max_stars_repo_path
stringlengths
4
182
max_stars_repo_name
stringlengths
6
116
max_stars_count
int64
0
191k
id
stringlengths
7
7
content
stringlengths
100
10k
size
int64
100
10k
# Lista - Condicionais/4.py
thizago/letscode
0
2025496
numero_1 = float(input('Digite o primeiro número: ')) numero_2 = float(input('Digite o segundo número: ')) if numero_1 < numero_2: print (numero_2) elif numero_1 > numero_2: print (numero_1) else: print ('os números são iguais')
241
scripts/postprocess_dir.py
uhh-lt/chinese-whispers
6
2023443
#!/usr/bin/env python # encoding: utf-8 import argparse from os.path import splitext, join import os from postprocess import postprocess import glob def main(): parser = argparse.ArgumentParser(description='Postprocess word sense induction file for all files in a directory.') parser.add_argument('ddt_dir', help='Path to a directory with csv files with DDTs: "word<TAB>sense-id<TAB>keyword<TAB>cluster" w/o header by default. Here <cluster> is "word:sim<SPACE><SPACE>word:sim<SPACE><SPACE>..."') parser.add_argument('-min_size', help='Minimum cluster size. Default -- 5.', default="5") args = parser.parse_args() print "Input DDT directory (pattern):", args.ddt_dir print "Min size:", args.min_size #postprocess(args.ddt, output_fpath, filtered_fpath, int(args.min_size)) for cluster_fpath in glob.glob(args.ddt_dir): if splitext(cluster_fpath)[-1] == ".csv": print "\n>>>", cluster_fpath postprocess( cluster_fpath, cluster_fpath+"-minsize" + args.min_size + ".csv", cluster_fpath+"-minsize" + args.min_size + "-filtered.csv", args.min_size) if __name__ == '__main__': main()
1,233
panopticon/fifemon-condor-probe/fifemon/condor/__init__.py
opensciencegrid/open-pool-display
0
2025970
import os os.environ['_CONDOR_GSI_SKIP_HOST_CHECK'] = "true" from .status import get_pool_status from .slots import get_pool_slots, get_pool_glidein_slots from .priorities import get_pool_priorities from .jobs import Jobs # disable debug logging, causes memory leak in long-running processes import htcondor htcondor.param['TOOL_LOG'] = '/dev/null' htcondor.enable_log()
373
code/debug.py
911Steven/Table-Fact-Checking
1
2026470
import pandas from beam_search import dynamic_programming import spacy nlp = spacy.load('en_core_web_sm') if __name__ == "__main__": table = 3 if table == 1: t = pandas.read_csv('../data/all_csv/1-1341423-13.html.csv', delimiter="#") elif table == 2: t = pandas.read_csv('../data/all_csv/2-10808089-16.html.csv', delimiter="#") elif table == 3: t = pandas.read_csv('../data/all_csv/1-28498999-6.html.csv', delimiter="#") else: pass cols = t.columns cols = cols.map(lambda x: x.replace(' ', '_') if isinstance(x, (str, unicode)) else x) t.columns = cols print t option = -1 if option == 1: sent = u"<NAME> and <NAME> are both democratic" tags = [_.tag_ for _ in nlp(sent)] mem_str = [('party', 'democratic'), ('incumbent', '<NAME>'), ('incumbent', '<NAME>')] head_str = [] mem_num = [] head_num = [] elif option == 2: sent = u'there are 3 _ _ _ in _' tags = [_.tag_ for _ in nlp(sent)] mem_str = [] head_str = ['incumbent'] mem_num = [('first_elected', 1998), ("tmp_none", 3)] head_num = ['first_elected'] elif option == 3: sent = u'phi crane is _ with the earliest year of _' tags = [_.tag_ for _ in nlp(sent)] mem_str = [('incumbent', 'phil crane')] head_str = ['incumbent'] mem_num = [] head_num = ['first_elected'] elif option == 4: sent = u"there is more _ oriented incumbents than _" tags = [_.tag_ for _ in nlp(sent)] mem_str = [('party', 'democratic'), ('party', 'republican')] head_str = [] mem_num = [] head_num = [] elif option == -1: sent = u"<NAME> is not one of the two who had 24 events." tags = [_.tag_ for _ in nlp(sent)] mem_str = [('player', '<NAME>')] head_str = ['player'] mem_num = [("tmp_none", 2), ("events", 24)] head_num = ["events"] elif option == -2: sent = u'united states happens more times than any other teams' tags = [_.tag_ for _ in nlp(sent)] mem_str = [('country', 'united states')] head_str = ['country'] mem_num = [] head_num = [] elif option == 5: sent = u'there are 2 _ who were not _' tags = [_.tag_ for _ in nlp(sent)] mem_str = [("results", "re - elected")] head_str = ['incumbent'] mem_num = [("tmp_none", 2)] head_num = [] elif option == 6: sent = u'all _ are _ _' tags = [_.tag_ for _ in nlp(sent)] mem_str = [("results", "re - elected")] head_str = ['incumbent'] mem_num = [] head_num = [] elif option == 7: sent = u'the earliest _ is _ in _' tags = [_.tag_ for _ in nlp(sent)] mem_str = [] head_str = ['incumbent'] mem_num = [('first_elected', 1994)] head_num = ['first_elected'] elif option == 8: sent = u'_ _ _ are all _' tags = [_.tag_ for _ in nlp(sent)] mem_str = [('incumbent', '<NAME>'), ('incumbent', 'lane evans'), ('party', 'republican')] head_str = [] mem_num = [] head_num = [] elif option == 9: sent = u'st kilda lost to essendon and hawthorn lost to south melbourne' tags = [_.tag_ for _ in nlp(sent)] mem_str = [('home_team', 'st kilda'), ('away_team', 'south melbourne'), ('home_team', 'collingwood'), ('away_team', 'north melbourne')] head_str = [] mem_num = [] head_num = [] elif option == 10: sent = u'The game with the fewest number of people in attendance was hawthorn vs south melbourne' tags = [_.tag_ for _ in nlp(sent)] mem_str = [('home_team', 'hawthorn'), ('away_team', 'footscray')] head_str = [] mem_num = [] head_num = ['crowd'] elif option == 11: sent = u'collingwood is following essendon' tags = [_.tag_ for _ in nlp(sent)] mem_str = [('home_team', 'collingwood'), ('home_team', 'essendon')] head_str = ['home_team'] mem_num = [] head_num = [] dynamic_programming(t, sent, tags, mem_str, mem_num, head_str, head_num, 6)
4,263
lab01/app/urls.py
vixxerror/TECSUP-DAE-2021--2
0
2025671
from django.urls import path from . import views urlpatterns = [ # ex: http://127.0.0.1:8000/polls/ path('', views.index, name='index'), # ex: http://127.0.0.1:8000/polls/5/ path('suma/', views.suma, name='suma'), # ex: http://127.0.0.1:8000/polls//5/results/ path('suma/<int:numero1>/', views.numero1, name='numero1'), # ex: http://127.0.0.1:8000/polls/5/vote/ path('suma/<int:numero1>/<int:numero2>/', views.numero2, name='numero2'), path('resta/', views.resta, name='resta'), path('resta/<int:numero1>/<int:numero2>/', views.resta, name='numero2'), path('multiplicacion/', views.resta, name='resta'), path('multiplicacion/<int:numero1>/<int:numero2>/', views.multiplicacion, name='numero2'), ]
752
game.py
rooted-cyber/ultroid-plugin
0
2026363
from telethon import events @bot.on(events.NewMessage(pattern="game", outgoing= True, incoming=True)) async def hi(event): for c in await bot.inline_query("inlinegamesbot"," a"): await c.click(event.chat_id) break
223
api/mongodb_init_recipe.py
yanehi/raspberrypi-cocktailmachine
5
2026256
import pymongo # database connection # client = pymongo.MongoClient("mongodb://barkeeper:[email protected]/cocktailmachine") client = pymongo.MongoClient("mongodb://mongodb:27017/") # create database cocktailmachine db = client["cocktailmachine"] recipe_collection = db["recipe"] recipe_list = [ { "name": "Vodka Shot", "ingredients": [ { "ingredientId": "5f9760bc3c54e107bf5fd64d", "amount": 4 } ] }, { "name": "Vodka-O", "ingredients": [ { "ingredientId": "5f9760bc3c54e107bf5fd64d", "amount": 4 }, { "ingredientId": "5f9760bc3c54e107bf5fd653", "amount": 10 } ] }, { "name": "Cuba Libre", "ingredients": [ { "ingredientId": "5f9760bc3c54e107bf5fd64b", "amount": 4 }, { "ingredientId": "5f9760bc3c54e107bf5fd64c", "amount": 10 } ] }, { "name": "Copa-mixable", "ingredients": [ { "ingredientId": "5f9760bc3c54e107bf5fd64c", "amount": 3 }, { "ingredientId": "5f9760bc3c54e107bf5fd64c", "amount": 2 }, { "ingredientId": "5f9760bc3c54e107bf5fd64b", "amount": 1 }, { "ingredientId": "5f9760bc3c54e107bf5fd64d", "amount": 3 } ] }, { "name": "Copa-No-mixable", "ingredients": [ { "ingredientId": "5f9760bc3c54e107bf5fd659", "amount": 9 }, { "ingredientId": "5f9760bc3c54e107bf5fd658", "amount": 8 } ] }, { "name": "Copa-No-mixable2", "ingredients": [ { "ingredientId": "5f9760bc3c54e107bf5fd657", "amount": 1 }, { "ingredientId": "5f9760bc3c54e107bf5fd656", "amount": 3 } ] }, { "name": "Wasser", "ingredients": [ { "ingredientId": "5f9760bc3c54e107bf5fd651", "amount": 10 } ] }, { "name": "Mischbar", "ingredients": [ { "ingredientId": "5f9760bc3c54e107bf5fd64d", "amount": 3 } ] } ] # insert values in ingredients collection recipe_collection.insert_many(recipe_list)
2,766
src/gui/tkinter/scale_gui.py
E1mir/PySandbox
0
2026460
import tkinter from tkinter import * def get_value(): selection = f"Value: {var.get()}" label.config(text=selection) window = Tk() var = DoubleVar() scale = Scale(window, variable=var, orient=HORIZONTAL) scale.pack() button = Button(window, text="Retrieve value", command=get_value) button.pack() label = Label(window) label.pack() window.mainloop()
367
eikonal/implicit_network.py
noamroze/moser_flow
5
2026286
# --------------------------------------------------------------------------------------------------------------------- # 2d surface reconstruction from point-cloud with EikoNet # # --------------------------------------------------------------------------------------------------------------------- # --------------------------------------------------------------------------------------------------------------------- # imports import torch import torch.nn as nn import numpy as np import temp import os from datetime import datetime import GPUtil import sdf_utils # import old.grad_layers as nng # --------------------------------------------------------------------------------------------------------------------- def mkdir_ifnotexists(directory): if not os.path.exists(directory): os.mkdir(directory) deviceIDs = GPUtil.getAvailable(order='memory', limit=1, maxLoad=0.5, maxMemory=0.5, includeNan=False, excludeID=[], excludeUUID=[]) gpu = deviceIDs[0] os.environ["CUDA_VISIBLE_DEVICES"] = '{0}'.format(gpu) # regularization coefficient ALPHA = 0.1 # sofplus coefficient BETA = 100 n_input = 8 # --------------------------------------------------------------------------------------------------------------------- class ImplicitNetwork(nn.Module): def __init__( self, latent_size, d_in, d_out, dims, skip_in=(), weight_norm=False, geometric_init=False, bias=1.0, ): super().__init__() dims = [d_in + latent_size] + dims + [d_out] self.pc_dim = d_in # self.d_in = d_in + latent_size self.num_layers = len(dims) self.skip_in = skip_in for l in range(0, self.num_layers - 1): if l + 1 in self.skip_in: out_dim = dims[l + 1] - dims[0] else: out_dim = dims[l + 1] # lin = nng.LinearGrad(dims[l], out_dim) lin = nn.Linear(dims[l], out_dim) if geometric_init: if l == self.num_layers - 2: torch.nn.init.normal_(lin.weight, mean=np.sqrt(np.pi) / np.sqrt(dims[l]), std=0.0001) torch.nn.init.constant_(lin.bias, -bias) else: torch.nn.init.constant_(lin.bias, 0.0) torch.nn.init.normal_(lin.weight, 0.0, np.sqrt(2) / np.sqrt(out_dim)) if weight_norm: lin = nn.utils.weight_norm(lin) setattr(self, "lin" + str(l), lin) # self.softplus = nng.SoftplusGrad(beta=100) self.softplus = nn.Softplus(beta=100) # def forward(self, input, compute_grad=False): def forward(self, input): ''' :param input: [shape: (N x d_in)] :param compute_grad: True for computing the input gradient. default=False :return: x: [shape: (N x d_out)] x_grad: input gradient if compute_grad=True [shape: (N x d_in x d_out)] None if compute_grad=False ''' x = input # x_grad = None for l in range(0, self.num_layers - 1): lin = getattr(self, "lin" + str(l)) if l in self.skip_in: x = torch.cat([x, input], 1) / np.sqrt(2) # if compute_grad: # skip_grad = torch.eye(self.d_in, device=x.device)[:, -self.pc_dim:].repeat(input.shape[0], 1, 1)# # x_grad = torch.cat([x_grad, skip_grad], 1) / np.sqrt(2) # x, x_grad = lin(x, x_grad, compute_grad, l == 0, self.pc_dim) x = lin(x) if l < self.num_layers - 2: # x, x_grad = self.softplus(x, x_grad, compute_grad) x = self.softplus(x) # return x, x_grad return x def gradient(self, x): x.requires_grad_(True) y = self.forward(x)[:,:1] d_output = torch.ones_like(y, requires_grad=False, device=y.device) gradients = torch.autograd.grad( outputs=y, inputs=x, grad_outputs=d_output, create_graph=True, retain_graph=True, only_inputs=True)[0] return gradients.unsqueeze(1) # --------------------------------------------------------------------------------------------------------------------# # --------------------------------------------------------------------------------------------------------------------# # --------------------------------------------------------------------------------------------------------------------# if __name__ == '__main__': device = 'gpu' # output path+name exps_folder_name = 'exps' expname = 'debug' # expdir = os.path.join(os.environ['HOME'], 'data/Projects/Eikonal-Network/{0}/{1}'.format(exps_folder_name, expname)) expdir = os.path.join('.', exps_folder_name, expname) # mkdir_ifnotexists(os.path.join(os.environ['HOME'], # 'data/Projects/Eikonal-Network/{0}'.format(exps_folder_name))) mkdir_ifnotexists(os.path.join('.', exps_folder_name)) mkdir_ifnotexists(expdir) timestamp = '{:%Y_%m_%d_%H_%M_%S}'.format(datetime.now()) mkdir_ifnotexists(os.path.join(expdir, timestamp)) expdir = os.path.join(expdir, timestamp) # model parameters d_in = 2 d_out = 1 dims = [512, 512, 512, 512, 512, 512, 512, 512] skips = [4] # before which layers we do the skip connection bias = 1.0 N = 1 # batch size # training parameters max_epochs = 100001 learning_rate = 1.0 * 1e-4 # learning_rate_decay = 0.95 decrease_lr_every = 0 # 1000 decrease_lr_by = 1.0 # 0.5 sigma_nn = 1 #50 # output surface every output_surface_every = 1000 # create our MLP model model = ImplicitNetwork(0,d_in, d_out, dims, skip_in=skips) if (device == 'gpu'): model = model.cuda() # optimize model optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) # 2D expirements shape = sdf_utils.Line(n_input) # shape = sdf_utils.LineCrazy(n_input) # shape = sdf_utils.HalfCircle(n_input) # shape = sdf_utils.Snowflake(n_input) # shape = sdf_utils.Square(n_input) # shape = sdf_utils.LShape(n_input) # shape = sdf_utils.Random(n_input) S = shape.get_points() print(S.shape) # move to GPU if device == 'gpu': S = S.cuda() # compute sigma per point n = S.shape[0] S1 = S.unsqueeze(0).repeat(n, 1, 1) S2 = S.unsqueeze(1).repeat(1, n, 1) D = torch.norm(S1 - S2, p=2, dim=2) sorted, indices = torch.sort(D, dim=1) sigma_max = D.max() sigmas = sorted[:, sigma_nn] sigmas = sigmas.cuda() for t in range(max_epochs): X_1 = ((torch.randn(N, S.shape[0], d_in).cuda() * (sigmas.unsqueeze(0).unsqueeze(2).repeat(1, 1, 2)) + S.unsqueeze(0).repeat(N, 1, 1)).reshape(N * S.shape[0], d_in)).cuda() X_general = torch.empty(S.shape[0] // 2, d_in).uniform_(-1.0, 1.0).cuda() X = torch.cat([X_1, X_general], 0) # compute loss # Y, grad = model(torch.cat([S, X], 0), compute_grad=True) # Y = Y[:S.shape[0], 0:1] Y = model(S) grad = model.gradient(torch.cat([X,S.clone()],dim=0)) grad_norm = grad[:,0,:].norm(2, dim=1) grad_loss = ((grad_norm - 1) ** 2).mean() loss_fn = (torch.abs(Y)).mean() + ALPHA * grad_loss # print loss and grad loss every 500 epochs if divmod(t, 100)[1] == 0: print(expname, timestamp, t, 'loss =', loss_fn.item(), 'grad_loss =', grad_loss.item()) # backward pass optimizer.zero_grad() loss_fn.backward() optimizer.step() # output surface in middle epochs, if required if (t >= 0) and (output_surface_every > 0) and (np.mod(t, output_surface_every) == 0): temp.plot_contour(points=S, grad_points=X, model=model, path=expdir, epoch=t, resolution=500, shape=shape, line=True) torch.save( {"model": model.state_dict()}, os.path.join(expdir + "/network_{0}.pth".format(t))) # update learning rate, if required if (decrease_lr_every > 0) and (np.mod(t, decrease_lr_every) == 0) and (t > 1): learning_rate = learning_rate * decrease_lr_by optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) torch.save( {"model": model.state_dict()}, os.path.join(expdir + "/network_{0}.pth".format(t))) # plot the zero level set surface temp.plot_contour(points=S, grad_points=X, model=model, path=expdir, epoch=t, resolution=1000, shape=shape, line=True) print('end')
9,166
A.py
S4ltster/2022-cope-simulator
1
2024763
In original definition, 'Cope' means someone who is creating an psychological defence of a more lighter belief to deal with a harsh truth. However, it could easily be used and misinterpretated by online trolls, usualy from Discord or 4Chan, in an attempt to convey mockery, trolling, defaminate and insulting, usualy those people have pathetic lives so they spend it tossing this word and insult/mock others to feed their superiority complex in online chats and/or forums. > Discord chat Person 1: Man, sometimes being shorter than average sucks. Discord troll: Cope person 1: How is this a 'Cope'? Discord troll: Haha, cope manlet. person 1: This is rude, mind your language. Discord troll: Cope harder manlet. In original definition, 'Cope' means someone who is creating an psychological defence of a more lighter belief to deal with a harsh truth. However, it could easily be used and misinterpretated by online trolls, usualy from Discord or 4Chan, in an attempt to convey mockery, trolling, defaminate and insulting, usualy those people have pathetic lives so they spend it tossing this word and insult/mock others to feed their superiority complex in online chats and/or forums. > Discord chat Person 1: Man, sometimes being shorter than average sucks. Discord troll: Cope person 1: How is this a 'Cope'? Discord troll: Haha, cope manlet. person 1: This is rude, mind your language. Discord troll: Cope harder manlet. In original definition, 'Cope' means someone who is creating an psychological defence of a more lighter belief to deal with a harsh truth. However, it could easily be used and misinterpretated by online trolls, usualy from Discord or 4Chan, in an attempt to convey mockery, trolling, defaminate and insulting, usualy those people have pathetic lives so they spend it tossing this word and insult/mock others to feed their superiority complex in online chats and/or forums. > Discord chat Person 1: Man, sometimes being shorter than average sucks. Discord troll: Cope person 1: How is this a 'Cope'? Discord troll: Haha, cope manlet. person 1: This is rude, mind your language. Discord troll: Cope harder manlet.In original definition, 'Cope' means someone who is creating an psychological defence of a more lighter belief to deal with a harsh truth. However, it could easily be used and misinterpretated by online trolls, usualy from Discord or 4Chan, in an attempt to convey mockery, trolling, defaminate and insulting, usualy those people have pathetic lives so they spend it tossing this word and insult/mock others to feed their superiority complex in online chats and/or forums. > Discord chat Person 1: Man, sometimes being shorter than average sucks. Discord troll: Cope person 1: How is this a 'Cope'? Discord troll: Haha, cope manlet. person 1: This is rude, mind your language. Discord troll: Cope harder manlet. In original definition, 'Cope' means someone who is creating an psychological defence of a more lighter belief to deal with a harsh truth. However, it could easily be used and misinterpretated by online trolls, usualy from Discord or 4Chan, in an attempt to convey mockery, trolling, defaminate and insulting, usualy those people have pathetic lives so they spend it tossing this word and insult/mock others to feed their superiority complex in online chats and/or forums. > Discord chat Person 1: Man, sometimes being shorter than average sucks. Discord troll: Cope person 1: How is this a 'Cope'? Discord troll: Haha, cope manlet. person 1: This is rude, mind your language. Discord troll: Cope harder manlet. In original definition, 'Cope' means someone who is creating an psychological defence of a more lighter belief to deal with a harsh truth. However, it could easily be used and misinterpretated by online trolls, usualy from Discord or 4Chan, in an attempt to convey mockery, trolling, defaminate and insulting, usualy those people have pathetic lives so they spend it tossing this word and insult/mock others to feed their superiority complex in online chats and/or forums. > Discord chat Person 1: Man, sometimes being shorter than average sucks. Discord troll: Cope person 1: How is this a 'Cope'? Discord troll: Haha, cope manlet. person 1: This is rude, mind your language. Discord troll: Cope harder manlet.In original definition, 'Cope' means someone who is creating an psychological defence of a more lighter belief to deal with a harsh truth. However, it could easily be used and misinterpretated by online trolls, usualy from Discord or 4Chan, in an attempt to convey mockery, trolling, defaminate and insulting, usualy those people have pathetic lives so they spend it tossing this word and insult/mock others to feed their superiority complex in online chats and/or forums. > Discord chat Person 1: Man, sometimes being shorter than average sucks. Discord troll: Cope person 1: How is this a 'Cope'? Discord troll: Haha, cope manlet. person 1: This is rude, mind your language. Discord troll: Cope harder manlet. In original definition, 'Cope' means someone who is creating an psychological defence of a more lighter belief to deal with a harsh truth. However, it could easily be used and misinterpretated by online trolls, usualy from Discord or 4Chan, in an attempt to convey mockery, trolling, defaminate and insulting, usualy those people have pathetic lives so they spend it tossing this word and insult/mock others to feed their superiority complex in online chats and/or forums. > Discord chat Person 1: Man, sometimes being shorter than average sucks. Discord troll: Cope person 1: How is this a 'Cope'? Discord troll: Haha, cope manlet. person 1: This is rude, mind your language. Discord troll: Cope harder manlet. In original definition, 'Cope' means someone who is creating an psychological defence of a more lighter belief to deal with a harsh truth. However, it could easily be used and misinterpretated by online trolls, usualy from Discord or 4Chan, in an attempt to convey mockery, trolling, defaminate and insulting, usualy those people have pathetic lives so they spend it tossing this word and insult/mock others to feed their superiority complex in online chats and/or forums. > Discord chat Person 1: Man, sometimes being shorter than average sucks. Discord troll: Cope person 1: How is this a 'Cope'? Discord troll: Haha, cope manlet. person 1: This is rude, mind your language. Discord troll: Cope harder manlet.In original definition, 'Cope' means someone who is creating an psychological defence of a more lighter belief to deal with a harsh truth. However, it could easily be used and misinterpretated by online trolls, usualy from Discord or 4Chan, in an attempt to convey mockery, trolling, defaminate and insulting, usualy those people have pathetic lives so they spend it tossing this word and insult/mock others to feed their superiority complex in online chats and/or forums. > Discord chat Person 1: Man, sometimes being shorter than average sucks. Discord troll: Cope person 1: How is this a 'Cope'? Discord troll: Haha, cope manlet. person 1: This is rude, mind your language. Discord troll: Cope harder manlet. In original definition, 'Cope' means someone who is creating an psychological defence of a more lighter belief to deal with a harsh truth. However, it could easily be used and misinterpretated by online trolls, usualy from Discord or 4Chan, in an attempt to convey mockery, trolling, defaminate and insulting, usualy those people have pathetic lives so they spend it tossing this word and insult/mock others to feed their superiority complex in online chats and/or forums. > Discord chat Person 1: Man, sometimes being shorter than average sucks. Discord troll: Cope person 1: How is this a 'Cope'? Discord troll: Haha, cope manlet. person 1: This is rude, mind your language. Discord troll: Cope harder manlet. In original definition, 'Cope' means someone who is creating an psychological defence of a more lighter belief to deal with a harsh truth. However, it could easily be used and misinterpretated by online trolls, usualy from Discord or 4Chan, in an attempt to convey mockery, trolling, defaminate and insulting, usualy those people have pathetic lives so they spend it tossing this word and insult/mock others to feed their superiority complex in online chats and/or forums. > Discord chat Person 1: Man, sometimes being shorter than average sucks. Discord troll: Cope person 1: How is this a 'Cope'? Discord troll: Haha, cope manlet. person 1: This is rude, mind your language. Discord troll: Cope harder manlet.
8,806
payment_maintenance/payment_maintenance/doctype/bakery_sup_invoice/bakery_sup_invoice.py
Srijenanithish/Payment_Maintenance_System
0
2026417
# Copyright (c) 2021, Srijena_Nithish and contributors # For license information, please see license.txt import frappe from frappe.model.document import Document class BakerySupInvoice(Document): def validate(self): if self.qty >0: if frappe.db.exists("Bakery Warehouse",{'item': self.item}): existing_qty = frappe.db.get_value("Bakery Warehouse",{'item':self.item},"qty") updated_qty = self.qty if existing_qty: updated_qty += existing_qty frappe.db.set_value("Bakery Warehouse",{'item': self.item},"qty",updated_qty) else: stock_entry = frappe.new_doc("Bakery Warehouse") stock_entry.item = self.item stock_entry.qty = self.qty stock_entry.save() if self.qty > 0: if frappe.db.exists("Bakery Sup Payment",{'supplier': self.supplier}): existing_amt = frappe.db.get_value("Bakery Sup Payment",{'supplier':self.supplier},"paid_amount") exist_balance_amt = frappe.db.get_value("Bakery Sup Payment",{'supplier':self.supplier},"remaining_to_pay") exist_total_amt = frappe.db.get_value("Bakery Sup Payment",{'supplier':self.supplier},"total_amount") updated_balance_amt = self.balance_amount_to_pay updated_amt = self.amount_paid updated_total_amt = self.total_amount if existing_amt and exist_balance_amt: existing_amt = updated_amt exist_balance_amt = updated_balance_amt exist_total_amt = updated_total_amt frappe.db.set_value("Bakery Sup Payment",{'supplier': self.supplier},"paid_amount",existing_amt) frappe.db.set_value("Bakery Sup Payment",{'supplier': self.supplier},"remaining_to_pay",exist_balance_amt) frappe.db.set_value("Bakery Sup Payment",{'supplier': self.supplier},"total_amount",exist_total_amt) else: stock_entry = frappe.new_doc("Bakery Sup Payment") stock_entry.supplier = self.supplier stock_entry.paid_amount = self.amount_paid stock_entry.remaining_to_pay = self.balance_amount_to_pay stock_entry.total_amount = self.total_amount stock_entry.save()
2,017
cars/automobile/migrations/0001_initial.py
DeyberLuna/Frameworks-9a-2021
0
2025601
# Generated by Django 3.1.7 on 2021-04-21 23:25 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Brand', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('marca', models.CharField(max_length=50)), ('modelo_marca', models.CharField(max_length=50)), ('create_at', models.DateTimeField()), ('update_at', models.DateTimeField()), ], ), migrations.CreateModel( name='BrandReference', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('reference', models.CharField(max_length=150)), ('create_at', models.DateTimeField()), ('update_at', models.DateTimeField()), ('delete_at', models.DateTimeField()), ('brand_id', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='automobile.brand')), ], ), migrations.CreateModel( name='Auto', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('modelo', models.IntegerField()), ('color', models.CharField(max_length=150)), ('clase', models.CharField(max_length=150)), ('numero_chasis', models.CharField(max_length=150)), ('numero_motor', models.CharField(max_length=150)), ('tipo', models.CharField(max_length=150)), ('placa', models.CharField(max_length=150)), ('kilometraje', models.IntegerField()), ('cilindraje', models.IntegerField()), ('tipo_combustible', models.CharField(max_length=150)), ('create_at', models.DateTimeField()), ('update_at', models.DateTimeField()), ('delete_at', models.DateTimeField()), ('brand_id', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='automobile.brand')), ('reference_id', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='automobile.brandreference')), ], ), ]
2,516
abi_random.py
Abirami33/python-75-hackathon
0
2022713
#GUESS THE NUMBER GAME USING RANDOM NUMBERS #importing random library import random import sys #function for this play def playfun(count,x,num): if num == x: print("great & excellent guess!") sys.exit() elif abs((num-x))<=25: print("you guessed 25% away!") count=count+1 return count elif abs((num-x))<=50: print("you guessed 50% away!") count=count+1 return count elif abs((num-x))<=75: print("you guessed 75% away!") count=count+1 return count elif abs((num-x))<=100: print("You guessed 100% away!") count=count+1 return count print('***************WELCOME To WORD_GAUGE!*************') x=random.randint(1,100) #print(x) c=0 num=int(input("Guess the number:")) c=playfun(0,x,num); print('you have',3-c,'more chances') #to provide the user with 3 chances while c <= 2: choice= input("You have some more chances! Want to play again! Type yes or no ") if choice.lower() == 'yes': num=int(input("Guess the number:")) c=playfun(c,x,num); print('you have',3-c,'more chances') elif choice.lower() == 'no': break else: print("Enter the valid choice please!") break print('Chances exceeded! Well tried! see you later!') # to provide hint def hint(num,x): if x>num: print('Add',abs(x-num),'to your last guess') elif x<num: print('Subtract',abs(x-num),'from your last guess') print('Take a hint to find out the guess!') hint(num,x); num1=int(input("Finally guess the number:")) #final guess if num1==x: print("You have finally done well!") else: print("You are dropped out!") '''OUTPUT:stud@HP-246-Notebook-PC:~$ python abi_random.py ***************WELCOME To WORD_GAUGE!************* Guess the number:7 you guessed 75% away! you have 2 more chances You have some more chances! Want to play again! Type yes or no yes Guess the number:77 you guessed 25% away! you have 1 more chances You have some more chances! Want to play again! Type yes or no yes Guess the number:96 you guessed 50% away! you have 0 more chances Chances exceeded! Well tried! see you later! Take a hint to find out the guess! Subtract 34 from your last guess Finally guess the number:62 You have finally done well! '''
2,412
arct_token_swapping.py
rtohid/qtranspilation
0
2025800
import networkx as nx from arct.permutation.general import ApproximateTokenSwapper from copy import deepcopy from typing import List, Tuple Swap = Tuple[int, int] def demo_approx_token_swapping(in_circuit: nx.Graph, mapping: List[int]) -> List[Swap]: permuter = ApproximateTokenSwapper(in_circuit) original_mapping = list(in_circuit.nodes()) print("Original mapping:") print(original_mapping) print() permutation_order = permuter.map(mapping) new_mapping = deepcopy(original_mapping) for permutation in permutation_order: new_mapping[permutation[0]], new_mapping[permutation[1]] = new_mapping[ permutation[1]], new_mapping[permutation[0]] print("New mapping:") print(new_mapping) print() return permutation_order if __name__ == "__main__": demo_circuit = nx.convert_node_labels_to_integers(nx.grid_2d_graph(4, 4)) mapping = [[node, 15 - node] for node in demo_circuit.nodes()] demo_circuit_permutations = demo_approx_token_swapping( demo_circuit, mapping) print("Permutation order:") print(demo_circuit_permutations)
1,154
src/spaceone/statistics/info/schedule_info.py
choonho/statistics
0
2024681
import functools from spaceone.api.statistics.v1 import schedule_pb2 from spaceone.core.pygrpc.message_type import * from spaceone.statistics.model.schedule_model import Schedule, Scheduled, JoinQuery, Formula, QueryOption __all__ = ['ScheduleInfo', 'SchedulesInfo'] def ScheduledInfo(vo: Scheduled): info = { 'cron': vo.cron, 'interval': vo.interval, 'hours': vo.hours, 'minutes': vo.minutes } return schedule_pb2.Scheduled(**info) def ScheduleInfo(schedule_vo: Schedule, minimal=False): info = { 'schedule_id': schedule_vo.schedule_id, 'topic': schedule_vo.topic, 'state': schedule_vo.state, } if not minimal: info.update({ 'options': change_struct_type(schedule_vo.options.to_dict()) if schedule_vo.options else None, 'schedule': ScheduledInfo(schedule_vo.schedule) if schedule_vo.schedule else None, 'tags': change_struct_type(schedule_vo.tags), 'domain_id': schedule_vo.domain_id, 'created_at': change_timestamp_type(schedule_vo.created_at), 'last_scheduled_at': change_timestamp_type(schedule_vo.last_scheduled_at) }) return schedule_pb2.ScheduleInfo(**info) def SchedulesInfo(schedule_vos, total_count, **kwargs): return schedule_pb2.SchedulesInfo(results=list( map(functools.partial(ScheduleInfo, **kwargs), schedule_vos)), total_count=total_count)
1,450
driveapi.py
naranma/drive-api
0
2025199
import os import pprint import uuid import pickle import google.oauth2.credentials from googleapiclient.discovery import build from googleapiclient.errors import HttpError from google_auth_oauthlib.flow import InstalledAppFlow from google.auth.transport.requests import Request pp = pprint.PrettyPrinter(indent=2) # The CLIENT_SECRETS_FILE variable specifies the name of a file that contains # the OAuth 2.0 information for this application, including its client_id and # client_secret. CLIENT_SECRETS_FILE = "client_secrets.json" # This access scope grants read-only access to the authenticated user's Drive # account. #SCOPES = ['https://www.googleapis.com/auth/drive.metadata.readonly'] SCOPES = ['https://www.googleapis.com/auth/drive'] API_SERVICE_NAME = 'drive' API_VERSION = 'v3' #STORAGE = Storage('storage.json') #credentials = STORAGE.get() CREDENTIALS_PICKLE = 'token.pickle' def get_authenticated_service2(): credentials = None if os.path.exists(CREDENTIALS_PICKLE): with open(CREDENTIALS_PICKLE, 'rb') as token: credentials = pickle.load(token) # If there are no (valid) credentials available, let the user log in. if not credentials or not credentials.valid: if credentials and credentials.expired and credentials.refresh_token: credentials.refresh(Request()) else: flow = InstalledAppFlow.from_client_secrets_file(CLIENT_SECRETS_FILE, SCOPES) #credentials = flow.run_local_server(port=0) credentials = flow.run_console() # Save the credentials for the next run with open(CREDENTIALS_PICKLE, 'wb') as token: pickle.dump(credentials, token) return build(API_SERVICE_NAME, API_VERSION, credentials = credentials) def get_authenticated_service(): flow = InstalledAppFlow.from_client_secrets_file(CLIENT_SECRETS_FILE, SCOPES) credentials = flow.run_console() return build(API_SERVICE_NAME, API_VERSION, credentials = credentials) def list_drive_files(service, **kwargs): results = service.files().list( **kwargs ).execute() pp.pprint(results) def list_drive_files2(service, **kwargs): request = service.files().list( **kwargs ) while request is not None: response = request.execute() pp.pprint(response) request = service.drives().list_next(previous_request=request,previous_response=response) def create_teamdrive(service, td_name): request_id = str(uuid.uuid4()) # random unique UUID string body = {'name': td_name} return service.teamdrives().create(body=body, requestId=request_id, fields='id').execute().get('id') def list_teamdrive(service): results = service.drives().list(pageSize=100).execute() # pageSize=None return 10 items. Max = 100 return results.get('drives') def list_teamdrive2(service): results = [] request = service.drives().list(pageSize=100) # pageSize=None return 10 items. Max = 100 while request is not None: response = request.execute() results = results + response.get('drives') #pp.pprint(response) request = service.drives().list_next(previous_request=request,previous_response=response) return results def update_teamdrive(service, td_id, td_name): body = {'name': td_name} return service.teamdrives().update(body=body, teamDriveId=td_id, fields='id').execute().get('id') def get_teamdrive(service, td_id): return service.teamdrives().get( teamDriveId=td_id, fields='*').execute() def add_user(service, td_id, user, role='organizer'): body = {'type': 'user', 'role': role, 'emailAddress': user} return service.permissions().create(body=body, fileId=td_id, sendNotificationEmail=False, supportsTeamDrives=True, fields='id').execute().get('id') def add_group(service, td_id, group, role='organizer'): body = {'type': 'group', 'role': role, 'emailAddress': group} return service.permissions().create(body=body, fileId=td_id, sendNotificationEmail=False, supportsTeamDrives=True, fields='id').execute().get('id')
3,994
Tree/postorder_traversal.py
AaronOS0/leetcode_solver
0
2026061
#!/usr/bin/env python from typing import List, Optional from collections import Counter, deque """ Questions: 145. Binary Tree Postorder Traversal 590. N-ary Tree Postorder Traversal """ class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right class Node: def __init__(self, val=None, children=None): self.val = val self.children = children class Solution: """ 145. Binary Tree Postorder Traversal Given the root of a binary tree, return the postorder traversal of its nodes' values. https://leetcode.com/problems/binary-tree-postorder-traversal/ >>> root = [1,null,2,3] >>> [3,2,1] """ # Time Complexity: O() # Space Complexity: O() # Recursion version def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]: res = [] if not root: return res def recursion(root, res): if root: recursion(root.left, res) recursion(root.right, res) res.append(root.val) recursion(root, res) return res # Iteration version def postorderTraversal1(self, root: Optional[TreeNode]) -> List[int]: res, stack = [], [root] while stack: node = stack.pop() if node: stack.append(node.left) stack.append(node.right) res.append(node.val) return res[::-1] """ 590. N-ary Tree Postorder Traversal Given the root of an n-ary tree, return the postorder traversal of its nodes' values. >>> [1,null,3,2,4,null,5,6] >>> [5,6,3,2,4,1] """ # Recursion version def postorder(self, root: 'Node') -> List[int]: res = [] # Empty tree if not root: return res def recursion(root, res): for child in root.children: recursion(child, res) res.append(root.val) recursion(root, res) return res # Iteration version def postorder1(self, root: 'Node') -> List[int]: res = [] if not root: return res stack = [root] while stack: curr = stack.pop() res.append(curr.val) stack.extend(curr.children) return res[::-1]
2,395
main.py
nikitt-code/sso-python-sdk
1
2026485
from ssosdk import SSOSDK if __name__ == '__main__': app = SSOSDK("TOKEN HERE") # users.get # users_array - array of ids, if u need one user [ id ] # app.usersGet([ 463406970 ]) # transfer.create # id - recipient id, count - value of send coins # app.transfersCreate(id, count) # transfers.getHistory # count - count of transfers to show # app.transfersGetHistory(count) # transfers.get # transfer_ids - array of ids of transfers, if u need one transfer [ id ] # app.transfersGet([ 743 ]) # webhooks.get # app.webhooksGet(url) # webhooks.create # url - url to your server # app.webhooksSet(url) # webhooks.delete # app.webhooksDelete(url) # promocodes.create # count, activations # app.promoCreate(count, activations) # promocodes.get # app.promoGet() # promocodes.activate # code - promocode value # app.promoActivate()
943
src/chains/migrations/0013_rename_url_uri.py
tharsis/safe-config-service
8
2024852
# Generated by Django 3.2.5 on 2021-07-15 15:07 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ("chains", "0012_chain_gas_price_fixed_wei"), ] operations = [ migrations.RenameField( model_name="chain", old_name="block_explorer_url", new_name="block_explorer_uri", ), migrations.RenameField( model_name="chain", old_name="currency_logo_url", new_name="currency_logo_uri", ), migrations.RenameField( model_name="chain", old_name="gas_price_oracle_url", new_name="gas_price_oracle_uri", ), migrations.RenameField( model_name="chain", old_name="rpc_url", new_name="rpc_uri", ), migrations.RenameField( model_name="chain", old_name="transaction_service_url", new_name="transaction_service_uri", ), ]
1,026
plotROC.py
hdadong/dadong
0
2025288
import os import cv2 import sys import os.path as osp import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl mpl.rcParams['xtick.labelsize']=24 mpl.rcParams['ytick.labelsize']=24 def main(): gto=open('logcacdvs207.log','r') lines=gto.readlines() dis=[] for line in lines: dis.append(float(line.split(' ')[1])) print(len(dis),dis[0]) sot=sorted(dis) fpr=[] far=[] for testi in range(0,4000): fenge=sot[testi] label=[] for distance in dis: if distance>fenge: label.append(0) else: label.append(1) #print label fp=0 fa=0 for i in xrange(0,10): for j in xrange(i*200,(i+1)*200): if i in [0,2,4,6,8]: if label[j]==0: fp+=1 if i in [1,3,5,7,9]: if label[j]==1: fa+=1 if testi%10==0: print testi,', fpr:',fp/2000.0,'far:', fa/2000.0 far.append(fa/2000.0) fpr.append(fp/2000.0) fpr=np.asarray(fpr) far=np.asarray(far) plt.figure('ROC') plt.plot(far,1-fpr) plt.xlim((0,1)) plt.ylim((0,1)) plt.show() if __name__ == '__main__': main()
1,228
toffifee.py
christiankuhl/nonsense
0
2026290
from collections import OrderedDict import sys import os import time class Tracer(object): def __init__(self, columns=6, rows=4): self.columns = columns self.rows = rows self.position = (0, 0) self.history = OrderedDict() self.history[self.position] = self.possibilities() def possibilities(self): p = [(self.position[0] + l*i, self.position[1] + k*j) for k in [-1, 1] for l in [-1, 1] for i in range(1, 3) for j in range(1, 3) if i + j == 3] p = [(r, s) for (r, s) in p if r in range(self.columns) and s in range(self.rows) and not (r, s) in self.history] return p def trace(self): while not self.done(): possibilities = self.history[next(reversed(self.history))] if possibilities: position = possibilities.pop() path = self.move(position) else: try: self.back() except StopIteration: break if path: return path else: print("No solution fond!") def move(self, position): self.position = position self.history[position] = self.possibilities() if self.done(): solution = list(self.history.keys()) print("Found path:", solution) return solution def back(self): self.history.popitem() self.position = next(reversed(self.history)) def done(self): return len(self.history) == self.columns * self.rows def print_there(row, col, text): sys.stdout.write("\x1b7\x1b[%d;%df%s\x1b8" % (row + 6, col + 6, text)) sys.stdout.flush() if __name__ == '__main__': os.system("clear") a = int(input("Columns: ")) b = int(input("Rows: ")) t = Tracer(a, b) print("Calculating...") solution = t.trace() if solution: os.system("setterm -cursor off") for row in range(b): for col in range(a): print_there(row, col, "*") prev_row, prev_col = 0, 0 pawn = u"\u265e" print_there(solution[0][0], solution[0][1], "\033[92m" + pawn) time.sleep(1) for row, col in solution[1:]: print_there(prev_col, prev_row, "\033[94m*") print_there(col, row, "\033[92m" + pawn) prev_row, prev_col = row, col time.sleep(1) os.system("setterm -cursor on")
2,556
examples/print_settings.py
iorodeo/pyMightLED
0
2025864
""" print_settings.py - illustrates how to print the devices current settins. """ from pyMightLED import LedController port = '/dev/ttyUSB0' dev = LedController(port) dev.printSettings()
188
record_post_trade.py
IncarboneLuca/OneTradeParDay
0
2025974
# -*- coding: utf-8 -*- """ Created on Fri Jul 2 23:57:53 2021 @author:<NAME> Record data around opening marcket to be used in the future to improove your algorithm or change the tresholds to improove the gain. - set buy/sell at 15:26 (running OTAD.py script) - after 16:00 sell at any gain and set stopLOSSES run record_post_trade.py after 19:00 daily (before next trade) run DDD.py to run the analysis on recorded database to test possible trade and simulate the possible past gain """ from credentials import get_cred from tvDatafeed import TvDatafeed,Interval import pandas as pd from datetime import datetime def veryfy_trade(one_trade,low_to_buy,high_to_sell): bought = False sold = False #do not buy after 15:39 one_trade_buy = one_trade.between_time('15:19', '15:39') for i in range(len(one_trade_buy)): if one_trade_buy.iloc[i]['low']<=low_to_buy: bought = True # order after 15:26 one_trade_sell = one_trade.between_time('15:26', '17:01') for i in range(len(one_trade_sell)): if one_trade_sell.iloc[i]['high']>=high_to_sell: sold = True if bought and sold: return "OK" elif bought: return "Losses" else: return "noTrade" def extract_data(file_n): #get data 5m resolution df = pd.read_csv(file_n, index_col=0, parse_dates=True) return df username,password=get_cred('tradingview'); # you need to run previously the credentials.py script to update a valid credential tv=TvDatafeed(username=username, password=password) data = tv.get_hist('WHSELFINVEST:USTECH100CFD','WHSELFINVEST',interval=Interval.in_1_minute,n_bars=1000) print(data) # data=pd.read_csv('DB/out.csv') # print(data) # str_date = "2021-07-02" # data_day = data.loc[str_date:str_date] # start=data_day.between_time('15:19','15:24') str_date = datetime.today().strftime('%Y-%m-%d') data_day = data one_trade = data_day.between_time('15:19', '17:01') # BackUP data for future analysis USTESCH100_data = tv.get_hist('WHSELFINVEST:USTECH100CFD','WHSELFINVEST',interval=Interval.in_1_minute,n_bars=5000) USSP500_data = tv.get_hist('WHSELFINVEST:USSP500CFD','WHSELFINVEST',interval=Interval.in_1_minute,n_bars=5000) WALLSTREET_data = tv.get_hist('WHSELFINVEST:WALLSTREETCFD','WHSELFINVEST',interval=Interval.in_1_minute,n_bars=5000) # BakUp just opening market timewindow USTESCH100_d = USTESCH100_data.between_time('15:00', '19:00') USSP500_d = USSP500_data.between_time('15:00', '19:00') WALLSTREET_d = WALLSTREET_data.between_time('15:00', '19:00') #save to csv file USTESCH100_d.to_csv(str('DB/USTECH100/1m/'+str_date+'_dailyRecord.csv')) USSP500_d.to_csv(str('DB/USSP500/1m/'+str_date+'_dailyRecord.csv')) WALLSTREET_d.to_csv(str('DB/WALLSTREET/1m/'+str_date+'_dailyRecord.csv')) #Backup 5m resolution USTESCH100_data = tv.get_hist('WHSELFINVEST:USTECH100CFD','WHSELFINVEST',interval=Interval.in_5_minute,n_bars=5000) USSP500_data = tv.get_hist('WHSELFINVEST:USSP500CFD','WHSELFINVEST',interval=Interval.in_5_minute,n_bars=5000) WALLSTREET_data = tv.get_hist('WHSELFINVEST:WALLSTREETCFD','WHSELFINVEST',interval=Interval.in_5_minute,n_bars=5000) #consider past values to be add to the output file USP500_df = extract_data( ".\\DB\\USSP500\\5m\\USSP500_5m_Record.csv") USTECH100_df = extract_data( ".\\DB\\USTECH100\\5m\\USTECH100_5m_Record.csv") WALLSTREET_df = extract_data( ".\\DB\\WALLSTREET\\5m\\WALLSTREET_5m_Record.csv") # concatenate the old database and the new data to avoid data redundancy USSP500_d=pd.concat([USP500_df,USSP500_data]) USSP500_d = USSP500_d[~USSP500_d.index.duplicated()] USTESCH100_d=pd.concat([USTECH100_df,USTESCH100_data]) USTESCH100_d = USTESCH100_d[~USTESCH100_d.index.duplicated()] WALLSTREET_d=pd.concat([WALLSTREET_df,WALLSTREET_data]) WALLSTREET_d = WALLSTREET_d[~WALLSTREET_d.index.duplicated()] #save to csv file USTESCH100_d.to_csv(str('DB/USTECH100/5m/USTECH100_5m_Record.csv')) USSP500_d.to_csv(str('DB/USSP500/5m/USSP500_5m_Record.csv')) WALLSTREET_d.to_csv(str('DB/WALLSTREET/5m/WALLSTREET_5m_Record.csv'))
4,108
src/gallium/tools/trace/format.py
SoftReaper/Mesa-Renoir-deb
0
2024953
#!/usr/bin/env python3 ########################################################################## # # Copyright 2008 VMware, Inc. # All Rights Reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sub license, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice (including the # next paragraph) shall be included in all copies or substantial portions # of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. # IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR # ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # ########################################################################## import sys class Formatter: '''Plain formatter''' def __init__(self, stream): self.stream = stream def text(self, text): self.stream.write(text) def newline(self): self.text('\n') def function(self, name): self.text(name) def variable(self, name): self.text(name) def literal(self, value): self.text(str(value)) def address(self, addr): self.text(str(addr)) class AnsiFormatter(Formatter): '''Formatter for plain-text files which outputs ANSI escape codes. See http://en.wikipedia.org/wiki/ANSI_escape_code for more information concerning ANSI escape codes. ''' _csi = '\33[' _normal = '0m' _bold = '1m' _italic = '3m' _red = '31m' _green = '32m' _blue = '34m' def _escape(self, code): self.text(self._csi + code) def function(self, name): self._escape(self._bold) Formatter.function(self, name) self._escape(self._normal) def variable(self, name): self._escape(self._italic) Formatter.variable(self, name) self._escape(self._normal) def literal(self, value): self._escape(self._blue) Formatter.literal(self, value) self._escape(self._normal) def address(self, value): self._escape(self._green) Formatter.address(self, value) self._escape(self._normal) class WindowsConsoleFormatter(Formatter): '''Formatter for the Windows Console. See http://code.activestate.com/recipes/496901/ for more information. ''' STD_INPUT_HANDLE = -10 STD_OUTPUT_HANDLE = -11 STD_ERROR_HANDLE = -12 FOREGROUND_BLUE = 0x01 FOREGROUND_GREEN = 0x02 FOREGROUND_RED = 0x04 FOREGROUND_INTENSITY = 0x08 BACKGROUND_BLUE = 0x10 BACKGROUND_GREEN = 0x20 BACKGROUND_RED = 0x40 BACKGROUND_INTENSITY = 0x80 _normal = FOREGROUND_BLUE | FOREGROUND_GREEN | FOREGROUND_RED _bold = FOREGROUND_BLUE | FOREGROUND_GREEN | FOREGROUND_RED | FOREGROUND_INTENSITY _italic = FOREGROUND_BLUE | FOREGROUND_GREEN | FOREGROUND_RED _red = FOREGROUND_RED | FOREGROUND_INTENSITY _green = FOREGROUND_GREEN | FOREGROUND_INTENSITY _blue = FOREGROUND_BLUE | FOREGROUND_INTENSITY def __init__(self, stream): Formatter.__init__(self, stream) if stream is sys.stdin: nStdHandle = self.STD_INPUT_HANDLE elif stream is sys.stdout: nStdHandle = self.STD_OUTPUT_HANDLE elif stream is sys.stderr: nStdHandle = self.STD_ERROR_HANDLE else: nStdHandle = None if nStdHandle: import ctypes self.handle = ctypes.windll.kernel32.GetStdHandle(nStdHandle) else: self.handle = None def _attribute(self, attr): if self.handle: import ctypes ctypes.windll.kernel32.SetConsoleTextAttribute(self.handle, attr) def function(self, name): self._attribute(self._bold) Formatter.function(self, name) self._attribute(self._normal) def variable(self, name): self._attribute(self._italic) Formatter.variable(self, name) self._attribute(self._normal) def literal(self, value): self._attribute(self._blue) Formatter.literal(self, value) self._attribute(self._normal) def address(self, value): self._attribute(self._green) Formatter.address(self, value) self._attribute(self._normal) def DefaultFormatter(stream): if sys.platform in ('linux2', 'linux', 'cygwin'): return AnsiFormatter(stream) elif sys.platform in ('win32', ): return WindowsConsoleFormatter(stream) else: return Formatter(stream)
5,156
tests/return_values.py
nocturn9x/asyncevents
5
2026408
import asyncio from asyncevents import on_event, emit @on_event("hello") async def hello(_, event: str): print(f"Hello {event!r}!") return 42 @on_event("hello") async def owo(_, event: str): print(f"owo {event!r}!") return 1 @on_event("hello") async def hi(_, event: str): print(f"Hello {event!r}!") async def main(): print("Firing blocking event 'hello'") assert await emit("hello") == [42, 1, None] print("Handlers for event 'hello' have exited") if __name__ == "__main__": asyncio.run(main())
542
VIS_2020/WeightCalculationFromImageBrightness.py
rakib045/TCarto
3
2026083
from energyMinimization import * import colorsys import csv from collections import Counter import itertools import colorsys import math square_grid = 128 input_image_file = "input/LowLightImageEnhancement.png" output_weight_filename = "input/LowLightImageEnhancement_lightness_weight_128_128.txt" def create_hls_array(image): pixels = image.load() hls_array = np.empty(shape=(image.height, image.width, 3), dtype=float) for row in range(0, image.height): for column in range(0, image.width): rgb = pixels[column, row] hls = colorsys.rgb_to_hls(rgb[0]/255.0, rgb[1]/255.0, rgb[2]/255.0) hls_array[row, column, 0] = hls[0] #hls_array[row, column, 1] = 100*(2**(2.5*(hls[1]))) hls_array[row, column, 1] = hls[1] hls_array[row, column, 2] = hls[2] return hls_array def image_from_hls_array(hls_array): new_image = Image.new("RGB", (hls_array.shape[1], hls_array.shape[0])) for row in range(0, new_image.height): for column in range(0, new_image.width): rgb = colorsys.hls_to_rgb(hls_array[row, column, 0], hls_array[row, column, 1], hls_array[row, column, 2]) rgb = (int(rgb[0]*255), int(rgb[1]*255), int(rgb[2]*255)) new_image.putpixel((column, row), rgb) return new_image input_image = Image.open(input_image_file) hls = create_hls_array(input_image) #print('Min:', hls[:, :, 1].min()) #print('Max:', hls[:, :, 1].max()) #new_image = image_from_hls_array(hls) #new_image.save('input/hls_test3.png') grid_count_horizontal = square_grid grid_count_vertical = square_grid max = hls.shape[0] var = hls[:, :, 1] inc_y = int(max/grid_count_vertical) inc_x = m.ceil(max/grid_count_horizontal) data = [] for x in range(0, grid_count_horizontal, 1): for y in range(0, grid_count_vertical, 1): sum = 0 n = 0 #print('....'+str(x)+'.....'+str(y)+'.......') for j in range((y)*inc_y,(y+1)*inc_y,1): for i in range((x)*inc_x,(x+1)*inc_x,1): sum = var[i, j] + sum n = n+1 av = sum/n #print(av) data.append(av) #min_val = min(data) #max_val = max(data) #print('Min:', min_val) #print('Max:', max_val) count = 1 with open(output_weight_filename, 'w') as f: for i in data: if count != grid_count_horizontal * grid_count_vertical: f.write('{:.4f},'.format(i)) if count % grid_count_horizontal == 0: f.write('\n') else: f.write('{:.4f}'.format(i)) count += 1 print('Finished !!')
2,696
openstack_dashboard/dashboards/sdscontroller/executions/views.py
iostackproject/SDS-dashboard
1
2025631
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from . import tabs as mydashboard_tabs from . import forms as project_forms from django.core.urlresolvers import reverse from django.core.urlresolvers import reverse_lazy from django.utils.translation import ugettext_lazy as _ from django.views import generic from horizon import tabs from horizon import forms from horizon import exceptions from horizon.utils import memoized from openstack_dashboard.api import zoeapi class IndexView(tabs.TabbedTableView): tab_group_class = mydashboard_tabs.MypanelTabs template_name = 'sdscontroller/executions/index.html' def get_data(self, request, context, *args, **kwargs): # Add data to the context here... return context class CreateExecutionView(forms.ModalFormView): form_class = project_forms.CreateExecutionForm template_name = 'sdscontroller/executions/create.html' success_url = reverse_lazy("horizon:sdscontroller:executions:index") modal_id = "create_execution_modal" modal_header = _("Create Execution") submit_label = _("Create Execution") submit_url = "horizon:sdscontroller:executions:create" def form_valid(self, form): return super(CreateExecutionView, self).form_valid(form) def get_initial(self): initial = super(CreateExecutionView, self).get_initial() initial['name'] = '' initial['app_name'] = '' return initial def get_context_data(self, **kwargs): context = super(CreateExecutionView, self).get_context_data(**kwargs) return context class ExecutionDetailsView(forms.ModalFormMixin, generic.TemplateView): template_name = 'sdscontroller/executions/details.html' page_title = _("Executions Details") @memoized.memoized_method def get_object(self): try: return zoeapi.get_execution_details(self.kwargs["instance_id"]) except Exception: redirect = reverse("horizon:sdscontroller:executions:index") exceptions.handle(self.request, _('Unable to retrieve details.'), redirect=redirect) def get_context_data(self, **kwargs): print("zoe execution details view: get_context_data") context = super(ExecutionDetailsView, self).get_context_data(**kwargs) context['execution'] = self.get_object() return context
2,911
dentexchange/apps/libs/tests/haystack/test_get_instance.py
hellhound/dentexchange
1
2025936
# -*- coding:utf-8 -*- import unittest import mock from ...haystack.utils import get_instance class GetInstanceTestCase(unittest.TestCase): def test_get_instance_should_call_and_return_managers_get_with_pk_from_model_class( self): # setup model_class = mock.Mock() pk = '1' get = model_class._default_manager.get # action returned_value = get_instance(model_class, pk) # assert self.assertDictEqual(dict(pk=int(pk)), get.call_args[1]) self.assertEqual(id(get.return_value), id(returned_value)) def test_get_instance_should_return_none_when_pk_does_not_exist( self): # setup model_class = mock.Mock() pk = '1' get = model_class._default_manager.get model_class.DoesNotExist = Exception get.side_effect = model_class.DoesNotExist() # action returned_value = get_instance(model_class, pk) # assert self.assertDictEqual(dict(pk=int(pk)), get.call_args[1]) self.assertIsNone(returned_value) def test_get_instance_should_return_none_when_pk_yields_multiple_objects( self): # setup model_class = mock.Mock() pk = '1' get = model_class._default_manager.get model_class.MultipleObjectsReturned = Exception get.side_effect = model_class.MultipleObjectsReturned() # action returned_value = get_instance(model_class, pk) # assert self.assertDictEqual(dict(pk=int(pk)), get.call_args[1]) self.assertIsNone(returned_value)
1,616
app/resolve_relocations.py
mongodb-labs/disasm
269
2025630
# Copyright 2016 MongoDB Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from disassemble import disasm_plt from disasm_demangler import demangle from elftools.elf.relocation import RelocationSection import struct, time MAX_INSTR_SIZE = 16 def resolve_plt(addr, plt_section, exe): sym = None plt_offset = addr - plt_section['sh_addr'] + plt_section['sh_offset'] plt_section.stream.seek(plt_offset) # "execute" instructions in .plt to find indirection rela_addr, size = disasm_plt(plt_section.stream.read(MAX_INSTR_SIZE), addr) if not rela_addr: return None # update rela_addr if it's in the reloc table reloc_section = exe.elff.get_section_by_name(".rela.plt") if not reloc_section: reloc_section = exe.elff.get_section_by_name(".rel.plt") if not reloc_section: return None sym = sym_from_reloc_section(exe, rela_addr, reloc_section) if sym: # found in reloc table sym.name = demangle(sym.name) + " (.plt)" return sym else: # not in relocation table print ("not in reloc table") section = exe.get_section_from_offset(rela_addr) if section.name == ".text": return get_symbol_by_addr(rela_addr) else: print "Unhandled section: " + section.name return None def resolve_got(addr, got_section, exe): # is GOT always populated by .dyn?? unclear. TODO reloc_section = exe.elff.get_section_by_name(".rela.dyn") if not reloc_section: reloc_section = exe.elff.get_section_by_name(".rel.dyn") if not reloc_section: return None sym = sym_from_reloc_section(exe, addr, reloc_section) if sym: sym.name = demangle(sym.name) + " (.got)" return sym else: print "not in reloc table" return None # given relocation address (the address into .got or .plt) # and the relevant relocation section, get the symbol def sym_from_reloc_section(exe, rela_addr, reloc_section): symtab = exe.elff.get_section(reloc_section['sh_link']) for reloc in reloc_section.iter_relocations(): if reloc["r_offset"] == rela_addr: sym = symtab.get_symbol(reloc['r_info_sym']) return sym return None
2,755
tests/test_pipelines.py
ca-scribner/bundle-kubeflow
0
2026450
import inspect from typing import Callable import pytest from kfp import Client from .pipelines.cowsay import cowsay_pipeline from .pipelines.jupyter import jupyter_pipeline from .pipelines.katib import katib_pipeline from .pipelines.mnist import mnist_pipeline from .pipelines.object_detection import object_detection_pipeline def get_params(func): return {name: value.default for name, value in inspect.signature(func).parameters.items()} @pytest.mark.parametrize( 'name,fn', [ pytest.param( 'mnist', mnist_pipeline, marks=[pytest.mark.full, pytest.mark.lite, pytest.mark.edge], ), pytest.param( 'cowsay', cowsay_pipeline, marks=[pytest.mark.full, pytest.mark.lite, pytest.mark.edge], ), pytest.param( 'katib', katib_pipeline, marks=[pytest.mark.full], ), pytest.param( 'jupyter', jupyter_pipeline, marks=[pytest.mark.full, pytest.mark.lite], ), pytest.param( 'object_detection', object_detection_pipeline, marks=pytest.mark.gpu, ), ], ) def test_pipelines(name: str, fn: Callable): """Runs each pipeline that it's been parameterized for, and waits for it to succeed.""" client = Client('127.0.0.1:8888') run = client.create_run_from_pipeline_func(fn, arguments=get_params(fn)) completed = client.wait_for_run_completion(run.run_id, timeout=3600) status = completed.to_dict()['run']['status'] assert status == 'Succeeded', f'Pipeline {name} status is {status}'
1,670
debug_toolbar_multilang/views.py
Matt3o12/django-debug-toolbar-multilang
1
2026488
from django.conf import settings from django.http.response import HttpResponseRedirect from django.utils.http import is_safe_url from django.utils.translation import check_for_language try: from django.utils.translation import LANGUAGE_SESSION_KEY except ImportError: LANGUAGE_SESSION_KEY = "django_language" def get_next_url(request): """ Returns the next url field (in our case, it can only be HTTP_REFERER, so we don't care about the next parameter). If the URL is not safe, it will return '/'. :param request: HttpRequest :return: str """ next_url = request.META.get('HTTP_REFERER') if not is_safe_url(url=next_url, host=request.get_host()): next_url = '/' return next_url def _set_key(container, key, attribute): """ Sets the value of `settings.attribute` to container[key] if value is in `django.utils.settings`. :param container: dict :param key: str :param attribute: str :return: None """ value = getattr(settings, attribute, None) if value: container[key] = value def change_language(request): """ This is a modified version of i18n's version of set_language which supports GET requests as well. Original description: Redirect to a given url while setting the chosen language in the session or cookie. The url and the language code need to be specified in the request parameters. """ response = HttpResponseRedirect(get_next_url(request)) lang_code = request.POST.get('language', request.GET.get("language", None)) if lang_code and check_for_language(lang_code): if hasattr(request, 'session'): request.session[LANGUAGE_SESSION_KEY] = lang_code else: cookieKwargs = {} _set_key(cookieKwargs, "max_age", "LANGUAGE_COOKIE_AGE") _set_key(cookieKwargs, "path", "LANGUAGE_COOKIE_PATH") _set_key(cookieKwargs, "domain", "LANGUAGE_COOKIE_DOMAIN") response.set_cookie( settings.LANGUAGE_COOKIE_NAME, lang_code, **cookieKwargs ) return response
2,128
authentication/models.py
eshiofune/brutus
0
2026533
from django.contrib.auth.models import User from django.db import models from authentication.managers import PersonManager class Person(User): objects = PersonManager() class Meta: proxy = True
213
src/resources/const.py
atracordis/tweets_startup_funding_extractor
0
2025825
import string path_to_driver = 'C:/Users/Thrall/chromedriver/chromedriver.exe' path_to_raw = "../data/raw_data/scraped_tweets.csv" path_to_parsed = "../data/parsed_data/scraped_tweets.csv" path_to_edited = "../data/edited_data/scraped_tweets.csv" path_to_staging = "../data/staging_data/scraped_tweets.csv" letters = {"series {}".format(letter): number for letter, number in zip(string.ascii_lowercase, range(1, 28))} series_converter = { "seed": 0, "mezzanine": 27, "ipo": 28, "public": 29 } series_converter.update(letters) inv_series_converter = {v: k for k, v in series_converter.items()} units_converter = { "billion": 1000000000, "b": 1000000000, "million": 1000000, "m": 1000000, } list_cols_parsed = ["date", "user", "parsed_data"] list_cols_edited = ["date", "user", "edited_data"] list_cols_staged = ["date", "user", "date_scraped", "company_name", "series", "raised_funds", "investors", "date"]
980
apriltags2_ros/src/publish_detections_in_local_frame.py
selcukercan/apriltag2_ros
0
2026053
#!/usr/bin/env python import rospy import rosbag import numpy as np from threading import Lock from shutil import copy from std_msgs.msg import Bool from apriltags2_ros.msg import AprilTagDetectionArray from apriltags2_ros.msg import VehiclePoseEuler from apriltags2_ros_post_process.rotation_utils import * from apriltags2_ros_post_process.time_sync_utils import * class ToLocalPose: def __init__(self): """ listens to pose estimation returned by apriltag2_ros node and converts it into robot pose expressed in the global frame """ host_package = rospy.get_namespace() # as defined by <group> in launch file self.node_name = 'publish_detections_in_local_frame' # node name , as defined in launch file host_package_node = host_package + self.node_name self.veh = host_package.split('/')[1] # initialize the node rospy.init_node('publish_detections_in_local_frame_node', anonymous=False) # Parameters # determine we work synchronously or asynchronously, where asynchronous is the default # mode of operation. synchronous operation is benefitial when post-processing the recorded # experiment data. For example it is beneficial when only compressed image is available from the experiment and we want to # pass exach image through a localization pipeline (compressed_image -> decoder -> rectification -> apriltags_detection -> to_local_pose) # to extract the pose in world frame self.synchronous_mode = rospy.get_param(param_name="/operation_mode") self.total_msg_count = rospy.get_param(param_name="/" + self.veh + "/buffer_node/message_count") rospy.logwarn("TOTAL_MSG_COUNT: {}".format(self.total_msg_count)) # Publisher self.pub_topic_image_request = "/" + self.veh + "/" + self.node_name + "/" + "image_requested" self.pub_image_request = rospy.Publisher(self.pub_topic_image_request, Bool, queue_size=1) self.pub_topic_name = host_package_node + '/tag_detections_local_frame' self.pub_detection_in_robot_frame = rospy.Publisher(self.pub_topic_name ,VehiclePoseEuler,queue_size=1) # Subscriber sub_topic_name = '/' + self.veh + '/tag_detections' self.sub_img = rospy.Subscriber(sub_topic_name, AprilTagDetectionArray, self.cbDetection) if self.synchronous_mode: # get the input rosbags, and name of the output bag we wish the create input_bag = rospy.get_param(param_name= host_package_node + "/input_rosbag") self.output_bag = rospy.get_param(param_name= host_package_node + "/output_rosbag") # wrap bag file operations with a lock as rospy api is not threat-safe. self.lock = Lock() self.lock.acquire() copy(input_bag, self.output_bag) self.lock.release() self.numb_written_images = 0 self.wrote_all_images = False else: rospy.logwarn('INVALID MODE OF OPERATION in publish_detections_in_local_frame') def setupParam(self,param_name,default_value): value = rospy.get_param(param_name,default_value) rospy.set_param(param_name,value) #Write to parameter server for transparancy rospy.loginfo("[%s] %s = %s " %(self.node_name,param_name,value)) return value def cbDetection(self,msg): if (len(msg.detections) > 0): # non-emtpy detection message # unpack the position and orientation returned by apriltags2 ros t_msg = msg.detections[0].pose.pose.pose.position q_msg = msg.detections[0].pose.pose.pose.orientation # convert the message content into a numpy array as robot_pose_in_world_frame requires so. t = np.array([t_msg.x, t_msg.y, t_msg.z]) q = np.array([q_msg.x, q_msg.y, q_msg.z, q_msg.w]) # express relative rotation of the robot wrt the global frame. veh_R_world, veh_t_world = robot_pose_in_word_frame(q,t) veh_feaXYZ_world = rotation_matrix_to_euler(veh_R_world) # convert from numpy float to standart python float to be written into the message veh_t_world = veh_t_world.tolist() veh_feaXYZ_world = veh_feaXYZ_world.tolist() # form message to publish veh_pose_euler_msg = VehiclePoseEuler() veh_pose_euler_msg.header.stamp = rospy.Time.now() # position veh_pose_euler_msg.posx = veh_t_world[0] veh_pose_euler_msg.posy = veh_t_world[1] veh_pose_euler_msg.posz = veh_t_world[2] # orientation veh_pose_euler_msg.rotx = veh_feaXYZ_world[0] veh_pose_euler_msg.roty = veh_feaXYZ_world[1] veh_pose_euler_msg.rotz = veh_feaXYZ_world[2] # finally publish the message self.pub_detection_in_robot_frame.publish(veh_pose_euler_msg) if self.synchronous_mode: # save the message to a bag file self.lock.acquire() output_rosbag = rosbag.Bag(self.output_bag, 'a') # open bag to write output_rosbag.write(self.pub_topic_name, veh_pose_euler_msg) output_rosbag.close() self.lock.release() rospy.loginfo("[{}] wrote image {}".format(self.node_name, self.numb_written_images)) self.numb_written_images += 1 # request a new image from "buffer.py" req_msg = Bool(True) self.pub_image_request.publish(req_msg) if self.numb_written_images == self.total_msg_count - 1: time_sync(self.output_bag) else: rospy.loginfo("[{}] empty apriltag detection recieved publishing with all entries 0".format(self.node_name, self.numb_written_images)) # form message to publish veh_pose_euler_msg = VehiclePoseEuler() veh_pose_euler_msg.header.stamp = rospy.Time.now() # position veh_pose_euler_msg.posx = 0 veh_pose_euler_msg.posy = 0 veh_pose_euler_msg.posz = 0 # orientation veh_pose_euler_msg.rotx = 0 veh_pose_euler_msg.roty = 0 veh_pose_euler_msg.rotz = 0 # finally publish the message self.pub_detection_in_robot_frame.publish(veh_pose_euler_msg) if __name__ == '__main__': to_local_pose = ToLocalPose() rospy.spin()
6,550
geopy/geocoders/mapquest.py
navidata/geopy
0
2025940
""" :class:`.MapQuest` geocoder. """ from geopy.compat import urlencode from geopy.geocoders.base import ( Geocoder, DEFAULT_FORMAT_STRING, DEFAULT_TIMEOUT, DEFAULT_SCHEME ) from geopy.location import Location from geopy.util import logger, join_filter from geopy import exc __all__ = ("MapQuest", ) class MapQuest(Geocoder): # pylint: disable=W0223 """ MapQuest geocoder, documentation at: http://www.mapquestapi.com/geocoding/ """ def __init__( self, api_key, format_string=DEFAULT_FORMAT_STRING, scheme=DEFAULT_SCHEME, timeout=DEFAULT_TIMEOUT, proxies=None, ): # pylint: disable=R0913 """ Initialize a MapQuest geocoder with address information and MapQuest API key. :param string api_key: Key provided by MapQuest. :param string format_string: String containing '%s' where the string to geocode should be interpolated before querying the geocoder. For example: '%s, Mountain View, CA'. The default is just '%s'. :param string scheme: Use 'https' or 'http' as the API URL's scheme. Default is https. Note that SSL connections' certificates are not verified. .. versionadded:: 0.97 :param int timeout: Time, in seconds, to wait for the geocoding service to respond before raising a :class:`geopy.exc.GeocoderTimedOut` exception. .. versionadded:: 0.97 :param dict proxies: If specified, routes this geocoder's requests through the specified proxy. E.g., {"https": "192.0.2.0"}. For more information, see documentation on :class:`urllib2.ProxyHandler`. """ super(MapQuest, self).__init__(format_string, scheme, timeout, proxies) self.api_key = api_key self.api = ( "%s://www.mapquestapi.com/geocoding/v1" % self.scheme ) def geocode(self, query, exactly_one=True, timeout=None): # pylint: disable=W0221 """ Geocode a location query. :param string query: The address or query you wish to geocode. :param bool exactly_one: Return one result or a list of results, if available. :param int timeout: Time, in seconds, to wait for the geocoding service to respond before raising a :class:`geopy.exc.GeocoderTimedOut` exception. Set this only if you wish to override, on this call only, the value set during the geocoder's initialization. .. versionadded:: 0.97 """ params = { 'location' : self.format_string % query } if exactly_one: params['maxResults'] = 1 # don't urlencode MapQuest API keys url = "?".join(( self.api + '/address', "&".join(("=".join(('key', self.api_key)), urlencode(params))) )) logger.debug("%s.geocode: %s", self.__class__.__name__, url) return self._parse_json( self._call_geocoder(url, timeout=timeout), exactly_one ) def reverse(self, query, exactly_one=True, timeout=None): """ Reverse geocode a point. .. versionadded:: 1.4.0 :param query: The coordinates for which you wish to obtain the closest human-readable addresses. :type query: :class:`geopy.point.Point`, list or tuple of (latitude, longitude), or string as "%(latitude)s, %(longitude)s". :param bool exactly_one: Return one result, or a list? :param int timeout: Time, in seconds, to wait for the geocoding service to respond before raising a :class:`geopy.exc.GeocoderTimedOut` exception. Set this only if you wish to override, on this call only, the value set during the geocoder's initialization. """ point = self._coerce_point_to_string(query) # don't urlencode MapQuest API keys url = "%s/reverse?key=%s&location=%s" % ( self.api, self.api_key, point) logger.debug("%s.reverse: %s", self.__class__.__name__, url) return self._parse_json( self._call_geocoder(url, timeout=timeout), exactly_one ) def _parse_json(self, resources, exactly_one=True): """ Parse display name, latitude, and longitude from an JSON response. """ if resources.get('info').get('statuscode') == 403: raise exc.GeocoderAuthenticationFailure() resources = resources.get('results')[0].get('locations', []) if not len(resources): return None def parse_resource(resource): """ Parse each record. """ city = resource['adminArea5'] county = resource['adminArea4'] state = resource['adminArea3'] country = resource['adminArea1'] latLng = resource['latLng'] latitude, longitude = latLng.get('lat'), latLng.get('lng') location = join_filter(", ", [city, county, state, country]) if latitude and longitude: latitude = float(latitude) longitude = float(longitude) return Location(location, (latitude, longitude), resource) if exactly_one: return parse_resource(resources[0]) else: return [parse_resource(resource) for resource in resources]
5,574
day11.py
pmrowla/aoc2020
0
2026472
#!/usr/bin/env python # -*- coding: utf-8 -*- """Advent of Code 2020 day 11 module.""" from itertools import product def empty(grid, pos): x, y = pos return grid[y][x] == "L" def occupied(grid, pos): x, y = pos return grid[y][x] == "#" DELTAS = { "nw": (-1, -1), "n": (0, -1), "ne": (1, -1), "e": (1, 0), "se": (1, 1), "s": (0, 1), "sw": (-1, 1), "w": (-1, 0), } def adj(grid, pos, immediate=True): x, y = pos for x_delta, y_delta in DELTAS.values(): i = 1 while True: x1 = x + i * x_delta y1 = y + i * y_delta if x1 < 0 or x1 >= len(grid[y]) or y1 < 0 or y1 >= len(grid): break if immediate: yield x1, y1 break if grid[y1][x1] != ".": yield x1, y1 break i += 1 def step(grid, limit=4, immediate=True): new_grid = [] for y in range(len(grid)): new_row = [] for x in range(len(grid[y])): if empty(grid, (x, y)) and not any( occupied(grid, pos) for pos in adj(grid, (x, y), immediate=immediate) ): new_row.append("#") elif occupied(grid, (x, y)) and sum( occupied(grid, pos) for pos in adj(grid, (x, y), immediate=immediate) ) >= limit: new_row.append("L") else: new_row.append(grid[y][x]) new_grid.append(new_row) return new_grid def count_occupied(puzzle_input, **kwargs): grid = [list(row) for row in puzzle_input] next_grid = None while True: next_grid = step(grid, **kwargs) if next_grid == grid: break grid = next_grid return sum((occupied(grid, pos) for pos in product(range(len(grid[0])), range(len(grid))))) def process(puzzle_input, verbose=False): p1 = count_occupied(puzzle_input) p2 = count_occupied(puzzle_input, limit=5, immediate=False) return p1, p2 def main(): """Main entry point.""" import argparse import fileinput parser = argparse.ArgumentParser() parser.add_argument('infile', help='input file to read ("-" for stdin)') parser.add_argument('-v', '--verbose', '-d', '--debug', action='store_true', dest='verbose', help='verbose output') args = parser.parse_args() try: puzzle_input = [line.strip() for line in fileinput.input(args.infile) if line.strip()] p1, p2 = process(puzzle_input, verbose=args.verbose) print(f'Part one: {p1}') print(f'Part two: {p2}') except KeyboardInterrupt: pass if __name__ == '__main__': main()
2,766
tests/components/sleepiq/test_init.py
pcaston/core
1
2025964
"""The tests for the SleepIQ component.""" from unittest.mock import MagicMock, patch from openpeerpower import setup import openpeerpower.components.sleepiq as sleepiq from tests.common import load_fixture CONFIG = {"sleepiq": {"username": "foo", "password": "<PASSWORD>"}} def mock_responses(mock, single=False): """Mock responses for SleepIQ.""" base_url = "https://prod-api.sleepiq.sleepnumber.com/rest/" if single: suffix = "-single" else: suffix = "" mock.put(base_url + "login", text=load_fixture("sleepiq-login.json")) mock.get(base_url + "bed?_k=0987", text=load_fixture(f"sleepiq-bed{suffix}.json")) mock.get(base_url + "sleeper?_k=0987", text=load_fixture("sleepiq-sleeper.json")) mock.get( base_url + "bed/familyStatus?_k=0987", text=load_fixture(f"sleepiq-familystatus{suffix}.json"), ) async def test_setup(opp, requests_mock): """Test the setup.""" mock_responses(requests_mock) # We're mocking the load_platform discoveries or else the platforms # will be setup during tear down when blocking till done, but the mocks # are no longer active. with patch("openpeerpower.helpers.discovery.load_platform", MagicMock()): assert sleepiq.setup(opp, CONFIG) async def test_setup_login_failed(opp, requests_mock): """Test the setup if a bad username or password is given.""" mock_responses(requests_mock) requests_mock.put( "https://prod-api.sleepiq.sleepnumber.com/rest/login", status_code=401, json=load_fixture("sleepiq-login-failed.json"), ) response = sleepiq.setup(opp, CONFIG) assert not response async def test_setup_component_no_login(opp): """Test the setup when no login is configured.""" conf = CONFIG.copy() del conf["sleepiq"]["username"] assert not await setup.async_setup_component(opp, sleepiq.DOMAIN, conf) async def test_setup_component_no_password(opp): """Test the setup when no password is configured.""" conf = CONFIG.copy() del conf["sleepiq"]["password"] assert not await setup.async_setup_component(opp, sleepiq.DOMAIN, conf)
2,155
python2/tests/test_raygunprovider.py
GreatFruitOmsk/raygun4py
0
2025684
import unittest, sys from raygun4py import raygunprovider class TestRaygunSender(unittest.TestCase): def setUp(self): self.sender = raygunprovider.RaygunSender('invalidapikey') self.handler = raygunprovider.RaygunHandler('testkey', 'v1.0') def test_apikey(self): self.assertEqual(self.sender.apiKey, 'invalidapikey') def test_handler_apikey(self): self.assertEqual(self.handler.sender.apiKey, 'testkey') def test_handler_version(self): self.assertEqual(self.handler.version, 'v1.0') def test_sending_403_with_invalid_key(self): try: raise StandardError('test') except Exception as e: info = sys.exc_info() http_result = self.sender.send(info[0], info[1], info[2]) self.assertEqual(http_result[0], 403) def main(): unittest.main() if __name__ == '__main__': main()
927
examples/example_server.py
Vincent0700/tcplite
2
2026550
from tcplite import TCPServer if __name__ == '__main__': server = TCPServer(port=10086) server.start()
112
25-class-metaprog/tinyenums/microenum.py
leorochael/example-code-2e
0
2024023
# This is an implementation of an idea by <NAME> (@gwidion) # shared privately with me, with permission to use in Fluent Python 2e. """ Testing ``AutoFillDict``:: >>> adict = AutoFillDict() >>> len(adict) 0 >>> adict['first'] 0 >>> adict {'first': 0} >>> adict['second'] 1 >>> adict['third'] 2 >>> len(adict) 3 >>> adict {'first': 0, 'second': 1, 'third': 2} >>> adict['__magic__'] Traceback (most recent call last): ... KeyError: '__magic__' Testing ``MicroEnum``:: >>> class Flavor(MicroEnum): ... cocoa ... coconut ... vanilla >>> Flavor.cocoa, Flavor.vanilla (0, 2) >>> Flavor[1] 'coconut' """ class AutoFillDict(dict): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.__next_value = 0 def __missing__(self, key): if key.startswith('__') and key.endswith('__'): raise KeyError(key) self[key] = value = self.__next_value self.__next_value += 1 return value class MicroEnumMeta(type): def __prepare__(name, bases, **kwargs): return AutoFillDict() class MicroEnum(metaclass=MicroEnumMeta): def __class_getitem__(cls, key): for k, v in cls.__dict__.items(): if v == key: return k raise KeyError(key)
1,388
setup.py
shunjuu/Akari
0
2026142
from setuptools import setup setup( name='akari', url='https://github.com/shunjuu/Akari', author='Kyrielight', packages=['akari'], install_requires=[ 'ayumi @ git+https://github.com/shunjuu/Ayumi', 'requests' ], version='0.1', license='MIT', description='Jikan.moe Userlist Wrapper.' )
338
localstack/plugins.py
suryatmodulus/localstack
1
2026499
import logging from localstack import config from localstack.runtime import hooks LOG = logging.getLogger(__name__) @hooks.configure_localstack_container() def configure_edge_port(container): ports = [config.EDGE_PORT, config.EDGE_PORT_HTTP] LOG.info("configuring container with edge ports: %s", ports) for port in ports: if port: container.ports.add(port)
393
utils.py
salesforce/CoST
16
2026362
import os import numpy as np import pickle import torch import random from datetime import datetime import torch.nn as nn def pkl_save(name, var): with open(name, 'wb') as f: pickle.dump(var, f) def pkl_load(name): with open(name, 'rb') as f: return pickle.load(f) def torch_pad_nan(arr, left=0, right=0, dim=0): if left > 0: padshape = list(arr.shape) padshape[dim] = left arr = torch.cat((torch.full(padshape, np.nan), arr), dim=dim) if right > 0: padshape = list(arr.shape) padshape[dim] = right arr = torch.cat((arr, torch.full(padshape, np.nan)), dim=dim) return arr def pad_nan_to_target(array, target_length, axis=0, both_side=False): assert array.dtype in [np.float16, np.float32, np.float64] pad_size = target_length - array.shape[axis] if pad_size <= 0: return array npad = [(0, 0)] * array.ndim if both_side: npad[axis] = (pad_size // 2, pad_size - pad_size//2) else: npad[axis] = (0, pad_size) return np.pad(array, pad_width=npad, mode='constant', constant_values=np.nan) def split_with_nan(x, sections, axis=0): assert x.dtype in [np.float16, np.float32, np.float64] arrs = np.array_split(x, sections, axis=axis) target_length = arrs[0].shape[axis] for i in range(len(arrs)): arrs[i] = pad_nan_to_target(arrs[i], target_length, axis=axis) return arrs def take_per_row(A, indx, num_elem): all_indx = indx[:,None] + np.arange(num_elem) return A[torch.arange(all_indx.shape[0])[:,None], all_indx] def centerize_vary_length_series(x): prefix_zeros = np.argmax(~np.isnan(x).all(axis=-1), axis=1) suffix_zeros = np.argmax(~np.isnan(x[:, ::-1]).all(axis=-1), axis=1) offset = (prefix_zeros + suffix_zeros) // 2 - prefix_zeros rows, column_indices = np.ogrid[:x.shape[0], :x.shape[1]] offset[offset < 0] += x.shape[1] column_indices = column_indices - offset[:, np.newaxis] return x[rows, column_indices] def data_dropout(arr, p): B, T = arr.shape[0], arr.shape[1] mask = np.full(B*T, False, dtype=np.bool) ele_sel = np.random.choice( B*T, size=int(B*T*p), replace=False ) mask[ele_sel] = True res = arr.copy() res[mask.reshape(B, T)] = np.nan return res def name_with_datetime(prefix='default'): now = datetime.now() return prefix + '_' + now.strftime("%Y%m%d_%H%M%S") def init_dl_program( device_name, seed=None, use_cudnn=True, deterministic=False, benchmark=False, use_tf32=False, max_threads=None ): import torch if max_threads is not None: torch.set_num_threads(max_threads) # intraop if torch.get_num_interop_threads() != max_threads: torch.set_num_interop_threads(max_threads) # interop try: import mkl except: pass else: mkl.set_num_threads(max_threads) if seed is not None: random.seed(seed) seed += 1 np.random.seed(seed) seed += 1 torch.manual_seed(seed) if isinstance(device_name, (str, int)): device_name = [device_name] devices = [] for t in reversed(device_name): t_device = torch.device(t) devices.append(t_device) if t_device.type == 'cuda': assert torch.cuda.is_available() torch.cuda.set_device(t_device) if seed is not None: seed += 1 torch.cuda.manual_seed(seed) devices.reverse() torch.backends.cudnn.enabled = use_cudnn torch.backends.cudnn.deterministic = deterministic torch.backends.cudnn.benchmark = benchmark if hasattr(torch.backends.cudnn, 'allow_tf32'): torch.backends.cudnn.allow_tf32 = use_tf32 torch.backends.cuda.matmul.allow_tf32 = use_tf32 return devices if len(devices) > 1 else devices[0]
3,976
skmultilearn/problem_transform/__init__.py
chrysm/scikit-multilearn
0
2025575
""" The :mod:`skmultilearn.problem_transform` module provides classifiers that follow the problem transformation approaches to multi-label classification: - :class:`BinaryRelevance` - treats each label as a separate single-class classification problem - :class:`ClassifierChain`- treats each label as a part of a conditioned chain of single-class classification problems - :class:`LabelPowerset` - treats each label combination as a separate class with one multi-class classification problem """ from .br import BinaryRelevance from .cc import ClassifierChain from .lp import LabelPowerset __all__ = ["BinaryRelevance", "ClassifierChain", "LabelPowerset"]
688
test/unit/conftest.py
francesco-giordano/aws-parallelcluster-cookbook
44
2025846
""" This module loads pytest fixtures and plugins needed by all tests. It's very useful for fixtures that need to be shared among all tests. """ import pytest @pytest.fixture() def test_datadir(request, datadir): """ Inject the datadir with resources for the specific test function. If the test function is declared in a class then datadir is ClassName/FunctionName otherwise it is only FunctionName. """ function_name = request.function.__name__ if not request.cls: return datadir / function_name class_name = request.cls.__name__ return datadir / "{0}/{1}".format(class_name, function_name)
643
tests/keras2onnx_applications/nightly_build/test_inception_v4.py
pbeukema/tensorflow-onnx
1,473
2024878
# SPDX-License-Identifier: Apache-2.0 import os import sys import unittest import mock_keras2onnx import onnx import numpy as np from mock_keras2onnx.proto import keras from keras.applications import VGG19 from os.path import dirname, abspath sys.path.insert(0, os.path.join(dirname(abspath(__file__)), '../../keras2onnx_tests/')) from test_utils import run_onnx_runtime, test_level_0 Activation = keras.layers.Activation AveragePooling2D = keras.layers.AveragePooling2D Add = keras.layers.Add BatchNormalization = keras.layers.BatchNormalization concatenate = keras.layers.concatenate Convolution2D = keras.layers.Convolution2D Dense = keras.layers.Dense Dropout = keras.layers.Dropout Embedding = keras.layers.Embedding Flatten = keras.layers.Flatten Input = keras.layers.Input Lambda = keras.layers.Lambda LeakyReLU = keras.layers.LeakyReLU MaxPooling2D = keras.layers.MaxPooling2D Multiply = keras.layers.Multiply Reshape = keras.layers.Reshape SeparableConv2D = keras.layers.SeparableConv2D UpSampling2D = keras.layers.UpSampling2D ZeroPadding2D = keras.layers.ZeroPadding2D Sequential = keras.models.Sequential Model = keras.models.Model K = keras.backend # Model from https://github.com/titu1994/Inception-v4 def conv_block(x, nb_filter, nb_row, nb_col, border_mode='same', subsample=(1, 1), bias=False): channel_axis = -1 x = Convolution2D(nb_filter, (nb_row, nb_col), strides=subsample, padding=border_mode, use_bias=bias)(x) x = BatchNormalization(axis=channel_axis)(x) x = Activation('relu')(x) return x def inception_stem(input): channel_axis = -1 # Input Shape is 299 x 299 x 3 (th) or 3 x 299 x 299 (th) x = conv_block(input, 32, 3, 3, subsample=(2, 2), border_mode='valid') x = conv_block(x, 32, 3, 3, border_mode='valid') x = conv_block(x, 64, 3, 3) x1 = MaxPooling2D((3, 3), strides=(2, 2), padding='valid')(x) x2 = conv_block(x, 96, 3, 3, subsample=(2, 2), border_mode='valid') x = concatenate([x1, x2], axis=channel_axis) x1 = conv_block(x, 64, 1, 1) x1 = conv_block(x1, 96, 3, 3, border_mode='valid') x2 = conv_block(x, 64, 1, 1) x2 = conv_block(x2, 64, 1, 7) x2 = conv_block(x2, 64, 7, 1) x2 = conv_block(x2, 96, 3, 3, border_mode='valid') x = concatenate([x1, x2], axis=channel_axis) x1 = conv_block(x, 192, 3, 3, subsample=(2, 2), border_mode='valid') x2 = MaxPooling2D((3, 3), strides=(2, 2), padding='valid')(x) x = concatenate([x1, x2], axis=channel_axis) return x def inception_A(input): channel_axis = -1 a1 = conv_block(input, 96, 1, 1) a2 = conv_block(input, 64, 1, 1) a2 = conv_block(a2, 96, 3, 3) a3 = conv_block(input, 64, 1, 1) a3 = conv_block(a3, 96, 3, 3) a3 = conv_block(a3, 96, 3, 3) a4 = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(input) a4 = conv_block(a4, 96, 1, 1) m = concatenate([a1, a2, a3, a4], axis=channel_axis) return m def inception_B(input): channel_axis = -1 b1 = conv_block(input, 384, 1, 1) b2 = conv_block(input, 192, 1, 1) b2 = conv_block(b2, 224, 1, 7) b2 = conv_block(b2, 256, 7, 1) b3 = conv_block(input, 192, 1, 1) b3 = conv_block(b3, 192, 7, 1) b3 = conv_block(b3, 224, 1, 7) b3 = conv_block(b3, 224, 7, 1) b3 = conv_block(b3, 256, 1, 7) b4 = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(input) b4 = conv_block(b4, 128, 1, 1) m = concatenate([b1, b2, b3, b4], axis=channel_axis) return m def inception_C(input): channel_axis = -1 c1 = conv_block(input, 256, 1, 1) c2 = conv_block(input, 384, 1, 1) c2_1 = conv_block(c2, 256, 1, 3) c2_2 = conv_block(c2, 256, 3, 1) c2 = concatenate([c2_1, c2_2], axis=channel_axis) c3 = conv_block(input, 384, 1, 1) c3 = conv_block(c3, 448, 3, 1) c3 = conv_block(c3, 512, 1, 3) c3_1 = conv_block(c3, 256, 1, 3) c3_2 = conv_block(c3, 256, 3, 1) c3 = concatenate([c3_1, c3_2], axis=channel_axis) c4 = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(input) c4 = conv_block(c4, 256, 1, 1) m = concatenate([c1, c2, c3, c4], axis=channel_axis) return m def reduction_A(input): channel_axis = -1 r1 = conv_block(input, 384, 3, 3, subsample=(2, 2), border_mode='valid') r2 = conv_block(input, 192, 1, 1) r2 = conv_block(r2, 224, 3, 3) r2 = conv_block(r2, 256, 3, 3, subsample=(2, 2), border_mode='valid') r3 = MaxPooling2D((3, 3), strides=(2, 2), padding='valid')(input) m = concatenate([r1, r2, r3], axis=channel_axis) return m def reduction_B(input): channel_axis = -1 r1 = conv_block(input, 192, 1, 1) r1 = conv_block(r1, 192, 3, 3, subsample=(2, 2), border_mode='valid') r2 = conv_block(input, 256, 1, 1) r2 = conv_block(r2, 256, 1, 7) r2 = conv_block(r2, 320, 7, 1) r2 = conv_block(r2, 320, 3, 3, subsample=(2, 2), border_mode='valid') r3 = MaxPooling2D((3, 3), strides=(2, 2), padding='valid')(input) m = concatenate([r1, r2, r3], axis=channel_axis) return m def create_inception_v4(nb_classes=1001): ''' Creates a inception v4 network :param nb_classes: number of classes.txt :return: Keras Model with 1 input and 1 output ''' init = Input((299, 299, 3)) # Input Shape is 299 x 299 x 3 (tf) or 3 x 299 x 299 (th) x = inception_stem(init) # 4 x Inception A for i in range(4): x = inception_A(x) # Reduction A x = reduction_A(x) # 7 x Inception B for i in range(7): x = inception_B(x) # Reduction B x = reduction_B(x) # 3 x Inception C for i in range(3): x = inception_C(x) # Average Pooling x = AveragePooling2D((8, 8))(x) # Dropout x = Dropout(0.8)(x) x = Flatten()(x) # Output out = Dense(activation='softmax', units=nb_classes)(x) model = Model(init, out, name='Inception-v4') return model # Model from https://github.com/titu1994/Inception-v4 class TestInceptionV4(unittest.TestCase): def setUp(self): self.model_files = [] def tearDown(self): for fl in self.model_files: os.remove(fl) @unittest.skipIf(test_level_0, "Test level 0 only.") def test_inception_v4(self): K.clear_session() keras_model = create_inception_v4() data = np.random.rand(2, 299, 299, 3).astype(np.float32) expected = keras_model.predict(data) onnx_model = mock_keras2onnx.convert_keras(keras_model, keras_model.name) self.assertTrue( run_onnx_runtime(onnx_model.graph.name, onnx_model, data, expected, self.model_files)) if __name__ == "__main__": unittest.main()
6,729
train_cntk.py
rehakomoon/VRC_PhotoRotation_Estimation
1
2026259
# -*- coding: utf-8 -*- """ Created on Fri Nov 1 20:47:27 2019 @author: rehakomoon """ from pathlib import Path import random import itertools import numpy as np from PIL import Image, ImageOps import cntk as C from tqdm import tqdm dataset_train_dir = Path("C:/dataset/anotated_resized/") dataset_test_dir = Path("E:/vrc_rotation/dataset/anotated_eval_resized/") log_dir = Path("E:/vrc_rotation/log_cntk/") logfile_path = Path("E:/vrc_rotation/log_cntk/log.txt") log_dir.mkdir(exist_ok=True) batch_size = 32 test_batch_size = batch_size // 8 num_epoch = 10000 initial_epoch = 0 learning_rate = 0.001 image_size = 480 def get_image_list(dataset_dir): image_path_list = [] dataset_dir = Path(dataset_dir) for user_dir in dataset_dir.iterdir(): image_path_list += [str(p.absolute()) for p in user_dir.glob('*.png')] return image_path_list train_image_path_list = get_image_list(dataset_train_dir) test_image_path_list = get_image_list(dataset_test_dir) x_pl = C.ops.input_variable((3, image_size, image_size), np.float32) y_pl = C.ops.input_variable((2), np.float32) def CNN(x): with C.layers.default_options(init=C.initializer.glorot_uniform()): x = C.layers.Convolution2D(filter_shape=(5,5), num_filters=16, activation=None)(x) x = C.layers.BatchNormalization(map_rank=1)(x) x = C.relu(x) x = C.layers.MaxPooling(filter_shape=(2,2), strides=(2,2))(x) x = C.layers.Convolution2D(filter_shape=(5,5), num_filters=16, activation=None)(x) x = C.layers.BatchNormalization(map_rank=1)(x) x = C.relu(x) x = C.layers.MaxPooling(filter_shape=(2,2), strides=(2,2))(x) x = C.layers.Convolution2D(filter_shape=(5,5), num_filters=64, activation=None)(x) x = C.layers.BatchNormalization(map_rank=1)(x) x = C.relu(x) x = C.layers.MaxPooling(filter_shape=(2,2), strides=(2,2))(x) x = C.layers.Dropout(0.3)(x) x = C.layers.Convolution2D(filter_shape=(5,5), num_filters=64, activation=None)(x) x = C.layers.BatchNormalization(map_rank=1)(x) x = C.relu(x) x = C.layers.MaxPooling(filter_shape=(2,2), strides=(2,2))(x) x = C.layers.Dropout(0.3)(x) x = C.layers.Convolution2D(filter_shape=(5,5), num_filters=256, activation=None)(x) x = C.layers.BatchNormalization(map_rank=1)(x) x = C.relu(x) x = C.layers.MaxPooling(filter_shape=(2,2), strides=(2,2))(x) x = C.layers.Dropout(0.3)(x) x = C.layers.Convolution2D(filter_shape=(5,5), num_filters=256, activation=None)(x) x = C.layers.BatchNormalization(map_rank=1)(x) x = C.relu(x) x = C.layers.MaxPooling(filter_shape=(2,2), strides=(2,2))(x) x = C.layers.Dropout(0.3)(x) x = C.layers.MaxPooling(filter_shape=(3,3), strides=(1,1))(x) x = C.layers.Dense(256, activation=None)(x) x = C.relu(x) x = C.layers.Dropout(0.3)(x) x = C.layers.Dense(256, activation=None)(x) x = C.relu(x) x = C.layers.Dropout(0.3)(x) x = C.layers.Dense(2, activation=None)(x) return x model = CNN(x_pl) lr_schedule = C.learners.learning_rate_schedule(learning_rate, unit=C.UnitType.sample) optimizer = C.learners.sgd(model.parameters, lr=lr_schedule) loss = C.losses.cross_entropy_with_softmax(model, y_pl) acc = C.metrics.classification_error(model, y_pl) trainer = C.Trainer(model, (loss, acc), optimizer) model_epoch_list = [int(str(s)[-10:-4]) for s in log_dir.glob("model_*.dat")] if (len(model_epoch_list) > 0): latest_model_path = log_dir / f"model_{max(model_epoch_list):06}.dat" print(f"load {latest_model_path}...") state = trainer.restore_from_checkpoint(str(latest_model_path)) initial_epoch = max(model_epoch_list) + 1 for epoch in range(initial_epoch, num_epoch): image_path_list = train_image_path_list random.shuffle(image_path_list) sum_loss = 0.0 sum_acc = 0.0 sum_seen = 0.0 my_bar = tqdm(range(0, len(image_path_list), batch_size), leave=False) for i in my_bar: batch_image_path_list = image_path_list[i:i+batch_size] this_batch_size = len(batch_image_path_list) rotate_angle = np.random.randint(0, 6, this_batch_size) rotate_angle[rotate_angle > 3] = 0 flip_flag = np.random.randint(0, 2, this_batch_size) images = (Image.open(p) for p in batch_image_path_list) images = (ImageOps.mirror(im) if f else im for im, f in zip(images, flip_flag)) images = (im.rotate(k * 90) for im, k in zip(images, rotate_angle)) images = [np.asarray(im)[:,:,0:3] for im in images] images = np.stack(images) images = images.transpose(0, 3, 1, 2) images = images.astype(np.float32) / 255.0 images = np.ascontiguousarray(images) labels = (rotate_angle == 0) labels = np.stack([labels, np.logical_not(labels)]).transpose() labels = labels.astype(np.float32) labels = np.ascontiguousarray(labels) input_map = {x_pl: images, y_pl: labels} _, outputs = trainer.train_minibatch(input_map, outputs=(loss, acc)) sum_loss += outputs[loss].sum() sum_acc += len(batch_image_path_list) - outputs[acc].sum() sum_seen += len(batch_image_path_list) my_bar.set_description(f"loss: {sum_loss/sum_seen:0.6f}, acc: {sum_acc/sum_seen:0.6f}") print(f'e: {epoch},\t loss: {sum_loss/sum_seen},\t acc: {sum_acc/sum_seen}') with open(logfile_path, "a") as fout: fout.write(f"t, {epoch}, {sum_loss/sum_seen}, {sum_acc/sum_seen}\n") if epoch%10 == 0: image_path_list = test_image_path_list sum_loss = 0.0 sum_acc = 0.0 sum_seen = 0.0 my_bar = tqdm(range(0, len(image_path_list), test_batch_size), leave=False) for i in my_bar: batch_image_path_list = image_path_list[i:i+test_batch_size] this_batch_size = len(batch_image_path_list) rotate_angle = np.array([0, 1, 2, 3, 0, 1, 2, 3] * this_batch_size, dtype=np.int8) flip_flag = np.array([0, 0, 0, 0, 1, 1, 1, 1] * this_batch_size, dtype=np.int8) images = ([Image.open(p)]*8 for p in batch_image_path_list) images = itertools.chain.from_iterable(images) images = (ImageOps.mirror(im) if f else im for im, f in zip(images, flip_flag)) images = (im.rotate(k * 90) for im, k in zip(images, rotate_angle)) images = [np.asarray(im)[:,:,0:3] for im in images] images = np.stack(images) images = images.transpose(0, 3, 1, 2) images = images.astype(np.float32) / 255.0 images = np.ascontiguousarray(images) labels = (rotate_angle == 0) labels = np.stack([labels, np.logical_not(labels)]).transpose() labels = labels.astype(np.float32) labels = np.ascontiguousarray(labels) input_map = {x_pl: images, y_pl: labels} batch_loss = loss.eval(input_map) batch_acc = acc.eval(input_map) sum_loss += batch_loss.sum() sum_acc += len(batch_image_path_list) * 8 - batch_acc.sum() sum_seen += len(batch_image_path_list) * 8 my_bar.set_description(f"loss: {sum_loss / sum_seen:0.6f}, acc: {sum_acc / sum_seen:0.6f}") print(f'test e: {epoch},\t loss: {sum_loss/sum_seen},\t acc: {sum_acc/sum_seen}') with open(logfile_path, "a") as fout: fout.write(f"e, {epoch}, {sum_loss/sum_seen}, {sum_acc/sum_seen}\n") if epoch%10 == 0: model_save_path = log_dir / f"model_{epoch:06}.dat" model_save_path_onnx = log_dir / f"model_{epoch:06}.onnx" trainer.save_checkpoint(str(model_save_path)) model.save(str(model_save_path_onnx), format=C.ModelFormat.ONNX)
8,010
test/assert_interactive.py
ToolFramework/cppyy
84
2026299
from cppyy.interactive import * # namespace at the global level assert std # cppyy functions assert cppdef assert include try: import __pypy__ # 'cppyy.gbl' bound to 'g' assert g assert g.std except ImportError: # full lazy lookup available assert gInterpreter
283
script.py
Dann38/complex_back
0
2026300
import fnmatch import getopt import os import shutil import sys from sys import argv from Levenshtein import distance import cv2 from my_lib import get_text_from_img, image_processing, similarity, read_img def main(argv): input_folder = '' output_folder = '' try: opts, args = getopt.getopt(argv, "hi:o:", ["input_folder=", "output_folder="]) except getopt.GetoptError: print('script.py -i <input folder> -o <output folder>') sys.exit(2) for opt, arg in opts: if opt == '-h': print('script.py -i <input folder> -o <output folder>') sys.exit() elif opt in ("-i", "--i"): input_folder = arg elif opt in ("-o", "--o"): output_folder = os.path.join(arg, 'images') is_dir = os.path.isdir(input_folder) if not is_dir: raise Exception(input_folder, "- It is not a folder") if os.path.exists(output_folder): shutil.rmtree(output_folder) os.makedirs(output_folder) n = 0 total_similarity_before = 0 total_similarity_after = 0 total_levenshtein_before = 0 total_levenshtein_after = 0 total_size = 0 statistics_print = False bad_image = "None" bad_similarity = 2 bad_levenshtein = 2 delta_similary = 0 delta_levenshtein = 0 for root, directories, files in os.walk(input_folder): for file_name in fnmatch.filter(files, "*.jpg"): path = os.path.join(root, file_name) name = os.path.splitext(os.path.split(path)[1])[0] save_img_path = os.path.join(output_folder, name + ".jpeg") save_text_path = os.path.join(output_folder, name + ".txt") save_origin_text_path = os.path.join(output_folder, name + "-origin" + ".txt") img_before = read_img(path) img_after = image_processing(img_before) text_before = get_text_from_img(img_before) text_after = get_text_from_img(img_after) gs_name = os.path.join(root, name + ".txt") try: with open(gs_name, 'r', encoding="UTF-8") as f: text_gs = f.read() similarity_before = similarity(text_gs, text_before) similarity_after = similarity(text_gs, text_after) total_similarity_before += similarity_before total_similarity_after += similarity_after size = len(text_gs) total_size += size levenshtein_before = distance(text_gs, text_before) levenshtein_after = distance(text_gs, text_after) total_levenshtein_before += levenshtein_before total_levenshtein_after += levenshtein_after print() print( f"{name}:\tSimilarity: \t" f" Before: {100 * similarity_before :5.2f}%\t" f" After: {100 * similarity_after :5.2f}%") print( f"{name}:\tLevenshtein:\t" f" Before: {levenshtein_before / size :5.2f}\t" f" After: {levenshtein_after / size:5.2f}") print("=======================") delta_similary = similarity_after-similarity_before delta_levenshtein = (levenshtein_before - levenshtein_after) / size print(f"delta s: {delta_similary:.3f} ({bad_similarity})") print(f"delta l: {delta_levenshtein:.3f} ({bad_levenshtein})") if bad_similarity > delta_similary: bad_image_sim = name bad_similarity = delta_similary if bad_levenshtein > delta_levenshtein: bad_image_lev = name bad_levenshtein = delta_levenshtein statistics_print = True n += 1 except FileNotFoundError: print("OK") with open(save_text_path, 'w', encoding="UTF-8") as f: f.write(text_after) with open(save_origin_text_path, 'w', encoding="UTF-8") as f: f.write(text_before) cv2.imwrite(save_img_path, img_after) if statistics_print: lev_before = total_levenshtein_before / total_size lev_after = total_levenshtein_after / total_size lev_improvement_percent = (lev_before-lev_after)*100 print("Total Similarity ========================") print(f"Before:\t {100 * total_similarity_before / n:5.2f} %") print(f"After:\t {100 * total_similarity_after / n:5.2f} %") print("Total Levenshtein =======================") print(f"Before:\t {lev_before:5.2f}") print(f"After:\t {lev_after:5.2f}") print(f"Improvement Levenshtein: {lev_improvement_percent:5.2f}%") print(f"Bad image Similarity:\t {bad_image_sim}\t (delta:{bad_similarity*100:5.2f} %)") print(f"Bad image Levenshtein:\t {bad_image_lev}\t (delta:{bad_levenshtein*100:5.2f} %)") if __name__ == '__main__': main(argv[1:])
5,226
web/clockthree.py
rupello/ClockTHREEjr
1
2026203
import os from string import lower,upper import StringIO import flask from flask import Flask, render_template, abort, Response, request, current_app import ttfquery from flask_bootstrap import Bootstrap import Simulate import clockwords import clockface import wtfhelpers def create_app(): "create a configures app instance" app = Flask(__name__) Bootstrap(app) fontreg = ttfquery.ttffiles.Registry() fontreg.scan('./fonts/') app.config['wtfs'] = wtfhelpers.loadwtfsandfonts('./langs/',fontreg) app.config['fontregistry'] = fontreg return app # the app app = create_app() def findwtf(style): "find the path to the .wrf file" for dirpath,dirnames,fnames in os.walk('./langs'): for f in fnames: name,ext = os.path.splitext(f) if ext.lower()=='.wtf': if style.lower()==name.lower(): return os.path.join(dirpath,f) def default_font(style): return current_app.config['wtfs'][style.lower()]['fonts'][0] def findfontpath(style,fontname): for fontpath in current_app.config['wtfs'][style.lower()]['fonts']: if font_name_from_path(fontpath)==fontname: return fontpath return default_font(style) @app.template_filter('fontname') def font_name_from_path(path): return os.path.basename(path).lower() @app.route('/') @app.route('/index') def index(): return flask.redirect("/clock3jr/styles/", code=302) @app.route('/clock3jr/<style>/clockface/') def clockfaceimg(style): wtfpath = findwtf(style) if wtfpath is not None: data = Simulate.readwtf(wtfpath) fgcolor = request.args.get('fg', '#303030') fontname = request.args.get('font') try: fontsize = int(request.args.get('fontsize','30')) except ValueError: fontsize = 30 img = clockface.drawclock(fontpath=findfontpath(style,fontname), fontsize=fontsize, fgcolor=fgcolor, bgcolor=clockface.BLACK, style=data['letters'], case=lower, drawLEDs=False) io = StringIO.StringIO() img.save(io, format='JPEG') return Response(io.getvalue(), mimetype='image/jpeg') else: abort(404) @app.route('/clock3jr/<style>/map/') def map(style): wtfpath = findwtf(style) if wtfpath is not None: data = Simulate.readwtf(wtfpath) return clockwords.data2json(data) else: abort(404) @app.route('/clock3jr/<style>/cells/') def cells(style): wtfpath = findwtf(style) if wtfpath is not None: fontname = request.args.get('font') try: fontsize = int(request.args.get('fontsize','30')) except ValueError: fontsize = 30 data = Simulate.readwtf(wtfpath) return render_template('cells.html', cells=clockface.build_cells(fontpath=findfontpath(style,fontname), fontsize=fontsize, style=data['letters'], case=lower), style=style, fontname=fontname, fontsize=fontsize) else: abort(404) @app.route('/clock3jr/<style>/') def clock3jr(style): wtfpath = findwtf(style) if wtfpath is not None: fontname = request.args.get('font') try: fontsize = int(request.args.get('fontsize','30')) except ValueError: fontsize = 30 data = Simulate.readwtf(wtfpath) return render_template('clock.html', cells=clockface.build_cells(fontpath=findfontpath(style,fontname), fontsize=fontsize, style=data['letters'], case=lower), style=style, fontname=fontname, fontsize=fontsize) else: abort(404) @app.route('/clock3jr/styles/') def styles(): wtfs = current_app.config['wtfs'] return render_template('styles.html',styles=['foo','bar'],wtfs=wtfs) @app.route('/clock3jr/stylesandfonts/') def stylesandfonts(): fontsbystyle = {} wtfs = current_app.config['wtfs'] for name,data in wtfs.items(): fontsbystyle[name]=[font_name_from_path(fp) for fp in wtfs[name]['fonts']] return flask.jsonify(fontsbystyle) #!flask/bin/python if __name__ == '__main__': app.run(debug = True)
4,898
gcf_http_cli.py
jasonlopez01/flask-cli-demo
0
2023464
import argparse import importlib import json import os import sys from typing import Callable, Optional, Tuple import flask # Allow import from current working directory modules sys.path.append(os.getcwd()) # Constants CLI_VERSION = "0.0.1" HTTP_METHODS = ["GET", "POST", "PUT", "DELETE"] GCF_MODULE_PATH_ENV_VAR = "PD_FLASK_UTILS_GCF_PATH" DEFAULT_GCF_MAIN_PATH = "main.main" # Functions def load_json(json_payload: str) -> Optional[dict]: """ Load either json string or file :param json_payload: :return: """ if json_payload is None: return None if isinstance(json_payload, dict): return json_payload if os.path.isfile(json_payload): with open(json_payload, "r") as f: return json.load(f) else: return json.loads(json_payload) def import_main_gcf_entrypoint() -> Callable: """ Import the main function entrypoint from a python module deployed as a Cloud Function Finds the import path based on an env variable "PD_FLASK_UTILS_GCF_PATH", defaults to "main.main" :return: a function acting as the main entrypoint for a python Cloud Function """ gcf_main_import_path = os.environ.get( GCF_MODULE_PATH_ENV_VAR, DEFAULT_GCF_MAIN_PATH ) gcf_main_import_path_list = gcf_main_import_path.split(".") main_module_name = ".".join(gcf_main_import_path_list[0:-1]) gcf_main_name = gcf_main_import_path_list[-1] # Import main module with GCF entrypoint function main_gcf = importlib.import_module(main_module_name) return getattr(main_gcf, gcf_main_name) def mock_gcf_flask_request( gcf_main_func: Callable, http_method: str, endpoint: str, payload: Optional[dict] ) -> Tuple[int, str]: """ Make a mock request to an entrypoint function of a HTTP Triggered Cloud Function via the flask test client :param gcf_main_func: a function acting as the main entrypoint for a python Cloud Function (HTTP Trigger) :param http_method: HTTP Method to use as uppercase string (eg. GET, POST, etc.) :param endpoint: endpoint of Flask App to call :param payload: Dict to include as json body :return: Tuple of mock HTTP Response Status Code and Data """ assert http_method in HTTP_METHODS test_app = flask.Flask(__name__) with test_app.test_request_context(endpoint, method=http_method, json=payload): resp = gcf_main_func(flask.request) return int(resp.status_code), resp.data.decode("utf-8") def main(): # Import main function entrypoint try: gcf_entrypoint: Callable = import_main_gcf_entrypoint() except Exception as e: gcf_import_error = e gcf_entrypoint = None # Setup CLI gcf_cli = argparse.ArgumentParser( description=f""" CLI wrapper around a Python function acting as the entrypoint to a Cloud Function (HTTP Trigger). Attempts importing a the function with current working directory as root. Uses import path specified in env variable {GCF_MODULE_PATH_ENV_VAR}, with format of "module.function" (default set to "{DEFAULT_GCF_MAIN_PATH}") """ ) gcf_cli.add_argument( "--http-method", type=str, default="POST", help="HTTP Method to mock when calling a given endpoint", choices=HTTP_METHODS, ) gcf_cli.add_argument( "--json", type=str, help="JSON formatted input to include in payload of request, or path to a JSON file", ) gcf_cli.add_argument( "--endpoint", type=str, help="Endpoint to call, defaults to '/'", default="/" ) gcf_cli.version = CLI_VERSION gcf_cli.add_argument("--version", action="version") # Parse inputs args = gcf_cli.parse_args() endpoint: str = args.endpoint http_method: str = args.http_method json_payload: str = args.json payload: Optional[dict] = load_json(json_payload) if not gcf_entrypoint: error_prefix = "ERROR: " print(f"{error_prefix}{gcf_import_error}") print( f"{error_prefix}Attempt to import gcf entrypoint function from {GCF_MAIN_IMPORT_PATH} failed." ) print(f"{error_prefix}Attempts import with current working directory as root.") print( f"{error_prefix}Can set a different import path via env variable {GCF_MODULE_PATH_ENV_VAR} (ex. export {GCF_MODULE_PATH_ENV_VAR}=moduleA.my_gcf_main_func)" ) sys.exit(gcf_import_error) # Use flask test client to make mock request status_code, resp_content = mock_gcf_flask_request( gcf_main_func=gcf_entrypoint, http_method=http_method, endpoint=endpoint, payload=payload, ) # Exit with response status code and content exit_value = 1 print("\n", "-" * 100) if 200 <= status_code < 300: print( f"Finished successfully with mock status code {status_code}\n{resp_content}" ) exit_value = 0 else: print( f"Endpoint command failed with mock status code {status_code}\n{resp_content}" ) exit_value = resp_content return sys.exit(exit_value) if __name__ == "__main__": main()
5,224
examples/acados_python/external_model/export_external_ode_model.py
mindThomas/acados
322
2026049
# # Copyright 2019 <NAME>, <NAME>, <NAME>, # <NAME>, <NAME>, <NAME>, <NAME>, # <NAME>, <NAME>, <NAME>, <NAME>, # <NAME>, <NAME>, <NAME>, <NAME>, <NAME> # # This file is part of acados. # # The 2-Clause BSD License # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE.; # from acados_template import AcadosModel from casadi import MX, external import sys,os from ctypes import * def export_external_ode_model(): model_name = 'external_ode' # Declare model variables x = MX.sym('x', 2) u = MX.sym('u', 1) xDot = MX.sym('xDot', 2) cdll.LoadLibrary('./test_external_lib/build/libexternal_ode_casadi.so') f_ext = external('libexternal_ode_casadi', 'libexternal_ode_casadi.so', {'enable_fd': True}) f_expl = f_ext(x, u) f_impl = xDot - f_expl model = AcadosModel() model.f_impl_expr = f_impl model.f_expl_expr = f_expl model.x = x model.xdot = xDot model.u = u model.p =[] model.name = model_name return model
2,210
dohproxy.py
mjtooley/DoH_Tools
0
2026123
from http.server import HTTPServer, BaseHTTPRequestHandler import ssl import socket from io import BytesIO from urllib.parse import urlparse, parse_qs from typing import Dict, List import random import requests from dohjsonclient.client import DohJsonClient import json import dns.exception import dns.message from dns.message import Message import dns.rcode from dns import resolver, query, exception from utils.utils import ( create_http_wire_response, create_http_json_response, ) class DNSResolverClient: def __init__(self, name_server: str = "internal"): self.name_server = name_server def resolve(self, message: Message) -> Message: maximum = 4 timeout = 0.4 response_message = 0 if self.name_server == 'internal': self.name_server = resolver.get_default_resolver().nameservers[0] done = False tests = 0 while not done and tests < maximum: try: response_message = query.udp(message, self.name_server, timeout=timeout) done = True except exception.Timeout: tests += 1 return response_message def dns_query_from_body(body: bytes): exc = b'Malformed DNS query' try: return dns.message.from_wire(body) except Exception as e: print(e) def get_question(dnsq): question = str(dnsq.question[0]) question = question.split() question = question[0].rstrip('.') return question def resolve(dnsq): question = get_question(dnsq) #question = str(dnsq.question[0]) #question = question.split() #question = question[0].rstrip('.') dns_resolver = DNSResolverClient(name_server='internal') dnsr = dns_resolver.resolve((dnsq)) # print("resolve:", dnsr) return dnsr TV_EVERYWHERE_HOSTS = {'www.nbc.com', 'www.cbs.com', 'www.espn.com'} TV_EVERYWHERE_AUTH = 'sp.auth.<EMAIL>' tv_everywhere_hosts = {} # init the outer dict for tvh in TV_EVERYWHERE_HOSTS: tv_everywhere_hosts[tvh] = {} # Init the inner list last_tve = {} def tv_everywhere_host(qname): for tvh in TV_EVERYWHERE_HOSTS: if tvh in qname: return tvh return None def check_tve(client_ip, dnsq): q = get_question(dnsq) tvh = tv_everywhere_host(q) if tvh != None: # add a tuple for the entry # TO-DO Need to fix the code log the number of unique IPs per TVH if client_ip in tv_everywhere_hosts[h]: if tv_everywhere_hosts[tvh][client_ip] tv_everywhere_hosts[tvh][client_ip] = 0 # Append the client_ip tuple as seen chatting with the TVH last_tve[client_ip] = tvh # Store the last TVH seen for the IP # Now check if it is a TV_EVERYWHERE_AUTH if TV_EVERYWHERE_AUTH in q: for h in TV_EVERYWHERE_HOSTS: if client_ip in tv_everywhere_hosts[h]: if tv_everywhere_hosts[h][client_ip] == 0: tv_everywhere_hosts[h][client_ip] = 3600 print("added {} to tv_everywhere_client[{}]".format(h, client_ip)) elif tv_everywhere_hosts[h][client_ip] > 0: print('--- Multiple Logins Detected for {} to {} -------\n'.format(client_ip, last_tve[client_ip])) def add_tve_client(client_ip, dnsr): # extract the TTL from the dns response print("Add TVE client {}".format(client_ip)) ttl = 3600 if client_ip in tv_everywhere_clients: print("we already learned this client") else: tv_everywhere_clients[client_ip] = ttl print("added {} to tv_everywhere list".format(client_ip)) class SimpleHTTPRequestHandler(BaseHTTPRequestHandler): def do_GET(self): global tv_everywhere_clients # print('do_GET') url_path = self.path print(url_path) params: Dict[url_path, List] params = parse_qs(urlparse(url_path).query) headers = self.headers ua = self.headers['User-Agent'] accept = self.headers['Accept'] ct = self.headers['Content-Type'] #content_length = int(self.headers['Content-Length']) client_ip = self.client_address[0] if 'referer' in self.headers: referrer = self.headers['referer'] # Send DoH Request to upstream DoH Resolver or DNS Resolver client = DohJsonClient() try: print(params['name'], params['type']) if 'name' in params: qname = params['name'][0] dnsq = dns.message.make_query(qname, dns.rdatatype.ANY) dnsr = resolve(dnsq) result = client.resolve_cloudflare({'name': params['name'][0], 'type': params['type'][0]}) check_tve(client_ip,dnsq) self.send_response(200) #self.send_header('content-type', 'application/dns-message') #self.send_header('server', 'ncta-doh') self.end_headers() doh_resp = json.dumps(result) # Need to encode the serialized JSON data self.wfile.write(doh_resp.encode('utf-8')) except Exception as e: print(e) def do_POST(self): print("do_POST") headers = self.headers ua = self.headers['User-Agent'] accept = self.headers['Accept'] ct = self.headers['Content-Type'] client_ip = self.client_address[0] #print("UA:", ua) #print("Client:", client_ip) if 'referer' in self.headers: referrer = self.headers['referer'] content_length = int(self.headers['Content-Length']) body = self.rfile.read(content_length) url_path = self.path # print("URL_Path:", url_path) params: Dict[url_path, List] params = parse_qs(urlparse(url_path).query) try: dnsq =dns_query_from_body(body) dnsr = resolve(dnsq) check_tve(client_ip,dnsq) #print("dnsr:", dnsr.answer) except Exception as e: print(e) if dnsr is None: dnsr = dns.message.make_response(dnsq) dnsr.set_rcode(dns.rcode.SERVFAIL) # response_headers.append(('content-length', str(len(body)))) self.send_response(200) self.send_header('content-type', 'application/dns-message') self.send_header('server', 'ncta-doh') self.end_headers() body = dnsr.to_wire() response = BytesIO() response.write(body) self.wfile.write(response.getvalue()) ADDRESS = '172.25.12.45' PORT = 4443 httpd = HTTPServer((ADDRESS, PORT), SimpleHTTPRequestHandler) try: httpd.socket = ssl.wrap_socket(httpd.socket, certfile='mypemfile.pem', server_side=True) except Exception as e: print (e) print("Starting DoH Server on {}:{}".format(ADDRESS,PORT)) httpd.serve_forever()
6,863
pypint/solvers/i_parallel_solver.py
DiMoser/PyPinT
0
2025495
# coding=utf-8 """ .. moduleauthor: <NAME> <<EMAIL>> """ from pypint.communicators.i_communication_provider import ICommunicationProvider from pypint.utilities import assert_named_argument class IParallelSolver(object): """basic interface for parallel solvers """ def __init__(self, **kwargs): """ Parameters ---------- communicator : :py:class:`.ICommunicationProvider` """ assert_named_argument('communicator', kwargs, types=ICommunicationProvider, descriptor="Communicator", checking_obj=self) self._communicator = kwargs['communicator'] self._states = [] @property def comm(self): return self._communicator
737
tests/server-identity.py
movermeyer/tangelo
40
2026314
import nose import requests import fixture @nose.with_setup(fixture.start_tangelo, fixture.stop_tangelo) def test_server_identity(): response = requests.get(fixture.url("/")) assert response.headers["server"] == ""
226
apps/alleria/migrations/0002_auto_20180329_1650.py
z4none/alleria
0
2026202
# Generated by Django 2.0.3 on 2018-03-29 08:50 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('alleria', '0001_initial'), ] operations = [ migrations.RemoveField( model_name='dictionaryitem', name='value', ), migrations.AlterField( model_name='dictionaryitem', name='code', field=models.CharField(max_length=50, unique=True, verbose_name='编码'), ), migrations.AlterField( model_name='dictionaryitem', name='name', field=models.CharField(max_length=20, verbose_name='名称'), ), migrations.AlterField( model_name='dictionaryitem', name='order', field=models.IntegerField(default=0, verbose_name='顺序'), ), migrations.AlterField( model_name='dictionaryitem', name='type', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='items', to='alleria.DictionaryType', verbose_name='类型'), ), ]
1,172
RedditDaily/Easy/01_input-output.py
santarini/python
3
2025939
name = input("What is your name? \n") age = int(input("How old are you? \n")) location = input("Where do you live? \n") print("Your name is " + name + ", you are " + str(age) + " years old, you live in " + location)
220
fmlpy/preprocess/filters.py
crazywiden/fmlpy
3
2025713
import pandas as pd import numpy as np def CUMSUM_filter(price, thres): """ S_+(t) = max{0, S_+(t-1) + y(t) - y(t-1)} S_-(t) = min{0, S_-(t-1) + y(t) - y(t-1)} S(t) = max{S_+(t), -S_-(t)} sample when S(t) > thres @parameters: price -- 1d vector(list or np.ndarray) thres -- integer or vector thres is a vector means different threshold at different stages is allowed @returns: CUMSUM_idx -- 1d vector each element is the starting index of each bar """ CUMSUM_idx = [] price_diff = np.diff(price) S_pos, S_neg = 0, 0 for i in range(1,len(price)): S_pos = max(0, S_pos + price_diff[i-1]) S_neg = min(0, S_neg + price_diff[i-1]) if max(S_pos, -S_neg) >= thres: CUMSUM_idx.append(i) S_pos, S_neg = 0, 0 return np.array(CUMSUM_idx)
876
task_inventory/order_31_to_60/order_34_tkinter_usage/hello_world/hello_world.py
flyingSprite/spinelle
1
2026566
import tkinter as tk root = tk.Tk() label = tk.Label(root, text='Hello World!', padx=15, pady=15) label.pack() root.mainloop()
128
collar_metrics/__init__.py
robertdfrench/collar-metrics
1
2026253
import flask def bootstrap(app, barks): @app.route("/collar/<collar_id>/barks", methods=['GET']) def list_barks(collar_id): return flask.jsonify(data=barks.by_collar(collar_id)) @app.route("/collar/<collar_id>/barks/new", methods=['POST']) def add_barks(collar_id): for bark in flask.request.json['data']: bark['attributes'].update(collar=collar_id) barks.add(**(bark['attributes'])) return flask.jsonify(meta={'accepted': True})
499
config.py
alexanderpiers/ccd-param-scan
0
2026438
import os def editConfigFile(parameter, newValue, baseconfig="config/config.ini", modifiedconfig="config/config-mod.ini", verbose=False): """ Reads in the CCD drone config file and edits the given parameters """ # Check if in an outfiles are the same newConfigContent = "" infile = open(baseconfig, "r") for line in infile: # Strip the first part, check if it matches the parameter configFileParameterName = line.split("=")[0].strip() # If we get a match, write the new parameter, otherwise write the original line if configFileParameterName == parameter: newConfigLine = parameter + " = " + str(newValue) + " ; MODIFIED\n" newConfigContent += newConfigLine if verbose: print("Found line to modify!") print("Writing: " + newConfigLine) else: newConfigContent += line infile.close() outfile = open(modifiedconfig, "w+") outfile.write(newConfigContent) outfile.close() if __name__ == '__main__': # Test the edit capabilities editConfigFile("two_og_hi", -1, verbose=True, baseconfig="config/config-mod.ini", modifiedconfig="config/config-mod.ini")
1,106
web/app/main/forms.py
innocorps/PyIoT
2
2026529
"""Creates HTML webforms, using WTForms""" from flask_wtf import FlaskForm from wtforms import SubmitField, TextAreaField, BooleanField from wtforms.validators import Required class JSONForm(FlaskForm): """ JSONForm is a single box HTML Form used to send user messages to other parts of the app Attributes: json_message (obj): Allows user to input message into a TextAreaField. submit (obj): Takes the message from the TextAreaField and relays it. """ json_message = TextAreaField("JSON Message", validators=[Required()]) submit = SubmitField('Submit') class SearchEnableForm(FlaskForm): search_enable = BooleanField( "Enable search (disables table auto-update)", default=False) submit = SubmitField('Submit')
783
src/azure-cli/azure/cli/__main__.py
0cool321/azure-cli
2
2026282
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- import sys import os import azure.cli.main import azure.cli.core.telemetry as telemetry try: args = sys.argv[1:] # Check if we are in argcomplete mode - if so, we # need to pick up our args from environment variables if os.environ.get('_ARGCOMPLETE'): comp_line = os.environ.get('COMP_LINE') if comp_line: args = comp_line.split()[1:] sys.exit(azure.cli.main.main(args)) except KeyboardInterrupt: telemetry.log_telemetry('keyboard interrupt') sys.exit(1) finally: try: telemetry.flush_telemetry() except Exception: # pylint: disable=broad-except pass
982
api/tests/utils/__init__.py
M4hakala/drf_route_api_example
0
2023233
from .route_functions import create_route_with_coordinates from .integration_test import TestRoute __all__ = [ 'TestRoute', 'create_route_with_coordinates', ]
169
Courses/EE6226/Software/automata/tools.py
ldkong1205/ntu-graduate-courses
22
2024972
from automata import frontend, weighted_frontend, row_vector def convert(txt): names = txt.split() return ",".join(["%s.cfg" % name for name in names]) def filter_results(super_name, new_super_name): # replace the [weighted-automaton] with [automation] # remove weights in transitions import fileinput import string fout = open(new_super_name, "w") transition_f = -1 for line in fileinput.input(super_name): newline = string.replace(line, "[weighted-automaton]", "[automaton]" ) s_index = string.find(newline,"transitions") linew = "" if transition_f is 0 or s_index is not -1: transition_f = 0; if s_index is -1: s_index = 0 else: linew = "transitions = " var = 1 while var == 1 : phase_s = string.find(newline,"(", s_index) if phase_s is -1: break; phase_e = string.find(newline,")", phase_s) if phase_e is -1: break; phase = newline[phase_s+1:phase_e] pindex1= string.find(phase,",") pindex2= string.find(phase,",",pindex1+1) pindex3= string.find(phase,",",pindex2+1) newphase = phase[0:pindex3] if newline[phase_e+1] is ",": linew = linew + "("+ newphase +")," else: linew = linew + "("+ newphase +")" s_index = phase_e else: linew = newline fout.writelines(linew) lines = fileinput.filelineno() fout.close() return;
1,772
drepr/old_code/tests/pydrepr/test_repr_builder.py
scorpio975/d-repr
5
2023426
from pydrepr import ReprBuilder def test_build_data_cube_model(): repr = ReprBuilder() \ .add_resource("default", "csv", delimiter=",") \ .add_preprocess_func("pmap", ["2..", "1.."], code="return float(value)") \ .add_preprocess_func("pmap", [0, "1.."], code=""" if value == "": return context.get_left_value(index) return "http://reference.data.gov.uk/id/gregorian-interval/" + value.split("-")[0] + "-01-01T00:00:00/P3Y" """.strip()) \ .add_attribute("area", ["2..", 0]) \ .add_attribute("gender", [1, "1.."]) \ .add_attribute("period", [0, "1.."]) \ .add_attribute("obs", ["2..", "1.."]) \ .add_dim_alignment("obs", "area", [{"source": 0, "target": 0}]) \ .add_dim_alignment("obs", "gender", [{"source": 1, "target": 1}]) \ .add_dim_alignment("obs", "period", [{"source": 1, "target": 1}]) \ .add_sm() \ .add_prefix("qb", "http://purl.org/linked-data/cube#") \ .add_prefix("smdx-measure", "http://purl.org/linked-data/sdmx/2009/measure#") \ .add_prefix("eg", "http://example.org/") \ .add_class("qb:Observation") \ .add_data_node("eg:refArea", "area") \ .add_data_node("eg:gender", "gender") \ .add_data_node("eg:refPeriod", "period", "xsd:anyURI") \ .add_data_node("smdx-measure:obsValue", "obs") \ .finish() \ .finish() \ .build() assert repr.to_yml_string(simplify=False) == """ version: '1' resources: default: type: csv delimiter: ',' preprocessing: - type: pmap input: resource_id: default slices: - 2.. - 1.. code: |- return float(value) output: - type: pmap input: resource_id: default slices: - 0 - 1.. code: |- if value == "": return context.get_left_value(index) return "http://reference.data.gov.uk/id/gregorian-interval/" + value.split("-")[0] + "-01-01T00:00:00/P3Y" output: variables: area: location: resource_id: default slices: - 2.. - 0 unique: false sorted: none value_type: unspecified gender: location: resource_id: default slices: - 1 - 1.. unique: false sorted: none value_type: unspecified period: location: resource_id: default slices: - 0 - 1.. unique: false sorted: none value_type: unspecified obs: location: resource_id: default slices: - 2.. - 1.. unique: false sorted: none value_type: unspecified alignments: - type: dimension source: obs target: area aligned_dims: - source: 0 target: 0 - type: dimension source: obs target: gender aligned_dims: - source: 1 target: 1 - type: dimension source: obs target: period aligned_dims: - source: 1 target: 1 semantic_model: data_nodes: area: qb:Observation:1--eg:refArea gender: qb:Observation:1--eg:gender period: qb:Observation:1--eg:refPeriod^^xsd:anyURI obs: qb:Observation:1--smdx-measure:obsValue literal_nodes: [] relations: [] prefixes: qb: http://purl.org/linked-data/cube# smdx-measure: http://purl.org/linked-data/sdmx/2009/measure# eg: http://example.org/ """.lstrip()
3,323
src/bokeh_server/results/main.py
AlexMGitHub/TheWholeEnchilada
1
2024172
"""Display results of trained model. Results are displayed according to whether the dataset is a regression or a classification problem. """ # %% Imports # Standard system imports from pathlib import Path import pickle # Related third party imports from bokeh.io import curdoc # Local application/library specific imports from bokeh_server.results.plots.regression_results import regression_results from bokeh_server.results.plots.classification_results \ import classification_results # ----------------------------------------------------------------------------- # Setup # ----------------------------------------------------------------------------- data_path = Path('src/bokeh_server/data/eda_data') with open(data_path, 'rb') as data_file: pickled_data = pickle.load(data_file) metadata = pickled_data['metadata'] ml_type = metadata['type'] # ----------------------------------------------------------------------------- # Layout # ----------------------------------------------------------------------------- if ml_type == 'classification': results_layout = classification_results() elif ml_type == 'regression': results_layout = regression_results() curdoc().add_root(results_layout)
1,216
setup.py
SwitcherLabs/switcherlabs-python
0
2026220
import os from codecs import open from setuptools import setup, find_packages here = os.path.abspath(os.path.dirname(__file__)) os.chdir(here) version_contents = {} with open(os.path.join(here, "switcherlabs", "version.py"), encoding="utf-8") as f: exec(f.read(), version_contents) readme = None with open(os.path.join(here, "README.md"), encoding="utf-8") as f: readme = f.read() setup( name="switcherlabs", version=version_contents["VERSION"], description="Python SDK for SwitcherLabs", long_description=readme, long_description_content_type="text/markdown", author="SwitcherLabs", author_email="<EMAIL>", url="https://github.com/switcherlabs/switcherlabs-python", license="MIT", keywords="switcherslabs api feature-flags", packages=find_packages(exclude=["tests", "tests.*"]), zip_safe=False, install_requires=[ 'requests >= 2.20; python_version >= "3.0"', 'requests[security] >= 2.20; python_version < "3.0"', ], python_requires="!=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*", )
1,062
python/sbp/utils.py
zk20/libsbp
0
2026279
#!/usr/bin/env python # Copyright (C) 2011-2014 Swift Navigation Inc. # Contact: https://support.swiftnav.com # # This source is subject to the license found in the file 'LICENSE' which must # be be distributed together with this source. All other rights reserved. # # THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, # EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE. """Shared utility functions. """ EXCLUDE = ['sender', 'msg_type', 'crc', 'length', 'preamble', 'payload'] from construct import Container def exclude_fields(obj, exclude=EXCLUDE): """ Return dict of object without parent attrs. """ return dict([(k, getattr(obj, k)) for k in obj.__slots__ if k not in exclude]) def walk_json_dict(coll): """ Flatten a parsed SBP object into a dicts and lists, which are compatible for JSON output. Parameters ---------- coll : dict """ if isinstance(coll, dict): return dict((k, walk_json_dict(v)) for (k, v) in iter(coll.items()) if k != '_io') elif isinstance(coll, bytes): return coll.decode('ascii', errors='replace') elif hasattr(coll, '__iter__') and not isinstance(coll, str): return [walk_json_dict(seq) for seq in coll] else: return coll def containerize(coll): """Walk attribute fields passed from an SBP message and convert to Containers where appropriate. Needed for Construct proper serialization. Parameters ---------- coll : dict """ # If the caller has used intantiated a message class using classes # representing the inner components of messages, they should have # a _parser and not a to_binary. if hasattr(coll, "_parser") and not hasattr(coll, "to_binary"): coll = dict([(k, getattr(coll, k)) for k in coll.__slots__]) if isinstance(coll, Container): [setattr(coll, k, containerize(v)) for (k, v) in coll.items()] return coll elif isinstance(coll, dict): return containerize(Container(**coll)) elif isinstance(coll, list): for j, i in enumerate(coll): if isinstance(i, dict): coll[j] = containerize(Container(**i)) return coll else: return coll def fmt_repr(obj): """Print a orphaned string representation of an object without the clutter of its parent object. """ items = ["%s = %r" % (k, v) for k, v in list(exclude_fields(obj).items())] return "<%s: {%s}>" % (obj.__class__.__name__, ', '.join(items))
2,495
rfchat/rfchat.py
paf0186/home_automation
0
2026026
import sys import tty import termios import threading import time from rpi_rf import RFDevice # Elegant shutdown def exithandler(): termios.tcsetattr(sys.stdin, termios.TCSADRAIN, old_settings) try: rx.cleanup() tx.cleanup() except: pass sys.exit(0) # Activate our transmitter and received tx = RFDevice(17) tx.enable_tx() rx = RFDevice(27) rx.enable_rx() # Receiving loop def rec(rx): print("Receiving") lastTime = None while True: currentTime = rx.rx_code_timestamp if ( currentTime != lastTime and (lastTime is None or currentTime - lastTime > 350000) ): lastTime = rx.rx_code_timestamp try: if (rx.rx_code == 13): # Enter/Return Pressed sys.stdout.write('\r\n') else: sys.stdout.write(chr(rx.rx_code)) sys.stdout.flush() except: pass time.sleep(0.01) # Start receiving thread t = threading.Thread(target=rec, args=(rx,), daemon=True) t.start() print("Ready to transmit") # Remember how the shell was set up so we can reset on exit old_settings = termios.tcgetattr(sys.stdin) tty.setraw(sys.stdin) while True: # Wait for a keypress char = sys.stdin.read(1) # If CTRL-C, shutdown if ord(char) == 3: exithandler() else: # Transmit character tx.tx_code(ord(char)) time.sleep(0.01)
1,493
play_game.py
rortms/tictac
0
2026424
import kivy kivy.require('1.9.1') from kivy.app import App from kivy.clock import Clock from kivy.uix.screenmanager import ScreenManager, Screen from kivy.uix.popup import Popup from kivy.uix.gridlayout import GridLayout from kivy.uix.boxlayout import BoxLayout from kivy.uix.behaviors import ButtonBehavior from kivy.uix.button import Button from kivy.uix.label import Label from utilities import * colors = { 'black' : [0, 0, 0], 'white' : [1, 1, 1], 'red' : [1, 0, 0], 'green' : [0, 1, 0], 'blue' : [0, 0, 1], 'cyan' : [0, 200./255, 200], 'magenta' : [200./255, 0, 200./255], 'yellow' : [1, 1, 0], 'orange' : [1, 128./255, 0] } strategies = ['random', 'ideal', 'minimax', 'Qlearning', 'miniQmax', 'human', 'train-miniQmax'] ### MESSAGES ### noQs_message = "Currently only 3x3 game Q's have been trained for miniQmax\n" + \ "and Q-learning. Although miniQmax can still perform reasonably\n" + \ "well with its 3x3 Q on a 4x4 game, don't expect smarts for size > 4 :(\n" + \ "However!! You can train your own miniQmax Q by choosing train-miniQmax!!" NA_gamesize_message = "Game size must be an integer between 2 and 10 exclusive" # Default game in absence of player choice default_game = setupGame(QMap(), 3, ['ideal', 'ideal']) ## So that user is greeted only once greeted = False ## To handle end of game event game_has_finished = False ######################################################## class TictacScreenManager(ScreenManager): def __init__(self, **kwargs): super(TictacScreenManager, self).__init__(**kwargs) def update(self, dt): game_board = self.get_screen('game_board') current_player = game_board.G.current_player # is_choosing = current_player.strategies.human_choosing if not game_has_finished: if current_player.policy == 'human': self.stopClock() else: game_board.updateBoard() else: self.stopClock() game_board.endGamePopup() self.resetGame() def resetGame(self): global game_has_finished game_has_finished = False self.switch_to(SelectScreen()) def startClock(self): self.take_step = Clock.schedule_interval(self.update, 0.8) def stopClock(self): self.take_step.cancel() class SelectScreen(Screen): def whichChoice(self, choices): choice = [button for button in choices if button.pressed] if choice: return choice[0].text else: return "ideal" def sanitizeTextInput(self): global greeted user_text = self.ids['user_text_input'].text if user_text != '': try: N = int(user_text) if N > 2 and N < 10: self.ready2go = True self.game_size = N if N > 3: if not greeted: Popup(title='Hi!', title_size='50sp', content=Label(text=noQs_message), size_hint=(0.8,0.4)).open() greeted = True else: self.ready2go = False raise ValueError('Integer out of range') except ValueError: self.ready2go = False popup =Popup(title='Invalid Game Size', title_size = '20sp', content=Label(text= NA_gamesize_message), size_hint=(0.8, 0.4)) popup.open() #print self.whichChoice(p1_choices), self.whichChoice(p2_choices) def makeGameAndSwitch(self, player_choices): N = str(self.game_size) policies = [self.whichChoice(ch) for ch in player_choices] # Setup game Q_loader = { 'Qlearning' : self.loadQ('newlucky'), 'miniQmax' : self.loadQ('pipeQ'), 'train-miniQmax': self.loadQ('train-miniQmax_'+N+'X'+N)} # Load trained Q if it exists QM1 = Q_loader.get(policies[0], None) QM2 = Q_loader.get(policies[1], None) if 'train-miniQmax' in policies: global_QM = Q_loader['train-miniQmax'] game = setupGame(global_QM, self.game_size, policies, p1QM=QM1,p2QM=QM2, learning=True) else: game = setupGame(QMap(), self.game_size, policies, p1QM=QM1,p2QM=QM2) # Create board widget gb = GameBoard(game, game_size=self.game_size,name='game_board') self.manager.switch_to(gb) if policies[0] is not 'human': # Clock should not run during human's turn self.manager.startClock() def loadQ(self, name): # Convenience function import os.path Q = QMap() if os.path.isfile("./Qs/"+name+".pickle"): with open("./Qs/"+name+".pickle", 'rb') as f: Q = pickle.load(f) return Q class GreenButton(Button): pass class BoardTile(ButtonBehavior, Label): def __init__(self,game_board, **kwargs): super(BoardTile, self).__init__(**kwargs) self.game_board = game_board self.tile_is_set = False self.can_resume = False def on_press(self): if not self.tile_is_set: # Clicking on activated tiles results in no action self.game_board.G.current_player.strategies.human_move_index = int(self.text) self.game_board.updateBoard() self.can_resume = True def on_release(self): if self.can_resume: self.game_board.manager.startClock() class GameBoard(Screen): def __init__(self, game=default_game, game_size=3, **kwargs): super(Screen, self).__init__(**kwargs) self.game_size = game_size self.G = game self.tiles = \ [BoardTile(self, text=str(i)) for i in range(game_size**2)] # Generate Grid self.grid = GridLayout(cols=game_size) for tile in self.tiles: self.grid.add_widget(tile) #Add Grid to Gameboard Screen self.add_widget(self.grid) def updateBoard(self): global game_has_finished if not self.G.game_finished: self.G.takeStep() for position, mark in self.G.game_sequence: self.tiles[position].color = colors['blue'] + [1] self.tiles[position].text = mark self.tiles[position].font_size = self.tiles[0].width * 0.8 self.tiles[position].tile_is_set = True else: game_has_finished = True ####################################################### # Save Q map if at least one policy was train-miniQmax if self.G.learning: print "GOING TO SAVE" N = str(self.game_size) with open('./Qs/train-miniQmax_'+N+'X'+N+'.pickle', 'wb') as f: pickle.dump(self.G.QM, f, pickle.HIGHEST_PROTOCOL) def endGamePopup(self,end_text="finished"): def popIt(endmess=end_text): content=GreenButton(text=endmess, font_size='30sp') popup =Popup(title='Game Finished', title_size = '50sp', content=content, auto_dismiss=False, size_hint=(0.8, 0.4), size=(400,400)) content.bind(on_press=popup.dismiss) popup.open() p1, p2 = self.G.players if True not in [p1.is_winner, p2.is_winner]: popIt("Its a draw!") else: winner = [p for p in [p1,p2] if p.is_winner][0] popIt(winner.mark + " WINS!") class StrategyList(BoxLayout): def __init__(self, **kwargs): super(StrategyList, self).__init__(**kwargs) self.strat_buttons = \ [ListButton(text=strategy,parent_list=self) for strategy in strategies] for b in self.strat_buttons: self.add_widget(b) class ListButton(ButtonBehavior, Label): def __init__(self, parent_list,**kwargs): super(ListButton, self).__init__(**kwargs) self.pressed = False self.parent_list = parent_list def on_press(self): self.pressed = not self.pressed text_color = { False: colors['white'], True: colors['blue'] } [self.pressed] for b in self.parent_list.strat_buttons: if b != self: b.pressed = False b.color = colors['white'] + [1] self.color = text_color + [1] print text_color, self.parent_list, self.pressed class TicTacApp(App): def build(self): game = TictacScreenManager()#SelectScreen()#GameBoard(5) return game if __name__ == '__main__': TicTacApp().run()
9,388
aispace/datasets/ccf_bdci_2020.py
SmileGoat/AiSpace
32
2026149
# -*- coding: utf-8 -*- # @Time : 2019-12-23 15:24 # @Author : yingyuankai # @Email : <EMAIL> # @File : glue_zh.py """DuReader.""" __all__ = [ "Ccfbdci2020" ] import os import six import logging import json import tensorflow as tf import tensorflow_datasets as tfds from aispace.datasets import BaseDataset from aispace.datasets import data_transformers as Transformer _GLUE_CITATION = "TODO" logger = logging.getLogger(__name__) class CcfBdci2020Config(tfds.core.BuilderConfig): """BuilderConfig for DuReader.""" # @tfds.core.disallow_positional_args def __init__(self, text_features=None, label_column=None, data_urls=None, data_dir=None, citation=None, url=None, label_classes=None, train_shards=1, process_label=lambda x: x, **kwargs): """BuilderConfig for DuReader. Args: text_features: `dict[string, string]`, map from the name of the feature dict for each text field to the name of the column in the tsv file label_column: `string`, name of the column in the tsv file corresponding to the label data_url: `string`, url to download the zip file from data_dir: `string`, the path to the folder containing the tsv files in the downloaded zip citation: `string`, citation for the data set url: `string`, url for information about the data set label_classes: `list[string]`, the list of classes if the label is categorical. If not provided, then the label will be of type `tf.float32`. train_shards: `int`, number of shards for the train data set process_label: `Function[string, any]`, function taking in the raw value of the label and processing it to the form required by the label feature **kwargs: keyword arguments forwarded to super. """ # Version history: # 1.0.0: S3 (new shuffling, sharding and slicing mechanism). # 0.0.1: Initial version. super(CcfBdci2020Config, self).__init__( version=tfds.core.Version( "1.0.0", # experiments={tfds.core.Experiment.S3: False} ), # supported_versions=[ # tfds.core.Version( # "1.0.0", # "New split API (https://tensorflow.org/datasets/splits)" # ), # ], **kwargs) self.data_urls = data_urls self.data_dir = data_dir self.citation = citation self.url = url self.train_shards = train_shards self.process_label = process_label @BaseDataset.register("ccfbdci2020") class Ccfbdci2020(BaseDataset): """Ccfbdci2020""" BUILDER_CONFIGS = [ CcfBdci2020Config( name='plain_text', description=""" 闲聊对话相关数据:华为的微博数据 [1] ,北航和微软的豆瓣多轮对话 [2] ,清华的LCCC数据集 [3] 。 知识对话相关数据:百度的DuConv [4] ,清华的KdConv [5],腾讯的检索辅助生成对话数据集 [6]。 推荐对话相关数据:百度的DuRecDial [7]。""", data_url=["https://dataset-bj.cdn.bcebos.com/qianyan/douban.zip", "https://dataset-bj.cdn.bcebos.com/qianyan/duconv.zip", "https://dataset-bj.cdn.bcebos.com/qianyan/DuRecDial.zip", "https://dataset-bj.cdn.bcebos.com/qianyan/LCCC.zip", "https://dataset-bj.cdn.bcebos.com/qianyan/kdconv.zip", "https://dataset-bj.cdn.bcebos.com/qianyan/tencent.zip", "https://dataset-bj.cdn.bcebos.com/qianyan/weibo.zip"], data_dir=".", citation="", url="https://aistudio.baidu.com/aistudio/competition/detail/49" ), ] def __init__(self, data_dir, **kwargs): super(Ccfbdci2020, self).__init__(data_dir, **kwargs) if "dataset" in self.hparams and "transformer" in self.hparams.dataset and self.hparams.dataset.transformer is not None: self.transformer = Transformer.BaseTransformer.\ by_name(self.hparams.dataset.transformer)(self.hparams, data_dir=data_dir) def _info(self): features = self._get_feature_dict() if not features: logger.warning("Do not specify inputs and outputs in config, using default feature dict.") features = self._base_feature_dict() metadata = None if "dataset" in self.hparams and "tokenizer" in self.hparams.dataset and "name" in self.hparams.dataset.tokenizer: metadata = tfds.core.MetadataDict({"tokenizer": self.hparams.dataset.tokenizer.name, "vocab_size": self.hparams.pretrained.config.vocab_size}) return tfds.core.DatasetInfo( builder=self, description=self.builder_config.description, features=tfds.features.FeaturesDict(features), metadata=metadata, homepage="https://aistudio.baidu.com/aistudio/competition/detail/55", citation=self.builder_config.citation + "\n" + _GLUE_CITATION, ) def _base_feature_dict(self): features = { text_feature: tfds.features.Text() for text_feature in six.iterkeys(self.builder_config.text_features) } return features def _split_generators(self, dl_manager): dl_dir = dl_manager.download_and_extract(self.builder_config.data_url) data_dir = os.path.join(dl_dir, self.builder_config.data_dir) data_train_json, data_validation_json, data_test_json = \ os.path.join(data_dir, f"dureader_{self.builder_config.name}-data/train.json"), \ os.path.join(data_dir, f"dureader_{self.builder_config.name}-data/dev.json"), \ os.path.join(data_dir, f"dureader_{self.builder_config.name}-data/test.json") return [ tfds.core.SplitGenerator( name=tfds.Split.TRAIN, num_shards=self.builder_config.train_shards, gen_kwargs={"filepath": data_train_json, 'split': "train"} ), tfds.core.SplitGenerator( name=tfds.Split.VALIDATION, num_shards=1, gen_kwargs={"filepath": data_validation_json, 'split': "validation"} ), tfds.core.SplitGenerator( name=tfds.Split.TEST, num_shards=1, gen_kwargs={"filepath": data_test_json, 'split': "test"} ) ] def _generate_examples(self, filepath, **kwargs): """ 直接从原始数据到tfrecords, 不用生成中间的json文件 :param filepath: :param kwargs: :return: """ generator = self._generate_examples_from_json if "dataset" in self.hparams and \ "transformer" in self.hparams.dataset \ and self.hparams.dataset.transformer is not None \ else self._generate_examples_from_raw for idx, item in enumerate(generator(filepath, **kwargs)): yield idx, item def _generate_examples_from_raw(self, filepath, **kwargs): pass
7,314
nlpatl/models/clustering/__init__.py
dumpmemory/nlpatl
18
2025408
from nlpatl.models.clustering.clustering import Clustering from nlpatl.models.clustering.sklearn_clustering import SkLearnClustering from nlpatl.models.clustering.sklearn_extra_clustering import SkLearnExtraClustering
221
mconnectionGit.py
marcinpeski/TA-algorithm
0
2025656
import sys import mysql.connector from mysql.connector import Error def establish_connection(log, online = False): version = sys.version_info if not online: try: connection = mysql.connector.connect(host='127.0.0.1', database='eTalg', user='marcin', password='<PASSWORD>', port = '33360', buffered = True) if connection.is_connected(): db_Info = connection.get_server_info() cursor = connection.cursor() cursor.execute("select database();") record = cursor.fetchone() return connection, cursor except Error as e: log.add_line(["-"*20,"-"*20,"-"*20]) log.add_line(["Error while connecting to MySQL", e]) log.add_line(["This connection should work from outside of LM. If it doesn't work, you probably forgot to set up VAGRANT"]) else: try: #This connection is from inside of vagrant machine, or maybe even from connection = mysql.connector.connect(host='localhost', database='economics', user='XXXXX', password='<PASSWORD>', port = '3306',#33360 - see above buffered = True) if connection.is_connected(): db_Info = connection.get_server_info() log.add_line(["Connected to MySQL Server version ", db_Info]) cursor = connection.cursor() cursor.execute("select database();") record = cursor.fetchone() log.add_line(["You're connected to database: ", record]) return connection, cursor except Error as e: log.add_line(["-"*20,"-"*20,"-"*20]) log.add_line(["Error while connecting to MySQL", e]) log.add_line(["This connection should work from outside of LM. If it doesn't work, you probably forgot to set up VAGRANT"]) def close_connection(connection, cursor, commit = False): if (connection.is_connected()): if commit: connection.commit() cursor.close() connection.close()
2,568
lib/JumpScale/grid/osis/OSISBaseObjectComplexType.py
rudecs/jumpscale_core7
0
2025900
from JumpScale import j import JumpScale.baselib.hash import copy import JumpScale.baselib.code class OSISBaseObjectComplexType(j.code.classGetJSRootModelBase()): def init(self,namespace,category,version): if not hasattr(self,"guid"): self.guid="" if self.guid=="": self.guid=j.base.idgenerator.generateGUID() self.guid=self.guid.replace("-","") self._ckey="" self._meta=[namespace,category,int(version)] #$namespace,$category,$version def getUniqueKey(self): """ return unique key for object, is used to define unique id (std the guid) if return None means is always unique """ return None # def getSetGuid(self): # """ # use osis to define & set unique guid (sometimes combination of other keys, std the guid and does nothing) # """ # return self.guid def getSetGuid(self): """ """ if "gid" not in self.__dict__ or self.gid==0 or self.gid=="": self.gid=j.application.whoAmI.gid # self.sguid=struct.pack("<HH",self.gid,self.id) # self.guid = "%s_%s" % (self.gid, self.id) self.lastmod=j.base.time.getTimeEpoch() return self.guid def getContentKey(self): """ is like returning the hash, is used to see if object changed """ dd=j.code.object2json(self,True,ignoreKeys=["guid","id","sguid","moddate"],ignoreUnderscoreKeys=True) return j.tools.hash.md5_string(j.tools.text.toStr(dd)) def load(self, ddict): """ load the object starting from dict of primitive types (dict, list, int, bool, str, long) and a combination of those std behaviour is the __dict__ of the obj """ j.code.dict2JSModelobject(self,ddict) def dump(self): """ dump the object to a dict of primitive types (dict, list, int, bool, str, long) and a combination of those std behaviour is the __dict__ of the obj """ return j.code.object2dict(self,dieOnUnknown=True) def getDictForIndex(self,ignoreKeys=[]): """ get dict of object without passwd and props starting with _ """ return j.code.object2dict(self,ignoreKeys=ignoreKeys+["passwd","password","secret"],ignoreUnderscoreKeys=True) def __eq__(self,other): if not hasattr(other, "__dict__"): return False def clean(obj): dd={} keys=list(obj.__dict__.keys()) keys.sort() for key in keys: val= obj.__dict__[key] if key[0]!="_": dd[str(key)]=val return dd # print "'%s'"%clean(self) # print "'%s'"%clean(other) return clean(self)==clean(other)
2,841
plusone.py
Garmelon/plusone
0
2025222
import asyncio import configparser import logging import re import yaboli from yaboli.utils import * logger = logging.getLogger("plusone") class PointsDB(yaboli.Database): def initialize(self, db): with db: db.execute(( "CREATE TABLE IF NOT EXISTS points (" "normalized_nick TEXT PRIMARY KEY, " "nick TEXT NOT NULL, " "room TEXT NOT NULL, " "points INTEGER NOT NULL" ")" )) @yaboli.operation def add_points(self, db, room, nick, points): normalized_nick = normalize(nick) with db: db.execute( "INSERT OR IGNORE INTO points VALUES (?,?,?,0)", (normalized_nick, nick, room) ) db.execute(( "UPDATE points " "SET points=points+?, nick=? " "WHERE normalized_nick=? AND room=?" ), (points, nick, normalized_nick, room)) @yaboli.operation def points_of(self, db, room, nick): normalized_nick = normalize(nick) res = db.execute(( "SELECT points FROM points " "WHERE normalized_nick=? AND room=?" ), (normalized_nick, room)) points = res.fetchone() return points[0] if points else 0 class PlusOne: SHORT_DESCRIPTION = "counts :+1:s" DESCRIPTION = ( "'plusone' counts +1/:+1:/:bronze:s:" " Simply reply '+1' to someone's message to give them a point.\n" " Alternatively, specify a person with: '+1 [to] @person'.\n" ) COMMANDS = ( "!points - show your own points\n" "!points <nick> [<nick> ...] - list other people's points\n" ) AUTHOR = "Created by @Garmy using github.com/Garmelon/yaboli\n" PLUSONE_RE = r"\s*(\+1|:\+1:|:bronze(!\?|\?!)?:)(\s+(.*))?" MENTION_RE = r"(to\s+@?|@)(\S+)" def __init__(self, dbfile): self.db = PointsDB(dbfile) @yaboli.command("points") async def command_points(self, room, message, argstr): args = yaboli.Bot.parse_args(argstr) if args: lines = [] for nick in args: if nick[0] == "@": # a bit hacky, requires you to mention nicks starting with '@' nick = nick[1:] points = await self.db.points_of(room.roomname, nick) line = f"{mention(nick, ping=False)} has {points} point{'' if points == 1 else 's'}." lines.append(line) text = "\n".join(lines) await room.send(text, message.mid) else: # your own points points = await self.db.points_of(room.roomname, message.sender.nick) text = f"You have {points} point{'' if points == 1 else 's'}." await room.send(text, message.mid) @yaboli.trigger(PLUSONE_RE, flags=re.IGNORECASE) async def trigger_plusone(self, room, message, match): rest = match.group(4) if rest: specific = re.match(self.MENTION_RE, match.group(4)) else: specific = None nick = None if specific: nick = specific.group(2) elif message.parent: parent_message = await room.get_message(message.parent) nick = parent_message.sender.nick if nick is None: text = "You can't +1 nothing..." elif similar(nick, message.sender.nick): text = "There's no such thing as free points on the internet." else: await self.db.add_points(room.roomname, nick, 1) text = f"Point for user {mention(nick, ping=False)} registered." await room.send(text, message.mid) class PlusOneBot(yaboli.Bot): PING_TEXT = ":bronze?!:" SHORT_HELP = PlusOne.SHORT_DESCRIPTION LONG_HELP = PlusOne.DESCRIPTION + PlusOne.COMMANDS + PlusOne.AUTHOR def __init__(self, nick, dbfile, cookiefile=None): super().__init__(nick, cookiefile=cookiefile) self.plusone = PlusOne(dbfile) async def on_send(self, room, message): await super().on_send(room, message) await self.plusone.trigger_plusone(room, message) async def on_command_specific(self, room, message, command, nick, argstr): if similar(nick, room.session.nick) and not argstr: await self.botrulez_ping(room, message, command, text=self.PING_TEXT) await self.botrulez_help(room, message, command, text=self.LONG_HELP) await self.botrulez_uptime(room, message, command) await self.botrulez_kill(room, message, command, text="-1") await self.botrulez_restart(room, message, command, text="∓1") async def on_command_general(self, room, message, command, argstr): if not argstr: await self.botrulez_ping(room, message, command, text=self.PING_TEXT) await self.botrulez_help(room, message, command, text=self.SHORT_HELP) await self.plusone.command_points(room, message, command, argstr) def main(configfile): logging.basicConfig(level=logging.INFO) config = configparser.ConfigParser(allow_no_value=True) config.read(configfile) nick = config.get("general", "nick") cookiefile = config.get("general", "cookiefile", fallback=None) dbfile = config.get("general", "dbfile", fallback=None) bot = PlusOneBot(nick, dbfile, cookiefile=cookiefile) for room, password in config.items("rooms"): if not password: password = None bot.join_room(room, password=password) asyncio.get_event_loop().run_forever() if __name__ == "__main__": main("plusone.conf")
4,881
alpyca_sim/build/pybind/test_pybind_class.py
alpyca/alpyca
3
2025263
import unittest from pybind_class import PybindClass from pybind_writer import PybindWriter class TestPybindClass(unittest.TestCase): def test_context_manager(self): writer = PybindWriter() with PybindClass(writer): writer.write_line('test') self.assertEqual(writer.text, 'test;\n\n') if __name__ == '__main__': unittest.main()
386
movefile_restart/main.py
hammy3502/python-movefile-restart
0
2025975
import sys import os if sys.platform != "win32": raise OSError("movefile-restart module is only supported on Windows systems!") import winreg _registry = winreg.ConnectRegistry(None, winreg.HKEY_LOCAL_MACHINE) def __get_current_values(): """Get Values. Internal function to get the current values stored inside PendingFileRenameOperations as a giant list of strings. Returns: str[]: List of strings in PendingFileRenameOperations """ try: _read_key = winreg.OpenKey(_registry, "SYSTEM\\CurrentControlSet\\Control\\Session Manager", 0, winreg.KEY_READ) except PermissionError: raise PermissionError("Permission Denied to read registry key.") # Re-raise to make clear to end-user/library user file_ops_values = None i = 0 while True: try: if winreg.EnumValue(_read_key,i)[0] == "PendingFileRenameOperations": file_ops_values = winreg.EnumValue(_read_key,i)[1] break except OSError: break i += 1 if file_ops_values == None: return [] return file_ops_values def __set_registry(values): """Set PendingFileRenameOperations. Use at your own risk internal function. Takes a list of strings, and writes it to PendingFileRenameOperations. Args: values (str[]): List of strings to write to PendingFileRenameOperations key. """ try: _write_key = winreg.OpenKey(_registry, "SYSTEM\\CurrentControlSet\\Control\\Session Manager", 0, winreg.KEY_WRITE) except PermissionError: raise PermissionError("Permission Denied to write registry key.") winreg.SetValueEx(_write_key, "PendingFileRenameOperations", 0, winreg.REG_MULTI_SZ, values) def DeleteFile(file_path, check_conflicts=True): """Queue File for Deletion. Adds the Registry information to delete a file on reboot. Args: file_path (str): A path to the file to delete. check_conflicts (bool): Checks file_path to make sure the Delete can happen as supplied. Defaults to True. Raises: FileNotFoundError: Raised if the file_path doesn't exist. """ file_path = file_path.replace("/", "\\") values = __get_current_values() if check_conflicts and not (os.path.isfile(file_path)): values.reverse() try: file_path_index = values.index("\\??\\" + file_path) except ValueError: file_path_index = -1 if file_path_index % 2 != 0 or file_path_index == -1: raise FileNotFoundError("Path {} does not exist and is not being created during a move operation!".format(file_path)) values.reverse() values.append("\\??\\" + file_path) values.append("") __set_registry(values) def MoveFile(from_path, to_path, check_conflicts=True): """Queue File for Moving. Adds the Registry information to move a file on reboot. Args: from_path (str): The directory being moved from. to_path (str): The directory being moved to. check_conflicts (bool): Check from_path and to_path to make sure the Move/Rename can be performed successfully. Raises: FileNotFoundError: Raised if the from_path doesn't exist or if the directory of to_path doesn't exist. FileExistsError: Raised if to_path already exists. """ from_path = from_path.replace("/", "\\") if check_conflicts and not os.path.isfile(from_path): # Don't move non-existant path raise FileNotFoundError("Path {} does not exist!".format(from_path)) to_path = to_path.replace("/", "\\") if check_conflicts and not os.path.isdir(os.path.dirname(to_path)): # Don't move to non-existant dir raise FileNotFoundError("Path {} does not exist to move to!".format(os.path.dirname(to_path))) values = __get_current_values() if check_conflicts and os.path.isfile(to_path): # Don't move to already-existing destination unless it will be deleted/moved values.reverse() try: to_path_index = values.index("\\??\\" + to_path) except ValueError: to_path_index = -1 if to_path_index % 2 == 0 or to_path_index == -1: raise FileExistsError("Path {} already exists and isn't already being deleted/moved!".format(to_path)) values.reverse() values.append("\\??\\" + from_path) values.append("\\??\\" + to_path) __set_registry(values) def RenameFile(from_path, to_path, check_conflicts=True): """MoveFile Alias.""" MoveFile(from_path, to_path, check_conflicts) def GetFileOperations(): """Get Pending File Operations. Returns a list with tuples of the format (from_path, to_path). If to_path is empty, then the file is being deleted. Returns: tuple[]: A list of tuples containing the pending file operations. """ values = __get_current_values() to_return = [] for i in range(int(len(values) / 2)): to_return.append((values[2*i].replace("\\??\\", ""), values[2*i+1].replace("\\??\\", ""))) return to_return def PrintFileOperations(): """Prints Pending File Operations.""" vals = GetFileOperations() if not vals: print("There are no currently pending file operations!") return for i in vals: if i[1] == "": print("Deleting {}".format(i[0])) else: print("Moving {} to {}".format(i[0], i[1])) def RemoveFileOperation(file_op_index): """Remove File Operation from Occuring. Args: file_op_index (int): Index of file operation to remove. Same indexes as GetFileOperations(). Raises: TypeError: file_op_index isn't an integer. IndexError: The passed in index doesn't exist. """ values = __get_current_values() if not isinstance(file_op_index, int): raise TypeError("Index for operation to remove must be an integer!") try: del values[file_op_index*2:file_op_index*2+2] except IndexError: raise IndexError("Index {} does not exist!".format(str(file_op_index))) # Re-raising here to be more descriptive for debugging __set_registry(values) def CheckPermissions(): """Get Permissions. Gets the permissions for reading/writing the registry as a tuple. Returns: (bool, bool): First bool is True/False for reading the key, second is for writing the key. """ read = True write = True try: winreg.OpenKey(_registry, "SYSTEM\\CurrentControlSet\\Control\\Session Manager", 0, winreg.KEY_READ) try: winreg.OpenKey(_registry, "SYSTEM\\CurrentControlSet\\Control\\Session Manager", 0, winreg.KEY_WRITE) except PermissionError: write = False except PermissionError: read = False write = False # Due to how this program works, if reading is impossible, so is writing. return (read, write) if __name__ == "__main__": if CheckPermissions()[0]: print("Currently pending file operations: ") PrintFileOperations() else: print("No read permission on registry key!") sys.exit()
7,138
purview_py/conn/__init__.py
Spydernaz/purview_py
0
2026398
""" OWLPy ~~~~~~~~~~~~~~~~~~~~~ An extension module to facilitate API Models and functionality. :copyright: (c) 2019 Spydernaz :license: MIT, see LICENSE for more details. """ from .Connection import PurviewConnection
218
test.py
hashhar/jsonschema2prestosql
2
2024054
#!/usr/bin/env python3 import jsonschema2sql jsonschema = jsonschema2sql.load_schema("test.json") sql = jsonschema2sql.generate_create_table( "test_table", "default", "s3://some-bucket/", ["ad"], "PARQUET", False, jsonschema ) expected_sql = """CREATE TABLE "default"."test_table" ( "string_col" varchar, "datetime_col" timestamp, "datetime_string_col" varchar, "date_col" date, "date_string_col" varchar, "time_col" time, "time_string_col" varchar, "decimal_string_col" decimal(10, 2), "double_col" double, "double_double_col" double, "float_col" float, "decimal_col" decimal(5, 3), "action_date" bigint, "boolean_col" boolean, "array_col" array(varchar), "array_object_col" array(ROW("string_col" varchar, "datetime_col" timestamp)), "object_col" ROW("string_col" varchar, "integer_col" bigint), "ad" varchar ) WITH ( external_location = 's3://some-bucket/', partitioned_by = ARRAY['ad'], format = 'PARQUET' )""" assert sql == expected_sql print("** TESTS PASS! **")
1,061
setup.py
jcdaniel14/devnet-ssh
0
2025860
from setuptools import setup, find_packages with open("README.md") as readme_file: README = readme_file.read() setup_args = dict( name='devnet_ssh', version='1.0.5', description='Fast and simple SSH library for interactive session based on Paramiko', long_description_content_type="text/markdown", long_description=README, license='MIT', packages=find_packages(), author='<NAME>', author_email='<EMAIL>', keywords=['SSH', 'SSH Client', 'Paramiko', "Devnet"], url='https://github.com/jcdaniel14/devnet_ssh.git', download_url='https://pypi.org/project/devnet_ssh/' ) install_requires = [ "paramiko>=2.4.3" ] if __name__ == '__main__': setup(**setup_args, install_requires=install_requires)
776
model.py
exchhattu/BiomedicaLorHealthCare-NLP
0
2026484
#!/usr/bin/python3 ''' Written: <NAME> PhD Mon Sep 16 15:04:45 2019 ''' import os, sys, shutil import random class Model: def __init__(self, fo_train, fo_valid, fo_test): self._fo_train = fo_train self._fo_valid = fo_valid self._fo_test = fo_test # indexes self._ts_train = [] self._ts_valid = [] self._ts_test = [] def create_validation_data(self, ts_rows): in_seed = 89 ts_row_idxes = [i for i in range(0, ts_rows.shape[0])] random.Random(in_seed).shuffle(ts_row_idxes) in_train = int(self._fo_train * len(ts_row_idxes)) in_valid = int(self._fo_valid * len(ts_row_idxes)) in_test = int(self._fo_test * len(ts_row_idxes)) # in the case if float and int conversion lose some data in_error = in_train + in_valid + in_test in_diff = len(ts_row_idxes) - in_error in_train = in_train + in_diff print("[Updates]: {0:0.2f}% train => {1:d}".format(self._fo_train, in_train)) print("[Updates]: {0:0.2f}% valid => {1:d}".format(self._fo_valid, in_valid)) print("[Updates]: {0:0.2f}% test => {1:d}".format(self._fo_test, in_test)) in_tr_idxes = ts_row_idxes[:in_train] in_va_idxes = ts_row_idxes[in_train:in_train+in_valid] in_te_idxes = ts_row_idxes[-in_test:] self._ts_train = ts_rows[in_tr_idxes] self._ts_valid = ts_rows[in_va_idxes] self._ts_test = ts_rows[in_te_idxes] def split_validation_data(self, root_path=os.getcwd()): ts_dirs = ["train", "valid", "test"] for st_dname in ts_dirs: self.copy_data(root_path=root_path, data_type=st_dname) def copy_data(self, root_path=os.getcwd(), data_type="train"): try: path = os.path.join(root_path, data_type) if os.path.exists(path): shutil.rmtree(path) os.makedirs(path) ts_data = [] if data_type=="train": ts_data = self._ts_train elif data_type=="valid": ts_data = self._ts_valid elif data_type=="test": ts_data = self._ts_test # Copy files in respective directory ts_formats = ["txt", "ana"] for st_format in ts_formats: for st_dir in ts_data: f_spath = os.path.join(root_path, "%s.%s" %(st_dir, st_format)) f_dpath = os.path.join(root_path, data_type) if os.path.isfile(f_spath): shutil.copy(f_spath, f_dpath) os.remove(f_spath) except: print("[FATAL] creating data for validation is unsuccessful.") sys.exit(0)
2,511
client/tests_crypto.py
vrandkode/stuk-stuk
5
2023941
from Crypto.Cipher import PKCS1_OAEP from Crypto.PublicKey import RSA import zlib import base64 import crypto def Keys(): key = RSA.generate(2048, e=65537) return key, key.publickey() def GenerateKeys(prefix): pri, pub = Keys() private_key = pri.exportKey("PEM") public_key = pub.exportKey("PEM") print(private_key) fd = open(".test/{0}_private.pem".format(prefix), "wb") fd.write(private_key) fd.close() print(public_key) fd = open(".test/{0}_public.pem".format(prefix), "wb") fd.write(public_key) fd.close() public_ssh_key = pub.exportKey("OpenSSH") print(public_ssh_key) fd = open(".test/{0}_public.pub".format(prefix), "wb") fd.write(public_ssh_key) fd.close() def PairKey(plain=False, size=2048): """ Genera par de claves RSA """ key = RSA.generate(size) return (key, key.publickey()) if plain else (key.exportKey("PEM"), key.publickey().exportKey('OpenSSH')) def ed(token): print(token, "encrypt->") ciphertext = encrypt('.test/plataforma_public.pem', token) print(ciphertext) print(".decrypt->") print(decrypt('.test/plataforma_private.pem', ciphertext)) print("------------") def tests(): GenerateKeys("plataforma") print("\n\n") with open(".test/plataforma_public.pub", "rb") as f: token = f.read() print("len:",len(token)) ed(token) print("=======================\n") token2 = b"<EMAIL>.totp.ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQCmyEmBfjgnHvasVKDKm3z0qtgZPclcqfnKnZ95TgfTA/0OoayjdZz8p3xnR0cWeroaiDvBBVKy0lD2oj484h/mD/UkXLVHZBKYTEPklw3GU0nYteSVWU6a8Uht5OLzHU58QM7FtDyvFtqXJBeKVWhbqBn6SLNjaG1CoolkC+TNt5moRvKllp8jY1ohgek96qi1V+CBZVlJlfxRY8eCjcGN1wmsbM5WN7HmSZhfFw4hJYR3LTRSw/EVg/MtKofaOVl7Pr2i1I5Wj2aiHsKpjl8WF5g3L/5OIPEpskxhv42QeEhBCgT0R2f1DMQ7YS0noS3LUSsTKnPqjsqYnqd190AX" ed(token2) tok = b"<EMAIL> <PASSWORD>in<PASSWORD>.totp.ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQCmyEmBfjgnHvasVKDKm3z0qtgZPclcqfnKnZ95TgfTA/0OoayjdZz8p3xnR0cWeroaiDvBBVKy0lD2oj484h/mD/UkXLVHZBKYTEPklw3GU0nYteSVWU6a8Uht5OLzHU58QM7FtDyvFtqXJBeKVWhbqBn6SLNjaG1CoolkC+TNt5moRvKllp8jY1ohgek96qi1V+CBZVlJlfxRY8eCjcGN1wmsbM5WN7HmSZhfFw4hJYR3LTRSw/EVg/MtKofaOVl7Pr2i1I5Wj2aiHsKpjl8WF5g3L/5OIPEpskxhv42QeEhBCgT0R2f1DMQ7YS0noS3LUSsTKnPqjsqYnqd190AX" encrypted = crypto.AE('.test/plataforma_public.pem', tok) print(encrypted) print(".....") print(crypto.AD('.test/plataforma_private.pem',encrypted)) print(crypto.AD('.test/plataforma_private.pem',"<KEY>")) #crypto.AD('.test/plataforma_private.pem',"<KEY>")
2,539
pandas-udf/udf-with-apache-arrow.py
FahaoTang/spark-examples
0
2026486
from pyspark import SparkConf from pyspark.sql import SparkSession, Window from pyspark.sql.types import ArrayType, StructField, StructType, StringType, IntegerType, DecimalType, FloatType from pyspark.sql.functions import udf, collect_list, struct, explode, pandas_udf, PandasUDFType, col from decimal import Decimal import random import pandas as pd import numpy as np appName = "Python Example - UDF with Apache Arrow (Pandas UDF)" master = 'local' # Create Spark session conf = SparkConf().setMaster(master) spark = SparkSession.builder.config(conf=conf) \ .getOrCreate() # Enable Arrow optimization and fallback if there is no Arrow installed spark.conf.set("spark.sql.execution.arrow.enabled", "true") spark.conf.set("spark.sql.execution.arrow.fallback.enabled", "true") # Construct the data frame directly (without reading from HDFS) cust_count = 10 txn_count = 100 data = [(i, j, i * j * random.random() * random.choice((-1, 1))) for j in range(txn_count) for i in range(cust_count)] # Create a schema for the dataframe schema = StructType([ StructField('CustomerID', IntegerType(), False), StructField('TransactionID', IntegerType(), False), StructField('Amount', FloatType(), True) ]) # Create the data frame df = spark.createDataFrame(data, schema=schema) # Function 1 - Scalar function - dervice a new column with value as Credit or Debit. def calc_credit_debit_func(amount): return pd.Series(["Credit" if a >= 0 else "Debit" for a in amount]) fn_credit_debit = pandas_udf(calc_credit_debit_func, returnType=StringType()) df = df.withColumn("CreditOrDebit", fn_credit_debit(df.Amount)) df.show() # Function 2 - Group map function - calculate the difference from mean attributes = [ StructField('CustomerID', IntegerType(), False), StructField('TransactionID', IntegerType(), False), StructField('Amount', FloatType(), False), StructField('CreditOrDebit', StringType(), False), StructField('Diff', FloatType(), False) ] attribute_names = [a.name for a in attributes] @pandas_udf(StructType(attributes), PandasUDFType.GROUPED_MAP) def fn_calc_diff_from_mean(txn): pdf = txn amount = pdf.Amount pdf = pdf.assign(Diff=amount - amount.mean()) return pdf df_map = df.groupby("CustomerID").apply(fn_calc_diff_from_mean) df_map.show(100) # Function 3 - Group aggregate function - calculate mean only @pandas_udf(FloatType(), PandasUDFType.GROUPED_AGG) def mean_udf(amount): return np.mean(amount) df_agg = df.groupby("CustomerID").agg(mean_udf(df['Amount']).alias("Mean")) df_agg.show() # Function 4 - Group aggregate function - Windowing function w = Window \ .partitionBy('CustomerID') \ .rowsBetween(Window.unboundedPreceding, Window.unboundedFollowing) df.withColumn('Mean', mean_udf(df['Amount']).over(w)).show()
2,822
structy-practice-solutions/03-uncompress.py
RuthraVed/hackerearth-practice-solutions
0
2026477
""" ## Uncompress ## Write a function, uncompress, that takes in a string as an argument. The input string will be formatted into multiple groups according to the following pattern: <number><char> For example, '2c' or '3a'. The function should return an uncompressed version of the string where each 'char' of a group is repeated 'number' times consecutively, like 'ccc' or 'aaa'. You may assume that the input string is well-formed according to the previously mentioned pattern. """ from timer_module import timer_func @timer_func def uncompress_my_way(s): number_str = '' uncompressed_result = '' for char in s: if char.isdigit(): # Keep saving the consecutive digits as string number_str += char else: uncompressed_result += char*int(number_str) # Reinitialize to store a new number number_str = '' return uncompressed_result @timer_func def uncompress_alvin_way(s): numbers = '0123456789' result = "" i = j = 0 # Used for-loop, as anyhow j needs to keep incrementing for j in range(0, len(s)): if s[j] in numbers: continue # j increments automatically else: result += s[j]*int(s[i:j]) i = j + 1 # Bringing i to j's position return result # --- Tests --- test_input_values = [ "2c3a1t", "4s2b", "2p1o5p", "3n12e2z", "127y", ] expected_results = [ 'ccaaat', 'ssssbb', 'ppoppppp', 'nnneeeeeeeeeeeezz', 'yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy', ] def test_func_by_name(func): for i in range(0,len(test_input_values)): result = func(test_input_values[i]) # Test solution against every input assert result == expected_results[i], \ f'Expected max value as {expected_results[i]}, got: {result}' print(f'Test [{i}] passed, with correct result as {expected_results[i]}.') test_func_by_name(uncompress_my_way) test_func_by_name(uncompress_alvin_way)
2,109
main.py
mssalvador/NextProject
1
2026103
# the usual include statements import os import sys import importlib import pyspark package_dict = { 'semisupervised.zip': './semisupervised', 'cleaning.zip': './cleaning', 'classification.zip': './classification', 'shared.zip': './shared', 'examples.zip': './examples'} for zip_file, path in package_dict.items(): if os.path.exists(zip_file): sys.path.insert(0, zip_file) else: sys.path.insert(0, path) if __name__ == '__main__': from shared.OwnArguments import OwnArguments arguments = OwnArguments() arguments.add_argument('--cluster_path', types=str, required=True, dest='cluster_path') arguments.add_argument('--job', types=str, required=True, dest='job_name') arguments.add_argument('--job_args', dest='job_args', nargs='*') arguments.add_argument('--input_data', dest='input_data', types=str) arguments.add_argument('--features', dest='features', types=str, nargs='*') arguments.add_argument('--id', dest='id', types=str, nargs='*') arguments.add_argument('--labels', dest='labels', types=str, nargs='*', required=False) arguments.parse_arguments() all_args = dict() if arguments.job_args: all_args['algo_params'] = dict(arg.split('=') for arg in arguments.job_args) all_args['input_data'] = arguments.input_data all_args['features'] = arguments.features all_args['id'] = arguments.id all_args['labels'] = arguments.labels # dtu_cluster_path = 'file:///home/micsas/workspace/distributions/dist_workflow' # local_path = "file:/home/svanhmic/workspace/DABAI/Workflows/dist_workflow" # visma_cluster_path = 'file:/home/ml/deployments/workflows' py_files = ['/shared.zip', '/examples.zip', '/cleaning.zip', '/classification.zip', '/semisupervised.zip'] spark_conf = pyspark.SparkConf(loadDefaults=False) (spark_conf .set('spark.executor.cores', 4) .set('spark.executor.memory', '1G') .set('spark.executors', 2) ) sc = pyspark.SparkContext(appName=arguments.job_name) job_module = importlib.import_module('{:s}'.format(arguments.job_name)) # sc = pyspark.SparkContext( # appName=arguments.job_name, pyFiles=[arguments.cluster_path+py_file for py_file in py_files], conf=spark_conf) # job_module = importlib.import_module('{:s}'.format(arguments.job_name)) try: data_frame = job_module.run(sc, **all_args) # data_frame.printSchema() # data_frame.show() rdd = data_frame.toJSON() # .saveAsTextFile('hdfs:///tmp/cleaning.txt') js = rdd.collect() # print(js) if arguments.job_name == 'cleaning': print("""{"cluster":["""+','.join(js)+"""]}""") elif arguments.job_name == 'classification': print("""{"classification":[""" + ','.join(js) + """]}""") elif arguments.job_name == 'semisupervised': print("""{"semisuper":["""+ ','.join(js)+"""]}""") except TypeError as te: print('Did not run', te) # make this more logable...
3,030
Products/CMFDefault/tests/test_Favorite.py
zopefoundation/Products.CMFDefault
0
2026246
############################################################################## # # Copyright (c) 2001 Zope Foundation and Contributors. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## """ Unit tests for Favorites. """ import unittest import Testing from zope.component import getSiteManager from zope.interface.verify import verifyClass from zope.testing.cleanup import cleanUp from Products.CMFCore.interfaces import IMembershipTool from Products.CMFCore.interfaces import ISiteRoot from Products.CMFCore.interfaces import IURLTool from Products.CMFCore.testing import ConformsToContent from Products.CMFCore.tests.base.dummy import DummyContent from Products.CMFCore.tests.base.dummy import DummySite from Products.CMFCore.tests.base.dummy import DummyTool class FavoriteTests(ConformsToContent, unittest.TestCase): def _getTargetClass(self): from Products.CMFDefault.Favorite import Favorite return Favorite def _makeOne(self, *args, **kw): return self._getTargetClass()(*args, **kw) def setUp(self): self.site = DummySite('site') sm = getSiteManager() sm.registerUtility(self.site, ISiteRoot) sm.registerUtility(DummyTool(), IMembershipTool) sm.registerUtility(DummyTool().__of__(self.site), IURLTool) self.site._setObject( 'target', DummyContent() ) def tearDown(self): cleanUp() def test_interfaces(self): from Products.CMFDefault.interfaces import IFavorite from Products.CMFDefault.interfaces import ILink from Products.CMFDefault.interfaces import IMutableFavorite from Products.CMFDefault.interfaces import IMutableLink verifyClass(IFavorite, self._getTargetClass()) verifyClass(ILink, self._getTargetClass()) verifyClass(IMutableFavorite, self._getTargetClass()) verifyClass(IMutableLink, self._getTargetClass()) def test_Empty( self ): utool = getSiteManager().getUtility(IURLTool) f = self.site._setObject('foo', self._makeOne('foo')) self.assertEqual( f.getId(), 'foo' ) self.assertEqual( f.Title(), '' ) self.assertEqual( f.Description(), '' ) self.assertEqual( f.getRemoteUrl(), utool() ) self.assertEqual( f.getObject(), self.site ) self.assertEqual( f.getIconURL(), self.site.getIconURL() ) self.assertEqual( f.icon(), '' ) def test_CtorArgs( self ): utool = getSiteManager().getUtility(IURLTool) target = self.site.target self.assertEqual( self._makeOne( 'foo' , title='Title' ).Title(), 'Title' ) self.assertEqual( self._makeOne( 'bar' , description='Description' ).Description(), 'Description' ) baz = self.site._setObject('foo', self._makeOne('baz', remote_url='target')) self.assertEqual( baz.getObject(), target ) self.assertEqual( baz.getRemoteUrl(), '%s/target' % utool() ) self.assertEqual( baz.getIconURL(), target.getIconURL() ) self.assertEqual( baz.icon(), target.icon() ) def test_edit( self ): utool = getSiteManager().getUtility(IURLTool) target = self.site.target f = self.site._setObject('foo', self._makeOne('foo')) f.edit( 'target' ) self.assertEqual( f.getObject(), target ) self.assertEqual( f.getRemoteUrl(), '%s/target' % utool() ) self.assertEqual( f.getIconURL(), target.getIconURL() ) self.assertEqual( f.icon(), target.icon() ) def test_editEmpty( self ): utool = getSiteManager().getUtility(IURLTool) f = self.site._setObject('gnnn', self._makeOne('gnnn')) f.edit( '' ) self.assertEqual( f.getObject(), self.site ) self.assertEqual( f.getRemoteUrl(), utool() ) self.assertEqual( f.getIconURL(), self.site.getIconURL() ) self.assertEqual( f.icon(), '' ) def test_suite(): return unittest.TestSuite(( unittest.makeSuite(FavoriteTests), ))
4,586
NeuralStyleTransferSrc/content_image.py
vonlippmann/Deep-_Style_Transfer
2
2026522
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'content_image.ui' # # Created by: PyQt5 UI code generator 5.10.1 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_ConImg(object): def setupUi(self, ConImg): ConImg.setObjectName("ConImg") ConImg.resize(663, 561) self.horizontalLayout = QtWidgets.QHBoxLayout(ConImg) self.horizontalLayout.setObjectName("horizontalLayout") self.verticalLayout = QtWidgets.QVBoxLayout() self.verticalLayout.setObjectName("verticalLayout") self.gridLayout_2 = QtWidgets.QGridLayout() self.gridLayout_2.setSpacing(0) self.gridLayout_2.setObjectName("gridLayout_2") self.label_8 = QtWidgets.QLabel(ConImg) self.label_8.setStyleSheet("QLabel{;\n" "image: url(:/content/content_image/taj_mahal.jpg);\n" "border:1px solid;\n" " border-color: rgba(255, 255, 255,0);\n" "}\n" "QLabel:hover{border:2px solid;\n" "border-color:\"blue\"}") self.label_8.setText("") self.label_8.setObjectName("label_8") self.gridLayout_2.addWidget(self.label_8, 0, 2, 1, 1) self.label_10 = QtWidgets.QLabel(ConImg) self.label_10.setObjectName("label_10") self.gridLayout_2.addWidget(self.label_10, 3, 0, 1, 1, QtCore.Qt.AlignHCenter|QtCore.Qt.AlignTop) self.label_4 = QtWidgets.QLabel(ConImg) self.label_4.setObjectName("label_4") self.gridLayout_2.addWidget(self.label_4, 1, 0, 1, 1, QtCore.Qt.AlignHCenter|QtCore.Qt.AlignTop) self.label_9 = QtWidgets.QLabel(ConImg) self.label_9.setStyleSheet("QLabel{;\n" " image: url(:/content/content_image/tubingen.jpg);\n" "border:1px solid;\n" " border-color: rgba(255, 255, 255,0);\n" "}\n" "QLabel:hover{border:2px solid;\n" "border-color:\"blue\"}") self.label_9.setText("") self.label_9.setObjectName("label_9") self.gridLayout_2.addWidget(self.label_9, 2, 0, 1, 1) self.label_7 = QtWidgets.QLabel(ConImg) self.label_7.setStyleSheet("QLabel{;\n" "image: url(:/content/content_image/new_york.png);\n" "border:1px solid;\n" " border-color: rgba(255, 255, 255,0);\n" "}\n" "QLabel:hover{border:2px solid;\n" "border-color:\"blue\"}") self.label_7.setText("") self.label_7.setObjectName("label_7") self.gridLayout_2.addWidget(self.label_7, 0, 1, 1, 1) self.label_2 = QtWidgets.QLabel(ConImg) self.label_2.setAlignment(QtCore.Qt.AlignHCenter|QtCore.Qt.AlignTop) self.label_2.setObjectName("label_2") self.gridLayout_2.addWidget(self.label_2, 3, 1, 1, 1) self.label_3 = QtWidgets.QLabel(ConImg) self.label_3.setStyleSheet("QLabel{;\n" "image: url(:/content/content_image/garden.png);\n" "border:1px solid;\n" " border-color: rgba(255, 255, 255,0);\n" "}\n" "QLabel:hover{border:2px solid;\n" "border-color:\"blue\"}") self.label_3.setText("") self.label_3.setObjectName("label_3") self.gridLayout_2.addWidget(self.label_3, 0, 0, 1, 1) self.label_6 = QtWidgets.QLabel(ConImg) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Maximum, QtWidgets.QSizePolicy.Maximum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label_6.sizePolicy().hasHeightForWidth()) self.label_6.setSizePolicy(sizePolicy) self.label_6.setMaximumSize(QtCore.QSize(200, 50)) self.label_6.setObjectName("label_6") self.gridLayout_2.addWidget(self.label_6, 1, 2, 1, 1, QtCore.Qt.AlignHCenter|QtCore.Qt.AlignTop) self.label = QtWidgets.QLabel(ConImg) self.label.setStyleSheet("QLabel{image: url(:/content/content_image/3.jpeg);\n" "border:1px solid;\n" " border-color: rgba(255, 255, 255,0);\n" "}\n" "QLabel:hover{border:2px solid;\n" "border-color:\"blue\"}") self.label.setText("") self.label.setAlignment(QtCore.Qt.AlignBottom|QtCore.Qt.AlignHCenter) self.label.setObjectName("label") self.gridLayout_2.addWidget(self.label, 2, 1, 1, 1) self.label_5 = QtWidgets.QLabel(ConImg) self.label_5.setObjectName("label_5") self.gridLayout_2.addWidget(self.label_5, 1, 1, 1, 1, QtCore.Qt.AlignHCenter|QtCore.Qt.AlignTop) self.label_11 = QtWidgets.QLabel(ConImg) self.label_11.setStyleSheet("QLabel{\n" " image: url(:/content/content_image/04.jpeg);\n" "border:1px solid;\n" " border-color: rgba(255, 255, 255,0);\n" "}\n" "QLabel:hover{border:2px solid;\n" "border-color:\"blue\"}") self.label_11.setText("") self.label_11.setObjectName("label_11") self.gridLayout_2.addWidget(self.label_11, 2, 2, 1, 1) self.label_12 = QtWidgets.QLabel(ConImg) self.label_12.setObjectName("label_12") self.gridLayout_2.addWidget(self.label_12, 3, 2, 1, 1, QtCore.Qt.AlignHCenter|QtCore.Qt.AlignTop) self.label_13 = QtWidgets.QLabel(ConImg) self.label_13.setStyleSheet("QLabel{\n" " image: url(:/content/content_image/lion.jpg);\n" "border:1px solid;\n" " border-color: rgba(255, 255, 255,0);\n" "}\n" "QLabel:hover{border:2px solid;\n" "border-color:\"blue\"}") self.label_13.setText("") self.label_13.setObjectName("label_13") self.gridLayout_2.addWidget(self.label_13, 4, 0, 1, 1) self.label_16 = QtWidgets.QLabel(ConImg) self.label_16.setObjectName("label_16") self.gridLayout_2.addWidget(self.label_16, 5, 0, 1, 1, QtCore.Qt.AlignHCenter|QtCore.Qt.AlignTop) self.gridLayout_2.setRowStretch(0, 10) self.gridLayout_2.setRowStretch(1, 2) self.gridLayout_2.setRowStretch(2, 10) self.gridLayout_2.setRowStretch(3, 2) self.gridLayout_2.setRowStretch(4, 10) self.gridLayout_2.setRowStretch(5, 2) self.verticalLayout.addLayout(self.gridLayout_2) self.horizontalLayout_2 = QtWidgets.QHBoxLayout() self.horizontalLayout_2.setContentsMargins(-1, 10, -1, -1) self.horizontalLayout_2.setObjectName("horizontalLayout_2") spacerItem = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_2.addItem(spacerItem) self.pushButton_2 = QtWidgets.QPushButton(ConImg) self.pushButton_2.setObjectName("pushButton_2") self.horizontalLayout_2.addWidget(self.pushButton_2) self.pushButton = QtWidgets.QPushButton(ConImg) self.pushButton.setObjectName("pushButton") self.horizontalLayout_2.addWidget(self.pushButton) self.verticalLayout.addLayout(self.horizontalLayout_2) self.horizontalLayout.addLayout(self.verticalLayout) self.retranslateUi(ConImg) self.pushButton_2.clicked.connect(ConImg.accept) self.pushButton.clicked.connect(ConImg.reject) QtCore.QMetaObject.connectSlotsByName(ConImg) def retranslateUi(self, ConImg): _translate = QtCore.QCoreApplication.translate ConImg.setWindowTitle(_translate("ConImg", "Dialog")) self.label_10.setText(_translate("ConImg", "tubingen")) self.label_4.setText(_translate("ConImg", "Garden")) self.label_2.setText(_translate("ConImg", "rhinoceros")) self.label_6.setText(_translate("ConImg", "taj_mahal")) self.label_5.setText(_translate("ConImg", "NewYork")) self.label_12.setText(_translate("ConImg", "car")) self.label_16.setText(_translate("ConImg", "lions")) self.pushButton_2.setText(_translate("ConImg", "OK")) self.pushButton.setText(_translate("ConImg", "CANCEL")) import picture_rc
7,886
Scripts/003_hackerrank/Python/p010.py
OrangePeelFX/Python-Tutorial
0
2026587
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Problem 010 Finding the percentage Source : https://www.hackerrank.com/challenges/finding-the-percentage/problem """ import sys def debug (msg): print(msg, file=sys.stderr) return n = int(input()) student_marks = {} for _ in range(n): name, *line = input().split() scores = list(map(float, line)) student_marks[name] = scores query_name = input() marks = student_marks[query_name] avg = sum(marks)/len(marks) print("{:.2f}".format(avg))
514
coding/learn_pyspark/basic_concept/dataframe_demo.py
yatao91/learning_road
3
2026567
# -*- coding: utf-8 -*- from pyspark.sql import SparkSession spark = SparkSession.builder.master("spark://spark001:7077").appName("create_dataframe_demo").getOrCreate() df = spark.read.json("people.json") """ # 展示dataframe内容 df.show() # 使用树结构展示dataframe的schema df.printSchema() # select name列 df.select("name").show() # 对年龄列值做加一处理 df.select(df["name"], df["age"] + 1).show() # 查询年龄大于21的 df.filter(df["age"] > 21).show() # 使用年龄分组并计数 df.groupBy("age").count().show() # 注册dataframe作为一个SQL临时视图: session作用域, 如果创建临时视图的session结束了, 临时视图也将消失 df.createOrReplaceTempView("people") sqlDF = spark.sql("SELECT * FROM people") sqlDF.show() # 注册dataframe作为一个全局临时视图 df.createGlobalTempView("people") # 全局临时视图绑定到系统保留数据库`global_temp`上 spark.sql("SELECT * FROM global_temp.people").show() # 全局临时视图是跨session使用的 spark.newSession().sql("SELECT * FROM global_temp.people").show() """
873
src/controls/KeyboardMouseControl.py
NEKERAFA/Soul-Tower
0
2025950
import pygame import math as m from pygame.locals import * from src.ControlManager import * from src.scenes.Scene import * class KeyboardMouseControl(ControlManager): upButton = K_w downButton = K_s leftButton = K_a rightButton = K_d secButton = K_SPACE selectButton = K_e actionButton = K_q @classmethod def up(cls): return pygame.key.get_pressed()[cls.upButton] @classmethod def down(cls): return pygame.key.get_pressed()[cls.downButton] @classmethod def left(cls): return pygame.key.get_pressed()[cls.leftButton] @classmethod def right(cls): return pygame.key.get_pressed()[cls.rightButton] @classmethod def angle(cls, pos): (playerX, playerY) = pos (mouseX, mouseY) = pygame.mouse.get_pos() # Escalado mouseX /= SCALE_FACTOR mouseY /= SCALE_FACTOR ang = m.degrees(m.atan2(playerY - mouseY, mouseX - playerX)) return ang @classmethod def prim_button(cls): return pygame.mouse.get_pressed()[0] @classmethod def sec_button(cls): return pygame.key.get_pressed()[cls.secButton] @classmethod def action_button(cls): return pygame.key.get_pressed()[cls.actionButton] @classmethod def select_button(cls): return pygame.key.get_pressed()[cls.selectButton] @classmethod def set_key_up(cls, newKey): cls.upButton = newKey @classmethod def set_key_down(cls, newKey): cls.downButton = newKey @classmethod def set_key_left(cls, newKey): cls.leftButton = newKey @classmethod def set_key_right(cls, newKey): cls.rightButton = newKey @classmethod def set_key_select(cls, newKey): cls.selectButton = newKey @classmethod def set_key_action(cls, newKey): cls.actionButton = newKey
1,977
model/detection_model/maskscoring_rcnn/test_net.py
JinGyeSetBirdsFree/FudanOCR
25
2026208
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # Set up custom environment before nearly anything else is imported # NOTE: this should be the first import (no not reorder) from maskrcnn_benchmark.utils.env import setup_environment # noqa F401 isort:skip import argparse import os import json import tempfile import numpy as np import torch from maskrcnn_benchmark.config import cfg from maskrcnn_benchmark.data import make_data_loader from maskrcnn_benchmark.engine.inference import inference from maskrcnn_benchmark.modeling.detector import build_detection_model from maskrcnn_benchmark.utils.checkpoint import DetectronCheckpointer from maskrcnn_benchmark.utils.collect_env import collect_env_info from maskrcnn_benchmark.utils.comm import synchronize, get_rank from maskrcnn_benchmark.utils.logger import setup_logger from maskrcnn_benchmark.utils.miscellaneous import mkdir from maskrcnn_benchmark.engine.extra_utils import coco_results_to_contest, mask_nms from maskrcnn_benchmark.utils.imports import import_file def main(): parser = argparse.ArgumentParser(description="PyTorch Object Detection Inference") parser.add_argument( "--config-file", default="configs/e2e_ms_rcnn_R_50_FPN_1x.yaml", metavar="FILE", help="path to config file", ) parser.add_argument("--local_rank", type=int, default=0) parser.add_argument( "opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER, ) args = parser.parse_args() num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1 distributed = num_gpus > 1 if distributed: torch.cuda.set_device(args.local_rank) torch.distributed.deprecated.init_process_group( backend="nccl", init_method="env://" ) cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() save_dir = "" logger = setup_logger("maskrcnn_benchmark", save_dir, get_rank()) logger.info("Using {} GPUs".format(num_gpus)) logger.info(cfg) logger.info("Collecting env info (might take some time)") logger.info("\n" + collect_env_info()) model = build_detection_model(cfg) model.to(cfg.MODEL.DEVICE) output_dir = cfg.OUTPUT_DIR checkpointer = DetectronCheckpointer(cfg, model, save_dir=output_dir) _ = checkpointer.load(cfg.MODEL.WEIGHT) iou_types = ("bbox",) if cfg.MODEL.MASK_ON: iou_types = iou_types + ("segm",) output_folders = [None] * len(cfg.DATASETS.TEST) if cfg.OUTPUT_DIR: dataset_names = cfg.DATASETS.TEST for idx, dataset_name in enumerate(dataset_names): output_folder = os.path.join(cfg.OUTPUT_DIR, "inference", dataset_name) mkdir(output_folder) output_folders[idx] = output_folder data_loaders_val = make_data_loader(cfg, is_train=False, is_distributed=distributed) for output_folder, data_loader_val in zip(output_folders, data_loaders_val): _, coco_results, _ = inference( model, data_loader_val, iou_types=iou_types, box_only=cfg.MODEL.RPN_ONLY, device=cfg.MODEL.DEVICE, expected_results=cfg.TEST.EXPECTED_RESULTS, expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL, output_folder=output_folder, maskiou_on=cfg.MODEL.MASKIOU_ON ) synchronize() ############################# # post-processing ############################# paths_catalog = import_file( "maskrcnn_benchmark.config.paths_catalog", cfg.PATHS_CATALOG, True ) DatasetCatalog = paths_catalog.DatasetCatalog output_results, bbox_results = coco_results_to_contest(coco_results) if cfg.TEST.VIZ: gt_path = os.path.join(DatasetCatalog.DATA_DIR, DatasetCatalog.DATASETS[cfg.DATASETS.TEST[0]][1]) with open(gt_path, 'r') as f: gt_results = json.load(f) # mask_nms mmi_thresh = 0.3 conf_thresh = 0.5 # 0.4 for idx, (key, result) in enumerate(output_results.items()): print("[ {} ]/[ {} ]".format(idx+1, len(output_results))) output_results[key] = mask_nms(result, result[0]['size'], mmi_thres=mmi_thresh, conf_thres=conf_thresh) # viz if cfg.TEST.VIZ: import cv2 if not os.path.exists(cfg.VIS_DIR): os.mkdir(cfg.VIS_DIR) img_dir = os.path.join(DatasetCatalog.DATA_DIR, DatasetCatalog.DATASETS[cfg.DATASETS.TEST[0]][0]) img = cv2.imread(os.path.join(img_dir, key.replace('res', 'gt')+'.jpg')) gt_img = img.copy() for rect in bbox_results[key]: if rect['confidence'] > conf_thresh: pred_pts = rect['points'] img = cv2.polylines(img, [np.array(pred_pts).astype(np.int32)], True, (0, 255, 0), 3) for poly in output_results[key]: pred_pts = poly['points'] img = cv2.polylines(img, [np.array(pred_pts).astype(np.int32)], True, (0, 0, 255), 2) for rect in bbox_results[key]: if rect['confidence'] > conf_thresh: pred_pts = rect['points'] img = cv2.putText(img, '{:.4f}'.format(rect['confidence']), (pred_pts[0][0], pred_pts[0][1]), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 0), 2, cv2.LINE_AA) img = cv2.putText(img, '{:.4f}'.format(rect['confidence']), (pred_pts[0][0], pred_pts[0][1]), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 1, cv2.LINE_AA) for gt_poly in gt_results[key.replace('res', 'gt')]['polygons']: gt_pts = gt_poly['points'] if gt_poly['illegibility']: gt_img = cv2.polylines(gt_img, [np.array(gt_pts).astype(np.int32)], True, (0, 255, 0), 2) else: gt_img = cv2.polylines(gt_img, [np.array(gt_pts).astype(np.int32)], True, (0, 0, 255), 2) img_show = np.concatenate([img, gt_img], axis=1) cv2.imwrite(os.path.join(cfg.VIS_DIR, key.replace('res', 'gt')+'.jpg'), img_show) with tempfile.NamedTemporaryFile() as f: file_path = f.name if output_folder: file_path = os.path.join(output_folder, "result.json") bbox_file_path = os.path.join(output_folder, "bbox_result.json") with open(file_path, "w") as json_f: json.dump(output_results, json_f) with open(bbox_file_path, "w") as json_ff: json.dump(bbox_results, json_ff) if __name__ == "__main__": main()
6,842
src/class_2/guess_game.py
byteEpoch/python_course
1
2025844
# Ejemplo de uso del while, if/elif/else, random.randint y sys.exit. # Se trata de un juego de adivinación de un número aleatorio entre el 1 y el 100. import random import sys guess_number = random.randint(1, 100) while True: num = int(input('Dime un numbero del 1 al 100: ')) if num < guess_number: print('El numero es mayor.') elif num > guess_number: print('El numero es menor.') else: print('Ganaste') sys.exit()
468
helpers/sett/simulation/SimulationManager.py
EchoDao-BSC/badger-system
0
2026101
import time import random from brownie import accounts from enum import Enum from rich.console import Console from scripts.systems.badger_system import BadgerSystem from helpers.sett.SnapshotManager import SnapshotManager from .provisioners import ( BaseProvisioner, DiggRewardsProvisioner, DiggLpMetaFarmProvisioner, SushiDiggWbtcLpOptimizerProvisioner, ) from .actors import ( UserActor, SettKeeperActor, StrategyKeeperActor, ChainActor, DiggActor, ) console = Console() # Provision num users for sim. NUM_USERS = 10 class SimulationManagerState(Enum): IDLE = 0 PROVISIONED = 1 RANDOMIZED = 2 RUNNING = 3 # SimulationManager is meant to be initialized per test and run once. class SimulationManager: def __init__( self, badger: BadgerSystem, snap: SnapshotManager, settId: str, seed: int = 0, # Default seed is 0 or unset, will generate. ): self.accounts = accounts[6:] # Use the 7th account onwards. # User accounts (need to be provisioned before running sim). self.users = [] self.badger = badger self.snap = snap self.sett = badger.getSett(settId) self.strategy = badger.getStrategy(settId) self.want = badger.getStrategyWant(settId) self.settKeeper = accounts.at(self.sett.keeper(), force=True) self.strategyKeeper = accounts.at(self.strategy.keeper(), force=True) # Actors generate valid actions based on the actor type. For example, # user actors need to have deposited first before they can withdraw # (withdraw before deposit is an invalid action). self.actors = [ SettKeeperActor(self, self.settKeeper), StrategyKeeperActor(self, self.strategyKeeper), DiggActor(self, self.badger.deployer), ChainActor(), ] # Ordered valid actions generated by actors. self.actions = [] self.state = SimulationManagerState.IDLE # Track seed so we can configure this value if we want to repro test failures. self.seed = seed if self.seed == 0: self.seed = int(time.time()) console.print(f"initialized simulation manager with seed: {self.seed}") random.seed(self.seed) self.provisioner = self._initProvisioner(self.strategy.getName()) def provision(self) -> None: if self.state != SimulationManagerState.IDLE: raise Exception(f"invalid state: {self.state}") accountsUsed = set([]) while len(self.users) < NUM_USERS: idx = int(random.random()*len(self.accounts)) if idx in accountsUsed: continue self.users.append(self.accounts[idx]) accountsUsed.add(idx) self.provisioner._distributeTokens(self.users) self.provisioner._distributeWant(self.users) self._provisionUserActors() console.print(f"provisioned {len(self.users)} users {len(self.actors)} actors") self.state = SimulationManagerState.PROVISIONED def randomize(self, numActions: int) -> None: if self.state != SimulationManagerState.PROVISIONED: raise Exception(f"invalid state: {self.state}") for i in range(0, numActions): # Pick a random actor and generate an action. idx = int(random.random() * len(self.actors)) self.actions.append(self.actors[idx].generateAction()) console.print(f"randomized {numActions} actions") self.state = SimulationManagerState.RANDOMIZED def run(self) -> None: if self.state != SimulationManagerState.RANDOMIZED: raise Exception(f"invalid state: {self.state}") self.state = SimulationManagerState.RUNNING console.print(f"running {len(self.actions)} actions") for action in self.actions: action.run() def _initProvisioner(self, name) -> BaseProvisioner: if name == "StrategyDiggRewards": return DiggRewardsProvisioner(self) if name == "StrategyDiggLpMetaFarm": return DiggLpMetaFarmProvisioner(self) if name == "StrategySushiDiggWbtcLpOptimizer": return SushiDiggWbtcLpOptimizerProvisioner(self) raise Exception(f"invalid strategy name (no provisioner): {name}") def _provisionUserActors(self) -> None: # Add all users as actors the sim. for user in self.users: self.actors.append(UserActor(self, user))
4,553
b_lambda_layer_common_test/unit/ssm/dummy_ssm_client.py
gMatas/B.LambdaLayerCommon
2
2025989
from itertools import cycle class DummySsmClient: def __init__(self): self.__dummy_params = cycle([ { 'Name': 'TestParameter', 'Type': 'String', 'Value': 'StringValue1', 'Version': 10, }, { 'Name': 'TestParameter', 'Type': 'StringList', 'Value': 'StringValue2', 'Version': 20, }, { 'Name': 'TestParameter', 'Type': 'SecureString', 'Value': 'StringValue3', 'Version': 30, }, ]) self.get_parameters_function_calls = 0 def get_parameters(self, *args, **kwargs): self.get_parameters_function_calls += 1 return { 'Parameters': [next(self.__dummy_params)], 'InvalidParameters': [] }
926
mtg_qe/data/internal_index_integration.py
s-i-dunn-wsu/cs483_proj
0
2025943
# <NAME> # CS 483, Fall 2019 def get_internal_index(): """ Returns the 'internal index' for the project. The internal index is a pair of dicts that arrange card objects in easy-to-use outside of whoosh ways. The first dict, keyed by 'by_name', stores cards instances with a unique name. The second dict, keyed by 'by_multiverseid', stores all cards (all cards scraped) by their multiverseid. Between the two, any time we have a result from whoosh and need to navigate to another card or print, we should be covered. """ # there's a fun trick to 'hiding', rather obscuring, things in module namespace. # namespaces, and instance attributes, ultimately boil down # to a dict *somewhere*. With the local module, you can # retrieve this dict with the globals() function. # If you have a global variable named, say, `foo`, then # the globals() dict will have a key in it "foo". # While creating variables requires you to adhere to naming # conventions, dict's can be keyed by any hashable (so all strings). # This means you can obscure things in the module's namespace by # using an illegal variable name (something like, say, "!!my_obscured_var") # This makes it impossible to reference the value in a usual way # while still being able to access it via that dict. # I say 'obscure' instead of 'hide' because anyone who introspects # the dict will undoubtedly see its presence, but in my experience # it tends to fool IDEs and the like. # To compound with this, modules are really just objects. # we can store things in that object and trust that its still there # so long as the module is alive, or at least not reloaded. # this allows us to achieve singleton-like behavior, as a module # will typically only be loaded once unless there's some shenanigans afoot. # So to ensure that the large internal_index.json file is only parsed once # we'll combine these two tools. if globals().get('!!_idx_dict', None) == None: # load the json file into globals()['!!_idx_dict'] from . import get_data_location from ..model.card import Card import os import json with open(os.path.join(get_data_location(), 'internal_index.json')) as fd: deflated_cards = json.load(fd) # inflate all cards in the data set. inflated_cards = {'by_name': {}, 'by_multiverseid': {}} for top_level_key in inflated_cards: # there are non-card fields in internal_index, so iter over inflated_cads for key, value in deflated_cards[top_level_key].items(): inflated_cards[top_level_key][key] = Card().deserialize(value) # push the inflated cards into the dict with non-card fields. deflated_cards.update(inflated_cards) # Set the global value: globals()['!!_idx_dict'] = deflated_cards return globals().get('!!_idx_dict')
2,969
tests/debugger_protocol/arg/_common.py
rozuur/ptvsd
0
2025325
from debugger_protocol.arg import ANY, FieldsNamespace, Field FIELDS_BASIC = [ Field('name'), Field.START_OPTIONAL, Field('value'), ] BASIC_FULL = { 'name': 'spam', 'value': 'eggs', } BASIC_MIN = { 'name': 'spam', } class Basic(FieldsNamespace): FIELDS = FIELDS_BASIC FIELDS_EXTENDED = [ Field('name', datatype=str, optional=False), Field('valid', datatype=bool, optional=True), Field('id', datatype=int, optional=False), Field('value', datatype=ANY, optional=True), Field('x', datatype=Basic, optional=True), Field('y', datatype={int, str}, optional=True), Field('z', datatype=[Basic], optional=True), ] EXTENDED_FULL = { 'name': 'spam', 'valid': True, 'id': 10, 'value': None, 'x': BASIC_FULL, 'y': 11, 'z': [ BASIC_FULL, BASIC_MIN, ], } EXTENDED_MIN = { 'name': 'spam', 'id': 10, }
907
Aula 39 JSON Parte 4/Aula 39.py
JadilsonJR/Python
0
2026476
import json #Carregando um arquivo externo with open('E:/Documents/GitHub_Projetos/Python/Python/Aula 39 JSON Parte 4/jogador.json') as f: jogador=json.load(f) #Imprimindo Itens especifico de um Dictionary dentro de um Dictinary for a in jogador["Aeronaves"]: print (a["tipo"], " - " ,a["habilidade"])
313
bookshop/books/management/commands/build_data.py
paul-wolf/djaq
48
2024979
import sys import traceback from django.core.management.base import BaseCommand, CommandError from books.data_factory import build_data class Command(BaseCommand): help = "Build data" def add_arguments(self, parser): parser.add_argument( "--book-count", default=1000, action="store", dest="book_count", type=int ) def handle(self, *args, **options): build_data(book_count=options.get("book_count"))
454
data.py
ua-snap/daily-precip-dash
1
2025499
# import urllib.parse import pandas as pd import datetime def fetch_data(community): """ Reads data from ACIS API for selected community. """ # Placeholder for early dev/explore work. # This code works for fetching from the API. # TODO we must cache the results for a community here, # so that we're at least not hitting the API up twice # for every page load / location change. # https://beaker.readthedocs.io/en/latest/index.html or similar. # query = urllib.parse.urlencode( # {"sid": "26451", "sdate": "1950-01-01", "edate": "2020-04-20", "elems": "4,10", "output": "csv"} # ) # api_url = "http://data.rcc-acis.org/StnData?" # std = pd.read_csv(api_url + query, names=["date", "pcpt", "snow"], parse_dates=True, skiprows=1) # std = std.loc[std.pcpt != "M"] # drop missing # std = std.loc[std.snow != "M"] # drop missing # std = std.replace("T", 0) # make T (Trace) = 0 # std.to_csv("data/anchorage.csv") std = pd.read_csv("data/anchorage.csv") std = std.loc[std.pcpt > 0] std["date"] = pd.to_datetime(std["date"]) std["doy"] = std["date"].apply(lambda d: d.strftime("%j")).astype("int") std["year"] = std["date"].apply(lambda d: d.strftime("%Y")).astype("int") std["total"] = std["pcpt"] + std["snow"] return std
1,328