if 'reward_horizon' in mpc_config['ARC'].keys(): policy.reward_horizon = mpc_config['ARC']['reward_horizon'] lookahead_policies=['LOOP_SAC_ARC','LOOP_OFFLINE_ARC','safeLOOP_CEM','safeLOOP_ARC'] return policy,sac_policy, dynamics, lookahead_policies
5,319
counter/tests.py
arpith/warmups
0
2026086
import unittest from counter import counter class TestCounter(unittest.TestCase): def test_remove_spaces(self): counts = counter([' ']) self.assertEqual(len(counts.keys()), 0) def test_total_count(self): total = 0 s = 'someTextWithoutSpaces' counts = counter(list(s)) for k, v in counts.iteritems(): total += v self.assertEqual(len(s), total) if __name__ == '__main__': unittest.main()
469
compute_volume.py
applied-systems-biology/python2-custom-segment-glomeruli
0
2024370
# -*- coding: utf-8 -*- ''' Counting glomeruli in Light-Sheet microscopy images of kidney. Full details of the alogrithm can be found in the paper Klingberg et al. (2017) Fully Automated Evaluation of Total Glomerular Number and Capillary Tuft Size in Nephritic Kidneys Using Lightsheet Microscopy, J. Am. Soc. Nephrol., 28: 452-459. For running in command line: ``python compute_volume.py -i settings.csv`` :Author: `<NAME>`_ email: <EMAIL> or <EMAIL> :Organization: Applied Systems Biology Group, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI) :Version: 2015.11.12 Copyright (c) 2014-2015, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI) Licence: BSD-3-Clause, see ./LICENSE or https://opensource.org/licenses/BSD-3-Clause for full details Requirements ------------ * `Python 2.7.3 <http://www.python.org>`_ * `Numpy 1.9.1 <http://www.numpy.org>`_ * `Scipy.ndimage 2.0 <http://www.scipy.org>`_ * `Mahotas 1.0.3 `_ * `argparse 1.1 `_ * `pandas 0.15.2 <http://pandas.pydata.org>`_ Reference --------- Klingberg et al. (2017) Fully Automated Evaluation of Total Glomerular Number and Capillary Tuft Size in Nephritic Kidneys Using Lightsheet Microscopy, J. Am. Soc. Nephrol., 28: 452-459. ''' import sys sys.path.append('include') import re, os import pandas as pd import numpy as np import mahotas from scipy import ndimage import time import filelib import boost import tifffile def list_subfolders(inputfolder, subfolders = []): ''' list folders, each containing layers of one stack ''' files = filelib.list_subfolders(inputfolder, subfolders = subfolders) files.sort() folders = [] for f in files: folders.append(filelib.return_path(f)) folders = np.unique(folders) return folders def extract_zoom(folder): ''' Extract zoom data from image name ''' parts = folder.split('zoom') p = re.compile('\d+') if len(parts) > 1: zoom = p.findall(parts[1])[0] else: zoom = '063' zsize = 5. if zoom == '063': xsize = 5.159 if zoom == '08': xsize = 4.063 return xsize, zsize def normalize(img, per = 100, min_signal_value = 0): ph = np.percentile(img, per) pl = np.percentile(img, 100-per) if ph > min_signal_value: img = np.where(img>ph, ph, img) img = np.where(img<pl, pl, img) img = img - img.min() img = img*255./img.max() else: img = np.zeros_like(img) return img def overlay(mask, img, color, borders = True, normalize = True): if borders: borders = mahotas.borders((mask).astype(np.uint8)) else: borders = mask ind = np.where(borders) if normalize and img.max() > 0: output = img*255./img.max() else: output = np.zeros_like(img) output[ind] = color return output ################################################################################ #Segmentation def segment(folder, params): ''' Segment all layers in a folder ''' #create folders for the output filelib.make_folders([params.inputfolder + '../segmented/outlines/' + folder, params.inputfolder + '../segmented/masks/' + folder]) #list all files in the folder files = filelib.list_image_files(params.inputfolder + folder) files.sort() ind = np.int_(np.arange(0, len(files), 10)) files = np.array(files)[ind] if not len(filelib.list_image_files(params.inputfolder + '../segmented/masks/' + folder)) == len(files): params.folder = folder #segment all layers in parallel boost.run_parallel(process = segment_layer, files = files, params = params, procname = 'Segmentation of glomeruli') def segment_layer(filename, params): ''' Segment one layer in a stack ''' #extract pixel size in xy and z xsize, zsize = extract_zoom(params.folder) #load image img = tifffile.imread(params.inputfolder + params.folder + filename) #normalize image img = ndimage.median_filter(img, 3) per_low = np.percentile(img, 5) img[img < per_low] = per_low img = img - img.min() per_high = np.percentile(img, 99) img[img > per_high] = per_high img = img*255./img.max() imgf = ndimage.gaussian_filter(img*1., 30./xsize).astype(np.uint8) kmask = (imgf > mahotas.otsu(imgf.astype(np.uint8)))*255. sizefactor = 10 small = ndimage.interpolation.zoom(kmask, 1./sizefactor) #scale the image to a smaller size rad = int(300./xsize) small_ext = np.zeros([small.shape[0] + 4*rad, small.shape[1] + 4*rad]) small_ext[2*rad : 2*rad + small.shape[0], 2*rad : 2*rad + small.shape[1]] = small small_ext = mahotas.close(small_ext.astype(np.uint8), mahotas.disk(rad)) small = small_ext[2*rad : 2*rad + small.shape[0], 2*rad : 2*rad + small.shape[1]] small = mahotas.close_holes(small)*1. small = small*255./small.max() kmask = ndimage.interpolation.zoom(small, sizefactor) #scale back to normal size kmask = normalize(kmask) kmask = (kmask > mahotas.otsu(kmask.astype(np.uint8)))*255. #remove artifacts of interpolation if np.median(imgf[np.where(kmask > 0)]) < (np.median(imgf[np.where(kmask == 0)]) + 1)*3: kmask = np.zeros_like(kmask) #save indices of the kidney mask # ind = np.where(kmask > 0) # ind = np.array(ind) # np.save(params.inputfolder + '../segmented/masks/' + params.folder + filename[:-4] + '.npy', ind) #save outlines im = np.zeros([img.shape[0], img.shape[1], 3]) img = tifffile.imread(params.inputfolder + params.folder + filename) im[:,:,0] = im[:,:,1] = im[:,:,2] = np.array(img) output = overlay(kmask, im, (255,0,0), borders = True) tifffile.imsave(params.inputfolder + '../segmented/outlines/' + params.folder + filename[:-4] + '.tif', (output).astype(np.uint8)) ############################################################################# #Quantification def quantify(folder, params): ''' Quantify a stack ''' if not os.path.exists(params.inputfolder + '../statistics/' + folder[:-1] + '.csv'): #list files in the folder files = filelib.list_image_files(params.inputfolder + folder) files.sort() #create a folder for statistics filelib.make_folders([params.inputfolder + '../statistics/' + filelib.return_path(folder[:-1] + '.csv')]) #extract voxel size xsize, zsize = extract_zoom(folder) #compute volume of the kidney kidney_volume = 0 for i in range(len(files)): ind = np.load(params.inputfolder + '../segmented/masks/' + folder + files[i][:-4] + '.npy') kidney_volume = kidney_volume + len(ind[0]) stat = pd.DataFrame() stat['Kidney_volume'] = [kidney_volume*xsize**2*zsize] stat['Image_name'] = folder[:-1] stat.to_csv(params.inputfolder + '../statistics/' + folder[:-1] + '.csv', sep = '\t') #################################################################### #read parameters from settings file try: import argparse ap = argparse.ArgumentParser() ap.add_argument("-i","--input", required = True, help = "File with settings") args = ap.parse_args() settingsfile = args.input except: settingsfile = 'settings.csv' params = pd.Series.from_csv(settingsfile, sep = '\t') #list folders with stacks to be analyzed folders = list_subfolders(params.inputfolder, subfolders = []) #segment each stack for folder in folders: print folder segment(folder, params) #quantify the segmented data boost.run_parallel(process = quantify, files = folders, params = params, procname = 'Quantification') filelib.combine_statistics(params.inputfolder + '../statistics/', params.inputfolder + '../statistics_combined.csv')
7,450
tests/test_has_overlaps.py
thomasschus/segcheck
0
2022912
import pytest from .context import has_overlaps from .context import InvalidSegmentError testdata = [ ([], False), ([[1, 2], [3, 4]], False), ([[3, 4], [1, 2]], False), ([[-1, 0], [-2, 1]], True), ([[-1, 0], [-2, 0]], True), ] @pytest.mark.parametrize("segmentation,expected", testdata) def test_has_overlaps(segmentation, expected): result = has_overlaps(segmentation) assert result == expected def test_has_overlaps_exception(): with pytest.raises(InvalidSegmentError): assert has_overlaps([[0, 1], [5, 4]])
555
mapper.py
rafpach16/simple_Hadoop_MapReduce_example
0
2025696
#!/usr/bin/env python import string, sys from sklearn.feature_extraction import stop_words stops = set(stop_words.ENGLISH_STOP_WORDS) for line in sys.stdin: ## removes the whitespace line = line.strip() ## removes punctuation line = line.translate( string.maketrans(string.punctuation, ' ' * len(string.punctuation)) ) ## makes sure that the text is a valid Unicode string ## ignores the characters that are not valid ## converts the text to lowercase line = line.lower() ## this splits words at all whitespace words = line.split() ## prints out all the words with a count of 1 for w in words: if w not in stops: print '%s\t%s' % (w, "1")
717
tasks/gallery/gallery/constants.py
HackerDom/qctf-starter-2016
6
2025236
import datetime import os import pickle import re SERVER_PORT = 4567 SERVER_DEBUG = False with open('secrets/password_secret.txt') as f: PASSWORD_SECRET = f.read().strip() with open('secrets/jwt_secret.txt') as f: JWT_SECRET = f.read().strip() SESSION_LENGTH = datetime.timedelta(hours=24) MAX_PHOTO_SIZE = 2 * 1024 * 1024 WAIT_AFTER_UPLOAD_GLOBAL = datetime.timedelta(milliseconds=300) WAIT_AFTER_UPLOAD_FOR_USER = datetime.timedelta(seconds=5) MEMCACHED_HOST = 'memcached' MEMCACHED_PORT = '11211' MEMCACHED_PARAMS = [MEMCACHED_HOST, MEMCACHED_PORT], False, False, pickle.Pickler, pickle.Unpickler, None, None, 250, 1024 * 1024, 30, 3, False, False, False MEMCACHED_EXPIRATION_TIME = 60 MEMCACHED_MIN_COMPRESS_LEN = 1000 DB_HOST = 'mysql' DB_PORT = 3306 DB_USER = os.environ['MYSQL_USER'] DB_PASSWORD = os.environ['MYSQL_PASSWORD'] DB_DATABASE = os.environ['MYSQL_DATABASE'] IP_TO_CITY_PATH = 'ips.txt' CITY_TO_COORDS_PATH = 'cities.txt' USERNAME_RE = re.compile(r'[-\w]{4,}') PHOTO_DIR = 'static/photos/'
1,018
lizard/events.py
Magical-Chicken/lizard-slayer
0
2025012
import enum import time from lizard import LOG from lizard import util class EventStatus(enum.Enum): PENDING = 'pending' RUNNING = 'running' SUCCESS = 'success' FAILURE = 'failure' FINAL_STATES = (EventStatus.SUCCESS.value, EventStatus.FAILURE.value) class BaseEvent(object): """Base event type""" event_map = None event_map_lock = None event_handler_map = None def __init__(self, event_type, data, register_event=True): """ Init for Event :event_type: event type :data: event data :register_event: if true add event to event result map """ self.event_type = event_type self.event_id = util.hex_uuid() self.status = EventStatus.PENDING self.result = None self.data = data self.completion_time = 0 self._register_event() def handle(self): """ Handle event using handler defined in event handler map and set result """ if self.event_handler_map is None: raise NotImplementedError("Cannot handle BaseEvent") handler = self.event_handler_map.get( self.event_type, handler_not_implemented) start_time = time.time() try: self.status = EventStatus.RUNNING self.result = handler(self) self.status = EventStatus.SUCCESS except Exception as e: msg = repr(e) LOG.warning("Failed to complete event: %s error: %s", self, msg) self.status = EventStatus.FAILURE self.result = {'error': msg} end_time = time.time() self.completion_time = end_time - start_time def _register_event(self): """ Register event in event map :result: result data """ if self.event_map is None or self.event_map_lock is None: raise NotImplementedError("Cannot set result on BaseEvent") else: with self.event_map_lock: self.event_map[self.event_id] = self @property def properties(self): <<<<<<< HEAD """event properties""" ======= """event properties, not including data which may be very large""" return { 'event_id': self.event_id, 'type': self.event_type.value, 'status': self.status.value, 'result': self.result, 'completion_time': self.completion_time, } @property def full_properties(self): """full event properties including data""" >>>>>>> ef9b13b186c1a356f50a36e78ad91a3ccff76392 return { 'event_id': self.event_id, 'type': self.event_type.value, 'status': self.status.value, 'data': self.data, 'result': self.result, } def __str__(self): """str repr for event""" <<<<<<< HEAD return "Event: '{}' Data: {}".format(self.event_type, self.data) class ClientEvent(BaseEvent): """Client event""" event_map = client.CLIENT_EVENT_MAP event_map_lock = client.CLIENT_EVENT_MAP_LOCK class ServerEvent(BaseEvent): """Server event""" event_map = server.SERVER_EVENT_MAP event_map_lock = server.SERVER_EVENT_MAP_LOCK ======= return "EventType: '{}' ID: {}".format(self.event_type, self.event_id) >>>>>>> ef9b13b186c1a356f50a36e78ad91a3ccff76392 def get_event_type_by_name(event_type_name, event_type_class): """ get the event type object for the specified event name :event_type_name: event type name string :returns: instance of ClientEventType or ServerEventType """ result = event_type_class.INVALID_TYPE if event_type_name in (e.value for e in event_type_class): result = event_type_class(event_type_name) return result def handler_not_implemented(event): """ placeholder event handler :event: event to handle :returns: event result data if event sucessfully handled :raises: Exception: if error occurs handling event """ raise NotImplementedError("No event handler for event: {}".format(event))
4,113
tests/serialize/runstate/shelvestore_test.py
Yelp/Tron
190
2025226
import os import shutil import tempfile from testifycompat import assert_equal from testifycompat import run from testifycompat import setup from testifycompat import teardown from testifycompat import TestCase from tron.serialize.runstate.shelvestore import Py2Shelf from tron.serialize.runstate.shelvestore import ShelveKey from tron.serialize.runstate.shelvestore import ShelveStateStore class TestShelveStateStore(TestCase): @setup def setup_store(self): self.tmpdir = tempfile.mkdtemp() self.filename = os.path.join(self.tmpdir, "state") self.store = ShelveStateStore(self.filename) @teardown def teardown_store(self): shutil.rmtree(self.tmpdir) def test__init__(self): assert_equal(self.filename, self.store.filename) def test_save(self): key_value_pairs = [ (ShelveKey("one", "two"), {"this": "data",},), (ShelveKey("three", "four"), {"this": "data2",},), ] self.store.save(key_value_pairs) self.store.cleanup() stored_data = Py2Shelf(self.filename) for key, value in key_value_pairs: assert_equal(stored_data[str(key.key)], value) stored_data.close() def test_delete(self): key_value_pairs = [ (ShelveKey("one", "two"), {"this": "data",},), (ShelveKey("three", "four"), {"this": "data2",},), # Delete first key (ShelveKey("one", "two"), None,), ] self.store.save(key_value_pairs) self.store.cleanup() stored_data = Py2Shelf(self.filename) assert stored_data == { str(ShelveKey("three", "four").key): {"this": "data2"}, } stored_data.close() def test_restore(self): self.store.cleanup() keys = [ShelveKey("thing", i) for i in range(5)] value = {"this": "data"} store = Py2Shelf(self.filename) for key in keys: store[str(key.key)] = value store.close() self.store.shelve = Py2Shelf(self.filename) retrieved_data = self.store.restore(keys) for key in keys: assert_equal(retrieved_data[key], value) if __name__ == "__main__": run()
2,237
helper/downloader/urlDL.py
REX-BOTZ/MegaUploaderbot-1
2
2024880
# !/usr/bin/env python3 """Importing""" # Importing External Packages from pySmartDL import SmartDL from pyrogram.errors import exceptions # Importing Required developer defined data from helper.downloader.downloadingData import * fileName = 'urlDL' class UrlDown: def __init__(self, bot, msg, process_msg, Downloadfolder, url): self.bot = bot self.msg = msg self.process_msg = process_msg self.Downloadfolder = Downloadfolder self.url = url async def start(self): len_file = await length_of_file(self.bot, self.url) if len_file == 'Valid': try: self.process_msg = await self.process_msg.edit_text(BotMessage.starting_to_download, parse_mode = 'html') except exceptions.bad_request_400.MessageNotModified: pass downObj = SmartDL(self.url, dest = self.Downloadfolder) downObj.start(blocking = False) while not downObj.isFinished(): progress_bar = downObj.get_progress_bar().replace('#', '■').replace('-', '□') completed = downObj.get_dl_size(human=True) speed = downObj.get_speed(human=True) remaining = downObj.get_eta(human=True) percentage = int(downObj.get_progress()*100) try: self.process_msg = await self.process_msg.edit_text(f"<b>Downloading... !! Keep patience...\n {progress_bar}\n📊Percentage: {percentage}%\n✅Completed: {completed}\n🚀Speed: {speed}\n⌚️Remaining Time: {remaining}</b>", parse_mode = 'html') except exceptions.bad_request_400.MessageNotModified: pass finally: sleep(1) if downObj.isSuccessful(): try: n_msg = await self.process_msg.edit_text(BotMessage.uploading_msg, parse_mode = 'html') except exceptions.bad_request_400.MessageNotModified: pass self.n_msg = n_msg self.filename = path.basename(downObj.get_dest()) return True else: try: rmtree(self.Downloadfolder) except Exception as e: await self.process_msg.delete() await self.msg.reply_text(BotMessage.unsuccessful_upload, parse_mode = 'html') for e in downObj.get_errors(): await self.bot.send_message(OwnerID, f'{line_number(fileName, e)}\n\n{self.url}') else: await self.bot.send_message(OwnerID, f'{line_number(fileName)}\n\n{self.url}') elif len_file == 'Not Valid': try: await self.process_msg.edit_text(BotMessage.unsuccessful_upload, parse_mode = 'html') except exceptions.bad_request_400.MessageNotModified: pass else: try: await self.process_msg.edit_text(f'Filesize Detected: <code>{len_file}MB</code>.\n{BotMessage.file_limit}', parse_mode = 'html') except exceptions.bad_request_400.MessageNotModified: pass self.filename = None
3,259
main/user/forms.py
MahanBi/Back-End
0
2025353
from django import forms from django.core.exceptions import ValidationError from django.contrib.auth.forms import ReadOnlyPasswordHashField from .models import User class CreateUserForm(forms.ModelForm): _password = forms.CharField(label='Pass Conf', widget=forms.PasswordInput) password = forms.CharField(label='Pass', widget=forms.PasswordInput) class Meta: model = User fields = ('username', 'email', 'friend_code', 'full_name', 'role') def clean_password(self): password = self.cleaned_data.get("password") _password = self.cleaned_data.get("_password") if password != _password: raise ValidationError("Passwords don't match") return password def save(self, commit=True): user = super().save(commit=False) user.set_password(self.cleaned_data["password"]) if commit: user.save() return user class ChangeUserForm(forms.ModelForm): password = <PASSWORD>() class Meta: model = User fields = ('username', 'email', 'friend_code', 'full_name', 'role')
1,105
tests/server/test_api.py
davidkartchner/rubrix
1
2025772
# coding=utf-8 # Copyright 2021-present, the Recognai S.L. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from rubrix.server.tasks.commons import TaskStatus from rubrix.server.tasks.text_classification.api import ( TaskType, TextClassificationBulkData, TextClassificationRecord, ) def create_some_data_for_text_classification(client, name: str, n: int): records = [ TextClassificationRecord(**data) for idx in range(0, n or 10, 2) for data in [ { "id": idx, "inputs": {"data": "my data"}, "multi_label": True, "metadata": {"field_one": "value one", "field_two": "value 2"}, "status": TaskStatus.validated, "annotation": { "agent": "test", "labels": [ {"class": "Test"}, {"class": "Mocking"}, ], }, }, { "id": idx + 1, "inputs": {"data": "my data"}, "multi_label": True, "metadata": {"field_one": "another value one", "field_two": "value 2"}, "status": TaskStatus.validated, "prediction": { "agent": "test", "labels": [ {"class": "NoClass"}, ], }, "annotation": { "agent": "test", "labels": [ {"class": "Test"}, ], }, }, ] ] client.post( f"/api/datasets/{name}/{TaskType.text_classification}:bulk", json=TextClassificationBulkData( tags={"env": "test", "class": "text classification"}, metadata={"config": {"the": "config"}}, records=records, ).dict(by_alias=True), ) def uri_2_path(uri: str): from urllib.parse import urlparse p = urlparse(uri) return os.path.abspath(os.path.join(p.netloc, p.path))
2,645
src/pages/resources.py
Ben0mmen/.-MfG-ThC-.
1
2026029
"""This page is for searching and viewing the list of awesome resources""" import logging from collections import defaultdict import streamlit as st import awesome_streamlit as ast logging.basicConfig(format="%(asctime)s - %(message)s", level=logging.INFO) @st.cache def filter_by_tags(resources, tags): """The resources having one of the specified Tags If tags is the empty list all resources are returned Arguments: resources {[type]} -- A list of Resources tags {[type]} -- A list of Tags Returns: [type] -- A list of Resources """ if tags: resources_ = [] for resource in resources: if set(resource.tags).intersection(tags): resources_.append(resource) return resources_ return resources @st.cache def filter_by_is_awesome(resources): """The resources being that is_awesome Arguments: resources {[type]} -- A list of resources """ return [resource for resource in resources if resource.is_awesome] @st.cache def to_markdown(resources): """Converts the specified resources to MarkDown Arguments: resources {[type]} -- [description] Returns: [type] -- [description] """ resources_dict = defaultdict(list) for resource in resources: resources_dict[resource.tags[0]].append(resource) markdown_bullets = [] for tag in sorted(resources_dict.keys(), key=lambda x: x.name): markdown_bullets.append(f"\n### {tag.name}\n") for resource in resources_dict[tag]: markdown_bullets.append(resource.to_markdown_bullet()) markdown = "\n".join(markdown_bullets) return markdown @st.cache def get_sorted_resources(awesome_resources_only: bool = True): """The list of resources sorted by name Keyword Arguments: awesome_resources_only {bool} -- If True only awesome resources will be included in the list (default: {True}) Returns: [type] -- The list of resources sorted by name """ resources = sorted(ast.database.RESOURCES, key=lambda x: x.name) if awesome_resources_only: resources = filter_by_is_awesome(resources) return resources @st.cache def get_resources_markdown(tags, awesome_resources_only=True) -> str: """A bulleted Markdown list of resources filtered as specified Arguments: tags {[type]} -- A list of tags to filter to. If the list is empty [] then we do no filtering on Tags Keyword Arguments: awesome_resources_only {bool} -- [description] (default: {True}) Returns: str -- A bulleted Markdown list of resources filtered as specified """ resources = get_sorted_resources(awesome_resources_only) resources = filter_by_tags(resources, tags) return to_markdown(resources) def write(): """Writes content to the app""" ast.shared.components.title_awesome("Resources") st.sidebar.title("Resources") show_awesome_resources_only = st.sidebar.checkbox( "Show Awesome Resources Only", value=True ) tags = ast.shared.components.multiselect( "Select Tag(s)", options=ast.database.TAGS, default=[] ) st.info( """Please note that resources can have multiple tags! We list each resource under **a most important tag only!**""" ) resource_section = st.empty() with st.spinner("Loading resources ..."): markdown = get_resources_markdown(tags, show_awesome_resources_only) resource_section.markdown(markdown) if st.sidebar.checkbox("Show Resource JSON"): st.subheader("Source JSON") st.write(ast.database.RESOURCES) tags = None if __name__ == "__main-_": write()
3,726
src/solutions/part1/q207_course_schedule.py
hychrisli/PyAlgorithms
0
2025124
from src.base.solution import Solution from src.tests.part1.q207_test_course_schedule import CourseScheduleTestCases """ There are a total of n courses you have to take, labeled from 0 to n - 1. Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1] Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses? For example: 2, [[1,0]] There are a total of 2 courses to take. To take course 1 you should have finished course 0. So it is possible. 2, [[1,0],[0,1]] There are a total of 2 courses to take. To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible. """ class CourseSchedule(Solution): def verify_output(self, test_output, output): return test_output == output def print_output(self, output): super(CourseSchedule, self).print_output(output) def gen_test_cases(self): return CourseScheduleTestCases() def run_test(self, input): return self.canFinish(input[0], input[1]) def canFinish(self, numCourses, prerequisites): """ :type numCourses: int :type prerequisites: List[List[int]] :rtype: bool """ WHITE = 0 GRAY = 1 BLACK = 2 class Node: def __init__(self, val): self.val = val self.color = WHITE self.children = [] stack = [] graph = dict() for i in range(numCourses): graph[i] = Node(i) for pre in prerequisites: graph[pre[0]].children.append(pre[1]) for node in graph.values(): # print(type(node)) if node.color == WHITE: stack.append(node) while stack: # print(len(stack)) cur_node = stack[-1] if cur_node.color == GRAY: cur_node.color = BLACK stack.pop() else: """print(cur_node.val) for node in graph.values(): print((node.val, node.is_visited, node.children))""" cur_node.color = GRAY for child in cur_node.children: if graph[child].color == WHITE: stack.append(graph[child]) elif graph[child].color == GRAY: return False return True if __name__ == '__main__': sol = CourseSchedule() sol.run_tests()
2,680
python_webex/v1/Webhook.py
Paul-weqe/python-webex-bot
10
2023946
import requests import sys class Webhook: def get_all_webhooks(self): """ GETS A LIST OF ALL THE WEBHOOKS CURRENTLY CONNECTED TO YOUR BOT uses the https://api.ciscospark.com/v1/webhooks - GET request details on the list webhooks URL can be found in https://developer.webex.com/docs/api/v1/webhooks/list-webhooks """ url_route = "webhooks" data = requests.get(self.URL + url_route, headers=self.headers) return data def create_webhook(self, name=None, target_url=None, resource=None, event=None): """ Enables one to create a webhook that will be listening to events sent to the bot uses the https://api.ciscospark.com/v1/webhooks - POST request details on create webhooks URL can be found in https://developer.webex.com/docs/api/v1/webhooks/create-a-webhook """ url_route = "webhooks" if name is None: sys.exit("'name' is a required field") elif target_url is None: sys.exit("'targetUrl' is a required field") elif resource is None: sys.exit("'resource' is a required field") elif event is None: sys.exit("'event' is a required field") # check for if a webhook with this URL already exists for this particular bot # cause apparently Cisco does not do that for us when creating webhooks. But tis all good :) existing_webhooks = self.get_all_webhooks().json() for webhook in existing_webhooks['items']: if webhook['targetUrl'] == target_url: return self.get_webhook_details(webhook_id=webhook['id']) json = { "name": name, "targetUrl": target_url, "resource": resource, "event": event } data = requests.post(self.URL + url_route, headers=self.headers, json=json) return data def delete_webhook(self, webhook_id=None): """ Deletes a webhook that has ID webhookId uses the https://api.ciscospark.com/webhooks - DELETE request details on delete webhooks URL can be found in https://developer.webex.com/docs/api/v1/webhooks/delete-a-webhook """ url_route = "webhooks" if webhook_id is None: sys.exit("'webhookId' is a required field") data = requests.delete(self.URL + url_route + "/" + webhook_id, headers=self.headers) return data def update_webhook(self, webhook_id=None, name=None, target_url=None): """ 'name' is the updated name of the webhook 'targetUrl' is the updated targetUrl of the webhook Edit a webhook with ID of webhookId uses the https://api.ciscospark.com/webhooks - PUT request details on edit webhook URL can be found in https://developer.webex.com/docs/api/v1/webhooks/update-a-webhook """ url_route = "webhooks" if webhook_id is None: sys.exit("'webhookId' is a required field") elif name is None: sys.exit("'name' is a required field") elif target_url is None: sys.exit("'targetUrl' is a required field") json = { "name": name, "targetUrl": target_url } data = requests.put(self.URL + url_route + "/" + webhook_id, json=json, headers=self.headers) return data def get_webhook_details(self, webhook_id=None): """ Get the details of a single webhook with id of webhookId uses https://api.ciscospark.com/webhooks/{roomId} - GET request details on get webhook details URL can be found in https://developer.webex.com/docs/api/v1/webhooks/get-webhook-details """ url_route = "webhooks" if webhook_id is None: sys.exit("'webhookId' is a required field") data = requests.get(self.URL + url_route, headers=self.headers) return data
3,924
core/views_no_rbac.py
Raybeam/rb_status_plugin
12
2024301
from flask_admin import BaseView, expose from flask_admin.form import rules from flask import flash, redirect, url_for, request from rb_status_plugin.core.report_model import ReportModel from rb_status_plugin.core.report_repo import VariablesReportRepo from rb_status_plugin.core.report import Report from rb_status_plugin.core.views import ( StatusView, ReportsView, ) status_view_rbac = StatusView() reports_view_rbac = ReportsView() class StatusViewAdmin(BaseView): @expose("/") def test(self): return self.render( "no_rbac/status.html", content=status_view_rbac.reports_data() ) class ReportsViewAdmin(BaseView): @expose("/") def list(self): return self.render("no_rbac/reports.html", content=VariablesReportRepo.list()) @expose("/<string:report_name>/trigger/", methods=["GET"]) def trigger(self, report_name): r = Report(report_name) r.trigger_dag() flash(f"Triggered report: {report_name}", "info") return redirect(url_for("rb/reports.list")) @expose("/<string:report_name>/delete/", methods=["POST"]) def delete(self, report_name): r = Report(report_name) r.delete_report_variable(VariablesReportRepo.report_prefix) r.delete_dag() flash(f"Deleted report: {report_name}", "info") return redirect(url_for("rb/reports.list")) @expose("/paused", methods=["POST"]) def pause_dag(self): r_args = request.args report_name = r_args.get("report_name") r = Report(report_name) if r_args.get("is_paused") == "true": r.activate_dag() else: r.pause_dag() return "OK" class ReportMgmtViewAdmin(ReportModel): can_delete = False create_template = "no_rbac/report_create_form.html" edit_template = "no_rbac/report_edit_form.html" form_rules = [ rules.FieldSet(("report_id", "schedule_timezone"), ""), rules.FieldSet( ("report_title", "description", "owner_name", "owner_email", "subscribers"), "General", ), rules.FieldSet( ("schedule_type", "schedule_time", "schedule_week_day", "schedule_custom"), "Schedule", ), rules.FieldSet(("tests",), "Tests"), ] # We're doing this to hide the view from the main # menu and keep access in the /reports/ endpoint def is_visible(self): return False
2,456
collatzTestOverflow.py
hellpig/collatz
2
2022766
#!/usr/bin/env python3.7 # This code is for checking numbers that overflowed when using 128-bit integers. # Integers in Python 3 are of unlimited size! nStart = 340282366920938463463374607431768211455 # 2^128 - 1 # the following is the first to require 129 bits... nStart = 55247846101001863167 # source: # http://pcbarina.fit.vutbr.cz/path-records.htm # # The following is not a great source # since given Mx must be divided by 2 before doing B(Mx)... # http://www.ericr.nl/wondrous/pathrecs.html nStart = 274133054632352106267 nStart = 71149323674102624415 nStart = 55247846101001863167 # Optionally find A and B for nStart = A * 2**k + B k = 51 A = nStart >> k B = nStart - (A << k) print("For k =", k) print(" A =", A) print(" B =", B) print("") n = nStart steps = 0 while True: if (n >> 128): print(" ", n) # to have the overflowing parts stand out else: print(n) if n == 1: #if n < nStart: break if n%2 == 1: # odd n = (3*n+1) // 2 else: n = n // 2 steps += 1 print("steps =", steps)
1,044
app/models/books.py
andyjohn23/booky
1
2024872
from .search import google_book_search from .https import convert_to_https class Books(): def __init__(self, query="", start=0, testing=False, https=False): if not testing: self.json = google_book_search(query, start) else: self.json = testing self.https = True if https else False def parse(self): """ Takes the google books api and displays the results to the screen and returns an empty payload if there is an error """ if self.json["status"] != 200: return empty_payload() body = self.json["body"] book_list = [] try: for i in body["items"]: book = {} # checks the API responses for an existing data - and # adds an empty string if no data is returned from the API for field in ["authors", "title", "publisher", "imageLinks", "infoLink"]: try: book[field] = i["volumeInfo"][field] except KeyError: book[field] = "" book["authors"] = self._parse_authors(book["authors"]) book["imageLinks"] = self._parse_thumbnail(book["imageLinks"]) book_list.append(book) except KeyError: return empty_payload() return {"total": body["totalItems"], "items": book_list} def _parse_authors(self, authors_list=""): """ Joins array of authors into comma-separated string """ return ", ".join(authors_list) def _parse_thumbnail(self, imageLinks=""): """ Adding own image if there is no image for book covers """ if not imageLinks: return {"thumbnail": "static/images/booky-book.jpg"} else: if self.https: for link in imageLinks: imageLinks[link] = convert_to_https(imageLinks[link]) return imageLinks def payload(items, total): return {"total": total, "items": items} def empty_payload(): return payload([], 0)
2,144
scripts/script_aes_multi_model.py
AISyLab/AISY_Framework
12
2025456
import aisy_sca from app import * from custom.custom_models.neural_networks import * aisy = aisy_sca.Aisy() aisy.set_resources_root_folder(resources_root_folder) aisy.set_database_root_folder(databases_root_folder) aisy.set_datasets_root_folder(datasets_root_folder) aisy.set_database_name("database_ascad.sqlite") aisy.set_dataset(datasets_dict["ASCAD.h5"]) aisy.set_aes_leakage_model(leakage_model="HW", byte=2) aisy.set_batch_size(400) aisy.set_epochs(50) aisy.add_neural_network(cnn_architecture, name="model_0") aisy.add_neural_network(mlp, name="model_3") aisy.add_neural_network(noConv1_ascad_desync_0, name="model_1") aisy.add_neural_network(methodology_cnn_ascad, name="model_2") aisy.add_neural_network(cnn, name="model_4") aisy.run()
746
algoritms/ExponentialSmoothing.py
kaantecik/covid-prediction
1
2025632
""" 170201069 <NAME> """ import warnings from statsmodels.tsa.api import Holt from statsmodels.tools.sm_exceptions import ConvergenceWarning warnings.simplefilter('ignore', ConvergenceWarning) def exponential_smoothing(df, smoothing_trend=0.6, initialization_method="estimated"): train_data = df[:370] check_data = df[370:462] day_of_forecast = 92 model = Holt(train_data, initialization_method=initialization_method) fit2 = model.fit(smoothing_trend=smoothing_trend) forecast = fit2.forecast(day_of_forecast).astype(int) return check_data, forecast
581
ocr_train/ensemble_checkpoints.py
Sand0001/OCR_textrender_jap_chn_eng
0
2024862
#-*- coding:utf-8 -*- import os import sys import numpy as np from imp import reload from PIL import Image, ImageOps from keras.layers import Input from keras.models import Model # import keras.backend as K from keras.utils import multi_gpu_model import dl_resnet_crnn as densenet #import densenet os.environ["CUDA_VISIBLE_DEVICES"] = "4,5" GPU_NUM = 2 #reload(densenet) encode_dct = {} char_set = open('chn.txt', 'r', encoding='utf-8').readlines() #char_set = open('japchn.txt', 'r', encoding='utf-8').readlines() for i in range (0, len(char_set)): c = char_set[i].strip('\n') encode_dct[c] = i char_set.append('卍') #char_set = ''.join([ch.strip('\n') for ch in char_set] + ['卍']) #characters = ''.join([chr(i) for i in range(32, 127)] + ['卍']) nclass = len(char_set) mult_model, basemodel = densenet.get_model(False, 32, nclass) #input = Input(shape=(32, None, 1), name='the_input') #y_pred= densenet.dense_cnn(input, nclass) #basemodel = Model(inputs=input, outputs=y_pred) #model = Model(inputs=[input, labels, input_length, label_length], outputs=loss_out) mp = 'weights_densenet-02-1.29.h5' modelPath = os.path.join(os.getcwd(), './models/' + mp) #modelPath = sys.argv[1] ''' load models ''' def load_model_weights(modelPath): if not os.path.exists(modelPath): print ("ERROR Load Model : ", modelPath) return None mult_model, basemodel = densenet.get_model(False, 32, nclass) multi_model = multi_gpu_model(basemodel, gpus=GPU_NUM) multi_model.load_weights(modelPath) weights = basemodel.get_weights() return weights ''' modelPaths = [ 'weights_chn_eng_eroded_v3_resnet-08-1.13.h5', 'weights_chn_eng_eroded_v3_resnet-09-1.21.h5', 'weights_chn_eng_eroded_v3_resnet-10-1.16.h5', 'weights_chn_eng_eroded_v3_resnet-11-1.14.h5', 'weights_chn_eng_eroded_v3_resnet-12-1.20.h5', 'weights_chn_eng_eroded_v3_resnet-13-1.11.h5' ] ''' modelPaths = [ 'weights_chn_eng_eroded_v7_resnet-03-1.14.h5', 'weights_chn_eng_eroded_v7_resnet-04-1.15.h5' ] weights_list = [] for modelPath in modelPaths: weights_list.append(load_model_weights("./models/" + modelPath) ) print (weights_list[0]) new_weights = list() for weights_list_tuple in zip(*weights_list): new_weights.append( [np.array(weights_).mean(axis=0)\ for weights_ in zip(*weights_list_tuple)]) multi_model, basemodel = densenet.get_model(False, 32, nclass) basemodel.set_weights(new_weights) basemodel.save("avg_model.h5") #basemodel.save(sys.argv[2]) #basemodel.save("./new_model.h5") #basemodel = multi_model #model.load_weights(modelPath)
2,535
app_challenges/admin.py
Audiotuete/backend_challenge_api
0
2025917
from django.contrib import admin from django.contrib.auth import get_user_model from ordered_model.admin import OrderedModelAdmin from .models import Challenge, ChallengeDate User = get_user_model() class ChallengeDateAdmin(OrderedModelAdmin): model = ChallengeDate list_display = ('challenge', 'event_name', 'event_location', 'move_up_down_links', 'order') search_fields = ('challenge', 'order',) class ChallengeDateInline(admin.TabularInline): model = ChallengeDate class ChallengeAdmin(admin.ModelAdmin): model = Challenge # readonly_fields = ['challenge_code',] inlines = [ChallengeDateInline] fieldsets = (('Challenge', {'fields': ('context', 'city', 'year', 'start_date', 'end_date', 'challenge_code', 'contact_info' )}),) filter_horizontal = ('contact_info',) actions = None def formfield_for_manytomany(self, db_field, request, **kwargs): if db_field.name == 'contact_info': kwargs['queryset'] = User.objects.filter(is_challenge_contact = True) return super().formfield_for_manytomany(db_field, request, **kwargs) # def has_add_permission(self, request): # return False def has_delete_permission(self, request, obj=None): return False admin.site.register(Challenge, ChallengeAdmin) admin.site.register(ChallengeDate, ChallengeDateAdmin)
1,305
rxbp/multicast/mixins/multicastsubscribermixin.py
MichaelSchneeberger/rx_backpressure
24
2025899
from abc import ABC, abstractmethod from typing import Tuple, Callable, Optional import rx from rxbp.schedulers.trampolinescheduler import TrampolineScheduler class MultiCastSubscriberMixin(ABC): @property @abstractmethod def subscribe_schedulers(self) -> Tuple[TrampolineScheduler]: ... def schedule_action( self, action: Callable[[], Optional[rx.typing.Disposable]], index: int = None, ) -> rx.typing.Disposable: if index is None: index = len(self.subscribe_schedulers) - 1 else: assert index < len(self.subscribe_schedulers), f'index "{index}" is out of range of "{len(self.subscribe_schedulers)}"' def inner_schedule_action( action: Callable[[], Optional[rx.typing.Disposable]], current_index: int, ): if current_index == index: def inner_action(_, __): return action() else: def inner_action(_, __): return inner_schedule_action( current_index=current_index + 1, action=action, ) with self.subscribe_schedulers[current_index].lock: if self.subscribe_schedulers[current_index].idle: disposable = self.subscribe_schedulers[current_index].schedule(inner_action) return disposable else: return inner_action(None, None) return inner_schedule_action( current_index=0, action=action, )
1,655
pidevices/sensors/ads1x15.py
robotics-4-all/tektrain-robot-sw
0
2024237
from ..devices import Sensor import Adafruit_ADS1x15 from time import sleep import threading from collections import deque import numpy class ADS1X15(Sensor): _MAX_VALUE = 32767 _CHANNELS = 4 GAINS = numpy.array([[2/3, 6.144], [1, 4.096], [2, 2.048], [4, 1.024], [8, 0.512], [16, 0.128]]) def __init__(self, bus=1, address=0x48, v_ref=3.3, averages=10, max_data_length=100, name=""): """Constructor""" self._bus = 1 self._address = 0x48 self.v_ref = v_ref self._gain = self._find_gain() self._averages = 10 self._measurements = [] self._results = [4000] * self._CHANNELS # threading stuff self._lock = threading.Lock() self._thread = None self._thread_alive = False for channel in range(0,4): self._measurements.append(deque(maxlen=self._averages)) super(ADS1X15, self).__init__(name, max_data_length) self.start() def _find_gain(self): """Find the correct gain according to the given vref""" gain = 2/3 for i in range(1, self.GAINS.shape[0]): if self.GAINS[-i][1] > self.v_ref: gain = int(self.GAINS[-i][0]) self.v_ref = self.GAINS[-i][1] break return gain def start(self): """Initialize hardware and os resources.""" self.adc = Adafruit_ADS1x15.ADS1115(address=self._address,busnum=self._bus) if not self._thread_alive: self._thread_alive = True self._thread = threading.Thread(target=self._update_channels, args=(), daemon=True) self._thread.start() def stop(self): """Free hardware and os resources.""" self._thread_alive = False self._thread.join() self.adc.stop_adc() def _update_channels(self): """Periodically aquires the moving average of all adc channels""" while self._thread_alive: for channel in range(0, 4): self._measurements[channel].append(self._read_channel(channel)) # to add lock if len(self._measurements[channel]) == self._averages: with self._lock: self._results[channel] = sum(self._measurements[channel]) / self._averages sleep(0.05) print("ADC thread terminating...") def _read_channel(self, channel): """Read a sigle's channel value""" if 0 <= channel and channel < 4: return self.adc.read_adc(channel, gain=self._gain) def read(self, channel, SAVE=False): """Read result and transform it to voltage""" with self._lock: value = float(self._results[channel]) / self._MAX_VALUE * self.v_ref if SAVE: self.update_data(value) return value
3,146
project/editorial/migrations/0058_auto_20171202_1140.py
cojennin/facet
25
2025249
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('editorial', '0057_auto_20171130_2247'), ] operations = [ migrations.AlterField( model_name='call', name='expiration_date', field=models.DateTimeField(help_text=b'Day/Time call ends.', null=True, blank=True), ), ]
457
posts/migrations/0001_initial.py
davidfactorial/ingroupjobboard
0
2025078
# Generated by Django 3.2.8 on 2021-11-01 03:04 from django.db import migrations, models import django.db.models.deletion import posts.models import uuid class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Profile', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('display_name', models.CharField(max_length=255)), ('bio', models.TextField(blank=True, max_length=8191)), ('twitter', models.URLField(blank=True, max_length=1023)), ], ), migrations.CreateModel( name='Post', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('uuid', models.UUIDField(default=uuid.uuid4, editable=False)), ('timestamp', models.DateTimeField(default=posts.models.current_time)), ('title', models.CharField(blank=True, max_length=255)), ('content', models.TextField(max_length=8191)), ('profile', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='posts', to='posts.profile')), ], ), ]
1,396
examples/collect_config_files.py
Trinity-College/py-space-platform
27
2026121
""" DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER Copyright (c) 2015 Juniper Networks, Inc. All rights reserved. Use is subject to license terms. Licensed under the Apache License, Version 2.0 (the ?License?); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from __future__ import print_function import os import errno import logging.config import argparse from jnpr.space import rest def main(args): spc = rest.Space(args.space_URL, args.user, args.passwd) try: # Create the output directory os.makedirs(os.path.abspath(args.out)) except OSError as exception: if exception.errno != errno.EEXIST: raise collect_config_files(spc, args.out) def collect_config_files(spc, output_dir): """ Get all device config files from Space in batches of 500 each. Then collect all versions of each file. """ start = 0 config_files = [] while True: page = spc.config_file_management.config_files.get( paging={'start': start, 'limit': 500}) config_files.extend(page) start += len(page) if len(page) < 500: break print("There are %d config files to process" % len(config_files)) for cf in config_files: collect_config_file_versions(spc, cf, output_dir) print("\nAll Over!!!") def collect_config_file_versions(spc, cf, output_dir): """ Collect all versions for a given file """ print("Collecting file versions for device: ", cf.deviceName) device_path_name = '/'.join([output_dir, str(cf.deviceName)]) versions = cf.config_file_versions.get() for v in versions: version_path_name = '/'.join([device_path_name, str(v.versionId)]) if os.path.exists(os.path.abspath(version_path_name)): continue # We already have stored this version cfv = v.get() store_version(version_path_name, cfv) return cf.deviceName def store_version(version_path_name, config_file_version): """ Store the given config file version into the local filesystem. Each version goes under a separate directory and it contains a MANIFEST.mf file in addition to the file which has the configuration text. """ try: # Create the directory for this version os.makedirs(os.path.abspath(version_path_name)) except OSError as exception: if exception.errno != errno.EEXIST: raise # # Create a MANIFEST.mf file with details about this version # mf_name = '/'.join([version_path_name, 'MANIFEST.mf']) with open(os.path.abspath(mf_name), 'w') as f: f.write('Version Id: %s\n' % str(config_file_version.versionId)) f.write('Config File Size: %s\n' % \ str(config_file_version.configFileSize)) f.write('MD5: %s\n' % str(config_file_version.latestMD5)) f.write('Creation Time: %s\n' % str(config_file_version.creationTime)) f.write('Comment: %s\n' % str(config_file_version.comment)) # # Store the configuration text contents for this version into a file. # The name of the file is as given by Space and consists of the device # name, version id, and creation time stamp. # contents_file_name = '/'.join([version_path_name, str(config_file_version.fileName)]) with open(os.path.abspath(contents_file_name), 'w') as f: f.write(config_file_version.content.text) if __name__ == '__main__': logging.config.fileConfig('../test/logging.conf') parser = argparse.ArgumentParser() parser.add_argument("space_URL", help="URL of the Space instance") parser.add_argument("-u", "--user", help="Userid") parser.add_argument("-p", "--passwd", help="Password") parser.add_argument("-o", "--out", help="Output directory") args = parser.parse_args() main(args)
4,352
inference/src/__MACRO__.py
Sergio0694/sepconv-gan
1
2025463
from colorama import init, Fore # initializes colorama init(autoreset=True) def LOG(text): '''Displays an extended info message to the screen, prefixed by the [INFO] tag. text(str) -- the message to display ''' print('{}[INFO]'.format(Fore.LIGHTBLUE_EX), end=' ') print('{}{}'.format(Fore.LIGHTWHITE_EX, text), flush=True) def INFO(text): '''Displays an info message, with the >> prefix. text(str) -- the message to display ''' print('{} >>'.format(Fore.LIGHTCYAN_EX), end=' ') print(text, flush=True) def ERROR(text): '''Displays an error message and exits the program automatically. text(str) -- the message to display''' print('{}[ERROR]'.format(Fore.LIGHTRED_EX), end=' ') print('{}{}'.format(Fore.LIGHTWHITE_EX, text), flush=True) exit(-1) def BAR(x, y, info=''): '''Displays a simple progress bar with some additional info. x(int) -- the number of completed steps y(int) -- the total number of steps to perform int(str) -- additional info to print after the progress bar (optional) ''' assert x >= 0 and x <= y if x < y: print('\r{}[{}{}]{}{}'.format(Fore.LIGHTYELLOW_EX, '=' * x, ' ' * (y - x), Fore.WHITE, info), end='', flush=True) else: print('', end='\r', flush=True) # reset the current line def RESET_LINE(clean=False): '''Resets the current line by writing a carriage return character. clean(bool) -- indicates whether or not to overwrite the current line to clean it up ''' if clean: print('\r{}\r'.format(' ' * 100), end='', flush=True) else: print('\r', end='', flush=True)
1,656
pywxwork/base.py
renqiukai/pywxwork
2
2025020
import requests import datetime from loguru import logger class base: host_name = "https://qyapi.weixin.qq.com/cgi-bin" token = None def __init__( self, token: str ): """init Args: token (str, optional): . Defaults to None. """ self.token = token def request(self, api_name, method="GET", **kwargs): url = f"{self.host_name}/{api_name}" # headers = kwargs.get("headers", {}) # headers["content-type"] = "application/x-www-form-urlencoded" # headers["accept-type"] = "application/json, text/javascript, */*; q=0.01" # kwargs["headers"] = headers params = kwargs.get("params", {}) if self.token: params["access_token"] = self.token kwargs["params"] = params logger.debug(url) logger.debug(kwargs) response = requests.request( method=method, url=url, **kwargs, ) if response.status_code == 200: return self.response(response.json()) logger.error({ "msg": "请求错误", "data": response.json(), }) def response(self, data): return data def get_api_domain_ip(self): api_name = "get_api_domain_ip" response = self.request(api_name=api_name,) logger.debug(response) return response
1,412
tools/pubsub2inbox/output/scc.py
y4nben/professional-services
0
2025972
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .base import Output, NotConfiguredException import json from googleapiclient import discovery, errors class SccOutput(Output): def output(self): if 'vars' in self.output_config: additional_vars = self._jinja_expand_dict( self.output_config['vars'], 'vars') self.jinja_environment.globals = { **additional_vars, **self.jinja_environment.globals } if 'source' not in self.output_config: raise NotConfiguredException( 'No Security Command Center source defined in configuration.') source = self._jinja_expand_string(self.output_config['source'], 'source') if 'finding_id' not in self.output_config: raise NotConfiguredException( 'No Security Command Center finding ID defined in configuration.' ) finding_id = self._jinja_expand_string( str(self.output_config['finding_id']), 'finding_id') if 'finding' not in self.output_config: raise NotConfiguredException( 'No Security Command center finding content defined in configuration.' ) finding = self._jinja_expand_dict(self.output_config['finding'], 'finding') finding['name'] = '%s/findings/%s' % (source, finding_id) if 'sourceProperties' in finding: if not isinstance(finding['sourceProperties'], dict): try: props = json.loads(finding['sourceProperties']) finding['sourceProperties'] = props except Exception: pass scc_service = discovery.build('securitycenter', 'v1', http=self._get_branded_http()) request = scc_service.organizations().sources().findings().create( parent=source, findingId=finding_id, body=finding) try: request.execute() except errors.HttpError as exc: if exc.resp.status == 409: self.logger.warn('Finding already in Security Command Center.', extra={ 'source': source, 'finding_id': finding_id }) return else: raise (exc) self.logger.info('Finding sent to Security Command Center!', extra={ 'source': source, 'finding_id': finding_id, 'finding': finding })
3,393
routes/index.py
eugman/eugeneQuest
1
2024845
from app import app, db from app.models import * from app.config import * import re from typing import List from flask import render_template, request, Response from flask_sqlalchemy import SQLAlchemy @app.route('/add', methods=['GET', 'POST']) def add(): player = db.session.query(Player).get(1) result = request.form if result.get("new_daily"): db.session.add(Daily(name=result.get("new_daily"))) db.session.commit() return render_template("add.html", player = player) @app.route('/', methods=['GET', 'POST']) def index(): player = db.session.query(Player).get(1) player.messages = "" hour = datetime.datetime.now().hour result = request.form if result.get("bookid") and result.get("page"): book_id = result.get("bookid") book = db.session.query(Book).get(book_id) page = int(result.get("page")) book.current = page if page >= book.pages: book.completed = True db.session.commit() if result.get("complete"): daily_id = result.get("daily_id") daily = db.session.query(Daily).get(daily_id) daily.completed = True daily.completedLast = datetime.datetime.now() daily.rest = daily.restDuration db.session.commit() player.messages += addPoints(db, daily.totalPoints()) if result.get("bg"): if 80 < int(result.get("bg")) < 140: player.messages += addPoints(db, 5) db.session.add(BG(BG=result.get("bg"), insulin=result.get("insulin"))) db.session.commit() if result.get("bookid") and result.get("page"): book_id = result.get("bookid") book = db.session.query(Book).get(book_id) book.page = int(result.get("page")) db.session.commit() if result.get("snooze_daily"): daily_id = result.get("daily_id") daily = db.session.query(Daily).get(daily_id) daily.snooze = hour + int(result.get("snooze_daily")) db.session.commit() print(hour) if result.get("reset_dailies"): Daily.query.update({Daily.completed: False}) db.session.commit() books = Book.query.all() vacation = player.vacation print(vacation) allDailies = getQuests(vacation, "Main", "All") stats = DailyStats(allDailies) openDailies = getQuests(vacation, "Main", "Open") openSideQuests = getQuests(vacation, "Side", "Open", 0) if len(openSideQuests) == 0: openSideQuests = getQuests(vacation, "Side", "Open", 1) + getQuests(vacation, "Bonus","Open", 0) if len(openSideQuests) == 0: openSideQuests = getQuests(vacation, "Bonus", "Open", 1) completedDailies = getQuests(vacation, "Main", "Completed") missedDailies = getQuests(vacation, "Main", "Missed") return render_template("index.html", dailies = openDailies, completed = completedDailies, missed = missedDailies, sideQuests = openSideQuests, stats = stats, player = player, books = books) def getQuests(vacation:int, subtype:str = "Main", status:str = "Open", sideQuestRest:int = 0) -> List[Daily]: """Takes in types of quests and returns a list of dailies.""" hour = datetime.datetime.now().hour isWork = 1 if datetime.datetime.today().weekday() in (0, 1, 2, 3, 4) and 9 <= hour < 18 and hour != 12 else -1 query = Daily.query #Filter based on the category of quest if subtype == "Main": query = query.filter(Daily.subtype != "Side", Daily.subtype != "Bonus") elif subtype == "Side": query = query.filter(Daily.subtype == "Side", Daily.rest <= sideQuestRest) else: query = query.filter(Daily.subtype == "Bonus", Daily.rest <= sideQuestRest) #Filter based on the Status if status == "Open": query = query.filter_by(completed = False).filter(Daily.availableAfter <= hour, Daily.availableUntil > hour, Daily.snooze < hour) if subtype == "Main": query = query.order_by(Daily.points.desc(), "availableAfter", "availableUntil") else: query = query.order_by("rest", Daily.points.desc(), "completedLast") elif status == "Missed": query = query.filter_by(completed = False).filter(hour >= Daily.availableUntil) query = query.order_by("availableAfter", "availableUntil") elif status == "Completed": query = query.filter_by(completed = True) query = query.order_by("availableAfter", "availableUntil") else: pass dailies = query.all() dailies = list(filter(lambda x: x.isWork == 0 or x.isWork == isWork, dailies)) dailies = list(filter(lambda x: x.vacation == 0 or x.vacation == vacation, dailies)) return list(dailies)
4,791
tests/test_asynchronous_get.py
aliel/aleph-client
0
2025524
import pytest from aleph_client.asynchronous import get_messages, fetch_aggregates, get_fallback_session, \ fetch_aggregate @pytest.mark.asyncio async def test_fetch_aggregate(): get_fallback_session.cache_clear() response = await fetch_aggregate( address="0xa1B3bb7d2332383D96b7796B908fB7f7F3c2Be10", key="corechannel" ) assert response.keys() == {"nodes"} @pytest.mark.asyncio async def test_fetch_aggregates(): get_fallback_session.cache_clear() response = await fetch_aggregates( address="0xa1B3bb7d2332383D96b7796B908fB7f7F3c2Be10" ) assert response.keys() == {"corechannel"} assert response["corechannel"].keys() == {"nodes"} @pytest.mark.asyncio async def test_get_posts(): get_fallback_session.cache_clear() response = await get_messages( pagination=2, ) assert response.keys() == { 'messages', 'pagination_page', 'pagination_total', 'pagination_per_page', 'pagination_item' } messages = response['messages'] assert set(messages[0].keys()).issuperset({ '_id', 'chain', 'item_hash', 'sender', 'type', 'channel', 'confirmed', 'content', 'item_content', 'item_type', 'signature', 'size', 'time', # 'confirmations', }) @pytest.mark.asyncio async def test_get_messages(): get_fallback_session.cache_clear() response = await get_messages( pagination=2, ) assert response.keys() == { 'messages', 'pagination_page', 'pagination_total', 'pagination_per_page', 'pagination_item' } messages = response['messages'] assert set(messages[0].keys()).issuperset({ '_id', 'chain', 'item_hash', 'sender', 'type', 'channel', 'confirmed', 'content', 'item_content', 'item_type', 'signature', 'size', 'time', # 'confirmations', })
2,082
src/rez/data/tests/builds/packages/foo/1.1.0/foo/__init__.py
alexey-pelykh/rez
0
2026000
import os __version__ = os.getenv("REZ_FOO_VERSION") def report(): return "hello from foo-%s" % __version__
114
PyTorch/dist_matrix.py
TSLNIHAOGIT/VRP_DRL_MHA
55
2025094
import torch import math import numpy as np from data import generate_data def get_dist(n1, n2): x1,y1,x2,y2 = n1[0],n1[1],n2[0],n2[1] if isinstance(n1, torch.Tensor): return torch.sqrt((x2-x1).pow(2)+(y2-y1).pow(2)) elif isinstance(n1, (list, np.ndarray)): return math.sqrt(pow(x2-x1,2)+pow(y2-y1,2)) else: raise TypeError def get_dist_matrix(points, digit = 2): n = len(points) dist = [[0 for i in range(n)] for i in range(n)] for i in range(n): for j in range(i, n): two = get_dist(points[i], points[j]) dist[i][j] = dist[j][i] = round(float(two), digit) return dist if __name__ == '__main__': """ x[0] -- depot_xy: (batch, 2) x[1] -- customer_xy: (batch, n_nodes-1, 2) xy: (batch, n_nodes, 2) """ batch = 0 x = generate_data() xy = torch.cat([x[0][:,None,:], x[1]], dim = 1) print(xy.size()) dist = get_dist_matrix(xy[batch]) print(dist*20)
885
msg_handler.py
vapehacker/bili-auth
8
2023313
#!/bin/python3 import time import re from random import random import bili_utils import auth_handler sendCD = 1 patt = re.compile(r'^\s*?"?(\S+?)\((\S+?)\)"?\s*?$', re.IGNORECASE) ackMts = int(time.time() * 1000) lastSendTs = 0 def checkMsg(): global ackMts msgList = bili_utils.getNewMsg(ackMts) for m in msgList: uid = m['uid'] content = m['content'] ts = m['ts'] result = patt.search(content) if result: action = result.group(1).lower() arg = result.group(2).lower() if action in ('auth', 'revoke'): cmdHandler(uid, action, arg) ackMts = max(ts * 1000, ackMts) def cmdHandler(uid, action, arg): userInfo = bili_utils.getUserInfo(uid) if action == 'auth': if auth_handler.checkVerify(arg, **userInfo): info = auth_handler.getVerifyInfo(arg) reply = '验证完成。 主体: {} 。如果此次验证不是由您发起, 请回复"revoke({})"以撤销此次验证。此消息为自动发出, 请勿发送闲聊信息。' reply = reply.format(info['subject'], arg) else: reply = '未找到此验证信息, 可能是此验证信息已过期。' sendText(uid, reply) if action == 'revoke': if auth_handler.revokeVerify(arg, uid): reply = '撤销成功。验证id: {}。' reply = reply.format(arg) else: reply = '未找到此id对应的与您相关的可撤销验证信息。' sendText(uid, reply) def sendText(uid, content): print('[send]', uid, content) sleepTime = lastSendTs + sendCD - time.time() if sleepTime > 0: time.sleep(sleepTime) print(bili_utils.sendMsg(uid, content)) def mainLoop(): while True: try: checkMsg() except requests.exceptions.ConnectionError as e: print(e) time.sleep(4 + random() * 2)
1,759
scripts/nmf/reorder_factors_manual.py
morrislab/plos-medicine-joint-patterns
0
2024577
""" Reorders factors in a manual fashion. """ import numpy as np import pandas as pd from click import * from logging import * from sklearn.decomposition import NMF from sklearn.externals import joblib @command() @option( '--model-input', required=True, help='the Pickle file to read the model from') @option( '--basis-input', required=True, help='the CSV file to read the basis matrix from') @option( '--score-input', required=True, help='the CSV file to read scores from') @option( '--model-output', required=True, help='the Pickle file to write the model to') @option( '--basis-output', required=True, help='the CSV file to write the basis matrix to') @option( '--score-output', required=True, help='the CSV file to write scores to') @option( '--at-end', type=int, multiple=True, help='the factors to move to the end (multiple permitted)') def main(model_input, basis_input, score_input, model_output, basis_output, score_output, at_end): basicConfig( level=INFO, handlers=[ StreamHandler(), FileHandler( '{}.log'.format(model_output), mode='w') ]) # Load the model. info('Loading model') model = joblib.load(model_input) info('Loading basis matrix') basis = pd.read_csv(basis_input, index_col=0) info('Result: {}'.format(basis.shape)) info('Loading scores') scores = pd.read_csv(score_input, index_col=0) info('Result: {}'.format(scores.shape)) # Generate a new ordering for the factors. info('Reordering factors') factor_order = np.arange(model.components_.shape[0], dtype=int) + 1 if at_end: at_end = np.array(at_end, dtype=int) factor_order = np.concatenate( [np.setdiff1d(factor_order, at_end), at_end]) model.components_ = model.components_[factor_order - 1] basis = basis.iloc[:, factor_order - 1] basis.columns = factor_order scores = scores.iloc[:, factor_order - 1] scores.columns = factor_order # Write the output. info('Writing output') joblib.dump(model, model_output) basis.to_csv(basis_output) scores.to_csv(score_output) if __name__ == '__main__': main()
2,266
Doc/tools/docutils/languages/es.py
cocoatomo/Python3.2_C_API_Tutorial
2
2025618
# -*- coding: utf-8 -*- # $Id: es.py 78909 2010-03-13 10:49:23Z georg.brandl $ # Author: <NAME> <<EMAIL>> # Copyright: This module has been placed in the public domain. # New language mappings are welcome. Before doing a new translation, please # read <http://docutils.sf.net/docs/howto/i18n.html>. Two files must be # translated for each language: one in docutils/languages, the other in # docutils/parsers/rst/languages. """ Spanish-language mappings for language-dependent features of Docutils. """ __docformat__ = 'reStructuredText' labels = { 'author': u'Autor', 'authors': u'Autores', 'organization': u'Organizaci\u00f3n', 'address': u'Direcci\u00f3n', 'contact': u'Contacto', 'version': u'Versi\u00f3n', 'revision': u'Revisi\u00f3n', 'status': u'Estado', 'date': u'Fecha', 'copyright': u'Copyright', 'dedication': u'Dedicatoria', 'abstract': u'Resumen', 'attention': u'\u00a1Atenci\u00f3n!', 'caution': u'\u00a1Precauci\u00f3n!', 'danger': u'\u00a1PELIGRO!', 'error': u'Error', 'hint': u'Sugerencia', 'important': u'Importante', 'note': u'Nota', 'tip': u'Consejo', 'warning': u'Advertencia', 'contents': u'Contenido'} """Mapping of node class name to label text.""" bibliographic_fields = { u'autor': 'author', u'autores': 'authors', u'organizaci\u00f3n': 'organization', u'direcci\u00f3n': 'address', u'contacto': 'contact', u'versi\u00f3n': 'version', u'revisi\u00f3n': 'revision', u'estado': 'status', u'fecha': 'date', u'copyright': 'copyright', u'dedicatoria': 'dedication', u'resumen': 'abstract'} """Spanish (lowcased) to canonical name mapping for bibliographic fields.""" author_separators = [';', ','] """List of separator strings for the 'Authors' bibliographic field. Tried in order."""
1,918
chals/web/docs/run.py
adamyi/Geegle3
20
2025607
import re import sys import os from gunicorn.app.wsgiapp import run os.system("python -m compileall /app/chals/web/docs/image.binary.runfiles/") sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.argv.append("--workers=4") sys.argv.append("app:app") sys.argv.append("-b") sys.argv.append("0.0.0.0:80") sys.exit(run())
339
Lab_4/daj.py
gradampl/MONTY
0
2023159
def count_calls(): count_calls.counter += 1 print("I am called for the " + str(count_calls.counter) + " time.") count_calls.counter = 0 def count_calls2(i=[0]): i[0] += 1 print("And I am called for the " + str(i[0]) + " time.") for i in range(10): count_calls() count_calls2() # Result: # I am called for the 1 time. # And I am called for the 1 time. # I am called for the 2 time. # And I am called for the 2 time. # I am called for the 3 time. # And I am called for the 3 time. # I am called for the 4 time. # And I am called for the 4 time. # I am called for the 5 time. # And I am called for the 5 time. # I am called for the 6 time. # And I am called for the 6 time. # I am called for the 7 time. # And I am called for the 7 time. # I am called for the 8 time. # And I am called for the 8 time. # I am called for the 9 time. # And I am called for the 9 time. # I am called for the 10 time. # And I am called for the 10 time. # # Process finished with exit code 0
999
object_detection_pixell/test.py
Arshad9544/object_detection_pixell
7
2024684
from object_detection_pixell.dataloader import LeddartechDataset from object_detection_pixell import metrics from object_detection_pixell import models from object_detection_pixell.utils import get_state_dict from ignite.contrib.handlers import tqdm_logger from ignite.engine import create_supervised_evaluator import torch from torch.utils.data import DataLoader import argparse import os from ruamel import yaml FILEPATH = os.path.dirname(os.path.abspath(__file__)) def main(cfg, state, plot=False): # Dataloaders dataset = LeddartechDataset(cfg, use_test_set=True) test_loader = DataLoader(dataset, batch_size=cfg['TRAINING']['BATCH_SIZE'], num_workers=cfg['TRAINING']['NUM_WORKERS']) print(f"Dataset size: {len(dataset)}") # Model in_channels = dataset.check_number_channels() model = getattr(models, cfg['NEURAL_NET']['NAME'])(cfg, in_channels) print(f"Model size: {model.size_of_net}") if cfg['TRAINING']['DEVICE'] == 'cuda' and torch.cuda.device_count() > 1: #Multi GPUs model = torch.nn.DataParallel(model) model.to(cfg['TRAINING']['DEVICE']) print(f"Device set to: {cfg['TRAINING']['DEVICE']}") # Load model state state_dict = get_state_dict(state, device=cfg['TRAINING']['DEVICE']) model.load_state_dict(state_dict) model.eval() # Evaluator engine eval_metrics = {} for metric in cfg['TRAINING']['METRICS']: eval_metrics[metric] = getattr(metrics, metric)(cfg, **cfg['TRAINING']['METRICS'][metric]) evaluator = create_supervised_evaluator(model, metrics=eval_metrics, device=cfg['TRAINING']['DEVICE']) pbar2 = tqdm_logger.ProgressBar(persist=True, desc='Testing') pbar2.attach(evaluator) # Start testing evaluator.run(test_loader) print('Test results: ', evaluator.state.metrics) if plot: for metric in cfg['TRAINING']['METRICS']: if hasattr(eval_metrics[metric], 'make_plot'): eval_metrics[metric].make_plot(evaluator.state.metrics) return evaluator.state.metrics if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--cfg') parser.add_argument('--state') parser.add_argument('--plot', type=bool, default=False) args = parser.parse_args() with open(args.cfg, 'r') as f: cfg = yaml.safe_load(f) main(cfg, state=args.state, plot=args.plot)
2,393
pages/themes/beginners/iteratorsGenerators/labs/demo.py
ProgressBG-Python-Course/ProgressBG-VC2-Python
0
2025786
class EvensRange: def __init__(self,min,max): self.num = 2 def __next__(self): self.num += 2 return self.num def __iter__(self): return self evens = EvensRange(1, 9) for i in evens: print(i) # 2, 4, 6, 8
233
cs20/2_basic_constant.py
wdxtub/deep-learning-note
37
2024121
import tensorflow as tf a = tf.constant([2, 2], name='a') b = tf.constant([[0, 1], [2, 3]], name='b') x = tf.multiply(a, b, name='mul') # 会以 Numpy 广播的形式进行计算 zeros = tf.zeros([2, 3], tf.int32) ones = tf.ones([3, 2], dtype=tf.int32) zeros_like = tf.zeros_like(zeros) ones_like = tf.ones_like(ones) fill_six = tf.fill([2, 3], 6) lin_space = tf.lin_space(1.0, 8.0, 4) six_range = tf.range(6) limit_range = tf.range(3, 18, 3) # 用正态分布产生随机数,默认是标准正态分布 random_normal = tf.random_normal([3, 3]) # 产生正态分布的值如果与均值的差值大于两倍的标准差,那就重新生成 truncated_normal = tf.truncated_normal([3, 3]) # 用均匀分布产生随机值,默认浮点数范围[0, 1) random_uniform = tf.random_uniform([3, 3]) # 每一次都把其中的一些行换位置或者不换 random_shuffle = tf.random_shuffle([3, 3]) # random_crop 主要用于裁剪图片,这里不展示 # 从多项式分布中抽取样本,就是根据概率分布的大小,返回对应维度的下标序号 multinomial = tf.multinomial(random_normal, 5) # 根据gamma分布个数,每个分布给出shape参数对应个数数据 random_gamma = tf.random_gamma([3, 3], 1, 2) # 设定种子 tf.set_random_seed(314) with tf.Session() as sess: print('x') print(sess.run(x)) print('zeros') print(sess.run(zeros)) print('ones') print(sess.run(ones)) print('zeros_like') print(sess.run(zeros_like)) print('ones_like') print(sess.run(ones_like)) print('fill_six') print(sess.run(fill_six)) print('lin_space') print(sess.run(lin_space)) print('six_range') print(sess.run(six_range)) print('limit_range') print(sess.run(limit_range)) print('random_normal') print(sess.run(random_normal)) print('truncated_normal') print(sess.run(truncated_normal)) print('random_uniform') print(sess.run(random_uniform)) print('random_shuffle') print(sess.run(random_shuffle)) print('multinomial') print(sess.run(multinomial)) print('random_gamma') print(sess.run(random_gamma)) print('--------------') print('a') print(sess.run(a)) print('b') print(sess.run(b)) print('div(b,a)') print(sess.run(tf.div(b, a))) print('divide(b, a)') print(sess.run(tf.divide(b, a))) print('truediv(b, a)') print(sess.run(tf.truediv(b, a))) print('floordiv(b, a)') print(sess.run(tf.floordiv(b, a))) print('realdiv(b, a)') # 需要是实数 #print(sess.run(tf.realdiv(b, a))) print('truncatediv(b, a)') print(sess.run(tf.truncatediv(b, a))) print('floor_div(b, a)') print(sess.run(tf.floor_div(b, a)))
2,362
src/config/api.py
COAStatistics/alss-dev
0
2024925
from rest_framework.routers import DefaultRouter from .views import ExportViewSet api = DefaultRouter() api.trailing_slash = "/?" api.register(r"export", ExportViewSet, basename='export')
190
tinynet/rnn1l.py
giuse/tinynet
5
2025771
import numpy as np class RNN1L: """Recurrent neural network, single layer - `self.state` represents: last inputs + fixed 1 (bias) + last activation - weights are thus order the same way in each row of the weights matrix - rows in the weight matrix correspond to weights of connections entering a same neuron - cols in the weight matrix correspond to connections from the same input """ def __init__(self, ninputs, nneurs, act_fn=np.tanh, init_weights=None): self.ninputs = ninputs self.nneurs = nneurs self.act_fn = act_fn # make sure it applies element-wise to a np array self.state_size = self.ninputs + 1 + self.nneurs self.reset_state() self.weights_matrix = self.init_weights() if init_weights: self.set_weights(init_weights) # state index accessors self.input_idxs = range(0, ninputs) self.bias_idxs = range(ninputs + 1, ninputs + 1) self.act_idxs = range(ninputs + 1, ninputs + 1 + nneurs) def init_weights(self): return np.random.randn(self.nneurs, self.state_size) def set_weights(self, weights): assert weights.size == self.weights_matrix.size, "Wrong number of weights" self.weights_matrix = weights.reshape(self.weights_matrix.shape) self.reset_state() def reset_state(self): self.state = np.zeros(self.state_size) self.state[self.ninputs] = 1 # bias -- should never be changed! def activate(self, inputs): """Activate the neural network - Overwrite the new inputs in the initial part of the state - Execute dot product with weight matrix - Pass result to activation function """ self.state[self.input_idxs] = inputs net = np.dot(self.weights_matrix, self.state) self.state[self.act_idxs] = self.act_fn(net) return self.get_act() def last_input(self): return self.state[self.input_idxs] def get_act(self): return self.state[self.act_idxs] def nweights(self): return self.weights_matrix.size def nweights_per_neur(self): return self.weights_matrix.shape[1]
2,180
iris_sdk/models/data/note.py
NumberAI/python-bandwidth-iris
2
2025675
#!/usr/bin/env python from iris_sdk.models.base_resource import BaseData from iris_sdk.models.maps.note import NoteMap class NoteData(NoteMap, BaseData): pass
164
core/categories.py
marakmuna/dotfiles
0
2024427
#!/usr/bin/env python categories = { 1:['information_gathering', ['acccheck', 'ace-voip', 'amap', 'automater', 'braa', 'casefile', 'cdpsnarf', 'cisco-torch', 'cookie-cadger', 'copy-router-config', 'dmitry', 'dnmap', 'dnsenum', 'dnsmap', 'dnsrecon', 'dnstracer', 'dnswalk', 'dotdotpwn', 'enum4linux', 'enumiax', 'fierce', 'firewalk', 'fragroute', 'fragrouter', 'ghost-phisher', 'golismero', 'goofile', 'xplico', 'hping3', 'intrace', 'ismtp', 'lbd', 'maltego-teeth', 'masscan', 'metagoofil', 'miranda', 'nbtscan-unixwiz', 'nmap', 'p0f', 'parsero', 'recon-ng', 'set', 'smtp-user-enum', 'snmpcheck', 'sslcaudit', 'sslsplit', 'sslstrip', 'sslyze', 'thc-ipv6', 'theharvester', 'tlssled', 'twofi', 'urlcrazy','wireshark', 'wol-e'] ], 2:['vulnerability_analysis', ['bbqsql', 'bed', 'cisco-auditing-tool', 'cisco-global-exploiter', 'cisco-ocs', 'cisco-torch', 'copy-router-config', 'doona', 'dotdotpwn', 'greenbone-security-assistant', 'hexorbase', 'jsql', 'lynis', 'nmap', 'ohrwurm', 'openvas-administrator', 'openvas-cli', 'openvas-manager', 'openvas-scanner', 'oscanner', 'powerfuzzer', 'sfuzz', 'sidguesser', 'siparmyknife', 'sqlmap', 'sqlninja', 'sqlsus', 'thc-ipv6', 'tnscmd10g', 'unix-privesc-check', 'yersinia'] ], 3:['wireless_attacks', ['aircrack-ng', 'asleap', 'bluelog', 'blueranger', 'bluesnarfer', 'bully', 'cowpatty', 'crackle', 'eapmd5pass', 'fern-wifi-cracker', 'ghost-phisher', 'giskismet', 'gqrx', 'hostapd-wpe', 'kalibrate-rtl', 'killerbee', 'kismet', 'mdk3', 'mfcuk', 'mfoc', 'mfterm', 'multimon-ng', 'pixiewps', 'reaver', 'redfang', 'rtlsdr-scanner', 'spooftooph', 'wifi-honey', 'wifiphisher', 'wifitap', 'wifite'] ], 4:['web_applications', ['apache-users', 'arachni', 'bbqsql', 'blindelephant', 'burpsuite', 'cutycapt', 'davtest', 'deblaze', 'dirb', 'dirbuster', 'fimap', 'funkload', 'gobuster', 'grabber', 'jboss-autopwn', 'joomscan', 'jsql', 'maltego-teeth', 'padbuster', 'paros', 'parsero', 'plecost', 'powerfuzzer', 'proxystrike', 'recon-ng', 'skipfish', 'sqlmap', 'sqlninja', 'sqlsus', 'ua-tester', 'uniscan', 'vega', 'w3af', 'webscarab', 'websploit', 'wfuzz', 'wpscan', 'xsser', 'zaproxy'] ], 5:['sniffing_spoofing', ['burpsuite', 'dnschef', 'fiked', 'hamster-sidejack', 'hexinject', 'iaxflood', 'inviteflood', 'ismtp', 'isr-evilgrade', 'mitmproxy', 'ohrwurm', 'protos-sip', 'rebind', 'responder', 'rtpbreak', 'rtpinsertsound', 'rtpmixsound', 'sctpscan', 'siparmyknife', 'sipp', 'sipvicious', 'sniffjoke', 'sslsplit', 'sslstrip', 'thc-ipv6', 'voiphopper', 'webscarab', 'wifi-honey', 'wireshark', 'xspy', 'yersinia', 'zaproxy'] ], 6:['maintaining_access', ['cryptcat', 'cymothoa', 'dbd', 'dns2tcp', 'http-tunnel', 'httptunnel', 'intersect', 'nishang', 'polenum', 'powersploit', 'pwnat', 'ridenum', 'sbd', 'u3-pwn', 'webshells', 'weevely', 'winexe'] ], 7:['reporting_tools', ['casefile', 'cutycapt', 'dos2unix', 'dradis', 'keepnote', 'magictree', 'metagoofil', 'nipper-ng', 'pipal'] ], 8:['exploitation_tools', ['armitage', 'backdoor-factory', 'beef-xss', 'cisco-auditing-tool', 'cisco-global-exploiter', 'cisco-ocs', 'cisco-torch', 'crackle', 'exploitdb', 'jboss-autopwn', 'linux-exploit-suggester', 'maltego-teeth', 'set', 'shellnoob', 'sqlmap', 'thc-ipv6', 'yersinia'] ], 9:['forensics_tools', ['binwalk', 'bulk-extractor', 'chntpw', 'cuckoo', 'dc3dd', 'ddrescue', 'python-distorm3', 'dumpzilla', 'volatility', 'xplico', 'foremost', 'galleta', 'guymager', 'iphone-backup-analyzer', 'p0f', 'pdf-parser', 'pdfid', 'pdgmail', 'peepdf', 'extundelete'] ], 10:['stress_testing', ['dhcpig', 'funkload', 'iaxflood', 'inviteflood', 'ipv6-toolkit', 'mdk3', 'reaver', 'rtpflood', 'slowhttptest', 't50', 'termineter', 'thc-ipv6', 'thc-ssl-dos'] ], 11:['password_attacks', ['acccheck', 'burpsuite', 'cewl', 'chntpw', 'cisco-auditing-tool', 'cmospwd', 'creddump', 'crunch', 'findmyhash', 'gpp-decrypt', 'hash-identifier', 'hexorbase', 'hydra', 'john', 'johnny', 'keimpx', 'maltego-teeth', 'maskprocessor', 'multiforcer', 'ncrack', 'oclgausscrack', 'pack', 'patator', 'polenum', 'rainbowcrack', 'rcracki-mt', 'rsmangler', 'statsprocessor', 'thc-pptp-bruter', 'truecrack', 'webscarab', 'wordlists', 'zaproxy'] ], 12:['reverse_engineering', ['apktool', 'dex2jar', 'python-distorm3', 'edb-debugger', 'jad', 'javasnoop', 'smali', 'valgrind', 'yara'] ], 13:['hardware_hacking', [ 'android-sdk', 'apktool', 'arduino', 'dex2jar', 'sakis3g', 'smali'] ], 14:['extra', ['kali-linux', 'kali-linux-full', 'kali-linux-all', 'kali-linux-top10', 'kali-linux-forensic', 'kali-linux-gpu', 'kali-linux-pwtools', 'kali-linux-rfid', 'kali-linux-sdr', 'kali-linux-voip', 'kali-linux-web', 'kali-linux-wireless', 'squid3'] ] }
4,715
promoterz/representation/oldschool.py
emillj/gekkoJaponicus
0
2026105
#!/bin/python import random import json import os from copy import deepcopy from deap import base from deap import creator from deap import tools from deap import algorithms import numpy as np from .. import functions def constructPhenotype(stratSettings, individue): # THIS FUNCTION IS UGLYLY WRITTEN; USE WITH CAUTION; # (still works :}) Strategy = individue.Strategy R = lambda V, lim: ((lim[1]-lim[0])/100) * V + lim[0] AttributeNames = sorted(list(stratSettings.keys())) Phenotype = {} for K in range(len(AttributeNames)): Value = R(individue[K], stratSettings[AttributeNames[K]]) Phenotype[AttributeNames[K]] = Value Phenotype = functions.expandNestedParameters(Phenotype) return Phenotype def createRandomVarList(IndSize): VAR_LIST = [random.randrange(0,100) for x in range(IndSize)] return VAR_LIST def initInd(Criterion, Attributes): w = Criterion() IndSize =len(list(Attributes.keys())) w[:] = createRandomVarList(IndSize) return w def getToolbox(Strategy, genconf, Attributes): toolbox = base.Toolbox() creator.create("FitnessMax", base.Fitness, weights=(1.0,)) creator.create("Individual", list, fitness=creator.FitnessMax, Strategy=Strategy) toolbox.register("newind", initInd, creator.Individual, Attributes) toolbox.register("population", tools.initRepeat, list, toolbox.newind) toolbox.register("mate", tools.cxTwoPoint) toolbox.register("mutate", tools.mutUniformInt, low=10, up=10, indpb=0.2) toolbox.register("constructPhenotype", constructPhenotype, Attributes) return toolbox
1,646
girlfriend/util/file_template.py
chihongze/girlfriend
83
2025992
# coding: utf-8 """很多时候我们经常需要定义目录文件的生成模板,比如生成一个配置文件的模板, 生成一个工程目录结构等等,该模块用于帮助轻松实现这类工作。 """ import os import os.path from abc import ( ABCMeta, abstractproperty, abstractmethod ) from girlfriend.exception import GirlFriendBizException class TemplateUnit(object): """模板单元抽象 """ __metaclass__ = ABCMeta TYPE_FILE = "file" TYPE_DIR = "dir" def __init__(self, name, access=None): """ :param name 目录名或文件名 :param access 文件权限,默认按照umask来,接受一个八进制数字,比如0666 """ self._name = name self._access = access @property def name(self): """单元名称 """ return self._name @property def access(self): return self._access @abstractproperty def unittype(self): """单元类型 """ pass @abstractmethod def makeme(self, base_dir=os.getcwd()): """创建该单元及其子元素 """ pass class Dir(TemplateUnit): def __init__(self, name, access=None, elements=None): super(Dir, self).__init__(name, access) if elements: self.elements = elements else: self.elements = [] @property def unittype(self): return TemplateUnit.TYPE_DIR def append(self, element): self.elements.append(element) def makeme(self, base_dir=os.getcwd()): # 先建自己 myself_dir = os.path.join(base_dir, self.name) if os.path.exists(myself_dir): raise DirAlreadyExistException( u"目录 '{}' 已经存在了,不能重复创建".format(myself_dir)) os.mkdir(myself_dir) if self.access: os.chmod(myself_dir, self.access) # 创建子元素 for element in self.elements: element.makeme(myself_dir) class File(TemplateUnit): def __init__(self, name, access=None, content=""): super(File, self).__init__(name, access) self._content = content @property def unittype(self): return TemplateUnit.TYPE_FILE def makeme(self, base_dir): myself_path = os.path.join(base_dir, self.name) if os.path.exists(myself_path): raise FileAlreadyExistException( u"文件 '{}' 已经存在了,不能重复创建".format(myself_path)) with open(myself_path, "w") as f: f.write(self._content) if self.access: os.chmod(myself_path, self.access) class DirAlreadyExistException(GirlFriendBizException): """当目录已经存在时,抛出此异常 """ pass class FileAlreadyExistException(GirlFriendBizException): """当文件已经存在时,抛出此异常 """ pass
2,596
app/page/main.py
wisedu1/Testing
0
2026151
from appium.webdriver.common.mobileby import MobileBy from app.page.addresslist_page import AddressList from app.page.base_page import BasePage class Main(BasePage): def goto_message(self): pass def goto_addresslist(self): self._driver.find_element(MobileBy.XPATH, "//*[@text='通讯录']").click() return AddressList(self._driver) def goto_workbench(self): pass def goto_profile(self): pass
449
buver/csemaphore.py
kenlowrie/buver
0
2025908
import os import time """ This module implements the semaphore class which is used by buver.py. These semaphores are implemented via the operating system's well known file IO interfaces. In our case, we use the OS open() API along with the O_CREAT flag, which guarantees that only one process or thread will ever succeed. The file is kept open during the entire duration of the process, and is closed and then removed when the application is ready to give up the semaphore. wait() - create a new file in the target directory. keep it open ... signal() - close the file created during wait(), then remove it got_sem() - this API is used to return the current lock state NOTE: This implementation could cause starvation amongst processes, if enough processes are simultaneously trying to access the same target directory. However, this should not be the case in our situation, so we are not handling that case at this time. """ class C_semaphore: def __init__(self,path,filename='csemaphore.lock'): """Initialize the object by establishing a name for the mutex, the path we want to apply the mutex to, and a flag that is used to provide a quick state of the object.""" self.sem_name = os.path.abspath(os.path.join(path,filename)) self.sem_path = path self.sem_locked = False def got_sem(self): """This will return the state of the sem_locked flag.""" return self.sem_locked def wait(self, maxtries = 120): """This is the method that obtains the mutex. It will keep trying for 'maxtries' seconds, at which point it gives up and returns a failure condition. Returns: 0 - The semaphore was acquired 1 - Unable to acquire the semaphore """ attempt = 1 got_it = 0 # If the directory is invalid, then just give up now. if not os.path.isdir(self.sem_path): return True # Try until we get it or we exceed the max tries ... while got_it == 0 and attempt < maxtries: try: # This will throw an OSError exception when it fails self.fd = os.open(self.sem_name,os.O_CREAT|os.O_EXCL) except OSError: # We didn't get it. Increment the number of tries and sleep for 1 second attempt = attempt + 1 time.sleep(1) continue # Woo Hoo! We acquired the semaphore, set our flag so we'll exit got_it = 1 if not got_it: return True # Record the object state to reflect we own the semaphore self.sem_locked = True return False def signal(self): """This is the method that releases the mutex. Returns: 0 - The semaphore was released 1 - Unable to release the semaphore """ # if the object doesn't reflect that we have the semaphore, bail if self.sem_locked == False: return True # Close the open file handle, catch any exceptions, but basically # just print an error and keep going. try: os.close(self.fd) except OSError: print('Internal failure during semaphore release - close') # Remove the file. This will allow the next call to wait() to succeed # since the file will no longer exist. Catch any exceptions, but # basically ignore them. If we cannot delete it, then that means some # manual clean up is going to be required. try: os.remove(self.sem_name) except OSError: print('Internal failure during semaphore release - remove') # Reflect that we have released our semaphore. This is here so that if # the atexit() routine runs and attempts to release the semaphore, we # will ignore the request. It isn't useful for anything else. self.sem_locked = False return False
4,227
cast/call.py
JinShiyin/sast_backend
0
2024642
# 导入系统库并定义辅助函数 from pprint import pformat # import PythonSDK from PythonSDK.facepp import API, File # 导入图片处理类 import PythonSDK.ImagePro # 以下四项是dmeo中用到的图片资源,可根据需要替换 detech_img_url = 'http://bj-mc-prod-asset.oss-cn-beijing.aliyuncs.com/mc-official/images/face/demo-pic11.jpg' faceSet_img = './imgResource/demo.jpeg' # 用于创建faceSet face_search_img = './imgResource/search.png' # 用于人脸搜索 segment_img = './imgResource/segment.jpg' # 用于人体抠像 merge_img = './imgResource/merge.jpg' # 用于人脸融合 # 此方法专用来打印api返回的信息 def print_result(hit, result): print(hit) print('\n'.join(" " + i for i in pformat(result, width=75).split('\n'))) def printFuctionTitle(title): return "\n" + "-" * 60 + title + "-" * 60; # 初始化对象,进行api的调用工作 api = API() # -----------------------------------------------------------人脸识别部分------------------------------------------- # 人脸检测:https://console.faceplusplus.com.cn/documents/4888373 # res = api.detect(image_url=detech_img_url, return_attributes="gender,age,smiling,headpose,facequality," # "blur,eyestatus,emotion,ethnicity,beauty," # "mouthstatus,skinstatus") # print_result(printFuctionTitle("人脸检测"), res) # 人脸比对:https://console.faceplusplus.com.cn/documents/4887586 # compare_res = api.compare(image_file1=File(face_search_img), image_file2=File(face_search_img)) # print_result("compare", compare_res) # 人脸搜索:https://console.faceplusplus.com.cn/documents/4888381 # 人脸搜索步骤 # 1,创建faceSet:用于存储人脸信息(face_token) # 2,向faceSet中添加人脸信息(face_token) # 3,开始搜索 # 删除无用的人脸库,这里删除了,如果在项目中请注意是否要删除 # api.faceset.delete(outer_id='faceplusplus', check_empty=0) # # 1.创建一个faceSet # ret = api.faceset.create(outer_id='faceplusplus') # # # 2.向faceSet中添加人脸信息(face_token) # faceResStr="" # res = api.detect(image_file=File(faceSet_img)) # faceList = res["faces"] # for index in range(len(faceList)): # if(index==0): # faceResStr = faceResStr + faceList[index]["face_token"] # else: # faceResStr = faceResStr + ","+faceList[index]["face_token"] # # api.faceset.addface(outer_id='faceplusplus', face_tokens=faceResStr) # # # 3.开始搜索相似脸人脸信息 # search_result = api.search(image_file=File(face_search_img), outer_id='faceplusplus') # print_result('search', search_result) # -----------------------------------------------------------人体识别部分------------------------------------------- # 人体抠像:https://console.faceplusplus.com.cn/documents/10071567 # segment_res = api.segment(image_file=File(segment_img)) # f = open('./imgResource/demo-segment.b64', 'w') # f.write(segment_res["result"]) # f.close() # print_result("segment", segment_res) # # 开始抠像 # PythonSDK.ImagePro.ImageProCls.getSegmentImg("./imgResource/demo-segment.b64") # -----------------------------------------------------------证件识别部分------------------------------------------- # 身份证识别:https://console.faceplusplus.com.cn/documents/5671702 # ocrIDCard_res = api.ocridcard(image_url="https://gss0.bdstatic.com/94o3dSag_xI4khGkpoWK1HF6hhy/baike/" # "c0%3Dbaike80%2C5%2C5%2C80%2C26/sign=7a16a1be19178a82da3177f2976a18e8" # "/902397dda144ad34a1b2dcf5d7a20cf431ad85b7.jpg") # print_result('ocrIDCard', ocrIDCard_res) # 银行卡识别:https://console.faceplusplus.com.cn/documents/10069553 # ocrBankCard_res = api.ocrbankcard(image_url="http://pic.5tu.cn/uploads/allimg/1107/191634534200.jpg") # print_result('ocrBankCard', ocrBankCard_res) # -----------------------------------------------------------图像识别部分------------------------------------------- # 人脸融合:https://console.faceplusplus.com.cn/documents/20813963 # template_rectangle参数中的数据要通过人脸检测api来获取 # mergeFace_res = api.mergeface(template_file=File(segment_img), merge_file=File(merge_img), # template_rectangle="130,180,172,172") # print_result("mergeFace", mergeFace_res) # # # 开始融合 # PythonSDK.ImagePro.ImageProCls.getMergeImg(mergeFace_res["result"]) # 人脸关键点检测: https://api-cn.faceplusplus.com/facepp/v1/face/thousandlandmark landmarks = api.thousandlandmark(image_file=File(face_search_img), return_landmark="all") print_result(printFuctionTitle("人脸关键点检测"), landmarks)
4,249
loauth/cijfer.py
satanu01/loauth
2
2025185
import hashlib import hmac as hm class Cijfer: '''Base Class for Signature ALgorithms Methods - prepare_key(key), sign(key,msg), verify(key, msg, sign) Usage- Override Methods in inheriting class ot implement new signature algorithm Reigster the new cipher to the cijferpack using cijferpack.register('name', 'object') function class newCipher(Cijfer): def prepare_key(self, key): pass def sign(self, key, msg); pass def verify(self, key, msg, sign): pass ''' def prepare_key(self, key): raise NotImplementedError def sign(self, key, msg): raise NotImplementedError def verify(self, key, msg, sign): raise NotImplementedError class HMAC(Cijfer): __hash_list = {'sha256': hashlib.sha256, 'sha512':hashlib.sha512 } def __init__(self, hash_alg): self.__hash_alg = self.__hash_list[hash_alg.lower()] @staticmethod def hash_list(): return ['sha256', 'sha512'] def sign(self, key, msg): if not isinstance(key, bytes) or not isinstance(msg, bytes): raise TypeError else: return hm.new(key, msg, self.__hash_alg).digest() def prepare_key(self, key): if isinstance(key, bytes): return key if isinstance(key, string): return key.encode('utf-8') else: raise TypeError def verify(self, key, msg, sign): return hm.compare_digest(sign, hm.new(key, msg, self.__hash_alg).digest() ) class Cijferpack: cijfer_list = {'HS256': HMAC('sha256'), 'HS512': HMAC('sha512') } def register(self, tag, new_cijfer): self.cijfer_list[tag] = new_cijfer return self.cijfer_list
1,539
usp_1/semana7/remove_repetidos.py
dialup/py
0
2025551
def remove_repetidos(n,*args): sem_rep = [] for i in n: if i not in sem_rep: sem_rep.append(i) return sorted(sem_rep) #def p(*l): # new_list = [] # for i in [*l]: # if i in [*l]: # new_list.append(i) # print(new_list) #def fim(*num): # sem_repetidos = [*num] # sem = list(set(sem_repetidos)) # print(sem)
375
modelexp/experiments/reflectometry/__init__.py
DomiDre/modelexp
0
2022743
from ._refl import Reflectometry from ._pnrefl import PolarizedReflectometry from ._pnsfrefl import PolarizedReflectometrySF from ._simultaneous_xrr_nr import SimultaneousXRNR
175
tests/ui/test_tkui.py
mrshu/stash
1,822
2025581
""" tests for the tkui """ import logging from unittest import skipIf from stash.tests.stashtest import StashTestCase try: from stash.system.shui.tkui import ShTerminal except ImportError: ShTerminal = None class NoInitTkTerminal(ShTerminal): """ Subclass of ShTerminal which does not initiate the superclass """ def __init__(self, text=u""): self._text = "" self.text = text self.logger = logging.getLogger('StaSh.Terminal') @property def text(self): return self._text @text.setter def text(self, value): self._text = value @skipIf(ShTerminal is None, "No Tk-GUI available") class TkTerminalTests(StashTestCase): """ Tests for stash.system.shui.tkui.ShTerminal """ tc = NoInitTkTerminal def test_tk_index_conversion(self): """ Test conversion to and from a tk index to a tuple """ values = { # tk index -> expected "1.0": (0, 0), "1.1": (0, 1), "2.0": (1, 0), "2.2": (1, 2), "10.11": (9, 11), "9.2": (8, 2), } terminal = self.tc() for tki in values: expected = values[tki] converted = terminal._tk_index_to_tuple(tki) self.assertEqual(converted, expected) # convert back back = terminal._tuple_to_tk_index(converted) self.assertEqual(back, tki) def test_abs_rel_conversion_1(self): """ First test for conversion of absolute and relative indexes """ s = """0123 567 9 """ values = { # rel -> abs 0: (0, 0), 1: (0, 1), 2: (0, 2), 3: (0, 3), 4: (0, 4), 5: (1, 0), 6: (1, 1), 7: (1, 2), 8: (1, 3), 9: (2, 0), 10: (2, 1), } terminal = self.tc(s) for rel in values: expected = values[rel] ab = terminal._rel_cursor_pos_to_abs_pos(rel) self.assertEqual(ab, expected) # convert back back = terminal._abs_cursor_pos_to_rel_pos(ab) self.assertEqual(back, rel)
2,253
EISeg/tool/update_md5.py
JamesLim-sy/PaddleSeg
4,708
2025341
import hashlib from pathlib import Path models_dir = Path() ext = ".pdparams" for model_path in models_dir.glob("*/*" + ext): md5 = hashlib.md5(model_path.read_bytes()).hexdigest() md5_path = str(model_path)[: -len(ext)] + ".md5" Path(md5_path).write_text(md5)
274
voice_datasets/librispeech.py
flashlin/pycore
0
2024466
from glob import glob import pandas as pd from common.io import get_dir def librispeech_metadata_iter(txt_filepath): base_dir = get_dir(txt_filepath) # print(f"librispeech_metadata_iter='{txt_filepath}'") with open(txt_filepath, "r", encoding='utf-8') as f: for line in iter(f): ss = line.split(' ') filename = ss[0] trans = ss[1] wav_filepath = f"{base_dir}/{filename}.wav" yield wav_filepath, trans def all_librisppech_metadata_iter(base_dir): for txt in glob(f"{base_dir}/**/*.txt", recursive=True): for wav_filepath, trans in librispeech_metadata_iter(txt): yield wav_filepath, trans def get_all_librispeech_metadata_dataframe(base_dir): df = pd.DataFrame(columns=['wav_filepath', 'trans']) for wav_filepath, trans in all_librisppech_metadata_iter(base_dir): df = df.append({ 'wav_filepath': wav_filepath, 'trans': trans.lower() }, ignore_index=True) return df
1,062
newrelic_plugin_agent/apps.py
ambitioninc/django-newrelic-plugin-agent
0
2025935
from django.apps import AppConfig class NewrelicPluginAgentConfig(AppConfig): name = 'newrelic_plugin_agent' verbose_name = 'Django Newrelic Plugin Agent'
165
pythonrpc-pyserver/pythonrpc_pyserver/server.py
repo-list-553108/pythonrpc
0
2024065
from flask import Flask, request import random import json app = Flask(__name__) lits = {} mods = {} def xxquote(x, lit, dups): if id(x) in dups: return None if x == None: return None if type(x) in [int, float, bool, str]: return x if type(x) == complex: return { 'real' : x.real, 'imag' : x.imag } if type(x) in [list, tuple, set]: return [ xxquote(t, lit, dups) for t in x ] if type(x) == dict: rd = {} for key in x: if (type(key) not in [int, float, bool, str, type(None)]): continue dups.add(id(x[key])) rd[key] = xxquote(t, lit, dups) return rd lit[id(x)] = x dups.add(id(x)) return { 'id': id(x) } @app.route('/new_session', methods=['POST']) def new_session(): while True: seid = random.randint(1, 99999999) if seid not in lits: break print('-- New session %%%s%%' % seid) return json.dumps({ 'success': 1, 'hello': 'hello, pythonrpc', 'sessionid': seid }) @app.route('/require_module', methods=['POST']) def require_module(): sessionid = int(request.form['sessionid']) name = request.form['name'] if sessionid not in mods: mods[sessionid] = {} if sessionid not in lits: lits[sessionid] = {} if name in mods[sessionid]: return json.dumps({ 'success': 1, 'internalid': id(mods[sessionid][name]) }) mod = __import__(name) print('-- Session[%%%s%%] require module %s' % (sessionid, mod)) lits[sessionid][id(mod)] = mod print(lits) print(mods) mods[sessionid][name] = mod return json.dumps({ 'success': 1, 'internalid': id(mod) }) @app.route('/access_attr', methods=['POST']) def access_attr(): sessionid = int(request.form['sessionid']) if sessionid not in lits: lits[sessionid] = {} interid = int(request.form['internalid']) attrname = request.form['attr'] obj = lits[sessionid].get(interid) print(lits[sessionid]) print(obj) if not hasattr(obj, attrname): return json.dumps({ 'undefined': 1 }) attr = getattr(obj, attrname) attr_q = xxquote(attr, lits[sessionid], set()) return json.dumps({ 'success': 1, 'attr': attr_q }) @app.route('/apply_callable', methods=['POST']) def apply_callable(): sessionid = int(request.form['sessionid']) if sessionid not in lits: lits[sessionid] = {} interid = int(request.form['internalid']) args = json.loads(request.form['args']) kwargs = json.loads(request.form['kwargs']) attr = lits[sessionid].get(interid, None) if not callable(attr) : return json.dumps({ 'undefined': 1 }) r = attr(*args, **kwargs) r_q = xxquote(r, lits[sessionid], set()) if (type(r_q) == dict) and ('id' in r_q) : lits[id(r)] = r return json.dumps({ 'success': 1, 'result': r_q }) @app.route('/del_lit_ref', methods=['POST']) def del_lit_ref(): sessionid = int(request.form['sessionid']) if sessionid not in lits: return json.dumps({ 'success': 1 }) interid = int(request.form['internalid']) if not hasattr(lits[sessionid], interid): return json.dumps({ 'success': 1 }) del lits[sessionid][interid] return json.dumps({ 'success': 1 }) @app.route('/del_session_ref', methods=['POST']) def del_session_ref(): sessionid = int(request.form['sessionid']) if sessionid in lits: del lits[sessionid] if sessionid in mods: del mods[sessionid] return json.dumps({ 'success': 1 }) @app.route('/debuginfo', methods=['POST']) def debuginfo(): debuginfo = { 'lits': lits, 'mods': mods } return json.dumps({ 'success': 1, 'debuginfo': repr(debuginfo) })
4,076