max_stars_repo_path
stringlengths
4
182
max_stars_repo_name
stringlengths
6
116
max_stars_count
int64
0
191k
id
stringlengths
7
7
content
stringlengths
100
10k
size
int64
100
10k
test3_02.py
yoojunwoong/python_review01
0
2023982
# range, while을 시용하여 값의 합,평균을 구하기. # 1 ~ 10 합을 구하시오. sum = 0; cnt = 0; for i in range(1,11): sum += i; cnt += 1; print(cnt); print(sum); print(sum/cnt); #while # 1~10합을 구하시오. a = 1; sum2 = 0; while a < 11: sum2 += a; a += 1; print(a-1); #카운트(cnt) print(sum2); print(sum2/(a-1));
337
src/sparsify/models/projects_model.py
dhuangnm/sparsify
152
2024848
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ DB model classes for a project's model file """ import datetime import logging import os import uuid from peewee import CharField, DateTimeField, ForeignKeyField, TextField from playhouse.sqlite_ext import JSONField from sparseml.utils import create_dirs from sparsify.models.jobs import Job from sparsify.models.projects import PROJECTS_DIR_NAME, BaseProjectModel, Project __all__ = ["ProjectModel", "PROJECTS_MODEL_DIR_NAME"] _LOGGER = logging.getLogger(__name__) PROJECTS_MODEL_DIR_NAME = "model" class ProjectModel(BaseProjectModel): """ DB model for a project's model file. A project must have only one model file stored in the DB. """ model_id = CharField(primary_key=True, default=lambda: uuid.uuid4().hex) project = ForeignKeyField( Project, unique=True, backref="models", on_delete="CASCADE" ) created = DateTimeField(default=datetime.datetime.now) source = TextField(null=True, default=None) job = ForeignKeyField(Job, null=True, default=None) file = TextField(null=True, default=None) analysis = JSONField(null=True, default=None) @property def dir_path(self) -> str: """ :return: the local directory path for where the model file is stored """ project_id = self.project_id # type: str return os.path.join( self._meta.storage.root_path, PROJECTS_DIR_NAME, project_id, PROJECTS_MODEL_DIR_NAME, ) @property def file_path(self) -> str: """ :return: the local file path to the data file """ file_name = self.file # type: str return os.path.join(self.dir_path, file_name) def setup_filesystem(self): """ Setup the local file system so that it can be used with the data """ create_dirs(self.dir_path) def validate_filesystem(self): """ Validate that the local file system and expected files are correct and exist """ if not os.path.exists(self.dir_path): raise FileNotFoundError( "project model directory at {} does not exist anymore".format( self.dir_path ) ) if self.file and not os.path.exists(self.file_path): raise FileNotFoundError( "project model file at {} does not exist anymore".format(self.file_path) ) def delete_filesystem(self): """ Delete the model file from the local file system """ if self.file: os.remove(self.file_path)
3,239
src/output.py
MATF-Software-Verification/03_Knut_profajliranje_ivica_vizuelizacija
0
2025725
# -BEGIN BLOCK id: 1 type: ordinary a = 10 b = 12 c = 0 g = 0 h = 0 f = 0 # -END BLOCK id: 1 # -BEGIN BLOCK id: 2 type: if then if a > b: # -END BLOCK id: 2 # -BEGIN BLOCK id: 3 type: ordinary h = 12 g = 11 # -END BLOCK id: 3 # -BEGIN BLOCK id: 4 type: else else: # -END BLOCK id: 4 # -BEGIN BLOCK id: 5 type: ordinary c = 20 f = 12 # -END BLOCK id: 5 # -BEGIN BLOCK id: 6 type: if then if g > 10: # -END BLOCK id: 6 # -BEGIN BLOCK id: 7 type: ordinary g = 100 # -END BLOCK id: 7 # -BEGIN BLOCK id: 8 type: for for i in range(10): # -END BLOCK id: 8 # -BEGIN BLOCK id: 9 type: ordinary t = 10 f += t # -END BLOCK id: 9 # -BEGIN BLOCK id: 10 type: ordinary a = 10 b = 12 # -END BLOCK id: 10 # -BEGIN BLOCK id: 11 type: if then if a == 10: # -END BLOCK id: 11 # -BEGIN BLOCK id: 12 type: ordinary b = 1 # -END BLOCK id: 12 # -BEGIN BLOCK id: 13 type: elif elif a < 10: # -END BLOCK id: 13 # -BEGIN BLOCK id: 14 type: ordinary b = 2 # -END BLOCK id: 14 # -BEGIN BLOCK id: 15 type: elif elif a > 10: # -END BLOCK id: 15 # -BEGIN BLOCK id: 16 type: ordinary b = 3 # -END BLOCK id: 16 # -BEGIN BLOCK id: 17 type: ordinary c = 13 # -END BLOCK id: 17
1,183
codeforces/dp动态规划/1200/729B舞台打光.py
yofn/pyacm
0
2024887
#!/usr/bin/env python3 #https://codeforces.com/problemset/problem/729/B #四个方向分别做,应该会容易些 #python nested list 不太适合做二维数组用, cf不支持numpy; 所以还是回到一维数组吧 #1000*1000也会超时? 分析下时间复杂度! #改用高效点的实现 (采用预处理!!! 不仅高效而且简化了处理逻辑) #用Python3.7还是超时; 用PyPy总算通过.. n,m = list(map(int,input().split())) ss = [list(map(int,input().split())) for _ in range(n)] ll = [] ll.append([ss[i][j] for i in range(n) for j in range(m)]) #(t-d)(l-r) ll.append([ss[i][j] for i in range(n) for j in range(m-1,-1,-1)]) #(t-d)(r-l) ll.append([ss[i][j] for j in range(m) for i in range(n)]) #(l-r)(t-d) ll.append([ss[i][j] for j in range(m) for i in range(n-1,-1,-1)]) #(l-r)(b-t) cnt = 0 for t in range(4): l = ll[t] run,nor = (m,n) if t<2 else (n,m) for r in range(nor): rs = r*run ho = 0 #0 for no object! for i in range(run): if l[rs+i] == 1: ho = 1 continue cnt += ho print(cnt)
968
configs/TimetableConfigs.py
mahkons/jbr-flatland
3
2025783
from configs.Config import Config import torch from agent.judge.Judge import Judge class TimeTableConfig(Config): def __init__(self): pass def create_timetable(self): pass class JudgeConfig(TimeTableConfig): def __init__(self, window_size_generator, lr, batch_size, optimization_epochs): self.window_size_generator = window_size_generator self.lr = lr self.batch_size = batch_size self.optimization_epochs = optimization_epochs def create_timetable(self): return Judge(self.window_size_generator, self.lr, self.batch_size, self.optimization_epochs, torch.device("cpu"))
647
examples/chained_callback.py
xinetzone/dash-tests
1
2024266
from dash import dcc, html from dash.dependencies import Input, Output from app import app all_options = { 'America': ['New York City', 'San Francisco', 'Cincinnati'], 'Canada': [u'Montréal', 'Toronto', 'Ottawa'] } layout = html.Div([ dcc.RadioItems( id='countries-radio', options=[{'label': k, 'value': k} for k in all_options.keys()], value='America' ), html.Hr(), dcc.RadioItems(id='cities-radio'), html.Hr(), html.Div(id='display-selected-values') ]) @app.callback( Output('cities-radio', 'options'), Input('countries-radio', 'value')) def set_cities_options(selected_country): return [{'label': i, 'value': i} for i in all_options[selected_country]] @app.callback( Output('cities-radio', 'value'), Input('cities-radio', 'options')) def set_cities_value(available_options): return available_options[0]['value'] @app.callback( Output('display-selected-values', 'children'), Input('countries-radio', 'value'), Input('cities-radio', 'value')) def set_display_children(selected_country, selected_city): return f'{selected_city} is a city in {selected_country}'
1,166
Bot/Tests/Bartest.py
Pyruths/DiscordRPbot
0
2024962
import unittest from Bar import Bar from Bar import Box class BarTest(unittest.TestCase): def setUp(self): self.b = Bar("bar") def test_Bar_Init(self): self.assertEqual("bar",str(self.b),"empty bar string not displaying correctly") def test_Bar_box(self): box = Box(2) self.b.add_box(box) self.assertEqual("bar [2]",str(self.b), "Added box not properly appended to display") self.assertEqual(self.b[1],box,"Box not properly added") self.b.remove_box(0) self.assertEqual("bar", str(self.b), "Box not removed") def test_bar_spend_refresh(self): box1 = Box(1) box2 = Box(2) self.b.add_box(box1) self.b.add_box(box2) box1.spend() self.b.spend() for box in self.b: self.assertTrue(box.used,"Not all boxes spent") self.b.refresh() for box in self.b: self.assertFalse(box.used,"Not all boxes refreshed") if __name__ == '__main__': unittest.main()
1,067
debexpo/controllers/register.py
jadonk/debexpo
0
2025661
# -*- coding: utf-8 -*- # # register.py — Register Controller # # This file is part of debexpo - https://alioth.debian.org/projects/debexpo/ # # Copyright © 2008 <NAME> <<EMAIL>> # Copyright © 2010 <NAME> <<EMAIL>> # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation # files (the "Software"), to deal in the Software without # restriction, including without limitation the rights to use, # copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following # conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES # OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT # HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. """ Holds the RegisterController. """ __author__ = '<NAME>' __copyright__ = 'Copyright © 2008 <NAME>, Copyright © 2010 <NAME>' __license__ = 'MIT' import logging import random from datetime import datetime from debexpo.lib.base import * from debexpo.lib import constants from debexpo.lib.email import Email from debexpo.lib.schemas import RegisterForm from debexpo.model import meta from debexpo.model.users import User import debexpo.lib.utils log = logging.getLogger(__name__) class RegisterController(BaseController): def __init__(self): """ Class constructor. Sets c.config for the templates. """ c.config = config def index(self): """ Entry point to controller. Displays the index page. """ log.debug('Main register form requested') if config['debexpo.debian_specific'] != 'true': log.error('debexpo.debian_specific is !true; redirecting to maintainer form') redirect(url(action='maintainer')) return render('/register/index.mako') def _send_activate_email(self, key, recipient): """ Sends an activation email to the potential new user. ``key`` Activation key that's already stored in the database. ``recipient`` Email address to send to. """ log.debug('Sending activation email') email = Email('register_activate') activate_url = 'http://' + config['debexpo.sitename'] + url.current(action='activate', id=key) email.send([recipient], activate_url=activate_url) @validate(schema=RegisterForm(), form='register') def _register_submit(self): """ Handles the form submission for a maintainer account registration. """ log.debug('Register form validated successfully') # Activation key. key = debexpo.lib.utils.random_hash() u = User(name=self.form_result['name'], email=self.form_result['email'], password=debexpo.lib.utils.hash_it(self.form_result['password']), lastlogin=datetime.now(), verification=key) if self.form_result['sponsor'] == '1': u.status=constants.USER_STATUS_DEVELOPER meta.session.add(u) meta.session.commit() self._send_activate_email(key, self.form_result['email']) log.debug('New user saved') return render('/register/activate.mako') def register(self): """ Provides the form for a maintainer account registration. """ # Has the form been submitted? if request.method == 'POST': log.debug('Maintainer form submitted') return self._register_submit() else: log.debug('Maintainer form requested') return render('/register/register.mako') def activate(self, id): """ Upon given a verification ID, activate an account. ``id`` ID to use to verify the account. """ log.debug('Activation request with key = %s' % id) if id is None: log.error('Key is None') abort(404, 'Key is None') user = meta.session.query(User).filter_by(verification=id).first() if user is not None: log.debug('Activating user "%s"' % user.name) user.verification = None meta.session.commit() else: log.error('Could not find user; redirecting to main page') abort(404, 'Could not find user; redirecting to main page') c.user = user return render('/register/activated.mako')
4,984
arvet_slam/systems/visual_odometry/tests/test_libviso_profile.py
jskinn/arvet-slam
4
2025055
import unittest from arvet.core.sequence_type import ImageSequenceType from arvet_slam.systems.visual_odometry.libviso2 import LibVisOStereoSystem, LibVisOMonoSystem from arvet_slam.systems.test_helpers.demo_image_builder import DemoImageBuilder, ImageMode @unittest.skip("Not running profiling") class TestRunLibVisOProfile(unittest.TestCase): num_frames = 1000 max_time = 50 speed = 0.1 def test_profile_mono(self, ): import cProfile as profile stats_file = "libviso_mono.prof" system = LibVisOMonoSystem() image_builder = DemoImageBuilder( mode=ImageMode.MONOCULAR, stereo_offset=0.15, width=640, height=480, num_stars=150, length=self.max_time * self.speed, speed=self.speed, close_ratio=0.6, min_size=10, max_size=100 ) profile.runctx("run_libviso(system, image_builder, self.num_frames, self.max_time, 0)", locals=locals(), globals=globals(), filename=stats_file) def test_profile_stereo(self, ): import cProfile as profile stats_file = "libviso_stereo.prof" system = LibVisOStereoSystem() image_builder = DemoImageBuilder( mode=ImageMode.STEREO, stereo_offset=0.15, width=640, height=480, num_stars=150, length=self.max_time * self.speed, speed=self.speed, close_ratio=0.6, min_size=10, max_size=100 ) profile.runctx("run_libviso(system, image_builder, self.num_frames, self.max_time, 0)", locals=locals(), globals=globals(), filename=stats_file) def run_libviso(system, image_builder, num_frames, max_time, seed=0): system.set_camera_intrinsics(image_builder.get_camera_intrinsics(), max_time / num_frames) system.set_stereo_offset(image_builder.get_stereo_offset()) system.start_trial(ImageSequenceType.SEQUENTIAL, seed=seed) for idx in range(num_frames): time = max_time * idx / num_frames image = image_builder.create_frame(time) system.process_image(image, time) system.finish_trial()
2,113
secrets.py
TotalJTM/Interactive-Graduation-Cap
0
2024355
#secrets class to keep my info secret from other people class Secrets: BOT_TOKEN = '' WIFI_SSID = '' WIFI_PSWD = ''
119
utils/pvacapi/app.py
mrichters/pVACtools
96
2026145
#!/usr/bin/env python3 import connexion import os import sys import time import argparse from flask_cors import CORS from flask import g from utils.pvacapi.controllers.utils import initialize from utils.pvacapi.controllers.utils import getIpAddress def app_parser(): parser = argparse.ArgumentParser(description='pVACapi provides a REST API to pVACtools') parser.add_argument('--ip-address', help='IP address for the HTTP server to bind. If not provided, the default socket address will be used.') parser.add_argument('--proxy-ip-address', help='IP address of proxy server or public IP address. If provided, server will send X-Forward headers required for Bokeh to properly work through a proxy server or with AWS private/public IP addresses.') parser.add_argument('--debug', default=False, action='store_true', help='Start sever in debug mode.') return parser #FIXME: sanitize sample name def main(args = None): if not args: parser = app_parser() args = parser.parse_args(sys.argv[1:]) app = connexion.App( "pVAC-Seq Visualization Server", specification_dir=os.path.join( os.path.dirname(__file__), 'config' ), ) from werkzeug.routing import IntegerConverter as BaseIntConverter class IntConverter(BaseIntConverter): regex = r'-?\d+' # determine IP address and setup CORS IP_ADDRESS = None if args.ip_address is None: IP_ADDRESS = getIpAddress() else: IP_ADDRESS = args.ip_address app.app.IP_ADDRESS = IP_ADDRESS # add forwarding headers if proxy_ip_address specified PROXY_IP_ADDRESS = None if args.proxy_ip_address is not None: PROXY_IP_ADDRESS = args.proxy_ip_address @app.app.after_request def apply_forwarding_headers(response): response.headers["X-Forwarded-Proto"] = "http" response.headers["X-Forwarded-Host"] = PROXY_IP_ADDRESS response.headers["X-Forwarded-For"] = IP_ADDRESS response.headers["X-Real-IP"] = IP_ADDRESS return response app.app.PROXY_IP_ADDRESS = PROXY_IP_ADDRESS app.app.url_map.converters['int'] = IntConverter initialize(app.app) #initialize the app configuration app.add_api('swagger.yaml', arguments={'title': 'API to support pVacSeq user interface for generating reports on pipeline results'}) app.app.secret_key = os.urandom(1024) # remove all CORS restrictions CORS(app.app) # should match IP address at with any port, path, or protocol # CORS( # app.app, # origins=r'^(.+://)?' + IP_ADDRESS + r'(:\d+)?(/.*)?$' # ) print(time.asctime(), "Starting pVACapi server at http://" + IP_ADDRESS + ":8080") app.run(port=8080, debug=args.debug, threaded=True) if __name__ == '__main__': main()
2,847
plot/plotter.py
shoaloak/defragDNS
0
2024393
#!/usr/bin/env python3 from os import listdir from os.path import isfile, join import json import statistics as stat import sys import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns sns.set('paper', style="whitegrid") #sns.set('paper', style="white") import IPython DATA_LOC = "./data" SAVE_LOC = "./graphs" def load_json(data, path): with open(path, 'r') as f: for line in f: datum = json.loads(line) data.append(datum) #mtu = int(datum['mtu']) #if mtu in data.keys(): # data[mtu].append(datum) #else: # data[mtu] = [datum] def load_data(): paths = [join(DATA_LOC,f) for f in listdir(DATA_LOC) if isfile(join(DATA_LOC,f))] data = [] for path in paths: try: load_json(data, path) except FileNotFoundError: sys.stderr.write("Could not find {}\n".format(path)) except json.decoder.JSONDecodeError: sys.stderr.write("Could not parse {}\n".format(path)) return data def analyze_data(ls): # calculate standard deviation stdev = stat.stdev(ls) # take mean mean = stat.mean(ls) return stdev, mean # Seaborn does this for you when using Pandas :) def process_data(data, mtu): # create lists aggr_data = {} for key in data[mtu][0].keys(): aggr_data[key] = [] # aggregate results for datum in data[mtu]: for key, value in datum.items(): aggr_data[key].append(value) # remove bloat del aggr_data['datetime'] del aggr_data['mtu'] # analyze analyzed_data = {} for key, value in aggr_data.items(): stdev, mean = analyze_data(value) analyzed_data[key] = round(mean, 1) analyzed_data['stdev_'+key] = round(stdev, 3) # calculate percentage success # recalculate percentage? seems ok return analyzed_data # Based on <NAME> # https://stackoverflow.com/questions/43214978/seaborn-barplot-displaying-values def show_values_on_bars(axs): def _show_on_single_plot(ax): one_percent_graph = ax.get_ylim()[1] / 100 for bar, line in zip(ax.patches, ax.lines): # center x bar _x = bar.get_x() + bar.get_width() / 2 # just above stdev _y = line._y[1] + one_percent_graph if np.isnan(_y): # no stdev _y = bar.get_y() + bar.get_height() + one_percent_graph value = '{:.2f}'.format(bar.get_height()) ax.text(_x, _y, value, ha="center", fontsize=8) if isinstance(axs, np.ndarray): for idx, ax in np.ndenumerate(axs): _show_on_single_plot(ax) else: _show_on_single_plot(axs) def create_graph(df): for ip in ['ipv4', 'ipv6']: mtu = 'mtu4' if ip == 'ipv4' else 'mtu6' mtus = df[mtu].unique() mtus.sort() mtus = mtus[::-1] for rslv in ['stub', 'rslv']: # colors #ax = sns.barplot(x='mtu', y=f'%failed_queries_{ip}_{rslv}', # data=df, order=mtus, ci='sd', errcolor="red", # palette=sns.color_palette("cubehelix")) ax = sns.barplot(x=mtu, y=f'%failed_queries_{ip}_{rslv}', data=df, order=mtus, ci='sd', facecolor=(0.9295040369088812, 0.9295040369088812, 0.9295040369088812), errcolor="black", edgecolor="black") show_values_on_bars(ax) ax.set(xlabel='MTU size', ylabel='Percentage failed DNS UDP queries') plt.savefig(join(SAVE_LOC, f'{ip}_{rslv}.png'), format='png') plt.savefig(join(SAVE_LOC, f'{ip}_{rslv}.eps'), format='eps') #plt.show() #sys.exit(0) plt.close() #IPython.embed() def main(): data = load_data() df = pd.DataFrame(data) create_graph(df) if __name__ == "__main__": main()
4,095
impulse/alert/models.py
akurihara/impulse
2
2024173
from django.db import models from django.db.models import Max from django.urls import reverse from phonenumber_field.modelfields import PhoneNumberField from impulse.alert.constants import MONITOR_STATUSES class Monitor(models.Model): amount = models.DecimalField(max_digits=10, decimal_places=2) external_id = models.CharField(db_index=True, max_length=10) phone_number = PhoneNumberField() event = models.ForeignKey('event.Event', null=True, related_name='monitors') datetime_created = models.DateTimeField(auto_now_add=True) datetime_updated = models.DateTimeField(auto_now=True) def __unicode__(self): return str(self.id) def get_absolute_url(self): return reverse('monitor-detail', kwargs={'pk': self.id}) @classmethod def filter_statuses(cls, statuses): return cls.objects.annotate( most_recent_status=Max('statuses__status') ).filter( most_recent_status__in=statuses ) @property def current_status(self): return self.statuses.latest() class MonitorStatus(models.Model): class Meta: get_latest_by = 'id' monitor = models.ForeignKey('Monitor', related_name='statuses') status = models.PositiveSmallIntegerField(choices=MONITOR_STATUSES.items()) datetime_created = models.DateTimeField(auto_now_add=True) datetime_updated = models.DateTimeField(auto_now=True) def __unicode__(self): return str(self.id)
1,481
URL Shortener.py
datahackformation/Posts-Python-Tips-Tricks
1
2025679
import pyshorteners def shorten(url): link = pyshorteners.Shortener() return link.tinyurl.short(url) if __name__ == "__main__": url = input("Ingresa el link: ") print(f"\n{shorten(url)}")
205
get_sql/views.py
LiuJjjxxx/xiang02
0
2023076
# -*- coding: utf-8 -*- from django.shortcuts import render,HttpResponse from common.mymako import render_json from home_application.models import warn_sum,server_value,network_server_cpu_value,network_server_flow_value,yewu_cpu_value # Create your views here. # 运维大屏(一)中间的趋势图 def get_warn_sum_count(request): fuwuqi = warn_sum.objects.filter(name='fuwuqi').order_by('-date')[:5].values('date', 'warn_count') wangluo = warn_sum.objects.filter(name='wangluo').order_by('-date')[:5].values('date', 'warn_count') sum = len(wangluo) data = {} fuwuqi_count = [] wangluo_count = [] timeer = [] for i in range(sum): fuwuqi_count.insert(i, fuwuqi[i].get("warn_count")) wangluo_count.insert(i, wangluo[i].get("warn_count")) timeer.insert(i, fuwuqi[i].get("date").strftime('%d/%m %H:%M')) data["fuwuqi"] = fuwuqi_count data["wangluo"] = wangluo_count data["date"] = timeer return render_json(data) # 运维大屏(一)存储空间排行 def get_server_value_in_sql(request): index = server_value.objects.filter(index=1) start = index[len(index) - 1].date server_value_sum = server_value.objects.filter(date__range=(start, start)).values() sum = len(server_value_sum) data = [] value = {} for i in range(sum): value['index'] = server_value_sum[i].get("index") value['ip'] = server_value_sum[i].get("ip") value['value'] = server_value_sum[i].get("value") data.insert(i, value) value = {} return render_json(data) # 运维大屏(一)流量排行 def get_netwokr_server_flow_in_sql(request): index = network_server_flow_value.objects.filter(index=1) start = index[len(index) - 1].date server_value_sum = network_server_flow_value.objects.filter(date__range=(start, start)).values() sum = len(server_value_sum) data = [] value = {} for i in range(sum): value['index'] = server_value_sum[i].get("index") value['ip'] = server_value_sum[i].get("ip") value['value'] = server_value_sum[i].get("value") data.insert(i, value) value = {} return render_json(data) # 运维大屏(一)网络设备CPU排行 def get_netwokr_server_cpu_in_sql(request): index = network_server_cpu_value.objects.filter(index=1) start = index[len(index) - 1].date server_value_sum = network_server_cpu_value.objects.filter(date__range=(start, start)).values() sum = len(server_value_sum) data = [] value = {} for i in range(sum): value['index'] = server_value_sum[i].get("index") value['ip'] = server_value_sum[i].get("ip") value['value'] = server_value_sum[i].get("value") data.insert(i, value) value = {} return render_json(data) def get_yewu_value(request): cpu_value = yewu_cpu_value.objects.filter(name='zabbix').order_by('-date')[:5].values('date', 'cpu_value') sum = len(cpu_value) data = {} yewu_count = [] timeer = [] for i in range(sum): yewu_count.insert(i, cpu_value[i].get("cpu_value")) timeer.insert(i, cpu_value[i].get("date").strftime('%d/%m %H:%M')) data["fuwuqi"] = yewu_count data["date"] = timeer return render_json(data)
3,177
All Tracks/Core CS/Algorithms/Implementation/Climbing the Leaderboard/Solution.py
Shaikh-Nabeel/HackerRank-Solutions
13
2025937
#!/bin/python3 import sys """ Step a): we create the array 'scores' which contains all the distinct values of the scores. The index corresponding to each value of 'scores' is equal to the leaderboard position (with an offset of 1) associated with that score. Example: 100 100 50 40 40 20 10 scores = [100, 50, 40, 20, 10] 100 is at position 0 and it is the highest value in the leaderboard. 50 is at position 1 and it is the second highest value in the leaderboard and so on. Step b): for each Alice's score, we search in 'scores' (starting from the last element since 'scores' is decreasing) the first value that is >= than Alice's score and we print the corresponding position. Be careful that the position changes depending on whether alice's score is < or = than the score. Thanks to the variable 'currentIndex', we keep track of the elements of 'scores' already visited and we don't iterate through the entire array for every Alice's score, avoiding a TLE (Time Limit Excedeed) for large values of n. """ if __name__ == '__main__': n = int(input().strip()) all_scores = list(map(int, input().strip().split(" "))) scores = [] previous_score = all_scores[0] scores.append(previous_score) # a) for i in range(1, len(all_scores)): if all_scores[i] != previous_score: scores.append(all_scores[i]) previous_score = all_scores[i] m = int(input().strip()) alice_scores = list(map(int, input().strip().split(" "))) current_index = len(scores) - 1 # b) for alice_score in alice_scores: searching_position = True while searching_position: if current_index < 0: print(1) searching_position = False else: current_score = scores[current_index] if current_score == alice_score: print(current_index + 1) searching_position = False elif current_score > alice_score: print(current_index + 2) searching_position = False else: current_index -= 1
2,159
malwareconfig/decoders/sakula.py
BA7JCM/RATDecoders
905
2025818
import re from struct import unpack from malwareconfig import crypto from malwareconfig.common import Decoder from malwareconfig.common import string_printable class Sakula(Decoder): decoder_name = "Sakula" decoder__version = 1 decoder_author = "@kevthehermit" decoder_description = "Sakula Rat" def __init__(self): self.config = {} @staticmethod def config_v1(config_list): print("Found Version < 1.3") config_dict = {} counter = 1 for config in config_list: config_dict['Domain'] = config[0].rstrip(b'\x88') config_dict['URI GET1 Folder'] = config[1].rstrip(b'\x88') config_dict['URI GET3 File'] = config[2].rstrip(b'\x88') config_dict['URI GET2 File'] = config[3].rstrip(b'\x88') config_dict['URI GET3 Arg'] = config[4].rstrip(b'\x88') config_dict['Copy File Name'] = config[5].rstrip(b'\x88') config_dict['Service Name'] = config[6].rstrip(b'\x88') config_dict['Service Description'] = config[7].rstrip(b'\x88') config_dict['Waiting Time'] = unpack('>H', config[8][:2].rstrip(b'\x88'))[0] counter += 1 return config_dict @staticmethod def config_v2(config_list): print("Found Version > 1.2") config_dict = {} counter = 1 for config in config_list: config_dict['{}_Domain'.format(counter)] = config[0].rstrip(b'V') config_dict['{}_URI GET1 Folder'.format(counter)] = config[1].rstrip(b'V') config_dict['{}_URI GET3 File'.format(counter)] = config[2].rstrip(b'V') config_dict['{}_URI GET2 File'.format(counter)] = config[3].rstrip(b'V') config_dict['{}_URI GET3 Arg'.format(counter)] = config[4].rstrip(b'V') config_dict['{}_Copy File Name'.format(counter)] = config[5].rstrip(b'V') config_dict['{}_AutoRun Key'.format(counter)] = config[6].rstrip(b'V') config_dict['{}_Copy File Path'.format(counter)] = config[7].rstrip(b'V') config_dict['{}_Campaign ID'.format(counter)] = config[8].rstrip(b'V') config_dict['{}_Waiting Time'.format(counter)] = unpack('<H', config[9][:2].rstrip(b'V'))[0] counter += 1 return config_dict def get_config(self): ''' This is the main entry :return: ''' config_dict = {} file_data = self.file_info.file_data # RE for 1.0 and 1.1 re_pattern1 = b'([ -~\x88]{100})([ -~\x88]{100})([ -~\x88]{100})([ -~\x88]{100})([ -~\x88]{100})([ -~\x88]{100})([ -~\x88]{100})([ -~\x88]{100})(.{12}\x77\x77\x77\x77)' # RE for 1.2, 1.3, 1.4 re_pattern2 = b'([ -~]{50})([ -~]{50})([ -~]{50})([ -~]{50})([ -~]{50})([ -~]{50})([ -~]{50})([ -~]{50})([ -~]{12})(0uVVVVVV)' xor_data = crypto.decrypt_xor('\x88', file_data) config_list = re.findall(re_pattern1, xor_data) for c in config_list: if any(b".exe" in s for s in c): config_dict = Sakula.config_v1(config_list) # XOR for later versions xor_data = crypto.decrypt_xor('V', file_data) config_list = re.findall(re_pattern2, xor_data) for c in config_list: if any(b".exe" in s for s in c): config_dict = Sakula.config_v2(config_list) # Set the config to the class for use self.config = config_dict
3,468
week1.py
KillianK19/csws-week1
0
2023651
from asyncore import dispatcher_with_send famous_person = "<NAME>" message = "''Goals never come easy. No one gives you goals.''" full_message = f"{famous_person.title()} once said {message.title()}" print (full_message)
222
Lessons/lesson18.py
Javascript-void0/hxgv
0
2024966
# Keyboard import, use keyboard # "Base Video Game" from tkinter import Tk, Canvas, TclError from time import sleep window=Tk() window.title("Animation") cvs=Canvas(window, height=800, width=1200, bg="blue") cvs.pack() ball=cvs.create_oval(50,50,100,100,outline="red", fill="yellow") def get_pos(id): #id=ball pos=cvs.coords(id) x=(pos[0]+pos[2])//2 y=(pos[1]+pos[3])//2 return x,y def key_press(event): print(event.keysym) if event.keysym=="Up": cvs.move(ball, 0, -5) if event.keysym=="Down": cvs.move(ball, 0, 5) if event.keysym=="Left": cvs.move(ball, -5, 0) if event.keysym=="Right": cvs.move(ball, 5, 0) def left_click(event): print(event.x, event.y) cvs.coords(ball, event.x-25, event.y-25, event.x+25, event.y+25) cvs.bind_all('<Key>', key_press) cvs.bind_all('<Button-1>', left_click) while True: sleep(0.005) try: window.update() except TclError: break
982
api/app/events/repository.py
cclauss/Baobab
0
2022893
from app import db from app.events.models import Event class EventRepository(): @staticmethod def get_by_id(event_id): return db.session.query(Event).get(event_id)
187
alipay/aop/api/response/AlipayOpenStsTokenGetResponse.py
articuly/alipay-sdk-python-all
0
2022855
#!/usr/bin/env python # -*- coding: utf-8 -*- import simplejson as json from alipay.aop.api.response.AlipayResponse import AlipayResponse class AlipayOpenStsTokenGetResponse(AlipayResponse): def __init__(self): super(AlipayOpenStsTokenGetResponse, self).__init__() self._expiration = None self._security_token = None @property def expiration(self): return self._expiration @expiration.setter def expiration(self, value): self._expiration = value @property def security_token(self): return self._security_token @security_token.setter def security_token(self, value): self._security_token = value def parse_response_content(self, response_content): response = super(AlipayOpenStsTokenGetResponse, self).parse_response_content(response_content) if 'expiration' in response: self.expiration = response['expiration'] if 'security_token' in response: self.security_token = response['security_token']
1,046
06_Joining Data with pandas/04_Merging Ordered and Time-Series Data/04_Using merge_asof() to study stocks.py
mohd-faizy/DataScience-With-Python
5
2025879
''' 04 - Using merge_asof() to study stocks Using merge_asof() to study stocks You have a feed of stock market prices that you record. You attempt to track the price every five minutes. Still, due to some network latency, the prices you record are roughly every 5 minutes. You pull your price logs for three banks, JP Morgan (JPM), Wells Fargo (WFC), and Bank Of America (BAC). You want to know how the price change of the two other banks compare to JP Morgan. Therefore, you will need to merge these three logs into one table. Afterward, you will use the pandas .diff() method to compute the price change over time. Finally, plot the price changes so you can review your analysis. The three log files have been loaded for you as tables named jpm, wells, and bac. ----------------------------- jpm.head() date_time close 0 2017-11-17 15:35:17 98.1200 1 2017-11-17 15:40:04 98.1800 2 2017-11-17 15:45:01 97.7307 3 2017-11-17 15:50:55 97.7400 4 2017-11-17 15:55:00 97.8150 wells.head() date_time close 0 2017-11-17 15:35:08 54.3227 1 2017-11-17 15:40:00 54.3200 2 2017-11-17 15:45:32 54.1900 3 2017-11-17 15:50:07 54.1700 4 2017-11-17 15:55:00 54.1841 bac.head() date_time close 0 2017-11-17 15:35:17 26.552 1 2017-11-17 15:40:06 26.552 2 2017-11-17 15:45:05 26.388 3 2017-11-17 15:50:34 26.378 4 2017-11-17 15:55:06 26.383 ----------------------------- Instructions - Use merge_asof() to merge jpm (left table) and wells together on the date_time column, where the rows with the nearest times are matched, and with suffixes=('', '_wells'). Save to jpm_wells. - Use merge_asof() to merge jpm_wells (left table) and bac together on the date_time column, where the rows with the closest times are matched, and with suffixes=('_jpm', '_bac'). Save to jpm_wells_bac. - Using price_diffs, create a line plot of the close price of JPM, WFC, and BAC only. ''' # Use merge_asof() to merge jpm and wells jpm_wells = pd.merge_asof(jpm, wells, on='date_time', suffixes=('', '_wells'), direction='nearest') # Use merge_asof() to merge jpm_wells and bac jpm_wells_bac = pd.merge_asof(jpm_wells, bac, on='date_time', suffixes=('_jpm', '_bac'), direction='nearest') # Compute price diff price_diffs = jpm_wells_bac.diff() # Plot the price diff of the close of jpm, wells and bac only price_diffs.plot(y=['close_jpm', 'close_wells', 'close_bac']) plt.show()
2,517
core/NeuralEssentials/visuals.py
davidwagnerkc/TensorMONK
0
2026015
""" TensorMONK's :: NeuralEssentials """ import sys import torch import torch.nn.functional as F import torchvision.utils as tutils import imageio import visdom if sys.version_info.major == 3: from functools import reduce # =========================================================================== # def MakeGIF(image_list, gif_name): r"""Makes a gif using a list of images. """ if not gif_name.endswith(".gif"): gif_name += ".gif" imageio.mimsave(gif_name, [imageio.imread(x) for x in image_list]) # =========================================================================== # class VisPlots(object): r"""Visdom plots to monitor weights (histograms and 2D kernels larger than 3x3), and responses. Args: env: name of your environment, default = main server: server address, default = None """ def __init__(self, env="main", server=None): if server is None: self.visplots = visdom.Visdom(env=env) else: self.visplots = visdom.Visdom(env=env, server=server) def histograms(self, data, vis_name="hist"): r""" Plots histograms of weights. For Model.state_dict(), parameter names after used to name the plots. Args: data: Accepts nn.Parameter, torch.Tensor and Model.state_dict() vis_name: required for nn.Parameter, and torch.Tensor, default = "hist" """ if isinstance(data, dict): # parameter generator (essentially, model.state_dict()) for p in data.keys(): if "weight" in p and "weight_g" not in p and \ "Normalization" not in p and "bias" not in p: # ignore normalization weights (gamma's & beta's) and bias newid = self._trim_name(p) self.visplots.histogram(X=data[p].data.cpu().view(-1), opts={"numbins": 46, "title": newid}, win=newid) elif (isinstance(data, torch.nn.parameter.Parameter) or isinstance(data, torch.Tensor)): # pytorch tensor or parameter self.visplots.histogram(X=data.data.cpu().view(-1), opts={"numbins": 46, "title": vis_name}, win=vis_name) else: raise NotImplementedError def show_images(self, data, vis_name="images", png_name=None, normalize=False, height=None, max_samples=512, attention=False): r""" Plots responses in RGB (C=3) and grey (C=1), requires BCHW torch.Tensor. When C != 1/3, reorganizes the BxCxHxW to BCx1xHxC if attention is False, else Bx1xHxC. Args: data: 4D torch.Tensor vis_name: name for visdom plots, default = "images" png_name: used to save png images, default = None normalize: normalized the range to 0-1 height: max height of image, retains aspect ratio. default = None max_samples: limited to speed ploting, default = 512 attention: computes attention BxCxHxW to Bx1xHxC using l2, normalize is applied default = False """ if isinstance(data, torch.Tensor): if data.dim() != 4: return None # pytorch tensor data = data.data.cpu() if attention: data = data.pow(2).sum(1, True).pow(.5) if normalize or attention: # adjust range to 0-1 data = self._normalize_01(data) # adjust 4d tensor and reduce samples when too many sz = data.size() multiplier = 1 if sz[1] not in [1, 3]: # BxCxHxW to BCx1xHxC data = data.view(-1, 1, *sz[2:]) multiplier = sz[1] if sz[0]*multiplier > max_samples: samples = reduce(lambda x, y: max(x, y), [x*multiplier for x in range(sz[0]) if x*multiplier <= max_samples]) data = data[:samples] # resize image when height is not None if height is not None: sz = (height, int(float(height)*sz[3]/sz[2])) data = F.interpolate(data, size=sz) self.visplots.images(data, nrow=max(4, int(data.size(0)**0.5)), opts={"title": vis_name}, win=vis_name) # save a png if png_name is defined if png_name is not None: tutils.save_image(data, png_name) def show_weights(self, data, vis_name="weights", png_name=None, min_width=3, max_samples=512): r""" Plots weights (histograms and images of 2D kernels larger than min_width). 2D kernels are normalized between 0-1 for visualization. Requires a minimum of 4 kernels to plot images. Args: data: Accepts nn.Parameter, torch.Tensor and Model.state_dict() vis_name: name for visdom plots, default = "weights" png_name: used to save png images, default = None min_width: only plots images if the kernel size width and height is above min_width max_samples: limited to speed ploting, default = 512 """ # all histograms self.histograms(data, vis_name) # only convolution weights when kernel size > 3 n = 0 if isinstance(data, dict): # parameter generator (essentially, model.state_dict()) for p in data.keys(): if data[p].dim() == 4 and data[p].size(2) > min_width and \ data[p].size(3) > min_width: pass newid = self._trim_name(p) ws = data[p].data.cpu() sz = ws.size() if sz[1] not in [1, 3]: ws = ws.view(-1, 1, sz[2], sz[3]) sz = ws.size() if 4 < sz[0] <= max_samples: ws = self._normalize_01(ws) self.visplots.images(ws, nrow=max(4, int(sz[0]**0.5)), opts={"title": "Ws-"+newid}, win="Ws-"+newid) if png_name is not None: tutils.save_image(ws, png_name.rstrip(".png") + "-ws{}".format(n) + ".png") n += 1 elif isinstance(data, torch.nn.parameter.Parameter): # pytorch parameter if data.dim() == 4 and data.size(2) > min_width and \ data.size(3) > min_width: data = data.data.cpu() sz = data.size() if sz[1] not in [1, 3]: data = data.view(-1, 1, sz[2], sz[3]) sz = data.size() if sz[0] <= max_samples: data = self._normalize_01(data) self.visplots.images(data, nrow=max(4, int(sz[0]**0.5)), opts={"title": "Ws-"+vis_name}, win="Ws-"+vis_name) if png_name is not None: tutils.save_image(data, png_name.rstrip(".png") + "-ws-" + vis_name + ".png") else: raise NotImplementedError def _normalize_01(self, tensor): _min = tensor.min(2, True)[0].min(3, True)[0] _max = tensor.max(2, True)[0].max(3, True)[0] return tensor.add(-_min).div(_max - _min + 1e-6) @staticmethod def _trim_name(name): return name.replace("NET46.", "").replace("Net46.", "") .replace("network.", "") # visplots = VisPlots() # hasattr(visplots, "visplots") # visplots.show_images(torch.rand(10, 10, 200, 200), height=32) # visplots.show_weights(torch.nn.Parameter(torch.rand(10, 10, 7, 7)))
8,260
intake_bluesky_tiff_series/__init__.py
ronpandolfi/intake-bluesky-tiff-series
0
2024616
import tifffile from intake_bluesky_files import FileHandlerPlugin class TIFSeriesPlugin(FileHandlerPlugin): name = 'TIF Series' extensions = ['.tiff', '.tif'] def __call__(self, *args, **kwargs): return tifffile.imread(self.path) def metadata(self): return {key: tag.value for key, tag in tifffile.TiffFile(self.path).pages[0].tags.items()}
380
DQM/Integration/python/clients/pixel_dqm_sourceclient-live_cfg.py
pasmuss/cmssw
0
2025089
import FWCore.ParameterSet.Config as cms from Configuration.StandardSequences.Eras import eras process = cms.Process("PIXELDQMLIVE", eras.Run2_2017) live=True #set to false for lxplus offline testing offlineTesting=not live TAG ="PixelPhase1" process = cms.Process("PIXELDQMLIVE") process.MessageLogger = cms.Service("MessageLogger", debugModules = cms.untracked.vstring('siPixelDigis', 'siStripClusters', 'SiPixelRawDataErrorSource', 'SiPixelDigiSource'), cout = cms.untracked.PSet(threshold = cms.untracked.string('ERROR')), destinations = cms.untracked.vstring('cout') ) #---------------------------- # Event Source #----------------------------- # for live online DQM in P5 if (live): process.load("DQM.Integration.config.inputsource_cfi") # for testing in lxplus elif(offlineTesting): process.load("DQM.Integration.config.fileinputsource_cfi") #----------------------------- # DQM Environment #----------------------------- process.load("DQMServices.Components.DQMEnvironment_cfi") process.load("DQM.Integration.config.environment_cfi") #---------------------------- # DQM Live Environment #----------------------------- process.dqmEnv.subSystemFolder = TAG process.dqmSaver.tag = TAG process.DQMStore.referenceFileName = '/dqmdata/dqm/reference/pixel_reference_pp.root' if (process.runType.getRunType() == process.runType.hi_run): process.DQMStore.referenceFileName = '/dqmdata/dqm/reference/pixel_reference_hi.root' if (process.runType.getRunType() == process.runType.cosmic_run): process.DQMStore.referenceFileName = '/dqmdata/dqm/reference/pixel_reference_cosmic.root' #----------------------------- # Magnetic Field #----------------------------- process.load('Configuration.StandardSequences.MagneticField_AutoFromDBCurrent_cff') #------------------------------------------------- # GEOMETRY #------------------------------------------------- process.load("Configuration.StandardSequences.GeometryRecoDB_cff") #------------------------------------------------- # GLOBALTAG #------------------------------------------------- # Condition for P5 cluster if (live): process.load("DQM.Integration.config.FrontierCondition_GT_cfi") # Condition for lxplus: change and possibly customise the GT elif(offlineTesting): process.load('Configuration.StandardSequences.FrontierConditions_GlobalTag_cff') from Configuration.AlCa.GlobalTag import GlobalTag as gtCustomise process.GlobalTag = gtCustomise(process.GlobalTag, 'auto:run2_data', '') #----------------------- # Reconstruction Modules #----------------------- # Real data raw to digi process.load("Configuration.StandardSequences.RawToDigi_Data_cff") process.load("RecoLocalTracker.SiPixelClusterizer.SiPixelClusterizer_cfi") process.load("RecoLocalTracker.SiStripZeroSuppression.SiStripZeroSuppression_cfi") process.load("RecoLocalTracker.SiStripClusterizer.SiStripClusterizer_RealData_cfi") process.siPixelDigis.IncludeErrors = True process.siPixelDigis.InputLabel = cms.InputTag("rawDataCollector") process.siStripDigis.InputLabel = cms.InputTag("rawDataCollector") #-------------------------------- # Heavy Ion Configuration Changes #-------------------------------- if (process.runType.getRunType() == process.runType.hi_run): process.load('Configuration.StandardSequences.ReconstructionHeavyIons_cff') process.load('Configuration.StandardSequences.RawToDigi_Repacked_cff') process.siPixelDigis.InputLabel = cms.InputTag("rawDataRepacker") # Phase1 DQM process.load("DQM.SiPixelPhase1Config.SiPixelPhase1OnlineDQM_cff") process.PerModule.enabled=True process.PerReadout.enabled=True process.OverlayCurvesForTiming.enabled=False #-------------------------- # Service #-------------------------- process.AdaptorConfig = cms.Service("AdaptorConfig") #-------------------------- # Filters #-------------------------- # HLT Filter # 0=random, 1=physics, 2=calibration, 3=technical process.hltTriggerTypeFilter = cms.EDFilter("HLTTriggerTypeFilter", SelectedTriggerType = cms.int32(1) ) process.load('HLTrigger.HLTfilters.hltHighLevel_cfi') process.hltHighLevel.HLTPaths = cms.vstring( 'HLT_ZeroBias_*' , 'HLT_ZeroBias1_*' , 'HLT_PAZeroBias_*' , 'HLT_PAZeroBias1_*', 'HLT_PAL1MinimumBiasHF_OR_SinglePixelTrack_*', 'HLT*SingleMu*') process.hltHighLevel.andOr = cms.bool(True) process.hltHighLevel.throw = cms.bool(False) #-------------------------- # Scheduling #-------------------------- process.DQMmodules = cms.Sequence(process.dqmEnv*process.dqmSaver) if (process.runType.getRunType() == process.runType.hi_run): process.SiPixelClusterSource.src = cms.InputTag("siPixelClustersPreSplitting") process.Reco = cms.Sequence(process.siPixelDigis*process.pixeltrackerlocalreco) else: process.Reco = cms.Sequence(process.siPixelDigis*process.siStripDigis*process.siStripZeroSuppression*process.siStripClusters*process.siPixelClusters) process.p = cms.Path( process.hltHighLevel #trigger selection *process.Reco *process.DQMmodules *process.siPixelPhase1OnlineDQM_source *process.siPixelPhase1OnlineDQM_harvesting ) ### process customizations included here from DQM.Integration.config.online_customizations_cfi import * process = customise(process) #-------------------------------------------------- # Heavy Ion Specific Fed Raw Data Collection Label #-------------------------------------------------- print "Running with run type = ", process.runType.getRunType()
5,582
azure_sdk_trim/azure_sdk_trim.py
clumio-code/azure-sdk-trim
2
2025822
#!/usr/bin/env python3 # # Copyright 2021 Clumio, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Google Style 4 spaces, 100 columns: # https://google.github.io/styleguide/pyguide.html # """Simple script to purge mostly useless Azure SDK API versions. The Azure SDK for python is over 600MB and growing. The main reason for the size and growth is that each release gets added internally and all prior release are kept. This is a troublesome design which does not seem to be addressed in the near future. This deleted most but not all API versions as multiple versions are required for importing the models. This keep a high compatibility level while trimming more than half of the space used. So Long & Thanks For All The Fish. https://github.com/Azure/azure-sdk-for-python/issues/11149 https://github.com/Azure/azure-sdk-for-python/issues/17801 """ from __future__ import annotations import argparse import importlib.util import logging import pathlib import re import shutil import subprocess import sys from typing import Optional, Sequence from humanize import filesize # type: ignore logger = logging.getLogger(__name__) class Error(Exception): """Local Errors.""" def parse_args(argv: Sequence[str]) -> argparse.Namespace: """Parse the command line arguments.""" parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter ) parser.add_argument('--verbose', '-v', action='store_true', help='Verbose mode.') parser.add_argument( '--azure_dir', type=str, help='Optional path to the Azure SDK directory. It will try to find it automatically.', ) return parser.parse_args(argv[1:]) def disk_usage(path: pathlib.Path) -> int: """Returns the disk usage size in byte for the given path. This depends on the unix 'du' tool to be present. """ process = subprocess.run(['du', '-ksx', path], check=True, capture_output=True, text=True) return 1024 * int(process.stdout.split('\t', 1)[0]) def get_base_dir() -> pathlib.Path: """Returns the base directory where the Azure SDK is installed.""" spec = importlib.util.find_spec('azure') if spec is None or not spec.submodule_search_locations: raise Error('No azure package in the python path.') return pathlib.Path(spec.submodule_search_locations[0]) class VersionedApiDir: """Class to handle API dirs. Such directories will contain one or more version folder such as v7.0, v2020_12_01 or v2021_02_01_preview and a file named models.py which will imports the models from specific versions. The most recent, default, version is assumed to be in that list of imports. We scrape the imports lines in the models file to detect that this is a multi versioned API with potential folders to be trimmed. The import list is use to whitelist the folders we need to keep. """ def __init__(self, path: pathlib.Path): self._path = path.parent if path.name == 'models.py' else path self._versions: Optional[tuple[str, ...]] = None @property def path(self) -> pathlib.Path: """Returns the path of the API directory.""" return self._path def _parse_models(self) -> tuple[str, ...]: """Parse models.py to find which versions are in imported and in use.""" models_path = self._path / 'models.py' if not models_path.exists(): return () versions: list[str] = [] # match: re.Match for line in models_path.read_text().splitlines(): if match := re.match(r'from [.](v\d[^.]+)[.]models import *', line): versions.append(match.group(1)) return tuple(versions) @property def versions(self) -> tuple[str, ...]: """Returns the versions declared in models.py.""" if self._versions is None: self._versions = self._parse_models() return self._versions @property def is_versioned(self) -> bool: """Return True if this is a versioned API directory.""" return bool(self.versions) def trim_other_versions(self) -> int: """Removed the unused versions of the current API.""" if not self.is_versioned: return 0 deleted = [] for version_dir in self.path.glob('v*_*'): if not version_dir.is_dir(): continue if version_dir.name in self.versions: continue if not re.match(r'v\d', version_dir.name): continue shutil.rmtree(version_dir) deleted.append(version_dir) return len(deleted) def find_api_dirs(base_dir: pathlib.Path) -> set[VersionedApiDir]: """Find the API directories with multiple versions.""" api_dirs = set() for sub_path in base_dir.rglob('models.py'): api_dir = VersionedApiDir(sub_path) if api_dir.is_versioned: api_dirs.add(api_dir) return api_dirs def purge_api_dir(api_dir: VersionedApiDir): """Purge unnecessary folders from a versioned API directory.""" usage = disk_usage(api_dir.path) logger.debug('%s is using %s', api_dir.path, filesize.naturalsize(usage)) deleted = api_dir.trim_other_versions() new_usage = disk_usage(api_dir.path) logger.debug( 'Saved %s by deleting %d versions.', filesize.naturalsize(usage - new_usage), deleted ) def purge_old_releases(base_dir: pathlib.Path): """Purge old SDK versions from the Azure installation directory.""" usage = disk_usage(base_dir) logger.info('%s is using %s.', base_dir, filesize.naturalsize(usage)) api_dirs = find_api_dirs(base_dir) for api_dir in api_dirs: purge_api_dir(api_dir) new_usage = disk_usage(base_dir) logger.info('%s is now using %s.', base_dir, filesize.naturalsize(new_usage)) logger.info('Saved %s.', filesize.naturalsize(usage - new_usage)) def main(argv: Optional[Sequence[str]] = None): """Main.""" if argv is None: argv = sys.argv args = parse_args(argv) if args.verbose: logging.basicConfig( format='%(asctime)s %(levelname)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.DEBUG, ) logger.setLevel(logging.DEBUG) else: logging.basicConfig( format='%(message)s', level=logging.INFO, ) base_dir = get_base_dir() if not args.azure_dir else pathlib.Path(args.azure_dir) purge_old_releases(base_dir) if __name__ == '__main__': sys.exit(main(sys.argv))
7,132
nannybot/vision_control.py
byungsoo/bakg-home-assistant
0
2026201
#!/usr/bin/env python3 import os import argparse import time from picamera.array import PiRGBArray from picamera import PiCamera from imutils.video import FPS import cv2 import pdb import vision_utils as vu import boost_utils as bu # construct the argument parser and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-c", "--confidence", default=.5, help="confidence threshold") ap.add_argument("-d", "--display", type=int, default=0, help="switch to display image on screen") ap.add_argument("-i", "--input_image", type=str, help="path to optional input image file") ap.add_argument("-v", "--input_video", type=str, help="path to optional input video file") args = vars(ap.parse_args()) camera, rawCapture = vu.init_picamera() if args.get("input_video"): print("[INFO] opening video file...") vs = cv2.VideoCapture(args["input_video"]) frames = [] for i in range(100): try: frame = vs.read()[1] frames.append(frame) except AttributeError: break print("Read %d frames" % len(frames)) elif args.get("input_image"): frames = [cv2.imread(args["input_image"])] else: frames = camera.capture_continuous(rawCapture, format="bgr", use_video_port=True) fourcc = cv2.VideoWriter_fourcc(*'XVID') out = cv2.VideoWriter('output.avi',fourcc, 20.0, (640,480)) # out2 = cv2.VideoWriter('output_anno.avi',fourcc, 20.0, (640,480)) # time.sleep(1) fps = FPS().start() fcnt = 0 for frame in frames: try: if args.get("input_video") or args.get("input_image"): image = frame else: image = frame.array # clear the stream in preparation for the next frame rawCapture.truncate(0) image_for_result = image.copy() cv2.imshow("Input", image) # print("Frame captured...") # use the NCS to acquire predictions predictions = vu.detect_face(image) # print("Prediction ran...") # loop over our predictions for (i, pred) in enumerate(predictions): # extract prediction data for readability (pred_conf, pred_boxpts) = pred if pred_conf > args["confidence"]: # print prediction to terminal print("[INFO] Prediction #{}: confidence={}, " "boxpoints={}".format(i, pred_conf, pred_boxpts)) xloc, yloc, xsize, ysize = vu.get_rel_pos_size(pred_boxpts) print(xloc, yloc, xsize, ysize) if xloc < 0.3: bu.send_cmd('left', (0.5-xloc)*3) elif xloc > 0.7: bu.send_cmd('right', (xloc-0.5)*3) elif xsize < 0.5: bu.send_cmd('front', 3) if args["display"] > 0: # build a label vu.anno_face(image_for_result, pred) if args["display"] > 0: # display the frame to the screen print("showing image") # cv2.imshow("Output", image_for_result) out.write(image_for_result) fps.update() # if "ctrl+c" is pressed in the terminal, break from the loop except KeyboardInterrupt: break # if there's a problem reading a frame, break gracefully except AttributeError: break # stop the FPS counter timer fps.stop() out.release() # destroy all windows if we are displaying them if args["display"] > 0: cv2.destroyAllWindows() # display FPS information print("[INFO] elapsed time: {:.2f}".format(fps.elapsed())) print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))
3,732
tests/test_createdrop.py
gjbadros/sqlbag
16
2025741
from __future__ import absolute_import, division, print_function, unicode_literals from sqlbag import ( S, create_database, database_exists, drop_database, temporary_database, ) def exists(db_url): e = database_exists(db_url) e2 = database_exists(db_url, test_can_select=True) assert e == e2 return e def test_createdrop(tmpdir): sqlite_path = str(tmpdir / "testonly.db") urls = ["postgresql:///sqlbag_testonly", "mysql+pymysql:///sqlbag_testonly"] for db_url in urls: drop_database(db_url) assert not drop_database(db_url) assert not exists(db_url) assert create_database(db_url) assert exists(db_url) if db_url.startswith("postgres"): assert create_database(db_url, template="template1", wipe_if_existing=True) else: assert create_database(db_url, wipe_if_existing=True) assert exists(db_url) assert drop_database(db_url) assert not exists(db_url) db_url = "sqlite://" # in-memory special case assert exists(db_url) assert not create_database(db_url) assert exists(db_url) assert not drop_database(db_url) assert exists(db_url) db_url = "sqlite:///" + sqlite_path assert not database_exists(db_url) # selecting works because sqlite auto-creates assert database_exists(db_url, test_can_select=True) drop_database(db_url) create_database(db_url) assert exists(db_url) drop_database(db_url) assert not database_exists(db_url) assert database_exists(db_url, test_can_select=True) with temporary_database("sqlite") as dburi: with S(dburi) as s: s.execute("select 1")
1,719
covid_app/backend/app/worker.py
TommyNeeld/covid-guidence
0
2026085
from celery import Celery from celery.utils.log import get_task_logger from config import settings logger = get_task_logger(__name__) celery_app = Celery('tasks', broker=f'pyamqp://guest@{settings.celery_host}//') @celery_app.task def add(x, y): res = x + y logger.info("Adding %s + %s, res: %s" % (x, y, res)) return res
339
dashboard/models.py
yusufom/ERP
0
2025181
from django.db import models from django.contrib.auth.models import User from django.conf import settings User=settings.AUTH_USER_MODEL # Create your models here. class dashboard(models.Model): number = models.CharField(max_length=5,null=True,blank=True) mssg = models.CharField(max_length=10000,null=False,blank=False) img = models.ImageField(blank=True,null=True) class todo(models.Model): user = models.ForeignKey(User,on_delete=models.CASCADE,default=None) title = models.CharField(max_length=100, null=False, blank=False) description = models.TextField(max_length=5000, null=True, blank=True) complete = models.BooleanField(default=False) created = models.DateTimeField(auto_now_add=True) duedate = models.DateField(max_length=100, blank=True,null=True) def __str__(self): return self.title
851
app/main.py
ravigoel08/MagicBrickScraper
4
2025521
from src import * import streamlit as st import pandas as pd import time import json def main(): st.title("Streamlit-MBScraper") cityname = st.sidebar.selectbox("Select City Name", constants.STATE) property_type = st.sidebar.multiselect("Select Properties Type", constants.PROPERTY) property_type = ','.join(property_type) bhk = st.sidebar.slider("BHK", 1, 4, 1, 1) validate = st.sidebar.checkbox("Check Data Availability") if validate: data = page.total_page(cityname, property_type, bhk) st.sidebar.write(data) add_scrapebutton = st.sidebar.checkbox("Start Scraping") if add_scrapebutton: scraped_data = scrape.mb_scraper(data, cityname, property_type,bhk) cleandata = cleaner.data_cleaner(scraped_data, data) df = pd.DataFrame(cleandata, columns=constants.COLUMNS) if not df.empty: tmp_download_link = export.export_csv(df) st.markdown(tmp_download_link, unsafe_allow_html=True) st.json(df.to_json(orient="records")) if __name__ == "__main__": main()
1,082
pa/usr/03b_Imu_fits.py
mlipatov/paint_atmospheres
4
2023476
# Requires: a file with limb darkening fit information that includes the intensity values # a .npy file with locations and values of the lowest I(mu) / I_1 # and the lowest I'(mu) / I_1 for every (T, g, lambda) # Outputs: a plot with I(mu) fits for the (T, g, lambda) with maximum and median deviations # information about these fits # information about (T, g, lambda) with the lowest I(mu) / I_1 and the lowest I'(mu) / I_1 # a plor of the corresponding fits # Notes: to obtain the required files, run calc_limbdark with the -s option, plus 03a_Imu_fits_min.py import numpy as np import pickle import pa.lib.limbdark as limbdark import pa.lib.fit as ft import matplotlib.pyplot as plt from matplotlib import rc # given an array of mu, returns an array of p-functions for each mu: # 0: mu # 1: p_i def pi(mu): return np.transpose(np.array([ np.ones_like(mu), mu, mu**2, mu**3, mu**4])) # points for plots # inputs: a_ij, I, index of location in I, indices of m_j, p_ij def Iplot(a, I, ii, im, p): aa = a[ tuple(ii) ][im, :] Ifit = np.sum(aa * p, axis=-1) Igrid = I[tuple(ii)] Ifit = Ifit / Igrid[-1] Igrid = Igrid / Igrid[-1] return Ifit, Igrid iodir = '../../' # location of the input/output directory # unpickle the limb darkening information with open(iodir + 'data/limbdark_m01.pkl', 'rb') as f: ld = pickle.load(f) wl = ld.lam # 1221 wavelength g = ld.g # 11 gravity T = ld.T # 61 temperature bounds = ld.bounds I = ld.I # (1221, 17, 11, 61) = (wavelength, mu, gravity, temperature) a = ld.fit_params # (61, 11, 1221, 15) = (temperature, gravity, wavelength, parameter index) sh = a.shape # unpickle the minima of intensity fits and their derivatives Im = np.load(iodir + 'Imin.npy') # location where the intensity fit is lowest imin = np.unravel_index(np.argmin(Im[..., 1]), Im[..., 1].shape) # location where the derivative is lowest ider = np.unravel_index(np.argmin(Im[..., 3]), Im[..., 3].shape) # set the mu partition ft.set_muB(bounds) # a_ij coefficients: (61, 11, 1221, 3, 5) = (temperature, gravity, wavelength, interval, function) a = a.reshape( (sh[0], sh[1], sh[2], ft.m, ft.n) ) # 17 mu mu = ft.mu_arr # functions at 17 mu: 2D p = pi(mu) # intervals where 17 mu are found i = np.searchsorted(ft.muB_arr, mu, side='right') - 1 # at each location, in the corresponding interval, for each wavelength, # sum up the product of fit parameters and functions of mu # (61, 11, 1221, 17, 5) -> (61, 11, 1221, 17) = (temperature, gravity, wavelength, mu) Ifit = np.sum(a[ ..., i, : ] * p[ np.newaxis, np.newaxis, np.newaxis, :, : ], axis=-1) # permute the dimensions of CK04 intensity grid: (61, 11, 1221, 17) = (temperature, gravity, wavelength, mu) I = np.transpose(I, axes=[3, 2, 0, 1]) # intensity at mu = 1 from the grid I1 = I[...,-1][...,np.newaxis] # relative error in intensity Ierr = np.abs( (Ifit - I) / (I1 + 1e-300) ) # maximum and median of maximum differences for (temperature, gravity, wavelength) triples Ierr_max = np.amax(Ierr, axis=-1) maxerr = np.nanmax(Ierr_max) imax = np.unravel_index(np.nanargmax(Ierr_max), Ierr_max.shape) n = np.count_nonzero(~np.isnan(Ierr_max)) # number of non-nan entries mederr = np.nanmedian(Ierr_max) dist = np.abs(Ierr_max - mederr) imed = np.array(np.unravel_index(np.argsort(dist, axis=None), dist.shape)) ## points to plot # mu values to plot x = np.linspace(0, 1, 100) # p values to plot px = pi(x) # intervals i = np.searchsorted(ft.muB_arr, x, side='right') - 1 # intensities Imaxfit, Imax = Iplot(a, I, imax, i, px) Imedfit, Imed = Iplot(a, I, imed[:, 0], i, px) Iminfit, Imin = Iplot(a, I, imin, i, px) Iderfit, Ider = Iplot(a, I, ider, i, px) # print relevant values print('Maximum error is ' + str(maxerr)) print('This is realized at ') print('T = ' + str(T[imax[0]])) print('g = ' + str(g[imax[1]])) print('lambda = ' + str(wl[imax[2]])) print() print('Median error is ' + str(mederr)) print('There are ' + str(n) + ' locations.') print('One of the locations whose error is closest to this is ') print('T = ' + str(T[imed[0][0]])) print('g = ' + str(g[imed[1][0]])) print('lambda = ' + str(wl[imed[2][0]])) print('The error at this location is ' + str(Ierr_max[tuple(imed[:,0])])) print() print('Smallest relative value of intensity is ' + str(Im[imin][1])) print('The location is ') print('T = ' + str(T[imin[0]])) print('g = ' + str(g[imin[1]])) print('lambda = ' + str(wl[imin[2]])) print('mu = ' + str(Im[imin][0])) print() print('Smallest relative value of the derivative is ' + str(Im[ider][3])) print('The location is ') print('T = ' + str(T[ider[0]])) print('g = ' + str(g[ider[1]])) print('lambda = ' + str(wl[ider[2]])) print('mu = ' + str(Im[ider][2])) print() # interval bounds for plotting boundsp = np.concatenate( ([0], bounds, [1]) ) plt.rcParams.update({'font.size': 18}) rc('font',**{'family':'serif','serif':['Computer Modern']}) rc('text', usetex=True) fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True, sharey=False, gridspec_kw = {'height_ratios':[1, 0.34]}, figsize=(6, 6)) ax1.plot(x, Imaxfit, color='b', zorder=1) ax1.scatter(mu, Imax, color='k', s=20, zorder=2) ax1.set_ylabel(r'$I_\nu / I_1$') ax1.set_ylim((-0.05, 1.05)) ax1.plot(x, Imedfit, color='g', zorder=1) ax1.scatter(mu, Imed, color='k', s=20, facecolors='w', zorder=2, alpha=1) for b in boundsp: ax1.axvline(x=b, color='k', alpha=0.5, lw=0.5) ax2.plot(mu, Ierr[tuple(imax)], color='b', linewidth=1, linestyle='--', zorder=1) ax2.scatter(mu, Ierr[tuple(imax)], color='b', s=20, zorder=2) ax2.plot(mu, Ierr[tuple(imed[:,0])], color='g', linewidth=1, linestyle='--', zorder=1) ax2.scatter(mu, Ierr[tuple(imed[:,0])], color='g', s=20, facecolors='w', zorder=2, alpha=1) ax2.margins(y=0.2) ax2.set_yscale('log') ax2.set_yticks([1e-9, 1e-6, 1e-3]) ax2.set_ylabel(r'$\left|\delta I_\nu / I_1\right|$', labelpad=10) ax2.set_xlabel(r'$\mu$') for b in boundsp: ax2.axvline(x=b, color='k', alpha=0.5, lw=0.5) fig.subplots_adjust(hspace=0.1) fig.tight_layout() fig.savefig(iodir + 'Imu.pdf') # plot the locations with the most negative I and the most negative derivative of I fig, ax = plt.subplots(1, 1, figsize=(6, 6)) ax.plot(x, Iminfit, color='b', zorder=1) ax.scatter(mu, Imin, color='k', s=20, zorder=2) ax.set_ylabel(r'$I_\nu / I_1$') ax.set_ylim((-0.05, 1.05)) ax.plot(x, Iderfit, color='g', zorder=1) ax.scatter(mu, Ider, color='k', s=20, facecolors='w', zorder=2, alpha=1) for b in boundsp: ax.axvline(x=b, color='k', alpha=0.5, lw=0.5) fig.tight_layout() fig.savefig(iodir + 'Imu_min.pdf')
6,588
lib/ansible/module_utils/alicloud_oss.py
talenhao/alibaba.alicloud
0
2025000
# This code is part of Ansible, but is an independent component. # This particular file snippet, and this file snippet only, is BSD licensed. # Modules you write using this snippet, which is embedded dynamically by Ansible # still belong to the author of the module, and may assign their own license # to the complete work. # # Copyright (c) 2017-present Alibaba Group Holding Limited. <NAME> <<EMAIL>> # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE # USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # import os try: import footmark import footmark.oss HAS_FOOTMARK = True except ImportError: HAS_FOOTMARK = False class AnsibleACSError(Exception): pass def acs_common_argument_spec(): return dict( alicloud_access_key=dict(aliases=['acs_access_key', 'ecs_access_key', 'access_key']), alicloud_secret_key=dict(aliases=['acs_secret_access_key', 'ecs_secret_key', 'secret_key']), ) def oss_bucket_argument_spec(): spec = acs_common_argument_spec() spec.update( dict( alicloud_region=dict(aliases=['acs_region', 'ecs_region', 'region']), bucket=dict(aliases=['bucket_name', 'name'], type='str', required='True') ) ) return spec def get_oss_connection_info(module): """ Check module args for credentials, then check environment vars access_key """ access_key = module.params.get('alicloud_access_key') secret_key = module.params.get('alicloud_secret_key') region = module.params.get('alicloud_region') if not access_key: if 'ALICLOUD_ACCESS_KEY' in os.environ: access_key = os.environ['ALICLOUD_ACCESS_KEY'] elif 'ACS_ACCESS_KEY_ID' in os.environ: access_key = os.environ['ACS_ACCESS_KEY_ID'] elif 'ACS_ACCESS_KEY' in os.environ: access_key = os.environ['ACS_ACCESS_KEY'] elif 'ECS_ACCESS_KEY' in os.environ: access_key = os.environ['ECS_ACCESS_KEY'] else: # in case access_key came in as empty string module.fail_json(msg="access key is required") if not secret_key: if 'ALICLOUD_SECRET_KEY' in os.environ: secret_key = os.environ['ALICLOUD_SECRET_KEY'] elif 'ACS_SECRET_ACCESS_KEY' in os.environ: secret_key = os.environ['ACS_SECRET_ACCESS_KEY'] elif 'ACS_SECRET_KEY' in os.environ: secret_key = os.environ['ACS_SECRET_KEY'] elif 'ECS_SECRET_KEY' in os.environ: secret_key = os.environ['ECS_SECRET_KEY'] else: # in case secret_key came in as empty string module.fail_json(msg="access secret key is required") if not region: if 'ALICLOUD_REGION' in os.environ: region = os.environ['ALICLOUD_REGION'] elif 'ACS_REGION' in os.environ: region = os.environ['ACS_REGION'] elif 'ACS_DEFAULT_REGION' in os.environ: region = os.environ['ACS_DEFAULT_REGION'] elif 'ECS_REGION' in os.environ: region = os.environ['ECS_REGION'] else: module.fail_json(msg="region is required") oss_params = dict(acs_access_key_id=access_key, acs_secret_access_key=secret_key, user_agent='Ansible-Provider-Alicloud') return region, oss_params def get_bucket_connection_info(module): """ Check module args for credentials, then check environment vars access_key """ region, oss_params = get_oss_connection_info(module) bucket_name = module.params.get('bucket') if bucket_name is None: module.fail_json(msg="bucket name is required") oss_params.update(dict(bucket_name=bucket_name)) return region, oss_params def connect_to_oss(acs_module, region, **params): conn = acs_module.connect_to_oss(region, **params) return conn def connect_to_oss_bucket(acs_module, region, **params): conn = acs_module.connect_to_bucket(region, **params) return conn def oss_bucket_connect(module): """ Return an oss bucket connection""" region, oss_params = get_bucket_connection_info(module) try: return connect_to_oss_bucket(footmark.oss, region, **oss_params) except AnsibleACSError as e: module.fail_json(msg=str(e)) def oss_service_connect(module): """ Return an oss service connection""" region, oss_params = get_oss_connection_info(module) try: return connect_to_oss(footmark.oss, region, **oss_params) except AnsibleACSError as e: module.fail_json(msg=str(e))
5,709
backprop/models/t5/models_list.py
lucky7323/backprop
0
2024470
t5_small = { "description": "A small version of the T5 model by Google. This is a text generation model that can be finetuned to solve virtually any text based task.", "tasks": ["text-generation", "summarisation"], "init_kwargs": { "model_path": "t5-small" }, "details": { "num_parameters": 60506624, "max_text_length": 512, "text-generation": { "languages": ["eng"], "description": "Summarise text with `summarize: some text`. Translate English to German, French, and Romanian with `translate English to German: Some sentence.`, `translate English to French: Some sentence.`, and `translate English to Romanian: Some sentence.`.", "finetunable": True }, "credits": [ { "name": "Google", "url": "https://arxiv.org/abs/1910.10683" }, { "name": "<NAME>", "url": "https://huggingface.co/transformers/model_doc/t5.html" } ] } } t5_base = { "description": "A base version of the T5 model by Google. This is a text generation model that can be finetuned to solve virtually any text based task.", "tasks": ["text-generation", "summarisation"], "init_kwargs": { "model_path": "t5-base" }, "details": { "num_parameters": 222903552, "max_text_length": 512, "text-generation": { "languages": ["eng"], "description": "Summarise text with `summarize: some text`. Translate English to German, French, and Romanian with `translate English to German: Some sentence.`, `translate English to French: Some sentence.`, and `translate English to Romanian: Some sentence.`.", "finetunable": True }, "credits": [ { "name": "Google", "url": "https://arxiv.org/abs/1910.10683" }, { "name": "<NAME>", "url": "https://huggingface.co/transformers/model_doc/t5.html" } ] } } models = { "t5-small": t5_small, "t5-base": t5_base }
2,166
tst/test_blackbox.py
geoalgo/A-Quantile-based-Approach-for-Hyperparameter-Transfer-Learning
8
2026080
import numpy as np from blackbox import BlackboxOffline def test_blackbox(): n = 20 dim = 2 X_test = np.random.rand(n, dim) y_test = np.random.rand(n, 1) blackbox = BlackboxOffline( X=X_test, y=y_test, ) for x, y in zip(X_test, y_test): assert np.allclose(blackbox(x), y)
326
assignment8/main.py
nicedi/ML_course_projects
0
2025140
# -*- coding: utf-8 -*- import numpy as np #import matplotlib.pyplot as plt #from matplotlib import cm import utils from collaborative_filtering import CF #%% 载入数据 datapath = 'ml-latest-small' n_movie = 9125 n_user = 671 column_movie_dict, ratings, mask = \ utils.parse_movielens(datapath, n_user, n_movie) #%% mean normalization ratings_mean = utils.ratings_mean(ratings, mask) ratings -= ratings_mean #%% 划分数据集 # 通过划分 mask 矩阵中值为1的元素实现对 ratings 的划分,用户和电影的数量没有变化 # 注:阅读 np.where 的文档理解其功能和返回值格式 ones = np.where(mask == 1) np.random.seed(1) idx = np.random.permutation(len(ones[0])) # 留出2000个rating作为测试用 train_ones = [ones[0][idx[:-2000]], ones[1][idx[:-2000]]] test_ones = [ones[0][idx[-2000:]], ones[1][idx[-2000:]]] train_mask = np.zeros_like(mask) train_mask[train_ones] = 1 test_mask = np.zeros_like(mask) test_mask[test_ones] = 1 #%% 设定隐含因子数,创建模型 n_factor = 10 lambd = 10 # 规则化项的权重 model = CF(n_user, n_movie, n_factor, lambd) #%% 训练模型 # 任务1:完成 CF 类中 predict 和 update 方法 n_iter = 10 for i in range(n_iter): model.update(ratings, train_mask) model.evaluate(ratings, test_mask) utils.plot_loss(model.trainloss, model.testloss) #%% 观察推荐系统的工作情况 # 为了不推荐用户已评分的电影,做如下操作 reverse_mask = np.ones_like(mask) reverse_mask[ones] = 0 all_predictions = (model.predict() + ratings_mean) * reverse_mask #%% 给定用户,推荐电影。(User - Item) userid = 0 # 以第一个用户为例 prediction = all_predictions[userid] recommend_ids = np.argsort(prediction)[::-1] # 用户可能喜欢的前10部电影 for i in range(10): print('{0}#: {1}. Predicted Rating:{2:.2f}'.format(i+1, column_movie_dict[recommend_ids[i]][1], prediction[recommend_ids[i]])) #%% 找喜好相似的用户,根据这些用户对电影的评分进行推荐。(User - User) # 尝试不同的“距离”计算方法 _, rank = utils.euclidean_rank(model.U, model.U[userid]) #_, rank = utils.cosine_rank(model.U, model.U[userid]) # 根据前两个喜好相似的用户进行推荐。 # 第一个相似用户 prediction = all_predictions[rank[0]] recommend_ids = np.argsort(prediction)[::-1] for i in range(10): print('{0}#: {1}. Predicted Rating:{2:.2f}'.format(i+1, column_movie_dict[recommend_ids[i]][1], prediction[recommend_ids[i]])) print() # 第二个相似用户 prediction = all_predictions[rank[1]] recommend_ids = np.argsort(prediction)[::-1] for i in range(10): print('{0}#: {1}. Predicted Rating:{2:.2f}'.format(i+1, column_movie_dict[recommend_ids[i]][1], prediction[recommend_ids[i]])) #%% 以与用户作出好评的物品相似的物品做为推荐。(Item - Item) prediction = all_predictions[userid] preferred_item = np.argmax(prediction) # 根据评分最高的物品查找其它相似物品 _, rank = utils.euclidean_rank(model.I.T, model.I[:,preferred_item]) #_, rank = utils.cosine_rank(model.U, model.U[userid]) for i in range(10): print('{0}#: {1}. Predicted Rating:{2:.2f}'.format(i+1, column_movie_dict[rank[i]][1], prediction[rank[i]]))
2,755
network/layers/gcn.py
robtu328/TextBPN
49
2026096
################################################################### # File Name: gcn.py # Author: <NAME> # mail: <EMAIL> # Created Time: Fri 07 Sep 2018 01:16:31 PM CST ################################################################### from __future__ import print_function from __future__ import division from __future__ import absolute_import import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import init class MeanAggregator(nn.Module): def __init__(self): super(MeanAggregator, self).__init__() def forward(self, features, A): x = torch.bmm(A, features) return x class GraphConv(nn.Module): def __init__(self, in_dim, out_dim, agg): super(GraphConv, self).__init__() self.in_dim = in_dim self.out_dim = out_dim self.weight = nn.Parameter(torch.FloatTensor(in_dim * 2, out_dim)) self.bias = nn.Parameter(torch.FloatTensor(out_dim)) init.xavier_uniform_(self.weight) init.constant_(self.bias, 0) self.agg = agg() def forward(self, features, A): b, n, d = features.shape assert (d == self.in_dim) agg_feats = self.agg(features, A) cat_feats = torch.cat([features, agg_feats], dim=2) out = torch.einsum('bnd,df->bnf', (cat_feats, self.weight)) out = F.relu(out + self.bias) return out class GCN(nn.Module): def __init__(self, input, output): super(GCN, self).__init__() self.bn0 = nn.BatchNorm1d(input, affine=False) self.conv1 = GraphConv(input, 256, MeanAggregator) self.conv2 = GraphConv(256, 1024, MeanAggregator) self.conv3 = GraphConv(1024, 512, MeanAggregator) self.conv4 = GraphConv(512, 256, MeanAggregator) self.prediction = nn.Sequential( nn.Conv1d(256, output, 1), nn.ReLU(inplace=True), nn.Conv1d(output, 64, 1), nn.ReLU(inplace=True), nn.Conv1d(64, 2, 1)) def forward(self, x, A): x = self.bn0(x) x = x.permute(0, 2, 1) b, n, c = x.shape A = A.expand(b, n, n) x = self.conv1(x, A) x = self.conv2(x, A) x = self.conv3(x, A) x = self.conv4(x, A) x = x.permute(0, 2, 1) pred = self.prediction(x) return pred
2,339
ntiles/tears/tilts_backtest_tear.py
Alexd14/ntiles-backtester
0
2024670
from abc import ABC from typing import Optional import pandas as pd from .backtest_tear import BacktestTear from .. import plotter from .. import utils from ..portals.base_portal import BaseGrouperPortalConstant class TiltsBacktestTear(BacktestTear, ABC): """ generates a tear sheet which shows the sector exposures of a strategy Must be run after the backtest tear """ def __init__(self, ntile_matrix: pd.DataFrame, daily_returns: pd.DataFrame, ntiles, holding_period: int, long_short: bool, market_neutral: bool, show_uni: bool, factor_data: pd.DataFrame, group_portal: Optional[BaseGrouperPortalConstant], show_ntile_tilts: bool): """ :param ntile_matrix: unstacked and formatted ntiles prepared by Ntiles :param daily_returns: unstacked and formatted daily returns from Ntiles :param holding_period: How long we want to hold positions for, represents days :param ntiles: amount of bins we are testing (1 is high factor value n is low value) :param long_short: show we compute the spread between ntiles: (1 - n) :param market_neutral: subtract out the universe returns from the ntile returns? :param show_uni: should universe return be shown in the spread plot? :param factor_data: the factor data from Ntiles :param group_portal: the group portal holding the groups. If this is None then the exposures will not be shown :param show_ntile_tilts: Should we show the exposures for each individual ntile? """ super().__init__(ntile_matrix, daily_returns, ntiles, holding_period, long_short, market_neutral, show_uni) self._factor_data = factor_data self._group_portal = group_portal self._show_ntile_tilts = show_ntile_tilts self._daily_group_weights = {} self._full_group_tilt_avg = {} def compute(self) -> None: """ master function for the tear sheet :return: None """ super().compute() if (self._group_portal is not None) and (self._show_ntile_tilts or self.long_short): self.compute_tilts() def plot(self) -> None: """ plots the tear sheet """ super().plot() if (self._group_portal is not None) and (self._show_ntile_tilts or self.long_short): self.make_plots() def compute_tilts(self): """ computes the daily tilt data for each group :return: None """ self.compute_group_weights() if self.long_short: self.calculate_long_short_tilts() def compute_group_weights(self): """ computes the weights by group for each ntile currently computes data but work because need a time series data adjusted for index constitutes have to use self.factor_data :return: None """ group_info = self._group_portal.group_information center_weight = group_info.groupby(group_info).count() / group_info.shape[0] center_weight = utils.remove_cat_index(center_weight) if self._show_ntile_tilts: ntile_keys = self.daily_weights.keys() else: ntile_keys = [min(self.daily_weights.keys()), max(self.daily_weights.keys())] new_col = self.daily_weights[ntile_keys[0]].columns.astype(str).map(self._group_portal.group_mapping) for ntile in ntile_keys: frame = self.daily_weights[ntile] frame.columns = new_col frame = self.daily_weights[ntile].stack().to_frame('weight') frame.index.names = ['date', 'group'] weights_unstacked = frame.groupby(['date', 'group']).sum().sub(center_weight, level=1, axis=0).unstack() weights_unstacked.columns = weights_unstacked.columns.droplevel(0) self._daily_group_weights[ntile] = weights_unstacked self._full_group_tilt_avg[ntile] = (frame.groupby('group').sum().weight / frame.index.levels[0].unique().shape[0] - center_weight) def calculate_long_short_tilts(self): """ calculates the time series tilts for the long short portfolio :return: None """ ntile_n = max(self._daily_group_weights.keys()) self._daily_group_weights['Long Short'] = (self._daily_group_weights['Ntile: 1'] - self._daily_group_weights[ntile_n]) self._full_group_tilt_avg['Long Short'] = self._daily_group_weights['Long Short'].stack().groupby( 'group').mean() def make_plots(self): print('Weights By Group') for ntile in self._daily_group_weights.keys(): if 'Long Short' == ntile and not self.long_short: continue if 'Ntile' in ntile and not self._show_ntile_tilts: continue ax = plotter.plot_tilt_hist(self._full_group_tilt_avg[ntile], ntile, self._group_portal.name) plotter.plot_tilts(self._daily_group_weights[ntile], ntile, self._group_portal.name, ax)
5,187
FastAPI/Basic/main.py
YoshlikMedia/Data-Science
4
2025649
from fastapi import FastAPI app = FastAPI() @app.get("/") def read_root(): return {"name": "Bekhruz"}
109
worker/views.py
sonicaks/Complaints-Portal
0
2026079
from django.contrib.auth import get_user_model User = get_user_model() from django.views.generic import ListView, UpdateView from django.contrib.auth.mixins import LoginRequiredMixin, UserPassesTestMixin from django.http import Http404 from django.urls import reverse_lazy from student import models # Create your views here. class UpdateStatusView(LoginRequiredMixin, UserPassesTestMixin, UpdateView): fields = ['status'] model = models.Complaint template_name = 'worker/update_status.html' success_url = reverse_lazy('worker:all_complaints') def test_func(self): return self.request.user.account_type.all()[0].type == self.get_object().type def form_valid(self, form): self.object = form.save(commit=False) self.object.save() return super().form_valid(form) class ComplaintListView(LoginRequiredMixin, UserPassesTestMixin, ListView): model = models.Complaint template_name = 'worker/complaint_list.html' def test_func(self): return self.request.user.account_type.all()[0].type != 'STU' def get_queryset(self): try: self.all_complaints = models.Complaint.objects.filter(type=self.request.user.account_type.all()[0].type) except: raise Http404 return self.all_complaints
1,211
tests/test_check_digit.py
dsqrt4/itfvalidator-python
0
2025599
import pytest import pyitf.check_digit as check_digit @pytest.mark.parametrize("code,expected", [ (31, 0), (201, 1), (80037, 2), (80030, 3), (123456789, 5), (4801412551324138493, 8), ]) def test_calculate_check_digit(code, expected): assert expected == check_digit.calculate_check_digit(code) @pytest.mark.parametrize("code,expected", [ (31, 310), (201, 2011), (80037, 800372), (80030, 800303), (123456789, 1234567895), (4801412551324138493, 48014125513241384938), ]) def test_append_check_digit(code, expected): assert expected == check_digit.append_check_digit(code)
771
setup.py
bmess/montybot
0
2025960
from distutils.core import setup setup( name='MontyBot', version='0.9.0', author='<NAME>', author_email='<EMAIL>', packages=['montybot', 'montybot.plugins'], scripts=[], url='http://github.com/estherbester/montybot', license='LICENSE.txt', description='Twisted-based IRC Bot .', long_description=open('README').read(), install_requires=[ "Twisted == 13.1.0", "BeautifulSoup == 3.2.1", "mock >= 1.0.1", "requests >= 0.12.0", ], )
510
flask3/request.py
Waithera-m/dementia-care-and-selfcare
0
2026204
import urllib.request,json from .models import DementiaNews def get_topics(topic): ''' function gets and returns articles that cover a specific topic ''' topical_url="https://newsapi.org/v2/everything?q={}&apiKey={}".format(topic,'57e1ca302331442e8be2e0e5c0cfe307') with urllib.request.urlopen(topical_url) as url: topic_details_data = url.read() topic_data_response = json.loads(topic_details_data) topic_results = None if topic_data_response['articles']: topic_results_list = topic_data_response['articles'] topic_results = modify_articles(topic_results_list) return topic_results def modify_articles(topic_list): ''' function transforms api response data into a list Args: topic_list: a list of of dictionaries Returns: topic_results: a list of article objects ''' topic_results = [] for article in topic_list: author = article.get('author') title = article.get('title') publishedAt = article.get('publishedAt') description = article.get('description') url = article.get('url') urlToImage = article.get('urlToImage') if urlToImage: article_object = DementiaNews(author,title,publishedAt,description,url,urlToImage) topic_results.append(article_object) return topic_results
1,409
tests/test-kernels.py
vangohao/PyWENO
26
2024361
import pyweno def test_kernels(): k = 3 for lang in ('c', 'fortran'): kernel = pyweno.kernels.KernelGenerator(lang, order=2*k-1, xi=[-1, 0, 1]) kernel.smoothness(reuse=False) kernel.smoothness(reuse=True) kernel.weights() kernel.reconstruction() if __name__ == '__main__': test_kernels()
321
vip_hci/psfsub/__init__.py
r4lv/VIP
0
2025273
""" Subpackage ``psfsub`` contains a large number of stellar PSF modelling + subtraction algorithms. The following methods have been implemented: - *median ADI/SDI* (Marois et al. 2006). - *frame differencing*. - a simplified version of *LOCI* (Lafreniere et al. 2007) - different flavours of *PCA* (Soummer et al. 2012 and Amara et al. 2012) working in full-frame, incremental and annular mode, including improvements, speed tricks, compatibility with ADI/RDI/SDI datasets and datasets too large to fit in memory. - full-frame and annular versions of *NMF*. """ from .pca_fullfr import * from .pca_local import * from .svd import * from .utils_pca import * from .framediff import * from .llsg import * from .loci import * from .medsub import * from .nmf_fullfr import * from .nmf_local import *
802
plugins/flytekit-bigquery/tests/test_bigquery.py
bimtauer/flytekit
0
2025706
from collections import OrderedDict import pytest from flytekitplugins.bigquery import BigQueryConfig, BigQueryTask from google.cloud.bigquery import QueryJobConfig from google.protobuf import json_format from google.protobuf.struct_pb2 import Struct from flytekit import StructuredDataset, kwtypes, workflow from flytekit.configuration import Image, ImageConfig, SerializationSettings from flytekit.extend import get_serializable query_template = "SELECT * FROM `bigquery-public-data.crypto_dogecoin.transactions` WHERE @version = 1 LIMIT 10" def test_serialization(): bigquery_task = BigQueryTask( name="flytekit.demo.bigquery_task.query", inputs=kwtypes(ds=str), task_config=BigQueryConfig( ProjectID="Flyte", Location="Asia", QueryJobConfig=QueryJobConfig(allow_large_results=True) ), query_template=query_template, output_structured_dataset_type=StructuredDataset, ) @workflow def my_wf(ds: str) -> StructuredDataset: return bigquery_task(ds=ds) default_img = Image(name="default", fqn="test", tag="tag") serialization_settings = SerializationSettings( project="proj", domain="dom", version="123", image_config=ImageConfig(default_image=default_img, images=[default_img]), env={}, ) task_spec = get_serializable(OrderedDict(), serialization_settings, bigquery_task) assert "SELECT * FROM `bigquery-public-data.crypto_dogecoin.transactions`" in task_spec.template.sql.statement assert "@version" in task_spec.template.sql.statement assert task_spec.template.sql.dialect == task_spec.template.sql.Dialect.ANSI s = Struct() s.update({"ProjectID": "Flyte", "Location": "Asia", "allowLargeResults": True}) assert task_spec.template.custom == json_format.MessageToDict(s) assert len(task_spec.template.interface.inputs) == 1 assert len(task_spec.template.interface.outputs) == 1 admin_workflow_spec = get_serializable(OrderedDict(), serialization_settings, my_wf) assert admin_workflow_spec.template.interface.outputs["o0"].type.structured_dataset_type is not None assert admin_workflow_spec.template.outputs[0].var == "o0" assert admin_workflow_spec.template.outputs[0].binding.promise.node_id == "n0" assert admin_workflow_spec.template.outputs[0].binding.promise.var == "results" def test_local_exec(): bigquery_task = BigQueryTask( name="flytekit.demo.bigquery_task.query2", inputs=kwtypes(ds=str), query_template=query_template, task_config=BigQueryConfig(ProjectID="Flyte", Location="Asia"), output_structured_dataset_type=StructuredDataset, ) assert len(bigquery_task.interface.inputs) == 1 assert len(bigquery_task.interface.outputs) == 1 # will not run locally with pytest.raises(Exception): bigquery_task()
2,894
tests/test_client.py
datasmoothie/datasmoothie-client-python
0
2023841
from io import StringIO import pandas as pd from datasmoothie import Client from datasmoothie import Datasource from datasmoothie import Report # import quantipy as qp def test_incorrect_token(): client = Client(api_key='incorrect') resp = client.get_request('datasource') assert resp['detail'] == 'Invalid token.' def test_new_client(token): client = Client(api_key=token, host="localhost:8030/api2", ssl=False) resp = client.get_request('datasource') assert 'results' in resp def test_create_datasource(token, dataset_data, dataset_meta): client = Client(api_key=token, host="localhost:8030/api2", ssl=False) datasource = client.create_datasource("My datasource") data = dataset_data.to_csv() datasource.update_meta_and_data(meta=dataset_meta, data=data) assert isinstance(datasource, Datasource) def test_list_datasources(token): client = Client(api_key=token, host="localhost:8030/api2", ssl=False) resp = client.list_datasources() assert 'results' in resp def test_get_datasource(token): client = Client(api_key=token, host="localhost:8030/api2", ssl=False) datasources = client.list_datasources() primary_key = datasources['results'][0]['pk'] resp = client.get_datasource(primary_key) assert isinstance(resp, Datasource) def test_update_datasource(token, dataset_meta, dataset_data): client = Client(api_key=token, host="localhost:8030/api2", ssl=False) datasources = client.list_datasources() primary_key = datasources['results'][0]['pk'] datasource = client.get_datasource(primary_key) meta = dataset_meta meta['info']['from_source']['pandas_reader'] = 'changed' data = dataset_data[:90].to_csv() resp = datasource.update_meta_and_data(meta=meta, data=data) datasource2 = client.get_datasource(primary_key) meta_and_data = datasource2.get_meta_and_data() new_meta = meta_and_data['meta'] new_data = meta_and_data['data'] new_data_df = pd.read_csv(StringIO(new_data)) assert new_meta['info']['from_source']['pandas_reader'] == 'changed' assert resp.status_code == 200 def test_list_reports(token): client = Client(api_key=token, host="localhost:8030/api2", ssl=False) reports = client.list_reports() assert 'results' in reports def test_get_report_meta(token): client = Client(api_key=token, host="localhost:8030/api2", ssl=False) reports = client.list_reports() pk = reports['results'][0]['pk'] result = client.get_report_meta(pk) print(result) assert 'pk' in result def test_get_report(token): client = Client(api_key=token, host="localhost:8030/api2", ssl=False) reports = client.list_reports() pk = reports['results'][0]['pk'] report = client.get_report(pk) print(report.title) print(report.elements) assert isinstance(report, Report) def test_delete_report(token): client = Client(api_key=token, host="localhost:8030/api2", ssl=False) number_of_reports = client.list_reports()['count'] report = client.create_report(title="api created report") assert client.list_reports()['count'] == number_of_reports + 1 report.delete() assert client.list_reports()['count'] == number_of_reports def test_create_report(token): client = Client(api_key=token, host="localhost:8030/api2", ssl=False) number_of_reports = client.list_reports()['count'] report = client.create_report(title="api created report") assert client.list_reports()['count'] == number_of_reports + 1 report.delete() assert client.list_reports()['count'] == number_of_reports
3,611
rcamp/projects/models.py
ResearchComputing/RCAMP
0
2025316
from dateutil.relativedelta import relativedelta from django.db import models from django.db.models import Func, F from django.db.models.functions import Substr, Lower from django.utils import timezone from lib import fields from accounts.models import User from mailer.signals import allocation_created_from_request class Cast(Func): function = 'CAST' template = '%(function)s(%(expressions)s as %(target_type)s)' class Project(models.Model): ORGANIZATIONS = ( ('ucb','University of Colorado Boulder'), ('csu','Colorado State University'), ('xsede','XSEDE'), ) pi_emails = fields.ListField() managers = models.ManyToManyField(User,related_name='manager_on') collaborators = models.ManyToManyField(User,related_name='collaborator_on') organization = models.CharField(max_length=128,choices=ORGANIZATIONS) title = models.CharField(max_length=256) description = models.TextField() project_id = models.CharField(max_length=24,unique=True,blank=True,null=True) created_on = models.DateField(auto_now_add=True) notes = models.TextField(blank=True,null=True) parent_account = models.CharField(max_length=24,null=True,blank=True) qos_addenda = models.CharField(max_length=128,null=True,blank=True) deactivated = models.BooleanField(default=False) def __str__(self): return self.project_id def save(self,*args,**kwargs): if (not self.project_id) or (self.project_id == ''): # Assign new id to project. org = self.organization prefix_offset = len(org) + 1 projects = Project.objects.filter( project_id__startswith=org ).annotate( project_number_int=Cast(Substr('project_id', prefix_offset), target_type='UNSIGNED') ).order_by('-project_number_int') if projects.count() == 0: next_id = '{}{}'.format(org.lower(),'1') else: last_id = projects[0].project_id last_id = last_id.replace(org,'') next_id = int(last_id) + 1 next_id = '{}{}'.format(org.lower(),str(next_id)) self.project_id = next_id super(Project,self).save(*args,**kwargs) class Reference(models.Model): project = models.ForeignKey(Project, on_delete=models.CASCADE) description = models.TextField() link = models.TextField() created_on = models.DateField(auto_now_add=True) def __str__(self): return '{}_{}'.format((self.project.project_id,str(self.created_on))) class AllocationManager(models.Manager): def create_allocation_from_request(self,**kwargs): project = kwargs.get('project') amount_awarded = kwargs.get('amount_awarded', None) if not project: raise TypeError('Missing required field: project') if amount_awarded == None: raise TypeError('Missing required field: amount_awarded') now = timezone.now() next_year = now + relativedelta(years=1) alloc_fields = {} alloc_fields['project'] = project alloc_fields['amount'] = amount_awarded alloc_fields['start_date'] = now alloc_fields['end_date'] = next_year alloc = self.create(**alloc_fields) return alloc class Allocation(models.Model): objects = AllocationManager() project = models.ForeignKey(Project, on_delete=models.CASCADE) allocation_id = models.SlugField(unique=True,blank=True,null=True) amount = models.BigIntegerField() created_on = models.DateField(auto_now_add=True) start_date = models.DateField() end_date = models.DateField() expiration_notice_sent = models.BooleanField(default=False) def __str__(self): return self.allocation_id def save(self,*args,**kwargs): alloc_id_tpl = '{project_id}_summit{alloc_enum}' if (not self.allocation_id) or (self.allocation_id == ''): proj_id = self.project.project_id search_prefix = '{project_id}_summit'.format(project_id=proj_id) prefix_offset = len(proj_id) + 1 allocs = Allocation.objects.filter( allocation_id__startswith=search_prefix ).annotate( alloc_number_int=Cast(Substr('allocation_id', prefix_offset), target_type='UNSIGNED') ).order_by('-alloc_number_int') if allocs.count() == 0: next_id = alloc_id_tpl.format( project_id=proj_id.lower(), alloc_enum='1' ) else: last_id = allocs.order_by('-allocation_id')[0].allocation_id last_id = last_id.replace(proj_id+'_summit','') next_id = int(last_id) + 1 next_id = alloc_id_tpl.format( project_id=proj_id.lower(), alloc_enum=str(next_id) ) self.allocation_id = next_id super(Allocation,self).save(*args,**kwargs) class AllocationRequest(models.Model): STATUSES = ( ('a','Approved'), ('d','Denied'), ('w','Waiting'), ('h','Hold'), ('r','Ready For Review'), ('q','Response Requested'), ('i','Denied - Insufficient Resources'), ('x','Denied - Proposal Incomplete'), ('f','Approved - Fully Funded'), ('p','Approved - Partially Funded'), ) project = models.ForeignKey(Project, on_delete=models.CASCADE) allocation = models.ForeignKey( Allocation, null=True, blank=True, on_delete=models.CASCADE ) abstract = models.TextField(null=True,blank=True) funding = models.TextField(null=True,blank=True) proposal = models.FileField(upload_to='proposals/%Y/%m/%d',null=True,blank=True) time_requested = models.BigIntegerField(null=True,blank=True) amount_awarded = models.BigIntegerField(default=0) disk_space = models.IntegerField(default=0,null=True,blank=True) software_request = models.TextField(null=True,blank=True) requester = models.ForeignKey(User,null=True,blank=True,on_delete=models.CASCADE) request_date = models.DateTimeField(auto_now_add=True) status = models.CharField(max_length=16,choices=STATUSES,default='w') approved_on = models.DateTimeField(null=True,blank=True) notes = models.TextField(null=True,blank=True) def __str__(self): return '{}_{}'.format(self.project.project_id,self.request_date) def save(self,*args,**kwargs): # Check for change in approval status if (self.status in ['a','f','p']) and (not self.approved_on): # Approval process # logger.info('Approving project request: '+self.__str__()) alloc = Allocation.objects.create_allocation_from_request( project = self.project, amount_awarded = self.amount_awarded ) self.amount_awarded = alloc.amount allocation_created_from_request.send(sender=alloc.__class__,allocation=alloc) self.approved_on=timezone.now() self.allocation = alloc super(AllocationRequest,self).save(*args,**kwargs)
7,286
scripts/progbuild.py
rumblesan/websound
1
2025652
#!/usr/bin/env python from sys import argv from os import listdir from os.path import isfile, join, basename, splitext def file_to_string(folder_path, file_path): data = [] file_name = splitext(basename(file_path))[0] with open(join(folder_path, file_path)) as f: filelines = f.read().splitlines() data = "\\n\\\n".join(filelines).replace('"', '\\"') return (file_name, data) def write_to_file(folder_path, output_folder, data): package_name = basename(folder_path) output_file = join(output_folder, package_name + ".js") with open(output_file, 'w') as of: of.write("""\nvar %s = {};\n""" % package_name) of.write("""\n%s.data = {};\n""" % package_name) demo_names = ", ".join(['"' + n[0] + '"' for n in data]) of.write("""\n%s.names = [%s];\n""" % (package_name, demo_names)) for l in data: of.write("""\n%s.data.%s = "%s";\n""" % (package_name, l[0], l[1])) of.write("""\nmodule.exports = %s;\n""" % package_name) def main(): folder_path = argv[1] output_folder = argv[2] files = [f for f in listdir(folder_path) if isfile(join(folder_path, f))] data = [] for wlfile in files: data.append(file_to_string(folder_path, wlfile)) write_to_file(folder_path, output_folder, data) if __name__ == '__main__': main()
1,362
Packs/CommonWidgets/Scripts/GetLargestInputsAndOuputsInIncidents/GetLargestInputsAndOuputsInIncidents.py
ZingBox/content
0
2025206
import traceback from operator import itemgetter import demistomock as demisto from CommonServerPython import * from CommonServerUserPython import * def find_largest_input_or_output(all_args_list): max_arg = {'Size': 0} for arg in all_args_list: if arg.get('Size') > max_arg.get('Size'): max_arg = arg return max_arg def get_largest_inputs_and_outputs(inputs_and_outputs, largest_inputs_and_outputs, incident_id): inputs = [] outputs = [] if inputs_and_outputs: for task in inputs_and_outputs: if 'outputs' in task: for output in task.get('outputs'): outputs.append({ 'IncidentID': incident_id, 'TaskID': task.get('id'), 'TaskName': task.get('name'), 'Name': output.get('name'), 'Size': output.get('size'), "InputOrOutput": 'Output' }) else: for arg in task.get('args'): inputs.append({ 'IncidentID': incident_id, 'TaskID': task.get('id'), 'TaskName': task.get('name'), 'Name': arg.get('name'), 'Size': arg.get('size'), 'InputOrOutput': "Input" }) if inputs: largest_inputs_and_outputs.append(find_largest_input_or_output(inputs)) if outputs: largest_inputs_and_outputs.append(find_largest_input_or_output(outputs)) def format_inputs_and_outputs_to_widget_table(largest_inputs_and_outputs): widget_table = { 'data': sorted(largest_inputs_and_outputs, key=itemgetter('Size'), reverse=True), 'total': len(largest_inputs_and_outputs) } return widget_table def get_extra_data_from_investigations(investigations): largest_inputs_and_outputs: List = [] for inv in investigations: inputs_and_outputs = demisto.executeCommand('getInvPlaybookMetaData', args={ "incidentId": inv.get('IncidentID') })[0].get('Contents').get('tasks') get_largest_inputs_and_outputs(inputs_and_outputs, largest_inputs_and_outputs, inv.get('IncidentID')) return format_inputs_and_outputs_to_widget_table(largest_inputs_and_outputs) def main(): try: raw_output = demisto.executeCommand('GetLargestInvestigations', args={'from': demisto.args().get('from'), 'to': demisto.args().get('to')}) investigations = raw_output[0].get('Contents', {}).get('data') demisto.results(get_extra_data_from_investigations(investigations)) except Exception: demisto.error(traceback.format_exc()) # print the traceback return_error(f'Failed to execute GetLargestInputsAndOuputsInIncidents. Error: {traceback.format_exc()}') if __name__ in ('__main__', '__builtin__', 'builtins'): main()
3,199
run.py
kjin67511/morning-pi
16
2025646
import datetime from xml.etree import ElementTree import grequests from bus.bus_request import bus_request from bus.bus_view import arrivals_from_xml, bus_arrival_view from dust.dust_request import dust_request from dust.dust_view import dust_from_xml, dust_view from gpio import lcd from gpio import led from weather.weather_request import live_weather_request, forecast_weather_request from weather.weather_view import weather_live_from_json, weather_forecast_from_json, weather_view from config import ConfigSectionMap pm10_threshold = int(ConfigSectionMap("dust")['pm10_threshold']) pm25_threshold = int(ConfigSectionMap("dust")['pm25_threshold']) def run(): lcd.clear() lcd.message("Loading...") weather_live_req = live_weather_request() weather_forecast_req = forecast_weather_request() bus_arrival_req = bus_request() dust_req = dust_request() grequests.map( (weather_live_req, weather_forecast_req, bus_arrival_req, dust_req) ) weathers = list() if weather_live_req.response is not None: weathers.append(weather_live_from_json(weather_live_req.response.json())) else: weathers.append(None) if weather_forecast_req.response is not None: weathers.append(weather_forecast_from_json(weather_forecast_req.response.json(), datetime.datetime.now() + datetime.timedelta(hours=12))) else: weathers.append(None) weather_str = weather_view(weathers) try: bus_xml = ElementTree.fromstring(bus_arrival_req.response.content) arrivals = arrivals_from_xml(bus_xml) bus_str = bus_arrival_view(arrivals) except ElementTree.ParseError: bus_str = "Error" try: dust_xml = ElementTree.fromstring(dust_req.response.content) dusts = dust_from_xml(dust_xml) dust_str = dust_view(dusts) except (ElementTree.ParseError, AttributeError) as e: dust_str = "Error" dusts = None lcd_str = bus_str + "\n" + weather_str + " " + dust_str lcd.clear() lcd.message(lcd_str) if dusts is not None: led.off() if dusts[0] != '-' and int(dusts[0]) > pm10_threshold: led.on() if dusts[1] != '-' and int(dusts[1]) > pm25_threshold: led.on() def reset(): lcd.clear() led.off() def button_pushed(): return lcd.GPIO_input() def lcd_ready(): return lcd.lcd is not None
2,466
毒APP/duapp.py
irisroyaltyf/pySpider
0
2025254
from bs4 import BeautifulSoup import requests import csv import sys sys.path.append("..") import mytemp import util import urllib.request import urllib3 import json # d-c-left view-phone-wrapper # /search/list?size=[]&title=&typeId=0&catId=2&unionId=0&sortType=0&sortMode=1&page=0&limit=20&sign=4b86e534b0d233207a435111f61f8247 # []&title=&typeId=0&catId=2&unionId=0&sortType=0&sortMode=1&page=2&limit=20&sign=e485ae8eddd95547a0271beda45d09d5 url2='https://du.hupu.com/search/list?size=[]&title=&typeId=0&catId=2&unionId=0&sortType=0&sortMode=1&page=2&limit=20&sign=e485ae8eddd95547a0271beda45d09d5' # url2='https://du.hupu.com/search/list?size=[]&title=&typeId=0&catId=2&unionId=0&sortType=0&sortMode=1&page=0&limit=20&sign=4b86e534b0d233207a435111f61f8247' # /search/list?size=[]&title=&typeId=0&catId=4&unionId=0&sortType=0&sortMode=1&page=0&limit=20&sign=4cdb522927a504aea797cca21dac7109 # /search/list?size=[]&title=&typeId=0&catId=3&unionId=0&sortType=0&sortMode=1&page=0&limit=20&sign=bfa5ef97196795f488cd2f31a178e6c3 cook='duToken=<PASSWORD>%7C1<PASSWORD>%7C1537232477%7C471d784<PASSWORD>9f4d0' headers = { "Cookie":cook, "User-Agent":"duapp/3.4.3(android;5.1)", "Accept":"gzip", "duchannel": "opp", "dudeviceTrait":"", "duloginToken": "<PASSWORD>|<PASSWORD>", "duplatform": "android", "duuuid": "fbc5ea1f51716822", "duv": "3.4.3", "Connection": "Keep-Alive", "Host": "du.hupu.com" } def getJson(url,data,cook): #获取json urllib3.disable_warnings() f= requests.get(url,headers=headers,verify=False) print(f.text) try: target=json.loads(f.text)['data']['productList'] for tar in target: print(tar) break except: pass # html=urllib.request.urlopen(f).read().decode('utf-8',"ignore") # #post方法请求json数据 # r = requests.post(url, data = data) # target='' # try: # target=json.loads(r.text)#["BusinessHallList"] # print(target) # except: # pass return None getJson(url2,None,cook)
2,116
libs/ConfigHelpers.py
loi219/RootTheBox
2
2024674
import logging import imghdr import hashlib from base64 import b64decode from tornado.options import options from datetime import datetime from past.builtins import basestring from libs.XSSImageCheck import is_xss_image from libs.ValidationError import ValidationError def save_config(): logging.info("Saving current config to: %s" % options.config) with open(options.config, "w") as fp: fp.write("##########################") fp.write(" Root the Box Config File ") fp.write("##########################\n") fp.write( "# Documentation: %s\n" % "https://github.com/moloch--/RootTheBox/wiki/Configuration-File-Details" ) fp.write("# Last updated: %s\n" % datetime.now()) for group in options.groups(): # Shitty work around for Tornado 4.1 if "rootthebox.py" in group.lower() or group == "": continue fp.write("\n# [ %s ]\n" % group.title()) opt = list(options.group_dict(group).items()) for key, value in opt: try: # python2 value_type = basestring except NameError: # python 3 value_type = str if isinstance(value, value_type): # Str/Unicode needs to have quotes fp.write('%s = "%s"\n' % (key, value)) else: # Int/Bool/List use __str__ fp.write("%s = %s\n" % (key, value)) def save_config_image(b64_data): image_data = bytearray(b64decode(b64_data)) if len(image_data) < (2048 * 2048): ext = imghdr.what("", h=image_data) file_name = "story/%s.%s" % (hashlib.sha1(image_data).hexdigest(), ext) if ext in ["png", "jpeg", "gif", "bmp"] and not is_xss_image(image_data): with open("files/" + file_name, "wb") as fp: fp.write(image_data) return file_name else: raise ValidationError( "Invalid image format, avatar must be: .png .jpeg .gif or .bmp" ) else: raise ValidationError("The image is too large")
2,224
src/sprites/attacks/OrbAttack.py
NEKERAFA/Soul-Tower
0
2025990
# -*- coding: utf-8 -*- import pygame, sys, os, math, random from src.ResourceManager import * from src.sprites.Attack import * from src.sprites.Bullet import * from src.sprites.Force import * from Normalize import * from src.sprites.MyStaticAnimatedSprite import * # W = 1 E = 2 # ------------------------------------------------- # Sprites de ataques class OrbAttack(Attack): def __init__(self, radius, delayTime, enemies, looking): # Obtenemos las rutas a los archivos castingFile = os.path.join('attacks', 'orb.png') castingSheet = os.path.join('attacks', 'castingOrb.json') effect_sound = 'pew.ogg' self.castingAnim = MyStaticAnimatedSprite(castingFile, castingSheet) self.castingAnim.animationLoop = False orbFile = 'orb.png' orbSheet = 'orb.json' # Invocamos al constructor de la clase padre Attack.__init__(self, orbFile, orbSheet, enemies, effect_sound) # Rutas de las balas imageFile = os.path.join('sprites', 'attacks', 'laser.png') spriteSheet = os.path.join('attacks', 'laser.json') # Cargar sheet de sprites sheet = ResourceManager.load_image(imageFile, -1) # Leer coordenadas de fichero data = ResourceManager.load_sprite_conf(spriteSheet) sheetConf = [] # Cargamos los sprites for col in range(0, len(data)): cell = data[col] coords = pygame.Rect((int(cell['x']), int(cell['y'])), (int(cell['width']), int(cell['height']))) delay = float(cell['delay'])*1000 sheetConf.append({'coords': coords, 'delay': delay}) # Frame inicial rect = pygame.Rect(0, 0, sheetConf[0]['coords'][2], sheetConf[0]['coords'][3]) origImage = sheet.subsurface(sheetConf[0]['coords']) self.bulletImage = origImage.copy() self.loopAnimation = True # Radio de acción self.radius = radius # Tiempo entre disparos self.delayTime = delayTime self.elapsedTime = 0 # Comprueba si está atacando self.attacking = True # Grupo de disparos self.bullets = pygame.sprite.Group() # Dirección self.looking = looking def start_attack(self, pos, enemyPos): x,y = pos if self.looking == E: x += self.rect.width/2 + 7 else: x -= self.rect.width/2 - 7 y -= self.rect.height - 10 self.rect.topleft = x,y self.castingAnim.rect.topleft = x,y bulletX = x+15 bulletY = y+15 self.bulletPos = bulletX, bulletY (enemyX, enemyY) = enemyPos # Obtenemos el ángulo entre el orbe y el enemigo angle = int(math.degrees(math.atan2(bulletY-enemyY, enemyX-bulletX))) # Corrección cuando el ángulo es entre 180-360 if angle < 0: angle = 360 + angle self.rotation = angle self.attacking = True def end_attack(self): self.attacking = False def draw(self, surface): if not self.castingAnim.animationFinish: surface.blit(self.castingAnim.image, self.castingAnim.rect) else: surface.blit(self.image, self.rect) self.bullets.draw(surface) def update(self, boss, time, stage): # Actualizamos el ataque Attack.update(self, time) if not self.castingAnim.animationFinish: self.castingAnim.update(time) else: # Si ha pasado el tiempo suficiente y estamos intentando atacar if (self.elapsedTime > self.delayTime) and self.attacking: #Se llama a la funcion sound_update del channel_effect self.channel_effect.soundUpdate(time) # Se crea una bala y se guarda en el grupo de balas bullet = Bullet(self.bulletPos, self.rotation, self.radius, self.bulletImage, 0.15) self.bullets.add(bullet) # Y reiniciar el contador self.elapsedTime = 0 else: self.elapsedTime += time # Actualizamos las balas self.bullets.update(time, stage, self.bulletImage) # Comprobamos que enemigos colisionan con que grupos collides = pygame.sprite.groupcollide(self.bullets, self.enemies, True, False) # Si hay una colisión, hacemos daño al enemigo y matamos la bala for bullet in collides: enemies = collides[bullet] # Cogemos el primero en hacer la colisión para que reciba daño enemy = enemies[0] enemyPos = enemy.position impulse = Force(bullet.rotation, boss.stats["backward"]) enemy.receive_damage(boss.stats["atk"], impulse) if not self.attacking and len(self.bullets.sprites())==0: boss.attack = None self.kill()
5,082
doc/source/bin/get_links.py
alimon/pyke3
5
2025083
#!/usr/bin/env python # get_links.py import os import os.path def run_command(start_dir, outfilename): dir = start_dir links_seen = set() def doctor(link_dir, path): # Don't mess with paths that just refer to another link: if path.rstrip()[-1] == '_': return path path = path.lstrip() # Don't mess with paths that point somewhere in the outside universe: if path.startswith('http://'): return ' ' + path # Prepend link_dir to path if link_dir.startswith('./'): path = link_dir[2:] + '/' + path elif link_dir != '.': path = link_dir + '/' + path # Prepare dir (start_dir, minus initial './') if start_dir == '.': dir = '' elif start_dir.startswith('./'): dir = start_dir[2:] else: dir = start_dir rest=' ' last_dir = None while dir and dir != last_dir: if path.startswith(dir + '/'): ans = rest + path[len(dir) + 1:] #print "doctor(%s) abbr:" % (path.rstrip(),), ans return ans rest += '../' last_dir = dir dir, ignore = os.path.split(dir) ans = rest + path #print "doctor(%s) abs:" % (path.rstrip(),), ans return ans with open(outfilename, "w") as outfile: outfile.write("\n") while True: try: with open(os.path.join(dir, 'links')) as links: for line in links: link, path = line.split(':', 1) if link not in links_seen: links_seen.add(link) outfile.write(":".join((link, doctor(dir, path)))) except IOError: pass if dir == '.': break dir = os.path.dirname(dir) if __name__ == "__main__": import sys if len(sys.argv) != 3: print("usage: get_links.py dir outfile", file=sys.stderr) sys.exit(2) run_command(sys.argv[1], sys.argv[2])
2,048
src/ecs/systems/turnordersystem.py
joehowells/critical-keep
1
2025708
from ecs.components.aicomponent import AIComponent from ecs.components.deathcomponent import DeathComponent class TurnOrderSystem: def __init__(self, container): self.container = container def event_initialize(self): self.container.queue.clear() self.container.queue.append(self.container.player) def event_next_level(self, level): self.event_initialize() def event_dead(self, defender): if defender in self.container.queue and defender is not self.container.player: self.container.queue.remove(defender) def event_entity_visible(self, entity): if entity not in self.container.queue and AIComponent in entity: self.container.queue.append(entity) def update(self): if DeathComponent in self.container.player: self.container.event('game_over') else: self.container.queue.rotate(-1) entity = self.container.queue[0] self.container.event('take_turn', entity=entity) if entity is self.container.player: self.container.event('input_mode_move')
1,135
hangmanultimate/hangman.py
devarshi16/HangMan
10
2025682
#!/usr/bin/env python from __future__ import print_function from builtins import input from termcolor import colored import readchar from random import randint import sys import os import time from .data import * import threading,time from threading import Lock data_dir = os.path.join(os.path.dirname(__file__),'data') # hangman sprites hngmn = [''' +---+ | | | | | | =========''', ''' +---+ | | O | | | | =========''', ''' +---+ | | O | | | | | =========''', ''' +---+ | | O | /| | | | =========''', ''' +---+ | | O | /|\ | | | =========''', ''' +---+ | | O | /|\ | / | | =========''', ''' +---+ | | O | /|\ | / \ | | ========='''] hanged_man = ''' +---+ | | _O_ | | | / \ | | =========''' free_man = [''' +---+ | | _O_ | | | | | | =========''',''' +---+ | | \O/ | | | | | | ========='''] class Game: #fields win = 0 lose = 0 success_stat = 0 s=0 animal='dog' blanks='_' done_letters=['ij'] #methods def __init__(self,words,list_type):#initialisation print(words) self.animal = words[randint(0,len(words)-1)].upper() self.blanks=len(self.animal)*'_' for i,letter in enumerate(self.animal): if not letter.isalpha(): self.blanks = self.blanks[:i]+letter+self.blanks[i+1:] os.system("clear") #print(hngmn[0]) #print ('Guess the name of the '+list_type+' letter by letter') #print ('Your '+list_type+' is ' ,end='') #for letter in self.blanks: # print(letter,end = ' ') #print() #time.sleep(3) def Score(self):#displayed at the end if self.success_stat == 1: Game.win = Game.win + 1 # Game.win will be shared between objects else: Game.lose = Game.lose + 1 def Status(self): # Returns current win/lose status print("Score is "+colored("win = "+str(Game.win),'green')+" \\ "+colored("lose ="+ str(Game.lose),'red') ) def MainGame(self):#main game method while True: os.system("clear") k='ij' print (colored(hngmn[self.s],'magenta')) # Print current state of hangman for i in range(len(self.blanks)): print(self.blanks[i],end= ' ') print() print(colored("DONE LETTERS:",'blue'),end='') print(*self.done_letters,sep=',') while True: k=input("Your choice of letter?") if len(k)!=1: print('Enter only one letter please') continue elif not k.isalpha(): print('Enter only alphabets') continue elif k.upper() in self.done_letters: print ('The letter entered is already done') k='ij' continue else: k=k.upper() self.done_letters.append(k) break if self.animal.find(k)!=-1: # When letter is in the animal name #print ('yes the letter \''+colored(k,'red')+'\' is there') #time.sleep(2) i=0 while i<len(self.animal): if self.animal[i]==k: self.blanks=self.blanks[:i]+k+self.blanks[i+1:] i=i+1 else: self.s=self.s+1 # wrong selection counter if self.blanks.find('_')==-1: # No blanks found print('entered') self.success_stat=1 break if self.s==len(hngmn): # Hangman Complete self.success_stat=0 break key = None def get_key_press(): global key global printing_lock while key!='q': key = readchar.readchar() if key == '\x03': raise KeyboardInterrupt # Start Screen of game def start_screen(): i = 0 global key global printing_key try: while key!='q': os.system("clear") # equivalent to typing clear on terminal print(colored(hngmn[i%7],'green')) print (colored('##### WELCOME TO THE GAME OF HANGMAN #####','yellow')) print (colored('####### Save the man from hanging ########','cyan')) if i%2 == 0: print (colored(' [press <Ctrl + c> to start]','red')) time.sleep(0.5) # Animate by giving sleep time i+=1 except: pass def select_type(): os.system("clear") print(colored("Rules: Guess the word letter by letter to save the man from hanging",'blue')) print(colored("\n\n\t\tSelect word list\n\t\t1. Animals\n\t\t2. Pokemons\n\t\t3. Fruits\n\t\t4. Countries\n\t\t5. Bollywood Movies","magenta")) file_name = None lst_type = None while True: c = readchar.readchar() if c == '1': file_name = 'animals.txt' lst_type = 'animals' break elif c == '2': file_name = 'pokemons.txt' lst_type = 'pokemons' break elif c == '3': file_name = 'fruits.txt' lst_type = 'fruits' break elif c == '4': file_name = 'countries.txt' lst_type = 'fruits' break elif c == '5': file_name = 'bollywood movies.txt' lst_type = 'bollywood movies' break elif c == '\x03': raise KeyboardInterrupt # Open file containing animal names in read-only mode #file_loc = os.path.join(os.path.dirname(os.path.realpath(__file__)),DATA_LOCATION,file_name) ''' file_loc = os.path.join(data_dir,file_name) f = open(file_loc,'r') # Add each animal name on each line to a list 'animals' lst = [x.strip() for x in f.readlines()] ''' lst = word_list[lst_type] print(lst) return lst_type,lst # Function for animation after win or lose # Takes a Game class object as input def hanging_man_anim(game): i = 0 if game.success_stat == 0: while i <= 4: os.system("clear") if i%2 == 0: print(colored(hanged_man,'red')) else: print(colored(hngmn[-1],'red')) print(colored(":( !Man Hanged! :(\nCorrect word: ",'red')+colored(game.animal,'green')) game.Status() time.sleep(0.5) i+=1 else: while i <= 4: os.system("clear") if i%2 == 0: print(colored(free_man[0],'green')) else: print(free_man[1]) print(colored(":) !Man Saved! :)",'green')) game.Status() time.sleep(0.5) i+=1 def main(): start_screen() list_type,words = select_type() print(words) while True:#Game loop game = Game(words,list_type) game.done_letters=[] game.MainGame() game.Score() hanging_man_anim(game) #game.Score() exit_question = input("another game?(y/n)") break_flag = 0 while True: if (exit_question =='y'): break elif (exit_question == 'n'): break_flag =1 break else: exit_question = input("please type (y/n)") if break_flag != 0: break
8,859
setup.py
abhinavg97/ACSA_GNN
3
2025674
""" https://godatadriven.com/blog/a-practical-guide-to-using-setup-py/ https://docs.pytest.org/en/latest/goodpractices.html """ import io from os import path from setuptools import setup, find_packages requirements = [ 'torch==1.6.0', 'pytorch_lightning==1.0.2', 'numpy==1.19.1', 'dgl==0.5.2', 'spacy==2.3.2', 'pandas==1.1.0', 'networkx==2.4', 'scikit-learn==0.23.2', 'scikit-multilearn==0.2.0', 'nltk==3.5', 'editdistance==0.5.3', # required for contextualspellcheck 'contextualSpellCheck==0.2.0', 'pycontractions==2.0.1', 'unidecode==1.1.1' 'simpletransformers==0.48.14', 'matplotlib' ] extra_requirements = [ 'matplotlib' ] VERSION = '0.0.1' this_directory = path.abspath(path.dirname(__file__)) with io.open(path.join(this_directory, 'README.md'), encoding='utf-8') as f: README = f.read() setup( name='absa_gnn', version=VERSION, url='https://github.com/abhinavg97/GCN', description='Python module designed for text GCN', long_description=README, packages=find_packages(), zip_safe=True, install_requires=requirements, extras_require={ 'interactive': extra_requirements }, setup_requires=['pytest-runner', 'flake8'], tests_require=['pytest'], package_data={'': ['*.json']} ) # run pip install -e .[interactive] to install the package
1,390
RMPCrawl.py
NuclearPop/ratemyprofessordiscordbot
0
2026006
import requests from bs4 import BeautifulSoup def create_soup(url): # print(url) source_code = requests.get(url) plain_text = source_code.text soup = BeautifulSoup(plain_text, "html.parser") return soup def find_prof(soup, prof: list) -> str: all_lines = soup.find_all("a", href=True) for line in all_lines: if (line['href'].startswith('/ShowRatings.jsp?tid=')): possible_prof = set(line.find('span', {'class': 'main'}).text.strip().split(', ')) if set(prof) <= possible_prof: return 'http://www.ratemyprofessors.com' + line['href'] elif prof[-1] in possible_prof: return 'http://www.ratemyprofessors.com' + line['href'] def get_ratings(soup): result = dict() for x in ("quality", "difficulty", "takeAgain"): line = soup.find('div', {"class": x}) temp = line.find(class_="grade") if temp is not None: result[x] = (temp.text.strip()) return result def run(prof: str): prof = prof.split() url = 'http://www.ratemyprofessors.com/search.jsp?query=' url += 'UCI+' + prof[-1] soup = create_soup(url) prof_page = find_prof(soup, prof) if(prof_page != None): prof_soup = create_soup(prof_page) return get_ratings(prof_soup) if __name__ == '__main__': url = 'http://www.ratemyprofessors.com/search.jsp?query=' url += 'UCI+Pattis' soup = create_soup(url) prof_page = find_prof(soup, {'Pattis'}) prof_soup = create_soup(prof_page) ratings = get_ratings(prof_soup)
1,583
ground_truth_labeling_jobs/multi_modal_parallel_sagemaker_labeling_workflows_with_step_functions/src/lambda_test/labeling_job_state_change/main_test.py
jerrypeng7773/amazon-sagemaker-examples
2,610
2024999
import unittest from unittest import TestCase from unittest.mock import patch from labeling_job_state_change.main import lambda_handler from test_shared.mock_objects import OutputTestData, TestContext class TestCase(TestCase): @patch("shared.db.get_job_by_arn") @patch("shared.db.get_batch_metadata_by_labeling_job_name") @patch("shared.db.update_batch_status") @patch("shared.db.get_batch_metadata") def test_lambda_handler_happy_case( self, get_batch_metadata_mock, update_batch_status_mock, get_batch_metadata_by_labeling_job_name_mock, get_job_by_arn_mock, ): # Setup event = {"status": "test", "job_arns": ["arn:aws:sagemaker:test:test:labeling-job/test"]} get_batch_metadata_mock.return_value = OutputTestData.get_batch_first_level_output get_job_by_arn_mock.return_value = None get_batch_metadata_by_labeling_job_name_mock.return_value = ( OutputTestData.get_batch_metadata_by_labeling_job_name_output ) update_batch_status_mock.return_value = {} # Act val = lambda_handler(event, TestContext()) # Assert self.assertEqual("success", val, "Unexpected status code returned") if __name__ == "__main__": unittest.main()
1,299
environment_config.py
azam-a/newdeployments
0
2025623
# all paths are relative to jenkins job's workspace (absolute path is fine too) # common config for both deployment and cleanup scripts AWS_CONFIG_PATH = '' # path to config file (ini format) containing aws credentials AWS_PROFILE = '' # name of aws profile from the config file to be used CSS_BUCKET = '' # name of the css bucket IMAGE_BUCKET = '' # name of the image bucket JS_BUCKET = '' # name of the js bucket XML_PATH = '' # path of the xml file containing latest file versions # config specific to deployment script JAVA_PATH = '' # path of the folder containing java binary, may default to empty if already defined in system path MINIFIER_PATH = '' # path of the folder containing the minifiers binaries (closure compiler & yuicompressor) PREFIX_PATH = '' # path of the repo www folder # config specific to cleanup script CSS_PREFIX = '' # prefix of base path in buckets (eg. base folder name) IMAGE_PREFIX = '' # to narrow down selections during bucket.list() operations JS_PREFIX = '' # by excluding other irrelevant folders (log, etc)
1,141
madpy/tests/test_duration.py
seismomomo/madpy
1
2023082
import obspy import unittest import numpy as np import madpy.duration as dur import madpy.tests.testdata.config as cfg class TestAmplitude(unittest.TestCase): def test_measure_duration(self): st = obspy.read('testdata/duration.mseed') st[0].stats.o = obspy.UTCDateTime('2020-10-10T13:05:00.00') st[0].stats.p = 10. st[0].stats.s = 20. df_dur = dur.measure_duration(st, cfg) self.assertEqual(len(df_dur), len(st)) self.assertEqual(len(df_dur.columns), 8) def test_coda_duration(self): st = obspy.read('testdata/duration.mseed') st[0].stats.o = obspy.UTCDateTime('2020-10-10T13:05:00.00') st[0].stats.p = 10. st[0].stats.s = 20. duration, cc = dur.coda_duration(st[0], 10 ** -10, 'linear', cfg) self.assertAlmostEqual(duration, 175, 0) self.assertAlmostEqual(cc, -0.72, 2) def test_moving_average(self): st = obspy.read('testdata/duration.mseed') st[0].stats.o = obspy.UTCDateTime('2020-10-10T13:05:00.00') st[0].stats.p = 10. st[0].stats.s = 20. avg_time, avg_data = dur.moving_average(st[0].copy(), cfg.Duration) self.assertEqual(np.sum(st[0].data - avg_data), 0) cfg.Duration.moving_average_window = 2 avg_time, avg_data = dur.moving_average(st[0].copy(), cfg.Duration) self.assertEqual(len(st[0].data) - len(avg_data), 2 * st[0].stats.sampling_rate - 1) def test_time_relative_p(self): st = obspy.read('testdata/duration.mseed') st[0].stats.o = obspy.UTCDateTime('2020-10-10T13:05:00.00') st[0].stats.p = 10. st[0].stats.s = 20. time = np.arange(0, len(st[0].data)) * 0.01 - 40 self.assertEqual(np.sum(dur.time_relative_p(st[0].copy()) - time), 0) def test_log_envelope(self): data = np.array([-10, 0, 1, 10, 100, 0, -10, 1, 100, 10], dtype=float) envelope = dur.log_envelope(data) self.assertEqual(len(envelope[np.isnan(envelope)]), 4) self.assertEqual(len(envelope[~np.isnan(envelope)]), 6) def test_coda_fitting_window(self): st = obspy.read('testdata/duration.mseed') st[0].stats.o = obspy.UTCDateTime('2020-10-10T13:05:00.00') st[0].stats.p = 10. st[0].stats.s = 20. time, data_0 = dur.moving_average(st[0].copy(), cfg.Duration) data = dur.log_envelope(data_0) i0, i1 = dur.coda_fitting_window(st[0].copy(), cfg.Duration, time, data, 10 ** -10) self.assertEqual(i0, 5631) self.assertEqual(i1, 19292) def test_search_window(self): st = obspy.read('testdata/duration.mseed') st[0].stats.o = obspy.UTCDateTime('2020-10-10T13:05:00.00') st[0].stats.p = 10. st[0].stats.s = 20. time,_ = dur.moving_average(st[0].copy(), cfg.Duration) begin = dur.search_window(st[0].copy(), time, cfg.Duration, 'begin') end = dur.search_window(st[0].copy(), time, cfg.Duration, 'end') self.assertEqual(begin, 4701) self.assertEqual(end, 6901) def test_search_window_seconds(self): st = obspy.read('testdata/duration.mseed') st[0].stats.o = obspy.UTCDateTime('2020-10-10T13:05:00.00') st[0].stats.p = 10. st[0].stats.s = 20. begin = dur.search_window_seconds(st[0].copy(), cfg.Duration, 'begin') end = dur.search_window_seconds(st[0].copy(), cfg.Duration, 'end') self.assertEqual(begin, 8) self.assertEqual(end, 30) def test_phase_relative_p(self): st = obspy.read('testdata/duration.mseed') st[0].stats.o = obspy.UTCDateTime('2020-10-10T13:05:00.00') st[0].stats.p = 10. st[0].stats.s = 20. self.assertEqual(dur.phase_relative_p(st[0], 'O'), -10) self.assertEqual(dur.phase_relative_p(st[0], 'P'), 0) self.assertEqual(dur.phase_relative_p(st[0], 'S'), 10) def test_fitting_window_start(self): self.assertEqual(dur.fitting_window_start(cfg.Duration, 20, 50), 20) cfg.Duration.start_fit_max = 3 self.assertEqual(dur.fitting_window_start(cfg.Duration, 20, 50), 30) cfg.Duration.start_fit_max = 10 self.assertEqual(dur.fitting_window_start(cfg.Duration, 20, 50), 23) def test_fitting_window_end(self): st = obspy.read('testdata/duration.mseed') st[0].stats.o = obspy.UTCDateTime('2020-10-10T13:05:00.00') st[0].stats.p = 10. st[0].stats.s = 20. _,data_0 = dur.moving_average(st[0].copy(), cfg.Duration) data = dur.log_envelope(data_0) end = dur.fitting_window_end(st[0], cfg.Duration, data, 5631, 10 ** -10) self.assertEqual(end, 19292) def test_coda_line_fit(self): m = -5 b = 20 x = np.arange(0, 1000, 0.1) y = m * x + b fit = dur.coda_line_fit(x, y) self.assertAlmostEqual(fit[1], m) self.assertAlmostEqual(fit[0], b) def test_get_duration_index(self): m = -5 b = 20 x = np.arange(0, 1000, 0.1) y = m * x + b i, cross = dur.get_duration_index(cfg.Duration, [b, m], 10 ** -10) self.assertAlmostEqual(i, 6.001) self.assertEqual(cross, 6001) def test_extend_line(self): x, y = dur.extend_line(-5, 20, 0, 500, 0.1) self.assertEqual(len(x), 500 / 0.1) self.assertEqual(len(y), 500 / 0.1) def test_coda_line_end(self): self.assertEqual(dur.coda_line_end(cfg.Duration, 10 ** -10), -10) cfg.Duration.threshold_type = 'noise' self.assertAlmostEqual(dur.coda_line_end(cfg.Duration, 10 ** -10), -20) cfg.Duration.threshold_type = 'absolute' def test_get_correlation_coefficient(self): line = np.array([-5, -1]) time = np.arange(0, 1000, 0.01) data = line[1] * time + line[0] cc = dur.get_correlation_coefficient(line, time, data, 5, 90) self.assertAlmostEqual(cc, -1, 4) self.assertWarns(UserWarning, dur.get_correlation_coefficient, line, time, data, 5, 1110000) def test_calculate_cc(self): x = np.arange(0, 1000, 0.5) y = 5 * x - 1 y_true = np.column_stack((x, y)) self.assertRaises(AssertionError, dur.calculate_cc, y, y) self.assertEqual(dur.calculate_cc(y_true, y_true)[0, 3], 1) def format_output(self): data = ['2020', '13:00:00', 1., 2., 3.] self.assertRaises(AssertionError, dur.format_output, data) if __name__ == '__main__': unittest.main()
7,147
trade_remedies_api/security/utils.py
uktrade/trade-remedies-api
1
2025555
import logging from security.models import OrganisationUser from organisations.models import get_organisation from cases.models import get_case from django.contrib.auth.models import Group, Permission from .constants import GROUPS, GROUP_PERMISSIONS, ADDITIONAL_PERMISSIONS logger = logging.getLogger(__name__) def validate_user_organisation(user, organisation): """ Validate a user can access this organisation. This is true if the user is either a member of the organisation, or is a case worker. TODO: At the moment TRA side is fairly open. Consider this. """ if user.is_tra(): return True organisation = get_organisation(organisation) org_user = OrganisationUser.objects.filter(organisation=organisation, user=user).exists() return org_user def validate_user_case(user, case, organisation): """ Validate the user has access to this case and organisation Fairly simplistic at the moment """ if user.is_tra(): return True case = get_case(case) organisation = get_organisation(organisation) return user.has_case_access(case, organisation) # Setup/Bootsrapping utility funcitons def create_groups(): for group_data in GROUPS: group, created = Group.objects.get_or_create(name=group_data[0]) logger.info("\t{0} created? {1}".format(group_data[0], created)) def assign_group_permissions(): all_permissions = [] for group_name in GROUP_PERMISSIONS: logger.info( "Assigning {0} permissions to {1}".format( len(GROUP_PERMISSIONS[group_name]), group_name ) ) all_permissions += GROUP_PERMISSIONS[group_name] group, created = Group.objects.get_or_create(name=group_name) for permission_name in GROUP_PERMISSIONS[group_name]: try: app, perm = permission_name.split(".") permission = Permission.objects.get(codename=perm, content_type__app_label=app) group.permissions.add(permission) except Permission.DoesNotExist: logger.error("\t{0} -> Does not exist".format(permission_name), exc_info=True) logger.info("Assigning {0} Super User permissions".format(len(all_permissions))) superuser = Group.objects.get(name="Super User") for permission_name in all_permissions + ADDITIONAL_PERMISSIONS: try: app, perm = permission_name.split(".") permission = Permission.objects.get(codename=perm, content_type__app_label=app) superuser.permissions.add(permission) except Permission.DoesNotExist: logger.info("{0} permission not found".format(permission_name), exc_info=True)
2,725
finplot/example-line.py
fjafferi/finplot
0
2025574
#!/usr/bin/env python3 import finplot as fplt import numpy as np import pandas as pd dates = pd.date_range('01:00', '01:00:01.200', freq='1ms') prices = pd.Series(np.random.random(len(dates))).rolling(30).mean() + 4 fplt.plot(dates, prices, width=3) line = fplt.add_line((dates[100], 4.4), (dates[1100], 4.6), color='#9900ff', interactive=True) ## fplt.remove_line(line) text = fplt.add_text((dates[500], 4.6), "I'm here alright!", color='#bb7700') ## fplt.remove_text(text) def save(): fplt.screenshot(open('screenshot.png', 'wb')) fplt.timer_callback(save, 0.5, single_shot=True) # wait some until we're rendered fplt.show()
636
odifmap/ontology.py
duke-lungmap-team/ihc-segmentation-final
0
2025512
import ontospy import pickle import os from .resources import resource_path LOCAL_ONTOLOGY_FILE = os.path.join(resource_path, 'lung_ontology.owl') PICKLED_ONTOLOGY = os.path.join(resource_path, 'lung_ontology.pkl') try: # load pickled ontospy object f = open(PICKLED_ONTOLOGY, 'rb') onto = pickle.load(f) f.close() except FileNotFoundError: onto = ontospy.Ontospy(uri_or_path=LOCAL_ONTOLOGY_FILE, rdf_format='xml') # pickle the ontology f = open(PICKLED_ONTOLOGY, 'wb') pickle.dump(onto, f) f.close() def get_onto_protein_uri(ontology, protein_label): sparql_proteins_query = """ PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX owl: <http://www.w3.org/2002/07/owl#> PREFIX : <http://www.semanticweb.org/am175/ontologies/2017/1/untitled-ontology-79#> SELECT ?p ?p_label WHERE { ?p rdfs:subClassOf :Protein . ?p :has_synonym ?p_label . VALUES ?p_label { "%s" } } """ % protein_label results = ontology.query(sparql_proteins_query) return results def get_onto_cells_by_protein(ontology, protein_uri): sparql_protein_cell_query = """ PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX owl: <http://www.w3.org/2002/07/owl#> PREFIX : <http://www.semanticweb.org/am175/ontologies/2017/1/untitled-ontology-79#> SELECT ?c WHERE { ?c rdfs:subClassOf* :cell . ?c rdfs:subClassOf ?restriction . ?restriction owl:onProperty :has_part ; owl:someValuesFrom ?p . VALUES ?p { <%s> } } """ % protein_uri results = ontology.query(sparql_protein_cell_query) return results def get_onto_tissues_by_cell(ontology, cell_uri): sparql_cell_tissue_query = """ PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX owl: <http://www.w3.org/2002/07/owl#> PREFIX : <http://www.semanticweb.org/am175/ontologies/2017/1/untitled-ontology-79#> SELECT ?t WHERE { ?t rdfs:subClassOf* :tissue . ?t rdfs:subClassOf ?restriction . ?restriction owl:onProperty :has_part ; owl:someValuesFrom ?c . VALUES ?c { <%s> } } """ % cell_uri results = ontology.query(sparql_cell_tissue_query) return results def get_onto_structures_by_related_uri(ontology, uri): sparql_tissue_structure_query1 = """ PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX owl: <http://www.w3.org/2002/07/owl#> PREFIX : <http://www.semanticweb.org/am175/ontologies/2017/1/untitled-ontology-79#> SELECT ?s ?label ?pred WHERE { ?s rdfs:subClassOf* :complex_structure . ?s :lungmap_preferred_label ?label . ?s rdfs:subClassOf ?restriction . ?restriction owl:onProperty ?pred ; owl:someValuesFrom ?t . VALUES ?t { <%s> } . VALUES ?pred { :has_part :surrounded_by } } """ % uri results = ontology.query(sparql_tissue_structure_query1) return results def get_onto_sub_classes(ontology, uri): sparql_subclass_query = """ PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX owl: <http://www.w3.org/2002/07/owl#> PREFIX : <http://www.semanticweb.org/am175/ontologies/2017/1/untitled-ontology-79#> SELECT ?sub ?label WHERE { ?sub rdfs:subClassOf ?uri . ?sub :lungmap_preferred_label ?label . VALUES ?uri { <%s> } } """ % uri results = ontology.query(sparql_subclass_query) return results
3,253
tests/unit_tests/test_tethys_gizmos/test_urls.py
ezrajrice/tethys
0
2026034
from django.urls import reverse, resolve from tethys_sdk.testing import TethysTestCase class TestUrls(TethysTestCase): def set_up(self): pass def tear_down(self): pass def test_urlpatterns(self): url = reverse('gizmos:showcase') resolver = resolve(url) self.assertEqual('/developer/gizmos/', url) self.assertEqual('index', resolver.func.__name__) self.assertEqual('tethys_gizmos.views.gizmo_showcase', resolver.func.__module__) self.assertEqual('gizmos', resolver.namespaces[0]) def test_urlpatterns_google_map_view(self): url = reverse('gizmos:google_map_view') resolver = resolve(url) self.assertEqual('/developer/gizmos/google-map-view/', url) self.assertEqual('google_map_view', resolver.func.__name__) self.assertEqual('tethys_gizmos.views.gizmo_showcase', resolver.func.__module__) self.assertEqual('gizmos', resolver.namespaces[0]) def test_urlpatterns_map_view(self): url = reverse('gizmos:map_view') resolver = resolve(url) self.assertEqual('/developer/gizmos/map-view', url) self.assertEqual('map_view', resolver.func.__name__) self.assertEqual('tethys_gizmos.views.gizmo_showcase', resolver.func.__module__) self.assertEqual('gizmos', resolver.namespaces[0]) def test_urlpatterns_jobs_table(self): url = reverse('gizmos:jobs_table') resolver = resolve(url) self.assertEqual('/developer/gizmos/jobs-table', url) self.assertEqual('jobs_table_demo', resolver.func.__name__) self.assertEqual('tethys_gizmos.views.gizmo_showcase', resolver.func.__module__) self.assertEqual('gizmos', resolver.namespaces[0]) def test_urlpatterns_esri_map(self): url = reverse('gizmos:esri_map') resolver = resolve(url) self.assertEqual('/developer/gizmos/esri-map', url) self.assertEqual('esri_map', resolver.func.__name__) self.assertEqual('tethys_gizmos.views.gizmo_showcase', resolver.func.__module__) self.assertEqual('gizmos', resolver.namespaces[0]) def test_urlpatterns_results(self): url = reverse('gizmos:results', kwargs={'job_id': '123'}) resolver = resolve(url) self.assertEqual('/developer/gizmos/123/results', url) self.assertEqual('jobs_table_results', resolver.func.__name__) self.assertEqual('tethys_gizmos.views.gizmo_showcase', resolver.func.__module__) self.assertEqual('gizmos', resolver.namespaces[0]) def test_urlpatterns_sample_jobs(self): url = reverse('gizmos:sample_jobs') resolver = resolve(url) self.assertEqual('/developer/gizmos/sample-jobs', url) self.assertEqual('create_sample_jobs', resolver.func.__name__) self.assertEqual('tethys_gizmos.views.gizmo_showcase', resolver.func.__module__) self.assertEqual('gizmos', resolver.namespaces[0]) def test_ajax_urls_get_kml(self): url = reverse('gizmos:get_kml') resolver = resolve(url) self.assertEqual('/developer/gizmos/ajax/get-kml/', url) self.assertEqual('get_kml', resolver.func.__name__) self.assertEqual('tethys_gizmos.views.gizmo_showcase', resolver.func.__module__) self.assertEqual('gizmos', resolver.namespaces[0]) def test_ajax_urls_swap_kml(self): url = reverse('gizmos:swap_kml') resolver = resolve(url) self.assertEqual('/developer/gizmos/ajax/swap-kml/', url) self.assertEqual('swap_kml', resolver.func.__name__) self.assertEqual('tethys_gizmos.views.gizmo_showcase', resolver.func.__module__) self.assertEqual('gizmos', resolver.namespaces[0]) def test_ajax_urls_swap_overlays(self): url = reverse('gizmos:swap_overlays') resolver = resolve(url) self.assertEqual('/developer/gizmos/ajax/swap-overlays/', url) self.assertEqual('swap_overlays', resolver.func.__name__) self.assertEqual('tethys_gizmos.views.gizmo_showcase', resolver.func.__module__) self.assertEqual('gizmos', resolver.namespaces[0]) def test_ajax_urls_delete_job(self): url = reverse('gizmos:delete_job', kwargs={'job_id': '123'}) resolver = resolve(url) self.assertEqual('/developer/gizmos/ajax/123/delete', url) self.assertEqual('delete', resolver.func.__name__) self.assertEqual('tethys_gizmos.views.gizmos.jobs_table', resolver.func.__module__) self.assertEqual('gizmos', resolver.namespaces[0]) def test_ajax_urls_update_job_row(self): url = reverse('gizmos:update_job_row', kwargs={'job_id': '123'}) resolver = resolve(url) self.assertEqual('/developer/gizmos/ajax/123/update-row', url) self.assertEqual('update_row', resolver.func.__name__) self.assertEqual('tethys_gizmos.views.gizmos.jobs_table', resolver.func.__module__) self.assertEqual('gizmos', resolver.namespaces[0]) def test_ajax_urls_update_workflow_nodes_row(self): url = reverse('gizmos:update_workflow_nodes_row', kwargs={'job_id': '123'}) resolver = resolve(url) self.assertEqual('/developer/gizmos/ajax/123/update-workflow-nodes-row', url) self.assertEqual('update_workflow_nodes_row', resolver.func.__name__) self.assertEqual('tethys_gizmos.views.gizmos.jobs_table', resolver.func.__module__) self.assertEqual('gizmos', resolver.namespaces[0]) def test_ajax_urls_bokeh_row(self): url = reverse('gizmos:bokeh_row', kwargs={'job_id': '123', 'type': 'test'}) resolver = resolve(url) self.assertEqual('/developer/gizmos/ajax/123/test/insert-bokeh-row', url) self.assertEqual('bokeh_row', resolver.func.__name__) self.assertEqual('tethys_gizmos.views.gizmos.jobs_table', resolver.func.__module__) self.assertEqual('gizmos', resolver.namespaces[0])
5,938
utils/saver.py
niqbal996/ViewAL
126
2024576
import os import shutil import torch from collections import OrderedDict import glob import constants import json import imageio import numpy as np class Saver: def __init__(self, args, suffix='', experiment_group=None, remove_existing=False): self.args = args if experiment_group == None: experiment_group = args.dataset self.experiment_dir = os.path.join(constants.RUNS, experiment_group, args.checkname, suffix) if remove_existing and os.path.exists(self.experiment_dir): shutil.rmtree(self.experiment_dir) if not os.path.exists(self.experiment_dir): print(f'Creating dir {self.experiment_dir}') os.makedirs(self.experiment_dir) def save_checkpoint(self, state, filename='checkpoint.pth.tar'): filename = os.path.join(self.experiment_dir, filename) torch.save(state, filename) def load_checkpoint(self, filename='checkpoint.pth.tar'): filename = os.path.join(self.experiment_dir, filename) return torch.load(filename) def save_experiment_config(self): logfile = os.path.join(self.experiment_dir, 'parameters.txt') log_file = open(logfile, 'w') arg_dictionary = vars(self.args) log_file.write(json.dumps(arg_dictionary, indent=4, sort_keys=True)) log_file.close() def save_active_selections(self, paths, regional=False): if regional: Saver.save_masks(os.path.join(self.experiment_dir, "selections") , paths) else: filename = os.path.join(self.experiment_dir, 'selections.txt') with open(filename, 'w') as fptr: for p in paths: fptr.write(p.decode('utf-8') + '\n') @staticmethod def save_masks(directory, paths): if not os.path.exists(directory): os.makedirs(directory) for p in paths: imageio.imwrite(os.path.join(directory, p.decode('utf-8') +'.png'), (paths[p]*255).astype(np.uint8))
2,018
blender/arm/logicnode/physics/LN_apply_force_at_location.py
Lykdraft/armory
0
2026056
from arm.logicnode.arm_nodes import * class ApplyForceAtLocationNode(ArmLogicTreeNode): """Applies a force to a rigid body at a specified position. @seeNode Apply Force @seeNode Apply Impulse @seeNode Apply Impulse At Location @input Force: the force vector @input Force On Local Axis: if `true`, interpret the force vector as in object space @input Location: the location where to apply the force @input Location On Local Axis: if `true`, use the location relative to the objects location, otherwise use world coordinates """ bl_idname = 'LNApplyForceAtLocationNode' bl_label = 'Apply Force At Location' arm_version = 1 def init(self, context): super(ApplyForceAtLocationNode, self).init(context) self.add_input('ArmNodeSocketAction', 'In') self.add_input('ArmNodeSocketObject', 'Rigid Body') self.add_input('NodeSocketVector', 'Force') self.add_input('NodeSocketBool', 'Force On Local Axis') self.add_input('NodeSocketVector', 'Location') self.add_input('NodeSocketBool', 'Location On Local Axis') self.add_output('ArmNodeSocketAction', 'Out') add_node(ApplyForceAtLocationNode, category=PKG_AS_CATEGORY, section='force')
1,261
tests/test_signals.py
justinmayer/django-improved-user
89
2025586
"""Test Signal Handling""" from django.db.models.signals import post_save from django.test import TestCase from improved_user.models import User class TestCreateSuperUserSignals(TestCase): """Simple test case for ticket #20541""" # pylint: disable=unused-argument def post_save_listener(self, *args, **kwargs): """Note when signal sent; helper function""" self.signals_count += 1 # pylint: enable=unused-argument def setUp(self): """Connect function above to postsave User model signal""" self.signals_count = 0 post_save.connect(self.post_save_listener, sender=User) def tearDown(self): """Connect utility function from postsave""" post_save.disconnect(self.post_save_listener, sender=User) def test_create_user(self): """Test User Creation""" User.objects.create_user("<EMAIL>") self.assertEqual(self.signals_count, 1) def test_create_superuser(self): """Test Super User Creation""" User.objects.create_superuser("<EMAIL>", "password") self.assertEqual(self.signals_count, 1)
1,123
app/models.py
Napchat/microblog
0
2025834
''' app.models ~~~~~~~~~~ It defines our models related to tables in database. ''' from hashlib import md5 import sys import re from app import db, app from config import WHOOSH_ENABLED enable_search = WHOOSH_ENABLED if enable_search: import flask_whooshalchemy as whooshalchemy followers = db.Table('followers', db.Column('follower_id', db.Integer, db.ForeignKey('user.id')), db.Column('followed_id', db.Integer, db.ForeignKey('user.id')) ) class User(db.Model): '''The User model''' id = db.Column(db.Integer, primary_key=True) nickname = db.Column(db.String(64), index=True, unique=True) email = db.Column(db.String(120), index=True, unique=True) posts = db.relationship('Post', backref='author', lazy='dynamic') about_me = db.Column(db.String(140)) last_seen = db.Column(db.DateTime) # :arg: ``User`` on both sides mean that this is a self-referential # relationship. # :arg: ``secondary`` indicates the association table that is used # for this relationship. # :arg: ``primaryjoin`` indicates the condition that links the left # side entity(the follower user) with the association table. Note that # because the :table:`followers` is not a model there is a slightly # odd syntax required to get to the field name. # :arg: ``secondaryjoin`` indicates the condition that links the # right side entity(the followed user) with the association table. # :arg: ``backref`` defines how this relationship will be accessed # from the right side entity.``lazy`` indicates the execution mode # for this query. A mode of ``dynamic`` sets up the query to not run # until specifically requested. This is userful for performance reasons, # and also because we will be able to take this query and modify it before # it executes. More about this later. # :arg: ``lazy`` is similiar to the parameter of the same name in the # ``backref``, but this one applies to the regular query instead of the # back reference. # u1关注u2, 那么u1就有followed属性(followers表中的follower_id设置为u1的id, # followed_id设置为u2的id). followed = db.relationship('User', secondary=followers, primaryjoin=(followers.c.follower_id==id), secondaryjoin=(followers.c.followed_id==id), backref=db.backref('followers', lazy='dynamic'), lazy='dynamic') @property def is_authenticated(self): '''pass''' return True @property def is_active(self): '''pass''' return True @property def is_annoymous(self): '''pass''' return False def get_id(self): '''pass''' try: return unicode(self.id) except NameError: return str(self.id) def avatar(self, size): '''This method returns the URL of the user's avatar image''' return 'https://gravatar.com/avatar/%s?d=mm&s=%d' % \ (md5(self.email.encode('utf-8')).hexdigest(), size) def __repr__(self): # pragma: no cover '''This method tells Python how to print objects of this class. ''' return '<User %r>' % (self.nickname) # staticmethod don't work on instances. @staticmethod def make_unique_nickname(nickname): '''pass''' if User.query.filter_by(nickname=nickname).first() is None: return nickname version = 2 while True: new_nickname = nickname + str(version) if User.query.filter_by(nickname=new_nickname).first() is None: break version += 1 return new_nickname def follow(self, user): '''Follows a user.''' if not self.is_following(user): self.followed.append(user) return self def unfollow(self, user): '''Unfollows a user.''' if self.is_following(user): self.followed.remove(user) return self def is_following(self, user): '''Check if you followed the user.''' return self.followed.filter(followers.c.followed_id==user.id).count() > 0 def followed_posts(self): '''Return a query object including posts of the users that you have followed. It is always a good idea to return query object instead of results, because that gives the caller the choice of adding more clauses to the query before it is execeted. ''' return Post.query.join(followers, (followers.c.followed_id==Post.user_id)). \ filter(followers.c.follower_id==self.id).order_by(Post.timestamp.desc()) @staticmethod def make_valid_nickname(nickname): return re.sub('[^a-zA-Z0-0_\.]', '', nickname) class Post(db.Model): '''The Post model''' # It is an array with all the database fields that will be in the searchable # index. __searchable__ = ['body'] id = db.Column(db.Integer, primary_key=True) body = db.Column(db.String(140)) timestamp = db.Column(db.DateTime) user_id = db.Column(db.Integer, db.ForeignKey('user.id')) language = db.Column(db.String(5)) def __repr__(self): '''pass''' return '<Post %r>' % (self.body) # To initialize the full text for models. if enable_search: whooshalchemy.whoosh_index(app, Post)
5,467
stackdio/api/environments/api.py
hdmillerdr/stackdio
9
2025257
# -*- coding: utf-8 -*- # Copyright 2017, Digital Reasoning # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import absolute_import, unicode_literals import logging import os from collections import OrderedDict import envoy from guardian.shortcuts import assign_perm from rest_framework import generics, status from rest_framework.filters import DjangoFilterBackend, DjangoObjectPermissionsFilter from rest_framework.response import Response from rest_framework.reverse import reverse from rest_framework.serializers import ValidationError from stackdio.api.environments import filters, mixins, models, serializers, utils from stackdio.api.formulas.serializers import FormulaVersionSerializer from stackdio.core.constants import Activity from stackdio.core.permissions import StackdioModelPermissions, StackdioObjectPermissions from stackdio.core.renderers import PlainTextRenderer from stackdio.core.serializers import ObjectPropertiesSerializer from stackdio.core.viewsets import ( StackdioModelUserPermissionsViewSet, StackdioModelGroupPermissionsViewSet, StackdioObjectUserPermissionsViewSet, StackdioObjectGroupPermissionsViewSet, ) logger = logging.getLogger(__name__) class EnvironmentListAPIView(generics.ListCreateAPIView): """ Displays a list of all environments visible to you. """ queryset = models.Environment.objects.all() permission_classes = (StackdioModelPermissions,) filter_backends = (DjangoObjectPermissionsFilter, DjangoFilterBackend) filter_class = filters.EnvironmentFilter lookup_field = 'name' def get_serializer_class(self): if self.request.method == 'POST': return serializers.FullEnvironmentSerializer else: return serializers.EnvironmentSerializer def perform_create(self, serializer): env = serializer.save() for perm in models.Environment.object_permissions: assign_perm('environments.%s_environment' % perm, self.request.user, env) class EnvironmentDetailAPIView(generics.RetrieveUpdateDestroyAPIView): queryset = models.Environment.objects.all() serializer_class = serializers.EnvironmentSerializer permission_classes = (StackdioObjectPermissions,) lookup_field = 'name' class EnvironmentPropertiesAPIView(generics.RetrieveUpdateAPIView): queryset = models.Environment.objects.all() serializer_class = ObjectPropertiesSerializer permission_classes = (StackdioObjectPermissions,) lookup_field = 'name' class EnvironmentHostListAPIView(mixins.EnvironmentRelatedMixin, generics.ListAPIView): serializer_class = serializers.EnvironmentHostSerializer def get_queryset(self): environment = self.get_environment() return sorted(environment.get_current_hosts(), key=lambda x: x['id']) class EnvironmentLabelListAPIView(mixins.EnvironmentRelatedMixin, generics.ListCreateAPIView): serializer_class = serializers.EnvironmentLabelSerializer def get_queryset(self): environment = self.get_environment() return environment.labels.all() def get_serializer_context(self): context = super(EnvironmentLabelListAPIView, self).get_serializer_context() context['content_object'] = self.get_environment() return context def perform_create(self, serializer): serializer.save(content_object=self.get_environment()) class EnvironmentLabelDetailAPIView(mixins.EnvironmentRelatedMixin, generics.RetrieveUpdateDestroyAPIView): serializer_class = serializers.EnvironmentLabelSerializer lookup_field = 'key' lookup_url_kwarg = 'label_name' def get_queryset(self): environment = self.get_environment() return environment.labels.all() def get_serializer_context(self): context = super(EnvironmentLabelDetailAPIView, self).get_serializer_context() context['content_object'] = self.get_environment() return context class EnvironmentComponentListAPIView(mixins.EnvironmentRelatedMixin, generics.ListAPIView): serializer_class = serializers.EnvironmentComponentSerializer def get_queryset(self): environment = self.get_environment() return environment.get_components() class EnvironmentActionAPIView(mixins.EnvironmentRelatedMixin, generics.GenericAPIView): serializer_class = serializers.EnvironmentActionSerializer def get(self, request, *args, **kwargs): environment = self.get_environment() # Grab the list of available actions for the current environment activity available_actions = Activity.env_action_map.get(environment.activity, []) # Filter them based on permissions available_actions = utils.filter_actions(request.user, environment, available_actions) return Response({ 'available_actions': sorted(available_actions), }) def post(self, request, *args, **kwargs): """ POST request allows RPC-like actions to be called to interact with the environment. Request contains JSON with an `action` parameter and optional `args` depending on the action being executed. """ environment = self.get_environment() serializer = self.get_serializer(environment, data=request.data) serializer.is_valid(raise_exception=True) serializer.save() return Response(serializer.data) class EnvironmentFormulaVersionsAPIView(mixins.EnvironmentRelatedMixin, generics.ListCreateAPIView): serializer_class = FormulaVersionSerializer def get_queryset(self): environment = self.get_environment() return environment.formula_versions.all() def perform_create(self, serializer): serializer.save(content_object=self.get_environment()) class EnvironmentLogsAPIView(mixins.EnvironmentRelatedMixin, generics.GenericAPIView): log_types = ( 'provisioning', 'provisioning-error', 'orchestration', 'orchestration-error', ) def get(self, request, *args, **kwargs): environment = self.get_environment() root_dir = environment.get_root_directory() log_dir = environment.get_log_directory() latest = OrderedDict() for log_type in self.log_types: spl = log_type.split('-') if len(spl) > 1 and spl[1] == 'error': log_file = '%s.err.latest' % spl[0] else: log_file = '%s.log.latest' % log_type if os.path.isfile(os.path.join(root_dir, log_file)): latest[log_type] = reverse( 'api:environments:environment-logs-detail', kwargs={'parent_name': environment.name, 'log': log_file}, request=request, ) historical = [ reverse('api:environments:environment-logs-detail', kwargs={'parent_name': environment.name, 'log': log}, request=request) for log in sorted(os.listdir(log_dir)) ] ret = OrderedDict(( ('latest', latest), ('historical', historical), )) return Response(ret) class EnvironmentLogsDetailAPIView(mixins.EnvironmentRelatedMixin, generics.GenericAPIView): renderer_classes = (PlainTextRenderer,) # TODO: Code complexity ignored for now def get(self, request, *args, **kwargs): # NOQA environment = self.get_environment() log_file = self.kwargs.get('log', '') try: tail = int(request.query_params.get('tail', 0)) except ValueError: tail = None try: head = int(request.query_params.get('head', 0)) except ValueError: head = None if head and tail: return Response('Both head and tail may not be used.', status=status.HTTP_400_BAD_REQUEST) if log_file.endswith('.latest'): log = os.path.join(environment.get_root_directory(), log_file) elif log_file.endswith('.log') or log_file.endswith('.err'): log = os.path.join(environment.get_log_directory(), log_file) else: log = None if not log or not os.path.isfile(log): raise ValidationError({ 'log_file': ['Log file does not exist: {0}.'.format(log_file)] }) if tail: ret = envoy.run('tail -{0} {1}'.format(tail, log)).std_out elif head: ret = envoy.run('head -{0} {1}'.format(head, log)).std_out else: with open(log, 'r') as f: ret = f.read() return Response(ret) class EnvironmentModelUserPermissionsViewSet(StackdioModelUserPermissionsViewSet): model_cls = models.Environment class EnvironmentModelGroupPermissionsViewSet(StackdioModelGroupPermissionsViewSet): model_cls = models.Environment class EnvironmentObjectUserPermissionsViewSet(mixins.EnvironmentPermissionsMixin, StackdioObjectUserPermissionsViewSet): pass class EnvironmentObjectGroupPermissionsViewSet(mixins.EnvironmentPermissionsMixin, StackdioObjectGroupPermissionsViewSet): pass
9,839
site-packages/visual/examples/eventHandlers.py
lebarsfa/vpython-wx
68
2025200
from __future__ import print_function from visual import * s = sphere() instruct = """ Try mouse and keyboard events, and note the printed outputs. """ l = label(pos=s.pos, text=instruct) redrawCount = 0 class RedrawCounter(object): redrawCount = 0 def increment(self): self.redrawCount += 1 def handleMouseDown(evt, arbArg): print("Mouse down!" + repr(evt.pos) + ':' + repr(arbArg) + ':' + evt.event) if m.enabled: m.stop() print("keydown events are now disabled") else: m.start() print("keydown events are now enabled") def handleMouseUp( evt ): print("Mouse up! " + evt.event) def handleMouseClick( evt ): print("Mouse click!" + evt.event) def handleKeyUp( evt ): print("The ", evt.key, "key has gone up:", evt.event) print(' evt.ctrl =', evt.ctrl, ', evt.alt =', evt.alt, ', evt.shift =', evt.shift) def handleKeyDown( evt ): print("The ", evt.key, "key has gone down", evt.event) print(' evt.ctrl =', evt.ctrl, ', evt.alt =', evt.alt, ', evt.shift =', evt.shift) if evt.key == 'R': print("There have been", redraw.redrawCount, "redraws") def handleMouseMove( evt, num ): print(evt) print(num) print("Mouse moved! pos=", repr(evt.pos), ":", evt.event) redraw = RedrawCounter() scene.bind('mousedown', handleMouseDown, scene) scene.bind('mouseup', handleMouseUp) scene.bind('click', handleMouseClick) m = scene.bind('keydown', handleKeyDown) scene.bind('keyup', handleKeyUp) scene.bind('redraw', redraw.increment) scene.bind('mousemove', handleMouseMove, 3.2)
1,588
fair_flearn/flearn/models/cifar/inception.py
litian96/TERM
30
2025044
import numpy as np import tensorflow as tf from tqdm import trange import tensorflow.contrib.slim as slim from flearn.utils.model_utils import batch_data, gen_batch from flearn.utils.tf_utils import graph_size from flearn.utils.tf_utils import process_grad trunc_normal = lambda stddev: tf.truncated_normal_initializer(stddev=stddev) def process_x(raw_x_batch): x_batch = np.array(raw_x_batch) return x_batch def process_y(raw_y_batch): labels = np.array(raw_y_batch) y_batch = np.eye(10)[labels] return y_batch class Model(object): def __init__(self, num_classes, q, optimizer, seed): self.num_classes = num_classes self.graph = tf.Graph() with self.graph.as_default(): # tf.set_random_seed(123 + seed) tf.set_random_seed(456 + seed) self.features, self.labels, self.train_op, self.grads, self.eval_metric_ops, self.loss = self.create_model( optimizer, q) self.saver = tf.train.Saver() self.sess = tf.Session(graph=self.graph) self.size = graph_size(self.graph) with self.graph.as_default(): self.sess.run(tf.global_variables_initializer()) metadata = tf.RunMetadata() opts = tf.profiler.ProfileOptionBuilder.float_operation() self.flops = tf.profiler.profile(self.graph, run_meta=metadata, cmd='scope', options=opts).total_float_ops def create_model(self, optimizer, q, dropout_keep_prob=0.5, prediction_fn=slim.softmax): end_points = {} images = tf.placeholder(tf.float32, [None, 32, 32, 3]) one_hot_labels = tf.placeholder(tf.int32, [None, self.num_classes]) net = slim.conv2d(images, 64, [5, 5], scope='conv1') net = slim.max_pool2d(net, [2, 2], 2, scope='pool1') net = tf.nn.lrn(net, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm1') net = slim.conv2d(net, 64, [5, 5], scope='conv2') net = tf.nn.lrn(net, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm2') net = slim.max_pool2d(net, [2, 2], 2, scope='pool2') net = slim.flatten(net) net = slim.fully_connected(net, 384, scope='fc3') net = slim.fully_connected(net, 192, scope='fc4') logits = slim.fully_connected(net, self.num_classes, biases_initializer=tf.zeros_initializer(), weights_initializer=trunc_normal(1 / 192.0), weights_regularizer=None, activation_fn=None, scope='logits') loss = tf.nn.softmax_cross_entropy_with_logits( labels=one_hot_labels, logits=logits) #loss = tf.reduce_mean(loss) loss = tf.reshape(loss, [-1, 1]) loss = (1.0 / q) * tf.log( (1.0 / 128) * tf.reduce_sum(tf.exp(q * loss)) + 1e-6) grads_and_vars = optimizer.compute_gradients(loss) grads, _ = zip(*grads_and_vars) train_op = optimizer.apply_gradients(grads_and_vars, global_step=tf.train.get_global_step()) correct_pred = tf.equal(tf.argmax(logits, 1), tf.argmax(one_hot_labels, 1)) eval_metric_ops = tf.count_nonzero(correct_pred) return images, one_hot_labels, train_op, grads, eval_metric_ops, loss def set_params(self, model_params=None): if model_params is not None: with self.graph.as_default(): all_vars = tf.trainable_variables() for variable, value in zip(all_vars, model_params): variable.load(value, self.sess) def get_params(self): with self.graph.as_default(): model_params = self.sess.run(tf.trainable_variables()) return model_params def get_loss(self, data): with self.graph.as_default(): loss = self.sess.run(self.loss, feed_dict={self.features: process_x(data['x']), self.labels: process_y(data['y'])}) return loss def solve_sgd(self, mini_batch_data): with self.graph.as_default(): input_data = process_x(mini_batch_data[0]) target_data = process_y(mini_batch_data[1]) grads, loss, _ = self.sess.run([self.grads, self.loss, self.train_op], feed_dict={self.features: input_data, self.labels: target_data}) soln = self.get_params() return grads, loss, soln def solve_inner(self, data, num_epochs=1, batch_size=32): ''' Args: data: dict of the form {'x': [list], 'y': [list]} Return: soln: trainable variables of the lstm model comp: number of FLOPs computed while training given data ''' for idx in trange(num_epochs, desc='Epoch: ', leave=False): for X, y in batch_data(data, batch_size): with self.graph.as_default(): self.sess.run(self.train_op, feed_dict={self.features: X, self.labels: y}) soln = self.get_params() comp = num_epochs * (len(data['y']) // batch_size) * batch_size * self.flops return soln, comp def test(self, data): ''' Args: data: dict of the form {'x': [list], 'y': [list]} Return: tot_correct: total #samples that are predicted correctly loss: loss value on `data` ''' l = 0 tot = 0 for X, y in batch_data(data, 125): with self.graph.as_default(): tot_correct, loss = self.sess.run([self.eval_metric_ops, self.loss], feed_dict={self.features: process_x(X), self.labels: process_y(y)}) l += loss tot += tot_correct return tot, l / 80 def close(self): self.sess.close()
5,953
wright_plans/attune.py
wright-group/wright-plans
1
2023726
import attune import numpy as np from bluesky import Msg from cycler import cycler from ._constants import Constant, ConstantTerm from ._messages import set_relative_to_func_wrapper, inject_set_position_except_wrapper from ._plans import scan_nd_wp def motortune(detectors, opa, use_tune_points, motors, spectrometer=None, *, md=None): cyc = 1 md = md or {} instr = attune.Instrument(**opa.instrument) arrangement = opa.arrangement relative_sets = {} exceptions = [] constants = {} axis_units = {} scanned_motors = [ m for m, params in motors.items() if params.get("method") == "scan" ] if use_tune_points: cyc = cycler(opa, get_tune_points(instr, instr[arrangement], scanned_motors)) axis_units[opa] = "nm" # TODO more robust units? for mot, params in motors.items(): if params["method"] == "static": yield Msg("set", getattr(opa, mot), params["center"]) exceptions += [mot] elif params["method"] == "scan": exceptions += [mot] if use_tune_points: params["center"] = 0 def _motor_rel(opa, motor): def _motor_rel_inner(): return instr(opa.position, arrangement)[motor] return _motor_rel_inner relative_sets[getattr(opa, mot)] = _motor_rel(opa, mot) cyc *= cycler( getattr(opa, mot), np.linspace( params["center"] - params["width"] / 2, params["center"] + params["width"] / 2, params["npts"], ), ) if spectrometer and spectrometer["device"]: if spectrometer["method"] == "static": yield Msg("set", spectrometer["device"], spectrometer["center"]) elif spectrometer["method"] == "zero": yield Msg("set", spectrometer["device"], 0) elif spectrometer["method"] == "track": constants[spectrometer["device"]] = Constant("nm", [ConstantTerm(1, opa)]) elif spectrometer["method"] == "set": if use_tune_points: constants[spectrometer["device"]] = Constant( "nm", [ConstantTerm(1, opa)] ) else: yield Msg("set", spectrometer["device"], spectrometer["center"]) elif spectrometer["method"] == "scan": if use_tune_points: spectrometer["center"] = 0 def _spec_rel(opa): def _spec_rel_inner(): return opa.position return _spec_rel_inner relative_sets[spectrometer["device"]] = _spec_rel(opa) cyc *= cycler( spectrometer["device"], np.linspace( spectrometer["center"] - spectrometer["width"] / 2, spectrometer["center"] + spectrometer["width"] / 2, spectrometer["npts"], ), ) axis_units[spectrometer["device"]] = "nm" plan = scan_nd_wp(detectors, cyc, axis_units=axis_units, constants=constants, md=md) if relative_sets: plan = set_relative_to_func_wrapper(plan, relative_sets) if exceptions: plan = inject_set_position_except_wrapper(plan, opa, exceptions) return (yield from plan) def get_tune_points(instrument, arrangement, scanned_motors): min_ = arrangement.ind_min max_ = arrangement.ind_max if not scanned_motors: scanned_motors = arrangement.keys() inds = [] for scanned in scanned_motors: if scanned in arrangement.keys() and hasattr( arrangement[scanned], "independent" ): inds += [arrangement[scanned].independent] continue for name in arrangement.keys(): if ( name in instrument.arrangements and scanned in instrument(instrument[name].ind_min, name).keys() and hasattr(arrangement[scanned], "independent") ): inds += [arrangement[scanned].independent] if len(inds) > 1: inds = np.concatenate(inds) else: inds = inds[0] unique = np.unique(inds) tol = 1e-3 * (max_ - min_) diff = np.append(tol * 2, np.diff(unique)) return unique[diff > tol] def run_holistic(detectors, opa, motor0, motor1, width, npts, spectrometer, *, md=None): return ( yield from motortune( detectors + [motor0], opa, True, {motor1: {"method": "scan", "width": width, "npts": npts}}, spectrometer, md=md, ) ) def run_intensity(detectors, opa, motor, width, npts, spectrometer, *, md=None): assert not spectrometer or spectrometer["method"] in ("none", "track", "zero") return ( yield from motortune( detectors, opa, True, {motor: {"method": "scan", "width": width, "npts": npts}}, spectrometer, md=md, ) ) def run_setpoint(detectors, opa, motor, width, npts, spectrometer, *, md=None): return ( yield from motortune( detectors, opa, True, {motor: {"method": "scan", "width": width, "npts": npts}}, spectrometer, md=md, ) ) def run_tune_test(detectors, opa, spectrometer, *, md=None): return (yield from motortune(detectors, opa, True, {}, spectrometer, md=md))
5,614
databricks_cli/groups/api.py
testruction/databricks-cli
252
2026001
"""Implement Databricks Groups API, interfacing with the GroupsService.""" # Databricks CLI # Copyright 2017 Databricks, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"), except # that the use of services to which certain application programming # interfaces (each, an "API") connect requires that the user first obtain # a license for the use of the APIs from Databricks, Inc. ("Databricks"), # by creating an account at www.databricks.com and agreeing to either (a) # the Community Edition Terms of Service, (b) the Databricks Terms of # Service, or (c) another written agreement between Licensee and Databricks # for the use of the APIs. # # You may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from databricks_cli.sdk import GroupsService class GroupsApi(object): """Implement the databricks '2.0/groups' API Interface.""" def __init__(self, api_client): self.client = GroupsService(api_client) def add_member(self, parent_name, user_name, group_name): """ Only one of ``user_name`` or ``group_name`` should be provided. """ assert bool(user_name is not None) ^ bool(group_name is not None) return self.client.add_to_group(parent_name=parent_name, user_name=user_name, group_name=group_name) def create(self, group_name): """Create a new group with the given name.""" return self.client.create_group(group_name) def list_members(self, group_name): """Return all of the members of a particular group.""" return self.client.get_group_members(group_name) def list_all(self): """Return all of the groups in an organization.""" return self.client.get_groups() def list_parents(self, user_name, group_name): """ Only one of ``user_name`` or ``group_name`` should be provided. Retrieve all groups in which a given user or group is a member. Note: this method is non-recursive - it will return all groups in which the given user or group is a member but not the groups in which those groups are members). """ assert bool(user_name is not None) ^ bool(group_name is not None) return self.client.get_groups_for_principal(user_name=user_name, group_name=group_name) def remove_member(self, parent_name, user_name, group_name): """ Only one of ``user_name`` or ``group_name`` should be provided. """ assert bool(user_name is not None) ^ bool(group_name is not None) return self.client.remove_from_group(parent_name=parent_name, user_name=user_name, group_name=group_name) def delete(self, group_name): """Remove a group from this organization.""" return self.client.remove_group(group_name)
3,370
learn_stem/devops/selenium/test-3-screenshot.py
wgong/open_source_learning
1
2025911
from selenium import webdriver driver = webdriver.Remote("http://localhost:4444/wd/hub", webdriver.DesiredCapabilities.FIREFOX.copy()) driver.get("http://www.google.com") driver.get_screenshot_as_file('google.png')
219
imix/models/losses/diverse_loss.py
linxi1158/iMIX
0
2024499
import torch import torch.nn.functional as F from torch.autograd import Variable from ..builder import LOSSES from .base_loss import BaseLoss @LOSSES.register_module() class DiverseLoss(BaseLoss): def __init__(self): super().__init__(loss_name=str(self)) def forward(self, model_output): w_div = 0.125 predict_anchor = model_output['attnscore_list'] target_bbox = model_output['input_mask'] losses = DiverseLoss.compute_loss(predict_anchor, target_bbox) losses = w_div * losses return losses def __str__(self): return 'diverse_loss' @staticmethod def mask_softmax(attn_score, word_mask, tempuature=10., clssep=False, lstm=False): if len(attn_score.shape) != 2: attn_score = attn_score.squeeze(2).squeeze(2) word_mask_cp = word_mask[:, :attn_score.shape[1]].clone() score = F.softmax(attn_score * tempuature, dim=1) if not clssep: for ii in range(word_mask_cp.shape[0]): if lstm: word_mask_cp[ii, word_mask_cp[ii, :].sum() - 1] = 0 else: word_mask_cp[ii, 0] = 0 word_mask_cp[ii, word_mask_cp[ii, :].sum()] = 0 # set one to 0 already mask_score = score * word_mask_cp.float() mask_score = mask_score / (mask_score.sum(1) + 1e-8).view(mask_score.size(0), 1).expand( mask_score.size(0), mask_score.size(1)) return mask_score @staticmethod def compute_loss(score_list, word_mask, m=-1, coverage_reg=True): score_matrix = torch.stack([DiverseLoss.mask_softmax(score, word_mask) for score in score_list], dim=1) # (B,Nfilm,N,H,W) cov_matrix = torch.bmm(score_matrix, score_matrix.permute(0, 2, 1)) # (BHW,Nfilm,Nfilm) id_matrix = Variable(torch.eye(cov_matrix.shape[1]).unsqueeze(0).repeat(cov_matrix.shape[0], 1, 1).cuda()) if m == -1.: div_reg = torch.sum(((cov_matrix * (1 - id_matrix))**2).view(-1)) / cov_matrix.shape[0] else: div_reg = torch.sum(((cov_matrix - m * id_matrix)**2).view(-1)) / cov_matrix.shape[0] if coverage_reg: word_mask_cp = word_mask.clone() for ii in range(word_mask_cp.shape[0]): word_mask_cp[ii, 0] = 0 word_mask_cp[ii, word_mask_cp[ii, :].sum()] = 0 # set one to 0 already cover_matrix = 1. - torch.clamp(torch.sum(score_matrix, dim=1, keepdim=False), min=0., max=1.) cover_reg = torch.sum((cover_matrix * word_mask_cp.float()).view(-1)) / cov_matrix.shape[0] div_reg += cover_reg return div_reg
2,714
functions.py
laidig/pysiri2validator
0
2025726
#!/usr/bin/python3 """ Python functions to validate SIRI 2.0 formatted XML much credit to https://gist.github.com/iiska/215879 """ import lxml from lxml import etree def getLoadedSchema(schemafile): doc = etree.parse(schemafile) try: schema = etree.XMLSchema(doc) except Exception as e: print(e) exit(1) return schema def parsebytes(schema, bytes): """ returns True if valid to XSD""" print("Validating") doc = etree.XML(bytes) return assertSchema(schema, doc) def parseFile(schema, xml): """ returns True if valid to XSD""" print("Validating") doc = etree.parse(xml) return assertSchema(schema, doc) def assertSchema(schema, doc): try: schema.assertValid(doc) except lxml.etree.DocumentInvalid as e: print(e) return False return True
893
test_2c2p.py
SweiLz/Python-2C2P
0
2025813
import hashlib import hmac import random import time import json from flask import Flask, url_for, render_template, redirect, request, jsonify from forms import PaymentInfoForm app = Flask(__name__) class Payment2C2P(): def __init__(self, merchant_id, secret_key, request_uri): self.request_uri = request_uri self.secret_key = secret_key self.data = { 'merchant_id': merchant_id, 'order_id': str(int(round(time.time()*1000))), 'version': '8.5', 'result_url_1': 'http://127.0.0.1:5000/payment-complete' } def setTransaction(self, payment_description, currency, amount, order_id): self.data['payment_description'] = payment_description self.data['currency'] = str(self._get_currency_id_from_code(currency)) self.data['amount'] = '{:012}'.format(amount) self.data['order_id'] = '{:05}'.format(order_id) return self.data def request(self): mandatory_fields = ['payment_description', 'order_id', 'amount', 'currency'] for f in mandatory_fields: if f not in self.data: raise Exception('Missing mandatory value {}'.format(f)) self.data['hash_value'] = self._get_request_hash() form_id = '' chars = 'bcdfghjklmnpqrstvwxyz' for i in range(0, 20): form_id = '%s%s' % ( form_id, chars[random.randint(0, len(chars) - 1)]) html = [] html.append('<form id="{}" action="{}" method="post">'.format( form_id, self.request_uri)) for key in self.data: html.append('<input type="hidden" name="%s" value="%s" />' % (key, self.data[key])) html.append('<input type="submit" value="Pay now">') html.append('</form>') html.append('<script>document.forms.%s.submit()</script>' % form_id) return ''.join(html) def _get_request_hash(self): fields = ['version', 'merchant_id', 'payment_description', 'order_id', 'currency', 'amount', 'result_url_1'] hash_str = '' for f in fields: if f in self.data: hash_str = '{}{}'.format(hash_str, self.data[f]) print(hash_str) hash_val = hmac.new(bytes(self.secret_key, 'utf-8'), bytes(hash_str, 'utf-8'), hashlib.sha256).hexdigest() return hash_val def _validate_response_hash(self): # rdata = json.dumps("version=8.5&request_timestamp=2020-01-11+16%3A17%3A14&merchant_id=JT04&currency=764&order_id=1578734226319&amount=000000120000&invoice_no=&transaction_ref=1578734226319&approval_code=479135&eci=05&transaction_datetime=2020-01-11+16%3A18%3A17&payment_channel=001&payment_status=000&channel_response_code=00&channel_response_desc=success&masked_pan=411111XXXXXX1111&stored_card_unique_id=&backend_invoice=&paid_channel=&paid_agent=&recurring_unique_id=&ippPeriod=&ippInterestType=&ippInterestRate=&ippMerchantAbsorbRate=&payment_scheme=VI&process_by=VI&sub_merchant_list=&user_defined_1=&user_defined_2=&user_defined_3=&user_defined_4=&user_defined_5=&browser_info=Type%3DChrome79%2CName%3DChrome%2CVer%3D79.0&mcp=&mcp_amount=&mcp_currency=&mcp_exchange_rate=&hash_value=F1247BF43E9E5BAA72BD145BE082110ED280042620889964D369FD367827AADA") fields = [ 'version', 'request_timestamp', 'merchant_id', 'currency', 'order_id', 'amount', 'invoice_no', 'transaction_ref', 'approval_code', 'eci', 'transaction_datetime', 'payment_channel', 'payment_status', 'channel_response_code', 'channel_response_desc', 'masked_pan', 'stored_card_unique_id', 'backend_invoice', 'paid_channel', 'paid_agent', 'recurring_unique_id', 'ippPeriod', 'ippInterestType', 'ippInterestRate', 'ippMerchantAbsorbRate', 'payment_scheme', 'process_by', 'sub_merchant_list', 'user_defined_1', 'user_defined_2', 'user_defined_3', 'user_defined_4', 'user_defined_5', 'browser_info', 'mcp', 'mcp_amount', 'mpc_currency', 'mcp_exchange_rate' ] hash_str = '' for f in fields: if f in request.POST: hash_str = '{}{}'.format(hash_str, request.POST[f]) print(hash_str) hash_val = hmac.new(bytes(self.secret_key, 'utf-8'), bytes(hash_str, 'utf-8'), hashlib.sha256).hexdigest() return hash_val def _get_currency_id_from_code(self, code): return { 'SGD': 702, 'MMK': 104, 'IDR': 360, 'THB': 764, 'PHP': 608, 'HKD': 344, 'MYR': 458, 'VND': 704 }[code.upper()] payment2C2P = Payment2C2P( 'JT04', 'QnmrnH6QE23N', 'https://demo2.2c2p.com/2C2PFrontEnd/RedirectV3/payment') @app.route('/', methods=('GET', 'POST')) def hello_world(): form = PaymentInfoForm(request.form) if request.method == 'POST': if form.is_submitted(): print("Form successfully submitted") if form.validate_on_submit(): id = payment2C2P.data['order_id'] # message = json. # print(form.json()) # print(form.description.data) # "Hello World" # return redirect(url_for('payment', desc=form.description.data, curr=form.currency.data, amount=form.amount.data, order_id=id), code=307) else: print(form.errors) return render_template('index.html', form=form, template='form-template') @app.route('/payment', methods=('GET', 'POST')) def payment(): if request.method == 'POST': desc = request.args.get('desc') curr = request.args.get('curr') amount = int(float(request.args.get('amount'))*100) order_id = int(request.args.get('order_id')) payment2C2P.setTransaction(desc, curr, amount, order_id) return payment2C2P.request() return "OK" @app.route('/payment-complete', methods=('GET', 'POST')) def success(): # print(request.) return render_template('success.html', template='success-template') if __name__ == "__main__": app.config['SECRET_KEY'] = "powerful secretkey" app.run(debug=True) # Test Card ''' Card brand Card no / Account information Expiry date security code Visa 4111-1111-1111-1111 12/2020 123 MasterCard 5555-5555-5555-4444 12/2020 123 JCB 3566-1111-1111-1113 12/2020 123 Amex 3782-8224-6310-005 12/2020 1234 China Union Pay 6250-9470-0000-0014 Mobile phone number: 11112222 Dynamic Verification Code: 111111 12/2033 123 Alipay Username: <EMAIL> Password: <PASSWORD> Payment password: <PASSWORD> WeChat Pay Test User Account: 2604462170 Login Password: <PASSWORD> Pay Password: <PASSWORD> '''
6,900
tests/deprecated/backup_test.py
fred-yu-2013/Elastos.Hive.Node
5
2024422
# -*- coding: utf-8 -*- """ Testing file for the backup module. """ import unittest from tests import init_test from tests.utils.http_client import HttpClient @unittest.skip class BackupTestCase(unittest.TestCase): def __init__(self, method_name='runTest'): super().__init__(method_name) init_test() self.cli = HttpClient(f'/api/v2') @staticmethod def _subscribe(): HttpClient(f'/api/v2').put('/subscription/vault') @classmethod def setUpClass(cls): cls._subscribe() def test01_get_state(self): r = self.cli.get('/vault-deprecated/content') self.assertEqual(r.status_code, 200) @unittest.skip def test02_backup(self): self.backup(self.cli.get_backup_credential()) @unittest.skip def test03_restore(self): self.restore(self.cli.get_backup_credential()) def backup(self, credential): r = self.cli.post('/vault-deprecated/content?to=hive_node', body={'credential': credential}) self.assertEqual(r.status_code, 201) def restore(self, credential): r = self.cli.post('/vault-deprecated/content?from=hive_node', body={'credential': credential}) self.assertEqual(r.status_code, 201)
1,238
udemy/lazyprogrammer/logistic-regression-python/ecommerce_logistic.py
balazssimon/ml-playground
0
2026245
import numpy as np from ecommerce_data import get_binary_data import matplotlib.pyplot as plt Xtrain, Ytrain, Xtest, Ytest = get_binary_data() D = Xtrain.shape[1] Ntrain = Xtrain.shape[0] ones = np.array([[1]*Ntrain]).T Xtrain = np.concatenate((ones, Xtrain), axis=1) Ntest = Xtest.shape[0] ones = np.array([[1]*Ntest]).T Xtest = np.concatenate((ones, Xtest), axis=1) # randomly initialize weights W = np.random.randn(D+1) # make predictions def sigmoid(a): return 1 / (1 + np.exp(-a)) # cross entropy def cross_entropy(Y, P): return -np.mean(Y*np.log(P+0.0000001) + (1 - Y)*np.log(1 - P+0.0000001)) # calculate the accuracy def classification_rate(Y, P): return np.mean(Y == P) # gradient descent def gradient_descent(L1=False, L2=False): train_costs = [] test_costs = [] y = Ytrain w = W l1 = 0.01 l2 = 0.01 learning_rate = 0.001 for i in range(1000): a = Xtrain.dot(w) y = sigmoid(a) ctrain = cross_entropy(y, Ytrain) train_costs.append(ctrain) ctest = cross_entropy(sigmoid(Xtest.dot(w)), Ytest) test_costs.append(ctest) # gradient descent cost = learning_rate * Xtrain.T.dot(y - Ytrain) if L1: cost += l1*np.sign(w) if L2: cost += l2*w w -= cost if i % 100 == 0: print(i, ctrain, ctest) Ptrain = np.round(sigmoid(Xtrain.dot(w))) Ptest = np.round(sigmoid(Xtest.dot(w))) print("Final w:", w) print("Train score:", classification_rate(Ptrain, Ytrain)) print("Test score:", classification_rate(Ptest, Ytest)) legend1, = plt.plot(train_costs, label='train cost') legend2, = plt.plot(test_costs, label='test cost') plt.legend([legend1, legend2]) plt.show() #gradient_descent() #gradient_descent(L2=True) #gradient_descent(L1=True) gradient_descent(L1=True, L2=True)
1,967
common_utils.py
viciouspetal/knn-ml-cit
0
2025543
import pandas as pd import numpy as np def load_data(path, columns): """ For a given path to file it loads a dataset with given headers. :param path: paths to dataset :param columns: columns specified for a given dataset :return: dataset with headers loaded in a pandas dataframe """ df = pd.read_csv(path, names=columns, header=None) return df def calculate_distances(data_points, query_instance): """ Calculates a distance matrix for each of the records detailing how far each datapoint is from a given query instance. Additionally computes a sorted array detailing indices of the smallest to largest distance from a given query point, from smallest (or closest point to query instance) to largest. :param data_points: data points of a given dataset :param query_instance: instance of a dataset for which the distance matrix will be computed for :return: """ # row wise sum with a negative lookahead distance_matrix = euclideanDistance(data_points, query_instance) #print('For query instance of {0} the distance matrix is {1}'.format(query_instance,distance_matrix)) # sorts the distance matrix and returns indices of elements from smallest distance value to largest sorted_distance_matrix = np.argsort(distance_matrix)[np.in1d(np.argsort(distance_matrix),np.where(distance_matrix),1)] return distance_matrix, sorted_distance_matrix def euclideanDistance(data_points, query_instance): """ Calculate euclidean distance :param data_points: data points of a given dataset :param query_instance: instance of a dataset for which the distance matrix will be computed for :return: distance value """ return np.sqrt(((data_points - query_instance) ** 2).sum(-1)) def manhattanDistance(data_points, query_instance): """ Calculate manhattan distance :param data_points: data points of a given dataset :param query_instance: instance of a dataset for which the distance matrix will be computed for :return: distance value """ return np.abs(data_points - query_instance).sum(-1) def minkowskiDistance(data_points, query_instance, p_value = 1): """ Calculate minkowski distance :param data_points: data points of a given dataset :param query_instance: instance of a dataset for which the distance matrix will be computed for :param p_value: :return: distance value """ return np.abs(((data_points - query_instance) / p_value) / (1 / p_value)).sum(-1) def clean_cancer_dataset(df_training): """ Checks and cleans the dataset of any potential impossible values, e.g. bi-rads columns, the 1st only allows values in the range of 1-5, ordinal Age, 2nd column, cannot be negative, integer Shape, 3rd column, only allows values between 1 and 4, nominal Margin, only allows a range of 1 to 5, nominal Density only allows values between 1-4,ordinal. All deletions will be performed in place. :return: cleaned up dataframe, count of removed points """ rows_pre_cleaning = df_training.shape[0] df_training.drop(df_training.index[df_training['bi_rads'] > 5], inplace=True) df_training.drop(df_training.index[df_training['shape'] > 4], inplace=True) df_training.drop(df_training.index[df_training['margin'] > 5], inplace=True) df_training.drop(df_training.index[df_training['density'] > 4], inplace=True) rows_removed = rows_pre_cleaning - df_training.shape[0] return df_training, rows_removed def compute_classification_accuracy(correctly_classified, incorrectly_classified): """ Computes the accuracy of the model based on the number of correctly and incorrectly classified points. Expresses accuracy as a percentage value. :param correctly_classified: count of correctly classified data points :param incorrectly_classified: count of incorrectly classified data points :return: accuracy score """ accuracy = (correctly_classified / (correctly_classified + incorrectly_classified)) * 100 return accuracy
4,088
robot/test/simple_mov.py
rbccps-iisc/CORNET2.0
0
2025738
#!/usr/bin/python import sys import socket from math import pi, cos, sin from random import random import unicodedata import time def getpoint(h, k, r): theta = random() * 2 * pi # return h + cos(theta) * r, k + sin(theta) * r return 50, 50 def mov_left(x, y): new = x - 0.5 return new, y def mov_right(x, y): new = x + 0.5 return new, y def mov_up(x, y): new = y + 0.5 return x, new def mov_down(x, y): new = y - 0.5 return x, new def client(msg): host = '127.0.0.1' port = 12345 #while msg != 'q' and msg != 'exit': s = socket.socket() s.connect((host, port)) s.send(str(msg).encode('utf-8')) data = s.recv(1024).decode('utf-8') print('Received from Server: ', data) return data s.close() if __name__ == '__main__': # get the postion of AP1 ap1 = client("get.ap1.position") ap1 = unicodedata.normalize('NFKD', ap1).encode('ascii', 'ignore') ap1 = ap1.replace("[", " ") ap1 = ap1.replace("]", " ") print ap1 # centre = list(ap1.split(",")) args = sys.argv if len(args) != 2: # print("usage: network_config.py <config_file>") #print args[1] [x, y] = [1, 0] else: print args[1] [x, y] = [1, float(args[1])] while True: # x = x + 1 # if x % 2 == 0: # y = y + 1 # y = y + 0.5 # getpoint(int(float(centre[1])),int(float(centre[2])), 60) if x <= 1 and y >= 0 and y <= 58: x, y = mov_up(x, y) elif x >= 1 and x <= 58 and y >= 58: x, y == mov_right(x, y) elif x >= 58 and y <= 58 and y >= 1: x, y == mov_down(x, y) elif x <= 58 and x > 1 and y <= 1: x, y == mov_left(x, y) # msg = 'set.mybot.setPosition("' msg = 'set.robot1.setPosition("' msg = msg + str(float(x)) + ',' + str(float(y)) + ',0")' print msg result = client(msg) print client("get.robot1.position") # print client("get.ap1.position") time.sleep(1.0) if y == 90: break
2,120
flower/server.py
ari-dasci/S-DDaBA
0
2024426
import flwr as fl from typing import List, Optional, Tuple from flwr.common import Weights from ddaba import DDaBA import tensorflow as tf strategy = DDaBA() fl.server.start_server(config={"num_rounds": 10}, strategy = strategy)
237
node/blockchain/management/commands/clear_blockchain.py
thenewboston-developers/Node
18
2024815
import logging from django.core.management.base import BaseCommand from django.db import transaction from node.blockchain.facade import BlockchainFacade from node.blockchain.utils.lock import delete_all_locks logger = logging.getLogger(__name__) class Command(BaseCommand): help = 'Clears local blockchain' # noqa: A003 def handle(self, *args, **options): with transaction.atomic(): delete_all_locks() BlockchainFacade.get_instance().clear()
489
nbt.py
aheadley/pynemap
6
2024978
from struct import pack, unpack from gzip import GzipFile TAG_END = 0 TAG_BYTE = 1 TAG_SHORT = 2 TAG_INT = 3 TAG_LONG = 4 TAG_FLOAT = 5 TAG_DOUBLE = 6 TAG_BYTE_ARRAY = 7 TAG_STRING = 8 TAG_LIST = 9 TAG_COMPOUND = 10 class TAG(object): """Each Tag needs to take a buffer, an index into the buffer and return the index that it stops reading at.""" id = None def __init__(self, value=None, name=None): if name: self.name = TAG_String(name) else: self.name = None self.value = value #Parsers and Generators def _parse_buffer(self, buffer): raise NotImplementedError(self.__class__.__name__) def _render_buffer(self, buffer, offset=None): raise NotImplementedError(self.__class__.__name__) #Printing and Formatting of tree def tag_info(self): if self.name: return self.__class__.__name__ + \ ('("%s")'%self.name) + \ ": " + self.__repr__() else: return self.__class__.__name__ + \ ('("%s")'%"") + \ ": " + self.__repr__() def pretty_tree(self, indent=0): return ("\t"*indent) + self.tag_info() class _TAG_Numeric(TAG): def __init__(self, unpack_as, size, buffer=None, value=None, name=None): super(_TAG_Numeric, self).__init__(value, name) self.unpack_as = unpack_as self.size = size if buffer: self._parse_buffer(buffer) #Parsers and Generators def _parse_buffer(self, buffer, offset=None): self.value = unpack(self.unpack_as, buffer.read(self.size))[0] def _render_buffer(self, buffer, offset=None): buffer.write(pack(self.unpack_as, self.value)) #Printing and Formatting of tree def __repr__(self): return str(self.value) class TAG_Byte(_TAG_Numeric): id = TAG_BYTE def __init__(self, value=None, name=None, buffer=None): super(TAG_Byte, self).__init__(">b", 1, buffer, value, name) class TAG_Short(_TAG_Numeric): id = TAG_SHORT def __init__(self, value=None, name=None, buffer=None): super(TAG_Short, self).__init__(">h", 2, buffer, value, name) class TAG_Int(_TAG_Numeric): id = TAG_INT def __init__(self, value=None, name=None, buffer=None): super(TAG_Int, self).__init__(">i", 4, buffer, value, name) class TAG_Long(_TAG_Numeric): id = TAG_LONG def __init__(self, value=None, name=None, buffer=None): super(TAG_Long, self).__init__(">q", 8, buffer, value, name) class TAG_Float(_TAG_Numeric): id = TAG_FLOAT def __init__(self, value=None, name=None, buffer=None): super(TAG_Float, self).__init__(">f", 4, buffer, value, name) class TAG_Double(_TAG_Numeric): id = TAG_DOUBLE def __init__(self, value=None, name=None, buffer=None): super(TAG_Double, self).__init__(">d", 8, buffer, value, name) class TAG_Byte_Array(TAG): id = TAG_BYTE_ARRAY def __init__(self, buffer=None): super(TAG_Byte_Array, self).__init__() self.tags = [] if buffer: self._parse_buffer(buffer) #Parsers and Generators def _parse_buffer(self, buffer, offset=None): self.length = TAG_Int(buffer=buffer) self.value = buffer.read(self.length.value) def _render_buffer(self, buffer, offset=None): self.length._render_buffer(buffer, offset) buffer.write(self.value) #Printing and Formatting of tree def __repr__(self): return "[%i bytes]" % self.length.value class TAG_String(TAG): id = TAG_STRING def __init__(self, value=None, name=None, buffer=None): super(TAG_String, self).__init__(value, name) if buffer: self._parse_buffer(buffer) #Parsers and Generators def _parse_buffer(self, buffer, offset=None): self.length = TAG_Short(buffer=buffer) if self.length.value > 0: self.value = unicode(buffer.read(self.length.value), "utf-8") else: self.value = None def _render_buffer(self, buffer, offset=None): if self.value: save_val = self.value.encode("utf-8") self.length.value = len(save_val) self.length._render_buffer(buffer, offset) if self.length > 0: buffer.write(save_val) else: self.length.value = 0 self.length._render_buffer(buffer, offset) #Printing and Formatting of tree def __repr__(self): return self.value class TAG_List(TAG): id = TAG_LIST def __init__(self, name=None, type=None, buffer=None): super(TAG_List, self).__init__(name=name) if type: self.tagID = TAG_Byte(value = type.id) else: self.tagID = None self.length = None self.tags = [] if buffer: self._parse_buffer(buffer) #Parsers and Generators def _parse_buffer(self, buffer, offset=None): self.tagID = TAG_Byte(buffer=buffer) self.length = TAG_Int(buffer=buffer) for x in range(self.length.value): self.tags.append(TAGLIST[self.tagID.value](buffer=buffer)) def _render_buffer(self, buffer, offset=None): self.tagID._render_buffer(buffer, offset) self.length._render_buffer(buffer, offset) for tag in self.tags: tag._render_buffer(buffer, offset) #Printing and Formatting of tree def __repr__(self): return "%i entries of type %s" % (len(self.tags), TAGLIST[self.tagID.value].__name__) def pretty_tree(self, indent=0): output = [super(TAG_List,self).pretty_tree(indent)] if len(self.tags): output.append(("\t"*indent) + "{") output.extend([tag.pretty_tree(indent+1) for tag in self.tags]) output.append(("\t"*indent) + "}") return '\n'.join(output) class TAG_Compound(TAG): id = TAG_COMPOUND def __init__(self, buffer=None): super(TAG_Compound, self).__init__() self.tags = [] if buffer: self._parse_buffer(buffer) #Parsers and Generators def _parse_buffer(self, buffer, offset=None): while True: type = TAG_Byte(buffer=buffer) if type.value == TAG_END: #print "found tag_end" break else: name = TAG_String(buffer=buffer) try: #DEBUG print type, name tag = TAGLIST[type.value](buffer=buffer) tag.name = name self.tags.append(tag) except KeyError: raise ValueError("Unrecognised tag type") def _render_buffer(self, buffer, offset=None): for tag in self.tags: TAG_Byte(tag.id)._render_buffer(buffer, offset) tag.name._render_buffer(buffer, offset) tag._render_buffer(buffer,offset) buffer.write('\x00') #write TAG_END #Accessors def __getitem__(self, key): if isinstance(key,int): return self.tags[key] elif isinstance(key, str): for tag in self.tags: if tag.name.value == key: return tag else: raise KeyError("A tag with this name does not exist") else: raise ValueError("key needs to be either name of tag, or index of tag") #Printing and Formatting of tree def __repr__(self): return '%i Entries' % len(self.tags) def pretty_tree(self, indent=0): output = [super(TAG_Compound,self).pretty_tree(indent)] if len(self.tags): output.append(("\t"*indent) + "{") output.extend([tag.pretty_tree(indent+1) for tag in self.tags]) output.append(("\t"*indent) + "}") return '\n'.join(output) TAGLIST = {TAG_BYTE:TAG_Byte, TAG_SHORT:TAG_Short, TAG_INT:TAG_Int, TAG_LONG:TAG_Long, TAG_FLOAT:TAG_Float, TAG_DOUBLE:TAG_Double, TAG_BYTE_ARRAY:TAG_Byte_Array, TAG_STRING:TAG_String, TAG_LIST:TAG_List, TAG_COMPOUND:TAG_Compound} class NBTFile(TAG_Compound): """Represents an NBT file object""" def __init__(self, filename=None, mode=None, buffer=None): super(NBTFile,self).__init__() self.__class__.__name__ = "TAG_Compound" if filename: self.file = GzipFile(filename, mode) self.parse_file(self.file) def parse_file(self, file=None): if not file: file = self.file if file: self.type = TAG_Byte(buffer=file) if self.type.value == self.id: name = TAG_String(buffer=file) self._parse_buffer(file) self.name = name self.file.close() else: raise ValueError("First record is not a Compound Tag") def write_file(self, filename=None, file=None): if file: self.file = file elif filename: self.file = GzipFile(filename, "wb") else: raise ValueError("Need to specify either a filename or a file") #Render tree to file self.type._render_buffer(file) self.name._render_buffer(file) self._render_buffer(file)
7,972
test2.py
javajawa/debian-repo-remux
1
2025906
#!/usr/bin/python3 """ Test a thing """ from apt.repo import Repository # noinspection PyProtectedMember def main(): """ Main function """ repo = Repository('file://C:/svn/debian-remux/debian') with open('bind9-dev.deb', 'rb') as debian_file: package = repo.adopt(debian_file) print(repo) dist = repo.distribution('stable') packages = dist.package_list('main', 'amd64') packages.add(package) print(dist) if __name__ == "__main__": main()
499
src/tests/test_api.py
tchalvak/Brokk
0
2026108
import requests import json #import pprint #import config API_BASE = 'https://t8wwrnycz5.execute-api.us-east-1.amazonaws.com/dev/' # Move this to config later class TestApi: ''' Hits the api endpoints and checks for json coming back ''' def root(self): '''Get the root url from the config''' return API_BASE def status_code(self, url): ''' Gets http status codes of the urls ''' try: r = requests.head(url, verify=False) return r.status_code except requests.ConnectionError: return None def pull_json(self, url, endpoint): ''' Get a page to parse as json, for the api ''' params = dict( type=endpoint, jsoncallback='fake' ) resp = requests.get(url=url, params=params, verify=False) cut = resp.text return cut def test_root_url_config_works(self): ''' Ensure root is configured ''' assert (self.root() is not None and len(str(self.root())) > 5) def test_api_urls(self): endpoints = ['register', 'order', 'subscribe', 'payment-method/card', 'payment-method/bank-account', 'payment-method/source', 'initiate-payment-intent', 'payments', 'search-transactions', 'query', 'mutate'] player_data = self.pull_json(self.root(), 'register') assert (player_data is not None) for endpoint in endpoints: data = self.pull_json(self.root(), endpoint) assert (data is not None and json.loads(data) is not False and len(json.loads(data)) > 0 )
1,674
scheduler/tests/test_slot_scheduler.py
srobo/volunteer-scheduler
0
2025219
from unittest import TestCase from scheduler.jobs_board import JobsBoard from scheduler.match_maker import MatchMaker from scheduler.slot_scheduler import SlotScheduler from scheduler.scheduling_exception import SchedulingException from scheduler.tests.helpers import * class TestSlotScheduler(TestCase): def setUp(self): self.volunteers = { 'Jack': create_chef('Jack'), 'Jill': create_delivery_driver('Jill'), 'Sue': create_food_critic('Sue') } self.constraints_by_role = { 'chef': [can_cook], 'taster': [can_critique], 'delivery-driver': [can_deliver] } def test_generates_a_schedule(self): matchmaker = MatchMaker(self.volunteers, self.constraints_by_role) jobs = JobsBoard( ['chef'], ['delivery-driver'], ['taster'] ) scheduler = SlotScheduler(jobs, matchmaker) assert scheduler.generate_schedule() == { 'Jack': 'chef', 'Sue': 'taster', 'Jill': 'delivery-driver' } def test_raises_exception_when_not_all_necessary_roles_filled(self): matchmaker = MatchMaker(self.volunteers, self.constraints_by_role) jobs = JobsBoard( ['chef', 'chef'], ['delivery-driver'], ['taster'] ) scheduler = SlotScheduler(jobs, matchmaker) with self.assertRaises(SchedulingException): scheduler.generate_schedule() def test_raises_exception_when_not_enough_volunteers(self): matchmaker = MatchMaker(self.volunteers, self.constraints_by_role) jobs = JobsBoard( ['chef', 'delivery-driver', 'delivery-driver', 'taster'], ['delivery-driver'], ['taster'] ) scheduler = SlotScheduler(jobs, matchmaker) with self.assertRaises(SchedulingException): scheduler.generate_schedule()
1,976
office365/communications/callrecords/call_record.py
theodoriss/Office365-REST-Python-Client
544
2026251
from office365.directory.identities.identity_set import IdentitySet from office365.entity import Entity class CallRecord(Entity): """Represents a single peer-to-peer call or a group call between multiple participants, sometimes referred to as an online meeting.""" @property def join_web_url(self): """Meeting URL associated to the call. May not be available for a peerToPeer call record type.""" return self.properties.get("joinWebUrl", None) @property def organizer(self): """The organizing party's identity..""" return self.properties.get("organizer", IdentitySet())
630
sn4sp/core/__init__.py
CoeGSS-Project/SN4SP
0
2024732
""" Core classes of the SN4SP package. """ from .similarity_network import SimilarityGraph __all__ = [ SimilarityGraph ]
122
tests/tests/views_mixins/views.py
toshiki-tosshi/django-boost
25
2025241
from datetime import timedelta from django.forms import Form from django.utils.timezone import now from django.views.generic import FormView, TemplateView, View from django_boost.forms.mixins import FormUserKwargsMixin from django_boost.views.generic import TemplateView as BoostTemplateView from django_boost.views.mixins import (AllowContentTypeMixin, CSRFExemptMixin, DynamicRedirectMixin, JsonRequestMixin, JsonResponseMixin, LimitedTermMixin, ReAuthenticationRequiredMixin, # RedirectToDetailMixin, StaffMemberRequiredMixin, SuperuserRequiredMixin, UserAgentMixin, ViewUserKwargsMixin) class AllowContentTypeNoneView(AllowContentTypeMixin, FormView): template_name = "boost/test/index.html" form_class = Form success_url = '/' class AllowContentTypeAllowedView(AllowContentTypeMixin, FormView): template_name = "boost/test/index.html" allowed_content_types = ['text/html'] form_class = Form success_url = '/' class AllowContentTypeView(AllowContentTypeMixin, FormView): template_name = "boost/test/index.html" form_class = Form success_url = '/' class CSRFExemptView(CSRFExemptMixin, FormView): template_name = "boost/test/index.html" form_class = Form success_url = '/' class DynamicRedirectView(DynamicRedirectMixin, FormView): template_name = "boost/test/index.html" form_class = Form success_url = '/' class JsonRequestView(JsonRequestMixin, FormView): template_name = "boost/test/index.html" form_class = Form success_url = '/' class JsonResponseView(JsonResponseMixin, View): extra_context = {'json': True} class LimitedTermView(LimitedTermMixin, TemplateView): template_name = "boost/test/index.html" class LimitedTermAfterEndView(LimitedTermMixin, TemplateView): template_name = "boost/test/index.html" end_datetime = now() - timedelta(days=1) class LimitedTermBeforeEndView(LimitedTermMixin, TemplateView): template_name = "boost/test/index.html" end_datetime = now() + timedelta(days=1) class LimitedTermAfterStartView(LimitedTermMixin, TemplateView): template_name = "boost/test/index.html" start_datetime = now() - timedelta(days=1) class LimitedTermBeforeStartView(LimitedTermMixin, TemplateView): template_name = "boost/test/index.html" start_datetime = now() + timedelta(days=1) class ReAuthenticationRequiredView(ReAuthenticationRequiredMixin, TemplateView): template_name = "boost/test/index.html" interval = 100 class StaffMemberRequiredView(StaffMemberRequiredMixin, TemplateView): template_name = "boost/test/index.html" class SuperuserRequiredView(SuperuserRequiredMixin, TemplateView): template_name = "boost/test/index.html" class UserAgentView(UserAgentMixin, BoostTemplateView): template_name = "boost/test/index.html" class ViewUserKwargsView(ViewUserKwargsMixin, FormView): class UserKwargsForm(FormUserKwargsMixin, Form): pass template_name = "boost/test/index.html" form_class = UserKwargsForm success_url = '/'
3,350
examples/sync_buckets/sync_buckets.py
Andrew-Wichmann/pytest-localstack
63
2024038
"""Copy objects from one S3 bucket to another.""" import optparse import boto3 s3 = boto3.resource("s3") def sync_buckets(src_bucket, dest_bucket): """Sync objects from one AWS S3 bucket to another. Args: src_bucket (boto3 Bucket): Objects will be copied from this bucket to *dest_bucket*. dest_bucket (boto3 Bucket): Objects will be copied here from *src_bucket*. Returns: int: Count of objects copied between buckets. """ count = 0 for src_obj in src_bucket.objects.all(): response = src_obj.get() dest_bucket.put_object(Key=src_obj.key, Body=response["Body"].read()) count += 1 return count def sync_buckets_by_name(src_bucket_name, dest_bucket_name): """Sync objects from one AWS S3 bucket to another by name.""" src_bucket = s3.Bucket(src_bucket_name) dest_bucket = s3.Bucket(dest_bucket_name) return sync_buckets(src_bucket, dest_bucket) def main(): parser = optparse.OptionParser( description="Copy objects from one S3 bucket to another.", usage="usage: %prog [options] src_bucket dest_bucket", ) options, args = parser.parse_args() src_bucket, dest_bucket = args sync_buckets_by_name(src_bucket, dest_bucket) if __name__ == "__main__": main()
1,308
Fintech-Banking-Chatbot/bot-application/app.py
malastare-ai/Malastare.ai
3
2025593
from flask import Flask from flask import render_template,jsonify,request import requests from response import * import random app = Flask(__name__) @app.route('/') def hello_and_welcome_my_name_is_Lennox(): """ Sample hello and welcome my name is Lennox """ return render_template('home.html') get_random_response = lambda intent:random.choice(response[intent]) isClosingCard = False; @app.route('/chat',methods=["POST"]) def chat(): global isClosingCard """ chat end point that performs NLU using rasa.ai and constructs response from response.py """ try: response = requests.get("http://localhost:5000/parse",params={"q":request.form["text"]}) #response = requests.get("http://localhost:5000/parse?q="+request.form["text"]) response = response.json() intent = response["intent"] intent = intent["name"] entities = response["entities"] length = len(entities) if(length>0): entity = entities[0]["entity"] value = entities[0]["value"] if intent == "event-request": response_text = get_event(entities["day"],entities["time"],entities["place"]) elif isClosingCard == True: if response["text"] == "1234": response_text = "We are closing this card. Thanks for your patience." isClosingCard = False elif response["text"] == "ok": response_text = "How else I can help you? :)" isClosingCard = False else: response_text = "This card doesn't exist. Please check the number again. If you want to talk about anything else rather than this #then type ok" elif intent == "lost_card": response_text = "Please give us your credit card number" isClosingCard = True elif intent == "card_charge": if(length>0 and entity =="card_type"): if(value.lower() == "debit card"): response_text = "For debit card first year is free and from second year onward we charge 200 per year" elif(value.lower() =="credit card"): response_text = "For credit cards we charge 300 per year" else: response_text = "I am not sure about that, sorry!" else: response_text = "For credit cards we charge 300 per year. And for debit cards first year is free and from second year we charge 200 per year" # elif intent == "get_cheque_book": # response_text = "We will send the new checkbook to your address." # elif intent == "loan_car": # response_text = "We provide car loan of minimum 250000 and maximum of 1000000" # elif intent == "loan_home": # response_text = "We provide home loan of minimum 550000 and maximum 3000000" # elif intent == "loan_max": # if(length>0 and entity == "loan"): # if (value.lower() =="medical" or value.lower() == "personal" or value.lower() == "marriage" or value.lower() == "traveling" or value.lower() == "education"): # response_text = "We provide personal loan of maximum 50000" # elif value.lower() == "car": # response_text = "We provide car loan of maximum of 1000000" # elif value.lower() == "home": # response_text = "We provide home loan of maximum 3000000" elif intent == "loan_min": if(length>0 and entity == "loan"): if (value.lower() =="medical" or value.lower() == "personal" or value.lower() == "marriage" or value.lower() == "traveling" or value.lower() == "education"): response_text = "We provide minimum personal loan of 10000" elif value.lower() == "car": response_text = "We provide car loan of minimum of 250000" elif value.lower() == "home": response_text = "We provide home loan of minimum 550000" elif intent == "loan_max_home": response_text = "We provide home loan of maximum 3000000" elif intent == "loan_details": response_text = "We provide 3 different kinds of loans currently.\n1.Personal loan(Marriage, traveling, education etc)\n2.Car loan\n3.Home loan" elif intent == "show_balance": response_text = "Your current account balance is 15000" elif intent == "summary": response_text = "Account type: Checking Account\nCurrent balance: 15000 tk\nAvailable to withdraw: 14500" else: response_text = get_random_response(intent) return jsonify({"status":"success","response":response_text}) except Exception as e: print e return jsonify({"status":"success","response":"Sorry I am not trained to do that yet..."}) app.config["DEBUG"] = True if __name__ == "__main__": app.run(port=8000)
5,118
Health Bot/main.py
adilshehzad786/Healthtech-Bot-StartHack-EU
1
2026019
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. import asyncio from adapter import ConsoleAdapter from bot import Name from bot import Gender # Create adapter ADAPTER = ConsoleAdapter() BOT = Name() BOT= Gender() LOOP = asyncio.get_event_loop() if __name__ == "__main__": try: # Greet user print("Hi... I'm a Health Bot (Still in Development State) ") print("What is your Name?") LOOP.run_until_complete(ADAPTER.process_activity(BOT.on_turn)) except KeyboardInterrupt: pass finally: LOOP.stop() LOOP.close()
635
protos/params_pb2.py
chalant/pluto
0
2024528
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: contrib/coms/protos/params.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.protobuf import timestamp_pb2 as google_dot_protobuf_dot_timestamp__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='contrib/coms/protos/params.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n contrib/coms/protos/params.proto\x1a\x1fgoogle/protobuf/timestamp.proto\"\x80\x02\n\tRunParams\x12\x14\n\x0c\x63\x61pital_base\x18\x01 \x01(\x02\x12\x31\n\rstart_session\x18\x02 \x01(\x0b\x32\x1a.google.protobuf.Timestamp\x12/\n\x0b\x65nd_session\x18\x03 \x01(\x0b\x32\x1a.google.protobuf.Timestamp\x12\x0c\n\x04live\x18\x04 \x01(\x08\x12\x13\n\x0bmetrics_set\x18\x05 \x01(\t\x12\x30\n\x0e\x64\x61ta_frequency\x18\x06 \x01(\x0e\x32\x18.RunParams.DataFrequency\"$\n\rDataFrequency\x12\n\n\x06MINUTE\x10\x00\x12\x07\n\x03\x44\x41Y\x10\x01\x62\x06proto3') , dependencies=[google_dot_protobuf_dot_timestamp__pb2.DESCRIPTOR,]) _RUNPARAMS_DATAFREQUENCY = _descriptor.EnumDescriptor( name='DataFrequency', full_name='RunParams.DataFrequency', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='MINUTE', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DAY', index=1, number=1, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=290, serialized_end=326, ) _sym_db.RegisterEnumDescriptor(_RUNPARAMS_DATAFREQUENCY) _RUNPARAMS = _descriptor.Descriptor( name='RunParams', full_name='RunParams', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='capital_base', full_name='RunParams.capital_base', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='start_session', full_name='RunParams.start_session', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='end_session', full_name='RunParams.end_session', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='live', full_name='RunParams.live', index=3, number=4, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='metrics_set', full_name='RunParams.metrics_set', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='data_frequency', full_name='RunParams.data_frequency', index=5, number=6, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ _RUNPARAMS_DATAFREQUENCY, ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=70, serialized_end=326, ) _RUNPARAMS.fields_by_name['start_session'].message_type = google_dot_protobuf_dot_timestamp__pb2._TIMESTAMP _RUNPARAMS.fields_by_name['end_session'].message_type = google_dot_protobuf_dot_timestamp__pb2._TIMESTAMP _RUNPARAMS.fields_by_name['data_frequency'].enum_type = _RUNPARAMS_DATAFREQUENCY _RUNPARAMS_DATAFREQUENCY.containing_type = _RUNPARAMS DESCRIPTOR.message_types_by_name['RunParams'] = _RUNPARAMS _sym_db.RegisterFileDescriptor(DESCRIPTOR) RunParams = _reflection.GeneratedProtocolMessageType('RunParams', (_message.Message,), dict( DESCRIPTOR = _RUNPARAMS, __module__ = 'contrib.coms.protos.params_pb2' # @@protoc_insertion_point(class_scope:RunParams) )) _sym_db.RegisterMessage(RunParams) # @@protoc_insertion_point(module_scope)
5,279
code/getweb/reEncode.py
cblanesg/dipMex
2
2025113
# attempt to read, encode to unicode, write the file... need to work with a loop f = open('/home/eric/Dropbox/data/rollcall/dipMex/data/fromWeb/votes/62/tmp1.txt', 'r') # read file... check if using 'w' affects file after close from bs4 import BeautifulSoup # load library soup = BeautifulSoup(f) f.close() print(soup.get_text()) # how to write text only? f.readline() f.close()
382
06-learning-to-classify-text/sentiment_analyzer.py
SolangeUG/nltk-book
2
2025750
# noinspection PyUnresolvedReferences from util import data_util from nltk.classify import NaiveBayesClassifier from nltk.sentiment import SentimentAnalyzer from nltk.sentiment.util import extract_unigram_feats from nltk.tokenize import sent_tokenize def generate_labeled_documents(data, label): """ Return a list of 'labeled' documents (tuples) for a given dataset :param data: input dataset :param label: input label to characterize the generated documents :return: list of labeled documents """ documents = [] for i in range(len(data)): # we're interested in the 'reviewText' component of our dataset's elements documents.extend( ((data_util.tokenize_with_negation(sent), label) for sent in sent_tokenize(data[i]['reviewText'])) ) return documents if __name__ == '__main__': # Dataset information datadir, dataset = './data/', 'Baby' # Download data and load into memory baby_dataset = data_util.load_data(dataset, datadir) baby_train, baby_valid, baby_test = data_util.partition_train_validation_test(baby_dataset) # Sentiment analyzer baby_train_docs_subj = generate_labeled_documents(baby_train[:800], 'subj') baby_train_docs_obj = generate_labeled_documents(baby_train[800:1000], 'obj') baby_train_docs = baby_train_docs_subj + baby_train_docs_obj # print("baby train docs [0]", baby_train_docs[0]) baby_test_docs_subj = generate_labeled_documents(baby_test[:200], 'subj') baby_test_docs_obj = generate_labeled_documents(baby_test[200:400], 'obj') baby_test_docs = baby_test_docs_subj + baby_test_docs_obj # print("baby test docs [0]", baby_test_docs[0]) analyzer = SentimentAnalyzer() all_words_with_negation = analyzer.all_words([doc for doc in baby_train_docs]) print("\nVocabulary size: {}".format(str(len(all_words_with_negation)))) # Unigram features unigram_features = analyzer.unigram_word_feats(all_words_with_negation, min_freq=4) print("Unigram features size: {}".format(str(len(unigram_features)))) analyzer.add_feat_extractor(extract_unigram_feats, unigrams=unigram_features) # Apply features and build the training set training_set = analyzer.apply_features(baby_train_docs) test_set = analyzer.apply_features(baby_test_docs) # Train our classifier trainer = NaiveBayesClassifier.train classifier = analyzer.train(trainer, training_set) # Evaluation results for key, value in sorted(analyzer.evaluate(test_set).items()): print('{0}: {1}'.format(key, value))
2,586
Programming/rm_arr.py
flybaozi/algorithm-study
0
2025186
def removeDuplicates(nums): """ :type nums: List[int] :rtype: int """ i = 0 while i < len(nums) - 1: if nums[i] == nums[i + 1]: nums.remove(nums[i]) else: i = i + 1 return nums print(removeDuplicates([0, 0, 1, 1, 1, 2, 2, 3, 3, 4]))
303
iq-find-component/iq-find-components.py
sonatype-nexus-community/nexus-iq-api-scripts
3
2023702
import requests import argparse import json import csv from urllib.parse import urlencode def __parse_args(): parser = argparse.ArgumentParser( description='Connects to IQ and finds all applications with referenced components.') parser.add_argument('-s', dest='iq_url', default='http://localhost:8070', help='URL of IQ instance.', required=False) parser.add_argument('-u', dest='username', default='admin', required=False) parser.add_argument('-p', dest='password', default='<PASSWORD>', required=False) parser.add_argument('-i', dest='input_file', default='packageUrl.txt', help='text file of packageUrls', required=False) return parser.parse_args() args = __parse_args() iq_url = args.iq_url username = args.username password = <PASSWORD> iq_session = requests.Session() iq_session.auth = requests.auth.HTTPBasicAuth(username, password) stages = ["build","stage-release","release"] results = [] print("--------------------------------------") ## test for IQ server try: url = f"{iq_url}/api/v2/applications" response = iq_session.get(url) response.raise_for_status() except (iq_session.exceptions.ConnectionError, iq_session.exceptions.Timeout): print("Cannot find IQ Server, check URL") exit() except iq_session.exceptions.HTTPError: print("Could not authenticate, check username and password") exit() url = f"{iq_url}/rest/product/version" response = iq_session.get(url) version = response.json()['version'] print(f'IQ Server Version {version}') components = [] with open("packageUrl.txt", "r") as f: for line in f: packageUrl = line.strip() #ignore blanks lines. if len(packageUrl) > 5: components.append({"packageUrl":packageUrl}) for component in components: for stage in stages: component['stageId'] = stage params = urlencode(component).replace("%27", "%22") url = f"{iq_url}/api/v2/search/component?{params}" response = iq_session.get(url) if response.status_code == 200: for result in response.json()['results']: #clean-up extra data to csv below can output. for field in ["componentIdentifier", "reportHtmlUrl", "dependencyData"]: del result[field] result['stage'] = stage results.append(result) print("--------------------------------------") output = json.dumps(results, indent=4) with open("results.json", "w+") as file: file.write(output) print("Json results saved to -> results.json") print("--------------------------------------") with open("results.csv", "w+") as file: fields = ['applicationName', 'applicationId', 'stage', "threatLevel", 'hash', 'packageUrl', 'reportUrl'] writer = csv.DictWriter(file, fieldnames = fields) writer.writeheader() writer.writerows(results) print("csv results saved to -> results.csv") print("--------------------------------------") print("--------------------------------------")
2,849