script
stringlengths
113
767k
# #**FIRST DATAFRAME** # New Code import requests from bs4 import BeautifulSoup import pandas as pd import numpy as np # URL of the first page to scrape url1 = "https://en.wikipedia.org/wiki/List_of_Falcon_9_and_Falcon_Heavy_launches_(2010%E2%80%932019)" # Send a GET request to the URL and parse the HTML content using BeautifulSoup response1 = requests.get(url1) soup1 = BeautifulSoup(response1.content, "html.parser") # Find the tables containing the launches data by searching for the tables with class "wikitable" tables1 = soup1.find_all("table", {"class": "wikitable"}) # Create an empty list to store the DataFrames df_list = [] # Use pandas to read the table data for each table in the first URL for i in range(7): # loop through the first 7 tables df = pd.read_html(str(tables1[i]))[0] df_list.append(df) # add the DataFrame to the list # Concatenate the DataFrames in the list into a single DataFrame and drop any duplicate rows based on the "Flight No." column final_df1 = pd.concat(df_list) final_df1 = final_df1.drop_duplicates(subset=["Flight No."], keep="first") # Concatenate the DataFrames in the list into a single DataFrame and drop any duplicate rows based on the "Flight No." column final_df1 = pd.concat(df_list) final_df1 = final_df1.drop_duplicates(subset=["Flight No."], keep="first") # cleaning final_df1 = final_df1.replace(np.nan, "", regex=True) # final_df1['Launch Sites'] = final_df1['Launch site'].astype(str) + ' ' + final_df1['Launchsite'].astype(str) final_df1["Versions, Boosters"] = ( final_df1["Version, Booster [a]"].astype(str) + " " + final_df1["Version, Booster[a]"].astype(str) ) final_df1 = final_df1.drop(["Version, Booster [a]", "Version, Booster[a]"], axis=1) final_df1.rename( columns={ "Date andtime (UTC)": "Date and Time (UTC)", "Payload[b]": "Payload", "Payload mass": "Payload Mass", "Launchoutcome": "Launch Outcome", "Boosterlanding": "Booster Landing", }, inplace=True, ) final_df1 final_df1.isna().sum() # #**SECOND DATAFRAME** ############################# LINK 2 # URL of the second page to scrape url2 = "https://en.wikipedia.org/wiki/List_of_Falcon_9_and_Falcon_Heavy_launches" # Send a GET request to the URL and parse the HTML content using BeautifulSoup response2 = requests.get(url2) soup2 = BeautifulSoup(response2.content, "html.parser") # Find the tables containing the launches data by searching for the tables with class "wikitable" tables2 = soup2.find_all("table", {"class": "wikitable"}) # Create an empty list to store the DataFrames df_list2 = [] # Use pandas to read the table data for each table in the second URL for i in range(4): # loop through the first 4 tables df = pd.read_html(str(tables2[i]))[0] df_list2.append(df) # add the DataFrame to the list # Concatenate the DataFrames in the list into a single DataFrame and drop any duplicate rows based on the "Flight No." column final_df2 = pd.concat(df_list2) final_df2 = final_df2.drop_duplicates(subset=["Flight No."], keep="first") final_df2.rename( columns={ "Date andtime (UTC)": "Date and Time (UTC)", "Version, booster[b]": "Versions, Boosters", "Launchsite": "Launch Sites", "Payload[c]": "Payload", "Payload mass": "Payload Mass", "Launchoutcome": "Launch Outcome", "Boosterlanding": "Booster Landing", }, inplace=True, ) # Print the final DataFrame final_df2 final_df2.isna().sum() # #**Final DataFrame** ############################# NEW DATAFRAME # Concatenate the DataFrames obtained from both URLs into a single DataFrame final_df = pd.concat([final_df1, final_df2]) ############################# MANIPULATION # Print the final DataFrame final_df.to_csv("SpaceX Launches.csv", index=False) final_df final_df.isna().sum() # #**Missing Chart** import missingno as msno msno.bar(final_df, figsize=(10, 2))
# First we have to import all of our essential packages import numpy as np import pandas as pd import sqlite3 as sql import plotly.express as px import os import matplotlib.pyplot as plt # Get the directory name so that we can access the document for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) df = pd.read_csv("/kaggle/input/craigslist-carstrucks-data/vehicles.csv", delimiter=",") print(df.head(3)) db_path = "/kaggle/input/craigslist-carstrucks-data/vehicles.csv" connection = sql.connect(db_path) print("SQL database connected") # **What percent of listings are Carvana listings?** carvana_count = df["description"].str.contains("Carvana", case=False).sum() total_count = len(df.index) carvana_percentage = (carvana_count / total_count) * 100 print(f"Carvana is dominating {carvana_percentage:.2f}% of the listings.") # * CATEGORIZE TYPES OF SALES: DEALERSHIP, CARVANA AND LIKE, PRIVATE? # * What are the oldest cars # * Percent as which for parts or restoring # * Correlation: mileage and value (ML) # * average price per region # * map of supply # * percentage of electric cars in each state and most # * map of antique cars # * map of wrecked cars # * percentage of cars that get wrecked # * price predictors list(df) manufacturer_counts = df.groupby("manufacturer").agg( num_listings=("manufacturer", "size"), avg_price=("price", "median") ) manufacturer_counts = manufacturer_counts.sort_values( by="num_listings", ascending=False ) manufacturer_counts # create a bar chart of number of listings by manufacturer plt.figure(figsize=(10, 6)) plt.bar(manufacturer_counts.index, manufacturer_counts["num_listings"]) plt.title("Number of Listings by Manufacturer") plt.xlabel("Manufacturer") plt.ylabel("Number of Listings") plt.xticks(rotation=90) plt.show() # create a scatterplot of average price vs. number of listings by manufacturer plt.figure(figsize=(10, 6)) plt.scatter(manufacturer_counts["num_listings"], manufacturer_counts["avg_price"]) plt.title("Average Price vs. Number of Listings by Manufacturer") plt.xlabel("Number of Listings") plt.ylabel("Average Price") plt.show() # Clearly there are some outliers here because there's no way the average price for a Volvo is $383,755, so we should try to get rid of the outliers for each manufactuer to not skew the data # Defining a function to remove outliers using z-scores def remove_outliers(df, col, threshold=3): df["zscore"] = np.abs((df[col].mean()) / df[col].std()) return df[df["zscore"] <= threshold] # Group by manufacturer and remove outliers for each group separately manufacturer_clean = df.groupby("manufacturer").apply(remove_outliers, col="price") manufacturer_clean manufacturer_counts_clean = df.groupby("manufacturer").agg( num_listings=("manufacturer", "size"), avg_price=("price", "median") ) manufacturer_counts_clean = manufacturer_counts_clean.sort_values( by="num_listings", ascending=False ) manufacturer_counts_clean # Trying to categorize the number of online dealership, physical dealership, and private party dealer to the best of my ability online_dealerships = ["carvana", "vroom", "shift", "carMax"] physical_dealerships = [ "finance", "call", "guaranteed", "inspection", "test drive", "call us today", "auction", "visit our", "automotive", ] def categorize_description(description): if pd.isna(description): return "Private party" elif any(keyword in description.lower() for keyword in online_dealerships): return "Online dealership" elif any(keyword in description.lower() for keyword in physical_dealerships): return "Physical dealership" else: return "Private party" # apply the function to each row of the DataFrame df["category"] = df["description"].apply(categorize_description) # calculate the percentage of descriptions in each category category_counts = df["category"].value_counts(normalize=True) * 100 print(category_counts) import matplotlib.pyplot as plt # create a bar chart category_counts.plot(kind="bar") # set the chart title and axis labels plt.title("Percentage of Car Listings by Category") plt.xlabel("Category") plt.ylabel("Percentage") # display the chart plt.show() df.sort_values(by="year", ascending=1).head(10) exclude_mask = ( df["description"].str.lower().str.contains("cash for") | df["description"].str.lower().str.contains("provide photos") | df["description"].str.lower().str.contains("buying") ) # create a new DataFrame with the excluded rows removed df_excluded = df[~exclude_mask].copy() # sort the remaining rows by year and show the top 5 oldest cars oldest_cars = clean_df_excluded.sort_values(by="year").head(5) print(oldest_cars)
# ## Dependencies and imports # In this kernel used github repos [efficientdet-pytorch](https://github.com/rwightman/efficientdet-pytorch) and [pytorch-image-models](https://github.com/rwightman/pytorch-image-models) by [@rwightman](https://www.kaggle.com/rwightman). Don't forget add stars ;) import torch import os from datetime import datetime import time import random import cv2 import pandas as pd import numpy as np import albumentations as A import matplotlib.pyplot as plt from albumentations.pytorch.transforms import ToTensorV2 from sklearn.model_selection import StratifiedKFold, train_test_split from torch.utils.data import Dataset, DataLoader, Subset from torch.utils.data.sampler import SequentialSampler, RandomSampler from glob import glob from PIL import Image import sys sys.path.append("/kaggle/input/mycode/") sys.path.append("/kaggle/input/mycode/config") from efficientdet import EfficientDet, HeadNet from bench import DetBenchTrain from model_config import get_efficientdet_config from train_config import config_train from config_utils import set_config_writeable, set_config_readonly def collate_fn(batch): return tuple(zip(*batch)) def get_transforms(): return A.Compose( [ A.Resize(height=640, width=640, p=1.0), ToTensorV2(p=1.0), ], p=1.0, bbox_params=A.BboxParams( format="pascal_voc", min_area=0, min_visibility=0, label_fields=["labels"] ), ) class JamurDataset(Dataset): def __init__(self, directory, dataframe, transform=None): self.data = pd.read_csv(dataframe) self.directory = directory self.image_names = pd.unique(self.data["filename"]).tolist() self.transform = transform def __len__(self): return len(self.image_names) def __getitem__(self, index): image_name = self.image_names[index] image = Image.open(f"{self.directory}/{image_name}").convert("RGB") w, h = image.size image = np.array(image, dtype=np.float32) image /= 255.0 boxes = self.data[self.data["filename"] == image_name][ ["xmin", "ymin", "xmax", "ymax"] ].values labels = self.data[self.data["filename"] == image_name][["class"]].values temp = self.transform( **{ "image": image, "bboxes": boxes, "labels": labels, } ) image = temp["image"] temp["bboxes"] = np.array(temp["bboxes"]) temp["bboxes"][:, [0, 1, 2, 3]] = temp["bboxes"][:, [1, 0, 3, 2]] labels = np.array(labels).flatten() target = { "bboxes": torch.as_tensor(temp["bboxes"], dtype=torch.float32), "labels": torch.as_tensor(labels, dtype=torch.int64), "image_id": torch.as_tensor([index]), "img_size": torch.as_tensor([h, w]), "img_scale": torch.as_tensor([1.0]), } return image, target, index class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count scheduler_params = dict( mode="min", factor=0.5, patience=1, verbose=False, threshold=0.0001, threshold_mode="abs", cooldown=0, min_lr=1e-8, eps=1e-08, ) class Fitter: def __init__(self, model, device, config): self.config = config self.epoch = 0 self.base_dir = config.folder self.log_path = f"{self.base_dir}/log.txt" self.best_summary_loss = 10**5 self.model = model self.device = device self.optimizer = torch.optim.AdamW(self.model.parameters(), lr=config.lr) self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau( self.optimizer, **scheduler_params ) self.train_history = [] self.valid_history = [] def fit(self, train_loader, validation_loader): for n in range(self.config.n_epochs): if self.config.verbose: lr = self.optimizer.param_groups[0]["lr"] timestamp = datetime.utcnow().isoformat() self.log(f"\n{timestamp}\nLR: {lr}") t = time.time() summary_train_loss = self.train_one_epoch(train_loader) self.train_history.append(summary_train_loss.avg) self.log( f"[RESULT]: Train. Epoch: {self.epoch}, summary_loss: {summary_train_loss.avg:.5f}, time: {(time.time() - t):.5f}" ) self.save(f"{self.base_dir}/last-checkpoint.bin") t = time.time() summary_valid_loss = self.validation(validation_loader) self.valid_history.append(summary_valid_loss.avg) self.log( f"[RESULT]: Val. Epoch: {self.epoch}, summary_loss: {summary_valid_loss.avg:.5f}, time: {(time.time() - t):.5f}" ) if summary_valid_loss.avg < self.best_summary_loss: self.best_summary_loss = summary_valid_loss.avg self.model.eval() self.save( f"{self.base_dir}/best-checkpoint-{str(self.epoch).zfill(3)}epoch.bin" ) for path in sorted(glob(f"{self.base_dir}/best-checkpoint-*epoch.bin"))[ :-3 ]: os.remove(path) self.scheduler.step(metrics=summary_valid_loss.avg) self.epoch += 1 def train_one_epoch(self, train_loader): self.model.train() summary_loss = AverageMeter() t = time.time() for step, (images, targets, image_ids) in enumerate(train_loader): if self.config.verbose: if step % self.config.verbose_step == 0: print( f"Train Step {step}/{len(train_loader)}, " + f"summary_loss: {summary_loss.avg:.5f}, " + f"time: {(time.time() - t):.5f}", end="\r", ) images = torch.stack(images) images = images.to(self.device).float() batch_size = images.shape[0] boxes = [target["bboxes"].to(self.device).float() for target in targets] labels = [target["labels"].to(self.device).float() for target in targets] size = [target["img_size"] for target in targets] scales = [target["img_scale"].to(self.device).float() for target in targets] target_res = {} target_res["bbox"] = boxes target_res["cls"] = labels target_res["img_size"] = size target_res["img_scale"] = scales self.optimizer.zero_grad() outputs = self.model(images, target_res) loss = outputs["loss"] loss.backward() summary_loss.update(loss.detach().item(), batch_size) self.optimizer.step() return summary_loss def validation(self, val_loader): self.model.eval() summary_loss = AverageMeter() t = time.time() for step, (images, targets, image_ids) in enumerate(val_loader): if self.config.verbose: if step % self.config.verbose_step == 0: print( f"Val Step {step}/{len(val_loader)}, " + f"summary_loss: {summary_loss.avg:.5f}, " + f"time: {(time.time() - t):.5f}", end="\r", ) with torch.no_grad(): images = torch.stack(images) batch_size = images.shape[0] images = images.to(self.device).float() boxes = [target["bboxes"].to(self.device).float() for target in targets] labels = [ target["labels"].to(self.device).float() for target in targets ] size = [target["img_size"] for target in targets] scales = [ target["img_scale"].to(self.device).float() for target in targets ] target_res = {} target_res["bbox"] = boxes target_res["cls"] = labels target_res["img_size"] = size target_res["img_scale"] = scales outputs = self.model(images, target_res) loss = outputs["loss"] summary_loss.update(loss.detach().item(), batch_size) return summary_loss def save(self, path): self.model.eval() torch.save( { "model_state_dict": self.model.model.state_dict(), "optimizer_state_dict": self.optimizer.state_dict(), "best_summary_loss": self.best_summary_loss, "epoch": self.epoch, "train_history": self.train_history, "valid_history": self.valid_history, }, path, ) def load(self, path): checkpoint = torch.load(path) self.model.model.load_state_dict(checkpoint["model_state_dict"]) self.optimizer.load_state_dict(checkpoint["optimizer_state_dict"]) self.best_summary_loss = checkpoint["best_summary_loss"] self.epoch = checkpoint["epoch"] + 1 self.train_history = checkpoint["train_history"] self.valid_history = checkpoint["valid_history"] def log(self, message): if self.config.verbose: print(message) with open(self.log_path, "a+") as logger: logger.write(f"{message}\n") def get_efficientdet(nama): config = get_efficientdet_config(nama) set_config_writeable(config) config.num_classes = 8 config.image_size = (640, 640) set_config_readonly(config) net = EfficientDet(config, pretrained_backbone=True) net.class_net = HeadNet(config, num_outputs=config.num_classes) return DetBenchTrain(net, config) device = torch.device("cuda") torch.cuda.empty_cache() directory = "/kaggle/input/augfaqih/Gabungan/Gabungan" dataframe_path = "/kaggle/input/augfaqih/newdata.csv" dataset = JamurDataset(directory, dataframe_path, transform=get_transforms()) print(dataset.__len__()) df = pd.read_csv(dataframe_path) image_names = pd.unique(df["filename"]).tolist() temp = [] for name in image_names: labels = df[df["filename"] == name][["class"]].values labels = np.array(labels).flatten() temp.append(labels[0]) skf = StratifiedKFold(n_splits=10, shuffle=True, random_state=42) train_indices, test_indices, _, _ = train_test_split( range(dataset.__len__()), temp, stratify=temp, test_size=0.1, random_state=42 ) newtest_indices = [] test_idx = [] for i in test_indices: if image_names[i].find("New") == -1: newtest_indices.append(i) else: test_idx.append(i) print(len(test_idx)) newtrain_indices = [] train_idx = [] for i in train_indices: flag = False if image_names[i].find("New") != -1: for j in newtest_indices: if image_names[i].find(str(image_names[j])) != -1: flag = True if flag == True: train_idx.append(i) else: newtrain_indices.append(i) print(len(newtrain_indices)) for i in test_idx: newtrain_indices.append(i) print(len(newtrain_indices)) train_set = Subset(dataset, newtrain_indices) validation_set = Subset(dataset, newtest_indices) training_config = config_train() set_config_writeable(training_config) training_config.n_epochs = 30 training_config.batch_size = 8 training_config.lr = 0.001 set_config_readonly(training_config) train_loader = DataLoader( train_set, batch_size=training_config.batch_size, pin_memory=False, drop_last=True, num_workers=training_config.num_workers, collate_fn=collate_fn, ) validation_loader = DataLoader( validation_set, batch_size=training_config.batch_size, num_workers=training_config.num_workers, shuffle=False, pin_memory=False, collate_fn=collate_fn, ) model = get_efficientdet("tf_efficientdet_d0") model.to(device) fitter = Fitter(model=model, device=device, config=training_config) fitter.fit(train_loader, validation_loader)
import pandas as pd import numpy as np import matplotlib.pyplot as plt us_covids = "/kaggle/input/us-coviddatasets-2020to2023/us_covid_deaths.csv" """ data cleans only allowed -> """ udoc = pd.read_csv(us_covids) # collect all deaths x_deaths = udoc[ (udoc["Age Group"] == "All Ages") & (udoc["Sex"] == "All Sexes") & (udoc["Start Date"] == "01/01/2020") & (udoc["End Date"] == "04/01/2023") ][1:][["State", "COVID-19 Deaths"]].values collect_only_need = {y: udoc.columns[y] for y in range(0, len(udoc.columns))} all_columns = set(collect_only_need.keys()) del_columns = set([0, 3, 4, 5, 10, 15]) udocz = [collect_only_need[xx] for xx in list(all_columns.difference(del_columns))] udoc = udoc[udocz] # just drop the null values udoc.dropna(inplace=True) udoc.reset_index(drop=True, inplace=True) # drop first row udoc = udoc.iloc[1:, :] print(" information about the null values") print(udoc.isnull().sum().to_markdown()) import datetime from dateutil import relativedelta storethat = [] days = [] for x in range(1, len(udoc) + 1): ys, ms, ds = (int(x) for x in udoc["Start Date"][x].split("/")[::-1]) ye, me, de = (int(x) for x in udoc["End Date"][x].split("/")[::-1]) s = datetime.datetime(ys, ds, ms) l = datetime.datetime(ye, de, me) mm = relativedelta.relativedelta(l, s) days.append( [ str(mm.years) + " years & " + str(mm.months) + "months , " + str(mm.days) + " days" ][0] ) storethat.append([s, l]) okey = {} def collect_deaths(deaths): okey = {} # collect the columns thecols = np.unique(udoc["State"].values) for xx in thecols: # only the columns labels = dict( udoc[(udoc["State"] == xx) & (udoc["Sex"] != "All Sexes")][[deaths]].sum() ) okey[xx] = labels return pd.DataFrame(okey) dis = ["Pneumonia Deaths", "Pneumonia and COVID-19 Deaths", "COVID-19 Deaths"] fulls = [collect_deaths(dis[x]) for x in range(0, len(dis))] # usa data codes for us states l = "/kaggle/input/us-coviddatasets-2020to2023/data.csv" rema = {} for xx, yy in dict(pd.read_csv(l)[["state", "code"]].values).items(): rema[xx] = yy rem = {} for xx, yy in dict(pd.read_csv(l)[["state", "code"]].values).items(): rem[yy] = xx deaths = pd.DataFrame(pd.concat(fulls)) deaths.columns = deaths.columns.map(rema) stzz = deaths.columns deaths = deaths.T deaths["code"] = stzz deaths.dropna(inplace=True) deaths.reset_index(drop=True, inplace=True) deaths = deaths.set_index("code") udoc["ym"] = days # # complete data_analysis for covid19 / other deaths - united-states (2020 to 2023) # data analysis import plotly.express as px # 1 fig = px.bar( deaths, labels={ "variable": "affected by", "code": "state", "deaths": "counts", "value": "deaths", }, height=400, title="real-time US-States deaths by covid 19 / pneumonia and covid19" + "<br>" + "data 2020 - 2023", ) fig.show() # 2 titles = "List all us-states regions deaths by " + "<br>" + str(dis) least_5 = deaths.sort_values(by=dis, ascending=False) fig = px.choropleth( locations=least_5.index, locationmode="USA-states", color=least_5.index, scope="usa", width=800, height=500, title=titles, labels={"color": "affected US-STATES", "locations": "code"}, ) fig.show() # 3 top_5 = deaths.sort_values(by=dis, ascending=False)[0:6] top_6_states = top_5.index titles = ( "Top 6 US-States were most deaths occured on" + "<br>" + str(" | ".join(top_6_states.to_list())) ) fig = px.choropleth( locations=top_6_states, locationmode="USA-states", scope="usa", width=800, height=500, title=titles, labels={"color": "highly affected US-STATES"}, color=top_6_states, ) fig.show() ca = [] ya = [] xx = 0 udoc = udoc[["State", "Sex", "ym"] + dis] la = dict( udoc[ (udoc["State"] == rem[top_6_states[xx]]) & (udoc["Sex"] == "Male") & (udoc["ym"] == "3 years & 3months , 0 days") ].sum() ) lb = dict( udoc[ (udoc["State"] == rem[top_6_states[xx]]) & (udoc["Sex"] == "Male") & (udoc["ym"] == "0 years & 0months , 29 days") ].sum() ) lc = dict( udoc[ (udoc["State"] == rem[top_6_states[xx]]) & (udoc["Sex"] == "Male") & (udoc["ym"] == "0 years & 0months , 28 days") ].sum() ) ld = dict( udoc[ (udoc["State"] == rem[top_6_states[xx]]) & (udoc["Sex"] == "Female") & (udoc["ym"] == "3 years & 3months , 0 days") ].sum() ) le = dict( udoc[ (udoc["State"] == rem[top_6_states[xx]]) & (udoc["Sex"] == "Female") & (udoc["ym"] == "0 years & 0months , 29 days") ].sum() ) lf = dict( udoc[ (udoc["State"] == rem[top_6_states[xx]]) & (udoc["Sex"] == "Female") & (udoc["ym"] == "0 years & 0months , 28 days") ].sum() ) for xx in [la, lb, lc, ld, le, lf]: ca.append(list(xx.values())[-3:]) year_month_days = [ "3 years & 3months , 0 days", "0 years & 0months , 29 days", "0 years & 0months , 28 days", ] * 2 dat_dis = pd.DataFrame(ca) dat_dis.columns = dat_dis.columns.map({0: dis[0], 1: dis[1], 2: dis[2]}) dat_dis["timeline"] = year_month_days high_death = dat_dis high_death["sex"] = ["male", "male", "male", "female", "female", "female"] Male = ( np.array([high_death.stack()[i].values[:3] for i in range(0, len(high_death) - 3)]) .flatten() .sum() / 39200000 * 10 ) Female = ( np.array([high_death.stack()[i].values[:3] for i in range(len(high_death) - 3, 6)]) .flatten() .sum() / 39200000 * 10 ) gender_labels = ["Male", "Female"] # 4 po = px.bar( pd.DataFrame({"male": [Male], "female": [Female]}), width=700, height=500, labels={ "gender": "", "variable": "sex", "value": "deaths based by population", "index": "gender", }, title=rem[top_6_states[0]] + " state -" + "gender wise deaths" + "<br>" + "infected by " + " | ".join(dis) + "<br>" + "AFFECTED MOST => " + str(gender_labels[np.argmax([Male, Female])]), ) po.show() # 5 y1 = udoc[(udoc["State"] == rem[top_6_states[0]]) & (udoc["Sex"] == "All Sexes")].iloc[ :, -3: ] y2 = udoc[(udoc["State"] == rem[top_6_states[1]]) & (udoc["Sex"] == "All Sexes")].iloc[ :, -3: ] y3 = udoc[(udoc["State"] == rem[top_6_states[2]]) & (udoc["Sex"] == "All Sexes")].iloc[ :, -3: ] xz = pd.DataFrame( { "US_STATE": [rem[top_6_states[0]], rem[top_6_states[1]], rem[top_6_states[2]]], "Total_Deaths": [ y1.describe(include="all")["COVID-19 Deaths"]["max"], y2.describe(include="all")["COVID-19 Deaths"]["max"], y3.describe(include="all")["COVID-19 Deaths"]["max"], ], } ) # 6 yo = px.bar( xz, x="US_STATE", y="Total_Deaths", color="US_STATE", title="TOP 3 US-STATES TOTAL DEATHS (COVID-19)" + "<br>" + "FROM 2020 TO 2023", width=800, height=300, ) yo.show() # # Best place to live until covid stops bestplace_for_stay_us_few = deaths.sort_values(by=dis, ascending=True)[:3] bestplace_for_stay_us_few["best place"] = bestplace_for_stay_us_few.index fg = px.choropleth( locations=bestplace_for_stay_us_few["best place"], locationmode="USA-states", scope="usa", width=800, height=500, color=bestplace_for_stay_us_few["best place"], labels={"color": "state"}, title="3 best place for live until covid stops on united states" + "<br>" + " | ".join(bestplace_for_stay_us_few.index), ) fg.show() # # All United States => Total Deaths import plotly.express as px jj = pd.DataFrame(x_deaths, columns=["state", "deaths"]) xf = px.line( jj, x="state", y="deaths", title="Live death status of all United States", labels={"deaths": "Total Deaths", "state": "US-States"}, ) xf.show() # # For assumptions of per day covid deaths on ALL US-STATES # ## (3 years data => 2020 to 2023) import plotly.graph_objects as go jj = pd.DataFrame(x_deaths, columns=["state", "deaths"]) jj["peryear_deaths"] = jj["deaths"] / 1099 fig = go.Figure() fig.add_trace(go.Scatter(x=jj["state"], y=jj["peryear_deaths"], mode="lines")) fig.update_layout( title="For assumptions per day covid deaths (3 years data => 2020 to 2023)" + "<br>" + "on all united states" ) fig.show() xu = np.argmax( udoc[ (udoc["State"] == rem[top_6_states[0]]) & (udoc["Sex"] == "All Sexes") & (udoc["ym"] == "3 years & 3months , 0 days") ] .max() .values[-3:] ) title = "in 2020 to 2023, high deaths caused by " + str(dis[xu]) print(title)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import accuracy_score df = pd.read_csv("/kaggle/input/spam-email/spam.csv") df.head() # checking the size of the dataset df.shape # checking for null values df.isnull().sum() df.duplicated().sum() df.drop_duplicates(keep="first") # Label spam mail as 0 and ham mail as 1 df["Category"] = df["Category"].replace({"spam": 0, "ham": 1}) df.head() # Separating the data as texts and labels x = df.Message y = df.Category print(x) print(y) # Splitting the data into train and test data x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=2, test_size=0.2) print(x_train.shape, x_test.shape, y_train.shape, y_test.shape) # Feature Extraction # Transform the text data to feature vectors that can be used as input to the logistc regression feature_extraction = TfidfVectorizer(min_df=1, stop_words="english", lowercase=True) x_train_features = feature_extraction.fit_transform(x_train) x_test_feature = feature_extraction.transform(x_test) print(x_train_features) # Convert Y_train and Y_test values as integers y_train = y_train.astype("int") y_test = y_test.astype("int") # Training the model # Logistic Regression model = LogisticRegression() # training the Logistic Regression model with the training data model.fit(x_train_features, y_train) # Evaluating the trained model # prediction on training data prediction_on_training_data = model.predict(x_train_features) accuracy_on_training_data = accuracy_score(y_train, prediction_on_training_data) print("Accuracy on training data is", accuracy_on_training_data) # prediction on test data prediction_on_test_data = model.predict(x_test_feature) accuracy_on_test_data = accuracy_score(y_test, prediction_on_test_data) print("Accuracy on test data is", accuracy_on_test_data) # Building a predictive system input_mail = ["Go until jurong point, crazy.. Available only"] # convert text to feature vectors input_data_features = feature_extraction.transform(input_mail) # making prediction prediction = model.predict(input_data_features) print(prediction) if prediction[0] == 1: print("Ham mail") else: print("Spaim mail")
# # Import Libraries import tensorflow as tf import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from tensorflow.keras.layers import TextVectorization import re, string from tensorflow.keras.layers import LSTM, Dense, Embedding, Dropout, LayerNormalization df = pd.read_csv( "/kaggle/input/simple-dialogs-for-chatbot/dialogs.txt", sep="\t", names=["question", "answer"], ) print(f"Dataframe size: {len(df)}") df.head() # # Data Preprocessing # ## Data Visualization df["question tokens"] = df["question"].apply(lambda x: len(x.split())) df["answer tokens"] = df["answer"].apply(lambda x: len(x.split())) plt.style.use("fivethirtyeight") fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(20, 5)) sns.set_palette("Set2") sns.histplot(x=df["question tokens"], data=df, kde=True, ax=ax[0]) sns.histplot(x=df["answer tokens"], data=df, kde=True, ax=ax[1]) sns.jointplot( x="question tokens", y="answer tokens", data=df, kind="kde", fill=True, cmap="YlGnBu", ) plt.show() # ## Text Cleaning def clean_text(text): text = re.sub("-", " ", text.lower()) text = re.sub("[.]", " . ", text) text = re.sub("[1]", " 1 ", text) text = re.sub("[2]", " 2 ", text) text = re.sub("[3]", " 3 ", text) text = re.sub("[4]", " 4 ", text) text = re.sub("[5]", " 5 ", text) text = re.sub("[6]", " 6 ", text) text = re.sub("[7]", " 7 ", text) text = re.sub("[8]", " 8 ", text) text = re.sub("[9]", " 9 ", text) text = re.sub("[0]", " 0 ", text) text = re.sub("[,]", " , ", text) text = re.sub("[?]", " ? ", text) text = re.sub("[!]", " ! ", text) text = re.sub("[$]", " $ ", text) text = re.sub("[&]", " & ", text) text = re.sub("[/]", " / ", text) text = re.sub("[:]", " : ", text) text = re.sub("[;]", " ; ", text) text = re.sub("[*]", " * ", text) text = re.sub("[']", " ' ", text) text = re.sub('["]', ' " ', text) text = re.sub("\t", " ", text) return text df.drop(columns=["answer tokens", "question tokens"], axis=1, inplace=True) df["encoder_inputs"] = df["question"].apply(clean_text) df["decoder_targets"] = df["answer"].apply(clean_text) + " <end>" df["decoder_inputs"] = "<start> " + df["answer"].apply(clean_text) + " <end>" df.head(10) df["encoder input tokens"] = df["encoder_inputs"].apply(lambda x: len(x.split())) df["decoder input tokens"] = df["decoder_inputs"].apply(lambda x: len(x.split())) df["decoder target tokens"] = df["decoder_targets"].apply(lambda x: len(x.split())) plt.style.use("fivethirtyeight") fig, ax = plt.subplots(nrows=1, ncols=3, figsize=(20, 5)) sns.set_palette("Set2") sns.histplot(x=df["encoder input tokens"], data=df, kde=True, ax=ax[0]) sns.histplot(x=df["decoder input tokens"], data=df, kde=True, ax=ax[1]) sns.histplot(x=df["decoder target tokens"], data=df, kde=True, ax=ax[2]) sns.jointplot( x="encoder input tokens", y="decoder target tokens", data=df, kind="kde", fill=True, cmap="YlGnBu", ) plt.show() print( f"After preprocessing: {' '.join(df[df['encoder input tokens'].max()==df['encoder input tokens']]['encoder_inputs'].values.tolist())}" ) print(f"Max encoder input length: {df['encoder input tokens'].max()}") print(f"Max decoder input length: {df['decoder input tokens'].max()}") print(f"Max decoder target length: {df['decoder target tokens'].max()}") df.drop( columns=[ "question", "answer", "encoder input tokens", "decoder input tokens", "decoder target tokens", ], axis=1, inplace=True, ) params = { "vocab_size": 2500, "max_sequence_length": 30, "learning_rate": 0.008, "batch_size": 149, "lstm_cells": 256, "embedding_dim": 256, "buffer_size": 10000, } learning_rate = params["learning_rate"] batch_size = params["batch_size"] embedding_dim = params["embedding_dim"] lstm_cells = params["lstm_cells"] vocab_size = params["vocab_size"] buffer_size = params["buffer_size"] max_sequence_length = params["max_sequence_length"] df.head(10) # ## Tokenization vectorize_layer = TextVectorization( max_tokens=vocab_size, standardize=None, output_mode="int", output_sequence_length=max_sequence_length, ) vectorize_layer.adapt( df["encoder_inputs"] + " " + df["decoder_targets"] + " <start> <end>" ) vocab_size = len(vectorize_layer.get_vocabulary()) print(f"Vocab size: {len(vectorize_layer.get_vocabulary())}") print(f"{vectorize_layer.get_vocabulary()[:12]}") def sequences2ids(sequence): return vectorize_layer(sequence) def ids2sequences(ids): decode = "" if type(ids) == int: ids = [ids] for id in ids: decode += vectorize_layer.get_vocabulary()[id] + " " return decode x = sequences2ids(df["encoder_inputs"]) yd = sequences2ids(df["decoder_inputs"]) y = sequences2ids(df["decoder_targets"]) print(f"Question sentence: hi , how are you ?") print(f'Question to tokens: {sequences2ids("hi , how are you ?")[:10]}') print(f"Encoder input shape: {x.shape}") print(f"Decoder input shape: {yd.shape}") print(f"Decoder target shape: {y.shape}") print(f"Encoder input: {x[0][:12]} ...") print( f"Decoder input: {yd[0][:12]} ..." ) # shifted by one time step of the target as input to decoder is the output of the previous timestep print(f"Decoder target: {y[0][:12]} ...") data = tf.data.Dataset.from_tensor_slices((x, yd, y)) data = data.shuffle(buffer_size) train_data = data.take(int(0.9 * len(data))) train_data = train_data.cache() train_data = train_data.shuffle(buffer_size) train_data = train_data.batch(batch_size) train_data = train_data.prefetch(tf.data.AUTOTUNE) train_data_iterator = train_data.as_numpy_iterator() val_data = data.skip(int(0.9 * len(data))).take(int(0.1 * len(data))) val_data = val_data.batch(batch_size) val_data = val_data.prefetch(tf.data.AUTOTUNE) _ = train_data_iterator.next() print(f"Number of train batches: {len(train_data)}") print(f"Number of training data: {len(train_data)*batch_size}") print(f"Number of validation batches: {len(val_data)}") print(f"Number of validation data: {len(val_data)*batch_size}") print(f"Encoder Input shape (with batches): {_[0].shape}") print(f"Decoder Input shape (with batches): {_[1].shape}") print(f"Target Output shape (with batches): {_[2].shape}") # # Build Models # ## Build Encoder class Encoder(tf.keras.models.Model): def __init__(self, units, embedding_dim, vocab_size, *args, **kwargs) -> None: super().__init__(*args, **kwargs) self.units = units self.vocab_size = vocab_size self.embedding_dim = embedding_dim self.embedding = Embedding( vocab_size, embedding_dim, name="encoder_embedding", mask_zero=True, embeddings_initializer=tf.keras.initializers.GlorotNormal(), ) self.normalize = LayerNormalization() self.lstm = LSTM( units, dropout=0.4, return_state=True, return_sequences=True, name="encoder_lstm", kernel_initializer=tf.keras.initializers.GlorotNormal(), ) def call(self, encoder_inputs): self.inputs = encoder_inputs x = self.embedding(encoder_inputs) x = self.normalize(x) x = Dropout(0.4)(x) encoder_outputs, encoder_state_h, encoder_state_c = self.lstm(x) self.outputs = [encoder_state_h, encoder_state_c] return encoder_state_h, encoder_state_c encoder = Encoder(lstm_cells, embedding_dim, vocab_size, name="encoder") encoder.call(_[0]) # ## Build Decoder class Decoder(tf.keras.models.Model): def __init__(self, units, embedding_dim, vocab_size, *args, **kwargs) -> None: super().__init__(*args, **kwargs) self.units = units self.embedding_dim = embedding_dim self.vocab_size = vocab_size self.embedding = Embedding( vocab_size, embedding_dim, name="decoder_embedding", mask_zero=True, embeddings_initializer=tf.keras.initializers.HeNormal(), ) self.normalize = LayerNormalization() self.lstm = LSTM( units, dropout=0.4, return_state=True, return_sequences=True, name="decoder_lstm", kernel_initializer=tf.keras.initializers.HeNormal(), ) self.fc = Dense( vocab_size, activation="softmax", name="decoder_dense", kernel_initializer=tf.keras.initializers.HeNormal(), ) def call(self, decoder_inputs, encoder_states): x = self.embedding(decoder_inputs) x = self.normalize(x) x = Dropout(0.4)(x) x, decoder_state_h, decoder_state_c = self.lstm(x, initial_state=encoder_states) x = self.normalize(x) x = Dropout(0.4)(x) return self.fc(x) decoder = Decoder(lstm_cells, embedding_dim, vocab_size, name="decoder") decoder(_[1][:1], encoder(_[0][:1])) # ## Build Training Model class ChatBotTrainer(tf.keras.models.Model): def __init__(self, encoder, decoder, *args, **kwargs): super().__init__(*args, **kwargs) self.encoder = encoder self.decoder = decoder def loss_fn(self, y_true, y_pred): loss = self.loss(y_true, y_pred) mask = tf.math.logical_not(tf.math.equal(y_true, 0)) mask = tf.cast(mask, dtype=loss.dtype) loss *= mask return tf.reduce_mean(loss) def accuracy_fn(self, y_true, y_pred): pred_values = tf.cast(tf.argmax(y_pred, axis=-1), dtype="int64") correct = tf.cast(tf.equal(y_true, pred_values), dtype="float64") mask = tf.cast(tf.greater(y_true, 0), dtype="float64") n_correct = tf.keras.backend.sum(mask * correct) n_total = tf.keras.backend.sum(mask) return n_correct / n_total def call(self, inputs): encoder_inputs, decoder_inputs = inputs encoder_states = self.encoder(encoder_inputs) return self.decoder(decoder_inputs, encoder_states) def train_step(self, batch): encoder_inputs, decoder_inputs, y = batch with tf.GradientTape() as tape: encoder_states = self.encoder(encoder_inputs, training=True) y_pred = self.decoder(decoder_inputs, encoder_states, training=True) loss = self.loss_fn(y, y_pred) acc = self.accuracy_fn(y, y_pred) variables = self.encoder.trainable_variables + self.decoder.trainable_variables grads = tape.gradient(loss, variables) self.optimizer.apply_gradients(zip(grads, variables)) metrics = {"loss": loss, "accuracy": acc} return metrics def test_step(self, batch): encoder_inputs, decoder_inputs, y = batch encoder_states = self.encoder(encoder_inputs, training=True) y_pred = self.decoder(decoder_inputs, encoder_states, training=True) loss = self.loss_fn(y, y_pred) acc = self.accuracy_fn(y, y_pred) metrics = {"loss": loss, "accuracy": acc} return metrics model = ChatBotTrainer(encoder, decoder, name="chatbot_trainer") model.compile( loss=tf.keras.losses.SparseCategoricalCrossentropy(), optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate), weighted_metrics=["loss", "accuracy"], ) model(_[:2]) # ## Train Model history = model.fit( train_data, epochs=100, validation_data=val_data, callbacks=[ tf.keras.callbacks.TensorBoard(log_dir="logs"), tf.keras.callbacks.ModelCheckpoint("ckpt", verbose=1, save_best_only=True), ], ) # # Visualize Metrics fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(20, 5)) ax[0].plot(history.history["loss"], label="loss", c="red") ax[0].plot(history.history["val_loss"], label="val_loss", c="blue") ax[0].set_xlabel("Epochs") ax[1].set_xlabel("Epochs") ax[0].set_ylabel("Loss") ax[1].set_ylabel("Accuracy") ax[0].set_title("Loss Metrics") ax[1].set_title("Accuracy Metrics") ax[1].plot(history.history["accuracy"], label="accuracy") ax[1].plot(history.history["val_accuracy"], label="val_accuracy") ax[0].legend() ax[1].legend() plt.show() # # Save Model model.load_weights("ckpt") model.save("models", save_format="tf") for idx, i in enumerate(model.layers): print("Encoder layers:" if idx == 0 else "Decoder layers: ") for j in i.layers: print(j) print("---------------------") # # Create Inference Model class ChatBot(tf.keras.models.Model): def __init__(self, base_encoder, base_decoder, *args, **kwargs): super().__init__(*args, **kwargs) self.encoder, self.decoder = self.build_inference_model( base_encoder, base_decoder ) def build_inference_model(self, base_encoder, base_decoder): encoder_inputs = tf.keras.Input(shape=(None,)) x = base_encoder.layers[0](encoder_inputs) x = base_encoder.layers[1](x) x, encoder_state_h, encoder_state_c = base_encoder.layers[2](x) encoder = tf.keras.models.Model( inputs=encoder_inputs, outputs=[encoder_state_h, encoder_state_c], name="chatbot_encoder", ) decoder_input_state_h = tf.keras.Input(shape=(lstm_cells,)) decoder_input_state_c = tf.keras.Input(shape=(lstm_cells,)) decoder_inputs = tf.keras.Input(shape=(None,)) x = base_decoder.layers[0](decoder_inputs) x = base_encoder.layers[1](x) x, decoder_state_h, decoder_state_c = base_decoder.layers[2]( x, initial_state=[decoder_input_state_h, decoder_input_state_c] ) decoder_outputs = base_decoder.layers[-1](x) decoder = tf.keras.models.Model( inputs=[decoder_inputs, [decoder_input_state_h, decoder_input_state_c]], outputs=[decoder_outputs, [decoder_state_h, decoder_state_c]], name="chatbot_decoder", ) return encoder, decoder def summary(self): self.encoder.summary() self.decoder.summary() def softmax(self, z): return np.exp(z) / sum(np.exp(z)) def sample(self, conditional_probability, temperature=0.5): conditional_probability = np.asarray(conditional_probability).astype("float64") conditional_probability = np.log(conditional_probability) / temperature reweighted_conditional_probability = self.softmax(conditional_probability) probas = np.random.multinomial(1, reweighted_conditional_probability, 1) return np.argmax(probas) def preprocess(self, text): text = clean_text(text) seq = np.zeros((1, max_sequence_length), dtype=np.int32) for i, word in enumerate(text.split()): seq[:, i] = sequences2ids(word).numpy()[0] return seq def postprocess(self, text): text = re.sub(" - ", "-", text.lower()) text = re.sub(" [.] ", ". ", text) text = re.sub(" [1] ", "1", text) text = re.sub(" [2] ", "2", text) text = re.sub(" [3] ", "3", text) text = re.sub(" [4] ", "4", text) text = re.sub(" [5] ", "5", text) text = re.sub(" [6] ", "6", text) text = re.sub(" [7] ", "7", text) text = re.sub(" [8] ", "8", text) text = re.sub(" [9] ", "9", text) text = re.sub(" [0] ", "0", text) text = re.sub(" [,] ", ", ", text) text = re.sub(" [?] ", "? ", text) text = re.sub(" [!] ", "! ", text) text = re.sub(" [$] ", "$ ", text) text = re.sub(" [&] ", "& ", text) text = re.sub(" [/] ", "/ ", text) text = re.sub(" [:] ", ": ", text) text = re.sub(" [;] ", "; ", text) text = re.sub(" [*] ", "* ", text) text = re.sub(" ['] ", "'", text) text = re.sub(' ["] ', '"', text) return text def call(self, text, config=None): input_seq = self.preprocess(text) states = self.encoder(input_seq, training=False) target_seq = np.zeros((1, 1)) target_seq[:, :] = sequences2ids(["<start>"]).numpy()[0][0] stop_condition = False decoded = [] while not stop_condition: decoder_outputs, new_states = self.decoder( [target_seq, states], training=False ) # index=tf.argmax(decoder_outputs[:,-1,:],axis=-1).numpy().item() index = self.sample(decoder_outputs[0, 0, :]).item() word = ids2sequences([index]) if word == "<end> " or len(decoded) >= max_sequence_length: stop_condition = True else: decoded.append(index) target_seq = np.zeros((1, 1)) target_seq[:, :] = index states = new_states return self.postprocess(ids2sequences(decoded)) chatbot = ChatBot(model.encoder, model.decoder, name="chatbot") chatbot.summary() tf.keras.utils.plot_model( chatbot.encoder, to_file="encoder.png", show_shapes=True, show_layer_activations=True, ) tf.keras.utils.plot_model( chatbot.decoder, to_file="decoder.png", show_shapes=True, show_layer_activations=True, ) # # Time to Chat def print_conversation(texts): for text in texts: print(f"You: {text}") print(f"Bot: {chatbot(text)}") print("========================") print_conversation( [ "hi", "do yo know me?", "what is your name?", "you are bot?", "hi, how are you doing?", "i'm pretty good. thanks for asking.", "Don't ever be in a hurry", """I'm gonna put some dirt in your eye """, """You're trash """, """I've read all your research on nano-technology """, """You want forgiveness? Get religion""", """While you're using the bathroom, i'll order some food.""", """Wow! that's terrible.""", """We'll be here forever.""", """I need something that's reliable.""", """A speeding car ran a red light, killing the girl.""", """Tomorrow we'll have rice and fish for lunch.""", """I like this restaurant because they give you free bread.""", ] )
# # ⚡️ Fast & Memory-Efficient Market Basket Analysis (Polars x Efficient Apriori) # In this notebook, we efficiently perform market basket analysis on large transactional datasets with `367,049 transactions` **using Polars and efficient-apriori**, instead of traditional libraries like mlxtend and pandas. We preprocess data with Polars, apply the Apriori algorithm for frequent itemsets and association rules, and analyze them using lift, confidence, conviction, and support metrics. Our approach enables the optimization of marketing strategies, product placements, and cross-selling opportunities while **handling larger datasets with improved performance and reduced memory consumption.** # We using polars instead of pandas import polars as pl # Basket Libraries from efficient_apriori import apriori, generate_rules_apriori # Runtime import time import os.path start_time = time.time() # Input data files are available in the read-only "../input/" directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # ## Pre-processing # To convert the orders dataframe into a list of tuples, I use a list comprehension that iterates over the rows in the data frame and extracts the second item in each row (which is a tuple). I assign this list to a variable called `transactions`. df_grouped = ( pl.read_csv("../input/51-cluster/367049(labe).csv")[["user_id", "matched_words"]] .unique(subset=["user_id", "matched_words"], maintain_order=True) .groupby("user_id") .agg([pl.col("matched_words")]) ) transactions = [tuple(row[1]) for row in df_grouped.iter_rows()] transactions[:5] # ## Apply Apriori Algorithm # This code applies the Apriori algorithm to the transactions data using the apriori() function from the efficient_apriori library. The `min_support` parameter is set to a value of 7 divided by the total number of transactions, which is a common rule of thumb for selecting a minimum support threshold. The `min_confidence` parameter is set to 0, which means that only rules with perfect confidence will be selected. # selecting a minimum support threshold min_support = 7 / len(transactions) min_confidence = 0 itemsets, rules = apriori( transactions, min_support=min_support, min_confidence=min_confidence ) # The apriori() function returns two outputs: `itemsets` and `rules`. itemsets is a list of all the frequent itemsets found in the data, while `rules` is a list of all the strong association rules found in the data, according to the specified min_support and min_confidence thresholds. # Get Example for i in range(5): print(rules[i]) # Each rule is displayed in the form of a dictionary, where the antecedent and consequent items are enclosed in curly braces. The values for confidence, support, lift, and conviction for each rule are also displayed in parentheses, separated by commas. So we have to extract them to dataframe in the next process. # ## Get the Attributes # This code takes a list of association rules as input and filters the `rules` to select only those with two items in the antecedent (or left-hand side) and one item in the consequent (or right-hand side). The filtered rules are then sorted by `lift`, which is a measure of the degree to which the presence of one item in the antecedent is associated with the presence of another item in the consequent, relative to the expected frequency of the consequent. # a list of objects with attributes lhs, rhs, lift, confidence, conviction, and support filtered_rules = [rule for rule in rules if len(rule.lhs) == 2 and len(rule.rhs) == 1] # Sort the filtered rules by lift sorted_rules = sorted(filtered_rules, key=lambda rule: rule.lift) # Create a list of dictionaries for the DataFrame rules_data = [ { "lhs": list(rule.lhs), # Convert lhs to a list "rhs": list(rule.rhs), # Convert rhs to a list "lift": rule.lift, "confidence": rule.confidence, "conviction": rule.conviction, "support": rule.support, } for rule in sorted_rules ] # Create a DataFrame from the list of dictionaries rules_df = pl.DataFrame(rules_data) # Sort the DataFrame by lift in descending order and display the top 20 rows rules_df.sort("lift", descending=True).head(20) end_time = time.time() elapsed_time = end_time - start_time print(f"Elapsed time: {elapsed_time:.2f} seconds")
import numpy as np import matplotlib.pyplot as plt import time from matplotlib.animation import FuncAnimation from IPython import display route_frames = [] distance_frame = [] # Create a matrix of cities, with each row being a location in 2-space (function works in n-dimensions). cities = np.random.RandomState(59).rand(50, 2) # cities # Calculate the euclidian distance in n-space of the route r traversing cities c, ending at the path start. path_distance = lambda r, c: np.sum( [np.linalg.norm(c[r[p]] - c[r[p - 1]]) for p in range(len(r))] ) # Reverse the order of all elements from element i to element k in array r. two_opt_swap = lambda r, i, k: np.concatenate( (r[0:i], r[k : -len(r) + i - 1 : -1], r[k + 1 : len(r)]) ) def two_opt( cities, improvement_threshold ): # 2-opt Algorithm adapted from https://en.wikipedia.org/wiki/2-opt route = np.arange( cities.shape[0] ) # Make an array of row numbers corresponding to cities. improvement_factor = 1 # Initialize the improvement factor. best_distance = path_distance( route, cities ) # Calculate the distance of the initial path. # Intial Random Route plot(route, cities, best_distance) while ( improvement_factor > improvement_threshold ): # If the route is still improving, keep going! distance_to_beat = ( best_distance # Record the distance at the beginning of the loop. ) for swap_first in range( 1, len(route) - 2 ): # From each city except the first and last, for swap_last in range( swap_first + 1, len(route) ): # to each of the cities following, new_route = two_opt_swap( route, swap_first, swap_last ) # try reversing the order of these cities new_distance = path_distance( new_route, cities ) # and check the total distance with this modification. # plot(route,cities) # Save data for animation route_frames.append(new_route) distance_frame.append(new_distance) if ( new_distance < best_distance ): # If the path distance is an improvement, route = new_route # make this the accepted best route best_distance = new_distance # and update the distance corresponding to this route. # Save data for animation # route_frames.append(route) # plot(route,cities) improvement_factor = ( 1 - best_distance / distance_to_beat ) # Calculate how much the route has improved. print(improvement_factor) plot(route, cities, new_distance) return route # When the route is no longer improving substantially, stop searching and return the route. def plot(route, cities, new_distance): # Reorder the cities matrix by route order in a new matrix for plotting. new_cities_order = np.concatenate( (np.array([cities[route[i]] for i in range(len(route))]), np.array([cities[0]])) ) plt.title("2-opt Algorithm Distance =%1.3f" % new_distance, fontsize=18) # Plot the cities. plt.scatter(cities[:, 0], cities[:, 1]) # Plot the path. plt.plot(new_cities_order[:, 0], new_cities_order[:, 1]) plt.show() # Print the route as row numbers and the total distance travelled by the path. print("Route: " + str(route) + "\n\nDistance: " + str(path_distance(route, cities))) # Find a good route with 2-opt ("route" gives the order in which to travel to each city by row number.) t0 = time.time() route = two_opt(cities, 0.001) print("\n", (time.time() - t0) / 60, "Minutes process time") # fig, ax = plt.subplots() fig = plt.figure() # lines = ax.plot([], color='red', marker='o', markersize=4) # line = lines[0] def animate(frame): # update plot plt.cla() # Reorder the cities matrix by route order in a new matrix for plotting. new_cities_order = np.concatenate( ( np.array( [ cities[route_frames[frame][i]] for i in range(len(route_frames[frame])) ] ), np.array([cities[0]]), ) ) plt.title("2-opt Algorithm Distance =%1.3f" % distance_frame[frame], fontsize=18) # Plot the cities. plt.scatter(cities[:, 0], cities[:, 1]) # Plot the path. plt.plot(new_cities_order[:, 0], new_cities_order[:, 1]) anim = FuncAnimation(fig, animate, frames=len(route_frames), interval=12) video = anim.to_html5_video() html = display.HTML(video) display.display(html) plt.close()
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # importing the required libraries import seaborn as sns import matplotlib.pyplot as plt from sklearn.preprocessing import LabelEncoder from sklearn.metrics import f1_score # importing algorithms from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from sklearn.metrics import ( confusion_matrix, accuracy_score, ConfusionMatrixDisplay, classification_report, ) from sklearn.decomposition import PCA from sklearn.model_selection import KFold from sklearn.naive_bayes import MultinomialNB from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import roc_curve, roc_auc_score sc = StandardScaler() # ## Reading the data from csv file data = pd.read_csv( "/kaggle/input/ip-network-traffic-flows-labeled-with-87-apps/Dataset-Unicauca-Version2-87Atts.csv" ) data.head() print("Number of Rows: {}".format(data.shape[0])) print("Number of Columns: {}".format(data.shape[1])) # ## Under Sampling # Graph of Protocol Name vs Frequency freq_protocol = data["ProtocolName"].value_counts() # sns.histplot(freq_protocol.values()) application_name = [] frequency_count = [] for key, value in freq_protocol.items(): application_name.append(key) frequency_count.append(value) print("Number of Unique Application Names: ", len(freq_protocol)) # graph of top 5 application names top_values = 5 plt.bar(application_name[:top_values], frequency_count[:top_values]) plt.xlabel("Application Name") plt.ylabel("Frequency") # filtering the classes which have more than 10000 rows (occurrences) requiredProtocolName = [] for key, value in freq_protocol.items(): if value >= 10000: requiredProtocolName.append(key) print(requiredProtocolName) # taking the random 10000 data from the requiredProtocolName # and forming the dataset listofDataFrames = [] for protocol in requiredProtocolName: listofDataFrames.append( pd.DataFrame(data[data["ProtocolName"] == protocol].sample(n=10000)) ) sampledData = pd.concat(listofDataFrames) sampledData.shape # taking random rows and shuffling the dataframe data = sampledData.sample(frac=1, random_state=1).reset_index() # remove the rows that contains NULL values data.dropna(inplace=True) data.dropna(axis="columns") data.reset_index(drop=True, inplace=True) # remove columns which contains zeroes in the data data = data.loc[:, (data != 0).any(axis=0)] print("Shape after removing rows with NULL Values") print("Number of Rows: {}".format(data.shape[0])) print("Number of Columns: {}".format(data.shape[1])) # converting the protocol name (target column) to required format (int) # using LabelEncoder function from sklearn.preprocession library encoder = LabelEncoder().fit(data["ProtocolName"]) data["ProtocolName"] = encoder.transform(data["ProtocolName"]) values = encoder.inverse_transform(data["ProtocolName"]) target_column = data["ProtocolName"] # mapping the encoded value encoded_target_column = {} for i in range(len(data["ProtocolName"])): encoded_target_column[data["ProtocolName"][i]] = values[i] print(encoded_target_column) # get all the column heads data.columns # removing extra columns that are not useful for finding correlation # axis = 1 because we need to drop the columns # by default axis = 0 (drop the rows) dataset = data.drop( [ "Flow.ID", "Source.IP", "Label", "Timestamp", "Destination.IP", "Source.Port", "Destination.Port", "Protocol", ], axis=1, ) x_dataset = dataset.drop(["ProtocolName"], axis=1) y_dataset = dataset["ProtocolName"] # normal dataset X_train, X_test, y_train, y_test = train_test_split(x_dataset, y_dataset, test_size=0.2) X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) # ## Correlation Matrix # finding the correlation matrix correlation_matrix = dataset.corr() correlation_matrix.head() # plotting the heatmap plt.figure(figsize=(30, 30)) sns.heatmap(correlation_matrix, cmap="viridis") plt.plot() # ## Feature Selection via Correlation Matrix sorted_corr_matrix_protocolName = correlation_matrix["ProtocolName"].sort_values( ascending=False ) allKeys = list(sorted_corr_matrix_protocolName.keys()) # removing the target column allKeys.remove("ProtocolName") feature_map = {} # removing the features which has less than 0.01 correlation # and grouping the columns which have same correlation (rounding upto 2 decimal places) for colName in allKeys: correlation = round(sorted_corr_matrix_protocolName[colName], 2) if abs(correlation) >= 0.01: if correlation in feature_map: feature_map[correlation].append(colName) else: feature_map[correlation] = [colName] print("Columns with absolute correlation greater than 0.01 with ProtocolName: \n") print(feature_map) # choosing the random features from same correlated values final_features = [] import random # random_columns = [] for correlation, column_list in feature_map.items(): final_features.append(random.choice(column_list)) print("Number of Features to be Taken: ", len(final_features)) print("Randomly selected columns for each correlation value: ") print(final_features) pos_value_columns = final_features # final data which would be used for prediction and spltting data_for_prediction_featureSelection = data[pos_value_columns] target_column = data["ProtocolName"] # splitting data for feature selection via corelation matrix feature_train, feature_test, target_train, target_test = train_test_split( data_for_prediction_featureSelection, target_column, test_size=0.2 ) sc = StandardScaler() feature_train = sc.fit_transform(feature_train) feature_test = sc.transform(feature_test) data_for_prediction_featureSelection # standardizing the dataset and spliting the original data ( feature_train_std, feature_test_std, target_train_std, target_test_std, ) = train_test_split(x_dataset, y_dataset, test_size=0.2) sc = StandardScaler() feature_train_std = sc.fit_transform(feature_train_std) feature_test_std = sc.transform(feature_test_std) final_result = { "Random Forest": { "Feature Selection": 0, "PCA": 0, "K-Cross Folding": 0, "Original": 0, }, "Logistic Regression": { "Feature Selection": 0, "PCA": 0, "K-Cross Folding": 0, "Original": 0, }, "Decision Tree": { "Feature Selection": 0, "PCA": 0, "K-Cross Folding": 0, "Original": 0, }, } f1Scores = { "Random Forest": { "Feature Selection": 0, "PCA": 0, "K-Cross Folding": 0, "Original": 0, }, "Logistic Regression": { "Feature Selection": 0, "PCA": 0, "K-Cross Folding": 0, "Original": 0, }, "Decision Tree": { "Feature Selection": 0, "PCA": 0, "K-Cross Folding": 0, "Original": 0, }, } numberOfFeatures = { "Random Forest": { "Feature Selection": 0, "PCA": 0, "K-Cross Folding": 0, "Original": 0, }, "Logistic Regression": { "Feature Selection": 0, "PCA": 0, "K-Cross Folding": 0, "Original": 0, }, "Decision Tree": { "Feature Selection": 0, "PCA": 0, "K-Cross Folding": 0, "Original": 0, }, } # ## Principal Component Analysis pca = PCA(n_components=13) feature_train_pca = pca.fit_transform(feature_train_std) feature_test_pca = pca.transform(feature_test_std) print(feature_train_pca.shape, feature_test_pca.shape) # ## Implementing ML Models # ### Random Forest Classifier def random_forest_classifier(feature_train, target_train): randomForest = RandomForestClassifier(n_estimators=200) randomForest.fit(feature_train, target_train) return randomForest # #### Original Dataset # random forest on original dataset randomForest = random_forest_classifier(X_train, y_train) predictions = randomForest.predict(X_test) print( "Accuracy with Random Forest on Original Dataset", randomForest.score(X_test, y_test), ) final_result["Random Forest"]["Original"] = randomForest.score(X_test, y_test) f1Scores["Random Forest"]["Original"] = f1_score(y_test, predictions, average="micro") numberOfFeatures["Random Forest"]["Original"] = X_train.shape[1] # #### Feature Selection # random forest on feature selection via correlation matrix data randomForest = random_forest_classifier(feature_train, target_train) predictions = randomForest.predict(feature_test) print( "Accuracy with Random Forest on Feature Selection via Correlaion Matrix", randomForest.score(feature_test, target_test), ) final_result["Random Forest"]["Feature Selection"] = randomForest.score( feature_test, target_test ) f1Scores["Random Forest"]["Feature Selection"] = f1_score( y_test, predictions, average="micro" ) numberOfFeatures["Random Forest"]["Feature Selection"] = feature_train.shape[1] # #### PCA # random forest on PCA randomForest = random_forest_classifier(feature_train_pca, target_train_std) predictions = randomForest.predict(feature_test_pca) print( "Accuracy with Random Forest on PCA", randomForest.score(feature_test_pca, target_test_std), ) final_result["Random Forest"]["PCA"] = randomForest.score( feature_test_pca, target_test_std ) f1Scores["Random Forest"]["PCA"] = f1_score(y_test, predictions, average="micro") numberOfFeatures["Random Forest"]["PCA"] = feature_train_pca.shape[1] # #### K Cross Folding # random forest on k cross folding rfKcross = RandomForestClassifier(n_estimators=100, random_state=42) # Initialize k-fold cross-validation kfold = KFold(n_splits=5, shuffle=True, random_state=42) # Initialize empty lists to store the accuracy scores for each fold accuracy_scores = [] f1_scores = [] # Iterate through each fold for train_index, test_index in kfold.split(x_dataset): # Split the data into training and testing sets for this fold X_train, X_test = x_dataset.iloc[train_index], x_dataset.iloc[test_index] y_train, y_test = y_dataset.iloc[train_index], y_dataset.iloc[test_index] # Fit the random forest classifier to the training data rfKcross.fit(X_train, y_train) # Evaluate the model on the testing data and store the accuracy score accuracy_scores.append(rfKcross.score(X_test, y_test)) f1_scores.append(f1_score(y_test, rfKcross.predict(X_test), average="micro")) print(rfKcross.score(X_test, y_test)) # Calculate and print the mean accuracy score across all folds print("Mean accuracy:", sum(accuracy_scores) / len(accuracy_scores)) final_result["Random Forest"]["K-Cross Folding"] = sum(accuracy_scores) / len( accuracy_scores ) f1Scores["Random Forest"]["K-Cross Folding"] = sum(f1_scores) / len(f1_scores) numberOfFeatures["Random Forest"]["K-Cross Folding"] = x_dataset.shape[1] # ## Logistic Regression def logistic_regression(feature_train, target_train): classifier = LogisticRegression(random_state=0, solver="lbfgs", max_iter=100) classifier.fit(feature_train, target_train) return classifier # #### Original Dataset # logistic regression on original dataset logisticRegressionOriginal = logistic_regression(X_train, y_train) target_pred = logisticRegressionOriginal.predict(X_test) print( "Accuracy in Logistic Regression on Original Dataset", logisticRegressionOriginal.score(X_test, y_test), ) final_result["Logistic Regression"]["Original"] = logisticRegressionOriginal.score( X_test, y_test ) f1Scores["Logistic Regression"]["Original"] = f1_score( y_test, predictions, average="micro" ) numberOfFeatures["Logistic Regression"]["Original"] = X_train.shape[1] # #### Feature Selection # logistic regression on feature selction via correlation matrix data logisticRegressionFeatureSelection = logistic_regression(feature_train, target_train) target_pred = logisticRegressionFeatureSelection.predict(feature_test) print( "Accuracy in Logistic Regression on Feature Selection via Correlation Matrix", logisticRegressionFeatureSelection.score(feature_test, target_test), ) final_result["Logistic Regression"][ "Feature Selection" ] = logisticRegressionFeatureSelection.score(feature_test, target_test) f1Scores["Logistic Regression"]["Feature Selection"] = f1_score( y_test, predictions, average="micro" ) numberOfFeatures["Logistic Regression"]["Feature Selection"] = feature_train.shape[1] # #### PCA # logistic regression on PCA logisticRegressionPCA = logistic_regression(feature_train_pca, target_train_std) target_pred = logisticRegressionPCA.predict(feature_test_pca) print( "Accuracy in Logistic Regression on PCA", logisticRegressionPCA.score(feature_test_pca, target_test_std), ) final_result["Logistic Regression"]["PCA"] = logisticRegressionPCA.score( feature_test_pca, target_test_std ) f1Scores["Logistic Regression"]["PCA"] = f1_score(y_test, predictions, average="micro") numberOfFeatures["Logistic Regression"]["PCA"] = feature_train_pca.shape[1] # #### K Cross Folding # logistic regression on k cross folding kCrossLogisticRegression = LogisticRegression() kfold = KFold(n_splits=5, shuffle=True) accuracy_scores = [] f1_scores = [] for train_index, test_index in kfold.split(x_dataset): # Split the data into training and testing sets for this fold X_train, X_test = x_dataset.iloc[train_index], x_dataset.iloc[test_index] y_train, y_test = y_dataset.iloc[train_index], y_dataset.iloc[test_index] # Fit the logistic regression classifier to the training data kCrossLogisticRegression.fit(X_train, y_train) # Evaluate the model on the testing data and store the accuracy score accuracy_scores.append(kCrossLogisticRegression.score(X_test, y_test)) f1_scores.append( f1_score(y_test, kCrossLogisticRegression.predict(X_test), average="micro") ) print(kCrossLogisticRegression.score(X_test, y_test)) # Calculate and print the mean accuracy score across all folds print("Mean accuracy:", sum(accuracy_scores) / len(accuracy_scores)) final_result["Logistic Regression"]["K-Cross Folding"] = sum(accuracy_scores) / len( accuracy_scores ) f1Scores["Logistic Regression"]["K-Cross Folding"] = sum(f1_scores) / len(f1_scores) numberOfFeatures["Logistic Regression"]["K-Cross Folding"] = x_dataset.shape[1] # ## Decision Tree # #### Orignal Data # decision tree on normal decisionTreeNormal = DecisionTreeClassifier( criterion="entropy", max_depth=3, random_state=42 ) decisionTreeNormal.fit(X_train, y_train) target_pred = decisionTreeNormal.predict(X_test) accuracy = decisionTreeNormal.score(X_test, y_test) print("Accuracy in Decision Tree on Original Dataset:", accuracy) final_result["Decision Tree"]["Original"] = accuracy f1Scores["Decision Tree"]["Original"] = f1_score(y_test, predictions, average="micro") numberOfFeatures["Decision Tree"]["Original"] = X_train.shape[1] # #### Feature Selection # decistion tree on feature selection decisionTreeNormal = DecisionTreeClassifier( criterion="entropy", max_depth=3, random_state=42 ) decisionTreeNormal.fit(feature_train, target_train) target_pred = decisionTreeNormal.predict(feature_test) accuracy = decisionTreeNormal.score(feature_test, target_test) print("Accuracy in Decision Tree on Normal:", accuracy) final_result["Decision Tree"]["Feature Selection"] = accuracy f1Scores["Decision Tree"]["Feature Selection"] = f1_score( y_test, predictions, average="micro" ) numberOfFeatures["Decision Tree"]["Feature Selection"] = feature_train.shape[1] # #### PCA # decistion tree on PCA decisionTreeNormal = DecisionTreeClassifier( criterion="entropy", max_depth=3, random_state=42 ) decisionTreeNormal.fit(feature_train_pca, target_train_std) target_pred = decisionTreeNormal.predict(feature_test_pca) accuracy = decisionTreeNormal.score(feature_test_pca, target_test_std) print("Accuracy in Decision Tree on PCA:", accuracy) final_result["Decision Tree"]["PCA"] = accuracy f1Scores["Decision Tree"]["PCA"] = f1_score(y_test, predictions, average="micro") numberOfFeatures["Decision Tree"]["PCA"] = feature_train_pca.shape[1] # #### K Cross folding # decistion tree on K Cross Folding decisionTreeNormal = DecisionTreeClassifier( criterion="entropy", max_depth=3, random_state=42 ) kfold = KFold(n_splits=5, shuffle=True, random_state=42) accuracy_scores = [] f1_scores = [] for train_index, test_index in kfold.split(x_dataset): X_train, X_test = x_dataset.iloc[train_index], x_dataset.iloc[test_index] y_train, y_test = y_dataset.iloc[train_index], y_dataset.iloc[test_index] decisionTreeNormal.fit(X_train, y_train) accuracy_scores.append(decisionTreeNormal.score(X_test, y_test)) f1_scores.append( f1_score(y_test, decisionTreeNormal.predict(X_test), average="micro") ) print(decisionTreeNormal.score(X_test, y_test)) # Calculate and print the mean accuracy score across all folds print("Mean accuracy:", sum(accuracy_scores) / len(accuracy_scores)) final_result["Decision Tree"]["K-Cross Folding"] = sum(accuracy_scores) / len( accuracy_scores ) f1Scores["Decision Tree"]["K-Cross Folding"] = sum(f1_scores) / len(f1_scores) numberOfFeatures["Decision Tree"]["K-Cross Folding"] = x_dataset.shape[1] accuracy_df = pd.DataFrame(final_result) print("Accuracy for each model for particular algorithm") accuracy_df f1Score_df = pd.DataFrame(f1Scores) print("F1 Scores for each model for particular algorithm") f1Score_df features_df = pd.DataFrame(numberOfFeatures) print("Number of Features for each model and algorithm") features_df
# # INTRODUCTION TO STATISTICS PART 1 # In this notebook, we will examine the basic concepts of Statistics with the heart disease data set and do the python application. # ![del3-1024x682.jpg](attachment:del3-1024x682.jpg) # Content: # # 1. [Variable and Variable Types](#1) # * [1.1 According to Their Structure](#2) # * [1.2 According to their Property](#3) # * [1.3 According to Role in Scientific Researches](#4) # # 1. [The concept of zero in measurement](#5) # * [2.1 Absolute Zero (Natural)](#6) # * [2.2 Relative Zero](#7) # 1. [Levels of Measurement:](#8) # * [3.1 Interval](#9) # * [3.2 Ratio](#10) # * [3.3 Nominal](#11) # * [3.4 Ordinal](#12) # 1. [Measures of Central Tendency](#13) # * [4.1 Mean](#14) # * [4.2 Median](#15) # * [4.3 Mode](#16) # 1. [Measures of Central Dispersion](#17) # * [5.1 Range](#18) # * [5.2 Variance](#19) # * [5.3 Standart Deviation](#20) # * [5.4 Skewness](#21) # * [5.5 Kurtosis](#22) # * [5.6 Quartile](#23) # 1. [Statistical Thinking Model: Mooney](#24) # * [6.1 Definition of Data](#25) # * [6.2 Organizing Data](#26) # * [6.3 Representation of Data](#27) # * [6.4 Analyzing and Interpreting Data](#28) # 1. [Population and Sample](#29) # 1. [Confidence Interval](#30) # # # 1. Variable and Variable Types: # ### It is a quantity that takes different values from unit to unit. # ## 1.1 According to their structure: # **1.1.1 Numerical variables:** Mathematically expressed by numbers. *Price, size* # **1.1.2 Categorical Variables:** Variables that cannot be mathematically expressed with numbers. *Gender* is a categorical variable. Male and female are the classes of this variable. import pandas as pd import statistics import sys import warnings if not sys.warnoptions: warnings.simplefilter("ignore") data = pd.read_csv("../input/heart-disease-uci/heart.csv") numerical_variables = data[["age", "trestbps", "chol", "thalach", "oldpeak"]] categorical_variables = data.drop( ["age", "trestbps", "chol", "thalach", "oldpeak"], axis=1 ) print("Numerical: ") print(numerical_variables.head()) print("Categorical: ") print(categorical_variables.head()) # # ## 1.2 According to their property # **1.2.1 Continuous Variable:** Variables in which an infinite value can be written between two values. *Age, LSAT score*. *Height (For example, I can write infinite values between 180 cm - 181 cm)*. It cannot be counted as a grain. # **1.2.2 Discontinuous Variable:** It is a variable where a limited number of values can be written between two values. It is expressed without commas. For example, *Number of goals, Number of questions solved, blood groups.* # ## 1.3 According to role in scientific researches: # **1.3.1 Dependent Variable:** It is the variable whose effect is curious, affecting, causing. For example, does smoking affect heart health ? *Smoking = Dependent Variable* # **1.3.2 Independent Variable:** The variable affected by the independent variable. In the previous example, *Heart health = Independent Variable* # # 2. The concept of zero in measurement: # It refers to the starting point of measurements. # **2.1 Absolute Zero (Natural)**: It means nothingness. It cannot take a negative value. For example, *if number of solved questions is equal zero, it means you don't solved any questions.* # **2.2 Relative Zero:** It can take a negative value. it does not mean nothingness. For example, *degrees centigrade* # # 3. Levels of Measurement: # * **3.1 Interval:** In this scale, units are grouped by range value and there are significant and standard ranges between measurement values. Differences between numbers are significant.For example, *temperature, exam scores.* # # # * **3.2 Ratio:** Ratio scale has all the features of interval scale. The starting point is zero.(Absolute zero).For example, someone who is zero years old actually does not exist or if the number of students in the class is zero, it means that nobody is in the class. # # * **3.3 Nominal:** Indicates whether the objects are similar in properties or not. Mathematical operations cannot be performed between classes. But frequency and mode can be calculated.There is no hierarchy between classes. For example, *Gender, Marital Status* # # # * **3.4 Ordinal:** Variables can be ordered according to a criterion. There is hierarchy between variables. For exapmle, *Military ranks(Captain, Major)* # # 4. Measures of Central Tendency: # Measures of central tendency are numbers that indicate the centre of a set of ordered numerical data. # 1. Mean # 1. Median # 1. Mode # ### 4.1 Mean # The mean is calculated by adding up all of the values and dividing by the number of values. # Let's find the mean of numerical variables. print(numerical_variables.mean(axis=0)) # # ### 4.2 Median # The median the "middle" of a set of numbers in ascending or decending order. Let's find the median of numerical variables. print(numerical_variables.median(axis=0)) # ## Note: If you have a lot of outliers, you should use the median instead of the mean. # ### 4.3 Mode # The mode is the most frequently occurring number. # * Mode value is not a reliable measure when the number of population or sample is small. # * Mode value not affected by outliers # * It can be calculated in numerical and categorical variables. print(data.mode(axis=0)) # for all variables data.describe() # # # 5. Measures of Central Dispersion # Measures of central dispersion show how “spread out” the elements of a data set are from the mean. # 1. Range # 1. Variance # 1. Standard deviation # 1. Skewness # 1. Kurtosis # 1. Quartile # ### Range: # The range of a data set is the difference between the largest value and the smallest value. Thing an exam. A large range of exam results means that the distinctiveness of the exam is high. import numpy as np def minmax(val_list): min_val = (val_list).min()[0:14] max_val = (val_list).max()[0:14] rangevalue = max_val - min_val print( "Maximum value: {0} ".format(max_val) + " Minimum value: {0} ".format(min_val) + " Range value: {0} ".format(rangevalue) ) return minmax(numerical_variables) # # ### Variance: # You can think of the variance as the average squared difference between the elements of a data set and the mean. print(statistics.variance(data["age"])) # # ### Standard deviation: # The standard deviation is simply the square root of the variance. If the standard deviation is high, we can say that the distribution is heterogeneous. age_sdev = statistics.stdev(data["age"]) print("The Standard deviation of age: {:.4f}".format(age_sdev)) # # ### Skewness: # It is that the distribution of a variable is not symmetrical. If the coefficient of skewness is 0, it is normal distribution. You can understand better with the picture below # ![Relationship_between_mean_and_median_under_different_skewness.png](attachment:Relationship_between_mean_and_median_under_different_skewness.png) # ### Let's look at the coefficient of skewness data.skew(axis=0, skipna=True) # ### And graph import sys import warnings if not sys.warnoptions: warnings.simplefilter("ignore") import seaborn as sns import matplotlib.pyplot as plt f, axes = plt.subplots(2, 2, figsize=(15, 10), sharex=False) sns.distplot(data.age.values, color="skyblue", ax=axes[0, 0]) sns.distplot(data.iloc[:, 4], color="olive", ax=axes[0, 1]) sns.distplot(data.iloc[:, 7], color="gold", ax=axes[1, 0]) sns.distplot(data.iloc[:, 3], color="teal", ax=axes[1, 1]) # thanks to MMelnicki # https://stackoverflow.com/a/54775278 # # ### Kurtosis: # It shows the sharpness of the dominance of distribution. If the coefficient of kurtosis is 0, it is normal distribution. data.kurtosis(axis=0, skipna=True) # # ### Quartile: # The quartile measures the spread of values above and below the mean by dividing the distribution into four groups. # A quartile divides data into three points—**a lower quartile, median, and upper quartile**—to form four groups of the dataset. # ![median-quartiles.png](attachment:median-quartiles.png) numerical_variables.quantile([0.25, 0.5, 0.75]) # ### We can find outliers using quarters. def outlier_treatment(numerical_variables): sorted(numerical_variables) Q1, Q3 = np.percentile(numerical_variables, [25, 75]) IQR = Q3 - Q1 # IQR = Interquartile Range lowerrange = Q1 - (1.5 * IQR) # below this number is outlier upperrange = Q3 + (1.5 * IQR) # the higher of this number is outlier return lowerrange, upperrange lowerbound, upperbound = outlier_treatment(numerical_variables.columns) numerical_variables[ (numerical_variables.columns < lowerrange) | (numerical_variables.columns > upperrange) ] return print("Outlier Borders for Age Column:") print(outlier_treatment(numerical_variables.age)) # for age # ### We can use the box plot to visualize outliers. numerical_variables.plot( kind="box", subplots=True, layout=(4, 4), sharex=False, sharey=False, figsize=(15, 15), ) plt.show() # # # 6. Statistical Thinking Model: MOONEY # It is the guide that models the path from data literacy to data analytics. # ### Stages of the Mooney # 1. Definition of data # 1. Organizing data # 1. Representation of data # 1. Analyzing and interpreting data # ## 1. Definition of data # ### What are the variables measured in the dataset? data.columns # ### What are the types of variables ? data.head() # # * Age: Numerical variable # * Sex: Categorical variable # * Cp: Categorical Variable # * Trestbps: Numerical Variable # * Chol: Numerical variable # * Fbs: Categorical variable # * Restecg: Categorical variable # * Thalach: Numerical variable # * Exang: categorical variable # * Oldpeak: Numerical variable # * Slope: Categorical variable # * Ca: Categorical variable # * Thal: Categorical variable # * Target: Categorical variable # ### What scale are the variables you specified measured ? # * Age: Ratio # * Sex: Nominal # * Cp: Nominal # * Trestbps: Ratio (if indicates the severity of the pain --> Ordinal) # * Chol: Ratio # * Fbs: Nominal # * Restecg: Nominal # * Thalach: Ratio # * Exang: Nominal # * Oldpeak: Ratio # * Slope: Nominal # * Ca: Nominal # * Thal: Nominal # * Target: Nominal # ## 2. Organizing data # Organizing the data for better understanding. import matplotlib.pyplot as plt plt.figure(figsize=(10, 5)) plt.hist(data.age, bins=[0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]) # ### We can say that most of our samples are between 50-60. data[["sex", "target"]].groupby(["sex"], as_index=False).mean().sort_values( by="target", ascending=False ) # **75 percent of those whose gender is female are sick, and 44 percent of those whose gender is male are sick.** data[["cp", "target"]].groupby(["cp"], as_index=False).mean().sort_values( by="target", ascending=False ) # **Those with chest pain type 1 have a higher rate of getting sick** # ## 3. Representation of Data # In order to better understand the data, the correct graph selection should be made. # **An example of wrong chart selection** fig, ax = plt.subplots() ax.scatter(data.age.index, data.age) plt.ylabel("Age") plt.xlabel("index") plt.show() # **Correct representation** import seaborn as sns from matplotlib import pyplot a4_dims = (18, 8) fig, ax = pyplot.subplots(figsize=a4_dims) sns.countplot(x="age", hue="target", data=data, linewidth=1, ax=ax) # # ## 4. Analyzing and interpreting data sns.set_style("whitegrid") a4_dims = (18, 8) fig, ax = pyplot.subplots(figsize=a4_dims) sns.countplot(data.sex, hue="target", data=data, linewidth=1, ax=ax) ax.set(xlabel="1=male - 0=female", ylabel="Count") print(data.sex.value_counts()) # ### Although the number of women in the dataset is little, the disease is more common when the rates are examined. # print(data.cp.value_counts()) # pd.crosstab(data.cp,data.target).plot(kind="barh",figsize=(15,7),color=['#0000ff','#000000']) # plt.title('Chest pain type and target distribution') # plt.xlabel('Frequency') # plt.ylabel('Chest pain type') # plt.show() # print(data.cp.value_counts()) pd.crosstab(data.cp, data.target).plot( kind="barh", figsize=(15, 7), color=["#0000ff", "#000000"] ) plt.title("Chest pain type and target distribution") plt.xlabel("Frequency") plt.ylabel("Chest pain type") plt.show() # ### The rate of disease is higher in patients with chest pain type 2. # # 7. Population and Sample # ### A *population* is the entire group that you want to draw conclusions about. # ### A *sample* is the specific group that you will collect data from. The size of the sample is always less than the total size of the population. # ![sample-size-definition.png](attachment:sample-size-definition.png) # ### Let's write an example for the variable age of the data set. np.random.seed(10) sample = np.random.choice( a=data.age, size=100 ) # we choose 100 random value from age column print("Sample mean : {0}".format(sample.mean())) # sample mean print("Population Mean : {:.2f}".format(data.age.mean())) # population mean # ### the sample we selected represented the population with success. # # 8. Confidence interval: # A range of two numbers that can satisfy the estimated value of the population parameter should be selected. Lets try for cholestoral . # import statsmodels.stats.api as sms sms.DescrStatsW(data.chol).tconfint_mean()
# # Intro # Welcome to the [Bristol-Myers Squibb – Molecular Translation](https://www.kaggle.com/c/bms-molecular-translation/overview) Competition: # ![](https://storage.googleapis.com/kaggle-competitions/kaggle/22422/logos/header.png) # Please vote the notebook up if it helps you. Feel free to leave a comment above the notebook. Thank you. # # Libraries import pandas as pd import numpy as np import os import matplotlib.pyplot as plt import warnings warnings.filterwarnings("ignore") # # Path path = "/kaggle/input/bms-molecular-translation/" os.listdir(path) # # Load Data train_data = pd.read_csv(path + "train_labels.csv") samp_subm = pd.read_csv(path + "sample_submission.csv") # # Export output = samp_subm output.to_csv("submission.csv", index=False) output
# 20 "erfolgreichste", vielpraktizierende Rechtsvertreter für strafrechtliche Beschwerden am Bundesgericht seit Inkrafttreten der StPO (2011) # ... wobei die Begrifflichkeit "Erfolg" in diesem Kontext selbstverständlich relativ ist und als am "erfolgreichsten" natürlich auch diejenige Anwältin oder derjenige Anwalt angesehen werden kann, der es gar nicht nötig hat, seine Fälle vor Bundesgericht zu bringen. # 6B und 1B-Fälle in den Jahren 2011 bis Ende Juni 2020, # (mit mind. durchschn. einer Beschwerde pro Jahr, d.h. mind. 9 Beschwerden total), # Die Datengrundlage ist nicht fehlerfrei, # Stand: 28.02.2021. import pandas as pd pd.set_option("precision", 3) B2011 = pd.read_csv("/kaggle/input/bger6b2018/1B_2011.csv") B2012 = pd.read_csv("/kaggle/input/bger6b2018/1B_2012.csv") B2013 = pd.read_csv("/kaggle/input/bger6b2018/1B_2013.csv") B2014 = pd.read_csv("/kaggle/input/bger6b2018/1B_2014.csv") B2015 = pd.read_csv("/kaggle/input/bger6b2018/1B_2015.csv") B2016 = pd.read_csv("/kaggle/input/bger6b2018/1B_2016.csv") B2017 = pd.read_csv("/kaggle/input/bger6b2018/1B_2017.csv") B2018 = pd.read_csv("/kaggle/input/bger6b2018/1B_2018.csv") B2019 = pd.read_csv("/kaggle/input/bger6b2018/1B_2019.csv") B2020 = pd.read_csv("/kaggle/input/bger6b2018/1B_2020.csv") B2011b = pd.read_csv("/kaggle/input/bger6b2018/6B_2011.csv") B2012b = pd.read_csv("/kaggle/input/bger6b2018/6B_2012.csv") B2013b = pd.read_csv("/kaggle/input/bger6b2018/6B_2013.csv") B2014b = pd.read_csv("/kaggle/input/bger6b2018/6B_2014.csv") B2015b = pd.read_csv("/kaggle/input/bger6b2018/6B_2015.csv") B2016b = pd.read_csv("/kaggle/input/bger6b2018/6B_2016.csv") B2017b = pd.read_csv("/kaggle/input/bger6b2018/6B_2017.csv") B2018b = pd.read_csv("/kaggle/input/bger6b2018/6B_2018.csv") B2019b = pd.read_csv("/kaggle/input/bger6b2018/6B_2019.csv") B2020b = pd.read_csv("/kaggle/input/bger6b2018/6B_2020.csv") df = pd.concat( [ B2011, B2012, B2013, B2014, B2015, B2016, B2017, B2018, B2019, B2020, B2011b, B2012b, B2013b, B2014b, B2015b, B2016b, B2017b, B2018b, B2019b, B2020b, ] ) # Es folgt eine Datenbereinigung: # händische Korrektur "# Fehler bei get_vorinstanz" df.loc[df.Verfahrensnummer == "1B_17/2011", "Vorinstanz"] = "undefiniert" df.loc[df.Verfahrensnummer == "1B_24/2011", "Vorinstanz"] = "undefiniert" df.loc[ df.Verfahrensnummer == "1B_58/2011", "Vorinstanz" ] = "Obergericht des Kantons Thurgau" df.loc[ df.Verfahrensnummer == "1B_68/2011", "Vorinstanz" ] = "Obergericht des Kantons Thurgau" df.loc[df.Verfahrensnummer == "1B_192/2011", "Vorinstanz"] = "undefiniert" df.loc[ df.Verfahrensnummer == "1B_231/2011", "Vorinstanz" ] = "Cour de justice du canton de Genève" df.loc[df.Verfahrensnummer == "1B_367/2011", "Vorinstanz"] = "undefiniert" df.loc[df.Verfahrensnummer == "1B_393/2011", "Vorinstanz"] = "undefiniert" df.loc[ df.Verfahrensnummer == "1B_540/2011", "Vorinstanz" ] = "Kantonsgericht des Kantons Luzern" df.loc[ df.Verfahrensnummer == "1B_13/2012", "Vorinstanz" ] = "ancien Juge d'instruction de la République et canton de Genève" df.loc[df.Verfahrensnummer == "1B_203/2012", "Vorinstanz"] = "undefiniert" df.loc[ df.Verfahrensnummer == "1B_323/2012", "Vorinstanz" ] = "Obergericht des Kantons Aargau" df.loc[df.Verfahrensnummer == "1B_498/2012", "Vorinstanz"] = "Bundesstrafgericht" df.loc[df.Verfahrensnummer == "1B_518/2012", "Vorinstanz"] = "Bundesstrafgericht" df.loc[df.Verfahrensnummer == "1B_616/2012", "Vorinstanz"] = "Bundesstrafgericht" df.loc[ df.Verfahrensnummer == "1B_631/2012", "Vorinstanz" ] = "Obergericht des Kantons Aargau" df.loc[ df.Verfahrensnummer == "1B_59/2013", "Vorinstanz" ] = "Cour de justice de la République et canton de Genève" df.loc[ df.Verfahrensnummer == "1B_109/2013", "Vorinstanz" ] = "Obergericht des Kantons Aargau" df.loc[df.Verfahrensnummer == "1B_373/2013", "Vorinstanz"] = "undefiniert" df.loc[df.Verfahrensnummer == "1B_386/2013", "Vorinstanz"] = "undefiniert" df.loc[ df.Verfahrensnummer == "1B_15/2014", "Vorinstanz" ] = "Obergericht des Kantons Aargau" df.loc[ df.Verfahrensnummer == "1B_50/2014", "Vorinstanz" ] = "Obergericht des Kantons Zürich" df.loc[df.Verfahrensnummer == "1B_229/2014", "Vorinstanz"] = "undefiniert" df.loc[ df.Verfahrensnummer == "1B_261/2014", "Vorinstanz" ] = "Tribunal des mesures de contrainte du canton de Vaud" df.loc[ df.Verfahrensnummer == "1B_399/2014", "Vorinstanz" ] = "Obergericht des Kantons Aargau" df.loc[ df.Verfahrensnummer == "1B_8/2015", "Vorinstanz" ] = "Cour de justice de la République et canton de Genève" df.loc[ df.Verfahrensnummer == "1B_28/2015", "Vorinstanz" ] = "Tribunal cantonal de l'Etat de Fribourg" df.loc[ df.Verfahrensnummer == "1B_140/2015", "Vorinstanz" ] = "Tribunal cantonal de l'Etat de Fribourg" df.loc[ df.Verfahrensnummer == "1B_367/2015", "Vorinstanz" ] = "Obergericht des Kantons Aargau" df.loc[ df.Verfahrensnummer == "1B_405/2015", "Vorinstanz" ] = "Obergericht des Kantons Aargau" df.loc[df.Verfahrensnummer == "1B_13/2016", "Vorinstanz"] = "undefiniert" df.loc[ df.Verfahrensnummer == "1B_54/2016", "Vorinstanz" ] = "Appellationsgericht des Kantons Basel-Stadt" df.loc[ df.Verfahrensnummer == "1B_94/2016", "Vorinstanz" ] = "Cour de justice de la République et canton de Genève" df.loc[df.Verfahrensnummer == "1B_102/2016", "Vorinstanz"] = "undefiniert" df.loc[df.Verfahrensnummer == "1B_107/2016", "Vorinstanz"] = "undefiniert" df.loc[ df.Verfahrensnummer == "1B_138/2016", "Vorinstanz" ] = "Cour d'appel pénal de l'Etat de Fribourg" df.loc[df.Verfahrensnummer == "1B_141/2016", "Vorinstanz"] = "undefiniert" df.loc[df.Verfahrensnummer == "1B_162/2016", "Vorinstanz"] = "undefiniert" df.loc[df.Verfahrensnummer == "1B_164/2016", "Vorinstanz"] = "undefiniert" df.loc[df.Verfahrensnummer == "1B_182/2016", "Vorinstanz"] = "undefiniert" df.loc[df.Verfahrensnummer == "1B_287/2016", "Vorinstanz"] = "undefiniert" df.loc[df.Verfahrensnummer == "1B_310/2016", "Vorinstanz"] = "undefiniert" df.loc[df.Verfahrensnummer == "1B_370/2016", "Vorinstanz"] = "undefiniert" df.loc[ df.Verfahrensnummer == "1B_465/2016", "Vorinstanz" ] = "Haftgericht des Kantons Solothurn" df.loc[ df.Verfahrensnummer == "1B_495/2016", "Vorinstanz" ] = " Tribunal cantonal de l'Etat de Fribourg et l'Autorité" df.loc[ df.Verfahrensnummer == "1B_28/2017", "Vorinstanz" ] = "Cour de justice de la République et canton de Genève" df.loc[df.Verfahrensnummer == "1B_44/2017", "Vorinstanz"] = "undefiniert" df.loc[ df.Verfahrensnummer == "1B_45/2017", "Vorinstanz" ] = "Appellationsgericht des Kantons Basel-Stadt" df.loc[df.Verfahrensnummer == "1B_183/2017", "Vorinstanz"] = "Bundesstrafgericht" df.loc[ df.Verfahrensnummer == "1B_197/2017", "Vorinstanz" ] = "Obergericht des Kantons Zürich" df.loc[ df.Verfahrensnummer == "1B_343/2017", "Vorinstanz" ] = "Obergericht des Kantons Zürich" df.loc[ df.Verfahrensnummer == "1B_458/2017", "Vorinstanz" ] = "Tribunal des mesures de contrainte de la République et canton de Genève" df.loc[df.Verfahrensnummer == "1B_89/2018", "Vorinstanz"] = "Bundesstrafgericht" df.loc[df.Verfahrensnummer == "1B_91/2018", "Vorinstanz"] = "Bundesstrafgericht" df.loc[df.Verfahrensnummer == "1B_229/2018", "Vorinstanz"] = "Bundesstrafgericht" df.loc[df.Verfahrensnummer == "1B_230/2018", "Vorinstanz"] = "Bundesstrafgericht" df.loc[df.Verfahrensnummer == "1B_231/2018", "Vorinstanz"] = "Bundesstrafgericht" df.loc[df.Verfahrensnummer == "1B_232/2018", "Vorinstanz"] = "Bundesstrafgericht" df.loc[ df.Verfahrensnummer == "1B_286/2018", "Vorinstanz" ] = "Cour des plaintes du Tribunal pénal fédéral" df.loc[df.Verfahrensnummer == "1B_288/2018", "Vorinstanz"] = "Bundesstrafgericht" df.loc[df.Verfahrensnummer == "1B_290/2018", "Vorinstanz"] = "Bundesstrafgericht" df.loc[df.Verfahrensnummer == "1B_292/2018", "Vorinstanz"] = "Bundesstrafgericht" df.loc[df.Verfahrensnummer == "1B_452/2018", "Vorinstanz"] = "undefiniert" df.loc[df.Verfahrensnummer == "1B_458/2018", "Vorinstanz"] = "undefiniert" df.loc[df.Verfahrensnummer == "1B_135/2019", "Vorinstanz"] = "Bundesstrafgericht" df.loc[df.Verfahrensnummer == "1B_159/2019", "Vorinstanz"] = "Bundesstrafgericht" df.loc[df.Verfahrensnummer == "1B_169/2019", "Vorinstanz"] = "undefiniert" df.loc[df.Verfahrensnummer == "1B_381/2019", "Vorinstanz"] = "undefiniert" df.loc[ df.Verfahrensnummer == "1B_515/2019", "Vorinstanz" ] = "Tribunal cantonal de la République et canton du Jura" df.loc[df.Verfahrensnummer == "1B_77/2020", "Vorinstanz"] = "undefiniert" df.loc[df.Verfahrensnummer == "1B_95/2020", "Vorinstanz"] = "undefiniert" df.loc[df.Verfahrensnummer == "1B_165/2020", "Vorinstanz"] = "undefiniert" df.loc[df.Verfahrensnummer == "1B_177/2020", "Vorinstanz"] = "undefiniert" df.loc[df.Verfahrensnummer == "1B_189/2020", "Vorinstanz"] = "undefiniert" df.loc[df.Verfahrensnummer == "1B_584/2020", "Vorinstanz"] = "Kantonsgericht Luzern" df.loc[df.Verfahrensnummer == "1B_609/2020", "Vorinstanz"] = "undefiniert" df.loc[df.Verfahrensnummer == "1B_611/2020", "Vorinstanz"] = "undefiniert" df.loc[df.Verfahrensnummer == "6B_110/2011", "Vorinstanz"] = "undefiniert" df.loc[df.Verfahrensnummer == "6B_231/2011", "Vorinstanz"] = "undefiniert" df.loc[ df.Verfahrensnummer == "6B_559/2011", "Vorinstanz" ] = "Tribunal cantonal du canton du Valais" df.loc[df.Verfahrensnummer == "6B_119/2012", "Vorinstanz"] = "undefiniert" df.loc[ df.Verfahrensnummer == "6B_74/2013", "Vorinstanz" ] = "Corte dei reclami penali del Tribunale d'appello del Cantone Ticino" df.loc[df.Verfahrensnummer == "6B_103/2013", "Vorinstanz"] = "undefiniert" df.loc[ df.Verfahrensnummer == "6B_376/2013", "Vorinstanz" ] = "Tribunal du IIe arrondissement pour le district de Sion" df.loc[df.Verfahrensnummer == "6B_388/2013", "Vorinstanz"] = "undefiniert" df.loc[ df.Verfahrensnummer == "6B_787/2013", "Vorinstanz" ] = "Tribunal cantonal de l'Etat de Fribourg" df.loc[df.Verfahrensnummer == "6B_821/2013", "Vorinstanz"] = "undefiniert" df.loc[df.Verfahrensnummer == "6B_1035/2013", "Vorinstanz"] = "Bundesstrafgericht" df.loc[df.Verfahrensnummer == "6B_354/2014", "Vorinstanz"] = "undefiniert" df.loc[df.Verfahrensnummer == "6B_513/2014", "Vorinstanz"] = "undefiniert" df.loc[ df.Verfahrensnummer == "6B_307/2015", "Vorinstanz" ] = "Tribunal cantonal du canton de Vaud" df.loc[df.Verfahrensnummer == "6B_394/2015", "Vorinstanz"] = "undefiniert" df.loc[df.Verfahrensnummer == "6B_462/2015", "Vorinstanz"] = "undefiniert" df.loc[df.Verfahrensnummer == "6B_726/2015", "Vorinstanz"] = "undefiniert" df.loc[df.Verfahrensnummer == "6B_720/2016", "Vorinstanz"] = "undefiniert" df.loc[df.Verfahrensnummer == "6B_818/2016", "Vorinstanz"] = "Bundesstrafgericht" df.loc[ df.Verfahrensnummer == "6B_845/2016", "Vorinstanz" ] = "Tribunal cantonal du canton du Valais" df.loc[ df.Verfahrensnummer == "6B_1026/2016", "Vorinstanz" ] = "Obergericht des Kantons Aargau" df.loc[ df.Verfahrensnummer == "6B_1197/2016", "Vorinstanz" ] = "Obergericht des Kantons Bern" df.loc[ df.Verfahrensnummer == "6B_133/2017", "Vorinstanz" ] = "Cour de justice de la République et canton de Genève" df.loc[ df.Verfahrensnummer == "6B_584/2017", "Vorinstanz" ] = "Cour d'appel pénale du Tribunal cantonal du canton de Vaud" df.loc[df.Verfahrensnummer == "6B_1273/2017", "Vorinstanz"] = "undefiniert" df.loc[df.Verfahrensnummer == "6B_1355/2017", "Vorinstanz"] = "undefiniert" df.loc[ df.Verfahrensnummer == "6B_1407/2017", "Vorinstanz" ] = "Corte dei reclami penali del Tribunale d'appello del Cantone Ticino" df.loc[df.Verfahrensnummer == "6B_251/2018", "Vorinstanz"] = "undefiniert" df.loc[ df.Verfahrensnummer == "6B_295/2018", "Vorinstanz" ] = "Corte dei reclami penali del Tribunale d'appello del Cantone Ticino" df.loc[ df.Verfahrensnummer == "6B_316/2018", "Vorinstanz" ] = "Tribunal cantonal du canton de Vaud" df.loc[ df.Verfahrensnummer == "6B_1005/2018", "Vorinstanz" ] = "Wirtschaftsstrafgericht des Kantons Bern" df.loc[ df.Verfahrensnummer == "6B_1337/2018", "Vorinstanz" ] = "Corte dei reclami penali del Tribunale d'appello del Cantone Ticino" df.loc[ df.Verfahrensnummer == "6B_136/2019", "Vorinstanz" ] = "Corte dei reclami penali del Tribunale d'appello del Cantone Ticino" df.loc[ df.Verfahrensnummer == "6B_290/2019", "Vorinstanz" ] = "Tribunal cantonal du canton de Vaud" df.loc[ df.Verfahrensnummer == "6B_320/2019", "Vorinstanz" ] = "Tribunal cantonal du canton de Vaud" df.loc[ df.Verfahrensnummer == "6B_472/2019", "Vorinstanz" ] = "Tribunal cantonal du canton de Vaud" df.loc[ df.Verfahrensnummer == "6B_487/2019", "Vorinstanz" ] = "Tribunal cantonal du canton de Vaud" df.loc[ df.Verfahrensnummer == "6B_540/2019", "Vorinstanz" ] = "Tribunal cantonal du canton de Vaud" df.loc[ df.Verfahrensnummer == "6B_569/2019", "Vorinstanz" ] = "Tribunal cantonal du canton de Vaud" df.loc[ df.Verfahrensnummer == "6B_622/2019", "Vorinstanz" ] = "Tribunal cantonal du canton de Vaud" df.loc[ df.Verfahrensnummer == "6B_625/2019", "Vorinstanz" ] = "Tribunal cantonal du canton de Vaud" df.loc[ df.Verfahrensnummer == "6B_691/2019", "Vorinstanz" ] = "Tribunal cantonal du canton de Vaud" df.loc[ df.Verfahrensnummer == "6B_703/2019", "Vorinstanz" ] = "Tribunal cantonal du canton de Vaud" df.loc[ df.Verfahrensnummer == "6B_812/2019", "Vorinstanz" ] = "Tribunal cantonal du canton de Vaud" df.loc[ df.Verfahrensnummer == "6B_835/2019", "Vorinstanz" ] = "Tribunal cantonal du canton de Vaud" df.loc[ df.Verfahrensnummer == "6B_839/2019", "Vorinstanz" ] = "Tribunal cantonal du canton de Vaud" df.loc[ df.Verfahrensnummer == "6B_911/2019", "Vorinstanz" ] = "Tribunal cantonal du canton de Vaud" df.loc[ df.Verfahrensnummer == "6B_986/2019", "Vorinstanz" ] = "Tribunal cantonal du canton de Vaud" df.loc[ df.Verfahrensnummer == "6B_1035/2019", "Vorinstanz" ] = "Appellationsgericht des Kantons Basel-Stadt" df.loc[ df.Verfahrensnummer == "6B_1069/2019", "Vorinstanz" ] = "Tribunal cantonal du canton de Vaud" df.loc[ df.Verfahrensnummer == "6B_1077/2019", "Vorinstanz" ] = "Tribunal cantonal du canton de Vaud" df.loc[ df.Verfahrensnummer == "6B_1079/2019", "Vorinstanz" ] = "Tribunal cantonal du canton de Vaud" df.loc[ df.Verfahrensnummer == "6B_1082/2019", "Vorinstanz" ] = "Tribunal cantonal du canton de Vaud" df.loc[ df.Verfahrensnummer == "6B_1132/2019", "Vorinstanz" ] = "Tribunal cantonal du canton de Vaud" df.loc[ df.Verfahrensnummer == "6B_1146/2019", "Vorinstanz" ] = "Tribunal cantonal du canton de Vaud" df.loc[ df.Verfahrensnummer == "6B_1231/2019", "Vorinstanz" ] = "Corte dei reclami penali del Tribunale d'appello del Cantone Ticino" df.loc[ df.Verfahrensnummer == "6B_1314/2019", "Vorinstanz" ] = "Obergerichts des Kantons Zürich" df.loc[ df.Verfahrensnummer == "6B_96/2020", "Vorinstanz" ] = "Corte dei reclami penali del Tribunale d'appello del Cantone Ticino" df.loc[ df.Verfahrensnummer == "6B_275/2020", "Vorinstanz" ] = "Tribunale d'appello del Cantone Ticino" # Regex-Ersetzungen df = df.replace(r"(?<=Anklagekammer des Kantons St. Gdfn).*", "", regex=True) df = df.replace( r"Anklagekammer.*Gdfn", "Anklagekammer des Kantons St. Gdfn", regex=True ) df = df.replace(r"(?<=Anklagekammer des Kantons Thurgau).*", "", regex=True) df = df.replace(r"(?<=Anklagekammer des Kantons Waadt).*", "", regex=True) df = df.replace(r"(?<=Appellationsgericht des Kantons Basel-Stadt).*", "", regex=True) df = df.replace( r"(?<=Appellationsgerichtpr).*", "aesidentIn des Kantons Basel-Stadt", regex=True ) df = df.replace( r"Cour de cassation pénale", "Tribunal cantonal du canton de Vaud", regex=True ) df = df.replace( r"Tribunal cantonal", "Tribunal d'accusation du Tribunal cantonal du canton de Vaud", regex=True, ) # händische Korrektur merkwürdiger Resultate df.loc[df.Verfahrensnummer == "1B_232/2011", "Vorinstanz"] = "Kantonsgericht Schwyz" df.loc[ df.Verfahrensnummer == "1B_30/2011", "Vorinstanz" ] = "Obergericht des Kantons Zürich" df.loc[ df.Verfahrensnummer == "1B_46/2011", "Vorinstanz" ] = "Obergericht des Kantons Bern" df.loc[df.Verfahrensnummer == "6B_406/2017", "Vorinstanz"] = "Kantonsgericht St. Gdfn" df.loc[ df.Verfahrensnummer == "1B_2/2011", "Vorinstanz" ] = "Obergericht des Kantons Bern" df.loc[ df.Verfahrensnummer == "6B_377/2016", "Vorinstanz" ] = "Obergericht des Kantons Bern" df.loc[ df.Verfahrensnummer == "1B_411/2015", "Vorinstanz" ] = "Obergericht des Kantons Aargau" # # händische Korrektur fehlerhafter Ergebnisse df.loc[df.Verfahrensnummer == "1B_67/2011", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "1B_89/2011", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "1B_232/2011", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "1B_273/2011", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "1B_326/2011", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "1B_331/2011", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "1B_387/2011", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "1B_421/2011", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "1B_435/2011", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "1B_450/2011", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "1B_465/2011", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "1B_471/2011", "Verfahrensergebnis"] = "Gutheissung" df.loc[ df.Verfahrensnummer == "1B_520/2011", "Verfahrensergebnis" ] = "Gegenstandslosigkeit" df.loc[df.Verfahrensnummer == "1B_540/2011", "Verfahrensergebnis"] = "Gutheissung" df.loc[ df.Verfahrensnummer == "1B_684/2011", "Verfahrensergebnis" ] = "teilweise Gutheissung" df.loc[df.Verfahrensnummer == "1B_685/2011", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "1B_687/2011", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "1B_87/2012", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "1B_186/2012", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "1B_189/2012", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "1B_208/2012", "Verfahrensergebnis"] = "Gutheissung" df.loc[ df.Verfahrensnummer == "1B_290/2012", "Verfahrensergebnis" ] = "Gegenstandslosigkeit" df.loc[df.Verfahrensnummer == "1B_323/2012", "Verfahrensergebnis"] = "Gutheissung" df.loc[ df.Verfahrensnummer == "1B_365/2012", "Verfahrensergebnis" ] = "teilweise Gutheissung" df.loc[df.Verfahrensnummer == "1B_460/2012", "Verfahrensergebnis"] = "Abweisung" df.loc[df.Verfahrensnummer == "1B_665/2012", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "1B_125/2013", "Verfahrensergebnis"] = "Abweisung" df.loc[df.Verfahrensnummer == "1B_129/2013", "Verfahrensergebnis"] = "Nichteintreten" df.loc[ df.Verfahrensnummer == "1B_326/2013", "Verfahrensergebnis" ] = "teilweise Gutheissung" df.loc[ df.Verfahrensnummer == "1B_356/2013", "Verfahrensergebnis" ] = "Gegenstandslosigkeit" df.loc[df.Verfahrensnummer == "1B_397/2013", "Verfahrensergebnis"] = "Nichteintreten" df.loc[ df.Verfahrensnummer == "1B_411/2013", "Verfahrensergebnis" ] = "Gegenstandslosigkeit" df.loc[df.Verfahrensnummer == "1B_456/2013", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "1B_30/2014", "Verfahrensergebnis"] = "Abweisung" df.loc[ df.Verfahrensnummer == "1B_179/2014", "Verfahrensergebnis" ] = "teilweise Gutheissung" df.loc[ df.Verfahrensnummer == "1B_245/2014", "Verfahrensergebnis" ] = "teilweise Gutheissung" df.loc[df.Verfahrensnummer == "1B_251/2014", "Verfahrensergebnis"] = "Gutheissung" df.loc[ df.Verfahrensnummer == "1B_298/2014", "Verfahrensergebnis" ] = "teilweise Gutheissung" df.loc[ df.Verfahrensnummer == "1B_299/2014", "Verfahrensergebnis" ] = "teilweise Gutheissung" df.loc[ df.Verfahrensnummer == "1B_365/2014", "Verfahrensergebnis" ] = "teilweise Gutheissung" df.loc[df.Verfahrensnummer == "1B_375/2014", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "1B_417/2014", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "1B_419/2014", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "1B_8/2015", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "1B_63/2015", "Verfahrensergebnis"] = "Abweisung" df.loc[df.Verfahrensnummer == "1B_168/2015", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "1B_209/2015", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "1B_224/2015", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "1B_250/2015", "Verfahrensergebnis"] = "Abweisung" df.loc[df.Verfahrensnummer == "1B_361/2015", "Verfahrensergebnis"] = "Nichteintreten" df.loc[ df.Verfahrensnummer == "1B_411/2015", "Verfahrensergebnis" ] = "Gegenstandslosigkeit" df.loc[ df.Verfahrensnummer == "1B_415/2015", "Verfahrensergebnis" ] = "Gegenstandslosigkeit" df.loc[ df.Verfahrensnummer == "1B_31/2016", "Verfahrensergebnis" ] = "teilweise Gutheissung" df.loc[df.Verfahrensnummer == "1B_42/2016", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "1B_81/2016", "Verfahrensergebnis"] = "Gutheissung" df.loc[ df.Verfahrensnummer == "1B_172/2016", "Verfahrensergebnis" ] = "Gegenstandslosigkeit" df.loc[ df.Verfahrensnummer == "1B_174/2016", "Verfahrensergebnis" ] = "Gegenstandslosigkeit" df.loc[ df.Verfahrensnummer == "1B_176/2016", "Verfahrensergebnis" ] = "teilweise Gutheissung" df.loc[ df.Verfahrensnummer == "1B_184/2016", "Verfahrensergebnis" ] = "Gegenstandslosigkeit" df.loc[df.Verfahrensnummer == "1B_185/2016", "Verfahrensergebnis"] = "Gutheissung" df.loc[ df.Verfahrensnummer == "1B_187/2016", "Verfahrensergebnis" ] = "Gegenstandslosigkeit" df.loc[df.Verfahrensnummer == "1B_264/2016", "Verfahrensergebnis"] = "Abweisung" df.loc[df.Verfahrensnummer == "1B_266/2016", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "1B_417/2016", "Verfahrensergebnis"] = "Gutheissung" df.loc[ df.Verfahrensnummer == "1B_28/2017", "Verfahrensergebnis" ] = "Gegenstandslosigkeit" df.loc[df.Verfahrensnummer == "1B_83/2017", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "1B_129/2017", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "1B_152/2017", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "1B_157/2017", "Verfahrensergebnis"] = "Nichteintreten" df.loc[ df.Verfahrensnummer == "1B_191/2017", "Verfahrensergebnis" ] = "Gegenstandslosigkeit" df.loc[df.Verfahrensnummer == "1B_305/2017", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "1B_384/2017", "Verfahrensergebnis"] = "Gutheissung" df.loc[ df.Verfahrensnummer == "1B_131/2018", "Verfahrensergebnis" ] = "teilweise Gutheissung" df.loc[ df.Verfahrensnummer == "1B_179/2018", "Verfahrensergebnis" ] = "teilweise Gutheissung" df.loc[df.Verfahrensnummer == "1B_185/2018", "Verfahrensergebnis"] = "Abweisung" df.loc[ df.Verfahrensnummer == "1B_207/2018", "Verfahrensergebnis" ] = "Gegenstandslosigkeit" df.loc[df.Verfahrensnummer == "1B_267/2018", "Verfahrensergebnis"] = "Nichteintreten" df.loc[ df.Verfahrensnummer == "1B_286/2018", "Verfahrensergebnis" ] = "Gegenstandslosigkeit" df.loc[ df.Verfahrensnummer == "1B_288/2018", "Verfahrensergebnis" ] = "Gegenstandslosigkeit" df.loc[ df.Verfahrensnummer == "1B_290/2018", "Verfahrensergebnis" ] = "Gegenstandslosigkeit" df.loc[ df.Verfahrensnummer == "1B_292/2018", "Verfahrensergebnis" ] = "Gegenstandslosigkeit" df.loc[df.Verfahrensnummer == "1B_382/2018", "Verfahrensergebnis"] = "Abweisung" df.loc[ df.Verfahrensnummer == "1B_41/2019", "Verfahrensergebnis" ] = "teilweise Gutheissung" df.loc[df.Verfahrensnummer == "1B_93/2019", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "1B_139/2019", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "1B_170/2019", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "1B_216/2019", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "1B_280/2019", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "1B_324/2019", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "1B_416/2019", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "1B_479/2019", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "1B_549/2019", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "1B_556/2019", "Verfahrensergebnis"] = "Gutheissung" df.loc[ df.Verfahrensnummer == "1B_567/2019", "Verfahrensergebnis" ] = "Gegenstandslosigkeit" df.loc[ df.Verfahrensnummer == "1B_568/2019", "Verfahrensergebnis" ] = "Gegenstandslosigkeit" df.loc[df.Verfahrensnummer == "1B_593/2019", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "1B_617/2019", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "1B_29/2020", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "1B_384/2020", "Verfahrensergebnis"] = "Nichteintreten" df.loc[ df.Verfahrensnummer == "1B_397/2020", "Verfahrensergebnis" ] = "Gegenstandslosigkeit" df.loc[df.Verfahrensnummer == "1B_398/2020", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "1B_399/2020", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "1B_406/2020", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "1B_412/2020", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "1B_450/2020", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "1B_611/2020", "Verfahrensergebnis"] = "Abweisung" df.loc[df.Verfahrensnummer == "6B_9/2011", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "6B_47/2011", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "6B_99/2011", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "6B_105/2011", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "6B_149/2011", "Verfahrensergebnis"] = "Nichteintreten" df.loc[ df.Verfahrensnummer == "6B_181/2011", "Verfahrensergebnis" ] = "Gegenstandslosigkeit" df.loc[df.Verfahrensnummer == "6B_198/2011", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "6B_218/2011", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "6B_224/2011", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "6B_240/2011", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "6B_363/2011", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "6B_590/2011", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "6B_596/2011", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "6B_661/2011", "Verfahrensergebnis"] = "Abweisung" df.loc[df.Verfahrensnummer == "6B_700/2011", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "6B_705/2011", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "6B_787/2011", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "6B_2/2012", "Verfahrensergebnis"] = "Abweisung" df.loc[df.Verfahrensnummer == "6B_11/2012", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "6B_98/2012", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "6B_143/2012", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "6B_171/2012", "Verfahrensergebnis"] = "Abweisung" df.loc[df.Verfahrensnummer == "6B_184/2012", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "6B_191/2012", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "6B_226/2012", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "6B_231/2012", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "6B_508/2012", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "6B_611/2012", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "6B_116/2013", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "6B_125/2013", "Verfahrensergebnis"] = "Gutheissung" df.loc[ df.Verfahrensnummer == "6B_178/2013", "Verfahrensergebnis" ] = "Gegenstandslosigkeit" df.loc[df.Verfahrensnummer == "6B_326/2013", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "6B_376/2013", "Verfahrensergebnis"] = "Nichteintreten" df.loc[ df.Verfahrensnummer == "6B_494/2013", "Verfahrensergebnis" ] = "Gegenstandslosigkeit" df.loc[df.Verfahrensnummer == "6B_850/2013", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "6B_985/2013", "Verfahrensergebnis"] = "Nichteintreten" df.loc[ df.Verfahrensnummer == "6B_1022/2013", "Verfahrensergebnis" ] = "Gegenstandslosigkeit" df.loc[ df.Verfahrensnummer == "6B_1074/2013", "Verfahrensergebnis" ] = "Gegenstandslosigkeit" df.loc[ df.Verfahrensnummer == "6B_1152/2013", "Verfahrensergebnis" ] = "teilweise Gutheissung" df.loc[ df.Verfahrensnummer == "6B_1161/2013", "Verfahrensergebnis" ] = "teilweise Gutheissung" df.loc[ df.Verfahrensnummer == "6B_1179/2013", "Verfahrensergebnis" ] = "teilweise Gutheissung" df.loc[ df.Verfahrensnummer == "6B_1187/2013", "Verfahrensergebnis" ] = "teilweise Gutheissung" df.loc[df.Verfahrensnummer == "6B_1206/2013", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "6B_1212/2013", "Verfahrensergebnis"] = "Abweisung" df.loc[df.Verfahrensnummer == "6B_85/2014", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "6B_112/2014", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "6B_135/2014", "Verfahrensergebnis"] = "Gutheissung" df.loc[ df.Verfahrensnummer == "6B_167/2014", "Verfahrensergebnis" ] = "teilweise Gutheissung" df.loc[df.Verfahrensnummer == "6B_211/2014", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "6B_212/2014", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "6B_307/2014", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "6B_320/2014", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "6B_354/2014", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "6B_664/2014", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "6B_690/2014", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "6B_719/2014", "Verfahrensergebnis"] = "Nichteintreten" df.loc[ df.Verfahrensnummer == "6B_774/2014", "Verfahrensergebnis" ] = "teilweise Gutheissung" df.loc[ df.Verfahrensnummer == "6B_855/2014", "Verfahrensergebnis" ] = "teilweise Gutheissung" df.loc[ df.Verfahrensnummer == "6B_879/2014", "Verfahrensergebnis" ] = "Gegenstandslosigkeit" df.loc[ df.Verfahrensnummer == "6B_922/2014", "Verfahrensergebnis" ] = "Gegenstandslosigkeit" df.loc[ df.Verfahrensnummer == "6B_1240/2014", "Verfahrensergebnis" ] = "teilweise Gutheissung" df.loc[df.Verfahrensnummer == "6B_265/2015", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "6B_334/2015", "Verfahrensergebnis"] = "Nichteintreten" df.loc[ df.Verfahrensnummer == "6B_356/2015", "Verfahrensergebnis" ] = "Gegenstandslosigkeit" df.loc[df.Verfahrensnummer == "6B_424/2015", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "6B_424/2015", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "6B_591/2015", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "6B_839/2015", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "6B_895/2015", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "6B_1161/2015", "Verfahrensergebnis"] = "Nichteintreten" df.loc[ df.Verfahrensnummer == "6B_1237/2015", "Verfahrensergebnis" ] = "teilweise Gutheissung" df.loc[df.Verfahrensnummer == "6B_1268/2015", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "6B_10/2016", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "6B_192/2016", "Verfahrensergebnis"] = "Abweisung" df.loc[ df.Verfahrensnummer == "6B_259/2016", "Verfahrensergebnis" ] = "teilweise Gutheissung" df.loc[df.Verfahrensnummer == "6B_267/2016", "Verfahrensergebnis"] = "Abweisung" df.loc[df.Verfahrensnummer == "6B_411/2016", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "6B_454/2016", "Verfahrensergebnis"] = "Abweisung" df.loc[ df.Verfahrensnummer == "6B_492/2016", "Verfahrensergebnis" ] = "teilweise Gutheissung" df.loc[df.Verfahrensnummer == "6B_564/2016", "Verfahrensergebnis"] = "Abweisung" df.loc[df.Verfahrensnummer == "6B_691/2016", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "6B_709/2016", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "6B_818/2016", "Verfahrensergebnis"] = "Nichteintreten" df.loc[ df.Verfahrensnummer == "6B_842/2016", "Verfahrensergebnis" ] = "teilweise Gutheissung" df.loc[ df.Verfahrensnummer == "6B_845/2016", "Verfahrensergebnis" ] = "teilweise Gutheissung" df.loc[ df.Verfahrensnummer == "6B_845/2016", "Verfahrensergebnis" ] = "teilweise Gutheissung" # bemerkenswertes Dispostiv df.loc[ df.Verfahrensnummer == "6B_922/2016", "Verfahrensergebnis" ] = "teilweise Gutheissung" df.loc[df.Verfahrensnummer == "6B_1051/2016", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "6B_1135/2016", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "6B_1181/2016", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "6B_1241/2016", "Verfahrensergebnis"] = "Abweisung" df.loc[df.Verfahrensnummer == "6B_1264/2016", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "6B_1271/2016", "Verfahrensergebnis"] = "Nichteintreten" df.loc[ df.Verfahrensnummer == "6B_1314/2016", "Verfahrensergebnis" ] = "teilweise Gutheissung" df.loc[df.Verfahrensnummer == "6B_1421/2016", "Verfahrensergebnis"] = "Abweisung" df.loc[df.Verfahrensnummer == "6B_133/2017", "Verfahrensergebnis"] = "Abweisung" df.loc[df.Verfahrensnummer == "6B_285/2017", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "6B_423/2017", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "6B_756/2017", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "6B_849/2017", "Verfahrensergebnis"] = "Abweisung" df.loc[ df.Verfahrensnummer == "6B_971/2017", "Verfahrensergebnis" ] = "teilweise Gutheissung" df.loc[ df.Verfahrensnummer == "6B_1010/2017", "Verfahrensergebnis" ] = "teilweise Gutheissung" df.loc[ df.Verfahrensnummer == "6B_1011/2017", "Verfahrensergebnis" ] = "teilweise Gutheissung" df.loc[ df.Verfahrensnummer == "6B_1054/2017", "Verfahrensergebnis" ] = "teilweise Gutheissung" df.loc[df.Verfahrensnummer == "6B_1101/2017", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "6B_1116/2017", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "6B_1199/2017", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "6B_1234/2017", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "6B_1355/2017", "Verfahrensergebnis"] = "Nichteintreten" df.loc[ df.Verfahrensnummer == "6B_1389/2017", "Verfahrensergebnis" ] = "Gegenstandslosigkeit" df.loc[df.Verfahrensnummer == "6B_9/2018", "Verfahrensergebnis"] = "Gutheissung" df.loc[ df.Verfahrensnummer == "6B_18/2018", "Verfahrensergebnis" ] = "teilweise Gutheissung" df.loc[ df.Verfahrensnummer == "6B_48/2018", "Verfahrensergebnis" ] = "teilweise Gutheissung" df.loc[ df.Verfahrensnummer == "6B_184/2018", "Verfahrensergebnis" ] = "Gegenstandslosigkeit" df.loc[df.Verfahrensnummer == "6B_308/2018", "Verfahrensergebnis"] = "Gutheissung" df.loc[ df.Verfahrensnummer == "6B_500/2018", "Verfahrensergebnis" ] = "teilweise Gutheissung" df.loc[df.Verfahrensnummer == "6B_535/2018", "Verfahrensergebnis"] = "Gutheissung" df.loc[ df.Verfahrensnummer == "6B_591/2018", "Verfahrensergebnis" ] = "Gegenstandslosigkeit" df.loc[ df.Verfahrensnummer == "6B_736/2018", "Verfahrensergebnis" ] = "Gegenstandslosigkeit" df.loc[ df.Verfahrensnummer == "6B_896/2018", "Verfahrensergebnis" ] = "Gegenstandslosigkeit" df.loc[df.Verfahrensnummer == "6B_1066/2018", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "6B_1309/2018", "Verfahrensergebnis"] = "Gutheissung" df.loc[ df.Verfahrensnummer == "6B_1322/2018", "Verfahrensergebnis" ] = "Gegenstandslosigkeit" df.loc[df.Verfahrensnummer == "6B_17/2019", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "6B_37/2019", "Verfahrensergebnis"] = "Gutheissung" df.loc[ df.Verfahrensnummer == "6B_178/2019", "Verfahrensergebnis" ] = "teilweise Gutheissung" df.loc[df.Verfahrensnummer == "6B_262/2019", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "6B_327/2019", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "6B_640/2019", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "6B_680/2019", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "6B_765/2019", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "6B_780/2019", "Verfahrensergebnis"] = "Gutheissung" df.loc[ df.Verfahrensnummer == "6B_924/2019", "Verfahrensergebnis" ] = "Gegenstandslosigkeit" df.loc[ df.Verfahrensnummer == "6B_976/2019", "Verfahrensergebnis" ] = "teilweise Gutheissung" df.loc[df.Verfahrensnummer == "6B_1010/2019", "Verfahrensergebnis"] = "Nichteintreten" df.loc[df.Verfahrensnummer == "6B_1035/2019", "Verfahrensergebnis"] = "Abweisung" df.loc[df.Verfahrensnummer == "6B_1063/2019", "Verfahrensergebnis"] = "Nichteintreten" df.loc[ df.Verfahrensnummer == "6B_1094/2019", "Verfahrensergebnis" ] = "teilweise Gutheissung" df.loc[ df.Verfahrensnummer == "6B_1094/2019", "Verfahrensergebnis" ] = "teilweise Gutheissung" df.loc[df.Verfahrensnummer == "6B_1177/2019", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "6B_1313/2019", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "6B_1314/2019", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "6B_1330/2019", "Verfahrensergebnis"] = "Nichteintreten" df.loc[ df.Verfahrensnummer == "6B_1368/2019", "Verfahrensergebnis" ] = "teilweise Gutheissung" df.loc[df.Verfahrensnummer == "6B_1433/2019", "Verfahrensergebnis"] = "Abweisung" df.loc[df.Verfahrensnummer == "6B_48/2020", "Verfahrensergebnis"] = "Gutheissung" df.loc[ df.Verfahrensnummer == "6B_69/2020", "Verfahrensergebnis" ] = "Gegenstandslosigkeit" df.loc[ df.Verfahrensnummer == "6B_155/2020", "Verfahrensergebnis" ] = "Gegenstandslosigkeit" df.loc[df.Verfahrensnummer == "6B_418/2020", "Verfahrensergebnis"] = "Nichteintreten" df.loc[ df.Verfahrensnummer == "6B_587/2020", "Verfahrensergebnis" ] = "teilweise Gutheissung" df.loc[df.Verfahrensnummer == "6B_1148/2020", "Verfahrensergebnis"] = "Nichteintreten" # Korrekturen (auf Vorrat) noch nicht im Datensatz befindlicher Urteile df.loc[df.Verfahrensnummer == "1B_438/2020", "Verfahrensergebnis"] = "Gutheissung" df.loc[df.Verfahrensnummer == "1B_611/2019", "Verfahrensergebnis"] = "Abweisung" df.loc[ df.Verfahrensnummer == "1B_643/2020", "Verfahrensergebnis" ] = "teilweise Gutheissung" # händische Korrektur bemerkter fehlerhaft ausgewerteter Verfahrensergebnisse, auf Vorrat df.loc[df.Verfahrensnummer == "6B_479/2020", "Verfahrensergebnis"] = "Gutheissung" rv_count = df.groupby("Rechtsvertreter").Verfahrensnummer.count().reset_index() rv_count = rv_count.rename(columns={"Verfahrensnummer": "tot"}) rv_count = rv_count.sort_values("tot", ascending=False) # unvertretene und anonymisierte aussortieren rv_count = rv_count[rv_count.Rechtsvertreter != "unvertreten"] rv_count = rv_count[rv_count.Rechtsvertreter != "A.________"] # einfachnennungen aussortieren rv_count = rv_count[rv_count.tot > 1] rv_gut_count = df[ df.Verfahrensergebnis.str.contains( "(teilweise Gutheissung|Gutheissung)", regex=True ) ] rv_gut_count = ( rv_gut_count.groupby("Rechtsvertreter").Verfahrensnummer.count().reset_index() ) rv_gut_count = rv_gut_count.rename(columns={"Verfahrensnummer": "tot_gut"}) rv_gut_count = rv_gut_count.sort_values("tot_gut", ascending=False) rv_gut_count = rv_gut_count[rv_gut_count.Rechtsvertreter != "unvertreten"] rv_gut_count = rv_gut_count[rv_gut_count.tot_gut > 1] rv_gut_count = pd.merge(rv_count, rv_gut_count, how="outer") rv_gut_count = rv_gut_count.fillna(0) rv_gut_count["%"] = rv_gut_count.tot_gut / rv_gut_count.tot * 100 rv_gut_count = rv_gut_count.sort_values(["%", "tot_gut"], ascending=False) # nicht erfolgreiche ausblenden rv_gut_count = rv_gut_count[rv_gut_count.tot_gut > 0] # alle unter 9 Beschwerden (mind. durchschn. 1 Beschwerde pro Jahr) ausblenden rv_gut_count = rv_gut_count[rv_gut_count.tot >= 9] rv_gut_count = rv_gut_count.reset_index(drop=True) # cut top20 rv_gut_count = rv_gut_count.head(20) rv_gut_count = rv_gut_count.rename( columns={"tot": "Total Beschwerden", "tot_gut": "Total Gutheissungen"} ) rv_gut_count.style.background_gradient(subset=["%"], cmap="BuGn") # Jean-Pierre Garbade # Liste der erfolgreichen Fälle platz1 = df[ df.Rechtsvertreter.str.contains("Jean-Pierre Garbade") & df.Verfahrensergebnis.str.contains( "(teilweise Gutheissung|Gutheissung)", regex=True ) ] platz1 = platz1.sort_values("Verfahrensergebnis", ascending=False) platz1.style # Daniel Kinzer, avocat # Liste der erfolgreichen Fälle platz3 = df[ df.Rechtsvertreter.str.contains("Daniel Kinzer") & df.Verfahrensergebnis.str.contains( "(Gutheissung|teilweise Gutheissung)", regex=True ) ] platz3 = platz3.sort_values("Verfahrensergebnis", ascending=False) platz3.style
import random from collections import defaultdict from kaggle_environments.envs.hungry_geese.hungry_geese import ( Observation, Configuration, Action, row_col, translate, ) # # Helper functions # Mostly one-liners for getting info out of the observation data structure, to help keep subsequent code readable and less error-prone. def my_snake(obs): return obs.geese[obs.index] def my_head(obs): return my_snake(obs)[0] def translate_my_head(config, obs, action): return translate( position=my_head(obs), direction=action, columns=config.columns, rows=config.rows, ) def step(obs): # obs.step starts counting at 0; "step number" (for the purpose of hunger and episodeSteps) seems to start counting at 1. return obs.step + 1 def action_eats_food(config, obs, action): return translate_my_head(config, obs, action) in obs.food # # State tracking globals # These are necessary to track important game state which is not provided as part of the Observation object. They are (somewhat naively) updated every time that the agent function is called. prev_action = None # # Q-functions # Evaluate various qualities of taking a given action at a given game state. # (*relative change in value* is what matters: being closer to food is better. How much better?) # tries to predict, based on features: "what can your reward ~~eventually be~~ increase by in the future if you choose this move?" # "How will my future reward be affected by this action?" # "How much *more* reward might you be able to get (in addition to what you have so far)?" # Will my length change due to this action? def delta_length(config, obs, action): l = 0 if action_eats_food(config, obs, action): # I would eat food if I took this action l += 1 if step(obs) % config.hunger_rate == 0: # I would lose length due to hunger this turn l -= 1 return l # will I crash and die immediately? If I do, how many steps would I have missed out on? def collision_based_ttl(config, obs, action): global prev_action # It may be a good idea to try to cache and/or reuse all_goose_loc across q functions if performance is an issue all_goose_loc = set([position for goose in obs.geese for position in goose]) if ( translate_my_head(config, obs, action) in all_goose_loc ) or action.opposite() == prev_action: return 1 # config['episodeSteps'] - (step(obs)+1) # I would die on the very next step, so I would "miss out on" this many steps # WHY doesn't Configuration object have attribute episodeSteps when the dict has it???? return config["episodeSteps"] - step( obs ) # optimistic - we won't ever collide, don't worry! # If I didn't eat starting now, how long would I last before I die of hunger? def hunger_ttl(config, obs, action): snake_len = len(my_snake(obs)) snake_len += delta_length( config, obs, action ) # what WILL my length be after this action? last_hunger_point = (step(obs) // config.hunger_rate) * config.hunger_rate time_die_of_hunger = last_hunger_point + snake_len * config.hunger_rate return min(config["episodeSteps"], time_die_of_hunger) - step( obs ) # or will I not die of hunger before the game is over? # combine hunger_ttl and collision_based_ttl: what might cause me to die in the foreseeable future? def min_ttl(config, obs, action): return min( hunger_ttl(config, obs, action), collision_based_ttl(config, obs, action) ) # flood-fill distance to nearest available food # (including possibility of distance=0, meaning "you would eat food next turn if you took this action") def nearest_food_dist(config, obs, action): all_goose_loc = set([position for goose in obs.geese for position in goose]) food_loc = set(obs.food) max_dist = config.columns * config.rows next_head = translate_my_head(config, obs, action) """if next_head in all_goose_loc or action.opposite()==prev_action: return max_dist""" processed_cells = set() to_process = [(next_head, 0)] while len(to_process) > 0: loc, dist = to_process.pop(0) if loc not in processed_cells: processed_cells.add(loc) if loc in all_goose_loc: # going here would crash the goose and (probably) not actually eat any food present. # ignore this location and keep searching. continue if loc in food_loc: # Food here! return the distance return dist else: # no food here - where can we go from here? next_dist = dist + 1 for next_a in Action: next_loc = translate( loc, next_a, columns=config.columns, rows=config.rows ) # if next_loc not in all_goose_loc: to_process.append((next_loc, next_dist)) # ran out of potential cells to process and did not find accessible food - return dummy value return max_dist # How much space can I reach *before* any other goose does? # counting space which will definitely clear out by the time I get there def uncontested_space(config, obs, action): # Enumerate all spaces taken up by geese, and when they will clear out goose_parts = {} for goose in obs.geese: gl = len(goose) for i, position in enumerate(goose): tt_leave = gl - i # ranges from 1 (tail) to goose length (head) # avoid following tail directly, in case the goose eats food (?) goose_parts[position] = tt_leave # If I would crash by taking this action, I have 0 space. next_head = translate_my_head(config, obs, action) if ( next_head in goose_parts and goose_parts[next_head] > 0 ) or action.opposite() == prev_action: return 0 # flood-fill from all geese at once; but keeping my goose separate, going last # (because it's actually ahead after taking the action in question) # track (location, time to get there) tuples for valid locations for a goose to go other_to_process = [ (g[0], 0) for i, g in enumerate(obs.geese) if (i != obs.index and len(g) > 0) ] me_to_process = [(next_head, 1)] me_uncontested = set([next_head]) # spaces which are already 'claimed' - not uncontested claimed = set([pos for pos, dist in other_to_process]) claimed.add(next_head) other_next_step = [] me_next_step = [] while len(me_to_process) > 0: # we care only about fully flood-filling *my* space # other geese take next step(s) for other_loc, other_step in other_to_process: for a in Action: next_loc = translate( other_loc, a, columns=config.columns, rows=config.rows ) # can it go there uncontessted? if (next_loc not in claimed) and ( (next_loc not in goose_parts) or (goose_parts[next_loc] <= other_step) ): claimed.add(next_loc) other_next_step.append((next_loc, other_step + 1)) # my goose takes next step(s) for my_loc, my_step in me_to_process: for a in Action: next_loc = translate( my_loc, a, columns=config.columns, rows=config.rows ) if (next_loc not in claimed) and ( (next_loc not in goose_parts) or (goose_parts[next_loc] <= my_step) ): claimed.add(next_loc) me_next_step.append((next_loc, my_step + 1)) me_uncontested.add(next_loc) # swap in new to_process lists other_to_process = other_next_step me_to_process = me_next_step other_next_step = [] me_next_step = [] return len(me_uncontested) # What's my chance of colliding with someone next turn (assuming geese move randomly to a not-currently-occupied spot)? # factors in both unavoidable collisions(chance=1) and head-on collisions which depend on where the other goose goes def chance_to_collide(config, obs, action): next_head = translate_my_head(config, obs, action) goose_parts = {} for goose in obs.geese: gl = len(goose) for i, position in enumerate(goose): tt_leave = gl - i # ranges from 1 (tail) to goose length (head) # avoid following tail directly, in case the goose eats food (?) goose_parts[position] = tt_leave other_heads = [ g[0] for i, g in enumerate(obs.geese) if (i != obs.index and len(g) > 0) ] # if I am walking right into somebody (including me), the chance is 1. if ( next_head in goose_parts and goose_parts[next_head] > 0 ) or action.opposite() == prev_action: return 1 headon_chances = [] for h in other_heads: total_options = 0 head_on = 0 for a in Action: next_loc = translate(h, a, columns=config.columns, rows=config.rows) if next_loc not in goose_parts or ( goose_parts[next_loc] <= 0 ): # goose may actually go there total_options += 1 if next_loc == next_head: head_on += 1 if total_options > 0: # maybe that goose is in a dead end headon_chances.append(head_on / total_options) if len(headon_chances) == 0: # maybe nobody has viable moves return 0 return max(headon_chances) # A very special q function to account for the fact that (for some reason) we gain an extra 100 points on the very first step def is_first_step(config, obs, action): return 1 if step(obs) == 1 else 0 # A function which returns a constant (like an intercept for linear regression) def one(config, obs, action): return 1 # ## Initial guess at weights q_weights = { delta_length: 1, hunger_ttl: 80, uncontested_space: 20, nearest_food_dist: -1, is_first_step: 100, chance_to_collide: -400, one: 1, } # # Agent # The agent's logic is relatively simple: for each possible action, evaluate each q-function and add them up with appropriate weights. Then choose the action that gives you the biggest number. # But we need to split it out across several functions because we will need the intermediate results during training. # Given a state (defined by observation and configuration objects) and an action, # evaluate individual q-function components of q-value def evaluate_q_function(obs, config, action): global q_weights qf_to_value = {} for q_func in q_weights: qf_to_value[q_func] = q_func(config, obs, action) return qf_to_value # Given a state (defined by observation and configuration objects) # Return what each q-function would evaluate to for *each* potential action we could take from this state. def evaluate_q_functions(obs, config): action_to_qfs = {} for potential_action in Action: action_to_qfs[potential_action] = evaluate_q_function( obs, config, potential_action ) return action_to_qfs # Given data about a single q-function evaluation, as returned from evaluate_q_function, # return the actual Q value of taking that action def get_q_value(action_qf_values): q_value = 0 for q_func in q_weights: q_value += q_weights[q_func] * action_qf_values[q_func] return q_value # Given data about q-function evaluations (as returned by evaluate_q_functions) above, # return the best action to take, and what its q-value would be def get_best_q_value(action_to_qfs): global q_weights options = [] for potential_action in action_to_qfs: q_value = get_q_value(action_to_qfs[potential_action]) options.append((potential_action, q_value)) return max(options, key=lambda x: x[1]) # Commit to taking this particular action by updating global state (D:) as if it was already taken def update_state(acion_taken): global prev_action prev_action = acion_taken def agent(obs_dict, config_dict): obs = Observation(obs_dict) config = Configuration(config_dict) action_to_qfs = evaluate_q_functions(obs, config) best_action, best_Q_value = get_best_q_value(action_to_qfs) update_state(best_action) return best_action.name # ## Test run # the %%writefile magic command writes the given code to a file, but does *not* run it. # in order to use the code now, we actually run the file we wrote to previously. from kaggle_environments import make prev_action = None # reset state env = make("hungry_geese") # , debug=True) run = env.run(["greedy", "greedy", "greedy", agent]) env.render(mode="ipython", width=500, height=500) print("our agent is the red goose") print("scores:") print([x["reward"] for x in run[-1]]) # # Training # ## Learn while playing # reset q_weights to be 1 or -1 (keep the sign, lose the value) to train from the ground up # NOTE: because of the writing to file and then reading from file scheme, # the variable q_weights seems to have weird scope, and thus can't be reassignedd directly # if you try saying q_weights = {...}, it will *shadow* the original q_weights instead of changing it # meaning that the agent functions will use the original q_weights, but the training code will be changing the new version. for qf in q_weights: q_weights[qf] = q_weights[qf] / abs(q_weights[qf]) print(q_weights) trainer = env.train(["greedy", "greedy", "greedy", None]) my_index = 3 obs_dict = trainer.reset() config_dict = env.configuration config = Configuration(config_dict) discount_factor = 1 # 1 = no discount learning_rate = 0.01 # effective learning rate should decrease as you go (weigh the recent experiences in proportion to history) learn_count = 500 # I decrease effective learning rate this by increasing learn_count and dividing by it. chance_to_random = 0.001 # chance to move randomly instead of using the "optimal" move suggested by the q-functions # track learning learned_values = defaultdict(list) place_record = [] for i in range(10000): # Replicate the logic in agent() but get the intermediate values and also act randomly with some chance. obs = Observation(obs_dict) action_to_qfs = evaluate_q_functions(obs, config) chosen_action, Q_value = get_best_q_value(action_to_qfs) if random.random() < chance_to_random: chosen_action = random.choice(list(Action)) Q_value = get_q_value(action_to_qfs[chosen_action]) q_func_values = action_to_qfs[chosen_action] update_state(chosen_action) # pass the chosen action to the trainer in order to get next observation and reward info obs_dict, reward, done, info = trainer.step(chosen_action.name) if done: my_score = env.state[my_index]["reward"] num_better = sum([g["reward"] > my_score for g in env.state]) print( f"your goose died on step {env.state[0]['observation']['step']+1} (placed: {num_better+1}; scores:{[g['reward'] for g in env.state]})" ) print() place_record.append(num_better + 1) # calculate next state's best q-value next_best_Q_value = 0 # if game is over no more reward is forthcoming. if not done: next_obs = Observation(obs_dict) next_action_to_qfs = evaluate_q_functions(next_obs, config) next_best_action, next_best_Q_value = get_best_q_value(next_action_to_qfs) # Learn from the experience, # UNLESS everybody is done (game is over) and we are first, which means that we won. # in that case, we don't have good ground truth about the score we COULD get. my_score = env.state[my_index]["reward"] won = all([g["status"] == "DONE" for g in env.state]) and ( sum([g["reward"] > my_score for g in env.state]) == 0 ) if not won: # what is the difference in reward prediction between: # (1) our origial estimate(Q_value) # (2) a more 'advanced' prediction based on our new knowledge of reward and new resulting state diff = (reward + discount_factor * next_best_Q_value) - Q_value learned_values["diff"].append(diff) # update weights based on this calculated difference # ("blame") inaccuracies on the individual weights for q_func in q_weights: q_weights[q_func] = ( q_weights[q_func] + (learning_rate / learn_count) * diff * q_func_values[q_func] ) learned_values[q_func.__name__].append(q_weights[q_func]) # decrease learning rate learn_count += 1.0 # Reset trainer if we've died if done: obs_dict = trainer.reset() print("after training:\n") print("q_weights={") for q in q_weights: print(f" {q.__name__}: {q_weights[q]},") print("}") import matplotlib.pyplot as plt plt.subplots(figsize=(15, 3)) plt.plot(range(len(learned_values["diff"])), learned_values["diff"]) plt.show() plt.plot(range(len(learned_values["hunger_ttl"])), learned_values["hunger_ttl"]) plt.plot( range(len(learned_values["uncontested_space"])), learned_values["uncontested_space"] ) plt.plot( range(len(learned_values["nearest_food_dist"])), learned_values["nearest_food_dist"] ) plt.plot(range(len(learned_values["delta_length"])), learned_values["delta_length"]) plt.plot( range(len(learned_values["chance_to_collide"])), learned_values["chance_to_collide"] ) plt.plot(range(len(learned_values["one"])), learned_values["one"]) import pandas as pd pd.Series(place_record).rolling(50).mean().plot()
import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report, confusion_matrix, accuracy_score # PassengerIds from the test set test_passengerIDs = pd.read_csv("../input/titanic-datasets/test.csv")["PassengerId"] test = pd.read_csv("../input/titanic-datasets/test.csv") train = pd.read_csv("../input/titanic-datasets/train.csv") # func to submit predictions easily # (1) parameter, which is the series/dataframe of your predictions def submit_predictions(predictions): submission = pd.DataFrame( {"PassengerId": test_passengerIDs, "Survived": predictions} ) submission.to_csv("submission.csv", index=False) test_passengerIDs.head() # These are the original Titanic competition datasets, no changes train_orig = pd.read_csv("../input/titanic-datasets/train.csv") test_orig = pd.read_csv("../input/titanic-datasets/test.csv") train_orig.head() test_orig.head() pred_df = pd.DataFrame() # # Arjun - Random Forest # ## Setup train_random_forest = pd.read_csv("../input/teammatetitanic/train_random_forest.csv") test_random_forest = pd.read_csv("../input/teammatetitanic/test_random_forest.csv") train_random_forest.head() test_random_forest.head() # ## Training from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import KFold X_random_forest = train_random_forest.drop("Survived", axis=1) y_random_forest = train_random_forest["Survived"] RFC = RandomForestClassifier( n_estimators=30, criterion="gini", max_depth=3, random_state=0 ) # using K-Fold Split kf = KFold(n_splits=3) kf.get_n_splits(X_random_forest) scores = [] for train_index, valid_index in kf.split(X_random_forest): X_train, X_test, y_train, y_test = ( X_random_forest.iloc[train_index], X_random_forest.iloc[valid_index], y_random_forest.iloc[train_index], y_random_forest.iloc[valid_index], ) sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) RFC.fit(X_train, y_train) predictions = RFC.predict(X_test) predictions = (predictions > 0.5).astype(int) print(predictions) scores.append((predictions == y_test).sum() / len(y_test)) print(confusion_matrix(y_test, predictions)) print(classification_report(y_test, predictions)) X_train_rfc, X_test_rfc, y_train_rfc, y_test_rfc = train_test_split( X_random_forest, y_random_forest, test_size=0.5, random_state=101 ) rfc_X_preds = RFC.predict(X_test_rfc) pred_df["rfc"] = rfc_X_preds pred_df["Survived"] = y_test_rfc pred_df.info() print(pd.Series(scores).describe()) print(pd.Series(scores)) # ## Predict # Scale test data first scaler = StandardScaler() scaler.fit(test_random_forest) test_random_forest_scaled = scaler.transform(test_random_forest) print(test_random_forest_scaled) pred_random_forest = RFC.predict(test_random_forest_scaled) pred_random_forest # # Richard - SVM # ## Setup from sklearn.model_selection import GridSearchCV train_svm = pd.read_csv("../input/teammatetitanic/train_svm.csv") test_svm = pd.read_csv("../input/teammatetitanic/test_svm.csv") train_random_forest.head() train_svm.head() test_svm.head() X_train_svm_columns = [ "Age", "Fare", "Cabin", "Title", "Has_Cabin", "Family_Size", "Is_Alone", "Age_bin", "Fare_bin", "Tick_Len", "Pclass_Frequency", "Embarked_Q", "Embarked_S", "Male", ] # ## Training from sklearn.preprocessing import scale train_svm.columns != "Survived" X_train_svm, X_test_svm, y_train_svm, y_test_svm = train_test_split( train_svm[X_train_svm_columns], train_svm["Survived"], test_size=0.5, random_state=101, ) X_test_svm.head() # Important to scale the X data, # otherwise GridSearchCV, BayesOptCV, # don't work well X_train_svm_scaled = scale(X_train_svm) X_test_svm_scaled = scale(X_test_svm) from sklearn.svm import SVC gridsearch_paramGrid = [ {"C": [1, 10], "kernel": ["linear"]}, {"C": [100, 1000, 10000], "gamma": [0.1, 0.01, 0.001], "kernel": ["rbf"]}, ] db_gridsearch_svc = GridSearchCV( SVC(), param_grid=gridsearch_paramGrid, scoring="accuracy", n_jobs=-1, verbose=5 ) # Will take 2-3 seconds db_gridsearch_svc.fit(X_train_svm_scaled, y_train_svm) # check the best parameters out of curiosity db_gridsearch_svc.best_params_ # Cross validation on results gridsearch_svc_pred = db_gridsearch_svc.predict(X_test_svm_scaled) print(classification_report(y_test_svm, gridsearch_svc_pred)) print(confusion_matrix(y_test_svm, gridsearch_svc_pred)) # ## Predict test_svm_scaled = scale(test_svm) test_svm_scaled pred_svc = db_gridsearch_svc.predict(test_svm_scaled) pred_svc pred_df["svc"] = db_gridsearch_svc.predict(scale(X_test_svm)) pred_df["Survived"] = y_test_svm y_test_svm pred_df.tail() # # Joseph - Neural Network # ## Setup # Imports from sklearn.tree import DecisionTreeClassifier from sklearn.impute import SimpleImputer from sklearn import tree from matplotlib import pyplot as plt from keras.models import Sequential from keras.layers import Dense from keras.utils.vis_utils import plot_model from keras.optimizers import SGD from keras.optimizers import RMSprop from keras.optimizers import Adagrad from tensorflow import keras from tensorflow.keras import layers from kerastuner.tuners import RandomSearch from numpy.random import randn from keras.regularizers import l1 from keras.regularizers import l2 import tensorflow as tf import pathlib import shutil import tempfile from kerastuner.tuners import Hyperband import kerastuner as kt from sklearn.model_selection import cross_val_score from sklearn.model_selection import KFold from keras.callbacks import EarlyStopping from keras.layers import GaussianNoise ### I commented out the below imports because I was getting errors # !pip install git+https://github.com/tensorflow/docs # import tensorflow_docs as tfdocs # import tensorflow_docs.modeling # import tensorflow_docs.plots # !pip install ann_visualizer # from ann_visualizer.visualize import ann_viz train_neural_network = pd.read_csv("../input/teammatetitanic/train_neural_network.csv") test_neural_network = pd.read_csv("../input/teammatetitanic/test_neural_network.csv") train_neural_network.head() test_neural_network.head() print("Train Shape: ", train_neural_network.shape) print("Test Shape: ", test_neural_network.shape) combined_train_test = [train_neural_network, test_neural_network] for df in combined_train_test: df["Sex"].replace({"male": 0, "female": 1}, inplace=True) df["Embarked"].replace({"S": 0, "C": 1, "Q": 2}, inplace=True) # ## Training X_neural_network, y_neural_network = ( train_neural_network.loc[:, train_neural_network.columns != "Survived"], train_neural_network["Survived"], ) print(X_neural_network) print(len(X_neural_network) + len(y_neural_network)) ( X_train_neural_network, X_test_neural_network, y_train_neural_network, y_test_neural_network, ) = train_test_split( X_neural_network, y_neural_network, test_size=0.5, random_state=101 ) X_train_neural_network.shape, X_test_neural_network.shape clf = DecisionTreeClassifier(criterion="gini", max_depth=3, random_state=0) # Fit the model clf.fit(X_train_neural_network, y_train_neural_network) # Get various accuracies print( "Accuracy on training set: {:.3f}".format( clf.score(X_train_neural_network, y_train_neural_network) ) ) print( "Accuracy on test set: {:.3f}".format( clf.score(X_test_neural_network, y_test_neural_network) ) ) pred_neural_network_2 = clf.predict(test_neural_network) pred_neural_network_2 = (pred_neural_network_2 > 0.5).astype(int) pred_neural_network_2 = pred_neural_network_2.flatten() pred_svc = db_gridsearch_svc.predict(test_svm_scaled) pred_svc pred_df["nn"] = clf.predict(X_test_neural_network) pred_df["Survived"] = y_test_neural_network pred_df.tail() text_representation = tree.export_text(clf) print(text_representation) # Adding dropout layers to remove nodes to decrease the complexity model = keras.Sequential() model.add(GaussianNoise(0.01, input_shape=(13,))) # model.add(Dense(13, input_dim=13, activation='relu', activity_regularizer=l2(1e-4))) # Hidden 1 model.add(Dense(13, input_dim=13, activation="relu", kernel_regularizer=l2(0.001))) model.add(keras.layers.Dropout(0.3)) model.add(Dense(6, activation="relu", activity_regularizer=l2(1e-4))) # Hidden 2 model.add(keras.layers.Dropout(0.3)) # model.add(Dense(3, activation='relu', activity_regularizer=l2(1e-4))) # Hidden 3 model.add(Dense(3, activation="relu", kernel_regularizer=l2(0.001))) model.add(keras.layers.Dropout(0.3)) model.add(Dense(1, activation="sigmoid")) # Output model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"]) # es = EarlyStopping(monitor='val_loss', mode='min', verbose=1) model.fit(X_train_neural_network, y_train_neural_network, epochs=100, batch_size=8) # #### What worked for reducing overfitting: # #### 1. Activity regularization (l2 seemed better) # #### 2. Weight regularization (l2 as well) # #### 3. Dropout layers # #### 4. Adding statistical noise during training keras_scores = model.evaluate(X_test_neural_network, y_test_neural_network) print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100)) print(pd.Series(scores).describe()) y_pred_neural_network = model.predict(X_test_neural_network).reshape(-1) print(y_pred_neural_network[:10]) # round to 0 or 1 y_pred_neural_network = np.round(y_pred_neural_network) print(y_pred_neural_network[:10]) y_test_neural_network[:10] print(classification_report(y_test_neural_network, y_pred_neural_network)) plot_model(model, to_file="titanic_model.png", show_shapes=True, show_layer_names=True) # ## Predict predictions_neural_network = model.predict(test_neural_network) predictions_neural_network = (predictions_neural_network > 0.5).astype(int) predictions_neural_network = predictions_neural_network.flatten() print(predictions_neural_network) # # Michael - LightGBM # ## Setup from sklearn import metrics import lightgbm as lgb # if you don't have it downloaded, do pip install lightgbm train_lgbm = pd.read_csv("../input/teammatetitanic/train_lgbm.csv") test_lgbm = pd.read_csv("../input/teammatetitanic/test_lgbm.csv") train_lgbm.head() test_lgbm.head() X_lgbm = train_lgbm.drop("Survived", axis=1) y_lgbm = train_lgbm["Survived"] cate_features_name = [ "Pclass", "Embarked", "Title", "Sex", "Cabin", "Has_Cabin", "Is_Alone", ] # ## Training # ### For Full Dataset Submission # Note, you'll need to create a new lgb.Dataset with new X and y values (will likely be X_train and Y_train) whenever you want to train for stacking or within a KFold. params = { "boosting_type": "gbdt", "max_depth": -1, "objective": "binary", "nthread": 3, "num_leaves": 64, "learning_rate": 0.05, "max_bin": 512, "subsample_for_bin": 200, "subsample": 1, "subsample_freq": 1, "colsample_bytree": 0.8, "reg_alpha": 5, "reg_lambda": 10, "min_split_gain": 0.5, "min_child_weight": 1, "min_child_samples": 5, "scale_pos_weight": 1, "num_class": 1, "metric": "binary_error", "num_boost_rounds": 87, } X_train_lgbm, X_test_lgbm, y_train_lgbm, y_test_lgbm = train_test_split( X_lgbm, y_lgbm, test_size=0.5, random_state=101 ) lgb_full_train = lgb.Dataset( X_train_lgbm, y_train_lgbm, categorical_feature=cate_features_name, free_raw_data=False, ) submission_model_lgbm = lgb.train( params, lgb_full_train, valid_sets=None, verbose_eval=10, ) # ## Predict # converts decimals into 0 and 1 values. pred_lgbm = submission_model_lgbm.predict(X_test_lgbm) pred_lgbm = (pred_lgbm > 0.5).astype(int) # pred_df['pred_lgbm'] = submission_model_lgbm.predict(X_test_lgbm) # pred_df['Survived'] = y_test_lgbm pred_df["lgb"] = pred_lgbm pred_df["Survived"] = y_test_lgbm pred_df.head() # # **Saurav Kumar** import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns df = pd.read_csv("../input/titanic-datasets/train_features_generated.csv") df = df.replace({"Embarked": {"S": 1, "C": 2, "Q": 3}}) df.head() df = df.drop(["Fare"], axis=1).drop(["Age"], axis=1).drop(["Tick_Len"], axis=1) dfDropped = df[["Sex", "Pclass", "Age_bin", "Embarked", "Is_Alone"]].copy() dfDropped.head() from sklearn.preprocessing import StandardScaler scaler = StandardScaler() set = {"male": 1, "female": 2} df = df.replace({"Sex": set}) dfDropped = dfDropped.replace({"Sex": set}) df.tail() df.info() # dfDropped = df.drop(['Survived'], axis=1).drop('Is_Alone',axis=1).drop('Fare_bin',axis=1).drop('Title',axis=1).drop('Cabin',axis=1) # .drop('Pclass',axis=1).drop('Fare',axis=1).drop('Has_Cabin',axis=1).drop('Title',axis=1).drop('Family_Size',axis=1).drop('Is_Alone',axis=1).drop('Tick_Len',axis=1).drop('Age_bin',axis=1).drop('Fare_bin',axis=1).drop('Survived',axis=1).drop('Cabin',axis=1).drop('Embarked',axis=1) dfDropped.head() scaler.fit(dfDropped) scaled_features = scaler.transform(dfDropped) scaled_features df_without_columns = dfDropped df_without_columns.columns df_feat = pd.DataFrame(scaled_features, columns=df_without_columns.columns) df_feat.head() from sklearn.model_selection import train_test_split X = df_feat y = df["Survived"] X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.5, random_state=101 ) from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(n_neighbors=1) knn.fit(X_train, y_train) pred = knn.predict(X_test) pred from sklearn.metrics import classification_report, confusion_matrix print(confusion_matrix(y_test, pred)) print(classification_report(y_test, pred)) error_rate = [] for i in range(1, 100): knn = KNeighborsClassifier(n_neighbors=i) knn.fit(X_train, y_train) pred_i = knn.predict(X_test) error_rate.append(np.mean(pred_i != y_test)) plt.figure(figsize=(10, 6)) plt.plot( range(1, 100), error_rate, color="blue", linestyle="dashed", marker="o", markerfacecolor="red", markersize=10, ) plt.title("Error Rate vs. K Value") plt.xlabel("K") plt.ylabel("Error Rate") knn = KNeighborsClassifier(n_neighbors=8) knn.fit(X_train, y_train) pred = knn.predict(X_test) print("\n") print(confusion_matrix(y_test, pred)) print("\n") print(classification_report(y_test, pred)) pred_df["knn"] = pred pred_df["Survived"] = y_test survived_df = pd.DataFrame(y_test, columns=["PassengerID", "Survived"]) pred_df["Survived"] = survived_df["Survived"] testDf = pd.read_csv("../input/titanic-datasets/test_features_generated.csv") testDf.head() testDfReal = pd.read_csv("../input/titanic-datasets/test.csv") testDf = testDf.replace({"Sex": {"male": 1, "female": 2}}) testDf = testDf.replace({"Embarked": {"S": 1, "C": 2, "Q": 3}}) scaler2 = StandardScaler() testDfDropped = testDf[["Sex", "Pclass", "Age_bin", "Embarked", "Is_Alone"]].copy() testDfDropped.head() scaler2.fit(testDfDropped) testDfDropped scaled_features2 = scaler2.transform(testDfDropped) df_without_columns2 = testDfDropped df_without_columns2.columns df_feat2 = pd.DataFrame(scaled_features2, columns=df_without_columns2.columns) df_feat2.head() testDf knn = KNeighborsClassifier(n_neighbors=20) knn.fit(X_train, y_train) pred_knn = knn.predict(df_feat2) pred_knn # ## Ensembling (Stacking) pred_df = pred_df.drop("Survived", axis=1) pred_df.head() survived_df.head() from sklearn.linear_model import LogisticRegression meta_model = LogisticRegression() meta_model.fit(pred_df, survived_df["Survived"]) # # Fitting Meta-Model to the Test Set pred_df # First, we'll create the data frame for the model predictions that matches pred_df test_combined_pred = pd.DataFrame() test_combined_pred["rfc"] = pd.read_csv( "../input/teammatetitanic/results_random_forest.csv" )["Survived"] test_combined_pred["svc"] = pd.read_csv("../input/teammatetitanic/results_svm.csv")[ "Survived" ] test_combined_pred["nn"] = pd.read_csv( "../input/teammatetitanic/results_neural_network.csv" )["Survived"] test_combined_pred["lgb"] = pd.read_csv("../input/teammatetitanic/results_lgbm.csv")[ "Survived" ] test_combined_pred["knn"] = pd.read_csv("../input/teammatetitanic/sauravknntest.csv")[ "Survived" ] test_combined_pred meta_pred = meta_model.predict(test_combined_pred) test = pd.read_csv("../input/titanic-datasets/test.csv") submission = pd.DataFrame() submission["PassengerId"] = test["PassengerId"] submission["Survived"] = meta_pred submission.to_csv("stacking_v1.csv", index=False) submission.head()
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session df = pd.read_csv("/kaggle/input/housesalesprediction/kc_house_data.csv") df.drop(columns=["date", "zipcode", "waterfront", "id", "view"], inplace=True) df.drop(columns=["sqft_living15", "sqft_lot15", "lat", "long"], inplace=True) df.drop(columns=["yr_renovated"], inplace=True) df1 = pd.read_csv("/kaggle/input/housesalesprediction/kc_house_data.csv") df.head() df.columns features = [ "price", "bedrooms", "bathrooms", "sqft_living", "sqft_lot", "floors", "condition", "grade", "sqft_above", "sqft_basement", "yr_built", "yr_renovated", "lat", "long", "sqft_living15", "sqft_lot15", ] y = df["price"] from sklearn.model_selection import cross_val_score, train_test_split X_train, X_test, y_train, y_test = train_test_split(df[features], y, test_size=0.3) X_train.shape from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) from sklearn.linear_model import LinearRegression lin_reg = LinearRegression() lin_reg.fit(X_train, y_train) baseline_pred = lin_reg.predict(X_test) from sklearn.metrics import mean_squared_error lin_mse = mean_squared_error(y_test, baseline_pred) lin_reg.score(X_test, y_test) print(lin_mse) import xgboost xgb = xgboost.XGBRegressor( n_estimators=100, learning_rate=0.08, gamma=0, subsample=0.75, colsample_bytree=1, max_depth=7, ) from sklearn.ensemble import RandomForestClassifier rnd_clf = RandomForestClassifier() rnd_clf.fit(X_train, y_train) X_train, X_test, y_train, y_test = train_test_split(df[features], y, test_size=0.3) xgb.fit(X_train, y_train) from sklearn.metrics import explained_variance_score predictions = xgb.predict(X_test) print(explained_variance_score(predictions, y_test)) score_xgb = xgb.score(X_test, y_test).mean() print(score_xgb) import seaborn as sns sns.countplot(data=df, x=df["bedrooms"]) sns.distplot(df["price"]) sns.scatterplot(df["bedrooms"], df["price"]) sns.scatterplot(df["bathrooms"], df["price"]) sns.scatterplot(df["sqft_lot"], df["price"]) sns.scatterplot(df["zipcode"], df["price"]) df["zipcode"].nunique() from category_encoders import TargetEncoder encoder = TargetEncoder() df["zipcode_Encoded"] = encoder.fit_transform(df["zipcode"], df["price"]) df_corr = df.corr() import seaborn as sns sns.heatmap(df_corr, annot_kws={"size": 15}) print(df_corr.T)
# QUICK WORKAROUND FOR PROBLEM WITH PANDAS import os import time from tqdm import tqdm from tqdm import trange # Essential DS libraries import numpy as np import pandas as pd from sklearn.metrics import mean_absolute_error from sklearn.model_selection import train_test_split import torch # LightAutoML presets, task and report generation from lightautoml.automl.presets.tabular_presets import TabularAutoML from lightautoml.tasks import Task import datetime from collections import Counter import category_encoders as ce import datetime import re import seaborn as sns import matplotlib.pyplot as plt N_THREADS = 4 N_FOLDS = 5 RANDOM_STATE = 42 TEST_SIZE = 0.25 TIMEOUT = 900 # equal to 15 minutes TARGET_NAME = "reviewer_score" np.random.seed(RANDOM_STATE) torch.set_num_threads(N_THREADS) # загрузка данных hotels_test = pd.read_csv("/kaggle/input/sf-booking/hotels_test.csv") hotels_train = pd.read_csv("/kaggle/input/sf-booking/hotels_train.csv") submission = pd.read_csv("/kaggle/input/sf-booking/submission.csv") # Объединяем трейн и тест в один датасет print("объединяем", len(hotels_train)) hotels_train["sample"] = 1 # помечаем где у нас трейн hotels_test["sample"] = 0 # помечаем где у нас тест hotels_test[ "reviewer_score" ] = 0 # в тесте у нас нет значения reviewer_score, мы его должны предсказать, по этому пока просто заполняем нулями hotels = hotels_train.append(hotels_test, sort=False).reset_index( drop=True ) # объединяем print("после", len(hotels)) # добавление признаков print( "Старт", f"{datetime.datetime.now().hour}:{datetime.datetime.now().minute}:{datetime.datetime.now().second}", ) count = 0 with trange(15) as t: for i in t: # (1) пометка дубликатов (dup) # не удаляем строки, а помечаем их отдельным признаком incorrect if count == 0: t.set_description("dupl incorrect (%i)" % i) t.set_postfix(str="добавление дубликатов в incorrect") hotels_dd = hotels_train[hotels_train.duplicated()] for ind in hotels_dd.index: hotels.loc[ind, "incorrect"] = 1 count = 1 continue # (2) пометка подозрительных\неверных строк (inc) # не удаляем строки, а помечаем их отдельным признаком incorrect elif count == 1: t.set_description("strn incorrect (%i)" % i) t.set_postfix(str="добавление подозрительных в incorrect") list_hotel = hotels["hotel_name"].value_counts().index for name in list_hotel: dds = hotels[hotels["hotel_name"] == name] country_top = ( hotels[hotels["hotel_name"] == name]["reviewer_nationality"] .value_counts() .head(1) .index ) for ind in dds.index: if dds.loc[ind, "reviewer_nationality"] != country_top[0]: hotels.loc[ind, "incorrect"] = 1 hotels["incorrect"] = hotels["incorrect"].fillna(0) count = 2 continue # (3) добавление выбросов в подозрительных\неверных строк (inc) # не удаляем строки, а помечаем их отдельным признаком incorrect elif count == 2: t.set_description("score_incorrect (%i)" % i) t.set_postfix(str="добавление выбросов в incorrect") score_incorrect = [ 3.1, 4.4, 5.6, 6.9, 3.0, 8.1, 9.4, 3.5, 4.0, 4.5, 5.5, 6.0, 6.5, 7.0, 8.5, 8.0, 9.0, 9.5, ] ggg = [] for score in score_incorrect: ind_score = hotels[hotels["reviewer_score"] == score].index ggg.append(len(ind_score)) for ind in ind_score: hotels.loc[ind, "incorrect"] = 1 count = 3 continue # (4) преобразуем негативный отзыв в negative_false (nf3) # был произведен отбор максимально некорректных отзывов и сохранен в negative_false_v3.xlsx # после создан признак negative_false с некорректными elif count == 3: t.set_description("negative_false (%i)" % i) t.set_postfix(str="создание признака negative_false") negative_false = pd.read_excel( "/kaggle/input/for-submission/negative_false_v3.xlsx" ) list_neg = list(negative_false["negative_review"]) def get_negative_false(args): if args in list_neg: return 1 else: return 0 hotels["negative_false"] = hotels["negative_review"].apply( get_negative_false ) count = 4 continue # (5) преобразуем позитивный отзыв в positive_false (pf3) # был произведен отбор максимально некорректных отзывов и сохранен в positive_false_v3.xlsx # после создан признак positive_false с некорректными elif count == 4: t.set_description("positive_false (%i)" % i) t.set_postfix(str="создание признака positive_false") positive_false = pd.read_excel( "/kaggle/input/for-submission/positive_false_v3.xlsx" ) list_pos = list(positive_false["positive_review"]) def get_positive_false(args): if args in list_pos: return 1 else: return 0 hotels["positive_false"] = hotels["positive_review"].apply( get_positive_false ) count = 5 continue # (6) расчет total_average_score (ta) # total_average_score средний показатель average_score за весь период данных elif count == 5: t.set_description("total_average (%i)" % i) t.set_postfix(str="создание признака total_average_score") name_list = hotels["hotel_name"].unique() for name in name_list: AVR_name = round( hotels[hotels["hotel_name"] == name]["reviewer_score"].mean(), 1 ) index_list = hotels[hotels["hotel_name"] == name].index for ind in index_list: hotels.loc[ind, "total_average_score"] = AVR_name count = 6 continue # (7) создание признака неделя (we) elif count == 6: t.set_description("weekday (%i)" % i) t.set_postfix(str="создание признака weekday") def get_weekday(args): gg = datetime.datetime.strptime(str(args), "%m/%d/%Y") return gg.weekday() hotels["weekday"] = hotels["review_date"].apply(get_weekday) count = 7 continue # (8) обновление координат (up cor) # с помощью библиотеги geopy определили координаты по названию отеля и внесли в deff_loc.csv и обновили датасет elif count == 7: t.set_description("update cordina (%i)" % i) t.set_postfix(str="обновление координат") deff_loc = pd.read_csv("/kaggle/input/for-submission/deff_loc.csv") deff_loc = deff_loc.drop(["lat_new_lng_", "lat", "lng"], axis=1) deff_loc = deff_loc.rename( columns={"Unnamed: 0": "hotel_name", "lat_new": "lat", "lng_new": "lng"} ) for name in deff_loc["hotel_name"]: list_index = hotels[hotels["hotel_name"] == name].index for i in list_index: hotels.loc[i, "lat"] = deff_loc[deff_loc["hotel_name"] == name][ "lat" ].values count = 8 continue # (9) вытягивание неверного признака из count (reb inc) # как оказалось в признаке review_total_positive_word_counts 0 характеризует по сути отмену признака positive и negative_review # потому создаем новый признак rebild_incorrect_negative elif count == 8: t.set_description("rebild_incorr (%i)" % i) t.set_postfix(str="создание признака rebild_incorrect") for i in range(len(hotels)): if hotels.loc[i, "review_total_negative_word_counts"] == 0: hotels.loc[i, "rebild_incorrect_negative"] = 1 if hotels.loc[i, "review_total_positive_word_counts"] == 0: hotels.loc[i, "rebild_incorrect_positive"] = 1 hotels["rebild_incorrect_negative"] = hotels[ "rebild_incorrect_negative" ].fillna(0) hotels["rebild_incorrect_positive"] = hotels[ "rebild_incorrect_positive" ].fillna(0) count = 9 continue # (10) высокие оценки в первые дни недели (rec_we) # Моя гипотеза о силе отзыва в первые дни недели для негатива и последние дни раб недели для позитива переросли в # в банальный отсев выбросов elif count == 9: t.set_description("recall_weight (%i)" % i) t.set_postfix(str="создание признака recall_weight") mask1 = hotels["total_average_score"] > 4.7 mask2 = hotels["total_average_score"] < 7.5 ind_p = hotels[mask1 & mask2].index for i in ind_p: hotels.loc[i, "recall_weight"] = 1 hotels["recall_weight"] = hotels["recall_weight"].fillna(0) count = 10 continue # (11) создание признака месяц (mo) elif count == 10: t.set_description("month (%i)" % i) t.set_postfix(str="создание признака month") def get_month(args): gg = datetime.datetime.strptime(str(args), "%m/%d/%Y") return gg.month hotels["month"] = hotels["review_date"].apply(get_month) count = 11 continue # (12) создание len_tags (len_t) # признак кол-ва тегов в отзыве elif count == 11: t.set_description("len_tags (%i)" % i) t.set_postfix(str="создание признака len_tags") def get_len_tags(args): return len(args.split(", ")) hotels["len_tags"] = hotels["tags"].apply(get_len_tags) count = 12 continue # (13) ручное дополнение координат # обновление координат, которые автоматически нельзя было достать elif count == 12: t.set_description("FIX_1_update corr (%i)" % i) t.set_postfix(str="ввод недостающих координат") # Расчет общей средней оценкой и восстановление координат ll = hotels[ hotels["hotel_name"] == "Fleming s Selection Hotel Wien City" ].index for ind in ll: hotels.loc[ind, "lat"] = 48.2094054 hotels.loc[ind, "lng"] = 16.3512565 ll = hotels[hotels["hotel_name"] == "Hotel City Central"].index for ind in ll: hotels.loc[ind, "lat"] = 48.2135906 hotels.loc[ind, "lng"] = 16.3777195 ll = hotels[hotels["hotel_name"] == "Hotel Atlanta"].index for ind in ll: hotels.loc[ind, "lat"] = 48.2234239 hotels.loc[ind, "lng"] = 16.3516895 ll = hotels[ hotels["hotel_name"] == "Maison Albar Hotel Paris Op ra Diamond" ].index for ind in ll: hotels.loc[ind, "lat"] = 48.8753208 hotels.loc[ind, "lng"] = 2.3212033 ll = hotels[hotels["hotel_name"] == "Hotel Daniel Vienna"].index for ind in ll: hotels.loc[ind, "lat"] = 48.1888741 hotels.loc[ind, "lng"] = 16.383408 ll = hotels[ hotels["hotel_name"] == "Hotel Pension Baron am Schottentor" ].index for ind in ll: hotels.loc[ind, "lat"] = 48.2168032 hotels.loc[ind, "lng"] = 16.357717 ll = hotels[ hotels["hotel_name"] == "Austria Trend Hotel Schloss Wilhelminenberg Wien" ].index for ind in ll: hotels.loc[ind, "lat"] = 48.219573 hotels.loc[ind, "lng"] = 16.2834034 ll = hotels[hotels["hotel_name"] == "NH Collection Barcelona Podium"].index for ind in ll: hotels.loc[ind, "lat"] = 41.391552 hotels.loc[ind, "lng"] = 2.1757053 ll = hotels[ hotels["hotel_name"] == "Derag Livinghotel Kaiser Franz Joseph Vienna" ].index for ind in ll: hotels.loc[ind, "lat"] = 48.2458909 hotels.loc[ind, "lng"] = 16.3397395 ll = hotels[hotels["hotel_name"] == "City Hotel Deutschmeister"].index for ind in ll: hotels.loc[ind, "lat"] = 48.2208555 hotels.loc[ind, "lng"] = 16.3644228 ll = hotels[hotels["hotel_name"] == "Holiday Inn Paris Montmartre"].index for ind in ll: hotels.loc[ind, "lat"] = 48.8889127 hotels.loc[ind, "lng"] = 2.3309643 ll = hotels[hotels["hotel_name"] == "Hotel Park Villa"].index for ind in ll: hotels.loc[ind, "lat"] = 54.7314468 hotels.loc[ind, "lng"] = 25.2987564 ll = hotels[hotels["hotel_name"] == "Cordial Theaterhotel Wien"].index for ind in ll: hotels.loc[ind, "lat"] = 48.2095525 hotels.loc[ind, "lng"] = 16.3492746 ll = hotels[hotels["hotel_name"] == "Roomz Vienna"].index for ind in ll: hotels.loc[ind, "lat"] = 48.2096079 hotels.loc[ind, "lng"] = 16.316444 ll = hotels[hotels["hotel_name"] == "Mercure Paris Gare Montparnasse"].index for ind in ll: hotels.loc[ind, "lat"] = 48.8399957 hotels.loc[ind, "lng"] = 2.3213731 ll = hotels[hotels["hotel_name"] == "Hotel Advance"].index for ind in ll: hotels.loc[ind, "lat"] = 41.3832385 hotels.loc[ind, "lng"] = 2.1629496 ll = hotels[hotels["hotel_name"] == "Renaissance Barcelona Hotel"].index for ind in ll: hotels.loc[ind, "lat"] = 41.3749664 hotels.loc[ind, "lng"] = 2.1277449 count = 13 continue # (14) Правка типа данных # приведение некоторых столбцов из flost к int elif count == 13: t.set_description("FIX_1_type (%i)" % i) t.set_postfix(str="измененние типа данных") hotels["rebild_incorrect_positive"] = hotels[ "rebild_incorrect_positive" ].astype(int) hotels["rebild_incorrect_negative"] = hotels[ "rebild_incorrect_negative" ].astype(int) hotels["recall_weight"] = hotels["recall_weight"].astype(int) hotels["incorrect"] = hotels["incorrect"].astype(int) count = 14 continue # (15) конечный, завершающий этап elif count == 14: t.set_description("завершено (%i)" % i) t.set_postfix(str="завершено") count = 15 continue print( "Завершено", f"{datetime.datetime.now().hour}:{datetime.datetime.now().minute}:{datetime.datetime.now().second}", ) hotels.to_csv("hotels_clean_3.csv") print("сохранен hotels_clean_3") hotels = pd.read_csv("/kaggle/input/for-submission/hotels_clean_3.csv") hotels = hotels.drop(["Unnamed: 0"], axis=1) hotels.head(2) # создание negative_review_weight - 6 часов # редактирование признака, убираем пробелы на концах print( "Старт", f"{datetime.datetime.now().hour}:{datetime.datetime.now().minute}:{datetime.datetime.now().second}", ) def get_strip(args): return args.strip(" ") hotels["negative_review_v2"] = hotels["negative_review"].apply(get_strip) # срез кол-ва отзывов negative_review_v2 ddd = hotels[hotels["sample"] == 1]["negative_review_v2"].value_counts() ddd = ddd.reset_index() ddd = ddd.rename(columns={"negative_review_v2": "count"}) ddd = ddd.rename(columns={"index": "negative_review_v2"}) ddd["normalize"] = round(ddd["count"] / ddd["count"].sum(), 6) # создание веса признака negative_review_v2 # по срезу находим соотношение признака от общего числа def get_review_weight(args): return ddd[ddd["negative_review_v2"] == args]["normalize"].sum() hotels["negative_review_weight"] = hotels["negative_review_v2"].apply(get_review_weight) hotels.to_csv("hotels_negative_review_weight.csv") print("сохранен hotels_negative_review_weight_v") print( "Завершено", f"{datetime.datetime.now().hour}:{datetime.datetime.now().minute}:{datetime.datetime.now().second}", ) hotels = pd.read_csv("/kaggle/input/for-submission/hotels_negative_review_weight.csv") hotels = hotels.drop(["Unnamed: 0"], axis=1) hotels.head(2) # создание positive_review_weight - 6 часов print( "Старт", f"{datetime.datetime.now().hour+5}:{datetime.datetime.now().minute}:{datetime.datetime.now().second}", ) def get_strip(args): return args.strip(" ") hotels["positive_review_v2"] = hotels["positive_review"].apply(get_strip) # срез кол-ва отзывов positive_review_v2 ddd = hotels[hotels["sample"] == 1]["positive_review_v2"].value_counts() ddd = ddd.reset_index() ddd = ddd.rename(columns={"positive_review_v2": "count"}) ddd = ddd.rename(columns={"index": "positive_review_v2"}) ddd["normalize"] = round(ddd["count"] / ddd["count"].sum(), 6) # создание веса признака positive_review_v2 # по срезу находим соотношение признака от общего числа def get_review_weight(args): return ddd[ddd["positive_review_v2"] == args]["normalize"].sum() hotels["positive_review_weight"] = hotels["positive_review_v2"].apply(get_review_weight) hotels.to_csv("hotels_positive_review_weight.csv") print("сохранен hotels_positive_review_weight") print( "Завершено", f"{datetime.datetime.now().hour+5}:{datetime.datetime.now().minute}:{datetime.datetime.now().second}", ) hotels = pd.read_csv("/kaggle/input/for-submission/hotels_positive_review_weight_2.csv") hotels = hotels.drop(["Unnamed: 0"], axis=1) hotels.head(2) # Проверка на пустые значения gg = hotels.isnull() ind = gg.columns for col in ind: print(col, "||", gg[col].value_counts()) # корректировка пропуска значений negative_review_v2 gg = hotels.isnull() ind = gg[gg["negative_review_v2"] == True].index for i in ind: if hotels.loc[i, "negative_review"] == " NA": hotels.loc[i, "negative_review_v2"] = "NA" if hotels.loc[i, "negative_review"] == " ": hotels.loc[i, "negative_review_v2"] = "NA" if hotels.loc[i, "negative_review"] == " NA ": hotels.loc[i, "negative_review_v2"] = "NA" # корректировка пропуска значений positive_review_v2 gg = hotels.isnull() ind = gg[gg["positive_review_v2"] == True].index for i in ind: hotels.loc[i, "positive_review_v2"] = "NA" # подготовка к тестированию data = hotels.copy() # data = data.drop(['additional_number_of_scoring', 'rebild_incorrect_negative', 'rebild_incorrect_positive'], axis=1) for col in data.columns: if col == "index": data = data.drop(columns=col) print("удален index") if col == "Unnamed: 0": data = data.drop(columns=col) print("удален Unnamed: 0") if col == 0: data = data.drop(columns=col) print("удален 0") print(data.columns) # Теперь выделим тестовую часть dd = data[data["sample"] == 1] hotels_train = dd.drop(["sample"], axis=1) vv = data[data["sample"] == 0] hotels_test = vv.drop(["sample"], axis=1) print( "Завершено", f"{datetime.datetime.now().hour+5}:{datetime.datetime.now().minute}:{datetime.datetime.now().second}", ) # LAMA train_data = hotels_train.copy() # train_data = train_data.drop(['review_date'], axis=1) test_data = hotels_test.copy() def create_expert_feats(data): pass create_expert_feats(train_data) create_expert_feats(test_data) tr_data, te_data = train_test_split( train_data, test_size=TEST_SIZE, random_state=RANDOM_STATE ) print( f"Data splitted. Parts sizes: tr_data = {tr_data.shape}, te_data = {te_data.shape}" ) tr_data.head() task = Task("reg", loss="mae", metric="mae") roles = {"target": TARGET_NAME, "drop": ["index", "Unnamed: 0"]} automl = TabularAutoML( task=task, timeout=TIMEOUT, cpu_limit=N_THREADS, reader_params={"n_jobs": N_THREADS, "cv": N_FOLDS, "random_state": RANDOM_STATE}, ) print( "Завершено", f"{datetime.datetime.now().hour+5}:{datetime.datetime.now().minute}:{datetime.datetime.now().second}", ) oof_pred = automl.fit_predict(tr_data, roles=roles, verbose=1) print( "Завершено", f"{datetime.datetime.now().hour+5}:{datetime.datetime.now().minute}:{datetime.datetime.now().second}", ) print(automl.create_model_str_desc()) print( "Завершено", f"{datetime.datetime.now().hour+5}:{datetime.datetime.now().minute}:{datetime.datetime.now().second}", ) te_pred = automl.predict(te_data) print(f"Prediction for te_data:\n{te_pred}\nShape = {te_pred.shape}") print( "Завершено", f"{datetime.datetime.now().hour+5}:{datetime.datetime.now().minute}:{datetime.datetime.now().second}", ) # переменная списка пройденых тестов, для сравнения result = [ 0.15206, 0.42437, 0.14136, 0.14399, 0.14187, 0.14192, 0.14181, 0.14207, 0.14462, 0.14604, 0.1466, ] mae_train = round( mean_absolute_error(tr_data[TARGET_NAME].values, oof_pred.data[:, 0]), 5 ) MAPE_train = round(1 - mae_train, 5) mae_HOLDOUT = round( mean_absolute_error(te_data[TARGET_NAME].values, te_pred.data[:, 0]), 5 ) MAPE_HOLDOUT = round(1 - mae_HOLDOUT, 5) print(f"TRAIN out-of-fold score: {mae_train} MAPE {MAPE_train}") print(f"HOLDOUT score: {mae_HOLDOUT} MAPE {MAPE_HOLDOUT}") result.append(MAPE_HOLDOUT) result # Fast feature importances calculation fast_fi = automl.get_feature_scores("fast") fast_fi.set_index("Feature")["Importance"].plot.bar(figsize=(30, 10), grid=True) # Accurate feature importances calculation (Permutation importances) - can take long time to calculate on bigger datasets print( "Старт", f"{datetime.datetime.now().hour+5}:{datetime.datetime.now().minute}:{datetime.datetime.now().second}", ) accurate_fi = automl.get_feature_scores("accurate", te_data, silent=False) accurate_fi.set_index("Feature")["Importance"].plot.bar(figsize=(30, 10), grid=True) print( "Завершено", f"{datetime.datetime.now().hour+5}:{datetime.datetime.now().minute}:{datetime.datetime.now().second}", ) test_pred = automl.predict(test_data) print(f"Prediction for te_data:\n{test_pred}\nShape = {test_pred.shape}") submission = pd.read_csv("/kaggle/input/sf-booking/submission.csv") submission[TARGET_NAME] = test_pred.data[:, 0] submission.to_csv("submission.csv", index=False) print( "Завершено", f"{datetime.datetime.now().hour+5}:{datetime.datetime.now().minute}:{datetime.datetime.now().second}", ) # проверка на мультиколлинеарность # как показала практика, колинеарность не влияет на конечный результат, а удаление признаков снижает score import seaborn as sns import matplotlib.pyplot as plt # hotels = hotels_train.drop('average_score', axis=1) # hotels_train = hotels_train.drop(['additional_number_of_scoring', 'average_score'], axis=1) fig, axis = plt.subplots(figsize=(14, 8)) # создаём фигуру, прописываем её размеры cont = np.eye((2)) sns.heatmap( hotels_train.corr(), annot=True, fmt=".2g" ) # ax=axis присваиваем оси фигуры осям рисуемого графика fig
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # # ABOUT DATA PROBLEM :: # Credit scoring is a widely used risk management technique in the financial sector. It makes use of personal information and data provided by credit card applicants to estimate future bankruptcies and credit card loans. The bank has the authority to determine whether or not to provide the applicant a credit card. Credit scores can estimate the level of risk objectively. # A machine learning model is required to predict if an application is a 'good' or 'bad' user in this dataset. However, there is no definition of 'good' or 'bad'. Additionally, the unbalanced data problem is a significant issue in this project. # There are 2 datasets will be used in this notebook: # **Application record (contains general information about applicant, such as applicant gender, DOB, education type, assets that applicant had, etc.)** # **Credit record (contains applicant's loan payment records)** # # Reading & Analyzing Data import pandas as pd import warnings warnings.filterwarnings("ignore") df_application = pd.read_csv( "/kaggle/input/credit-card-approval-prediction/application_record.csv" ) df_credit = pd.read_csv( "/kaggle/input/credit-card-approval-prediction/credit_record.csv" ) print("Shape of application data", df_application.shape) print("-------------------------------------------") print("Shape of credit data", df_credit.shape) print("Columns of application data", df_application.columns) print("-------------------------------------------") print("Columns of credit data", df_credit.columns) print("data type of application data", df_application.dtypes) print("-------------------------------------------") print("data type of credit data", df_credit.dtypes) print("columns in application data") print( "--------------------------------------------------------------------------------" ) cat_app_data = [i for i in df_application.select_dtypes(include=np.object).columns] num_app_data = [i for i in df_application.select_dtypes(include=np.number).columns] print("categorical columns in application data", cat_app_data) print( "--------------------------------------------------------------------------------" ) print("numerical columns in application data", num_app_data) print("columns in credit data") print( "--------------------------------------------------------------------------------" ) cat_credit_data = [i for i in df_credit.select_dtypes(include=np.object).columns] num_credit_data = [i for i in df_credit.select_dtypes(include=np.number).columns] print("categorical columns in application data", cat_credit_data) print( "--------------------------------------------------------------------------------" ) print("numerical columns in application data", num_credit_data) df_application.sample(5) df_credit.sample(5) df_final = pd.merge(df_application, df_credit, on="ID", how="inner") df_final.shape df_final.columns df_final.describe().T # The current data file does not have credit card open date. Based on MONTHS_BALANCE, we will find the start month for each of the applicant. Then rearrange the data so that the status is available for month 0 (start month), month 1 (month 1 from the start) and so on. # We assume for the data the earliest MONTHS_BALANCE is the start month for an account. So, we aim to change the as per the below diagram # Earliest Month credit_card_first_month = ( df_final.groupby(["ID"]).agg(start_month=("MONTHS_BALANCE", min)).reset_index() ) credit_card_first_month.head() # We assume that the data were extracted as of 1-Jan-2020 and we are working on finding the calendar start month for each of the accounts. It may be useful to have the calendar account open date for a few analyses. import datetime credit_card_first_month["account_open_month"] = datetime.datetime.strptime( "2020-01-01", "%Y-%m-%d" ) credit_card_first_month["account_open_month"] = credit_card_first_month[ "account_open_month" ] + credit_card_first_month["start_month"].values.astype("timedelta64[M]") credit_card_first_month["account_open_month"] = credit_card_first_month[ "account_open_month" ].dt.strftime("%b-%Y") credit_card_first_month.head() # Account 5008804 has been opened in Oct-2018 and the account 5008805 was opened in Nov-2018. We need to add the start month column to the credit status (credit_status) table. # join the table credit_start_status = pd.merge( credit_card_first_month, df_credit, how="left", on=["ID"] ) credit_start_status["start_month"] = ( abs(credit_start_status["start_month"]) + credit_start_status["MONTHS_BALANCE"] ) credit_start_status.head() # You can see the status by month since the start (start_month) and the relevance of what we have done. # Across all the acquisition months, now we can find portfolio performance across month 1, 2,5, 15, 20 months from their respective account open month. Distribution of account by the status across each of the months is calculated. First, we need to find the accounts by month and status code. credit_start_status["STATUS"].value_counts() accounts_counts = pd.DataFrame( {"start_month": credit_start_status.groupby("start_month")["start_month"].count()} ) import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_axes([0, 0, 1, 1]) ax.bar(accounts_counts.index, accounts_counts["start_month"]) plt.show() # We want to calculate % Bad Rate for the overall portfolio - across all the account open months. This will help us find the period by which the overall bad rate is stable. # Another important observation is that only a small volume of credit card accounts was opened in the early months. These accounts may not be relevant to consider for the modeling. We can check the Bad Rate distribution for these accounts. month_status_counts = ( credit_start_status.groupby(["start_month", "STATUS"]) .size() .reset_index(name="counts") ) month_counts = ( credit_start_status.groupby(["start_month"]).size().reset_index(name="month_counts") ) # join the table month_status_pct = pd.merge( month_status_counts, month_counts, how="left", on=["start_month"] ) month_status_pct["status_pct"] = ( month_status_pct["counts"] / month_status_pct["month_counts"] * 100 ) month_status_pct = month_status_pct.loc[:, ["start_month", "STATUS", "status_pct"]] # Restucture month_status_pct1 = month_status_pct.pivot( index="start_month", columns="STATUS", values="status_pct" ) # Fill with 0 month_status_pct1 = month_status_pct1.fillna(0).reset_index() import matplotlib.pyplot as pt pt.plot( month_status_pct1.index, month_status_pct1["4"] + month_status_pct1["5"], color="green", linestyle="solid", linewidth=2, markersize=12, ) pt.xlabel("Months Since Opened") pt.ylabel("% Bad Rate") # Bad Rate jump significantly for the accounts which are opened for over 50 months. There are the accounts that were opened for the initial days of the operations. It may not be a bad idea to exclude these accounts month_status_pct2 = month_status_pct1.loc[month_status_pct1.index <= 50] # drop column start_month month_status_pct2 = month_status_pct2.drop("start_month", axis=1) import matplotlib.pyplot as plot month_status_pct2.plot.area(stacked=True) plot.show(block=True) import matplotlib.pyplot as pt pt.plot( month_status_pct2.index, month_status_pct2["4"] + month_status_pct2["5"], color="green", linestyle="solid", linewidth=2, markersize=12, ) # The bad rate is almost settled after 18 months from the start, we may decide to consider it as a performance window. Any of the accounts which become bad in the first 18 months, will be termed as Bad and rest as Good. # There may be a difference in performance - Bad rate % by acquisition month. But we are not it exploring that further. Based on status 4 and 5 in the first 18 months, we will term as Bad and otherwise Good. # We will select start months less than 18 (so only the first 18 months are considered) and find max status for each of the credit card account. If the status is 4 or 5, we can call Bad otherwise Good. df_credit["STATUS"].value_counts() credit_start_status.groupby("STATUS")["STATUS"].count() credit_start_status1 = credit_start_status.loc[ (df_credit["STATUS"] != "X") & (df_credit["STATUS"] != "C"), : ] credit_start_status1["status"] = credit_start_status1["STATUS"] credit_start_status1 = credit_start_status1.loc[ credit_start_status1["start_month"] <= 18, ["ID", "start_month", "status"] ] credit_start_status1 = credit_start_status1[(credit_start_status1["status"] != "C")] credit_start_status1 = credit_start_status1[(credit_start_status1["status"] != "X")] credit_start_status1 # Find Max Status Values status = ( credit_start_status1.groupby(["ID"]) .agg( # Max Status max_status=("status", "max") ) .reset_index() ) # Validate status.groupby("max_status")["max_status"].count() import numpy as np # Define status["label"] = np.where(status["max_status"].astype(int) >= int(4), 1, 0) # Validate status.groupby("label")["label"].count() # The data is highly unbalanced - with a bad rate of 0.47%. We can create a biased sample. Taking all observations of Label 1 but small % of observations from label 0. We may want to improve the bad rate to say 10%. So, in the final sample, we will 86 for label 1 and 17968 for label 0. # status.groupby("label")["label"].count() * 100 / len(status["label"]) # The data is highly unbalanced - with a bad rate of 0.47%. We can create a biased sample. Taking all observations of Label 1 but small % of observations from label 0. We may want to improve the bad rate to say 10%. So, in the final sample, we will 189 for label 1 and 1701 for label 0. # Now we want to select randomly 1701 observations from 39562. # All with label 1 label_1 = status.loc[status["label"] == 1, :] # All with label 0 label_0 = status.loc[status["label"] == 0, :] # Select randomly few rows label_0_biased = label_0.sample(n=1701) # Combined Sample IDs with Biased Sampling frames = [label_1, label_0_biased] import pandas as pd labels_biased = pd.concat(frames) # Keep only ID and Label Columns labels_biased = labels_biased.loc[:, ["ID", "label"]] labels_biased # Combine Labels and Application Data model_df = pd.merge(labels_biased, df_application, how="inner", on=["ID"]) len(model_df) model_df.tail() model_df.groupby("label")["label"].count() * 100 / len(model_df["label"]) # Check if missing values def missing_values_table(df): mis_val = df.isnull().sum() mis_val_percent = 100 * df.isnull().sum() / len(df) mis_val_table = pd.concat([mis_val, mis_val_percent], axis=1) mis_val_table_ren_columns = mis_val_table.rename( columns={0: "Missing Values", 1: "% of Total Values"} ) mis_val_table_ren_columns = ( mis_val_table_ren_columns[mis_val_table_ren_columns.iloc[:, 1] != 0] .sort_values("% of Total Values", ascending=False) .round(1) ) print( "Your selected dataframe has " + str(df.shape[1]) + " columns.\n" "There are " + str(mis_val_table_ren_columns.shape[0]) + " columns that have missing values." ) return mis_val_table_ren_columns # source: https://stackoverflow.com/questions/26266362/how-to-count-the-nan-values-in-a-column-in-pandas-dataframe missing_values_table(model_df) # Find Continuous and Categorical Features def featureType(df): import numpy as np from pandas.api.types import is_numeric_dtype columns = df.columns rows = len(df) colTypeBase = [] colType = [] for col in columns: try: try: uniq = len(np.unique(df[col])) except: uniq = len(df.groupby(col)[col].count()) if rows > 10: if is_numeric_dtype(df[col]): if uniq == 1: colType.append("Unary") colTypeBase.append("Unary") elif uniq == 2: colType.append("Binary") colTypeBase.append("Binary") elif rows / uniq > 3 and uniq > 5: colType.append("Continuous") colTypeBase.append("Continuous") else: colType.append("Continuous-Ordinal") colTypeBase.append("Ordinal") else: if uniq == 1: colType.append("Unary") colTypeBase.append("Category-Unary") elif uniq == 2: colType.append("Binary") colTypeBase.append("Category-Binary") else: colType.append("Categorical-Nominal") colTypeBase.append("Nominal") else: if is_numeric_dtype(df[col]): colType.append("Numeric") colTypeBase.append("Numeric") else: colType.append("Non-numeric") colTypeBase.append("Non-numeric") except: colType.append("Issue") # Create dataframe df_out = pd.DataFrame( { "Feature": columns, "BaseFeatureType": colTypeBase, "AnalysisFeatureType": colType, } ) return df_out featureType(model_df) from datetime import timedelta model_df["BIRTH_DATE"] = datetime.datetime.strptime( "2020-01-01", "%Y-%m-%d" ) + model_df["DAYS_BIRTH"].apply(pd.offsets.Day) # DAYS_EMPLOYED: Count backwards from current day(0). If positive, it means the person currently unemployed. # Update DAYS_EMPLOYED greater than 0 to 31 model_df.loc[model_df.DAYS_EMPLOYED > 0, "DAYS_EMPLOYED"] = 31 model_df["EMPLOYMENT_START_DATE"] = datetime.datetime.strptime( "2020-01-01", "%Y-%m-%d" ) + model_df["DAYS_EMPLOYED"].apply(pd.offsets.Day) model_df.head() model_df = pd.merge( model_df, credit_card_first_month.loc[:, ["ID", "account_open_month"]], how="inner", on=["ID"], ) len(model_df) # Age in months model_df["age_months"] = ( pd.to_datetime(model_df["account_open_month"], format="%b-%Y") - model_df.BIRTH_DATE ) / np.timedelta64(1, "M") model_df["age_months"] = model_df["age_months"].astype(int) # Experience/Employment in Months model_df["employment_months"] = ( pd.to_datetime(model_df["account_open_month"], format="%b-%Y") - model_df.EMPLOYMENT_START_DATE ) / np.timedelta64(1, "M") model_df["employment_months"] = model_df["employment_months"].astype(int) model_df.loc[model_df.employment_months < 0, "employment_months"] = -1 model_df = model_df.drop( [ "BIRTH_DATE", "EMPLOYMENT_START_DATE", "account_open_month", "DAYS_BIRTH", "DAYS_EMPLOYED", "FLAG_MOBIL", ], axis=1, ) featureType(model_df) import warnings warnings.filterwarnings("ignore") income_type = ( model_df.groupby(["NAME_INCOME_TYPE", "label"])["NAME_INCOME_TYPE", "label"] .size() .reset_index(name="counts") ) # Restucture income_type = income_type.pivot( index="NAME_INCOME_TYPE", columns="label", values="counts" ) # Fill with 0 income_type = income_type.fillna(0).reset_index() # Rename the columns income_type.columns = ["Income_Type", "Label_0", "Label_1"] # Calculate Bad Rate for each of the income type income_type["pct_obs"] = (income_type["Label_0"] + income_type["Label_1"]) / ( sum(income_type["Label_0"]) + sum(income_type["Label_1"]) ) income_type["pct_label_0"] = income_type["Label_0"] / ( income_type["Label_0"] + income_type["Label_1"] ) income_type["pct_label_1"] = income_type["Label_1"] / ( income_type["Label_0"] + income_type["Label_1"] ) print(income_type) # change missing value for OCCUPATION_TYPE model_df.loc[model_df.OCCUPATION_TYPE == "", "OCCUPATION_TYPE"] = "NA" # One hot Encoding using get_dummies function model_df2 = pd.get_dummies( model_df, columns=[ "CODE_GENDER", "FLAG_OWN_CAR", "FLAG_OWN_REALTY", "NAME_INCOME_TYPE", "NAME_EDUCATION_TYPE", "NAME_FAMILY_STATUS", "NAME_HOUSING_TYPE", "OCCUPATION_TYPE", ], ) len(model_df2) import xgboost as xgb from sklearn.metrics import accuracy_score import pandas as pd import numpy as np model_df2.columns # Features - exclude ID and Label columns features = model_df2.iloc[:, 2:] # Label - select only label column label = model_df2.iloc[:, 1] label model_df2.sample(5) model_df2.dtypes from sklearn.model_selection import train_test_split features_train, features_test, label_train, label_test = train_test_split( features, label, test_size=0.2, random_state=557 ) from pycaret.regression import * from pycaret.classification import * reg_experiment = setup( model_df2, target="label", session_id=42, experiment_name="credit_card_approval", normalize=True, transformation=True, remove_multicollinearity=True, # rop one of the two features that are highly correlated with each other multicollinearity_threshold=0.5, ) best_model = compare_models() rf = create_model("rf") rf = tune_model(rf, optimize="F1") plot_model(rf) plot_model(rf, plot="feature") print(evaluate_model(rf)) interpret_model(rf) pred_holdouts = predict_model(rf) pred_holdouts.head() save_model(tuned_catboost, model_name="./random_forest")
import sklearn import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import warnings warnings.filterwarnings("ignore") data = pd.read_csv("weatherAUS_train.csv") data_test = pd.read_csv("weatherAUS_test.csv") data_test.head() data.head() data.shape data.columns data.describe() from sklearn.preprocessing import LabelEncoder le = LabelEncoder() le_count = 0 for col in data: if data[col].dtype == "object": print(col, len(list(data[col].unique()))) data["RainToday"].value_counts() data["RainToday"].unique() data_test["RainToday"].unique() data_test["RainToday"] = data_test["RainToday"].fillna(value="No") data = data[data["RainToday"].isin(["No", "Yes"])] # data_test = data_test[data_test['RainToday'].isin(['No', 'Yes'])] from sklearn.preprocessing import LabelEncoder le = LabelEncoder() le_count = 0 le.fit(data["RainToday"]) data["RainToday"] = le.transform(data["RainToday"]) le = LabelEncoder() le_count = 0 le.fit(data_test["RainToday"]) data_test["RainToday"] = le.transform(data_test["RainToday"]) data["RainToday"].unique() data.head() import datetime temp1 = data["Date"] temp1 = temp1.apply(lambda s: datetime.datetime.strptime(s, "%Y-%m-%d").date()) data["month"] = temp1.apply(lambda s: s.month) data["year"] = temp1.apply(lambda s: s.year) data.drop(["Date"], 1, inplace=True) import datetime temp2 = data_test["Date"] temp2 = temp2.apply(lambda s: datetime.datetime.strptime(s, "%Y-%m-%d").date()) data_test["month"] = temp2.apply(lambda s: s.month) data_test["year"] = temp2.apply(lambda s: s.year) data_test.drop(["Date"], 1, inplace=True) data.head() data.drop(["WindGustDir", "WindDir9am", "WindDir3pm"], 1, inplace=True) data_test.drop(["WindGustDir", "WindDir9am", "WindDir3pm"], 1, inplace=True) data.head() from sklearn.preprocessing import LabelEncoder le = LabelEncoder() le_count = 0 for col in data: if data[col].dtype == "object": print(col, len(list(data[col].unique()))) clmns = data.columns[data.isnull().any()] missed = pd.DataFrame( data[clmns].isnull().sum().sort_values(ascending=False) / data.shape[0], columns=["% NULL"], ) missed corr = data.corr() plt.figure(figsize=(25, 21)) sns.heatmap(corr, vmax=0.8, square=True, cmap="magma") data.columns # что-то сделать с зависимыми data.drop( ["Pressure9am", "WindSpeed9am", "Temp9am", "Cloud9am", "Humidity9am"], 1, inplace=True, ) data_test.drop( ["Pressure9am", "WindSpeed9am", "Temp9am", "Cloud9am", "Humidity9am"], 1, inplace=True, ) def change_to_loc_month_mean(string): loc_month_map = {} for location in data["Location"].unique(): data_loc = data[data["Location"] == location] for month in range(1, 13): data_loc_month = data_loc[data_loc["month"] == month] loc_month_map[location + str(month)] = data_loc_month[string].mean() tmp = data["Location"] + data["month"].astype(str) tmp_test = data_test["Location"] + data_test["month"].astype(str) tmpstr = "LocMonth" + string data[tmpstr] = tmp.map(loc_month_map) data_test[tmpstr] = tmp_test.map(loc_month_map) array = [ "MinTemp", "MaxTemp", "Rainfall", "Evaporation", "Sunshine", "WindGustSpeed", "WindSpeed3pm", "Humidity3pm", "Pressure3pm", "Cloud3pm", "Temp3pm", "RainToday", ] for string in array: change_to_loc_month_mean(string) data.head() corr = data.corr() plt.figure(figsize=(25, 21)) sns.heatmap(corr, vmax=0.8, square=True, cmap="magma") clmns = data.columns[data.isnull().any()] missed = pd.DataFrame( data[clmns].isnull().sum().sort_values(ascending=False) / data.shape[0], columns=["% NULL"], ) missed for col in [ "Sunshine", "Evaporation", "Cloud3pm", "Pressure3pm", "WindGustSpeed", "Humidity3pm", "Temp3pm", "MaxTemp", "MinTemp", ]: col2 = "LocMonth" + col data[col] = data[col].fillna(data[col2]) data_test = data_test.fillna(data_test[col2]) clmns = data.columns[data.isnull().any()] missed = pd.DataFrame( data[clmns].isnull().sum().sort_values(ascending=False) / data.shape[0], columns=["% NULL"], ) missed data = data.fillna(value=0.0) data_test = data_test.fillna(value=0.0) data.drop(["Location"], 1, inplace=True) data_test.drop(["Location"], 1, inplace=True) clmns = data.columns[data.isnull().any()] missed = pd.DataFrame( data[clmns].isnull().sum().sort_values(ascending=False) / data.shape[0], columns=["% NULL"], ) missed from sklearn.model_selection import train_test_split from sklearn import metrics from sklearn.linear_model import LogisticRegression X = data.loc[:, data.columns != "RainTomorrow"] y = data.loc[:, data.columns == "RainTomorrow"] X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.3, random_state=42 ) model = LogisticRegression(penalty="l1", C=1.0) model.fit(X_train, y_train) for pen in ["l1", "l2"]: for c in np.logspace(-3, 3, 7): model = LogisticRegression(penalty=pen, C=c) model.fit(X_train, y_train) y_train_pred = model.predict(X_train) y_test_pred = model.predict(X_test) print(pen, c) print("Test: ", metrics.f1_score(y_test, y_test_pred, average="weighted")) print("Train: ", metrics.f1_score(y_train, y_train_pred, average="weighted")) model = LogisticRegression() model.fit(X_train, y_train) y_train_pred = model.predict(X_train) y_test_pred = model.predict(X_test) metrics.f1_score(y_train, y_train_pred, average="weighted") metrics.f1_score(y_test, y_test_pred, average="weighted") from sklearn.metrics import classification_report print("Train metrics") print(classification_report(y_train, y_train_pred)) print("Test metrics") print(classification_report(y_test, y_test_pred)) y_train_pred_proba = model.predict_proba(X_train) y_test_pred_proba = model.predict_proba(X_test) from sklearn import metrics score = metrics.roc_auc_score(y_test["RainTomorrow"].values, y_test_pred_proba[:, 1]) print("Test: ", score) score = metrics.roc_auc_score(y_train["RainTomorrow"].values, y_train_pred_proba[:, 1]) print("Train: ", score) from sklearn.metrics import roc_curve, auc fpr = dict() tpr = dict() roc_auc = dict() fpr, tpr, thresholds = metrics.roc_curve(y_test, y_test_pred_proba[:, 1]) roc_auc = auc(fpr, tpr) plt.figure(figsize=(7, 7)) lw = 2 plt.plot( fpr, tpr, color="darkorange", lw=lw, label="ROC curve (area = %0.2f)" % roc_auc ) plt.plot([0, 1], [0, 1], color="navy", lw=lw, linestyle="--") plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") plt.title("Receiver operating characteristic example") plt.legend(loc="lower right") plt.show() answer = model.predict(data_test.loc[:, data_test.columns != "Id"]) data_test["RainTomorrow"] = answer data_test.head() answer = data_test[["Id", "RainTomorrow"]] answer.shape answer.to_csv("answer.csv", index=False)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.metrics import roc_auc_score #!pip install catboost from catboost import CatBoostClassifier from sklearn.utils import class_weight # Reading the Data Files train = pd.read_csv("../input/jobathon-analytics-vidhya/train.csv") print(train.shape) train.head() test = pd.read_csv("../input/jobathon-analytics-vidhya/test.csv") print(test.shape) test.head() # **EDA** sns.countplot(x="Response", data=train) plt.show() sns.countplot(x="Accomodation_Type", data=train, hue="Response") plt.show() sns.countplot(x="Health Indicator", data=train, hue="Response") plt.show() # **Filling missing values** train.isnull().sum() cols_with_missing = [col for col in train.columns if train[col].isnull().any()] print("Columns with Missing values : ") cols_with_missing # Adding new columns to give the information about missing rows for col in cols_with_missing: train[col + "_was_missing"] = train[col].isnull() train[col + "_was_missing"] = train[col + "_was_missing"].apply( lambda x: 1 if x == True else 0 ) cols_with_missing = [col for col in test.columns if test[col].isnull().any()] for col in cols_with_missing: test[col + "_was_missing"] = test[col].isnull() test[col + "_was_missing"] = test[col + "_was_missing"].apply( lambda x: 1 if x == True else 0 ) # Filling missing values with a new category 'X' train["Health Indicator"].fillna("X", inplace=True) test["Health Indicator"].fillna("X", inplace=True) train["Holding_Policy_Duration"].fillna("X", inplace=True) test["Holding_Policy_Duration"].fillna("X", inplace=True) train["Holding_Policy_Type"].fillna("X", inplace=True) test["Holding_Policy_Type"].fillna("X", inplace=True) train.isnull().sum().sum() # **Feature Engineering** # Making the column to be a categorical train["Holding_Policy_Type"] = train["Holding_Policy_Type"].apply(lambda x: str(x)) test["Holding_Policy_Type"] = test["Holding_Policy_Type"].apply(lambda x: str(x)) # Making the column to be a categorical train["Reco_Policy_Cat"] = train["Reco_Policy_Cat"].apply(lambda x: str(x)) test["Reco_Policy_Cat"] = test["Reco_Policy_Cat"].apply(lambda x: str(x)) # Getting a new feature age_diff train["age_diff"] = train["Upper_Age"] - train["Lower_Age"] test["age_diff"] = test["Upper_Age"] - test["Lower_Age"] # Making a copies of original data train_org = train.copy() test_org = test.copy() def response_coding(data, column, alpha): """This function performs reponse coding on the given column with laplace smoothing""" responses = {} train = train_org unique_categories = list(train[column].unique()) for category in unique_categories: prob_score = 0 if 1 in list(train[train[column] == category]["Response"].value_counts().index): prob_score = ( train[train[column] == category]["Response"].value_counts()[1] + alpha * 1 ) / (len(train[train[column] == category]["Response"]) + alpha * 2) else: prob_score = (alpha * 1) / ( len(train[train[column] == category]["Response"]) + alpha * 2 ) responses[category] = prob_score data[column + "_response"] = data[column].apply( lambda x: responses[x] if x in responses.keys() else 0 ) # Getting the reponse coded columns response_coding_columns = [ "Region_Code", "City_Code", "Health Indicator", "Holding_Policy_Duration", "Reco_Policy_Cat", "age_diff", "Reco_Policy_Premium", ] for col in response_coding_columns: response_coding(train, col, 1) response_coding(test, col, 1) # Performing One hot Encoding on Categoricla columns category_labels_dict = {} category_columns = [ "Holding_Policy_Type", "Reco_Policy_Cat", "City_Code", "Health Indicator", ] for column in category_columns: unq_categories = list(train[column].unique()) # dictionary=dict((value,index) for index,value in enumerate(unq_categories) ) category_labels_dict[column] = unq_categories def get_dummies(data, column): category_labels = category_labels_dict[column] for category in category_labels: data[column + "_" + category] = data[column].apply( lambda x: 1 if x == category else 0 ) data.drop([column], axis=1, inplace=True) for column in category_columns: get_dummies(train, column) get_dummies(test, column) # Converting Holding_Policy_Duration into a numeric column train["Holding_Policy_Duration"] = train["Holding_Policy_Duration"].replace("14+", "15") test["Holding_Policy_Duration"] = test["Holding_Policy_Duration"].replace("14+", "15") train["Holding_Policy_Duration"] = train["Holding_Policy_Duration"].apply( lambda x: float(x) if x != "X" else 0 ) test["Holding_Policy_Duration"] = test["Holding_Policy_Duration"].apply( lambda x: float(x) if x != "X" else 0 ) # Performing Label encoding on some columns train["Accomodation_Type"] = train["Accomodation_Type"].apply( lambda x: 1 if x == "Rented" else 0 ) test["Accomodation_Type"] = test["Accomodation_Type"].apply( lambda x: 1 if x == "Rented" else 0 ) train["Reco_Insurance_Type"] = train["Reco_Insurance_Type"].apply( lambda x: 1 if x == "Joint" else 0 ) test["Reco_Insurance_Type"] = test["Reco_Insurance_Type"].apply( lambda x: 1 if x == "Joint" else 0 ) train["Is_Spouse"] = train["Is_Spouse"].apply(lambda x: 1 if x == "Yes" else 0) test["Is_Spouse"] = test["Is_Spouse"].apply(lambda x: 1 if x == "Yes" else 0) # Creating a new column is_joint_and_married train["is_joint_and_married"] = train["Reco_Insurance_Type"] ^ train["Is_Spouse"] test["is_joint_and_married"] = test["Reco_Insurance_Type"] ^ test["Is_Spouse"] train.head() test.head() # **Training** X_train = train.drop(["ID", "Response"], axis=1) y_train = train[["Response"]] X_test = test.drop(["ID"], axis=1) # Creating train and test split X_train, X_cv, y_train, y_cv = train_test_split( X_train, y_train, stratify=y_train, test_size=0.3, random_state=42 ) print("X_train : ", X_train.shape, " y_train : ", y_train.shape) print("X_cv : ", X_cv.shape, " y_cv : ", y_cv.shape) print("X_test : ", X_test.shape) scalar = StandardScaler() columns_std = [ "City_Code_response", "Region_Code_response", "Upper_Age", "Lower_Age", "Health Indicator_response", "Holding_Policy_Duration", "Region_Code", "Holding_Policy_Duration_response", "Reco_Policy_Premium", "age_diff", "Reco_Policy_Cat_response", "age_diff_response", "Reco_Policy_Premium_response", ] scalar.fit(X_train[columns_std]) X_train[columns_std] = scalar.transform(X_train[columns_std]) X_cv[columns_std] = scalar.transform(X_cv[columns_std]) X_test[columns_std] = scalar.transform(X_test[columns_std]) weights = class_weight.compute_class_weight( "balanced", np.unique(y_train["Response"]), y_train["Response"] ) print("Using class weights while training") list(weights) # Training catboost Classifier model params = { "loss_function": "Logloss", "eval_metric": "AUC", "verbose": 200, "random_seed": 42, "class_weights": list(weights), } cat_boost = CatBoostClassifier( **params, ) cat_boost.fit(X_train, y_train, eval_set=(X_cv, y_cv), use_best_model=True, plot=True) print("Train AUC :", roc_auc_score(y_train, cat_boost.predict_proba(X_train)[:, 1])) print("CV AUC :", roc_auc_score(y_cv, cat_boost.predict_proba(X_cv)[:, 1])) feat_imp = [t for t in zip(X_train.columns, cat_boost.get_feature_importance())] feat_imp_df = pd.DataFrame(feat_imp, columns=["feature", "importance"]) feat_imp_df = feat_imp_df.sort_values("importance", ascending=False) print("Most important Features are :") feat_imp_df = feat_imp_df[feat_imp_df["importance"] >= 1] sns.barplot(x="importance", y="feature", data=feat_imp_df) plt.show() def predict(model, filename): """This function takes model and filename and gives predictions csv file""" predicted_proba = model.predict_proba(X_test) predicted_proba = np.asarray(predicted_proba) predicted_proba = predicted_proba[:, 1] predictions = pd.DataFrame(columns=["ID", "Response"]) predictions["ID"] = test["ID"] predictions["Response"] = predicted_proba predictions.to_csv(filename, index=False) return predictions predictions = predict(cat_boost, "submission.csv") predictions.head()
import os import matplotlib.pyplot as plt import numpy as np import pandas as pd from PIL import Image import torch from torch.utils.data import DataLoader from datasets import load_dataset, Dataset, Image from huggingface_hub import HfApi, HfFolder, notebook_login device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(device) # # 1. Train dataset # ## 1.1 Load the dataset ds_train = load_dataset("pphuc25/iBioHash50k_labels_150k") ds_train = ds_train["train"] print(ds_train) # ## 1.2 EDA the train dataset # ### a. labels count print("Number of rows in dataset:") print(len(ds_train)) print("Number of categories in dataset:") print(len(ds_train.unique("labels"))) ds_train_labels = pd.Series(ds_train["labels"]) labels_count = ds_train_labels.value_counts() # Sort the count based on the labels labels_count = labels_count.sort_index() print(labels_count) labels_count_df = labels_count.reset_index() labels_count_df.columns = ["label", "count"] labels_count_df["per total (%)"] = labels_count_df["count"] / len(ds_train) * 100 labels_count_df.head(10) ### Top 5 most AND least freqeuent labels print("Top 5 most counts") print(labels_count_df.sort_values("count", ascending=False).head(5)) print("\n") print("Top 5 least counts") print(labels_count_df.sort_values("count", ascending=True).head(5)) # labels_count_top10.plot(x='label', y='count', kind='bar', legend=False) # plt.title('Top 10 label counts in training dataset') # plt.xlabel('Label') # plt.ylabel('Count') # plt.show() # ### b. image shapes # ds_train = ds_train.with_format('torch', device=device) ds_train[0]["image"].size # Define function to get image shape ## When use batched=True, each argument passed in map func is an entire batch def get_img_shape(samples): img_shapes = [img.size for img in samples["image"]] return {"img_shapes": img_shapes} # By default, the map function will return the entire dataset mapped with the new columns, # so we should remove them ds_img_shapes = ds_train.map( get_img_shape, batched=True, num_proc=4, remove_columns=ds_train.column_names ) np_img_shapes = np.array(ds_img_shapes["img_shapes"]) print(np_img_shapes.shape) df_img_shapes = pd.DataFrame(np_img_shapes, columns=["w", "h"]) df_img_shapes["aspect_ratio_w:h"] = df_img_shapes["w"] / df_img_shapes["h"] df_img_shapes.head() df_img_shapes["aspect_ratio_w:h"].hist(grid=True, bins=50, range=(0, 3.5)) plt.xlabel("aspect ratio (w/h)") plt.ylabel("count") plt.show() df_img_shapes.to_csv("ds_img_shapes.csv")
# # Movie Recommender System # https://www.kaggle.com/datasets/rounakbanik/the-movies-dataset import os import pandas as pd import numpy as np from surprise import * from surprise.model_selection import * import matplotlib.pyplot as plt # # Loading Dataset movie_df = pd.read_csv("/kaggle/input/the-movies-dataset/ratings_small.csv") movie_df reader = Reader(rating_scale=(0.5, 5.0)) data = Dataset.load_from_df(movie_df[["userId", "movieId", "rating"]], reader) trainset, testset = train_test_split(data, test_size=0.25) # **Computing the average MAE and RMSE of the Probabilistic Matrix Factorization (PMF), Userbased Collaboratice Filtering, Item based Collaborative Filtering, under the 5-fold cross-validation** user_based = KNNBasic(user_based=True) item_based = KNNBasic(user_based=False) pmf = SVD(biased=False) metrics = ["rmse", "mae"] user_based_results = cross_validate(user_based, data, measures=metrics, cv=5) item_based_results = cross_validate(item_based, data, measures=metrics, cv=5) pmf_results = cross_validate(pmf, data, measures=metrics, cv=5) print("User-based CF RMSE:", user_based_results["test_rmse"].mean()) print("User-based CF MAE:", user_based_results["test_mae"].mean()) print("Item-based CF RMSE:", item_based_results["test_rmse"].mean()) print("Item-based CF MAE:", item_based_results["test_mae"].mean()) print("PMF RMSE:", pmf_results["test_rmse"].mean()) print("PMF MAE:", pmf_results["test_mae"].mean()) # # Cosine, Mean Squared Difference, and Pearson Similarites user_based_cosine = KNNBasic(user_based=True, name="cosine") user_based_msd = KNNBasic(user_based=True, name="msd") user_based_pearson = KNNBasic(user_based=True, name="pearson") item_based_cosine = KNNBasic(user_based=False, name="cosine") item_based_msd = KNNBasic(user_based=False, name="msd") item_based_pearson = KNNBasic(user_based=False, name="pearson") user_based_cosine_results = cross_validate( user_based_cosine, data, measures=metrics, cv=5 ) user_based_msd_results = cross_validate(user_based_msd, data, measures=metrics, cv=5) user_based_pearson_results = cross_validate( user_based_pearson, data, measures=metrics, cv=5 ) item_based_cosine_results = cross_validate( item_based_cosine, data, measures=metrics, cv=5 ) item_based_msd_results = cross_validate(item_based_msd, data, measures=metrics, cv=5) item_based_pearson_results = cross_validate( item_based_pearson, data, measures=metrics, cv=5 ) user_based_scores = [ user_based_cosine_results, user_based_msd_results, user_based_pearson_results, ] item_based_scores = [ item_based_cosine_results, item_based_msd_results, item_based_pearson_results, ] user_based_scores x_labels = ["Cosine", "MSD", "Pearson"] plt.figure(figsize=(10, 5)) plt.subplot(1, 2, 1) plt.boxplot([x["test_rmse"] for x in user_based_scores], labels=x_labels) plt.title("User-Based") plt.ylabel("RMSE") plt.subplot(1, 2, 2) plt.boxplot([x["test_rmse"] for x in item_based_scores], labels=x_labels) plt.title("Item-Based") plt.ylabel("RMSE") plt.show() x_labels = ["Cosine", "MSD", "Pearson"] plt.figure(figsize=(10, 5)) plt.subplot(1, 2, 1) plt.boxplot([x["test_mae"] for x in user_based_scores], labels=x_labels) plt.title("User-Based") plt.ylabel("MAE") plt.subplot(1, 2, 2) plt.boxplot([x["test_mae"] for x in item_based_scores], labels=x_labels) plt.title("Item-Based") plt.ylabel("MAE") plt.show() # # K Number of Neighbors user_k_results = [] item_k_results = [] for k in range(1, 25): user_based = KNNWithMeans(user_based=True, k=k) item_based = KNNWithMeans(user_based=False, k=k) user_results = cross_validate(user_based, data, measures=["rmse"], cv=5) item_results = cross_validate(item_based, data, measures=["rmse"], cv=5) user_k_results.append(user_results["test_rmse"].mean()) item_k_results.append(item_results["test_rmse"].mean()) plt.plot(range(1, 25), user_k_results, label="User-based") plt.plot(range(1, 25), item_k_results, label="Item-based") plt.xlabel("Number of K") plt.ylabel("RMSE") plt.legend() plt.show() best_user_k = user_k_results.index(min(user_k_results)) + 1 best_item_k = item_k_results.index(min(item_k_results)) + 1 print( "Best K for user-based collaborative filtering:", best_user_k, "with a score of ", min(user_k_results), ) print( "Best K for item-based collaborative filtering:", best_item_k, "with a score of ", min(item_k_results), )
# # Introduction # In order to analyze the [stock market database](https://www.kaggle.com/datasets/paultimothymooney/stock-market-data) a process prior to the data analysis had to be done. This database consists of json and csv files arranged in a directory tree. Because of this the nature of the data is not clear at first. # The main goal of this notebook is to create an strategy for an efficient data retrieval. In order to do this we will explore the structure of the directories first and then we will proceed to identify the particular features of every file in this directories. # # Exploratory analysis # import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import os # directory access and manipulation import json # json accsess, manipulation and parsing import csv as csv_manager # csv accsess, manipulation and parsing # I defined this function to be used a decorator in order to troubleshoot unexpected runtime errors (like those caused by deletion of directories) def failproof_rtine(funct): def wrapper(*args, **kwargs): try: return funct(*args, **kwargs) except Exception as e: print("In {}:".format(str(funct.__name__))) print(e) return wrapper # ## Database basic structure # The **stock market data** database is a document based database where the parent directory **stock_market_data** forks into four directories: # * forbes2000 # * nyse # * nasdaq # * sp500 # Every one of this directories are related to a stock market. Each of this directories are subdivided into two subdirectories: # **csv** and **json**. # # We define this "constants" to be used throughout this notebook working_directory = "/kaggle/input/stock-market-data/stock_market_data" stock_exchange_names = ["forbes2000", "nyse", "nasdaq", "sp500"] # Each of the symbols (securities) in each stock market can be found in every of the json and csv directories. The next functions can be used to improve the access to this files as well as to pinpoint possible problems. ##ID 10 # return the names of all available symbols in a stock market (file extension has to be specified) @failproof_rtine def get_symbols_market(stock_exchange_name, extension="json"): current_file_path = "/".join([working_directory, stock_exchange_name, extension]) current_file_names = os.listdir(current_file_path) if extension == "json": char_offset = -5 if extension == "csv": char_offset = -4 return [ current_file_name[0:char_offset] for current_file_name in current_file_names ] # this function relates stock markets to available symbols in a dictionary @failproof_rtine def get_symbols_relation(extension="json"): return { stock_exchange_name: get_symbols_market(stock_exchange_name, extension) for stock_exchange_name in stock_exchange_names } # get a comprehensive list of symbols names (disregarding of the stock market) @failproof_rtine def get_symbols(extension="json", relation_data=None): # if the stock market/symbol relation is provided we can skip this step if relation_data is None: current_data = get_symbols_relation(extension) else: print("cached") current_data = relation_data output_data = [] for stock_exchange_name in stock_exchange_names: output_data += current_data[stock_exchange_name] # remove duplicates output_data = list(set(output_data)) output_data.sort() return output_data try: print("We have {} json files".format(len(get_symbols(extension="json")))) except: print("No json files found") try: print("We have {} csv files".format(len(get_symbols(extension="csv")))) except: print("No json files found") # Depending on the database version one could have more or less csv files than json files. This means that there are (possibly) some missing files. # Now, let's take a look on the data that these files have. @failproof_rtine def get_symbol_raw_data( stock_exchange_name, symbol_name, extension="json", verbose=False ): current_file_path = "".join( [ "/".join([working_directory, stock_exchange_name, extension, symbol_name]), ".", extension, ] ) if extension == "json": try: with open(current_file_path) as current_file: output_data = json.load(current_file) return output_data except Exception as e: if verbose: print(e) if extension == "csv": try: with open(current_file_path) as current_file: output_data = csv_manager.DictReader(current_file) return pd.DataFrame(output_data) except Exception as e: if verbose: print(e) # let's try this out for the amazon securities in the nasdaq stock market amazon_json_data = get_symbol_raw_data("nasdaq", "AMZN", "json") # There is more data on other attributes, but it is too large to be diplayed, we will deal with it later display(amazon_json_data["chart"]["result"][0]["meta"]) # actually most of the dropped attributes can be found in the csv file (as we will show later) amazon_csv_data = get_symbol_raw_data("nasdaq", "AMZN", "csv") display(amazon_csv_data) # The last method allow us to detect problems in data access (if the data file we try to access cannot be opened the output is None) # We want to know how many files are corrupted according to the next criteria: A file is corrupted if # * either its json or csv version cannot opened # * either its json or csv version does not exist mismatches = 0 num_scanned_files = 0 for stock_exchange_name in stock_exchange_names: current_json_filedir = "/".join([working_directory, stock_exchange_name, "json"]) current_csv_filedir = "/".join([working_directory, stock_exchange_name, "csv"]) available_json_files = get_symbols_market(stock_exchange_name, extension="json") num_scanned_files += len(available_json_files) print("Scanning the directory:{}".format(stock_exchange_name)) for current_symbol in available_json_files: # to see the full log set verbose=True current_json_file_data = get_symbol_raw_data( stock_exchange_name, current_symbol, "json" ) current_csv_file_data = get_symbol_raw_data( stock_exchange_name, current_symbol, "csv" ) if (current_json_file_data is None) or (current_csv_file_data is None): mismatches += 1 print("{} mismatches found in {} files".format(mismatches, num_scanned_files)) # print(available_json_files[0:1000]) # Before proceeding with a deeper database analysis, we define a way to pick random files from the database. ##ID 13 @failproof_rtine def choose_random_symbol(extension="json", relation_data=None): if relation_data is None: current_data = get_symbols_relation(extension) id_stock_market = np.random.randint(low=0, high=len(stock_exchange_names)) id_symbol = np.random.randint( low=0, high=len(current_data[stock_exchange_names[id_stock_market]]) ) return ( stock_exchange_names[id_stock_market], current_data[stock_exchange_names[id_stock_market]][id_symbol], ) # TO DELETE try: currrent_stock_exchange_name, current_symbol = choose_random_symbol(extension="csv") print( "Showing data from \033[1m{}\033[0m in stock market \033[1m{}\033[0m".format( current_symbol, currrent_stock_exchange_name ) ) instance_symbol_data = get_symbol_raw_data( currrent_stock_exchange_name, current_symbol, "csv", verbose=True ) display(instance_symbol_data) except Exception as e: print(e) # In this stage, several processes require traversing the whole database. This can take a lot of time. In order to estimate the run time for a process one could estimate the time for a smaller portion of it. Since this task can be needed a lot one could use a decorator to # avoid code repetition def timeout_callback(func): def wrapper(*args, **kwargs): initial_time = np.datetime64("now") return_val = func(*args, **kwargs) ending_time = np.datetime64("now") print( "Excecution time: {}ms".format( (ending_time - initial_time) / np.timedelta64(1, "ms") ) ) return return_val return wrapper # @timeout_callback # def test_timeout_callback(eq_modulus): # roots_num=0 # for i in range(1,1000000): # if (i*i*i+i*i-i)%eq_modulus==1: # roots_num+=1 # return roots_num # print(test_timeout_callback(4)) # # Dictionary analysis's functions # Going deeper into the structure of the data we need to identify the possible attributes (features) found in the json files. # Since we parse the json files into (python data type) nested dictionaries we need to find the possible paths # in every dictionary. In this context a path means a combination of keys until we get to an atomic data type. For instance the dictionary: # # {'a': {'aa': 2, 'ab': True, 'ac': 1.2}, # 'b': {'ba': -922, 'bb': 0.977, 'bc': True}} # Has paths # a/aa, a/ab, a/ac... # We will add the type in the first stages of the analysis in order to determine the final data type(s) used. In this case we will have the paths: # a/aa/Integer, a/ab/Boolean, a/ac/Numeric... # # a primitive in this case is defined as boolean,string,integer or numeric variable # any other (including na/null) aren't considered primitives def is_primitive(input_obj): return ( isinstance(input_obj, bool) or isinstance(input_obj, str) or isinstance(input_obj, int) or isinstance(input_obj, float) ) # identified types include primitive types, na, list and dictionaries(objects) # any other is labeled as unidentified def is_unidentified_type(input_obj): return not ( isinstance(input_obj, bool) or isinstance(input_obj, str) or isinstance(input_obj, int) or isinstance(input_obj, float) or isinstance(input_obj, dict) or isinstance(input_obj, list) ) # defines a type to string conversion. def type_to_str(input_obj): try: if input_obj is None: return "NA" if isinstance(input_obj, bool): return "Boolean" if isinstance(input_obj, str): return "String" if isinstance(input_obj, int): return "Integer" if isinstance(input_obj, float): return "Numeric" if isinstance(input_obj, list): return [type_to_str(entry) for entry in input_obj] if isinstance(input_obj, dict): return { entry_name: type_to_str(input_obj[entry_name]) for entry_name in input_obj.keys() } except Exception as e: print(e) print(input_obj) # there might be other types (like set) which are not considered here return "Unidentified" # transforms a nested list (a list which contains other lists) into a plain list def list_reducer(input_list): if isinstance(input_list, list): output = [] for input_list_val in input_list: if isinstance(input_list_val, list): output.extend(list_reducer(input_list_val)) else: output.append(input_list_val) return output else: return input_list # returns all the object types found inside an object or primitive def get_all_paths(input_dict): paths = [] if is_primitive(input_dict) or input_dict is None: paths = type_to_str(input_dict) if isinstance(input_dict, list): paths = list_reducer( [get_all_paths(input_dict_val) for input_dict_val in input_dict] ) if isinstance(input_dict, dict): for input_key in input_dict.keys(): if is_primitive(input_dict[input_key]) or (input_dict[input_key] is None): paths.append("/".join([input_key, type_to_str(input_dict[input_key])])) if isinstance(input_dict[input_key], dict) and ( len(input_dict[input_key].keys()) != 0 ): paths.extend( [ "/".join([input_key, current_path]) for current_path in get_all_paths(input_dict[input_key]) ] ) elif isinstance(input_dict[input_key], list) and ( len(input_dict[input_key]) != 0 ): paths.extend( [ "/".join([input_key, current_path]) for current_path in list_reducer( get_all_paths(input_dict[input_key]) ) ] ) else: continue return paths # drops the repetitions found in the latter function def get_all_unique_paths(input_dict): if input_dict is None: return [] else: return list(set(get_all_paths(input_dict))) # Lets try this out on a file current_symbol_data = get_symbol_raw_data("sp500", "ENS", "json") get_all_unique_paths(current_symbol_data) # Next, we express a set of paths in a condensed manner: Instead of having a list of paths we create a dictionary whose endpoints (atomic data types) are the data types of the attributes repressented by these paths. # import re identifiable_types = ["NA", "Boolean", "String", "Integer", "Numeric", "Unidentified"] def split_path(input_path): return re.findall(r"[^/]+", input_path) def is_valid_type(type_strfmt): return type_strfmt in identifiable_types def rectify_path(input_path): keys_list = split_path(input_path) if len(keys_list) == 0: return type_strfmt = keys_list[-1] if not is_valid_type(type_strfmt): keys_list.append("NA") return rectify_path("/".join(keys_list)) return input_path def initialize_dict_path(input_path, verbose=True): output_dict = {} keys_list = split_path(input_path) if len(keys_list) == 0: return elif len(keys_list) == 1: output_dict = {"Unamed variable": keys_list[-1]} elif len(keys_list) == 2: output_dict = {keys_list[0]: keys_list[1]} else: key_val_mapping = list(enumerate(keys_list[::-1])) for key, value in key_val_mapping: if key == 0: output_dict = value else: if verbose: print("({},{})".format(key, value)) output_dict = nest_dict({}, output_dict, sub_name=value) return output_dict def append_path_dict(input_path, input_dict={}): output_dict = input_dict.copy() keys_list = split_path(input_path) if len(keys_list) == 0: return else: track = [] temp = output_dict for id_key in range(len(keys_list)): try: if keys_list[id_key] in temp.keys(): temp = temp[keys_list[id_key]] if isinstance(temp, dict): track.append((keys_list[id_key], temp)) else: break else: break except Exception as e: print("append_path_dict error") print(e) if not bool(output_dict): return initialize_dict_path(input_path, verbose=False) if not id_key == (len(keys_list) - 1): remaining_keys = keys_list[id_key:] if len(track) == 0: output_dict[keys_list[0]] = keys_list[1] return output_dict if len(remaining_keys) == 2: tempy = track.pop() tempy[1][keys_list[id_key]] = remaining_keys[1] return output_dict else: dict_to_append = initialize_dict_path( "/".join(remaining_keys[1:]), verbose=False ) tempy = track.pop() tempy[1][keys_list[id_key]] = dict_to_append return output_dict def nest_dict(input_dict_one, input_dict_two, sub_name="Unamed"): output_dict = input_dict_one output_dict[sub_name] = input_dict_two return output_dict def path_decoder(input_path_list): output_dict = {} if len(input_path_list) > 0: input_path_transformed_list = [ rectify_path(input_path) for input_path in input_path_list ] try: for current_input_path in input_path_transformed_list: if len(output_dict.keys()) == 0: # print(current_input_path) output_dict = append_path_dict(current_input_path) else: temp_dict = output_dict.copy() output_dict = append_path_dict(current_input_path, temp_dict) except Exception as e: print(e) return output_dict path_decoder(get_all_unique_paths(current_symbol_data)) # The latter file could not be enough to find all the possible paths found in the json files (python directories) # We will scan the whole database to find all the possible paths. @timeout_callback def find_all_available_paths(): path_set = set() for stock_exchange_name in stock_exchange_names: print(stock_exchange_name) symbols_in_market = get_symbols_market(stock_exchange_name, extension="json") for current_symbol in symbols_in_market: current_data = get_symbol_raw_data( stock_exchange_name, current_symbol, "json" ) current_data = get_all_unique_paths(current_data) path_set = path_set.union(set(current_data)) # print(path_set) return path_set my_json_paths = find_all_available_paths() # From these we have a comprehensive list of paths from which lots of the start with **chart/result/events/splits|chart/result/events/dividends** or **chart/result/events/splits|chart/result/events/splits**. We will explore those later, by now let's look at the remaining paths # path_decoder(get_all_unique_paths(kangaroo)) try: posssible_main_paths = [ current_path for current_path in my_json_paths if len( re.findall( r"^(chart/result/events/splits|chart/result/events/dividends)", current_path, ) ) == 0 ] print(posssible_main_paths) except Exception as e: print(e) # Looking at the paths starting with **chart/result/events/splits|chart/result/events/dividends** or **chart/result/events/splits|chart/result/events/splits** # ... # 'chart/result/events/splits/1402925400/denominator/Integer', # 'chart/result/events/dividends/1305552600/date/Integer', # 'chart/result/events/splits/1070461800/numerator/Integer', # 'chart/result/events/splits/1495719000/numerator/Integer', # 'chart/result/events/dividends/1224509400/amount/Numeric', # ... # we observe a pattern: every of those paths are followed by a number then a series of atributtes follow, the most interesting part can be found just after the data type. Let us confirm this observation by running the following code set( [ "".join((current_path.split("/"))[-2]) for current_path in my_json_paths if len( re.findall( r"^(chart/result/events/splits|chart/result/events/dividends)", current_path, ) ) != 0 ] ) # Further observations allow to conclude that: # * every dividend (path starting with chart/result/events/dividends) has a date and an amount # * every split (path starting withchart/result/events/splits) has a date a numerator and denominator and a split ratio # * the key between the prefix (chart/result/events/splits or chart/result/events/dividends) and **date**, **denominator**, **numerator**, **splitRatio** matches the value of **date** (as we can verify by accessing several files) # So far we have identified the structured of the json files. The features contained in them will be divided in seven categories: # 1. **metadata**: Basic information about the current symbol: # * chart/result/meta/chartPreviousClose,chart/result/meta/currency # * chart/result/meta/dataGranularity,chart/result/meta/exchangeName # * chart/result/meta/exchangeTimezoneName # * chart/result/meta/firstTradeDate # * chart/result/meta/gmtoffset,chart/result/meta/instrumentType # * chart/result/meta/priceHint # * chart/result/meta/range # * chart/result/meta/regularMarketPrice # * chart/result/meta/regularMarketTime # * chart/result/meta/symbol # * chart/result/meta/timezone # * chart/result/meta/validRanges # 2. **trade data**: the most important variables in trading operations # * chart/result/timestamp # * chart/result/indicators/quote/high # * chart/result/indicators/quote/open # * chart/result/indicators/quote/close # * chart/result/indicators/quote/low # * chart/result/indicators/quote/volume # * chart/result/indicators/adjclose # 3. **current trading period pre**: # * chart/result/meta/currentTradingPeriod/pre/end # * chart/result/meta/currentTradingPeriod/pre/gmtoffset # * chart/result/meta/currentTradingPeriod/pre/start # * chart/result/meta/currentTradingPeriod/pre/timezone # 4. **current trading period regular**: # * chart/result/meta/currentTradingPeriod/regular/end # * chart/result/meta/currentTradingPeriod/regular/gmtoffset # * chart/result/meta/currentTradingPeriod/regular/start # * chart/result/meta/currentTradingPeriod/regular/timezone # 5. **current trading period post** : # * chart/result/meta/currentTradingPeriod/post/end # * chart/result/meta/currentTradingPeriod/post/gmtoffset # * chart/result/meta/currentTradingPeriod/post/start # * chart/result/meta/currentTradingPeriod/post/timezone # 6. **dividends**: chart/result/events/dividends # 7. **splits**: chart/result/events/splits # # Data extraction # Now we have studied the nature and structure of the data we can define access methods that enable us to proceed to a deeper data analysis. # # allows to get retrieve data from a dictionary using a path def get_attribute_in_path(path_string, input_dict, verbose=False, has_type_suffix=True): keys_list = path_string.split("/") # the data type is remove (if there is any) if has_type_suffix: keys_list.pop() if isinstance(input_dict, list): return [ get_attribute_in_path( path_string, input_dict_entry, verbose, has_type_suffix ) for input_dict_entry in input_dict ] if len(keys_list) == 1: if keys_list[0] in input_dict.keys(): return input_dict[keys_list[0]] else: current_node = input_dict for id_key, key in enumerate(keys_list): if isinstance(current_node, dict): if key in current_node.keys(): current_node = current_node[key] else: if verbose: print( "get_attribute_in_path: wrong path {}".format(path_string) ) return None elif isinstance(current_node, list): # print(len(keys_list[id_key+1:])==0) return [ get_attribute_in_path( "/".join(keys_list[id_key:]), current_node_item, verbose, has_type_suffix, ) for current_node_item in current_node ] else: return None return current_node # this function is defined to be used in other functions that traverse the whole database def dict_has_attribute(path_string, input_dict, has_type_suffix=True): outcome = not ( get_attribute_in_path(path_string, input_dict, has_type_suffix=has_type_suffix) is None ) return outcome # It's time to test the new functions currrent_stock_exchange_name, current_symbol = choose_random_symbol(extension="json") print(currrent_stock_exchange_name) print(current_symbol) current_data_json = get_symbol_raw_data( currrent_stock_exchange_name, current_symbol, "json" ) current_data_csv = get_symbol_raw_data( currrent_stock_exchange_name, current_symbol, "csv" ) print( "previous close: {}".format( get_attribute_in_path( "chart/result/meta/chartPreviousClose", current_data_json, has_type_suffix=False, ) ) ) print( "currency: {}".format( get_attribute_in_path( "chart/result/meta/currency", current_data_json, has_type_suffix=False ) ) ) print( "data granularity: {}".format( get_attribute_in_path( "chart/result/meta/dataGranularity", current_data_json, has_type_suffix=False, ) ) ) print( "exchange name: {}".format( get_attribute_in_path( "chart/result/meta/exchangeName", current_data_json, has_type_suffix=False ) ) ) print( "timezone name: {}".format( get_attribute_in_path( "chart/result/meta/exchangeTimezoneName", current_data_json, has_type_suffix=False, ) ) ) print( "first trade date: {}".format( get_attribute_in_path( "chart/result/meta/firstTradeDate", current_data_json, has_type_suffix=False ) ) ) print( "gmtoffset: {}".format( get_attribute_in_path( "chart/result/meta/gmtoffset", current_data_json, has_type_suffix=False ) ) ) print( "instrument type: {}".format( get_attribute_in_path( "chart/result/meta/instrumentType", current_data_json, has_type_suffix=False ) ) ) print( "price hint: {}".format( get_attribute_in_path( "chart/result/meta/priceHint", current_data_json, has_type_suffix=False ) ) ) print( "range: {}".format( get_attribute_in_path( "chart/result/meta/range", current_data_json, has_type_suffix=False ) ) ) print( "regular market price: {}".format( get_attribute_in_path( "chart/result/meta/regularMarketPrice", current_data_json, has_type_suffix=False, ) ) ) print( "regular market time: {}".format( get_attribute_in_path( "chart/result/meta/regularMarketTime", current_data_json, has_type_suffix=False, ) ) ) print( "symbol: {}".format( get_attribute_in_path( "chart/result/meta/symbol", current_data_json, has_type_suffix=False ) ) ) print( "timezone: {}".format( get_attribute_in_path( "chart/result/meta/timezone", current_data_json, has_type_suffix=False ) ) ) print( "valid Ranges: {}".format( get_attribute_in_path( "chart/result/meta/validRanges", current_data_json, has_type_suffix=False ) ) ) # print('timestamp: {}'.format(get_attribute_in_path('chart/result/timestamp',current_data_json,has_type_suffix=False))) print( "current trading period post end: {}".format( get_attribute_in_path( "chart/result/meta/currentTradingPeriod/post/end", current_data_json, has_type_suffix=False, ) ) ) print( "current trading period post gmtoffset: {}".format( get_attribute_in_path( "chart/result/meta/currentTradingPeriod/post/gmtoffset", current_data_json, has_type_suffix=False, ) ) ) print( "current trading period post start: {}".format( get_attribute_in_path( "chart/result/meta/currentTradingPeriod/post/start", current_data_json, has_type_suffix=False, ) ) ) print( "current trading period post timezone: {}".format( get_attribute_in_path( "chart/result/meta/currentTradingPeriod/post/timezone", current_data_json, has_type_suffix=False, ) ) ) print( "current trading period pre end: {}".format( get_attribute_in_path( "chart/result/meta/currentTradingPeriod/pre/end", current_data_json, has_type_suffix=False, ) ) ) print( "current trading period pre gmtoffset: {}".format( get_attribute_in_path( "chart/result/meta/currentTradingPeriod/pre/gmtoffset", current_data_json, has_type_suffix=False, ) ) ) print( "current trading period pre start: {}".format( get_attribute_in_path( "chart/result/meta/currentTradingPeriod/pre/start", current_data_json, has_type_suffix=False, ) ) ) print( "current trading period pre timezone: {}".format( get_attribute_in_path( "chart/result/meta/currentTradingPeriod/pre/timezone", current_data_json, has_type_suffix=False, ) ) ) print( "current trading period regular end: {}".format( get_attribute_in_path( "chart/result/meta/currentTradingPeriod/regular/end", current_data_json, has_type_suffix=False, ) ) ) print( "current trading period regular gmtoffset: {}".format( get_attribute_in_path( "chart/result/meta/currentTradingPeriod/regular/gmtoffset", current_data_json, has_type_suffix=False, ) ) ) print( "current trading period regular start: {}".format( get_attribute_in_path( "chart/result/meta/currentTradingPeriod/regular/start", current_data_json, has_type_suffix=False, ) ) ) print( "current trading period regular timezone: {}".format( get_attribute_in_path( "chart/result/meta/currentTradingPeriod/regular/timezone", current_data_json, has_type_suffix=False, ) ) ) current_data_json_splits = get_attribute_in_path( "chart/result/events/splits", current_data_json, has_type_suffix=False ) display(current_data_json_splits[0]) current_data_json_dividends = get_attribute_in_path( "chart/result/events/dividends", current_data_json, has_type_suffix=False ) display(current_data_json_dividends[0]) current_data_json_date = get_attribute_in_path( "chart/result/timestamp", current_data_json, has_type_suffix=False ) current_data_json_high = get_attribute_in_path( "chart/result/indicators/quote/high", current_data_json, has_type_suffix=False ) current_data_json_open = get_attribute_in_path( "chart/result/indicators/quote/open", current_data_json, has_type_suffix=False ) current_data_json_close = get_attribute_in_path( "chart/result/indicators/quote/close", current_data_json, has_type_suffix=False ) current_data_json_low = get_attribute_in_path( "chart/result/indicators/quote/low", current_data_json, has_type_suffix=False ) current_data_json_volume = get_attribute_in_path( "chart/result/indicators/quote/volume", current_data_json, has_type_suffix=False ) current_data_json_adjclose = get_attribute_in_path( "chart/result/indicators/adjclose/adjclose", current_data_json, has_type_suffix=False, ) try: current_data_json_close = list_reducer(current_data_json_close) current_data_json_open = list_reducer(current_data_json_open) current_data_json_high = list_reducer(current_data_json_high) current_data_json_low = list_reducer(current_data_json_low) current_data_json_volume = list_reducer(current_data_json_volume) current_data_json_adjclose = list_reducer(current_data_json_adjclose) current_data_json_date = list_reducer(current_data_json_date) # this has the same information (could be more) as the csv file (if exists) current_data_csv_alt = pd.DataFrame( { "date": pd.to_datetime(current_data_json_date, unit="s"), "low": current_data_json_low, "open": current_data_json_open, "volume": current_data_json_volume, "high": current_data_json_high, "close": current_data_json_close, "adjclose": current_data_json_adjclose, } ) display(current_data_csv_alt.tail(10)) except Exception as e: print(e) try: # note that current_data_csv could be None (if no csv was found) display(current_data_csv.tail(10)) except Exception as e: print(e) # this method improve the ones we have in that the output is a little bit more what we would expect def path_query_debug(input_dict, path_name, label): try: # the list reducer function gets rid of redundant nested class (things like [[[9,0]]] to [9,0]) output_data = list_reducer( get_attribute_in_path(path_name, input_dict, has_type_suffix=False) ) # the previous methods struggle with attributes that have lists, this parts allow to fix that if isinstance(output_data, list): # In most cases the output of previous methods is an array with one element. In this cases we usually expect only that # value as output if len(output_data) == 1: output_data = output_data[0] if output_data is None: error_found = True else: error_found = False except Exception as e: print(e) output_data = None error_found = True return error_found, label, output_data path_query_debug(current_data_json, "chart/result/meta/symbol", "symbol") # This function is manly used to spot errors in data extraction, this is a way in which can be used def get_data_json_final(input_dict): output_data = [] output_data.append( path_query_debug( input_dict, "chart/result/meta/chartPreviousClose", "previous close" ) ) output_data.append( path_query_debug(input_dict, "chart/result/meta/currency", "currency") ) output_data.append( path_query_debug( input_dict, "chart/result/meta/dataGranularity", "data granularity" ) ) output_data.append( path_query_debug(input_dict, "chart/result/meta/exchangeName", "exchange name") ) output_data.append( path_query_debug( input_dict, "chart/result/meta/exchangeTimezoneName", "timezone name" ) ) output_data.append( path_query_debug( input_dict, "chart/result/meta/firstTradeDate", "first trade date" ) ) output_data.append( path_query_debug(input_dict, "chart/result/meta/gmtoffset", "gmtoffset") ) output_data.append( path_query_debug( input_dict, "chart/result/meta/instrumentType", "instrument type" ) ) output_data.append( path_query_debug(input_dict, "chart/result/meta/priceHint", "price hint") ) output_data.append(path_query_debug(input_dict, "chart/result/meta/range", "range")) output_data.append( path_query_debug( input_dict, "chart/result/meta/regularMarketPrice", "regular market price" ) ) output_data.append( path_query_debug( input_dict, "chart/result/meta/regularMarketTime", "regular market time" ) ) output_data.append( path_query_debug(input_dict, "chart/result/meta/symbol", "symbol") ) output_data.append( path_query_debug(input_dict, "chart/result/meta/timezone", "timezone") ) output_data.append( path_query_debug(input_dict, "chart/result/meta/validRanges", "valid Ranges") ) output_data.append( path_query_debug( input_dict, "chart/result/meta/currentTradingPeriod/post/end", "current trading period post end", ) ) output_data.append( path_query_debug( input_dict, "chart/result/meta/currentTradingPeriod/post/gmtoffset", "current trading period post gmtoffset", ) ) output_data.append( path_query_debug( input_dict, "chart/result/meta/currentTradingPeriod/post/start", "current trading period post start", ) ) output_data.append( path_query_debug( input_dict, "chart/result/meta/currentTradingPeriod/post/timezone", "current trading period post timezone", ) ) output_data.append( path_query_debug( input_dict, "chart/result/meta/currentTradingPeriod/pre/end", "current trading period pre end", ) ) output_data.append( path_query_debug( input_dict, "chart/result/meta/currentTradingPeriod/pre/gmtoffset", "current trading period pre gmtoffset", ) ) output_data.append( path_query_debug( input_dict, "chart/result/meta/currentTradingPeriod/pre/start", "current trading period pre start", ) ) output_data.append( path_query_debug( input_dict, "chart/result/meta/currentTradingPeriod/pre/timezone", "current trading period pre timezone", ) ) output_data.append( path_query_debug( input_dict, "chart/result/meta/currentTradingPeriod/regular/end", "current trading period regular end", ) ) output_data.append( path_query_debug( input_dict, "chart/result/meta/currentTradingPeriod/regular/gmtoffset", "current trading period regular gmtoffset", ) ) output_data.append( path_query_debug( input_dict, "chart/result/meta/currentTradingPeriod/regular/start", "current trading period regular start", ) ) output_data.append( path_query_debug( input_dict, "chart/result/meta/currentTradingPeriod/regular/timezone", "current trading period regular timezone", ) ) output_data.append( path_query_debug( current_data_json, "chart/result/events/dividends", "dividends" ) ) output_data.append( path_query_debug(current_data_json, "chart/result/events/splits", "splits") ) return output_data pd.DataFrame( get_data_json_final(current_data_json), columns=["Error", "Field", "Value"] ) # Finally, by using all we know from the database structure, we define the functions used in data extraction. def path_query(input_dict, path_name, label): try: output_data = list_reducer( get_attribute_in_path(path_name, input_dict, has_type_suffix=False) ) if isinstance(output_data, list): if len(output_data) == 1: output_data = output_data[0] except Exception as e: print(e) output_data = None return label, output_data def get_json_metadata(stock_exchange_name, symbol): input_dict = get_symbol_raw_data( currrent_stock_exchange_name, current_symbol, "json" ) output_data = [] output_data.append( path_query(input_dict, "chart/result/meta/chartPreviousClose", "previous close") ) output_data.append(path_query(input_dict, "chart/result/meta/currency", "currency")) output_data.append( path_query(input_dict, "chart/result/meta/dataGranularity", "data granularity") ) output_data.append( path_query(input_dict, "chart/result/meta/exchangeName", "exchange name") ) output_data.append( path_query( input_dict, "chart/result/meta/exchangeTimezoneName", "timezone name" ) ) output_data.append( path_query(input_dict, "chart/result/meta/firstTradeDate", "first trade date") ) output_data.append( path_query(input_dict, "chart/result/meta/gmtoffset", "gmtoffset") ) output_data.append( path_query(input_dict, "chart/result/meta/instrumentType", "instrument type") ) output_data.append( path_query(input_dict, "chart/result/meta/priceHint", "price hint") ) output_data.append(path_query(input_dict, "chart/result/meta/range", "range")) output_data.append( path_query( input_dict, "chart/result/meta/regularMarketPrice", "regular market price" ) ) output_data.append( path_query( input_dict, "chart/result/meta/regularMarketTime", "regular market time" ) ) output_data.append(path_query(input_dict, "chart/result/meta/symbol", "symbol")) output_data.append(path_query(input_dict, "chart/result/meta/timezone", "timezone")) output_data.append( path_query(input_dict, "chart/result/meta/validRanges", "valid Ranges") ) output_data = { output_data_entry[0]: output_data_entry[1] for output_data_entry in output_data } return output_data # type_period must be pre, regular or post def get_trading_period(stock_exchange_name, symbol, type_period): input_dict = get_symbol_raw_data( currrent_stock_exchange_name, current_symbol, "json" ) string_query = "".join(["chart/result/meta/currentTradingPeriod/", type_period]) type_period_label = "".join([type_period, " trading period"]) return path_query(input_dict, string_query, type_period_label)[1] def get_symbol_splits(stock_exchange_name, symbol): input_dict = get_symbol_raw_data( currrent_stock_exchange_name, current_symbol, "json" ) return path_query(input_dict, "chart/result/events/splits", "splits")[1] def get_symbol_dividends(stock_exchange_name, symbol): input_dict = get_symbol_raw_data( currrent_stock_exchange_name, current_symbol, "json" ) return path_query(input_dict, "chart/result/events/dividends", "dividends")[1] def get_trading_data(stock_exchange_name, symbol): input_dict = get_symbol_raw_data( currrent_stock_exchange_name, current_symbol, "json" ) input_dict_date = get_attribute_in_path( "chart/result/timestamp", input_dict, has_type_suffix=False ) input_dict_high = get_attribute_in_path( "chart/result/indicators/quote/high", input_dict, has_type_suffix=False ) input_dict_open = get_attribute_in_path( "chart/result/indicators/quote/open", input_dict, has_type_suffix=False ) input_dict_close = get_attribute_in_path( "chart/result/indicators/quote/close", input_dict, has_type_suffix=False ) input_dict_low = get_attribute_in_path( "chart/result/indicators/quote/low", input_dict, has_type_suffix=False ) input_dict_volume = get_attribute_in_path( "chart/result/indicators/quote/volume", input_dict, has_type_suffix=False ) input_dict_adjclose = get_attribute_in_path( "chart/result/indicators/adjclose/adjclose", input_dict, has_type_suffix=False ) input_dict_close = list_reducer(input_dict_close) input_dict_open = list_reducer(input_dict_open) input_dict_high = list_reducer(input_dict_high) input_dict_low = list_reducer(input_dict_low) input_dict_volume = list_reducer(input_dict_volume) input_dict_adjclose = list_reducer(input_dict_adjclose) input_dict_date = list_reducer(input_dict_date) output_data = pd.DataFrame( { "date": pd.to_datetime(input_dict_date, unit="s"), "low": input_dict_low, "open": input_dict_open, "volume": input_dict_volume, "high": input_dict_high, "close": input_dict_close, "adjclose": input_dict_adjclose, } ) return output_data display(get_json_metadata(currrent_stock_exchange_name, current_symbol)) display(get_trading_period(currrent_stock_exchange_name, current_symbol, "pre")) display(get_trading_period(currrent_stock_exchange_name, current_symbol, "regular")) display(get_trading_period(currrent_stock_exchange_name, current_symbol, "post")) display(get_symbol_splits(currrent_stock_exchange_name, current_symbol)) display(get_symbol_dividends(currrent_stock_exchange_name, current_symbol)) display(get_trading_data(currrent_stock_exchange_name, current_symbol)) # # Notes # One could use the pd.to_datetime function to transform the timestamps to (python) [time](https://docs.python.org/3/library/time.html) # objects like this data_json_trad_pre = get_trading_period( currrent_stock_exchange_name, current_symbol, "pre" ) data_json_trad_pre_start = pd.to_datetime(data_json_trad_pre["start"], unit="s") print("trade pre trading period start {}".format(data_json_trad_pre_start)) print( "trade pre trading period start {} (in Hour:Minute format)".format( data_json_trad_pre_start.strftime("%H:%M") ) ) # Use the gmtoffset feature to standarize all the times to 0 GMT: data_json_trad_pre_start = pd.to_datetime( data_json_trad_pre["start"] + data_json_trad_pre["gmtoffset"], unit="s" ) print("trade pre trading period start {}".format(data_json_trad_pre_start)) print( "trade pre trading period start {} (in Hour:Minute format)".format( data_json_trad_pre_start.strftime("%H:%M") ) ) # Or like this def test_dividends(dividends): if not (dividends is None): for dividend_date in dividends.keys(): print( "date: {}, amount:{}".format( pd.to_datetime(dividend_date, unit="s"), dividends[dividend_date]["amount"], ) ) def test_splits(splits): if not (splits is None): for split_date in splits.keys(): print( "date: {}, numerator:{}, denominator:{}, split ratio:{}".format( pd.to_datetime(split_date, unit="s"), splits[split_date]["numerator"], splits[split_date]["denominator"], splits[split_date]["splitRatio"], ) ) test_dividends(get_symbol_dividends(currrent_stock_exchange_name, current_symbol)) test_splits(get_symbol_splits(currrent_stock_exchange_name, current_symbol))
# Some imports first import numpy as np # for storing imaging data as matrices import matplotlib.pyplot as plt # for basic plotting import os import copy import cv2 import torch try: import lightning as L from lion_pytorch import Lion from segmentation_models_pytorch import Unet except: # https://github.com/Lightning-AI/lightning-flash/issues/1489 # https://www.kaggle.com/code/jirkaborovec/tract-segm-baseline-flash-unet-albumentation import lightning as L from lion_pytorch import Lion from segmentation_models_pytorch import Unet import albumentations as A from albumentations.pytorch import ToTensorV2 import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader import torchmetrics for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) X_train = np.load("/kaggle/input/scml-segmentation-challenge/X_train.npy") y_train = np.load("/kaggle/input/scml-segmentation-challenge/y_train.npy") X_test = np.load("/kaggle/input/scml-segmentation-challenge/X_test.npy") print(f"Train images shape:{X_train.shape}") print(f"Train masks shape:{y_train.shape}") print(f"Test shape:{X_test.shape}") def transparent_cmap(cmap, N=255): "Copy colormap and set alpha values" mycmap = copy.deepcopy(cmap) mycmap._init() mycmap._lut[:, -1] = np.linspace(0, 0.8, N + 4) return mycmap # Use base cmap to create transparent mycmap = transparent_cmap(plt.cm.Reds) def visualise_pred(img, seg, seg2=None): # Creating kidney masks kidney_mask = copy.deepcopy(seg) # Plotting the CT scan itself plt.imshow(img, cmap="gray") # Potting predictions plt.contourf( range(0, 512), range(0, 512), np.reshape(seg, (512, 512)), 15, cmap=mycmap ) plt.contour(seg > 0.5, [0.5], linewidths=1.5, colors="white") # Adding countours plt.contour(kidney_mask, linewidths=1, colors=["cyan"]) if seg2 is not None: plt.contour(seg2, linewidths=1, colors=["red"]) plt.tight_layout() plt.axis("off") def visualise_predictions(X, y, predictions, size=16): indeces = np.random.randint(0, len(X), size=size) plt.figure(figsize=(12, 12)) for i, index in enumerate(indeces): plt.subplot(int(np.sqrt(size)), int(np.sqrt(size)), i + 1) index = np.random.randint(0, len(X)) # Creating kidney masks kidney_mask = copy.deepcopy(y[index]) kidney_mask[kidney_mask != 1] = 0 # Creating tumor masks tumor_mask = copy.deepcopy(y[index]) tumor_mask[tumor_mask != 2] = 0 # Plotting the CT scan itself plt.imshow(X[index], cmap="gray") # Potting predictions plt.contourf( range(0, 512), range(0, 512), np.reshape(predictions[index], (512, 512)), 15, cmap=mycmap, ) plt.contour(predictions[index] > 0.5, [0.5], linewidths=1.5, colors="white") # Adding countours plt.contour(kidney_mask, linewidths=1, colors=["cyan"]) plt.contour(tumor_mask, linewidths=1, colors=["red"]) plt.tight_layout() plt.axis("off") plt.subplots_adjust(wspace=0.01, hspace=0.01) return None from sklearn.model_selection import train_test_split X_train, X_val, y_train, y_val = train_test_split( X_train.astype(int), y_train.astype(int), test_size=0.05, random_state=42 ) X_train.shape, X_val.shape, y_train.shape, y_val.shape np.unique(y_train) # 0, 1, 2 # https://www.kaggle.com/code/jirkaborovec/tract-segm-eda-flash-deeplab-albumentation#Lightning%E2%9A%A1Flash-&-DeepLab-v3-&-albumentations class NormImage(A.DualTransform): def __init__( self, quantile: float = 0.01, norm: bool = True, always_apply=False, p=1 ): super().__init__(always_apply, p) self.quantile = quantile self.norm = norm def apply(self, img, **params): if self.quantile > 0: q_low, q_high = np.percentile( img, [self.quantile * 100, (1 - self.quantile) * 100] ) img = np.clip(img, q_low, q_high) if self.norm: v_min, v_max = np.min(img), np.max(img) img = (img - v_min) / float(v_max - v_min) return img def apply_to_mask(self, mask, **params): # Bounding box coordinates are scale invariant return mask class SegmentationDataset(Dataset): def __init__(self, images, masks=None, transforms=None): self.images = images self.masks = masks self.transforms = transforms def __len__(self): return len(self.images) def __getitem__(self, idx): image = self.images[idx] if self.masks is not None: mask = self.masks[idx] transformed = self.transforms(image=image, mask=mask) image = transformed["image"] mask = transformed["mask"] # mask = mask.unsqueeze(0) mask = F.one_hot(mask.long(), num_classes=3).permute(2, 0, 1) return image.float(), mask.float() else: transformed = self.transforms(image=image) return transformed["image"].float() image_size = (512, 512) train_transforms = A.Compose( [ NormImage(always_apply=True), A.Resize(*image_size), A.VerticalFlip(p=0.5), A.HorizontalFlip(p=0.5), A.ShiftScaleRotate(shift_limit=0.15, scale_limit=0.05, rotate_limit=15, p=0.5), A.RandomGamma(gamma_limit=(90, 110), p=0.5), A.ElasticTransform( alpha=1, sigma=50, alpha_affine=50, interpolation=cv2.INTER_LINEAR, border_mode=cv2.BORDER_REFLECT_101, p=0.5, ), A.GaussianBlur(blur_limit=(3, 7), p=0.5), ToTensorV2(), ] ) val_transforms = A.Compose( [ NormImage(always_apply=True), A.Resize(*image_size), ToTensorV2(), ] ) train_dataloader = DataLoader( SegmentationDataset(X_train, y_train, train_transforms), batch_size=8, shuffle=True, num_workers=2, ) val_dataloader = DataLoader( SegmentationDataset(X_val, y_val, val_transforms), batch_size=8, shuffle=False, num_workers=2, ) # Just checking the dataloader def show_batch(data_loader, batch, class_id=1): import itertools from torchvision.utils import draw_segmentation_masks, make_grid plt.rcParams["figure.figsize"] = [20, 15] images, masks = list(itertools.islice(data_loader, batch, batch + 1))[0] masks_list = [] for image, mask in zip(images, masks): image = image.repeat_interleave(3, dim=0) masked = draw_segmentation_masks( (image * 255).byte(), mask[class_id, ...].bool(), alpha=0.5, colors="red" ) masks_list.append(masked) print("image shape (NB! dim=0 repeated 3x)", image.shape) print("mask shape", mask.shape) grid = make_grid(masks_list, nrow=6) plt.imshow(grid.permute(1, 2, 0)) plt.show() # print('train class 1') # show_batch(train_dataloader, batch=0) # print('train class 2') # show_batch(train_dataloader, batch=0, class_id=2) import torch.nn as nn from torchmetrics import Metric from composer import Trainer from composer.models import ComposerModel from composer.optim import DecoupledAdamW from composer.metrics.metrics import Dice # https://docs.mosaicml.com/en/latest/examples/medical_image_segmentation.html class LossMetric(Metric): """Turns any torch.nn Loss Module into distributed torchmetrics Metric.""" def __init__(self, loss, dist_sync_on_step=False): super().__init__(dist_sync_on_step=dist_sync_on_step) self.loss = loss self.add_state("sum_loss", default=torch.tensor(0.0), dist_reduce_fx="sum") self.add_state("total_batches", default=torch.tensor(0), dist_reduce_fx="sum") def update(self, preds, target): """Update the state with new predictions and targets.""" # Loss calculated over samples/batch, accumulate loss over all batches self.sum_loss += self.loss(preds, target) self.total_batches += 1 def compute(self): """Aggregate state over all processes and compute the metric.""" # Return average loss over entire validation dataset return self.sum_loss / self.total_batches #### https://github.com/hubutui/DiceLoss-PyTorch/blob/master/loss.py #### class BinaryDiceLoss(nn.Module): """Dice loss of binary class Args: smooth: A float number to smooth loss, and avoid NaN error, default: 1 p: Denominator value: \sum{x^p} + \sum{y^p}, default: 2 predict: A tensor of shape [N, *] target: A tensor of shape same with predict reduction: Reduction method to apply, return mean over batch if 'mean', return sum if 'sum', return a tensor of shape [N,] if 'none' Returns: Loss tensor according to arg reduction Raise: Exception if unexpected reduction """ def __init__(self, smooth=1, p=2, reduction="mean"): super(BinaryDiceLoss, self).__init__() self.smooth = smooth self.p = p self.reduction = reduction def forward(self, predict, target): assert ( predict.shape[0] == target.shape[0] ), "predict & target batch size don't match" predict = predict.contiguous().view(predict.shape[0], -1) target = target.contiguous().view(target.shape[0], -1) num = torch.sum(torch.mul(predict, target), dim=1) + self.smooth den = torch.sum(predict.pow(self.p) + target.pow(self.p), dim=1) + self.smooth loss = 1 - num / den if self.reduction == "mean": return loss.mean() elif self.reduction == "sum": return loss.sum() elif self.reduction == "none": return loss else: raise Exception("Unexpected reduction {}".format(self.reduction)) class DiceLoss(nn.Module): """Dice loss, need one hot encode input Args: weight: An array of shape [num_classes,] ignore_index: class index to ignore predict: A tensor of shape [N, C, *] target: A tensor of same shape with predict other args pass to BinaryDiceLoss Return: same as BinaryDiceLoss """ def __init__(self, weight=None, ignore_index=None, **kwargs): super(DiceLoss, self).__init__() self.kwargs = kwargs self.weight = weight self.ignore_index = ignore_index def forward(self, predict, target): assert predict.shape == target.shape, "predict & target shape do not match" dice = BinaryDiceLoss(**self.kwargs) total_loss = 0 predict = F.softmax(predict, dim=1) for i in range(target.shape[1]): if i != self.ignore_index: dice_loss = dice(predict[:, i], target[:, i]) if self.weight is not None: assert ( self.weight.shape[0] == target.shape[1] ), "Expect weight shape [{}], get[{}]".format( target.shape[1], self.weight.shape[0] ) dice_loss *= self.weights[i] total_loss += dice_loss return total_loss / target.shape[1] ####################################################################################### class SegModel(ComposerModel): def __init__( self, encoder_name="resnet34", encoder_weights="imagenet", in_channels=1, classes=3, loss=DiceLoss(ignore_index=0), ): super().__init__() self.model = Unet( encoder_name=encoder_name, encoder_weights=encoder_weights, # use `imagenet` pre-trained weights for encoder initialization in_channels=in_channels, # model input channels (1 for gray-scale images, 3 for RGB, etc.) classes=classes, # model output channels (number of classes in your dataset) ) self.criterion = loss self.train_loss = LossMetric(loss) self.train_dice = Dice(num_classes=classes - 1) self.val_loss = LossMetric(loss) self.val_dice = Dice(num_classes=classes - 1) def forward(self, batch): image, target = batch return self.model(image) def loss(self, outputs, batch): _, targets = batch return self.criterion(outputs, targets) def get_metrics(self, is_train: bool = False): if is_train: return {"DiceLoss": self.train_loss, "Dice": self.train_dice} else: return {"DiceLoss": self.val_loss, "Dice": self.val_dice} def update_metric(self, batch, outputs, metric): _, targets = batch metric.update(outputs, targets) epochs = 150 model = SegModel() test_input = torch.from_numpy(X_train[0].astype(int)).float().unsqueeze(0).unsqueeze(0) test_pred = model([test_input, None]) test_pred.shape, test_pred.dtype, test_input.shape from composer.algorithms import ( SqueezeExcite, CutOut, LabelSmoothing, ProgressiveResizing, ChannelsLast, SAM, GradientClipping, BlurPool, GyroDropout, ) from composer.optim import DecoupledAdamW from composer.loggers import InMemoryLogger from composer.optim.scheduler import CosineAnnealingWithWarmupScheduler logger = InMemoryLogger() optimizer = DecoupledAdamW(model.parameters(), lr=1e-3) blurpool = BlurPool(replace_convs=True, replace_maxpools=True) progressive_resizing_algorithm = ProgressiveResizing( mode="resize", initial_scale=0.5, resize_targets=True, size_increment=32 ) scheduler = CosineAnnealingWithWarmupScheduler(t_warmup="5ep") algorithms = [ SqueezeExcite(min_channels=128, latent_channels=64), progressive_resizing_algorithm, ChannelsLast(), SAM(), CutOut(length=0.5), LabelSmoothing(smoothing=0.1), blurpool, GyroDropout(p=0.5, sigma=1024, tau=8), ] # trainer = L.Trainer(max_epochs=epochs, accelerator='gpu', devices=torch.cuda.device_count(), precision=16, callbacks=[checkpoint_callback]) trainer = Trainer( model=model, train_dataloader=train_dataloader, eval_dataloader=val_dataloader, max_duration="100ep", optimizers=optimizer, device="gpu", precision="amp", seed=69, algorithms=algorithms, loggers=[logger], schedulers=scheduler, ) trainer.fit() def plot_history(logger, metric="metrics/eval/DiceLoss"): timeseries = logger.data[metric] item = [] for time in timeseries: try: item.append(time[1].cpu().numpy()) except: item.append(time[1]) plt.plot(item) plt.title(f"metric: {metric}") plt.show() # plot_history(logger) # plot_history(logger, metric='metrics/eval/Dice') # from lightning.pytorch.tuner.tuning import Tuner # tuner = Tuner(trainer) # lr_find = tuner.lr_find(model, min_lr=1e-8, max_lr=1, early_stop_threshold=None) # print(lr_find.suggestion()) # lr_find.plot(suggest=True) # 0.0007585775750291836 from numpy.random import Generator, PCG64 # your great code for segmenting tumors comes here # at the moment I am just assigning random masks # from `y_train` to test images. def segment_tumors(images): rng = Generator(PCG64(1)) tumors_segmented = y_train[ rng.choice(range(y_train.shape[0]), size=images.shape[0]), :, : ] return tumors_segmented predictions_test = segment_tumors(X_test) predictions_test.shape from tqdm import tqdm # predictions_test = np.empty_like(predictions_test) test_dataset = SegmentationDataset(X_test, transforms=val_transforms) test_dataloader = DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=2) model.eval() predictions = [] with torch.no_grad(): for ( image ) in test_dataloader: # tqdm(test_dataloader, desc="Inference", unit="batch"): # image = image.to(model.device) image = image.cuda() logits = model([image, None]) probs = torch.sigmoid(logits) # (probs > 0.5).int() predictions.extend(probs.cpu().numpy()) # .squeeze(0)) predictions = np.array(predictions) num_val_samples = 5 val_dataset = SegmentationDataset(X_val, y_val, transforms=val_transforms) val_dataloader = DataLoader(val_dataset, batch_size=1, shuffle=False, num_workers=2) # Load a few examples from the val_dataloader val_iter = iter(val_dataloader) val_examples = [next(val_iter) for _ in range(num_val_samples)] # Run inference on the validation examples model.eval() val_predictions = [] threshold = 0.5 with torch.no_grad(): for i, batch in enumerate(val_dataloader): image, mask = batch image = image.cuda() # .to(model.device) logits = model([image, None]) probs = torch.sigmoid(logits) # preds = torch.argmax(probs, dim=0) # preds = (probs > threshold).int() val_predictions.extend(probs.cpu().numpy()) if i == 5: break val_predictions = np.array(val_predictions) # Visualize the validation examples along with their ground truth and predicted segmentation masks # for i in range(num_val_samples): # img, mask = val_examples[i] # img = img.squeeze().numpy() # mask = mask.squeeze().numpy()[2, ...] # pred = val_predictions[i, 2, ...] # print(pred.shape) # plt.figure(figsize=(12, 4)) # plt.subplot(1, 3, 1) # plt.imshow(img, cmap='gray') # plt.title("Original Image") # plt.axis('off') # plt.subplot(1, 3, 2) # visualise_pred(img, pred>0.5, mask) # plt.title("Prediction (cyan) \w mask (red)") # plt.axis('off') # plt.subplot(1, 3, 3) # visualise_pred(img, pred>0.6, mask) # plt.title("Prediction (cyan) \w mask (red)") # plt.axis('off') # plt.tight_layout() # plt.show() predictions.shape num_samples = 5 import random random_indices = random.sample(range(len(X_test)), num_samples) # Visualize the predictions for the selected indices # for idx in random_indices: # img = X_test[idx] # seg = predictions[idx][2,...] # plt.figure(figsize=(5, 5)) # visualise_pred(img, seg>0.6) # plt.title(f"Index: {idx}") # plt.show() # Now, as we have segmented all the tumors, we are ready to submit our solution. The competition uses [run-length encoding](https://en.wikipedia.org/wiki/Run-length_encoding) to encode the binary predictions and evaluate solutions. Below, we give functions needed to convert your segmentations into the needed format. # ref.: https://www.kaggle.com/stainsby/fast-tested-rle def mask2rle(img): """ img: numpy array, 1 - mask, 0 - background Returns run length as string formatted """ pixels = img.flatten() pixels = np.concatenate([[0], pixels, [0]]) runs = np.where(pixels[1:] != pixels[:-1])[0] + 1 runs[1::2] -= runs[::2] return " ".join(str(x) for x in runs) # test this function on the first training mask # mask2rle(predictions[0]>0.5) predictions.shape output_preds = predictions[:, 2, ...] output_preds.shape def create_submission(binary_predictions, filename): predictions_rles = [ (str(i) + "," + mask2rle(mask)) for i, mask in enumerate(binary_predictions) ] with open(filename + ".csv", "w") as solution_file: solution_file.write("Id,Predicted\n") for i, string in enumerate(predictions_rles): solution_file.write(string + "\n") for i in np.arange(0.1, 1, 0.1): create_submission(output_preds > i, f"sample_submission_{str(i)}") create_submission(output_preds > 0.5, "sample_submission_0.5")
import warnings warnings.simplefilter(action="ignore", category=FutureWarning) import os import numpy as np import matplotlib.pyplot as plt from matplotlib.pyplot import imshow from PIL import Image from keras import layers, models, optimizers from keras.preprocessing.image import ImageDataGenerator def display_grid(data, path, w=10, h=10, columns=4, rows=5): fig = plt.figure(figsize=(12, 8)) for i in range(1, columns * rows + 1): file = data[i] file = os.path.join(path, file) img = Image.open(file) fig.add_subplot(rows, columns, i) imshow(img) plt.show() def plot_results(history): acc = history.history["acc"] val_acc = history.history["val_acc"] loss = history.history["loss"] val_loss = history.history["val_loss"] epochs = range(1, len(acc) + 1) plt.figure(figsize=(24, 6)) plt.subplot(1, 2, 1) plt.plot(epochs, acc, "b", label="Training Accuracy") plt.plot(epochs, val_acc, "r", label="Validation Accuracy") plt.grid(True) plt.legend() plt.xlabel("Epoch") plt.subplot(1, 2, 2) plt.plot(epochs, loss, "b", label="Training Loss") plt.plot(epochs, val_loss, "r", label="Validation Loss") plt.grid(True) plt.legend() plt.xlabel("Epoch") plt.show() def get_best_epcoh(history): valid_acc = history.history["val_acc"] best_epoch = valid_acc.index(max(valid_acc)) + 1 best_acc = max(valid_acc) print( "Best Validation Accuracy Score {:0.5f}, is for epoch {}".format( best_acc, best_epoch ) ) return best_epoch # ## Class Swift base_dir = "/kaggle/input/cars-wagonr-swift/data/" train_swift = os.listdir(os.path.join(base_dir, "train/swift")) val_swift = os.listdir(os.path.join(base_dir, "validation/swift")) test_swift = os.listdir(os.path.join(base_dir, "test/swift")) print( "Instances for Class Swift: Train {}, Validation {} Test {}".format( len(train_swift), len(val_swift), len(test_swift) ) ) # Sanity checks: no overlaping bteween train test and validation sets val_train = [x for x in val_swift if x in train_swift] test_train = [x for x in test_swift if x in train_swift] val_test = [x for x in test_swift if x in val_swift] len(val_train), len(test_train), len(val_test) display_grid( data=train_swift, path=os.path.join(base_dir, "train/swift"), w=10, h=10, columns=8, rows=5, ) # ## Class Wagonr train_wr = os.listdir(os.path.join(base_dir, "train/wagonr")) val_wr = os.listdir(os.path.join(base_dir, "validation/wagonr")) test_wr = os.listdir(os.path.join(base_dir, "test/wagonr")) print( "Instances for Class Wagonr: Train {}, Validation {} Test {}".format( len(train_swift), len(val_swift), len(test_swift) ) ) # Sanity checks: no overlaping bteween train test and validation sets val_train = [x for x in val_wr if x in train_wr] test_train = [x for x in test_wr if x in train_wr] val_test = [x for x in test_wr if x in val_wr] len(val_train), len(test_train), len(val_test) display_grid( data=train_wr, path=os.path.join(base_dir, "train/wagonr"), w=10, h=10, columns=8, rows=5, ) # ## Train using Convolution: from tensorflow.keras.layers import Input, Dropout, Dense, Lambda from tensorflow.keras.models import Model from tensorflow.keras.optimizers import Adam import tensorflow.keras.backend as K N = 10 # Number of nodes in the graph # Define the GCN architecture X_in = Input(shape=(N,)) A_in = Input((N, N)) dropout_rate = 0.5 # First GCN layer h1 = Dense(32, activation="relu")(X_in) graph_conv = Lambda(lambda x: K.dot(A_in, x))([h1]) graph_conv = Dropout(dropout_rate)(graph_conv) # Second GCN layer h2 = Dense(64, activation="relu")(graph_conv) graph_conv = Lambda(lambda x: K.dot(A_in, x))([h2]) graph_conv = Dropout(dropout_rate)(graph_conv) # Output layer predictions = Dense(1, activation="sigmoid")(graph_conv) # Create the model model = Model(inputs=[X_in, A_in], outputs=predictions) # Compile the model optimizer = Adam(lr=0.01) model.compile(optimizer=optimizer, loss="binary_crossentropy", metrics=["accuracy"]) # ### Data Preprocessing train_dir = os.path.join(base_dir, "train") validation_dir = os.path.join(base_dir, "validation") train_datagen = ImageDataGenerator(rescale=1.0 / 255) test_datagen = ImageDataGenerator(rescale=1.0 / 255) train_generator = train_datagen.flow_from_directory( train_dir, target_size=(150, 150), # Resize images to 150 X 150 batch_size=20, class_mode="binary", ) validation_generator = test_datagen.flow_from_directory( validation_dir, target_size=(150, 150), # Resize images to 150 X 150 batch_size=20, class_mode="binary", ) for ( data_batch, labels_batch, ) in train_generator: print("Data Batch shape:", data_batch.shape) print("Labels Batch shape:", labels_batch.shape) break # ### Fit Model model = GCNConv(display_summary=True) history = model.fit_generator( train_generator, steps_per_epoch=120, # = num_train_images/batch size(2400/20) epochs=50, validation_data=validation_generator, validation_steps=40, # = num_valid_images/batch_size ) model.save("cat_and_dogs.h5") # ### Train Vs Validation Accuracy/Loss plot_results(history) best_epoch = get_best_epcoh(history)
# Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # # **Generates K normal 2D distibutions** import numpy as np from matplotlib import pyplot as plt # np.random.seed(999) K = 12 # number of clusters N = 20 # number of elements per cluster L = 15 C = np.random.randint(-L, L, size=[K, 2]) # clusters centers S = 0.5 * np.ones([K, 2]) # standard deviation per cluster X = np.random.normal(loc=C[0, :], scale=S[0, :], size=[N, 2]) for k in range(1, K): X = np.append(X, np.random.normal(loc=C[k, :], scale=S[k, :], size=[N, 2]), axis=0) # # **Standard K-means Initialization (random)** ax = plt.axes() ax.scatter(X[:, 0], X[:, 1], marker=".", c="cyan") ax.grid(visible=True) # randomly selects K vectors as cluster centers C = np.random.permutation(X.shape[0])[: K - 1] ax.scatter(X[C, 0], X[C, 1], c="r", marker="+") # # **K-means++ Initialization** from scipy.spatial.distance import cdist C = np.zeros([K, 2]) D = np.zeros([N * K, 1]) # randomly selects vector as first cluster center C[0, :] = X[np.random.permutation(X.shape[0])[0], :] # distance between each vector and the first cluster center D[:, 0] = np.transpose(cdist(C, X)[0, :]) # distance between the ith sample and the nearest cluster center Dmin2 = [D[i, :].min() ** 2 for i in range(0, N * K)] # empirical probability distribution # the next cluster will be sampled from this distribution G = Dmin2 / sum(Dmin2)
# <div style="color:black; # display:fill; # border-radius:5px; # font-size:300%; # font-family: Times New Roman, Times, serif; # letter-spacing:0.5px"> Introduction # Corn and maize are basic ingredients in many regions across the world. The ears can be roasted and eaten as a vegetable right from the cob, or the kernels can be extracted and used to make a range of meals, including cereals and flour. Maize is also a significant source of starch, which can be converted into oils and high-fructose corn syrup. # All of this makes maize and cornmeal very important ingredients, therefore it's understandable why one would want to keep them free of illnesses like Common Rust, Ray Leaf Spot, and Blight. # These diseases are a major source of concern for maize and corn growers in Asia, Africa, and the Americas. Plant age, pathogen species, and environment all play a role in symptom expression. The diseases are more common in humid, warm climates. # As a result, early detection of these diseases is critical in order to mitigate the harm. # The main goal of this project is to use Efficientnet to classify various diseases. # Hope you’ll enjoy &#128515; import json import pandas as pd import numpy as np from tqdm import tqdm import cv2 from collections import defaultdict from urllib import request import os import pandas as pd import numpy as np from urllib import request import cv2 from tqdm import tqdm from collections import Counter import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split import tensorflow as tf from tensorflow.keras.layers import Dropout, Dense from keras.models import Model from keras.callbacks import EarlyStopping, ModelCheckpoint import os from tensorflow.keras.applications import VGG16 import json from sklearn import preprocessing from sklearn.preprocessing import OrdinalEncoder import tensorflow import tensorflow as tf from collections import deque # <div style="color:black; # display:fill; # border-radius:5px; # font-size:300%; # font-family: Times New Roman, Times, serif; # letter-spacing:0.5px"> Train test validation split # # Here I used split folders libary to split the data into train test and validation given their ratio. IMSIZE = 260 from tensorflow.keras.applications.inception_v3 import preprocess_input from tensorflow.keras.preprocessing.image import ImageDataGenerator image_color = "rgb" train_generator = ImageDataGenerator( rescale=1.0 / 255, shear_range=0.5, rotation_range=30, zoom_range=0.2, width_shift_range=0.2, height_shift_range=0.2, horizontal_flip=True, ).flow_from_directory( "../input/corn-dataset/splitted_folder/train", color_mode=image_color, target_size=(IMSIZE, IMSIZE), batch_size=32, class_mode="categorical", ) validation_generator = ImageDataGenerator(rescale=1 / 255.0).flow_from_directory( "../input/corn-dataset/splitted_folder/val", color_mode=image_color, target_size=(IMSIZE, IMSIZE), batch_size=32, class_mode="categorical", ) test_generator = ImageDataGenerator(rescale=1 / 255.0).flow_from_directory( "../input/corn-dataset/splitted_folder/test", color_mode=image_color, target_size=(IMSIZE, IMSIZE), batch_size=32, class_mode="categorical", ) # <div style="color:black; # display:fill; # border-radius:5px; # font-size:300%; # font-family: Times New Roman, Times, serif; # letter-spacing:0.5px"> Data exploration # # It can be shown that Gray Leaf spot contains less images than the other images, hence it can affect on the results. # I'll add class weights in order to address this problem. # <div style="color:black; # display:fill; # border-radius:5px; # font-size:300%; # font-family: Times New Roman, Times, serif; # letter-spacing:0.5px"> Create Model # # I used Efficientnet as my pretrained model, with unfreezing all layers since the original data was trained for different task. import efficientnet.tfkeras as enet from keras.layers import ( Dense, Flatten, Input, Activation, Conv2D, MaxPooling2D, BatchNormalization, Dropout, AveragePooling2D, ) from keras import Model # input_size=[IMSIZE,IMSIZE,3] # input_layer=Input(input_size) # x=input_layer # inputs_1 = tf.keras.Input(shape=(260, 260, 3)) mymodel = enet.EfficientNetB2( input_shape=(IMSIZE, IMSIZE, 3), include_top=False, weights="imagenet" ) x = AveragePooling2D(pool_size=(7, 7))(mymodel.output) x = Flatten()(x) x = Dense(4, activation="softmax")(x) output_layer = x final_model = Model(mymodel.input, output_layer) final_model.summary() # from tensorflow.keras.models import Sequential # from keras import Model # from tensorflow.keras.layers import Dense,Flatten, Conv2D,Dropout,Input,GlobalAveragePooling2D, AveragePooling2D, Activation, MaxPooling2D, BatchNormalization,Concatenate # input_size=[IMSIZE,IMSIZE,3] # input_layer=Input(input_size) # x=input_layer # x=Conv2D(64,[7,7],padding = "same", activation = 'relu',kernel_initializer='he_uniform')(x) # x=BatchNormalization()(x) # x=Conv2D(64,[7,7],padding = "same", activation = 'relu',kernel_initializer='he_uniform')(x) # x = AveragePooling2D(pool_size = [2,2])(x) # x=Dropout(0.2)(x) # x=Conv2D(128,[5,5],padding = "same", activation = 'relu',kernel_initializer='he_uniform')(x) # x=BatchNormalization()(x) # x=Conv2D(128,[5,5],padding = "same", activation = 'relu',kernel_initializer='he_uniform')(x) # x = AveragePooling2D(pool_size = [2,2])(x) # x=Dropout(0.2)(x) # x=Conv2D(256,[4,4],padding = "same", activation = 'relu',kernel_initializer='he_uniform')(x) # x=BatchNormalization()(x) # x=Conv2D(256,[4,4],padding = "same", activation = 'relu',kernel_initializer='he_uniform')(x) # x = AveragePooling2D(pool_size = [2,2])(x) # x=Dropout(0.2)(x) # x=Conv2D(512,[3,3],padding = "same", activation = 'relu',kernel_initializer='he_uniform')(x) # x=BatchNormalization()(x) # x=Conv2D(512,[3,3],padding = "same", activation = 'relu',kernel_initializer='he_uniform')(x) # x = GlobalAveragePooling2D()(x) # x=Dropout(0.2)(x) # x=Flatten()(x) # x=Dense(128,activation='relu')(x) # x=Dropout(0.2)(x) # x=Dense(32,activation='relu')(x) # x=Dropout(0.2)(x) # x=Dense(4,activation='softmax')(x) # output_layer=x # final_model=Model(input_layer,output_layer) # final_model.summary() def scheduler(epoch, lr): if epoch < 3: return lr else: return lr * tf.math.exp(-0.1) opt = tf.keras.optimizers.Adam(0.0001) final_model.compile( optimizer=opt, loss="categorical_crossentropy", metrics=["accuracy"] ) def callbacks(patience=2): checkpoint = tf.keras.callbacks.ModelCheckpoint( "my_model.h5", monitor="val_loss", verbose=1, save_best_only=True, save_weights_only=True, ) early = tf.keras.callbacks.EarlyStopping( monitor="val_loss", patience=patience, min_delta=0.001 ) lr = tf.keras.callbacks.LearningRateScheduler(scheduler) callbacks_list = [checkpoint, early, lr] return callbacks_list callbacks = callbacks() counter = Counter(train_generator.classes) max_val = float(max(counter.values())) class_weights1 = { class_id: max_val / num_images for class_id, num_images in counter.items() } os.environ["TF_GPU_ALLOCATOR"] = "cuda_malloc_async" hist = final_model.fit( train_generator, epochs=50, validation_data=(validation_generator), callbacks=callbacks, class_weight=class_weights1, ) final_model.load_weights("./my_model.h5") loss, acc = final_model.evaluate(validation_generator, verbose=2) print("Restored model, accuracy: {:5.2f}%".format(100 * acc)) from PIL import Image picture = Image.open("../input/gray-spot/.jpg").resize([IMSIZE, IMSIZE]) dir(final_model) picture = np.array(picture).reshape([1, 260, 260, 3]) final_model(picture) from PIL import Image picture = Image.open( "../input/corn-dataset/splitted_folder/train/Common_Rust/Corn_Common_Rust (10).jpg" ).resize([IMSIZE, IMSIZE]) picture = np.array(picture).reshape([1, 260, 260, 3]) final_model(picture) import os from PIL import Image list1 = os.listdir("../input/corn-dataset/splitted_folder/val") data = [] target = [] size_now = 260 for i in range(len(list1)): list2 = os.listdir("../input/corn-dataset/splitted_folder/val/" + list1[i]) N = len(list2) target.append([i] * N) arr = np.zeros(N * size_now * size_now * 3).reshape(N, size_now, size_now, 3) for m in range(N): photo = Image.open( "../input/corn-dataset/splitted_folder/val/" + list1[i] + "/" + list2[m] ) photo = photo.resize([size_now, size_now]) photo = np.array(photo) photo = photo[:, :, 0:3] / 255 arr[m] = photo data.append(arr) for i in data: print(i.shape) list1 len(data) arr = np.vstack((data[0], data[1], data[2], data[3])) tar = list("1" * 261) + list("0" * 229) + list("3" * 232) + list("2" * 114) tar = [int(element) for element in tar] len(tar) y_pre = final_model.predict(arr) y_pre.shape dat = pd.DataFrame(y_pre) dat.head(10) com = pd.DataFrame() com["pre"] = dat.apply(lambda element: np.argmax(element), axis=1) com["true"] = tar pd.set_option("display.max_rows", None) pd.set_option("display.max_columns", None) com.head(10) def get_two_correct(per_s): final_df = pd.DataFrame() final_df["pre"] = dat.apply(lambda element: np.argmax(element), axis=1) final_df["true"] = tar large_index = np.where(dat.max(axis=1) >= per_s) large1 = final_df.loc[large_index[0]] print(sum(large1["pre"] == large1["true"]) / large1.shape[0]) min_index = np.where(dat.max(axis=1) < per_s) min1 = final_df.loc[min_index[0]] print(sum(min1["pre"] == min1["true"]) / min1.shape[0]) return ( sum(large1["pre"] == large1["true"]) / large1.shape[0], sum(min1["pre"] == min1["true"]) / min1.shape[0], ) upper = [] lowwer = [] for per in np.linspace(40, 99, 60) / 100: upper_now, lowwer_now = get_two_correct(per) upper.append(upper_now) lowwer.append(lowwer_now) plt.plot(upper) plt.plot(lowwer) dat.max(axis=1).hist(bins=50) get_two_correct(0.8) predictions = np.argmax(final_model.predict(arr), axis=-1) # ['Common_Rust', 'Blight', 'Healthy', 'Gray_Leaf_Spot'] # [1,0,3,2] from sklearn.metrics import classification_report print(classification_report(tar, predictions)) import seaborn as sns from sklearn.metrics import confusion_matrix sns.set() plt.figure(figsize=(20, 16), dpi=60) C2 = confusion_matrix(tar, predictions) sns.heatmap(C2, annot=True, cmap="Greens", fmt=".20g") plt.savefig("heatmap.jpg") from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt y_pred = tar y_true = predictions # 对上面进行赋值 C = confusion_matrix(y_true, y_pred, labels=[0, 1, 2, 3]) # 可将'1'等替换成自己的类别,如'cat'。 plt.matshow(C, cmap=plt.cm.Reds) # 根据最下面的图按自己需求更改颜色 # plt.colorbar() for i in range(len(C)): for j in range(len(C)): plt.annotate( C[j, i], xy=(i, j), horizontalalignment="center", verticalalignment="center" ) # plt.tick_params(labelsize=15) # 设置左边和上面的label类别如0,1,2,3,4的字体大小。 plt.ylabel("True label") plt.xlabel("Predicted label") # plt.ylabel('True label', fontdict={'family': 'Times New Roman', 'size': 20}) # 设置字体大小。 # plt.xlabel('Predicted label', fontdict={'family': 'Times New Roman', 'size': 20}) plt.show() hist.history.keys() plt.figure(figsize=(10, 6)) plt.plot(range(1, len(hist.history["loss"]) + 1, 1), hist.history["loss"]) plt.plot(range(1, len(hist.history["loss"]) + 1, 1), hist.history["val_loss"]) plt.xlabel("epochs") plt.ylabel("loss") plt.legend(["loss", "val_loss"]) plt.savefig("loss.jpg") plt.show() plt.figure(figsize=(10, 6)) plt.plot(range(1, len(hist.history["loss"]) + 1, 1), hist.history["accuracy"]) plt.plot(range(1, len(hist.history["loss"]) + 1, 1), hist.history["val_accuracy"]) plt.xlabel("epochs") plt.ylabel("accuracy") plt.legend(["accuracy", "val_accuracy"]) plt.savefig("accuracy.jpg") plt.show() from keras.utils.vis_utils import plot_model plot_model(final_model, to_file="model_auth.png", show_shapes=True)
# # Importing Libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import os import cv2 import warnings warnings.filterwarnings("ignore") from PIL import Image import tensorflow as tf from sklearn.model_selection import train_test_split from skimage.transform import resize from sklearn.metrics import accuracy_score from keras.utils import to_categorical from keras.models import Sequential from keras.layers import Conv2D, MaxPool2D, Dense, Flatten, Dropout # # 1. Loading the dataset from tqdm import tqdm import os import cv2 import numpy as np data = [] labels = [] classes = 43 cur_path = "../input/gtsrb-german-traffic-sign/Train" for i in tqdm(os.listdir(cur_path)): dir = cur_path + "/" + i for j in os.listdir(dir): img_path = dir + "/" + j img = cv2.imread(img_path, -1) img = cv2.resize(img, (32, 32), interpolation=cv2.INTER_NEAREST) data.append(img) labels.append(i) data = np.array(data) labels = np.array(labels) print(data.shape, labels.shape) label_map = { "0": "20_speed", "1": "30_speed", "2": "50_speed", "3": "60_speed", "4": "70_speed", "5": "80_speed", "6": "80_lifted", "7": "100_speed", "8": "120_speed", "9": "no_overtaking_general", "10": "no_overtaking_trucks", "11": "right_of_way_crossing", "12": "right_of_way_general", "13": "give_way", "14": "stop", "15": "no_way_general", "16": "no_way_trucks", "17": "no_way_one_way", "18": "attention_general", "19": "attention_left_turn", "20": "attention_right_turn", "21": "attention_curvy", "22": "attention_bumpers", "23": "attention_slippery", "24": "attention_bottleneck", "25": "attention_construction", "26": "attention_traffic_light", "27": "attention_pedestrian", "28": "attention_children", "29": "attention_bikes", "30": "attention_snowflake", "31": "attention_deer", "32": "lifted_general", "33": "turn_right", "34": "turn_left", "35": "turn_straight", "36": "turn_straight_right", "37": "turn_straight_left", "38": "turn_right_down", "39": "turn_left_down", "40": "turn_circle", "41": "lifted_no_overtaking_general", "42": "lifted_no_overtaking_trucks", } # # Sample images from training set import random path = "../input/gtsrb-german-traffic-sign/Train" image_folders = random.sample(os.listdir(path), 5) fig, ax = plt.subplots(nrows=1, ncols=5, figsize=(15, 5)) k = 0 for i in image_folders: image_file = random.sample(os.listdir(os.path.join(path, i)), 1) temp_path = os.path.join(path, i) final_path = os.path.join(temp_path, image_file[0]) img = Image.open(final_path) # Plot the image ax[k].imshow(img) ax[k].axis("off") k = k + 1 plt.show() # # 2. Visualizing the data import os import seaborn as sns classes = sorted(os.listdir(cur_path)) # count the number of images in each class num_images = [len(os.listdir(os.path.join(cur_path, cls))) for cls in classes] # create a DataFrame to store the data data_num = {"Classes": classes, "Number of images": num_images} df = pd.DataFrame(data_num) # create a bar plot using Seaborn sns.set_style("whitegrid") plt.figure(figsize=(12, 6)) sns.barplot(x="Classes", y="Number of images", data=df) plt.xlabel("Classes") plt.ylabel("Number of images") plt.title("Distribution of images across classes") plt.show() # # 3. Model # defining model structure model = Sequential() model.add( Conv2D(filters=32, kernel_size=(5, 5), activation="relu", input_shape=(32, 32, 3)) ) model.add(Conv2D(filters=32, kernel_size=(5, 5), activation="relu")) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Dropout(rate=0.25)) model.add(Conv2D(filters=64, kernel_size=(3, 3), activation="relu")) model.add(Conv2D(filters=64, kernel_size=(3, 3), activation="relu")) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Dropout(rate=0.25)) model.add(Flatten()) model.add(Dense(256, activation="relu")) model.add(Dropout(rate=0.5)) model.add(Dense(43, activation="softmax")) # model compilation model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) model.summary() import visualkeras visualkeras.graph_view(model) X_train, X_test, y_train, y_test = train_test_split( data, labels, test_size=0.25, random_state=21 ) print((X_train.shape, y_train.shape), (X_test.shape, y_test.shape)) # converting the labels into one hot encoding y_train = to_categorical(y_train, 43) y_test = to_categorical(y_test, 43) # # Training the model from tensorflow.keras.callbacks import ReduceLROnPlateau, EarlyStopping, ModelCheckpoint callbacks = [ EarlyStopping(monitor="val_loss", patience=20), ModelCheckpoint(filepath="best_model.h5", monitor="val_loss", save_best_only=True), ] history = model.fit( X_train, y_train, batch_size=128, epochs=50, callbacks=callbacks, validation_data=(X_test, y_test), verbose=1, ) import json with open("history.json", "w") as f: json.dump(history.history, f) # # Plots import seaborn as sns # Set up the figure fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(10, 5)) # Plot the accuracy sns.lineplot( data=history.history, x=range(len(history.history["accuracy"])), y="accuracy", ax=ax1, label="train accuracy", palette=["blue"], ) sns.lineplot( data=history.history, x=range(len(history.history["val_accuracy"])), y="val_accuracy", ax=ax1, label="test accuracy", palette=["orange"], ) ax1.set_title("Accuracy") ax1.set_xlabel("epochs") ax1.set_ylabel("Accuracy") # Plot the loss sns.lineplot( data=history.history, x=range(len(history.history["loss"])), y="loss", ax=ax2, label="train loss", palette=["blue"], ) sns.lineplot( data=history.history, x=range(len(history.history["val_loss"])), y="val_loss", ax=ax2, label="test loss", palette=["orange"], ) ax2.set_title("Loss") ax2.set_xlabel("epochs") ax2.set_ylabel("Loss") plt.tight_layout() plt.show() # # Model testing y_test = pd.read_csv("../input/gtsrb-german-traffic-sign/Test.csv") # # Sample images from test set path = "../input/gtsrb-german-traffic-sign/Test" image_files = random.sample(os.listdir(path), 5) fig, ax = plt.subplots(nrows=1, ncols=5, figsize=(15, 5)) for i in range(len(image_files)): final_path = os.path.join(path, image_files[i]) img = Image.open(final_path) ax[i].imshow(img) ax[i].axis("off") plt.show() labels_test = y_test["ClassId"].values img_test = y_test["Path"].values test_dir = "../input/gtsrb-german-traffic-sign" data = [] for img in img_test: img_path = os.path.join(test_dir, img) # print(img_path) image = cv2.imread(img_path, -1) image = cv2.resize(image, (32, 32), interpolation=cv2.INTER_NEAREST) data.append(np.array(image)) X_test = np.array(data) # # Predictions of Test set pred = np.argmax(model.predict(X_test), axis=1) print("Test accuracy: ", accuracy_score(labels_test, pred) * 100) # # Predicted Outputs import numpy as np from tensorflow.keras.preprocessing import image t = y_test.sample(n=5) img_test = t["Path"].values test_dir = "../input/gtsrb-german-traffic-sign" for i in range(5): img_path = os.path.join(test_dir, img_test[i]) img1 = Image.open(img_path) plt.imshow(np.array(img1)) plt.show() img = image.load_img(img_path, target_size=(32, 32)) img_array = image.img_to_array(img) img_array = np.expand_dims(img_array, axis=0) # Make predictions on the single image predictions = model.predict(img_array) # Print the predicted class predicted_class = np.argmax(predictions) print("Predicted class:", label_map[str(predicted_class)]) # # Confusion Matrix from sklearn.metrics import confusion_matrix import seaborn as sns fig = plt.figure(figsize=(15, 15)) y_true = np.array(y_test["ClassId"]) cm = confusion_matrix(y_true, pred) sns.heatmap(cm, cmap="Blues") from sklearn.metrics import ( precision_score, recall_score, confusion_matrix, f1_score, accuracy_score, ) y_pred = pred precision = precision_score(y_true, y_pred, average="macro") recall = recall_score(y_true, y_pred, average="macro") f1 = f1_score(y_true, y_pred, average="macro") accuracy = accuracy_score(y_true, y_pred) print("Precision:", precision) print("Recall:", recall) print("F1 Score:", f1) print("Accuracy:", accuracy)
# # **IMAGE CLASSIFIER USING SEQUENTIAL API** # # **Setting up the environment** import numpy as np import pandas as pd import tensorflow as tf data = tf.keras.datasets.fashion_mnist.load_data() (X_train_full, y_train_full), (X_test, y_test) = data X_train, y_train = X_train_full[:-5000], y_train_full[:-5000] X_valid, y_valid = X_train_full[-5000:], y_train_full[-5000:] X_train.shape X_train.dtype # # **Train-Test split** X_train, X_valid, X_test = X_train / 255.0, X_valid / 255.0, X_test / 255.0 import matplotlib.pyplot as plt plt.imshow(X_train[0], cmap="binary") plt.axis("off") plt.show() class_names = [ "T-shirt/top", "Trouser", "Pullover", "Dress", "Coat", "Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot", ] class_names[y_train[0]] n_rows = 4 n_cols = 10 plt.figure(figsize=(n_cols * 1.2, n_rows * 1.2)) for row in range(n_rows): for col in range(n_cols): index = n_cols * row + col plt.subplot(n_rows, n_cols, index + 1) plt.imshow(X_train[index], cmap="binary", interpolation="nearest") plt.axis("off") plt.title(class_names[y_train[index]]) plt.subplots_adjust(wspace=0.2, hspace=0.5) plt.show() # # **Creating the model** tf.random.set_seed(42) model = tf.keras.Sequential() model.add(tf.keras.layers.Input(shape=[28, 28])) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dense(300, activation="relu")) model.add(tf.keras.layers.Dense(100, activation="relu")) model.add(tf.keras.layers.Dense(10, activation="softmax")) model.summary() tf.keras.utils.plot_model(model, "my_fashion_mnist_model.png", show_shapes=True) model.layers hidden1 = model.layers[1] weights, biases = hidden1.get_weights() weights biases weights.shape biases.shape # # **Compiling the model** model.compile( loss="sparse_categorical_crossentropy", optimizer="sgd", metrics=["accuracy"] ) # # **Training and evaluating the model** history = model.fit(X_train, y_train, epochs=30, validation_data=(X_valid, y_valid)) history.params import pandas as pd pd.DataFrame(history.history).plot( figsize=(8, 5), xlim=[0, 29], ylim=[0, 1], grid=True, xlabel="Epoch", style=["r--", "r--.", "b-", "b-*"], ) plt.legend(loc="lower left") # extra code plt.show() model.evaluate(X_test, y_test) # # **Using the models for making predictions** X_new = X_test[:5] y_proba = model.predict(X_new) y_proba.round(2) y_pred = y_proba.argmax(axis=-1) y_pred np.array(class_names)[y_pred] y_new = y_test[:5] y_new plt.figure(figsize=(7.2, 2.4)) for index, image in enumerate(X_new): plt.subplot(1, 6, index + 1) plt.imshow(image, cmap="binary", interpolation="nearest") plt.axis("off") plt.title(class_names[y_test[index]]) plt.subplots_adjust(wspace=0.2, hspace=0.5) plt.show()
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session heart_disease = pd.read_csv("/kaggle/input/heart-disease-uci/heart.csv") heart_disease.head() heart_disease.info() heart_disease.isnull().sum() heart_disease["target"] heart_disease.sex[heart_disease.target == 1].value_counts() import matplotlib.pyplot as plt heart_disease.sex[heart_disease.target == 1].value_counts().plot( kind="bar", figsize=(5, 5), color=["lightblue", "pink"] ) plt.title("Heart disease for males(1) and females(0)") plt.xlabel("Gender") plt.ylabel("Number of heart patients") # pd.crosstab computes the frequency tables of the factors in the table pd.crosstab(heart_disease.target, heart_disease.sex).plot( kind="barh", figsize=(10, 5), color=["lightblue", "pink"] ) plt.title("Frequency of Heart Disease vs Sex") plt.xlabel(" '0' = Heart Disease, '1' = No disease") plt.ylabel("Number of people with heart disease") plt.legend(["Male", "Female"]) plt.xticks(rotation=0) # we want to visualize the correlations using a correlation heatmap import seaborn as sns correlation_map = heart_disease.corr() fig, ax = plt.subplots(figsize=(20, 10)) sns.heatmap(correlation_map, annot=True, linewidths=0.5, fmt=".3f") heart_disease.columns from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler() features = [ "age", "sex", "cp", "trestbps", "chol", "fbs", "restecg", "thalach", "exang", "oldpeak", "slope", "ca", "thal", "target", ] heart_disease[features] = scaler.fit_transform(heart_disease[features]) heart_disease.head() # Standardize features by removing the mean and scaling to unit variance from sklearn.preprocessing import StandardScaler scaler = StandardScaler() features = ["age", "trestbps", "chol", "thalach", "oldpeak"] heart_disease.head() X_data = heart_disease.drop("target", axis=1) Y_data = heart_disease["target"] Y_data.head() X_data.head() from sklearn.model_selection import train_test_split X_train, X_test, Y_train, Y_test = train_test_split( X_data, Y_data, random_state=0, test_size=0.2 )
# import libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns print(f"pandas version = {pd.__version__}") print(f"numpy version = {np.__version__}") print(f"seaborn version = {sns.__version__}") df = pd.read_csv( "/kaggle/input/the-best-cities-for-a-workation/best cities for a workation.csv" ) df.sample(10) df.columns df.info() # all rows is not-null cols = [ "Remote connection: Average WiFi speed (Mbps per second)", "Co-working spaces: Number of co-working spaces", "Caffeine: Average price of buying a coffee", "Travel: Average price of taxi (per km)", "After-work drinks: Average price for 2 beers in a bar", "Accommodation: Average price of 1 bedroom apartment per month", "Food: Average cost of a meal at a local, mid-level restaurant", "Climate: Average number of sunshine hours", "Tourist attractions: Number of ‘Things to do’ on Tripadvisor", "Instagramability: Number of photos with #", ] df[cols].hist(layout=(1, len(cols)), figsize=(3 * len(cols), 3.5)) from sklearn import preprocessing cols = [ "Remote connection: Average WiFi speed (Mbps per second)", "Co-working spaces: Number of co-working spaces", "Caffeine: Average price of buying a coffee", "Travel: Average price of taxi (per km)", "After-work drinks: Average price for 2 beers in a bar", "Accommodation: Average price of 1 bedroom apartment per month", "Food: Average cost of a meal at a local, mid-level restaurant", "Climate: Average number of sunshine hours", "Tourist attractions: Number of ‘Things to do’ on Tripadvisor", "Instagramability: Number of photos with #", ] pt = preprocessing.PowerTransformer(method="yeo-johnson", standardize=True) mat = pt.fit_transform(df[cols]) mat[:10].round(4) X = pd.DataFrame(mat, columns=cols) X dX = pd.concat([df[["Ranking", "City", "Country"]], X], axis=1) dX X.hist(layout=(1, len(cols)), figsize=(3 * len(cols), 3.5)) from sklearn.cluster import KMeans # elbow method finding best n_cluster ssd = [] for k in range(1, 9): m = KMeans(n_clusters=k) m.fit(X) ssd.append((k, m.inertia_)) ssd dfX = pd.DataFrame(ssd, columns=["k", "ssd"]) dfX["pct_change"] = dfX["ssd"].pct_change() * 100 dfX sns.lineplot(x=dfX["k"], y=dfX["ssd"], linestyle="--", marker="o") for i, r in dfX.iterrows(): plt.text(r["k"], r["ssd"], f"{r['pct_change']:.2f}", fontsize=10) plt.show() model = KMeans(n_clusters=3) model.fit(X) model.transform(X) model.labels_ df["cluster"] = model.labels_ dX["cluster"] = model.labels_ df sns.pairplot(df, vars=cols, hue="cluster") sns.countplot(data=df, x="cluster") cols = [ "Remote connection: Average WiFi speed (Mbps per second)", "Co-working spaces: Number of co-working spaces", "Caffeine: Average price of buying a coffee", "Travel: Average price of taxi (per km)", "After-work drinks: Average price for 2 beers in a bar", "Accommodation: Average price of 1 bedroom apartment per month", "Food: Average cost of a meal at a local, mid-level restaurant", "Climate: Average number of sunshine hours", "Tourist attractions: Number of ‘Things to do’ on Tripadvisor", "Instagramability: Number of photos with #", ] fig, ax = plt.subplots(nrows=5, ncols=2, figsize=(10, 30)) ax = ax.ravel() for i, col in enumerate(cols): sns.boxenplot(data=df, x="cluster", y=col, ax=ax[i]) dX.groupby("cluster").median() sns.heatmap( dX.drop("Ranking", axis="columns").groupby("cluster").median(), cmap="Reds", linewidths=1, ) print("cluster 0") print(df.loc[(df.cluster == 0), ["City", "Country"]]) print("cluster 1") print(df.loc[(df.cluster == 1), ["City", "Country"]]) print("cluster 2") print(df.loc[(df.cluster == 2), ["City", "Country"]]) # df.loc[(df.cluster==0)] ### Model interpretation # Cluster 0 -> Triple hot -> Hot coffee, Hot as Travel Destination and Hot as hell # Cluster 1 -> Top Travel Destination countries with High cost of living # Cluster 2 -> Culture Capital -> Some are not capital but popular as capitals
# # Libraries import pandas as pd import numpy as np # # Import Data test = pd.read_csv("/kaggle/input/titanic/test.csv") train = pd.read_csv( "/kaggle/input/titanic/train.csv", dtype={ "Name": "string", "Sex": "string", "Ticket": "string", "Cabin": "string", "Embarked": "string", }, ) sub = pd.read_csv("/kaggle/input/titanic/gender_submission.csv") # # Processing cabin_class1_distribution = ( train[train["Pclass"] == 1]["Cabin"].value_counts() / train[train["Pclass"] == 1]["Cabin"].value_counts().sum() ) cabin_class2_distribution = ( train[train["Pclass"] == 2]["Cabin"].value_counts() / train[train["Pclass"] == 2]["Cabin"].value_counts().sum() ) cabin_class3_distribution = ( train[train["Pclass"] == 3]["Cabin"].value_counts() / train[train["Pclass"] == 3]["Cabin"].value_counts().sum() ) test.loc[test["Fare"].isnull(), "Fare"] = test["Fare"].mean() train["Embarked"] = train["Embarked"].fillna(train["Embarked"].value_counts().index[0]) dfs = [train, test] for df in dfs: df["Family Size"] = df["SibSp"] + df["Parch"] df.loc[(df["Cabin"].isnull()) & (df["Pclass"] == 1), "Cabin"] = np.random.choice( cabin_class1_distribution.index, df.loc[(df["Cabin"].isnull()) & (df["Pclass"] == 1)].shape[0], cabin_class1_distribution.values, ) df.loc[(df["Cabin"].isnull()) & (df["Pclass"] == 2), "Cabin"] = np.random.choice( cabin_class2_distribution.index, df.loc[(df["Cabin"].isnull()) & (df["Pclass"] == 2)].shape[0], cabin_class2_distribution.values, ) df.loc[(df["Cabin"].isnull()) & (df["Pclass"] == 3), "Cabin"] = np.random.choice( cabin_class3_distribution.index, df.loc[(df["Cabin"].isnull()) & (df["Pclass"] == 3)].shape[0], cabin_class3_distribution.values, ) test.loc[ (~test["Cabin"].isin(train["Cabin"])) & (test["Pclass"] == 1), "Cabin" ] = np.random.choice( cabin_class1_distribution.index, test.loc[(~test["Cabin"].isin(train["Cabin"])) & (test["Pclass"] == 1)].shape[0], cabin_class1_distribution.values, ) test.loc[ (~test["Cabin"].isin(train["Cabin"])) & (test["Pclass"] == 2), "Cabin" ] = np.random.choice( cabin_class2_distribution.index, test.loc[(~test["Cabin"].isin(train["Cabin"])) & (test["Pclass"] == 2)].shape[0], cabin_class2_distribution.values, ) test.loc[ (~test["Cabin"].isin(train["Cabin"])) & (test["Pclass"] == 3), "Cabin" ] = np.random.choice( cabin_class3_distribution.index, test.loc[(~test["Cabin"].isin(train["Cabin"])) & (test["Pclass"] == 3)].shape[0], cabin_class3_distribution.values, ) # # Interpolating Age from sklearn.ensemble import RandomForestRegressor import matplotlib.pyplot as plt encode_sex = {j: i for i, j in enumerate(train["Sex"].unique())} encode_embarked = {j: i for i, j in enumerate(train["Embarked"].unique())} encode_cabin = {j: i for i, j in enumerate(train["Cabin"].unique())} df = train.drop(["PassengerId", "Survived", "Name", "Ticket"], axis=1).dropna().copy() df["Sex"] = df["Sex"].map(encode_sex) df["Embarked"] = df["Embarked"].map(encode_embarked) df["Cabin"] = df["Cabin"].map(encode_cabin) def reg_test_train(df, target, split): test = df.sample(int(np.round(df.shape[0] * split[1]))) x_test = test.drop(target, axis=1).copy() y_test = test[[target]].copy() train = df.loc[~df.index.isin(test.index)].copy() x_train = train.drop(target, axis=1).copy() y_train = train[[target]].copy() return x_test, x_train, y_test, y_train x_test, x_train, y_test, y_train = reg_test_train(df, "Age", [0.8, 0.2]) regr = RandomForestRegressor(max_depth=10) regr.fit(x_train, y_train.values.ravel()) # ### Feature Importance pd.DataFrame({"A": regr.feature_importances_, "B": regr.feature_names_in_}).sort_values( by="A", ascending=True ).plot(kind="barh", x="B") plt.title("Feature Importance Plot") plt.ylabel("Feature") plt.xlabel("Score") plt.show() # ### Results on Train res = regr.predict(x_train) pd.Series((np.array([i[0] for i in np.array(y_train)]) - res)).hist(bins=20) plt.show() # ### Results on Test res = regr.predict(x_test) pd.Series((np.array([i[0] for i in np.array(y_test)]) - res)).hist(bins=20) plt.show() # ### Fitting to Missing Values dfs = [train, test] for df in dfs: df["Sex"] = df["Sex"].map(encode_sex) df["Embarked"] = df["Embarked"].map(encode_embarked) df["Cabin"] = df["Cabin"].map(encode_cabin) # Filling in Age try: df.loc[df["Age"].isnull(), "Age"] = regr.predict( df.loc[df["Age"].isnull()].drop( ["Age", "Survived", "PassengerId", "Name", "Ticket"], axis=1 ) ) except: df.loc[df["Age"].isnull(), "Age"] = regr.predict( df.loc[df["Age"].isnull()].drop( ["Age", "PassengerId", "Name", "Ticket"], axis=1 ) ) # # Predicting Survival from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import ConfusionMatrixDisplay, confusion_matrix df = train.drop(["PassengerId", "Name", "Ticket"], axis=1).dropna().copy() # ### Train/Test Split def reg_test_train(df, target, class1, class2): size = 300 split = [0.5, 0.5] train = pd.concat( [ df.loc[df[target] == class1].sample(int(np.round(size * split[0]))), df.loc[df[target] == class2].sample(int(np.round(size * split[1]))), ], axis=0, ) x_train = train.drop(target, axis=1).copy() y_train = train[[target]].copy() test = df.loc[~df.index.isin(train.index)].copy() x_test = test.drop(target, axis=1).copy() y_test = test[[target]].copy() return x_test, x_train, y_test, y_train x_test, x_train, y_test, y_train = reg_test_train(df, "Survived", 0, 1) # ### Fitting Model clf = RandomForestClassifier(max_depth=10) clf.fit(x_train, y_train.values.ravel()) # ### Feature Importance pd.DataFrame({"A": clf.feature_importances_, "B": clf.feature_names_in_}).sort_values( by="A", ascending=True ).plot(kind="barh", x="B") plt.title("Feature Importance Plot") plt.ylabel("Feature") plt.xlabel("Score") plt.show() # ### Residuals on Train survived_key = {0: "No", 1: "Yes"} res = clf.predict(x_train) cm = confusion_matrix(y_train, res, labels=clf.classes_) disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=survived_key.values()) disp.plot() plt.show() # ### Residuals on Validation res = clf.predict(x_test) cm = confusion_matrix(y_test, res, labels=clf.classes_) disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=survived_key.values()) disp.plot() plt.show() # ### Predicting on Test test["Survived"] = clf.predict( test.drop(["PassengerId", "Name", "Ticket"], axis=1).dropna().copy() ) test[["PassengerId", "Survived"]].to_csv("Sub.csv", index=False)
import copy import warnings warnings.filterwarnings("ignore") import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from lightgbm import LGBMClassifier from xgboost import XGBClassifier from tqdm import tqdm from sklearn import preprocessing from sklearn.model_selection import train_test_split, cross_validate, cross_val_score from sklearn.preprocessing import MinMaxScaler, StandardScaler from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score, classification_report, roc_auc_score from sklearn.linear_model import LogisticRegression # # Discription of data from Article # * **Area**: It gave the number of pixels within the borders of a pumpkin seed # * **Perimeter**: It gave the circumference in pixels of a pumpkin seed # * **Major Axis Length**: It gave the circumference in pixels of a pumpkin seed # * **Minor Axis Length**: It gave the small axis distance of a pumpkin seed # * **Eccentricity**: It gave the eccentricity of a pumpkin seed # * **Convex Area**: It gave the number of pixels of the smallest convex shell at the region formed by the pumpkin seed # * **Extent**: It returned the ratio of a pumpkin seed area to the bounding box pixels # * **Equiv Diameter**: It was formed by multiplying the area of the pumpkin seed by four and dividing by the number pi, and taking the square root # * **Compactness**: It proportioned the area of the pumpkin seed relative to the area of the circle with the same circumference # * **Solidity**: It considered the convex and convex condition of the pumpkin seeds # * **Roundness**: It measured the ovality of pumpkin seeds without considering its distortion of the edges # * **Aspect Ratio**: It gave the aspect ratio of the pumpkin seeds # # Read, transform and split data pumpkin = pd.read_excel( "/kaggle/input/pumpkin-seeds-dataset/Pumpkin_Seeds_Dataset/Pumpkin_Seeds_Dataset.xlsx" ) pumpkin.head() pumpkin.info() # All data without missing values. pumpkin["Class"].unique() pumpkin["target"] = np.nan pumpkin.loc[pumpkin["Class"] == "Çerçevelik", "target"] = 0 pumpkin.loc[pumpkin["Class"] == "Ürgüp Sivrisi", "target"] = 1 len(pumpkin) pumpkin["target"].mean() x_train, x_test, y_train, y_test = train_test_split( pumpkin, pumpkin["target"], test_size=0.2, random_state=42, stratify=pumpkin["target"], ) features = list(x_train.columns)[:-2] # Let's see features distribution and find outliers (only extreme ones with more then 3 IQR) for col in features: print(col) plt.figure(figsize=(13, 8)) a = pumpkin[col][pumpkin["Class"] == "Çerçevelik"] b = pumpkin[col][pumpkin["Class"] == "Ürgüp Sivrisi"] bins = np.linspace(pumpkin[col].min(), pumpkin[col].max(), 50) plt.hist(a, bins, alpha=0.5, label="Çerçevelik") plt.hist(b, bins, alpha=0.5, label="Ürgüp Sivrisi") plt.legend(loc="upper left") plt.show() sns.boxplot(x=pumpkin[col], y=pumpkin["Class"], whis=3) # We suppose that outliers are from another distribution than the main data. Let's see on the graph. The rule of 3 IQR good works for all features except two of them: 'Eccentricity' and 'Solidity'. For 'Eccentricity' and 'Solidity' outlier values are less than 0.7 and 0.97, respectively. Function named **del_extreme_outlier** drop this outliers. # # Baseline clf = LogisticRegression(random_state=12) clf.fit(x_train[features], x_train["target"]) y_pred = clf.predict(x_test[features]) proba = clf.predict_proba(x_test[features])[:, 1] y_pred_t = clf.predict(x_train[features]) proba_t = clf.predict_proba(x_train[features])[:, 1] print( "Train: accuracy_score = ", accuracy_score(y_pred_t, y_train), "roc_auc_score = ", roc_auc_score(y_train, proba_t), ) print( "Test: accuracy_score = ", accuracy_score(y_pred, y_test), "roc_auc_score = ", roc_auc_score(y_test, proba), ) # # Define some useful functions def bins_generation(df, feature, bins_num=10): df = df[[feature, "target"]] df[f"bin_{feature}"], bins = pd.qcut( df[feature], bins_num, duplicates="drop", retbins=True ) bins[0] = -np.inf bins[-1] = np.inf df[f"bin_{feature}"] = pd.cut(df[feature], bins) df[f"bin_{feature}"] = df[f"bin_{feature}"].apply(lambda x: x.left) df[f"bin_{feature}"] = df[f"bin_{feature}"].astype(float) return df, bins def check_bins_generation(df, feature, bins_num=5): for i in range(bins_num, 1, -1): df_binned, bins = bins_generation(df, feature, i) xg = pd.DataFrame( df_binned.groupby(f"bin_{feature}").agg({feature: "count", "target": "sum"}) ).reset_index() if ( xg[feature].min() > len(df) * 0.2 and not (xg[feature] == xg["target"]).any() ): break return df_binned, bins def woe_calc(df, feature, target): df = pd.concat([df[feature], target], axis=1) df = pd.concat( [ df.groupby(df.columns.values[0], as_index=False)[ df.columns.values[1] ].count(), df.groupby(df.columns.values[0], as_index=False)[ df.columns.values[1] ].mean(), ], axis=1, ) df = df.iloc[:, [0, 1, 3]] df.columns = [df.columns.values[0], "count", "tr"] df["n_good"] = df["tr"] * df["count"] df["n_bad"] = (1 - df["tr"]) * df["count"] df["good_rate"] = df["n_good"] / df["n_good"].sum() df["bad_rate"] = df["n_bad"] / df["n_bad"].sum() df["WoE"] = np.log(df["good_rate"] / df["bad_rate"]) return df def del_extreme_outlier(pumpkin): cols = pumpkin.columns cols = cols.drop(["Class", "Eccentricity", "Solidity", "target"]) pumpkin_C = pumpkin[pumpkin["Class"] == "Çerçevelik"] pumpkin_U = pumpkin[pumpkin["Class"] == "Ürgüp Sivrisi"] for col in cols: # only large outliers over 3 IQR Q1, Q3 = np.percentile(pumpkin_C[col], [25, 75]) IQR = Q3 - Q1 top_C = Q3 + 3 * IQR bottom_C = Q1 - 3 * IQR Q1, Q3 = np.percentile(pumpkin_U[col], [25, 75]) IQR = Q3 - Q1 top_U = Q3 + 3 * IQR bottom_U = Q1 - 3 * IQR pumpkin = pumpkin[ ( (pumpkin["Class"] == "Çerçevelik") & (pumpkin[col] > bottom_C) & (pumpkin[col] < top_C) ) | ( (pumpkin["Class"] == "Ürgüp Sivrisi") & (pumpkin[col] > bottom_U) & (pumpkin[col] < top_U) ) ] pumpkin = pumpkin[pumpkin["Eccentricity"] > 0.7] pumpkin = pumpkin[pumpkin["Solidity"] > 0.97] return pumpkin def plot_by_woe(woe): x = np.array(woe.iloc[:, 0].apply(str)) y = woe["WoE"] plt.figure(figsize=(15, 10)) plt.plot(x, y, marker="o", color="violet", markersize=20, markerfacecolor="gray") plt.xlabel(woe.columns[0]) plt.ylabel("WoE") plt.title(str("WoE of " + woe.columns[0])) plt.xticks(rotation=45) plt.show() def forward(): ginis = {} for feat in list(set(woe_feat_names) - set(forward_feature_list)): logreg = LogisticRegression(random_state=0) scores = cross_val_score( logreg, x_train[forward_feature_list + [feat]].astype(float), x_train["target"], scoring="roc_auc", cv=3, ) ginis[feat] = scores.mean() new_feat = max(ginis, key=ginis.get) gini_list.append(max(ginis.values())) if (gini_list[-1] - gini_list[-2]) < 0.0005: print("END") else: forward_feature_list.append(new_feat) print("Add new feature: ", new_feat) print("roc_auc_score: ", gini_list[-1]) print("-------------------------------") def recalc_forward(): logreg = LogisticRegression(random_state=0) scores = cross_val_score( logreg, x_train[forward_feature_list], x_train["target"], scoring="roc_auc", cv=3, ) gini_list.append(scores.mean()) print("roc_auc_score: ", gini_list[-1]) print("-------------------------------") def aWoE_num(df, feat): df[feat] = pd.cut(df[feat[:-4]], bins[feat]) df[feat] = df[feat].apply(lambda x: x.left).astype(float) df[feat + "_woe"] = df[feat].apply(lambda x: woe[woe[feat] == x]["WoE"].values[0]) return df def add_WoE_num(x_test, feat): x_test = aWoE_num(x_test, feat) print(x_test[["target", feat]].groupby(feat).agg(["count", "mean"])) def cWoE_num(df, feat): df[feat + "_woe"] = df[feat].apply(lambda x: woe[woe[feat] == x]["WoE"].values[0]) return df def change_WoE_num(x_test, x_train, feat): x_train = cWoE_num(x_train, feat) x_test = cWoE_num(x_test, feat) print(x_test[["target", feat]].groupby(feat).agg(["count", "mean"])) def merge_bins(train, test, feature, from_, to_): train.loc[train[train[feature].isin(from_)].index, feature] = to_ test.loc[test[test[feature].isin(from_)].index, feature] = to_ return train, test # # Features pretreatment # The main idea is using WoE insted of features values. To do this we need to split values into bins (each bin should be more than 10% of all data) and replace values in each bin by WoE of this bin. x_train = del_extreme_outlier(x_train) y_train = x_train["target"] bin_feat_names = [] bins = {} for feat in tqdm(features): a, bin_ = check_bins_generation(x_train, feat, 5) x_train[f"{feat}_bin"] = a[f"bin_{feat}"] bin_feat_names.append(f"{feat}_bin") bins[f"{feat}_bin"] = bin_ woe_feat_names = [] for feat in tqdm(bin_feat_names): woe = woe_calc(x_train, feat, x_train["target"]) x_train[f"{feat}_woe"] = x_train[feat].apply( lambda x: woe[woe[feat] == x]["WoE"].values[0] ) woe_feat_names.append(f"{feat}_woe") # # Advanced baseline # The main idea is using WoE of features bins instead of features values. x1_test = copy.deepcopy(x_test) for feat in features: feat = feat + "_bin" woe = woe_calc(x_train, feat, x_train["target"]) add_WoE_num(x1_test, feat) clf = LogisticRegression(random_state=12) clf.fit(x_train[woe_feat_names], x_train["target"]) y_pred_t = clf.predict(x_train[woe_feat_names]) proba_t = clf.predict_proba(x_train[woe_feat_names])[:, 1] y_pred = clf.predict(x1_test[woe_feat_names]) proba = clf.predict_proba(x1_test[woe_feat_names])[:, 1] print( "Train: accuracy_score = ", accuracy_score(y_pred_t, y_train), "roc_auc_score = ", roc_auc_score(y_train, proba_t), ) print( "Test: accuracy_score = ", accuracy_score(y_pred, y_test), "roc_auc_score = ", roc_auc_score(y_test, proba), ) # * Baseline model: # Train roc_auc_score = 0.938, # Test roc_auc_score = 0.929 # * Advanced baseline model: # Train roc_auc_score = 0.943, # Test roc_auc_score = 0.937 # As can be seen from the previous data, the quality of the model increases. The next step is using forward selection to find the most useful features and bins merging to reduce overfitting. # # Forward selection forward_feature_list = [] gini_list = [0] forward() woe = woe_calc(x_train, "Compactness_bin", x_train["target"]) plot_by_woe(woe) add_WoE_num(x_test, "Compactness_bin") forward() woe = woe_calc(x_train, "Solidity_bin", x_train["target"]) plot_by_woe(woe) add_WoE_num(x_test, "Solidity_bin") x_train, x_test = merge_bins(x_train, x_test, "Solidity_bin", [0.988], -np.inf) change_WoE_num(x_test, x_train, "Solidity_bin") recalc_forward() forward() woe = woe_calc(x_train, "Roundness_bin", x_train["target"]) plot_by_woe(woe) add_WoE_num(x_test, "Roundness_bin") forward() woe = woe_calc(x_train, "Extent_bin", x_train["target"]) plot_by_woe(woe) add_WoE_num(x_test, "Extent_bin") x_train, x_test = merge_bins(x_train, x_test, "Extent_bin", [0.661], 0.714) change_WoE_num(x_test, x_train, "Extent_bin") recalc_forward() forward() woe = woe_calc(x_train, "Major_Axis_Length_bin", x_train["target"]) plot_by_woe(woe) add_WoE_num(x_test, "Major_Axis_Length_bin") forward() woe = woe_calc(x_train, "Minor_Axis_Length_bin", x_train["target"]) plot_by_woe(woe) add_WoE_num(x_test, "Minor_Axis_Length_bin") x_train, x_test = merge_bins( x_train, x_test, "Minor_Axis_Length_bin", [211.173], 224.514 ) change_WoE_num(x_test, x_train, "Minor_Axis_Length_bin") recalc_forward() forward() clf = LogisticRegression(random_state=12) clf.fit(x_train[forward_feature_list], x_train["target"]) y_pred_test = clf.predict(x_test[forward_feature_list]) proba_test = clf.predict_proba(x_test[forward_feature_list])[:, 1] y_pred_train = clf.predict(x_train[forward_feature_list]) proba_train = clf.predict_proba(x_train[forward_feature_list])[:, 1] print( "Train: accuracy_score = ", accuracy_score(y_pred_train, x_train["target"]), "roc_auc_score = ", roc_auc_score(x_train["target"], proba_train), ) print( "Test: accuracy_score = ", accuracy_score(y_pred_test, x_test["target"]), "roc_auc_score = ", roc_auc_score(x_test["target"], proba_test), )
# ### **[TensorFlow Hub](https://tfhub.dev/)** is a repository of pre-trained TensorFlow models. # standard libraries import numpy as np import time import PIL.Image as Image import matplotlib.pylab as plt import matplotlib.image as mpimg import datetime from tqdm.keras import TqdmCallback from skimage import transform # tensorflow libraries import tensorflow as tf import tensorflow_hub as hub # path variables train_path = "/kaggle/input/broken-eggs/train" test_path = "/kaggle/input/broken-eggs/test" # define image shape & batch size batch_size = 32 img_height = 299 img_width = 299 # load training images train_ds = tf.keras.utils.image_dataset_from_directory( train_path, validation_split=0.1, subset="training", seed=0, image_size=(img_height, img_width), batch_size=batch_size, ) # load test/validation images val_ds = tf.keras.utils.image_dataset_from_directory( test_path, validation_split=0.2, subset="validation", seed=0, image_size=(img_height, img_width), batch_size=batch_size, ) # target class names class_names = train_ds.class_names print("the target classes are: ", *class_names, sep=" ,") # rescaling the images for the model """TensorFlow Hub's convention for image models is to expect float inputs in the [0, 1] range""" normalization_layer = tf.keras.layers.Rescaling(1.0 / 255) train_ds = train_ds.map( lambda x, y: (normalization_layer(x), y) ) # Where x—images, y—labels. val_ds = val_ds.map( lambda x, y: (normalization_layer(x), y) ) # Where x—images, y—labels. """finish the input pipeline by using buffered prefetching with Dataset.prefetch, so you can yield the data from disk without I/O blocking issues.""" AUTOTUNE = tf.data.AUTOTUNE train_ds = train_ds.cache().prefetch(buffer_size=AUTOTUNE) val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE) # get the headless model """TensorFlow Hub also distributes models without the top classification layer. These can be used to easily perform transfer learning.""" # feature vector model inception_resnet_v2_fv = ( "https://tfhub.dev/google/imagenet/inception_resnet_v2/feature_vector/5" ) feature_extractor_model = inception_resnet_v2_fv # feature extraction layer """Create the feature extractor by wrapping the pre-trained model as a Keras layer with hub.KerasLayer. Use the trainable=False argument to freeze the variables, so that the training only modifies the new classifier layer""" feature_extractor_layer = hub.KerasLayer( feature_extractor_model, input_shape=(img_width, img_height, 3), trainable=False ) # feature_batch = feature_extractor_layer(image_batch) # add a classification layer num_classes = len(class_names) model = tf.keras.Sequential( [feature_extractor_layer, tf.keras.layers.Dense(num_classes)] ) # model summary model.summary() # compile the model model.compile( optimizer=tf.keras.optimizers.Adam(), loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=["acc"], ) # early stopping early_stopping = tf.keras.callbacks.EarlyStopping(monitor="loss", patience=3) # Define Epochs NUM_EPOCHS = 20 # train the model history = model.fit( train_ds, validation_data=val_ds, epochs=NUM_EPOCHS, callbacks=[early_stopping, TqdmCallback(verbose=0)], verbose=0, ) # view model accuracy model_acc = "{:.2%}".format(history.history["acc"][-1]) print(f"\n Model Accuracy Reached: {model_acc}") # summarize history for accuracy plt.subplot(1, 2, 1) plt.plot(history.history["acc"]) plt.plot(history.history["val_acc"]) plt.title("model accuracy") plt.ylabel("accuracy") plt.xlabel("epoch") plt.legend(["train", "test"], loc="upper left") plt.show() # summarize history for loss plt.subplot(1, 2, 2) plt.plot(history.history["loss"]) plt.plot(history.history["val_loss"]) plt.title("model loss") plt.ylabel("loss") plt.xlabel("epoch") plt.legend(["train", "test"], loc="upper left") plt.show() # prediction on an image from test-folder > crack test_img_path = "/kaggle/input/broken-eggs/test/crack/2023-04-09 21_11_04.025236.jpg" test_image = Image.open(test_img_path) test_image = np.array(test_image).astype("float32") / 255 test_image = transform.resize(test_image, (img_width, img_height, 3)) test_image = np.expand_dims(test_image, axis=0) # make predictions prediction = model.predict(test_image) pred_class = prediction.argmax() print(f"The Predicted Class: {class_names[pred_class]}") # view the test-image plt.figure(figsize=(8, 8)) test_img = mpimg.imread(test_img_path) plt.imshow(test_img) plt.title("predicted class: " + class_names[pred_class]) plt.axis("off") plt.show()
import os from distutils.dir_util import copy_tree import shutil destination = "/kaggle/working/" for directory in os.listdir("/kaggle/input/"): source = f"/kaggle/input/{directory}/" for file in os.listdir(source): if len(file) > 2: if file[:1].isdigit(): shutil.copy(source + file, destination) # import os # from distutils.dir_util import copy_tree # destination = '/kaggle/working/' # for directory in os.listdir("/kaggle/input/"): # source = f'/kaggle/input/{directory}' # copy_tree(source, destination) # #os.remove('temp.csv') # source = '/kaggle/input/fork-of-process-data300-2' # destination = '/kaggle/working/' # copy_tree(source, destination) # #import os # #os.remove('temp.csv')
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import os import cv2 import warnings warnings.filterwarnings("ignore") from PIL import Image import tensorflow as tf from sklearn.model_selection import train_test_split from skimage.transform import resize from sklearn.metrics import accuracy_score from keras.utils import to_categorical from keras.models import Sequential from keras.layers import Conv2D, MaxPool2D, Dense, Flatten, Dropout # # 1. Loading the dataset # loading dataset data = [] labels = [] classes = 43 path = "../input/gtsrb-german-traffic-sign/Train" for i in os.listdir(cur_path): dir = path + "/" + i for j in os.listdir(dir): img_path = dir + "/" + j img = cv2.imread(img_path, -1) img = cv2.resize(img, (30, 30), interpolation=cv2.INTER_NEAREST) data.append(img) labels.append(i) data = np.array(data) labels = np.array(labels) print(data.shape, labels.shape) i_path = "../input/gtsrb-german-traffic-sign/Train/1/00001_00072_00027.png" plt.imshow(cv2.imread(i_path, -1)) X_train, X_test, y_train, y_test = train_test_split( data, labels, test_size=0.25, random_state=10 ) print((X_train.shape, y_train.shape), (X_test.shape, y_test.shape)) # converting the labels into one hot encoding y_train = to_categorical(y_train, 43) y_test = to_categorical(y_test, 43) # # 2. Visualizing the data # number of images in each class dic = {} for folder in os.listdir(path): dic[folder] = len(os.listdir(path + "/" + folder)) data_df = pd.Series(dic) plt.figure(figsize=(15, 6)) data_df.sort_values().plot(kind="bar") plt.xlabel("Classes") plt.ylabel("Number of images") # # 3. Model # defining model structure model = Sequential() model.add( Conv2D(filters=32, kernel_size=(5, 5), activation="relu", input_shape=(30, 30, 3)) ) model.add(Conv2D(filters=32, kernel_size=(5, 5), activation="relu")) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Dropout(rate=0.25)) model.add(Conv2D(filters=64, kernel_size=(3, 3), activation="relu")) model.add(Conv2D(filters=64, kernel_size=(3, 3), activation="relu")) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Dropout(rate=0.25)) model.add(Flatten()) model.add(Dense(256, activation="relu")) model.add(Dropout(rate=0.5)) model.add(Dense(43, activation="softmax")) # model compilation model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) model.summary() import visualkeras visualkeras.layered_view(model) epochs = 15 history = model.fit( X_train, y_train, batch_size=64, epochs=epochs, validation_data=(X_test, y_test) ) # # 4. Plots plt.figure(0) plt.plot(history.history["accuracy"], label="train accuracy") plt.plot(history.history["val_accuracy"], label="test accuracy") plt.title("Accuracy") plt.xlabel("epochs") plt.ylabel("Accuracy") plt.legend() plt.figure(0) plt.plot(history.history["loss"], label="train loss") plt.plot(history.history["val_loss"], label="test loss") plt.title("Loss") plt.xlabel("epochs") plt.ylabel("Loss") plt.legend() # # 5. Model testing on test dataset y_test = pd.read_csv("../input/gtsrb-german-traffic-sign/Test.csv") plt.imshow(cv2.imread("../input/gtsrb-german-traffic-sign/Test/00000.png")) labels_test = y_test["ClassId"].values img_test = y_test["Path"].values test_dir = "../input/gtsrb-german-traffic-sign" data = [] for img in img_test: img_path = os.path.join(test_dir, img) # print(img_path) image = cv2.imread(img_path, -1) image = cv2.resize(image, (30, 30), interpolation=cv2.INTER_NEAREST) data.append(np.array(image)) X_test = np.array(data) pred = model.predict_classes(X_test) print("Test accuracy: ", accuracy_score(labels_test, pred) * 100) from tensorflow import keras model.save("model2.h5") # model = keras.models.load_model('path/to/location') # # Model has 96% accuracy on the test data from tensorflow import keras model = keras.models.load_model("model2.h5") label_map = { "0": "20_speed", "1": "30_speed", "2": "50_speed", "3": "60_speed", "4": "70_speed", "5": "80_speed", "6": "80_lifted", "7": "100_speed", "8": "120_speed", "9": "no_overtaking_general", "10": "no_overtaking_trucks", "11": "right_of_way_crossing", "12": "right_of_way_general", "13": "give_way", "14": "stop", "15": "no_way_general", "16": "no_way_trucks", "17": "no_way_one_way", "18": "attention_general", "19": "attention_left_turn", "20": "attention_right_turn", "21": "attention_curvy", "22": "attention_bumpers", "23": "attention_slippery", "24": "attention_bottleneck", "25": "attention_construction", "26": "attention_traffic_light", "27": "attention_pedestrian", "28": "attention_children", "29": "attention_bikes", "30": "attention_snowflake", "31": "attention_deer", "32": "lifted_general", "33": "turn_right", "34": "turn_left", "35": "turn_straight", "36": "turn_straight_right", "37": "turn_straight_left", "38": "turn_right_down", "39": "turn_left_down", "40": "turn_circle", "41": "lifted_no_overtaking_general", "42": "lifted_no_overtaking_trucks", } import numpy as np from tensorflow.keras.preprocessing import image t = y_test.sample() img_test = t["Path"].values test_dir = "../input/gtsrb-german-traffic-sign" img_path = os.path.join(test_dir, img_test[0]) img1 = Image.open(img_path) plt.imshow(np.array(img1)) plt.show() img = image.load_img(img_path, target_size=(30, 30)) img_array = image.img_to_array(img) img_array = np.expand_dims(img_array, axis=0) # Make predictions on the single image predictions = model.predict(img_array) # Print the predicted class predicted_class = np.argmax(predictions) print("Predicted class:", label_map[str(predicted_class)])
import numpy as np import matplotlib.pyplot as plt import pandas as pd from scipy import stats def grad_step(w, X, y): return X.T @ (sigmoid(X @ w) - y) / len(y) def sigmoid(x): return 1 / (1 + np.exp(-x)) def bce_loss(y_true, y_pred): return -np.mean(y_true * np.log(y_pred) + (1 - y_true) * np.log(1 - y_pred)) skyfall = pd.read_csv("weatherAUS_train.csv", delimiter=",") Test = pd.read_csv("weatherAUS_test.csv", delimiter=",") skyfall y = skyfall["RainTomorrow"] skyfall = skyfall.drop(["RainTomorrow"], axis=1) skyfall["Date"] = pd.to_datetime(skyfall["Date"]) skyfall["Year"] = skyfall["Date"].dt.year skyfall["Id"] = pd.Series(np.arange(101822)) skyfall["Month"] = skyfall["Date"].dt.month skyfall["Day"] = skyfall["Date"].dt.day skyfall.drop("Date", axis=1, inplace=True) Test["Date"] = pd.to_datetime(Test["Date"]) Test["Year"] = Test["Date"].dt.year Test["Month"] = Test["Date"].dt.month Test["Day"] = Test["Date"].dt.day Test.drop("Date", axis=1, inplace=True) categorical = [var for var in skyfall.columns if skyfall[var].dtype == "O"] numerical = [var for var in Test.columns if Test[var].dtype != "O"] for df2 in [skyfall, Test]: df2["WindGustDir"].fillna(skyfall["WindGustDir"].mode()[0], inplace=True) df2["WindDir9am"].fillna(skyfall["WindDir9am"].mode()[0], inplace=True) df2["WindDir3pm"].fillna(skyfall["WindDir3pm"].mode()[0], inplace=True) df2["RainToday"].fillna(skyfall["RainToday"].mode()[0], inplace=True) skyfall towns = skyfall["Location"].unique() for df1 in [skyfall, Test]: l = len(df1) loc = np.array(df1["Location"]) mon = np.array(df1["Month"]) for town in towns: ind_t = np.where(loc == town)[0] for month in range(1, 13): ind_tm = [i for i in ind_t if mon[i] == month] for col in categorical: a = np.array(df1[col]) ind_tm_1 = [i for i in ind_tm if a[i] == a[i]] ind_tm_0 = [i for i in ind_tm if a[i] != a[i]] if len(ind_tm_1) > 0: col_tm_mode = stats.mode(a[ind_tm_1])[0] else: col_tm_mode = stats.mode(np.array([x for x in a if x == x]))[0] df1.loc[df1.index[ind_tm_0], col] = col_tm_mode for df1 in [skyfall, Test]: l = len(df1) loc = np.array(df1["Location"]) mon = np.array(df1["Month"]) for town in towns: ind_t = np.where(loc == town)[0] for month in range(1, 13): ind_tm = [i for i in ind_t if mon[i] == month] for col in numerical: a = np.array(df1[col]) ind_tm_1 = [i for i in ind_tm if a[i] == a[i]] ind_tm_0 = [i for i in ind_tm if a[i] != a[i]] if len(ind_tm_1) > 0: col_tm_mean = a[ind_tm_1].mean() else: col_tm_mean = np.mean(np.array([x for x in a if x == x])) df1.loc[df1.index[ind_tm_0], col] = col_tm_mean skyfall skyfall["Evaporation"].fillna(value=skyfall["Evaporation"].mean(), inplace=True) skyfall["MinTemp"].fillna(value=skyfall["MinTemp"].mean(), inplace=True) skyfall["MaxTemp"].fillna(value=skyfall["MaxTemp"].mean(), inplace=True) skyfall["Rainfall"].fillna(value=skyfall["Rainfall"].mean(), inplace=True) skyfall["Sunshine"].fillna(value=skyfall["Sunshine"].mean(), inplace=True) skyfall["WindGustSpeed"].fillna(value=skyfall["WindGustSpeed"].mean(), inplace=True) skyfall["WindSpeed3pm"].fillna(value=skyfall["WindSpeed3pm"].mean(), inplace=True) skyfall["WindSpeed9am"].fillna(value=skyfall["WindSpeed9am"].mean(), inplace=True) skyfall["Cloud9am"].fillna(value=skyfall["Cloud9am"].mean(), inplace=True) skyfall["Cloud3pm"].fillna(value=skyfall["Cloud3pm"].mean(), inplace=True) skyfall["Temp9am"].fillna(value=skyfall["Temp9am"].mean(), inplace=True) skyfall["Temp3pm"].fillna(value=skyfall["Temp3pm"].mean(), inplace=True) skyfall["Pressure9am"].fillna(value=skyfall["Pressure9am"].mean(), inplace=True) skyfall["Humidity3pm"].fillna(value=skyfall["Humidity3pm"].mean(), inplace=True) skyfall["Humidity9am"].fillna(value=skyfall["Humidity9am"].mean(), inplace=True) skyfall["Pressure3pm"].fillna(value=skyfall["Pressure3pm"].mean(), inplace=True) Test["Evaporation"].fillna(value=skyfall["Evaporation"].mean(), inplace=True) Test["MinTemp"].fillna(value=skyfall["MinTemp"].mean(), inplace=True) Test["MaxTemp"].fillna(value=skyfall["MaxTemp"].mean(), inplace=True) Test["Rainfall"].fillna(value=skyfall["Rainfall"].mean(), inplace=True) Test["Sunshine"].fillna(value=skyfall["Sunshine"].mean(), inplace=True) Test["WindGustSpeed"].fillna(value=skyfall["WindGustSpeed"].mean(), inplace=True) Test["WindSpeed3pm"].fillna(value=skyfall["WindSpeed3pm"].mean(), inplace=True) Test["WindSpeed9am"].fillna(value=skyfall["WindSpeed9am"].mean(), inplace=True) Test["Cloud9am"].fillna(value=skyfall["Cloud9am"].mean(), inplace=True) Test["Cloud3pm"].fillna(value=skyfall["Cloud3pm"].mean(), inplace=True) Test["Temp9am"].fillna(value=skyfall["Temp9am"].mean(), inplace=True) Test["Temp3pm"].fillna(value=skyfall["Temp3pm"].mean(), inplace=True) Test["Pressure9am"].fillna(value=skyfall["Pressure9am"].mean(), inplace=True) Test["Humidity3pm"].fillna(value=skyfall["Humidity3pm"].mean(), inplace=True) Test["Humidity9am"].fillna(value=skyfall["Humidity9am"].mean(), inplace=True) Test["Pressure3pm"].fillna(value=skyfall["Pressure3pm"].mean(), inplace=True) skyfall = pd.concat( [ skyfall[numerical], skyfall[["RainToday"]], pd.get_dummies(skyfall.Location), pd.get_dummies(skyfall.WindGustDir), pd.get_dummies(skyfall.WindDir9am), pd.get_dummies(skyfall.WindDir3pm), ], axis=1, ) Test = pd.concat( [ Test[numerical], Test[["RainToday"]], pd.get_dummies(Test.Location), pd.get_dummies(Test.WindGustDir), pd.get_dummies(Test.WindDir9am), pd.get_dummies(Test.WindDir3pm), ], axis=1, ) Test # Изменение столбца RainToday a = np.ones(len(skyfall["RainToday"])) b = np.zeros(len(skyfall["RainToday"])) skyfall["RainToday"] = np.where(skyfall["RainToday"] == "Yes", a, b) skyfall["RainToday"] = pd.to_numeric(skyfall["RainToday"]) a = np.ones(len(Test["RainToday"])) b = np.zeros(len(Test["RainToday"])) Test["RainToday"] = np.where(Test["RainToday"] == "Yes", a, b) Test["RainToday"] = pd.to_numeric(Test["RainToday"]) skyfall.tail(20) print(round(skyfall[numerical].describe()), 2) print(round(Test[numerical].describe()), 2) IQR = skyfall.Rainfall.quantile(0.75) - skyfall.Rainfall.quantile(0.25) Lower_fence = skyfall.Rainfall.quantile(0.25) - (IQR * 3) Upper_fence = skyfall.Rainfall.quantile(0.75) + (IQR * 3) print( "skyfall Rainfall outliers are values < {lowerboundary} or > {upperboundary}".format( lowerboundary=Lower_fence, upperboundary=Upper_fence ) ) IQR = Test.Rainfall.quantile(0.75) - Test.Rainfall.quantile(0.25) Lower_fence = Test.Rainfall.quantile(0.25) - (IQR * 3) Upper_fence = Test.Rainfall.quantile(0.75) + (IQR * 3) print( "Test Rainfall outliers are values < {lowerboundary} or > {upperboundary}".format( lowerboundary=Lower_fence, upperboundary=Upper_fence ) ) IQR = skyfall.Evaporation.quantile(0.75) - skyfall.Evaporation.quantile(0.25) Lower_fence = skyfall.Evaporation.quantile(0.25) - (IQR * 3) Upper_fence = skyfall.Evaporation.quantile(0.75) + (IQR * 3) print( "skyfall Evaporation outliers are values < {lowerboundary} or > {upperboundary}".format( lowerboundary=Lower_fence, upperboundary=Upper_fence ) ) IQR = Test.Evaporation.quantile(0.75) - Test.Evaporation.quantile(0.25) Lower_fence = Test.Evaporation.quantile(0.25) - (IQR * 3) Upper_fence = Test.Evaporation.quantile(0.75) + (IQR * 3) print( "Test Evaporation outliers are values < {lowerboundary} or > {upperboundary}".format( lowerboundary=Lower_fence, upperboundary=Upper_fence ) ) IQR = skyfall.WindSpeed9am.quantile(0.75) - skyfall.WindSpeed9am.quantile(0.25) Lower_fence = skyfall.WindSpeed9am.quantile(0.25) - (IQR * 3) Upper_fence = skyfall.WindSpeed9am.quantile(0.75) + (IQR * 3) print( "skyfall WindSpeed9am outliers are values < {lowerboundary} or > {upperboundary}".format( lowerboundary=Lower_fence, upperboundary=Upper_fence ) ) IQR = Test.WindSpeed9am.quantile(0.75) - Test.WindSpeed9am.quantile(0.25) Lower_fence = Test.WindSpeed9am.quantile(0.25) - (IQR * 3) Upper_fence = Test.WindSpeed9am.quantile(0.75) + (IQR * 3) print( "Test WindSpeed9am outliers are values < {lowerboundary} or > {upperboundary}".format( lowerboundary=Lower_fence, upperboundary=Upper_fence ) ) IQR = skyfall.WindSpeed3pm.quantile(0.75) - skyfall.WindSpeed3pm.quantile(0.25) Lower_fence = skyfall.WindSpeed3pm.quantile(0.25) - (IQR * 3) Upper_fence = skyfall.WindSpeed3pm.quantile(0.75) + (IQR * 3) print( "skyfall WindSpeed3pm outliers are values < {lowerboundary} or > {upperboundary}".format( lowerboundary=Lower_fence, upperboundary=Upper_fence ) ) IQR = Test.WindSpeed3pm.quantile(0.75) - Test.WindSpeed3pm.quantile(0.25) Lower_fence = Test.WindSpeed3pm.quantile(0.25) - (IQR * 3) Upper_fence = Test.WindSpeed3pm.quantile(0.75) + (IQR * 3) print( "Test WindSpeed3pm outliers are values < {lowerboundary} or > {upperboundary}".format( lowerboundary=Lower_fence, upperboundary=Upper_fence ) ) def max_value(df3, variable, top): return np.where(df3[variable] > top, top, df3[variable]) def min_value(df3, variable, low): return np.where(df3[variable] < low, low, df3[variable]) for df3 in [skyfall, Test]: df3["Rainfall"] = max_value(df3, "Rainfall", 4.0) df3["Evaporation"] = max_value(df3, "Evaporation", 9.280406676678158) df3["Evaporation"] = min_value(df3, "Evaporation", 0.38969499249138106) df3["WindSpeed9am"] = max_value(df3, "WindSpeed9am", 55) df3["WindSpeed3pm"] = max_value(df3, "WindSpeed3pm", 57) # Нормировка cols = skyfall.columns from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler() skyfall = scaler.fit_transform(skyfall) Test = scaler.transform(Test) skyfall = pd.DataFrame(skyfall, columns=[cols]) Test = pd.DataFrame(Test, columns=[cols]) skyfall # Корреляционный анализ ниже corr = skyfall.corr(method="pearson") corr towns = [] # список всех городов for i in range(49): towns.append(list(skyfall)[i + 21]) names = list(skyfall) names # Найдём города, наиболее близкие к морю (near_sea) и наиболее далекие от моря (inland) print(corr.loc[towns[0], "Rainfall"].values[0][0]) print(corr.loc[towns[0], "WindSpeed3pm"].values[0][0]) print(corr.loc[towns[0], "Evaporation"].values[0][0]) print(corr.loc[towns[0], "Cloud3pm"].values[0][0]) print(corr.loc[towns[0], "Humidity3pm"].values[0][0]) print(corr.loc[towns[0], "Pressure3pm"].values[0][0]) near_sea = [] for i in towns: # print(i,corr.loc[i,'Rainfall'].values[0][0]) if ( (corr.loc[i, "Cloud3pm"].values[0][0]) > 0.01 and (corr.loc[i, "Humidity3pm"].values[0][0]) > 0.01 and (corr.loc[i, "Pressure3pm"].values[0][0]) > 0.01 ): near_sea.append(i) near_sea # (corr.loc[i,'Cloud3pm'].values[0][0]) < -0.01 and # and (corr.loc[i,'Pressure3pm'].values[0][0]) < -0.01 inland = [] for i in towns: # print(i,corr.loc[i,'Rainfall'].values[0][0]) if (corr.loc[i, "Humidity3pm"].values[0][0]) < -0.01 and ( corr.loc[i, "Pressure3pm"].values[0][0] ) < -0.01: inland.append(i) inland # Добавим их в skyfall и Test с соотв. значениями по параметру близости к морю (1 и -1 соотв., а иначе 0) skyfall["NearSea"] = pd.Series(np.zeros(101822)) for i in near_sea: a = np.where(np.array(skyfall[i]) != 0)[0] for j in range(len(a)): skyfall.iat[a[j], 118] = 1.0 for i in inland: a = np.where(np.array(skyfall[i]) != 0)[0] for j in range(len(a)): skyfall.iat[a[j], 118] = -1.0 # Ниже для Test Test["NearSea"] = pd.Series(np.zeros(43638)) for i in near_sea: a = np.where(np.array(Test[i]) != 0)[0] for j in range(len(a)): Test.iat[a[j], 118] = 1.0 for i in inland: a = np.where(np.array(Test[i]) != 0)[0] for j in range(len(a)): Test.iat[a[j], 118] = -1.0 skyfall # Все эти операции добавили нам одну единичку, улучшив рез-тат на 15 стотысячных # Попробуем с засушливостью, параметры: солнечный свет, температура в 3, амплитуда максимальной и минимальной a = np.array(skyfall["MinTemp"]).reshape(1, len(np.array(skyfall["MinTemp"]))) b = np.array(skyfall["MaxTemp"]).reshape(1, len(np.array(skyfall["MaxTemp"]))) # print(a,b) c = a - b skyfall["DeltaTemp"] = pd.Series(c[0]) skyfall corr = skyfall.corr(method="pearson") corr dry_city = [] for i in towns: if ( (corr.loc[i, "Sunshine"].values[0][0]) > 0.01 and (corr.loc[i, "DeltaTemp"].values[0][0]) > 0.01 and (corr.loc[i, "Temp3pm"].values[0][0]) > 0.01 ): dry_city.append(i) dry_city not_dry = [] for i in towns: # print(i,corr.loc[i,'Rainfall'].values[0][0]) if ( (corr.loc[i, "Sunshine"].values[0][0]) < -0.01 and (corr.loc[i, "DeltaTemp"].values[0][0]) < -0.01 and (corr.loc[i, "Temp3pm"].values[0][0]) < -0.01 ): not_dry.append(i) not_dry skyfall["Tropics"] = pd.Series(np.zeros(101822)) for i in dry_city: a = np.where(np.array(skyfall[i]) != 0)[0] for j in range(len(a)): skyfall.iat[a[j], 120] = 1.0 for i in not_dry: a = np.where(np.array(skyfall[i]) != 0)[0] for j in range(len(a)): skyfall.iat[a[j], 120] = -1.0 a = np.array(Test["MinTemp"]).reshape(1, len(np.array(Test["MinTemp"]))) b = np.array(Test["MaxTemp"]).reshape(1, len(np.array(Test["MaxTemp"]))) c = a - b Test["DeltaTemp"] = pd.Series(c[0]) Test["Tropics"] = pd.Series(np.zeros(43638)) for i in dry_city: a = np.where(np.array(Test[i]) != 0)[0] for j in range(len(a)): Test.iat[a[j], 120] = 1.0 for i in not_dry: a = np.where(np.array(Test[i]) != 0)[0] for j in range(len(a)): Test.iat[a[j], 120] = -1.0 Test del skyfall["MinTemp"] del Test["MinTemp"] skyfall # Удалил MinTemp, потому что и Min, и Max, и delta -- слишком много и коррелируют друг с другом # Давайте теперь возьмем разности у всех параметров с двумя временами a = np.array(skyfall["WindSpeed3pm"]).reshape(1, len(np.array(skyfall["WindSpeed3pm"]))) b = np.array(skyfall["WindSpeed9am"]).reshape(1, len(np.array(skyfall["WindSpeed9am"]))) c = a - b skyfall["SpeedFrac"] = pd.Series(c[0]) a = np.array(skyfall["Humidity3pm"]).reshape(1, len(np.array(skyfall["Humidity3pm"]))) b = np.array(skyfall["Humidity9am"]).reshape(1, len(np.array(skyfall["Humidity9am"]))) c = a - b skyfall["HumidityFrac"] = pd.Series(c[0]) a = np.array(skyfall["Pressure3pm"]).reshape(1, len(np.array(skyfall["Pressure3pm"]))) b = np.array(skyfall["Pressure9am"]).reshape(1, len(np.array(skyfall["Pressure9am"]))) c = a - b skyfall["PressureFrac"] = pd.Series(c[0]) a = np.array(skyfall["Cloud3pm"]).reshape(1, len(np.array(skyfall["Cloud3pm"]))) b = np.array(skyfall["Cloud9am"]).reshape(1, len(np.array(skyfall["Cloud9am"]))) c = a - b skyfall["CloudFrac"] = pd.Series(c[0]) a = np.array(skyfall["Temp3pm"]).reshape(1, len(np.array(skyfall["Temp3pm"]))) b = np.array(skyfall["Temp9am"]).reshape(1, len(np.array(skyfall["Temp9am"]))) c = a - b skyfall["TempFrac"] = pd.Series(c[0]) a = np.array(Test["WindSpeed3pm"]).reshape(1, len(np.array(Test["WindSpeed3pm"]))) b = np.array(Test["WindSpeed9am"]).reshape(1, len(np.array(Test["WindSpeed9am"]))) c = a - b Test["SpeedFrac"] = pd.Series(c[0]) a = np.array(Test["Humidity3pm"]).reshape(1, len(np.array(Test["Humidity3pm"]))) b = np.array(Test["Humidity9am"]).reshape(1, len(np.array(Test["Humidity9am"]))) c = a - b Test["HumidityFrac"] = pd.Series(c[0]) a = np.array(Test["Pressure3pm"]).reshape(1, len(np.array(Test["Pressure3pm"]))) b = np.array(Test["Pressure9am"]).reshape(1, len(np.array(Test["Pressure9am"]))) c = a - b Test["PressureFrac"] = pd.Series(c[0]) a = np.array(Test["Cloud3pm"]).reshape(1, len(np.array(Test["Cloud3pm"]))) b = np.array(Test["Cloud9am"]).reshape(1, len(np.array(Test["Cloud9am"]))) c = a - b Test["CloudFrac"] = pd.Series(c[0]) a = np.array(Test["Temp3pm"]).reshape(1, len(np.array(Test["Temp3pm"]))) b = np.array(Test["Temp9am"]).reshape(1, len(np.array(Test["Temp9am"]))) c = a - b Test["TempFrac"] = pd.Series(c[0]) del ( skyfall["WindSpeed9am"], skyfall["Humidity9am"], skyfall["Pressure9am"], skyfall["Cloud9am"], skyfall["Temp9am"], ) del ( Test["WindSpeed9am"], Test["Humidity9am"], Test["Pressure9am"], Test["Cloud9am"], Test["Temp9am"], ) del skyfall["RainToday"], Test["RainToday"] # Шаманство с столбцами a = np.array(skyfall["Rainfall"].T)[0] ** (2) # его изменение вообще плохо даёт skyfall["Rainfall"] = a b = np.array(Test["Rainfall"].T)[0] ** (2) Test["Rainfall"] = b a = np.array(skyfall["Sunshine"].T)[0] ** (1 / 4) # в квадрат -- неплохо! skyfall["Sunshine"] = a b = np.array(Test["Sunshine"].T)[0] ** (1 / 4) Test["Sunshine"] = b a = (np.array(skyfall["Pressure3pm"].T)[0]) ** (1 / 2) # не стоит изменять вообще skyfall["Pressure3pm"] = a b = (np.array(Test["Pressure3pm"].T)[0]) ** (1 / 2) Test["Pressure3pm"] = b a = (np.array(skyfall["Temp3pm"].T)[0]) ** (2) skyfall["Temp3pm"] = a b = (np.array(Test["Temp3pm"].T)[0]) ** (2) Test["Temp3pm"] = b a = (np.array(skyfall["Evaporation"].T)[0]) ** (1 / 8) # это хорошо skyfall["Evaporation"] = a b = (np.array(Test["Evaporation"].T)[0]) ** (1 / 8) Test["Evaporation"] = b a = np.array(skyfall["Cloud3pm"].T)[0] ** (1 / 8) # это хорошо skyfall["Cloud3pm"] = a b = np.array(Test["Cloud3pm"].T)[0] ** (1 / 8) Test["Cloud3pm"] = b cols = skyfall.columns np.array(cols).shape from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler() skyfall = scaler.fit_transform(skyfall) Test = scaler.transform(Test) skyfall = pd.DataFrame(skyfall, columns=np.array(cols)) Test = pd.DataFrame(Test, columns=np.array(cols)) # train a logistic regression model on the training set from sklearn.linear_model import LogisticRegression # instantiate the model logreg = LogisticRegression(solver="lbfgs", random_state=0) # fit the model logreg.fit(skyfall, y) y_pred_test = logreg.predict(Test) len(np.where(y_pred_test != 0)[0]) y_pred_train = logreg.predict(skyfall) from sklearn.metrics import confusion_matrix print("Train metrics") print(confusion_matrix(y, y_pred_train)) answer = pd.DataFrame({"ID": np.arange(43638), "RainTomorrow": y_pred_test}) answer answer.to_csv("AUSout21.csv", index=False) # первый нормальный рез-тат - 6613, второй - 6614, третий - 6615; 6626 -- уже плохо! from sklearn.metrics import confusion_matrix print("Train metrics") print(confusion_matrix(y_train, y_pred_train))
import cv2 import os from torchvision import models import torchvision.transforms as T from PIL import Image import torch import numpy as np import mediapipe as mp Link_List = [ "https://www.youtube.com/watch?v=NglE9QX38Jo", "https://www.youtube.com/watch?v=qa9_p5Y2Zmo", "https://www.youtube.com/watch?v=rtXRnC34LHs", "https://www.youtube.com/watch?v=HXUQrPRF5Jw", "https://www.youtube.com/watch?v=NLjuKZXg-2A", "https://www.youtube.com/watch?v=zqGexL99EIA", "https://www.youtube.com/watch?v=g2WZPy0dABY", "https://www.youtube.com/watch?v=lGMjtuQ4f-s", "https://www.youtube.com/watch?v=vrWajnsJSgE", "https://www.youtube.com/watch?v=9ELp9w-4ssw", ] from pytube import YouTube for count, link in enumerate(Link_List): # Create YouTube object yt = YouTube(link) Audio = yt.streams.get_by_itag(139) Audio.download("", str(count) + "Asl.mp4") # Select highest resolution stream stream = yt.streams.get_highest_resolution() # Download video to current working directory stream.download("", str(count) + "vid.mp4") # GPU device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(device) # # Ready Segmentation model = models.segmentation.deeplabv3_resnet101(pretrained=1).eval() model.to(device) mp_drawing = mp.solutions.drawing_utils mp_hands = mp.solutions.hands hands = mp_hands.Hands( static_image_mode=False, max_num_hands=2, min_detection_confidence=0.2, min_tracking_confidence=0.2, ) def crop(image, source, nc=21): label_colors = np.array( [ (0, 0, 0), # 0=background # 1=aeroplane, 2=bicycle, 3=bird, 4=boat, 5=bottle (0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0), # 6=bus, 7=car, 8=cat, 9=chair, 10=cow (0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0), # 11=dining table, 12=dog, 13=horse, 14=motorbike, 15=person (0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0), (192, 128, 128), # 16=potted plant, 17=sheep, 18=sofa, 19=train, 20=tv/monitor (0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0), ] ) r = np.zeros_like(image).astype(np.uint8) g = np.zeros_like(image).astype(np.uint8) b = np.zeros_like(image).astype(np.uint8) for l in range(0, nc): idx = image == l r[idx] = label_colors[l, 0] g[idx] = label_colors[l, 1] b[idx] = label_colors[l, 2] rgb = np.stack([r, g, b], axis=2) foreground = source # foreground=cv2.cvtColor(foreground,cv2.COLOR_BGR2RGB) foreground = cv2.resize(foreground, (r.shape[1], r.shape[0])) background = 255 * np.ones_like(rgb).astype(np.uint8) foreground = foreground.astype(float) background = background.astype(float) th, alpha = cv2.threshold(np.array(rgb), 0, 255, cv2.THRESH_BINARY) alpha = cv2.GaussianBlur(alpha, (7, 7), 0) alpha = alpha.astype(float) / 255 foreground = cv2.multiply(alpha, foreground) background = cv2.multiply(1.0 - alpha, background) outImage = cv2.add(foreground, background) return outImage def modify(img, width, height): transforms = T.Compose( [ T.ToTensor(), T.Resize(640), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ] ) inp = transforms(img).unsqueeze(0) inp = inp.to(device) out = model(inp)["out"] om = torch.argmax(out.squeeze(), dim=0).detach().cpu().numpy() result = crop( om, img ) # use result = crop(om,source) while using crop function discussed later result = cv2.resize(result, (width, height)) result = np.uint8(result) return result def Create_Dataset(vid_path, count=0): cap = cv2.VideoCapture(vid_path) # # Get the video frame rate and total number of frames frame_rate = int(cap.get(cv2.CAP_PROP_FPS)) total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # # Set the number of frames to skip per minute frames_per_minute = frame_rate * 60 # # Create a directory to save the frames output_folder_bg = "Frames_bg" output_folder_ng = "Frames" if not os.path.exists(output_folder_bg): os.makedirs(output_folder_bg) if not os.path.exists(output_folder_ng): os.makedirs(output_folder_ng) # # Get the video dimensions width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # # Setup Video Writer vid_write_bg = cv2.VideoWriter( output_folder_bg + str(count) + "_video.avi", cv2.VideoWriter_fourcc(*"MJPG"), frame_rate, (int(cap.get(3)), int(cap.get(4))), ) vid_write_ng = cv2.VideoWriter( output_folder_ng + str(count) + "_video.avi", cv2.VideoWriter_fourcc(*"MJPG"), frame_rate, (int(cap.get(3)), int(cap.get(4))), ) # # Define the coordinates for the right bottom corner box box_width = int(720 / 8) box_height = int(1280 / 8) box_x = width - box_width box_y = height - box_height # # Iterate through the video and extract frames for every minute for i in range(0, total_frames): # print(i) if i % 100 == 0: print(count, i / frames_per_minute) # # Set the frame index to the beginning of the minute cap.set(cv2.CAP_PROP_POS_FRAMES, i) # # Read the frame ret, frame = cap.read() if ret: # # Add the box to the frame pos = "left" # Should add the position variable in vid names going forward XXXXXXXXXXXX if pos == "left": box = frame[int(height * 0.25) : height, 0 : int(width * 0.30)] box = cv2.resize(box, (width, height)) elif pos == "right": box = frame[int(height * 0.25) : height, int(width * 0.70) : width] box = cv2.resize(box, (width, height)) else: box = frame result = modify(box, width, height) results = hands.process(box) # Draw the detected hand landmarks on the frame if results.multi_hand_landmarks: for hand_landmarks in results.multi_hand_landmarks: # print('Hands') mp_drawing.draw_landmarks( box, hand_landmarks, mp_hands.HAND_CONNECTIONS ) mp_drawing.draw_landmarks( result, hand_landmarks, mp_hands.HAND_CONNECTIONS ) vid_write_bg.write(box) vid_write_ng.write(result) else: break # # Release the video capture object and close all windows cap.release() # cv2.destroyAllWindows() vid_write_bg.release() vid_write_ng.release() # # Load the video video_path = "/kaggle/working/برنامج ٨ الصبح بلغة الإشارة - شيكو وهشام في حوار مع رحمة خالد ترجمة أميرة محي dmc_بلغة_الإشارة.mp4" for count, link in enumerate(Link_List): video_path = "/kaggle/working/" + str(count) + "vid.mp4" Create_Dataset(video_path, count)
# # Introduction # In this notebook we aimed to make a prediction model for legendary Pokémon. All code and libraries we used was taught in DataCamp's [Machine Learning with scikit-learn](https://app.datacamp.com/learn/courses/machine-learning-with-scikit-learn). # # Pokemon dataset # We chose a pokemon dataset which describe 721 pokemons (with 79 Mega evolutions) and their basic statistics. # First, let's import some packages that we will need and read the file : import numpy as np # Linear algebra import pandas as pd # Data processing import sklearn.model_selection # Various models for ML from sklearn.neighbors import KNeighborsClassifier # KNN from sklearn.metrics import ( accuracy_score, f1_score, precision_score, recall_score, ) # Accuracy for KNN from sklearn.metrics import roc_curve # ROC curve import matplotlib.pyplot as plt # Plots import seaborn as sns # EDA df = pd.read_csv("../input/pokemon/Pokemon.csv") # Read dataset print(df.head(10)) # See detail print(df.shape) # How many rows/columns df.columns # More details about the columns : # __#__: ID for each pokemon # __Name__: Name of each pokemon # __Type 1__: Each pokemon has a type, this determines weakness/resistance to attacks # __Type 2__: Some pokemon are dual type and have 2 # __Total__: sum of all stats that come after this, a general guide to how strong a pokemon is # __HP__: hit points, or health, defines how much damage a pokemon can withstand before fainting # __Attack__: the base modifier for normal attacks (eg. Scratch, Punch) # __Defense__: the base damage resistance against normal attacks # __SP Atk__: special attack, the base modifier for special attacks (e.g. fire blast, bubble beam) # __SP Def__: the base damage resistance against special attacks # __Speed__: determines which pokemon attacks first each round df["Generation"].value_counts().plot.bar() # The datasets is made of the first 6 generations. A generation is a grouping of the Pokemon games that separates them based on the Pokémon they include. print(df["Legendary"].value_counts()) # How many legendaries # Legendary Pokémon are a group of Pokémon, generally featured in the legends and myths of the Pokémon world. df["Type 1"].unique() # As we can see there are many types of Pokemon. Which type is the more common ? df["Type 1"].value_counts().plot.bar() df1 = df.drop(["#", "Generation"], axis=1) df1.describe() # Let's make it visually easier to understand : fig, ax = plt.subplots() ax.boxplot( [df["HP"], df["Attack"], df["Defense"], df["Sp. Atk"], df["Sp. Def"], df["Speed"]] ) ax.set_xticklabels( ["HP", "Attack", "Defense", "Special Attack", "Special Defense", "Speed"], rotation=45, ) plt.show() # The HP distribution looks flatter than the others while Attack, special attack & speed looks the same.Defense & special defense are also similar. fig, ax = plt.subplots() ax.boxplot([df["Total"]]) ax.set_xticklabels(["Total"], rotation=45) plt.show() # These characteristics are participating in the elobaration of the total score of each pokemon. We notice that there is a large distribution of the data. # As the median is 450, a pokemon having a higher total score than 450 means that the pokemon will be stronger than 50% of pokemon he may encounter. With 60 more points, this pokemon will be stronger than 75% of pokemon. # # Legendary pokemon # Let's compare and see if we can find some specific characetristic from Legendary pokemon and make some comparisons with other pokemon. # First, how much are they ? df["Legendary"].value_counts() # They are not numerous at all. So, we can notice a first specificty : legendary pokemons are rare ! # # Since they are always unique to a region and it is impossible to find multiple of each in one game. Hence they are supposed to be high-tier additions to a player's team. # # We will now check their caracteristcs. legendaryCounts = df[df.Legendary == True] legendaryCounts["Type 1"].value_counts().plot.bar() # Legendary Pokémon are often special type, such as Psychic (Mew, Mewtwo) or various elemental (Zapdos, Articuno, Moltres). This hints that they might be more inclined to use Special attack rather than regular Attack. # # In the table above we can see which types most Legendary Pokémon are. This points out that most of them are indeed Special Attack users. It does not mean that they cannot use physical moves, but if the would, their damage potential would not be used to the max. sns.set_theme(style="ticks", palette="pastel") sns.boxplot(x="Legendary", y="HP", palette=["b", "r"], data=df) sns.despine(offset=10, trim=True) # The dataset looks pretty flat for both of the distributions. A lot of outliers are not legendary pokemon. But they have in general (75%) more HP than the others. sns.set_theme(style="ticks", palette="pastel") sns.boxplot(x="Legendary", y="Attack", palette=["b", "r"], data=df) sns.despine(offset=10, trim=True) # A 75% of legendary pokemon's Attack level is higher than 75% of normal pokemon. sns.set_theme(style="ticks", palette="pastel") sns.boxplot(x="Legendary", y="Defense", palette=["b", "r"], data=df) sns.despine(offset=10, trim=True) # Same comment about the HP. sns.set_theme(style="ticks", palette="pastel") sns.boxplot(x="Legendary", y="Sp. Atk", palette=["b", "r"], data=df) sns.despine(offset=10, trim=True) # The distribution looks is wide compared to the other boxplots. Legendary pokemon seems to have stronger special attack than other pokemon. sns.set_theme(style="ticks", palette="pastel") sns.boxplot(x="Legendary", y="Sp. Def", palette=["b", "r"], data=df) sns.despine(offset=10, trim=True) # The special defense looks also higher for the legendary pokemon tthan other pokemon. sns.set_theme(style="ticks", palette="pastel") sns.boxplot(x="Legendary", y="Speed", palette=["b", "r"], data=df) sns.despine(offset=10, trim=True) # The distributions are really different : legendary pokemon distribution is really flat compared to the other pokemon distribution which is wide. But the legendary pokemon are still faster in most of the cases. sns.set_theme(style="ticks", palette="pastel") sns.boxplot(x="Legendary", y="Total", palette=["b", "r"], data=df) sns.despine(offset=10, trim=True) # The other pokemon distribution is really wider than legendary pokemon. We notice that the minimum and the 1st quartile are the same in the legendary distribution ! sns.set_theme(style="white") sns.relplot( x="Type 1", y="Total", hue="Legendary", alpha=0.5, palette="muted", height=7.5, data=df, ) plt.xticks(rotation=45) # To sum up what we found by exploring the data : # Legendary pokemon seems to be rare, they have better HP, speed, attack, defense, special defense and strongest special attack. All of this most of the time ! Which leads logically to highest totals, which means that in general legendary pokemon are more powerful than the normal ones. # With the last graph, we also notice that the type doesn't influence the powerfulness of legendary pokemon. It seems there is a minimum score about 590 to be a legenday pokemon. # # EDA using Seaborn # We used Seaborn from Chapter 1 - Classification # Special attack is the one that has the most correlation with Total (0.75), hence we will use these for LinearRegression, KNN and overall plots. # Create EDA with non-string values data = pd.DataFrame( df, columns=["Total", "HP", "Attack", "Defense", "Sp. Atk", "Sp. Def", "Speed"] ) corrMatrix = data.corr() f, ax = plt.subplots(figsize=(8, 6)) ax = sns.heatmap(corrMatrix, annot=True) plt.show() # This result implies, that Special Attack Pokémon usually have higher stats and are more effective in battle. # # As mentioned above, the difference between Attack and Special attack is the type of the Pokémon. Attack is related to physical damage (i.e. Tackle or Headbutt) while Special attack relates to non-connecting attacks (i.e. Psyshock, Fire Blast). # # Linear Regression # We used sklearn.LinearRegression from Chapter 2 - Regression # For LR we used Sp. Atk. as feature and Total as target. It ended up with 0.55 % accuracy, which is not that great. It might not have been the best fit. # Prepare for Linear regression on Sp. Atk and Total regX = data.loc[:, "Sp. Atk":] regy = pd.DataFrame(data.loc[:, "Total"]) X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split( pd.DataFrame(regX.loc[:, "Sp. Atk"]), regy, random_state=0 ) # Train/Test split LinearReg = sklearn.linear_model.LinearRegression().fit( X_train, y_train ) # Linear Regression # Create plot x = np.array(regX["Sp. Atk"]) plt.figure(figsize=(10, 8)) plt.ylabel("Total") plt.xlabel("Sp. Atk") plt.title("LinearRegression score: {:.3f}".format(LinearReg.score(X_test, y_test))) # Prepare grid ax = plt.gca() ax.xaxis.grid(True, alpha=0.4) ax.yaxis.grid(True, alpha=0.4) for spine in plt.gca().spines.values(): spine.set_visible(False) # Scatter plot plt.scatter(regX.loc[:, "Sp. Atk"], regy, marker="o", s=50, alpha=0.8) # Linear regression line plt.plot( regX.loc[:, "Sp. Atk"], LinearReg.coef_ * x.reshape(-1, 1) + LinearReg.intercept_, "r-", ) plt.show() # # KNN # We used sklearn.KNearestNeighbors from Chapter 2 - Regression # Since Linear Regression was not the best way to go, we tried using the KNN method to predict legendary Pokémon. We droped string-type columns and used only numerical data. # We ended up with 94 % accuracy. # Create new values for KNN with no strings on X X = df.drop(["Legendary", "Name", "Type 1", "Type 2"], axis=1) y = df["Legendary"] # Train/test split X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split( X, y, random_state=43, test_size=0.4, stratify=y ) # KNN with 4 neighbours knn = KNeighborsClassifier(n_neighbors=4) knn.fit(X_train, y_train) predictions = knn.predict(X_test) # TP / (TP + FP) precision = precision_score(y_test, predictions, pos_label=None, average="weighted") # TP / (TP + FN) recall = recall_score(y_test, predictions, pos_label=None, average="weighted") # F1 score f1 = f1_score(y_test, predictions, pos_label=None, average="weighted") # TP + (TN / No. of predictions) accuracy = accuracy_score(y_test, predictions) print( "accuracy = %.3f, precision = %.3f, recall = %.3f, f1 = %.3f" % (accuracy, precision, recall, f1) ) # # ROC Curve # We used sklearn.roc_curve from Chapter 3 - Fine-tuning your model # Since KNN had a great accuracy, we checked the ROC curve for its result and it looks great. KNN was the way to go. # Re-do KNN y_pred = knn.predict_proba(X_test)[:, 1] # Create ROC curve fpr, tpr, thresholds = roc_curve(y_test, y_pred) # Create plot plt.plot([0, 1], [0, 1], "k--") plt.plot(fpr, tpr, label="Knn") # Labels plt.xlabel("False positive rate") plt.ylabel("True positive rate") plt.title("ROC curve - Knn 4-N") plt.show()
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # # House Prices # With explanatory variables describing (almost) every aspect of residential homes in Ames, lowa. Using this dataset predict the final price of each home. # Code for showing toggle button for showing/hiding the code # While exporting this Jupyter notebook to html for presentation purpose, hide the code for analytical view from IPython.display import HTML, Image, display HTML( """ <script> code_show=true; function code_toggle(){ if (code_show){ $('div.input').hide(); $("#btn_toggle").val("Show Code"); }else{ $('div.input').show(); $("#btn_toggle").val("Hide Code"); } code_show= !code_show; } </script> <style> .output_png { display: table-cell; text-align: center; vertical-align: middle; } </style> <form action="javascript:code_toggle()"> <input style = "float:right" type="submit" id="btn_toggle" value="Hide Code"> """ ) # import necessary libraries import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import warnings warnings.filterwarnings("ignore") import mlxtend from mlxtend.preprocessing import standardize from sklearn.preprocessing import LabelEncoder from sklearn.linear_model import LinearRegression, Lasso, Ridge, ElasticNet from xgboost import XGBRegressor from sklearn.model_selection import train_test_split # Visualization settings sns.set_style(style="white") sns.set( rc={ "figure.figsize": (12, 7), "axes.facecolor": "white", "axes.grid": True, "grid.color": ".9", "axes.linewidth": 1.0, "grid.linestyle": "-", }, font_scale=1.5, ) custom_colors = ["#3498db", "#95a5a6", "#34495e", "#2ecc71", "#e74c3c"] sns.set_palette(custom_colors) Image("../input/houseprice-1/housesbanner_1.png") df_train = pd.read_csv("../input/house-prices-advanced-regression-techniques/train.csv") print("Training data loaded") # ## Dataset description print("Sample dataframe:\n") df_train.head(3) print( f"Initial data frame contains {df_train.shape[0]} rows and {df_train.shape[1]} columns." ) col_tags = ( "<ol>" + "".join([f"<li><h4>{col}</h4></li>" for col in df_train.columns]) + "</ol>" ) display(HTML("<h3>Feature names:</h3>")) display(HTML(col_tags)) print("Dataset summary :\n") df_train.info() # # 3 float columns # 35 integer columns # 43 String columns # val = df_train.isnull().sum() df = pd.DataFrame(val, columns=["NullCount"]).query("NullCount != 0") df = pd.DataFrame({"Features": df.index, "NullCount": df.NullCount.values}) df.sort_values(by="NullCount", inplace=True, ascending=False) sns.barplot(data=df, x="Features", y="NullCount") plt.xticks(rotation=90) plt.title("Features having null values") df print(f"Number of features having null values: {df.shape[0]}") ## <center> Features - Exploratory Data Analysis</center> # Function for showing the statistcs and Pie chart for discrete features. def str_discrete_analysis(fld_name): print("Value counts: \n") print(fld_name.value_counts()) plt.pie( fld_name.value_counts(), labels=fld_name.value_counts().index, autopct=lambda x: f"{x: .2f}%", ) plt.title(fld_name.name + " -distribution") print("Null value count : ", fld_name.isnull().sum()) def conti_fld_analysis(fld_name): print(fld_name.describe()) plt.subplot(2, 2, 1) plt.hist(fld_name) plt.subplot(2, 2, 2) sns.boxplot(fld_name) plt.suptitle(fld_name.name + " -distribution") print("Null value count : ", fld_name.isnull().sum()) # ### SalePrice - Target Feature df_train.SalePrice.describe() plt.figure(figsize=(20, 10)) plt.subplot(2, 2, 1) plt.hist(x=df_train.SalePrice) plt.subplot(2, 2, 2) sns.distplot(df_train.SalePrice) plt.subplot(2, 2, 3) sns.boxplot(df_train.SalePrice) plt.suptitle("SalePrice - distribution") print(f"Skewness in data : {df_train.SalePrice.skew()}") # # Continuous variable # Positively skewed distribution. # Presence of outliers. # ### 1. MSSubClass # Identifies the type of dwelling involved in the sale. # 20 1-STORY 1946 & NEWER ALL STYLES # 30 1-STORY 1945 & OLDER # 40 1-STORY W/FINISHED ATTIC ALL AGES # 45 1-1/2 STORY - UNFINISHED ALL AGES # 50 1-1/2 STORY FINISHED ALL AGES # 60 2-STORY 1946 & NEWER # 70 2-STORY 1945 & OLDER # 75 2-1/2 STORY ALL AGES # 80 SPLIT OR MULTI-LEVEL # 85 SPLIT FOYER # 90 DUPLEX - ALL STYLES AND AGES # 120 1-STORY PUD (Planned Unit Development) - 1946 & NEWER # 150 1-1/2 STORY PUD - ALL AGES # 160 2-STORY PUD - 1946 & NEWER # 180 PUD - MULTILEVEL - INCL SPLIT LEV/FOYER # 190 2 FAMILY CONVERSION - ALL STYLES AND AGES df_train.MSSubClass.value_counts().plot.bar() plt.title("MSSubClass-value counts") # # Discrete variable. # ### 2. MSZoning # Identifies the general zoning classification of the sale. # A Agriculture # C Commercial # FV Floating Village Residential # I Industrial # RH Residential High Density # RL Residential Low Density # RP Residential Low Density Park # RM Residential Medium Density df_train.MSZoning.value_counts().plot.bar() plt.title("MSZoning value counts") # # Categorical variable. # ### 3. LotFrontage # Linear feet of street connected to property plt.hist(x=df_train.LotFrontage, bins=100) plt.title("LotFrontage-distribution") print("Descriptive statistics:") df_train.LotFrontage.describe() # # Continuous variable. # Missing values present. # ## 4. LotArea # Lot size in square feet df_train.LotArea.describe() plt.figure(figsize=(20, 10)) plt.subplot(2, 2, 1) plt.hist(df_train.LotArea) plt.subplot(2, 2, 2) sns.boxplot(df_train.LotArea) plt.suptitle("LotArea - distribution") # # Continuous variable # ## 5. Street # Type of road access to property # Grvl Gravel # Pave Paved print(f"Unique values: \n") np.unique(df_train.Street, return_counts=True) plt.pie( df_train.Street.value_counts(), autopct=lambda s: f"{s:.2f}%", labels=["Paved", "Gravel"], ) plt.title("Street- distribution") # # String Categorical variable. | # Almost 99% values are 'Paved' # ### 6. Alley # Type of alley access to property # Grvl Gravel # Pave Paved # NA No alley access # print("Value counts:\n") df_train.Alley.value_counts() # # Categorical string values. # Presence of Null values. # Null/Missing value indicates 'No Alley Access'. # Hence most of the observations having 'No Alley Access'. # ## 7. LotShape # General shape of property # Reg Regular # IR1 Slightly irregular # IR2 Moderately Irregular # IR3 Irregular print("Value counts:\n") df_train.LotShape.value_counts() plt.pie( df_train.LotShape.value_counts(), autopct=lambda s: f"{s:.2f}%", labels=df_train.LotShape.value_counts().index, ) plt.title("LotShape - distribution") # # String categorical variable. # ### 8. LandContour # Flatness of the property # Lvl Near Flat/Level # Bnk Banked - Quick and significant rise from street grade to building # HLS Hillside - Significant slope from side to side # Low Depression print("Value counts:") df_train.LandContour.value_counts() plt.pie( df_train.LandContour.value_counts(), autopct=lambda s: f"{s:.2f}%", labels=df_train.LandContour.value_counts().index, ) plt.title("LandContour - distribution") # # Categorical String variable # ### 9. Utilities # Type of utilities available # AllPub All public Utilities (E,G,W,& S) # NoSewr Electricity, Gas, and Water (Septic Tank) # NoSeWa Electricity and Gas Only # ELO Electricity only print("Value Counts:\n") df_train.Utilities.value_counts() # # Categorical String variable. # ### 10. LotConfig # Lot configuration # Inside Inside lot # Corner Corner lot # CulDSac Cul-de-sac # FR2 Frontage on 2 sides of property # FR3 Frontage on 3 sides of property # str_discrete_analysis(df_train.LotConfig) # # String Categorical variable. # ### 11. LandSlope # Slope of property # # Gtl Gentle slope # Mod Moderate Slope # Sev Severe Slope str_discrete_analysis(df_train.LandSlope) # # String Categorical variable. # ### 12. Neighborhood # Physical locations within Ames city limits # Blmngtn Bloomington Heights # Blueste Bluestem # BrDale Briardale # BrkSide Brookside # ClearCr Clear Creek # CollgCr College Creek # Crawfor Crawford # Edwards Edwards # Gilbert Gilbert # IDOTRR Iowa DOT and Rail Road # MeadowV Meadow Village # Mitchel Mitchell # Names North Ames # NoRidge Northridge # NPkVill Northpark Villa # NridgHt Northridge Heights # NWAmes Northwest Ames # OldTown Old Town # SWISU South & West of Iowa State University # Sawyer Sawyer # SawyerW Sawyer West # Somerst Somerset # StoneBr Stone Brook # Timber Timberland # Veenker Veenker df_train.Neighborhood.value_counts().plot.bar() plt.title("Neighborhood - distribution") # # Categorical String variable. # ### 13. Condition1 # Proximity to various conditions # # Artery Adjacent to arterial street # Feedr Adjacent to feeder street # Norm Normal # RRNn Within 200' of North-South Railroad # RRAn Adjacent to North-South Railroad # PosN Near positive off-site feature--park, greenbelt, etc. # PosA Adjacent to postive off-site feature # RRNe Within 200' of East-West Railroad # RRAe Adjacent to East-West Railroad str_discrete_analysis(df_train.Condition1) display(HTML("<h3 style='background-color:yellow'>String Discrete variable </h3>")) # ### 14. Condition2 # Proximity to various conditions (if more than one is present) # # Artery Adjacent to arterial street # Feedr Adjacent to feeder street # Norm Normal # RRNn Within 200' of North-South Railroad # RRAn Adjacent to North-South Railroad # PosN Near positive off-site feature--park, greenbelt, etc. # PosA Adjacent to postive off-site feature # RRNe Within 200' of East-West Railroad # RRAe Adjacent to East-West Railroad str_discrete_analysis(df_train.Condition2) # String Discrete variable # ### 15. BldgType: Type of dwelling # # 1Fam Single-family Detached # 2FmCon Two-family Conversion; originally built as one-family dwelling # Duplx Duplex # TwnhsE Townhouse End Unit # TwnhsI Townhouse Inside Unit str_discrete_analysis(df_train.BldgType) # String Discrete variable # ### 16. OverallQual: Rates the overall material and finish of the house # 10 Very Excellent # 9 Excellent # 8 Very Good # 7 Good # 6 Above Average # 5 Average # 4 Below Average # 3 Fair # 2 Poor # 1 Very Poor str_discrete_analysis(df_train.OverallQual) # Integer ordinal variable # ### 17. OverallCond: Rates the overall condition of the house # 10 Very Excellent # 9 Excellent # 8 Very Good # 7 Good # 6 Above Average # 5 Average # 4 Below Average # 3 Fair # 2 Poor # 1 Very Poor str_discrete_analysis(df_train.OverallCond) # Integer ordinal variable. # ### 18. YearBuilt: Original construction date df_train.YearBuilt.describe() plt.hist(df_train.YearBuilt) plt.title("Construction Year - distribution") # # Categorical variable. # ### 19. YearRemodAdd: Remodel date (same as construction date if no remodeling or additions) df_train.YearRemodAdd.describe() plt.hist(df_train.YearRemodAdd) plt.title("Remodel date -distribution") # # Discrete variable. # ### 20. RoofStyle: Type of roof # Flat Flat # Gable Gable # Gambrel Gabrel (Barn) # Hip Hip # Mansard Mansard # Shed Shed str_discrete_analysis(df_train.RoofStyle) # # Categorial variable. # ## 21. RoofMatl: Roof material # ClyTile Clay or Tile # CompShg Standard (Composite) Shingle # Membran Membrane # Metal Metal # Roll Roll # Tar&Grv Gravel & Tar # WdShake Wood Shakes # WdShngl Wood Shingles str_discrete_analysis(df_train.RoofMatl) # # Discrete variable. # ### 23. Exterior1st: Exterior covering on house # AsbShng Asbestos Shingles # AsphShn Asphalt Shingles # BrkComm Brick Common # BrkFace Brick Face # CBlock Cinder Block # CemntBd Cement Board # HdBoard Hard Board # ImStucc Imitation Stucco # MetalSd Metal Siding # Other Other # Plywood Plywood # PreCast PreCast # Stone Stone # Stucco Stucco # VinylSd Vinyl Siding # Wd Sdng Wood Siding # WdShing Wood Shingles str_discrete_analysis(df_train.Exterior1st) # # Discrete variable. # ### 23. Exterior2nd: Exterior covering on house (if more than one material) # AsbShng Asbestos Shingles # AsphShn Asphalt Shingles # BrkComm Brick Common # BrkFace Brick Face # CBlock Cinder Block # CemntBd Cement Board # HdBoard Hard Board # ImStucc Imitation Stucco # MetalSd Metal Siding # Other Other # Plywood Plywood # PreCast PreCast # Stone Stone # Stucco Stucco # VinylSd Vinyl Siding # Wd Sdng Wood Siding # WdShing Wood Shingles str_discrete_analysis(df_train.Exterior2nd) # # Discrete variable. # ### 23. MasVnrType: Masonry veneer type # BrkCmn Brick Common # BrkFace Brick Face # CBlock Cinder Block # None None # Stone Stone # str_discrete_analysis(df_train.MasVnrType) # # Discrete variable. # ### 24. MasVnrArea: Masonry veneer area in square feet conti_fld_analysis(df_train.MasVnrArea) # # Continuous variable. # ### 25. ExterQual: Evaluates the quality of the material on the exterior # # Ex Excellent # Gd Good # TA Average/Typical # Fa Fair # Po Poor str_discrete_analysis(df_train.ExterQual) # # Ordinal variable. # ### 26. ExterCond: Evaluates the present condition of the material on the exterior # # Ex Excellent # Gd Good # TA Average/Typical # Fa Fair # Po Poor str_discrete_analysis(df_train.ExterCond) # # Ordinal variable. # ### 27. Foundation: Type of foundation # # BrkTil Brick & Tile # CBlock Cinder Block # PConc Poured Contrete # Slab Slab # Stone Stone # Wood Wood str_discrete_analysis(df_train.Foundation) # # String categorical variable. # ### 28. BsmtQual: Evaluates the height of the basement # Ex Excellent (100+ inches) # Gd Good (90-99 inches) # TA Typical (80-89 inches) # Fa Fair (70-79 inches) # Po Poor (<70 inches # NA No Basement str_discrete_analysis(df_train.BsmtQual) # # Ordinal variable. # ### 29. BsmtCond: Evaluates the general condition of the basement # Ex Excellent # Gd Good # TA Typical - slight dampness allowed # Fa Fair - dampness or some cracking or settling # Po Poor - Severe cracking, settling, or wetness # NA No Basement str_discrete_analysis(df_train.BsmtCond) # # Ordinal variable. # ### 30. BsmtExposure: Refers to walkout or garden level walls # Gd Good Exposure # Av Average Exposure (split levels or foyers typically score average or above) # Mn Mimimum Exposure # No No Exposure # NA No Basement # str_discrete_analysis(df_train.BsmtExposure) # # Ordinal variable. # ### 31. BsmtFinType1: Rating of basement finished area # GLQ Good Living Quarters # ALQ Average Living Quarters # BLQ Below Average Living Quarters # Rec Average Rec Room # LwQ Low Quality # Unf Unfinshed # NA No Basement str_discrete_analysis(df_train.BsmtFinType1) # # Ordinal variable. # ### 32. BsmtFinSF1: Type 1 finished square feet # conti_fld_analysis(df_train.BsmtFinSF1) # # Continuous variable. # ### 33. BsmtFinType2: Rating of basement finished area (if multiple types) # GLQ Good Living Quarters # ALQ Average Living Quarters # BLQ Below Average Living Quarters # Rec Average Rec Room # LwQ Low Quality # Unf Unfinshed # NA No Basement str_discrete_analysis(df_train.BsmtFinType2) # # Ordinal variable. # ### 34. BsmtFinSF2: Type 2 finished square feet conti_fld_analysis(df_train.BsmtFinSF2) # # Continuous variable. # ### 35. BsmtUnfSF: Unfinished square feet of basement area conti_fld_analysis(df_train.BsmtUnfSF) # # Continuous variable. # ### 36. TotalBsmtSF: Total square feet of basement area conti_fld_analysis(df_train.TotalBsmtSF) # # Continuous variable. # ### 37. Heating: Type of heating # # Floor Floor Furnace # GasA Gas forced warm air furnace # GasW Gas hot water or steam heat # Grav Gravity furnace # OthW Hot water or steam heat other than gas # Wall Wall furnace df_train.Heating.value_counts() plt.pie( df_train.Heating.value_counts(), autopct=lambda s: f"{s:.2f}%", labels=df_train.Heating.value_counts().index, ) plt.title("Heating - distribution") # # String Categorical variable # ### 38. HeatingQC: Heating quality and condition # Ex Excellent # Gd Good # TA Average/Typical # Fa Fair # Po Poor df_train.HeatingQC.value_counts() plt.pie( df_train.HeatingQC.value_counts(), autopct=lambda s: f"{s:.2f}%", labels=df_train.HeatingQC.value_counts().index, ) plt.title("HeatingQC - distribution") # # Ordinal # variable. # ### 39. CentralAir: Central air conditioning # N No # Y Yes str_discrete_analysis(df_train.CentralAir) # # Categorical String variable. # 93% houses are Airconditioned. # ### 40. Electrical: Electrical system # SBrkr Standard Circuit Breakers & Romex # FuseA Fuse Box over 60 AMP and all Romex wiring (Average) # FuseF 60 AMP Fuse Box and mostly Romex wiring (Fair) # FuseP 60 AMP Fuse Box and mostly knob & tube wiring (poor) # Mix Mixed str_discrete_analysis(df_train.Electrical) # String Discrete variable # ### 41. 1stFlrSF: First Floor square feet conti_fld_analysis(df_train["1stFlrSF"]) # ### 42. 2ndFlrSF: Second floor square feet conti_fld_analysis(df_train["2ndFlrSF"]) # Continuous variable. # ### 43. LowQualFinSF: Low quality finished square feet (all floors) # df_train.LowQualFinSF.describe() plt.subplot(2, 2, 1) plt.hist(df_train.LowQualFinSF) plt.subplot(2, 2, 2) plt.boxplot(df_train.LowQualFinSF) plt.suptitle("Low Quality Fisnished Square feet - distribution") # # Continuous variable # ### 44. GrLivArea: Above grade (ground) living area square feet df_train.GrLivArea.describe() plt.hist(df_train.GrLivArea) plt.title("GrLivArea - distribution") plt.ylabel("Count") # ### 45. BsmtFullBath: Basement full bathrooms str_discrete_analysis(df_train.BsmtFullBath) # # Ordinal variable # ### 46. BsmtHalfBath: Basement half bathrooms str_discrete_analysis(df_train.BsmtHalfBath) # Ordinal variable. # ### 47. FullBath: Full bathrooms above grade str_discrete_analysis(df_train.FullBath) # Ordinal variable # ### 48. HalfBath: Half baths above grade str_discrete_analysis(df_train.HalfBath) # Ordinal variable # ### 49. BedroomAbvGr: Bedrooms above grade (does NOT include basement bedrooms) str_discrete_analysis(df_train.BedroomAbvGr) # Ordinal variable # ### 50. KitchenAbvGr: Kitchens above grade str_discrete_analysis(df_train.KitchenAbvGr) # # Ordinal feature. # Most of the houses having 1 kitchen with above grade. # ### 51. KitchenQual: Kitchen quality # Ex Excellent # Gd Good # TA Typical/Average # Fa Fair # Po Poor df_train.KitchenQual.value_counts() plt.pie( df_train.KitchenQual.value_counts(), labels=df_train.KitchenQual.value_counts().index, autopct=lambda x: f"{x:.2f}%", ) plt.title("Kitchen Quality -distribution") # # Ordinal variable. # 50% of the houses having average Kitchen. # Only 7% having excellent kitchens. # ### 52. TotRmsAbvGrd: Total rooms above grade (does not include bathrooms) str_discrete_analysis(df_train.TotRmsAbvGrd) # Ordinal variable. # ### 53. Functional: Home functionality (Assume typical unless deductions are warranted) # Typ Typical Functionality # Min1 Minor Deductions 1 # Min2 Minor Deductions 2 # Mod Moderate Deductions # Maj1 Major Deductions 1 # Maj2 Major Deductions 2 # Sev Severely Damaged # Sal Salvage only str_discrete_analysis(df_train.Functional) # Discrete variable. # ### 54. Fireplaces: Number of fireplaces df_train.Fireplaces.describe() plt.pie( df_train.Fireplaces.value_counts(), autopct=lambda s: f"{s:.2f}%", labels=df_train.Fireplaces.value_counts().index, ) plt.title("Number of Fireplaces -distribution") # # Ordinal variable. # ### 55. FireplaceQu: Fireplace quality # Ex Excellent - Exceptional Masonry Fireplace # Gd Good - Masonry Fireplace in main level # TA Average - Prefabricated Fireplace in main living area or Masonry Fireplace in basement # Fa Fair - Prefabricated Fireplace in basement # Po Poor - Ben Franklin Stove # NA No Fireplace str_discrete_analysis(df_train.FireplaceQu) # # Ordinal variable. # 50% of the houses having good Fireplace quality. # ### 56. GarageType: Garage location # # 2Types More than one type of garage # Attchd Attached to home # Basment Basement Garage # BuiltIn Built-In (Garage part of house - typically has room above garage) # CarPort Car Port # Detchd Detached from home # NA No Garage str_discrete_analysis(df_train.GarageType) # # Discrete variable # 63% of the houses having Attached Garage # ### 57. GarageYrBlt: Year garage was built df_train.GarageYrBlt.describe() plt.hist(df_train.GarageYrBlt) plt.title("GarageYrBlt - distribution") # # Discrete variable. # ### 58. GarageFinish: Interior finish of the garage # Fin Finished # RFn Rough Finished # Unf Unfinished # NA No Garage str_discrete_analysis(df_train.GarageFinish) # # Ordinal variable # Null values present. # ### 59. GarageCars: Size of garage in car capacity str_discrete_analysis(df_train.GarageCars) # # Ordinal variable. # 56% of the Garages having 2 car capacity. # ### 60. GarageArea: Size of garage in square feet conti_fld_analysis(df_train.GarageArea) # # Continuous variable. # ### 61. GarageQual: Garage quality # Ex Excellent # Gd Good # TA Typical/Average # Fa Fair # Po Poor # NA No Garage str_discrete_analysis(df_train.GarageQual) # Most of Garage quality is average. # Ordinal variable. # ### 62. GarageCond: Garage condition # Ex Excellent # Gd Good # TA Typical/Average # Fa Fair # Po Poor # NA No Garage str_discrete_analysis(df_train.GarageCond) # # Ordinal variable. # Most of the Garage condition is Average. # ### 63. PavedDrive: Paved driveway # Y Paved # P Partial Pavement # N Dirt/Gravel str_discrete_analysis(df_train.PavedDrive) # # Ordinal variable # Most of the houses having Paved Driveway. # ### 64. WoodDeckSF: Wood deck area in square feet conti_fld_analysis(df_train.WoodDeckSF) # # Continuous variable. # ### 65. OpenPorchSF: Open porch area in square feet conti_fld_analysis(df_train.OpenPorchSF) # # Continuous variable. # ### 66. EnclosedPorch: Enclosed porch area in square feet df_train.EnclosedPorch.describe() plt.subplot(2, 2, 1) plt.hist(df_train.EnclosedPorch) plt.subplot(2, 2, 2) sns.boxplot(df_train.EnclosedPorch) plt.suptitle("EnclosedPorch - distribution") # # Continuous variable. # ### 67. 3SsnPorch: Three season porch area in square feet conti_fld_analysis(df_train["3SsnPorch"]) # # Continuous variable. # ### 68. ScreenPorch: Screen porch area in square feet conti_fld_analysis(df_train.ScreenPorch) # Continuous variable. # ### 69. PoolArea: Pool area in square feet df_train.PoolArea.describe() plt.subplot(2, 2, 1) plt.hist(df_train.PoolArea, bins=20) plt.subplot(2, 2, 2) plt.boxplot(df_train.PoolArea) plt.suptitle("PoolArea -distribution") # # Continuous variable. # ### 70. PoolQC: Pool quality # # Ex Excellent # Gd Good # TA Average/Typical # Fa Fair # NA No Pool str_discrete_analysis(df_train.PoolQC) # # Ordinal variable # ### 71. Fence: Fence quality # # GdPrv Good Privacy # MnPrv Minimum Privacy # GdWo Good Wood # MnWw Minimum Wood/Wire # NA No Fence df_train.Fence.value_counts() # # Ordinal variable. # Presence of missing values. # ### 72. MiscFeature: Miscellaneous feature not covered in other categories # # Elev Elevator # Gar2 2nd Garage (if not described in garage section) # Othr Other # Shed Shed (over 100 SF) # TenC Tennis Court # NA None str_discrete_analysis(df_train.MiscFeature) # Discrete variable. # ### 73. MiscVal: $Value of miscellaneous feature conti_fld_analysis(df_train.MiscVal) # Continuous variable. # ### 74. MoSold: Month Sold (MM) # print(f"Unique values: {df_train.MoSold.unique().tolist()}") # # Discrete variable. # ### 75. YrSold: Year Sold (YYYY) df_train.YrSold.describe() plt.hist(df_train.YrSold) plt.xticks(df_train.YrSold.unique().tolist()) plt.title("Year Sold - distribution") # # Discrete variable. # Around 300 number of sales happened in year 2006 to 2009. # 2010 has less selling happened. # ### 76. SaleType: Type of sale # # WD Warranty Deed - Conventional # CWD Warranty Deed - Cash # VWD Warranty Deed - VA Loan # New Home just constructed and sold # COD Court Officer Deed/Estate # Con Contract 15% Down payment regular terms # ConLw Contract Low Down payment and low interest # ConLI Contract Low Interest # ConLD Contract Low Down # Oth Other str_discrete_analysis(df_train.SaleType) # Discrete variable. # Most of the sales are Warranty Deed -Conventional # ### 77. SaleCondition: Condition of sale # Normal Normal Sale # Abnorml Abnormal Sale - trade, foreclosure, short sale # AdjLand Adjoining Land Purchase # Alloca Allocation - two linked properties with separate deeds, typically condo with a garage unit # Family Sale between family members # Partial Home was not completed when last assessed (associated with New Homes) df_train.SaleCondition.value_counts() plt.pie( df_train.SaleCondition.value_counts(), autopct=lambda s: f"{s:.2f}%", labels=df_train.SaleCondition.value_counts().index, ) plt.title("Sale condition - distribution") # # Categorical String variable. # Most Sale are 'Normal' # ### 78. HouseStyle # 1Story One story # 1.5Fin One and one-half story: 2nd level finished # 1.5Unf One and one-half story: 2nd level unfinished # 2Story Two story # 2.5Fin Two and one-half story: 2nd level finished # 2.5Unf Two and one-half story: 2nd level unfinished # SFoyer Split Foyer # SLvl Split Level str_discrete_analysis(df_train.HouseStyle) # # String discrete variable # ## Feature Relationships # ### 1. Sale price based on the Neighborhood grp_neighbrhd = df_train.groupby("Neighborhood") unique_neighbrhd = df_train.Neighborhood.unique().tolist() neighbrhd_list, SalePrice_list = [], [] for item in unique_neighbrhd: df = grp_neighbrhd.get_group(item) neighbrhd_list.append(item) SalePrice_list.append(df.SalePrice.mean()) df_neighbrhd = pd.DataFrame( {"Neighborhood": neighbrhd_list, "SalePrice": SalePrice_list} ) df_neighbrhd.sort_values("SalePrice", ascending=False, inplace=True) sns.barplot(data=df_neighbrhd, x="Neighborhood", y="SalePrice") plt.xticks(rotation=90) plt.ylabel("Avg SalePrice") plt.title("Average SalePrice based on Neighborhood") del [grp_neighbrhd, df_neighbrhd, df, unique_neighbrhd] # # Houses in Northridge got highest average saleprice. # And Meadow Village got the least average saleprice. # ### 2. OverAll quality of the house and SalePrice grp_overallqual = df_train.groupby("OverallQual") unique_overallqual = df_train.OverallQual.unique() sale_price_list, overall_qual = [], [] for item in unique_overallqual: df = grp_overallqual.get_group(item) overall_qual.append(item) sale_price_list.append(df.SalePrice.mean()) df_overallqual = pd.DataFrame( {"OverallQual": overall_qual, "SalePrice": sale_price_list} ) sns.lineplot(data=df_overallqual, x="OverallQual", y="SalePrice") plt.title("SalePrice based on OverAllQuality") plt.ylabel("Average SalePrice") plt.xlabel("OverAll Quality") # # It's clear from the dataset that As the quality of the house increases, Saleprice also increases. # del (df, df_overallqual) # ### 3. Age of the house and SalePrice df = df_train.loc[:, ["YearBuilt", "YrSold", "SalePrice"]].copy() df["Age"] = df.YrSold - df.YearBuilt print("House age statistics:\n") df.Age.describe() grp_age = df.groupby("Age") unique_age = df.Age.unique() age_list, sale_price_list, count_list = [], [], [] for age in unique_age: df_sale = grp_age.get_group(age) age_list.append(age) sale_price_list.append(df_sale.SalePrice.mean()) count_list.append(df_sale.Age.count()) df_sale = pd.DataFrame( {"Age": age_list, "SalePrice": sale_price_list, "Count": count_list} ) sns.lineplot(data=df_sale, x="Age", y="SalePrice") plt.title("Age of the house vs. SalePrice") plt.ylabel("Average SalePrice") sns.lineplot(data=df_sale, x="Age", y="Count") plt.xticks(rotation=90) plt.title("Count of reords") # # Maximum age of the houses in the dataset is 136. # There are 100 number of newly constructed houses are there. # Average SalePrice decreases as the age of the house increases. # However there is a sudden increae on the price for the houses whose age is 114. # ## Data Imputation # df_input = df_train.copy() def process_imputation(df_input): df_input["PoolQC"].fillna("NA", inplace=True) print("PoolQC - replaced missing values with NA") df_input.MiscFeature.fillna("NA", inplace=True) print("MiscFeature - replaced missing values with NA") df_input.Alley.fillna("NA", inplace=True) print("Alley - replaced missing values with NA") df_input.Fence.fillna("NA", inplace=True) print("Fence - replaced missing values with NA") df_input.FireplaceQu.fillna("NA", inplace=True) print("FireplaceQuality - replaced missing values with NA") df_input.LotFrontage.fillna(0, inplace=True) print("Lot frontage - replaced missing values with zero") df_input.GarageType.fillna("NA", inplace=True) print("Garage type - replaced missing values with NA") print("GarageYrBlt - Replacing missing value with House built year") df_input.GarageYrBlt.fillna(df_input.YearBuilt, inplace=True) print("GarageFinish - Replacing missing values with NA") df_input.GarageFinish.fillna("NA", inplace=True) print("GarageQual - Replacing missing values with NA") df_input.GarageQual.fillna("NA", inplace=True) print("GarageCond - Replacing missing values with NA") df_input.GarageCond.fillna("NA", inplace=True) for col in ["BsmtExposure", "BsmtFinType2", "BsmtFinType1", "BsmtCond", "BsmtQual"]: df_input[col].fillna("NA", inplace=True) print(f"{col} - replaced missing values with NA") df_input.MasVnrArea.fillna(0, inplace=True) print("MasVnrArea - replaced missing values with 0") df_input.MasVnrType.fillna("None", inplace=True) print("MasVnrType - replaced missing values with None") df_input.Electrical.fillna("NA", inplace=True) print("Electrical - replaced missing values with NA") print("Is there any missing values? ") print(df_input.isnull().any().value_counts().index) return df_input df_input = process_imputation(df_input) # # Missing values removed from dataset. # # # ## Data cleaning,manipulation print(f"Target variable SalepPrice skewness: {df_input.SalePrice.skew()}") sns.boxplot(data=df_input, x="SalePrice") plt.title("SalePrice -original distribution") total = df_input.shape[0] threshold_price = 330000 cnt = df_input.query("SalePrice > @threshold_price").shape[0] print( "Target variable having outliers. Let's find how many records are there after", threshold_price, " :", cnt, " which is ", (cnt / total) * 100, "%", ) # print ("Removing records with SalePrice > ", threshold_price) # df_input.drop(df_input[df_input["SalePrice"]>threshold_price].index,inplace=True) # plt.subplot(2,2,1) # sns.boxplot(data=df_input,x="SalePrice") # plt.suptitle("SalePrice -Ater removing outliers distribution"); # plt.subplot(2,2,2) # plt.hist(data=df_input,x="SalePrice"); print("Skewness", df_input.SalePrice.skew()) print("Applying SquareRoot method of Saleprice for reducing the skewness.") df_input["SalePrice_sqrt"] = np.sqrt(df_input.SalePrice) plt.hist(df_input.SalePrice_sqrt) plt.title("Square root of SalePrice - distribution") print("Skewness: ", df_input.SalePrice_sqrt.skew()) def wrangle_data(df): print(f"Shape of the dataframe before wrangling: {df.shape}") # Create new feature Age from year built and year sold df["Age"] = df["YrSold"] - df["YearBuilt"] print("Created new feature 'Age' using Year sold and Year built") df.drop(["YearBuilt", "YrSold"], axis=1, inplace=True) print("Removed features - YearBuilt,YrSold") # Below features contains meaningless value or presence of one value dominant. # Hence This features doesn't make any sense.So removing from dataset. del_vars = [ "Street", "Alley", "LandContour", "Utilities", "LandSlope", "Condition2", "RoofMatl", "Heating", "CentralAir", "Electrical", "Functional", "MiscFeature", "MoSold", "Id", ] df.drop(del_vars, inplace=True, axis=1) ordinal_vars = [ "BsmtQual", "BsmtFullBath", "BsmtHalfBath", "FullBath", "HalfBath", "BedroomAbvGr", "KitchenAbvGr", "TotRmsAbvGrd", "Fireplaces", "GarageCars", "Age", ] lbl_encoder = LabelEncoder() for var in ordinal_vars: df[var] = lbl_encoder.fit_transform(df[var]) for var in ["BsmtFinType1", "BsmtFinType2"]: df[var].replace( ["GLQ", "ALQ", "BLQ", "Rec", "LwQ", "Unf", "NA"], [0, 1, 2, 3, 4, 5, 6], inplace=True, ) for var in [ "ExterQual", "ExterCond", "BsmtCond", "HeatingQC", "KitchenQual", "FireplaceQu", "GarageQual", "GarageCond", "PoolQC", ]: df[var].replace( ["Ex", "Gd", "TA", "Fa", "Po", "NA"], [0, 1, 2, 3, 4, 5], inplace=True ) for var in ["BsmtExposure"]: df[var].replace(["Gd", "Av", "Mn", "No", "NA"], [0, 1, 2, 3, 4], inplace=True) for var in ["GarageFinish"]: df[var].replace(["Fin", "RFn", "Unf", "NA"], [0, 1, 2, 3], inplace=True) for var in ["PavedDrive"]: df[var].replace(["Y", "P", "N"], [0, 1, 2], inplace=True) for var in ["Fence"]: df[var].replace( ["GdPrv", "MnPrv", "GdWo", "MnWw", "NA"], [0, 1, 2, 3, 4], inplace=True ) df = pd.get_dummies(df) print(f"Shape of the dataframe after wrangling {df.shape}") return df df_input = wrangle_data(df_input) df_input.drop("SalePrice", axis=1, inplace=True) print("Removed the feature SalePrice") # Checking for any String fields. print("List of any string data?") df_input.dtypes[df_input.dtypes == "object"] corr_matrix = df_input.corr() corr_matrix = pd.DataFrame(corr_matrix["SalePrice_sqrt"]).sort_values( "SalePrice_sqrt", ascending=False ) negative_corr_flds = corr_matrix[corr_matrix["SalePrice_sqrt"] < 0].index.tolist() # Remove negative correlated features df_input.drop(negative_corr_flds, axis=1, inplace=True) # Removing below derived features from dataset, since they are not present in the final test file. df_input.drop( [ "HouseStyle_2.5Fin", "Exterior1st_ImStucc", "Exterior1st_Stone", "Exterior2nd_Other", ], axis=1, inplace=True, ) # Create independent and dependent features for model training. x = df_input.drop("SalePrice_sqrt", axis=1) y = df_input.SalePrice_sqrt training_features = x.columns.tolist() # Training and Testing split. x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=1) print( f"Shape of x train: {x_train.shape}, y train: {y_train.shape},x test: {x_test.shape}, y test: {y_test.shape}" ) # ## Model Evaluation # Function for providing generalized results for regression model def evaluate_model(model, x_train, y_train, x_test, y_test): model.fit(x_train, y_train) print( f"Training score: {model.score(x_train,y_train)} \nTesting score: {model.score(x_test,y_test)}" ) y_pred = model.predict(x_test) print("Prediction completed") df = pd.DataFrame({"Actual": y_test, "Predicted": y_pred}) # Applying square function to transform to original target variable. df = df.apply(np.square) # Finding the difference between original and predicted df["difference"] = df.Predicted - df.Actual df.reset_index(inplace=True) # Plot actual vs predicted plt.figure(figsize=(20, 10)) sns.scatterplot(data=df, x="index", y="Actual", color="lightgrey", label=["Actual"]) sns.lineplot(data=df, x="index", y="Predicted", color="red", label=["Predicted"]) plt.legend(loc="right", bbox_to_anchor=(1.1, 1)) plt.title("Actual vs Predicted") plt.show() return model # ### Model: LinearRegression lr_model = evaluate_model( LinearRegression(normalize=True), x_train, y_train, x_test, y_test ) # ### Model: Lasso Regression lasso_reg = evaluate_model( Lasso(alpha=0.01, normalize=True), x_train, y_train, x_test, y_test ) # ### Model: Ridge Regression ridge_reg = evaluate_model(Ridge(normalize=True), x_train, y_train, x_test, y_test) # ### Model: ElasticNet Regression el = evaluate_model(ElasticNet(normalize=False), x_train, y_train, x_test, y_test) # ### Model: XtremeGradientBoosting xgb_reg = evaluate_model(XGBRegressor(), x_train, y_train, x_test, y_test) del (df, df_input, df_sale, df_train) # ## Test file output prediction df_test = pd.read_csv("../input/house-prices-advanced-regression-techniques/test.csv") print("Test file for prediction loaded.") df_input = df_test.copy() print("Shape of test data: ", df_input.shape) df_input = process_imputation(df_input) val = df_input.isnull().sum() df = pd.DataFrame(val, columns=["NullCount"]).query("NullCount != 0") df = pd.DataFrame({"Features": df.index, "NullCount": df.NullCount.values}) df.sort_values(by="NullCount", inplace=True, ascending=False) print("Fields with missing values:\n", df) for col in [ "MSZoning", "Utilities", "Functional", "Exterior1st", "Exterior2nd", "KitchenQual", "SaleType", ]: df_input[col].fillna("NA", inplace=True) print(col, "Replaced missing values with NA") for col in [ "BsmtFullBath", "BsmtHalfBath", "BsmtFinSF1", "BsmtFinSF2", "BsmtUnfSF", "TotalBsmtSF", "GarageCars", "GarageArea", ]: df_input[col].fillna(0, inplace=True) print(col, "Replaced missing values with 0") val = df_input.isnull().sum() df = pd.DataFrame(val, columns=["NullCount"]).query("NullCount != 0") df = pd.DataFrame({"Features": df.index, "NullCount": df.NullCount.values}) df.sort_values(by="NullCount", inplace=True, ascending=False) print("Fields with missing values:\n", df) df_result = pd.DataFrame() df_result["Id"] = df_input.Id df_input = wrangle_data(df_input) print("Any string features: ") # Checking for any String fields. df_input.dtypes[df_input.dtypes == "object"] # Remove negative correlated features df_input.drop(negative_corr_flds, axis=1, inplace=True) test_features = df_input.columns print("Columns Not present in test_features: \n") for x in training_features: if x not in test_features: print(x) print("\nColumns Not present in train_features:\n") for x in test_features: if x not in training_features: print(x) # Removing below unwanted columns df_input.drop( ["Exterior1st_NA", "MSZoning_NA", "SaleType_NA", "Exterior2nd_NA"], axis=1, inplace=True, ) x = df_input y_predict = lasso_reg.predict(x) y_predict = np.square(y_predict) df_result["SalePrice"] = pd.Series(y_predict.tolist()) df_result print("Exporting predicted results") df_result.to_csv("predict_result.csv", index=False) # end of file
import pandas as pd import re import matplotlib.pyplot as plt import seaborn as sns from textblob import TextBlob from wordcloud import WordCloud tweet_df = pd.read_csv( "../input/all-covid19-vaccines-tweets/vaccination_all_tweets.csv" ) tweet_df = tweet_df[["user_location", "date", "text"]] tweet_df["date"] = pd.to_datetime(tweet_df["date"]) tweet_df = tweet_df.drop_duplicates("text") tweet_df.isna().sum() tweet_df["user_location"] = tweet_df["user_location"].fillna( tweet_df["user_location"].mode()[0] ) def clean_data(text): text = re.sub(r"@\w+", "", text) text = re.sub(r"#", "", text) text = re.sub(r"RT[\s]+", "", text) text = re.sub(r"https?:\/\/\S+", "", text) text = text.lower() return text tweet_df["text"] = tweet_df["text"].apply(clean_data) tweet_df.head() words = " ".join([word for word in tweet_df["text"]]) word_cloud = WordCloud( width=1000, height=500, random_state=20, max_font_size=120 ).generate(words) fig, ax = plt.subplots(figsize=(12, 6)) plt.imshow(word_cloud, interpolation="bilinear") plt.axis("off") def get_subjectivity(text): return TextBlob(text).sentiment.subjectivity def get_polarity(text): return TextBlob(text).sentiment.polarity def get_sentiment(score): if score > 0: return "Positive" elif score == 0: return "Neutral" else: return "Negative" tweet_df["subjectivity"] = tweet_df["text"].apply(get_subjectivity) tweet_df["polarity"] = tweet_df["text"].apply(get_polarity) tweet_df["sentiment"] = tweet_df["polarity"].apply(get_sentiment) tweet_df.head() def remove_border(): for i in ["top", "right", "bottom", "left"]: ax.spines[i].set_visible(False) fig = plt.figure(figsize=(12, 6)) plt.scatter(tweet_df["polarity"], tweet_df["subjectivity"], s=4) plt.ylabel("Subjectivity") plt.xlabel("Polarity") fig = plt.figure(figsize=(12, 6)) sns.catplot(x="subjectivity", y="polarity", data=tweet_df)
# ![images.jpg](attachment:images.jpg) # # The Iris dataset is a classic machine learning dataset that is often used for classification problems. It is sometimes referred to as the "Hello World" of machine learning because it is a simple and well-understood dataset that is often used for teaching and learning purposes. # ## The dataset consists of 150 samples, each representing an iris flower. Each sample has four features: sepal length, sepal width, petal length, and petal width. The target variable is the species of the iris flower, which can be one of three classes: setosa, versicolor, and virginica. # ### Here is a summary of the dataset: # ### Number of samples: 150 # ### Number of features: 4 # ### Target variable: Species (setosa, versicolor, virginica) import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.datasets import load_iris df = pd.read_csv("/kaggle/input/iris-classifier/iris.csv") df.head() df.isnull().sum() df.shape df.describe() # # EDA X = df.iloc[:, [0, 1, 2, 3]].values y = df.iloc[:, 4].values from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.15, random_state=0 ) print(X_train.shape) print(X_test.shape) print(y_train.shape) print(y_test.shape) X_train, X_cv, y_train, y_cv = train_test_split(X, y, test_size=0.15, random_state=0) print(X_train.shape) print(X_cv.shape) print(y_train.shape) print(y_cv.shape) from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) df.hist(figsize=(8, 8)) corr_matrix = df.corr() sns.heatmap(corr_matrix, annot=True) from sklearn.tree import DecisionTreeClassifier DecisionTree_model = DecisionTreeClassifier() DecisionTree_model.fit(X_train, y_train) y_pred = DecisionTree_model.predict(X_test) df["species"] = df.species.astype("category").cat.codes df["species"] from sklearn import metrics Accuracy = metrics.accuracy_score(y_test, y_pred) Accuracy print(y_pred) print(y_test) from sklearn.ensemble import RandomForestClassifier RandomForest_model = RandomForestClassifier(n_estimators=200, max_depth=10) RandomForest_model.fit(X_train, y_train) y_pred = RandomForest_model.predict(X_test) from sklearn import metrics Accuracy = metrics.accuracy_score(y_test, y_pred) Accuracy plt.bar(df["species"], color="maroon", width=0.4, height=10) sns.pairplot(df[["sepal_length", "sepal_width", "petal_length", "petal_width"]]) sns.pairplot(df, hue="species") df.sepal_length.plot.density(color="green") plt.title("density plot for sepal lengths") plt.show()
from numpy import mean from numpy import std from sklearn.datasets import make_classification from sklearn.model_selection import cross_val_score from sklearn.model_selection import RepeatedStratifiedKFold from deslib.dcs.ola import OLA from matplotlib import pyplot def get_dataset(): X, y = make_classification( n_samples=10000, n_features=20, n_informative=15, n_redundant=5, random_state=7 ) return X, y def get_models(): models = dict() for n in range(2, 22): models[str(n)] = OLA(k=n) return models def evaluate_model(model): cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1) scores = cross_val_score(model, X, y, scoring="accuracy", cv=cv, n_jobs=-1) return scores X, y = get_dataset() models = get_models() results, names = list(), list() for name, model in models.items(): scores = evaluate_model(model) results.append(scores) names.append(name) print("%s %.3f (%.3f)" % (name, mean(scores), std(scores))) pyplot.boxplot(results, labels=names, showmeans=True) pyplot.show()
# # Style Transfer with Deep Neural Networks # Style transfer relies on separating the content and style of an image. Given one content image and one style image, we aim to create a new, target image which should contain our desired content and style components: # * objects and their arrangement are similar to that of the content image # * style, colors, and textures are similar to that of the style image # An example is shown below, where the content image is of a cat, and the style image is of Hokusai's Great Wave. The generated target image still contains the cat but is stylized with the waves, blue and beige colors, and block print textures of the style image! # ![style_tx_cat.png](attachment:style_tx_cat.png) # ## How does it work? # Neural style transfer is an optimization technique used to take three images, a content image, a style reference image (such as an artwork by a famous painter), and the input image you want to style — and blend them together such that the input image is transformed to look like the content image, but “painted” in the style of the style image. # "it is possible to separate the style representation and content representations in a CNN, learnt during a computer vision task." # Following this concept, First content and style features are extracted and stored. The style image **a** is passed through the network and its style representation **Al** on all layers included are computed and stored.The content image **p** is passed through the network and the content representation **Pl** in one layer is stored. Then a random white noise image **x** is passed through the network and its style features **Gl** and content features **Fl** are computed. On each layer included in the style representation, the element-wise mean squared difference between style features **Gl** and **Al** is computed to give the style loss **Ls**. # Also the mean squared difference between **Fl** and **Pl** is computed to give the content loss **Lc**. The total loss **Lt** is then a linear combination between the content and the style loss.Its derivative with respect to the pixel values can be computed using error back-propagation.This gradient is used to iteratively update the image **x** until it simultaneously matches the style features of the style image **a** and the content features of the content image **p**. # ## Lets code # we'll use a pre-trained VGG19 Net to extract content or style features from a passed in image. We'll then formalize the idea of content and style losses and use those to iteratively update our target image until we get a result that we want. # # import resources from PIL import Image from io import BytesIO import matplotlib.pyplot as plt import numpy as np import torch import torch.optim as optim import requests from torchvision import transforms, models # # Load in VGG19 (features) # VGG19 is split into two portions: # * vgg19.features, which are all the convolutional and pooling layers # * vgg19.classifier, which are the three linear, classifier layers at the end # you only need the features portion, which you're going to load in and "freeze" the weights of, below. # get the "features" portion of VGG19 (we will not need the "classifier" portion) vgg = models.vgg19(pretrained=True).features # freeze all VGG parameters since we're only optimizing the target image for param in vgg.parameters(): param.requires_grad_(False) # move the model to GPU, if available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") vgg.to(device) # ### Load in Content and Style Images def load_image(img_path, max_size=700, shape=None): if "http" in img_path: response = requests.get(img_path) image = Image.open(BytesIO(response.content)).convert("RGB") else: image = Image.open(img_path).convert("RGB") # large images will slow down processing if max(image.size) > max_size: size = max_size else: size = max(image.size) if shape is not None: size = shape in_transform = transforms.Compose( [ transforms.Resize(size), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), ] ) # discard the transparent, alpha channel (that's the :3) and add the batch dimension image = in_transform(image)[:3, :, :].unsqueeze(0) return image # Next, I'm loading in images by file name and forcing the style image to be the same size as the content image. content_image_ = "https://images.unsplash.com/photo-1426122402199-be02db90eb90?ixlib=rb-1.2.1&ixid=MXwxMjA3fDB8MHxwaG90by1yZWxhdGVkfDh8fHxlbnwwfHx8&auto=format&fit=crop&w=400&q=60" style_image_ = "https://images.unsplash.com/photo-1583531172005-814191b8b6c0?ixid=MXwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHw%3D&ixlib=rb-1.2.1&auto=format&fit=crop&w=675&q=80" # load in content and style image content = load_image(content_image_).to(device) # Resize style to match content, makes code easier style = load_image(style_image_, shape=content.shape[-2:]).to(device) # helper function for un-normalizing an image # and converting it from a Tensor image to a NumPy image for display def im_convert(tensor): """Display a tensor as an image.""" image = tensor.to("cpu").clone().detach() image = image.numpy().squeeze() image = image.transpose(1, 2, 0) image = image * np.array((0.229, 0.224, 0.225)) + np.array((0.485, 0.456, 0.406)) image = image.clip(0, 1) return image # display the images fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 10)) # content and style ims side-by-side ax1.imshow(im_convert(content)) ax2.imshow(im_convert(style)) # ## VGG19 Layers # To get the content and style representations of an image, you have to pass an image forward throug the VGG19 network until we get to the desired layer(s) and then get the output from that layer. # ![vgg19_convlayers.png](attachment:vgg19_convlayers.png) # ### Content and Style Features def get_features(image, model, layers=None): # Need the layers for the content and style representations of an image if layers is None: layers = { "0": "conv1_1", "5": "conv2_1", "10": "conv3_1", "19": "conv4_1", "21": "conv4_2", ## content representation "28": "conv5_1", } features = {} x = image # model._modules is a dictionary holding each module in the model for name, layer in model._modules.items(): x = layer(x) if name in layers: features[layers[name]] = x return features # ## Gram Matrix # The output of every convolutional layer is a Tensor with dimensions associated with the batch_size, a depth, d and some height and width (h, w). The Gram matrix of a convolutional layer can be calculated as follows: # * Get the depth, height, and width of a tensor using batch_size, d, h, w = tensor.size() # * Reshape that tensor so that the spatial dimensions are flattened # * Calculate the gram matrix by multiplying the reshaped tensor by it's transpose # Note: You can multiply two matrices using torch.mm(matrix1, matrix2). def gram_matrix(tensor): ## get the batch_size, depth, height, and width of the Tensor _, d, h, w = tensor.size() ## reshape it, so we're multiplying the features for each channel tensor = tensor.view(d, h * w) ## calculate the gram matrix gram = torch.mm(tensor, tensor.t) return gram # ## Putting it all Together # Now that we've written functions for extracting features and computing the gram matrix of a given convolutional layer; let's put all these pieces together! We'll extract our features from our images and calculate the gram matrices for each layer in our style representation. # get content and style features only once before forming the target image content_features = get_features(content, vgg) style_features = get_features(style, vgg) # calculate the gram matrices for each layer of our style representation style_grams = {layer: gram_matrix(style_features[layer]) for layer in style_features} # create a third "target" image and prep it for change # it is a good idea to start off with the target as a copy of our *content* image # then iteratively change its style target = content.clone().requires_grad_(True).to(device)
# Here I use Long Short-Term Memory model to predic Google Stock Price. And I also use PyTorch and Lightning packages to make it easier and faster to build and train the deep learning model. # ## 1. Load Libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt import torch import torch.nn as nn import torch.nn.functional as F from torch.optim import Adam from sklearn.preprocessing import MinMaxScaler import pytorch_lightning as pl from torch.utils.data import Dataset, DataLoader # ## 2. Define a PyTorch Lightning Module class StockDataset(Dataset): def __init__(self, data): self.data = data self.scaler = MinMaxScaler() self.data = self.scaler.fit_transform(self.data) def __len__(self): return len(self.data) - 1 def __getitem__(self, idx): x = torch.Tensor(self.data[idx : idx + 1, :-1]) y = torch.Tensor(self.data[idx + 1 : idx + 2, -1]) return x, y class StockLSTM(pl.LightningModule): def __init__(self, input_size=4, hidden_size=64, num_layers=2, output_size=1): super().__init__() self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.output_size = output_size self.lstm = nn.LSTM(input_size, hidden_size, num_layers) self.fc = nn.Linear(hidden_size, output_size) def forward(self, x): lstm_out, _ = self.lstm(x) y_pred = self.fc(lstm_out[:, -1, :]) return y_pred def training_step(self, batch, batch_idx): x, y = batch y_pred = self(x) loss = nn.functional.mse_loss(y_pred, y) self.log("train_loss", loss) return loss def validation_step(self, batch, batch_idx): x, y = batch y_pred = self(x) loss = nn.functional.mse_loss(y_pred, y) self.log("val_loss", loss) def configure_optimizers(self): return torch.optim.Adam(self.parameters(), lr=0.001) # ## 3. Import the Data train_data = pd.read_csv( "/kaggle/input/gooogle-stock-price/Google_Stock_Price_Train.csv" ) test_data = pd.read_csv("/kaggle/input/gooogle-stock-price/Google_Stock_Price_Test.csv") train_data.head() test_data.head() # ## 4. Data Preprocessing # ### 4.1 Convert data types train_data.info() test_data.info() # "Date" should be datetime type, "Close" should be float64, and "Volume" should be integer. And "Close", "Volume" look like only number in there. But if we try to convert the column to numeric values, it will cause error. # # I commented this because I don't want to create an error when I run all of the code at once. # train_data['Close'] = pd.to_numeric(train_data['Close']) # train_data['Volume'] = pd.to_numeric(train_data['Volume']) # test_data['Volume'] = pd.to_numeric(test_data['Volume']) # # ValueError: Unable to parse string "1,008.64" at position 451 # # ValueError: Unable to parse string "7,380,500" at position 0 # # ValueError: Unable to parse string "1,657,300" at position 0 train_data.replace(",", "", regex=True, inplace=True) test_data.replace(",", "", regex=True, inplace=True) train_data["Date"] = pd.to_datetime(train_data["Date"]) test_data["Date"] = pd.to_datetime(test_data["Date"]) train_data["Close"] = pd.to_numeric(train_data["Close"]) train_data["Volume"] = pd.to_numeric(train_data["Volume"]) test_data["Volume"] = pd.to_numeric(test_data["Volume"]) # Verify the result and see is there any missing value. train_data.info() test_data.info() train_data.isna().sum() test_data.isna().sum() # ### 4.2 Set "Date" to index and Convert datasets to PyTorch tensors train_data = train_data.set_index("Date") test_data = test_data.set_index("Date") # ### 4.3 Normalize the data # scaler = MinMaxScaler() # train_data = scaler.fit_transform(train_data) # test_data = scaler.transform(test_data) # ### 4.4 Prepare the data loaders train_dataset = StockDataset(train_data) test_dataset = StockDataset(test_data) train_dataloader = DataLoader(train_dataset, batch_size=32, shuffle=True, num_workers=0) test_dataloader = DataLoader(test_dataset, batch_size=32, shuffle=False, num_workers=0) # ## 5. Train the Model model = StockLSTM() trainer = pl.Trainer(max_epochs=1500, gpus=1) trainer.fit(model, train_dataloader, test_dataloader) test_obs = [] test_preds = [] model.eval() with torch.no_grad(): for x, y in test_dataloader: y_pred = model(x) test_preds.extend(y_pred.cpu().numpy()[:, 0]) test_obs.extend(y.cpu().numpy()) test_obs = np.array(test_obs) test_preds = np.array(test_preds) plt.plot(test_obs, label="Observed") plt.plot(test_preds, label="Predicted") plt.legend() plt.show()
# Image Similarity - Open CV # <div style="color:white;display:fill; # background-color:#e38e05;font-size:150%; # font-family:Nexa;letter-spacing:0.5px"> # 1.1 About SSIM ? # > * SSIM that **Structural Similarity Index Measure** that keep the image **visible structure** fit even if color conversion process # > * SSIM is used as a **method /metric to measure the similarity between two given images** # <div style="color:white;display:fill; # background-color:#e38e05;font-size:150%; # font-family:Nexa;letter-spacing:0.5px"> # 1.2 SSIM Application ? # > * Object Detection # > * Object Recognision # > * Symentric Segmention # > * Instance Based Segmentation # Libraries: from skimage.metrics import structural_similarity as ssim import numpy as np import matplotlib.pyplot as plt import cv2 # Define Function of MSE def mean_squred_error(image01, image02): error = np.sum((image01.astype("float") - image02.astype("float")) * 2) error = error / float(image01.shape[0] * image02.shape[1]) return error def image_comparision(image01, image02): m = mean_squred_error(image01, image02) s = ssim(image01, image02) print("Mean Squred Error is: {}\nStructural Similarity Index is: {}".format(m, s)) # Read Image image01 = cv2.imread("../input/catimages/CatImageA/Cat.jpg") image02 = cv2.imread("../input/catimages/CatImageB/CatB.jpg") if image01 is None: print("Failed to load image01") else: print("Image 01 load successfully") # CVT Color Conversion image01 = cv2.cvtColor(image01, cv2.COLOR_BGR2GRAY) image02 = cv2.cvtColor(image02, cv2.COLOR_BGR2GRAY) if image02 is None: print("Failed to load Image02") else: print("Image 02 loaded Successfully") # print("Image Comparision: \n", image_comparision(image01, image01)) print("Image01") image_comparision(image01, image01) image01.shape image01.shape # Row & Columns [if 182, 251, 125 - row: col: color channel] image01.shape[ 1::-1 ] # Give reverse or rotation infom, this output need to devide for array # image01.shape[1::-1]/2 # tuple is immutable, need to do this np.array, that will allow to do the devision # why divided by 2 ? to get image center point, 138 is center point of 276 while 91.5 is center point of 183 # We do the center position for rotation np.array( image01.shape[1::-1] ) / 2 # rotate the image (change in height & width), we are getting array by dividing the image # Image Augmentation tuple( np.array(image01.shape[1::-1]) / 2 ) # This tuple conversion will pass to image_center # > * Augmentation is because of single image # > * After augmentation we will have a different image, what will be helpful for comparision (before & after augementation) # > * Augmentation wasn't mendatory if we do have two different image in our loaded data # > * Generally ssim takes two different image for its operation # > * Augmentation is not mendatory; if from the begining we had two different image # image_angle = 45 image_center = tuple(np.array(image01.shape[1::-1]) / 2) image_rotation = cv2.getRotationMatrix2D( image_center, image_angle, 1.0 ) # For rotation, first need to find out image center with angle imageWarp = cv2.warpAffine( image01, image_rotation, image01.shape[1::-1], flags=cv2.INTER_LINEAR )
import torch import torch.nn as nn import pytorch_lightning as pl import random from sklearn.model_selection import train_test_split from pytorch_lightning import Trainer import torch.nn.utils.rnn as rnn from pytorch_lightning.loggers.wandb import WandbLogger import torchmetrics from torch.optim.lr_scheduler import StepLR from tensorboard import program import torch.nn.functional as F from torch.utils.data import Dataset from collections import Counter def tokenize_input(word): return [ch for ch in word] def extract_data_from_file(filename): data = [] with open(filename, "r") as file: line = file.readline() while line: words = line.split() if any(c.isdigit() for c in words[0]): line = file.readline() continue limit = len(words) if "#" not in words else words.index("#") data.append((tokenize_input(words[0]), [word for word in words[1:limit]])) line = file.readline() return data def get_vocabularies(data): input_vocab = Counter() output_vocab = Counter() for input, output in data: for el in input: input_vocab[el] += 1 for el in output: output_vocab[el] += 1 return input_vocab, output_vocab class CMUDataset(Dataset): def __init__(self, data, input_vocab, output_vocab): super().__init__() self.data = data self.input_vocab = input_vocab self.output_vocab = output_vocab self.input_mapping = self.get_input_mapping() self.output_mapping = self.get_output_mapping() self.start_token = len(self.input_vocab) + 1 self.end_token = len(self.input_vocab) + 2 self.data_text_to_numeric() def get_input_vocab_size(self): return len(self.input_vocab) def get_output_vocab_size(self): return len(self.output_vocab) def __len__(self): return len(self.data) def __getitem__(self, index): return self.data[index] def get_input_mapping(self): tokens = list(self.input_vocab.keys()) return dict([(token, idx + 1) for idx, token in enumerate(tokens)]) def get_output_mapping(self): tokens = list(self.output_vocab.keys()) return dict( [ (token, idx + len(self.input_vocab) + 3) for idx, token in enumerate(tokens) ] ) def data_text_to_numeric(self): for idx, (inp, out) in enumerate(self.data): self.data[idx] = ([self.start_token], [self.start_token]) self.data[idx][0].extend(list(map(lambda x: self.input_mapping[x], inp))) self.data[idx][0].append(self.end_token) self.data[idx][1].extend(list(map(lambda x: self.output_mapping[x], out))) self.data[idx][1].append(self.end_token) class Attention(pl.LightningModule): def __init__(self, enc_hid_dim, dec_hid_dim): super().__init__() self.attn = nn.Linear((enc_hid_dim * 2) + dec_hid_dim, dec_hid_dim) self.v = nn.Linear(dec_hid_dim, 1, bias=False) def forward(self, hidden, encoder_outputs): seq_len = encoder_outputs.shape[1] hidden = hidden.unsqueeze(1).repeat(1, seq_len, 1) energy = torch.tanh(self.attn(torch.cat((hidden, encoder_outputs), dim=2))) # energy = [batch size, src len, dec hid dim] attention = self.v(energy).squeeze(2) # attention= [batch size, src len] return F.softmax(attention, dim=1) class PhoneticTranscriptionEncoder(pl.LightningModule): def __init__(self, input_dim, emb_dim, enc_hid_dim, dec_hid_dim, dropout): super().__init__() self.embedding = nn.Embedding(input_dim, emb_dim) self.rnn = nn.LSTM( emb_dim, enc_hid_dim, num_layers=2, batch_first=True, bidirectional=True ) self.dropout = nn.Dropout(dropout) self.fc_hidden = nn.Linear(enc_hid_dim * 2, dec_hid_dim) self.fc_cell = nn.Linear(enc_hid_dim * 2, dec_hid_dim) def forward(self, x): embedded = self.dropout(self.embedding(x)) outputs, (hidden, cell) = self.rnn(embedded) hidden = torch.tanh( self.fc_hidden(torch.cat((hidden[2:4, :, :], hidden[0:2, :, :]), dim=2)) ) cell = torch.tanh( self.fc_cell(torch.cat((cell[2:4, :, :], cell[0:2, :, :]), dim=2)) ) return outputs, hidden, cell class PhoneticTranscriptionDecoder(pl.LightningModule): def __init__( self, output_dim, emb_dim, enc_hid_dim, dec_hid_dim, dropout, attention ): super().__init__() self.enc_hid_dim = enc_hid_dim self.dec_hid_dim = dec_hid_dim self.output_dim = output_dim self.attention = attention self.embedding = nn.Embedding(output_dim, emb_dim) self.rnn = nn.LSTM( emb_dim + 2 * enc_hid_dim, dec_hid_dim, num_layers=2, batch_first=True ) self.fc_out = nn.Linear(emb_dim + dec_hid_dim + enc_hid_dim * 2, output_dim) self.dropout = nn.Dropout(dropout) def forward(self, inp, hidden, cell, encoder_outputs): inp = inp.unsqueeze(-1) embedded = self.dropout(self.embedding(inp)) a = self.attention(hidden[-1].squeeze(0), encoder_outputs) a = a.unsqueeze(1) weighted = a @ encoder_outputs output, (hidden, cell) = self.rnn( torch.cat((embedded, weighted), 2), (hidden, cell) ) output = output.squeeze(1) weighted = weighted.squeeze(1) embedded = embedded.squeeze(1) prediction = self.fc_out(torch.cat((output, weighted, embedded), dim=1)) return prediction, hidden, cell BATCH_SIZE = 4 NUM_EPOCHS = 100 LEARNING_RATE = 5e-4 def collate_batch(batch): input_padded = rnn.pad_sequence( [torch.tensor(x[0]) for x in batch], batch_first=True ) output_padded = rnn.pad_sequence( [torch.tensor(x[1]) for x in batch], batch_first=True ) return input_padded, output_padded class PhoneticTranscription(pl.LightningModule): def __init__(self, encoder, decoder, train_dataset, test_dataset): super().__init__() self.encoder = encoder self.decoder = decoder self.train_dataset = train_dataset self.test_dataset = test_dataset self.criterion = nn.CrossEntropyLoss(ignore_index=0) self.train_accuracy = torchmetrics.Accuracy( task="multiclass", num_classes=decoder.output_dim ) self.val_accuracy = torchmetrics.Accuracy( task="multiclass", num_classes=decoder.output_dim ) def forward(self, src, trg, teacher_forcing_ratio=0.7): batch_size = trg.shape[0] trg_len = trg.shape[1] trg_vocab_size = self.decoder.output_dim # tensor to store decoder outputs outputs = torch.zeros(trg_len, batch_size, trg_vocab_size).to(self.device) enc_outputs, hidden, cell = self.encoder(src) inp = trg[:, 0] # hidden = torch.zeros(hidden.shape).to(self.device) # cell = torch.zeros(cell.shape).to(self.device) for t in range(1, trg_len): # insert input token embedding, previous hidden state and the context state # receive output tensor (predictions) and new hidden state output, hidden, cell = self.decoder(inp, hidden, cell, enc_outputs) # place predictions in a tensor holding predictions for each token outputs[t] = output # decide if we are going to use teacher forcing or not teacher_force = random.random() < teacher_forcing_ratio # get the highest predicted token from our predictions top1 = output.argmax(1) # if teacher forcing, use actual next token as next input # if not, use predicted token inp = trg[:, t] if teacher_force else top1 outputs = torch.permute(outputs, (1, 0, 2)) return outputs def training_step(self, batch, batch_idx): src, trg = batch output = self(src, trg) output_dim = output.shape[-1] output = torch.reshape(output[1:], (-1, output_dim)) trg = trg[1:].view(-1) loss = self.criterion(output, trg) self.train_accuracy(output, trg) self.log( "train_acc", self.train_accuracy, on_step=True, on_epoch=True, batch_size=BATCH_SIZE, ) self.log( "train_loss", loss.item(), on_step=True, on_epoch=True, batch_size=BATCH_SIZE, ) return {"loss": loss} def validation_step(self, batch, batch_idx): src, trg = batch output = self(src, trg, 0) output_dim = output.shape[-1] output = torch.reshape(output[1:], (-1, output_dim)) trg = trg[1:].view(-1) loss = self.criterion(output, trg) self.val_accuracy(output, trg) self.log( "val_acc", self.val_accuracy, on_step=True, on_epoch=True, batch_size=BATCH_SIZE, ) self.log( "val_loss", loss.item(), on_step=True, on_epoch=True, batch_size=BATCH_SIZE ) return {"val_loss": loss} def train_dataloader(self): return torch.utils.data.DataLoader( dataset=self.train_dataset, batch_size=BATCH_SIZE, num_workers=2, shuffle=True, collate_fn=collate_batch, ) def val_dataloader(self): return torch.utils.data.DataLoader( dataset=self.test_dataset, batch_size=BATCH_SIZE, num_workers=2, shuffle=False, collate_fn=collate_batch, ) def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), lr=LEARNING_RATE) scheduler = StepLR(optimizer, step_size=1, gamma=0.6) return [optimizer], [scheduler] # training if __name__ == "__main__": torch.manual_seed(42) data = extract_data_from_file("/kaggle/input/cmudict/cmudict.txt") train_data, test_data = train_test_split(data, test_size=0.2) in_voc, out_voc = get_vocabularies(train_data) train_dataset = CMUDataset(train_data, in_voc, out_voc) test_dataset = CMUDataset(test_data, in_voc, out_voc) INPUT_DIM = train_dataset.get_input_vocab_size() + 3 OUTPUT_DIM = INPUT_DIM + train_dataset.get_output_vocab_size() + 1 ENC_EMB_DIM = 128 DEC_EMB_DIM = 128 ENC_HID_DIM = 256 DEC_HID_DIM = 256 ENC_DROPOUT = 0.8 DEC_DROPOUT = 0.8 attn = Attention(ENC_HID_DIM, DEC_HID_DIM) encoder = PhoneticTranscriptionEncoder( INPUT_DIM, ENC_EMB_DIM, ENC_HID_DIM, DEC_HID_DIM, ENC_DROPOUT ) decoder = PhoneticTranscriptionDecoder( OUTPUT_DIM, DEC_EMB_DIM, ENC_HID_DIM, DEC_HID_DIM, DEC_DROPOUT, attn ) model = PhoneticTranscription(encoder, decoder, train_dataset, test_dataset) logger = WandbLogger(project="Phonetic Transcription") trainer = Trainer( max_epochs=NUM_EPOCHS, logger=logger, fast_dev_run=False, accelerator="gpu", devices=1, gradient_clip_val=1.0, ) trainer.fit(model)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import torch if torch.cuda.is_available(): device = torch.device("cuda") print("We will use the GPU:", torch.cuda.get_device_name(0)) else: print("No GPU available, using the CPU instead.") device = torch.device("cpu") train_data = pd.read_csv("../input/nlp-getting-started/train.csv") test_data = pd.read_csv("../input/nlp-getting-started/test.csv") train_data.head() train_data["keyword"].value_counts() train_data["keyword"].nunique() train_data["location"].value_counts() train_data["text"][4] import seaborn as sns import matplotlib as plt ax = sns.countplot(train_data.target) import string import re import nltk nltk.download("stopwords") stopwords = nltk.corpus.stopwords.words("english") # data preprocessing def clean_text(text): text = text.lower() # remove hyperlinks text = re.sub(r"http\S+", "", text) # remove spcl characters text = "".join([word for word in text if word not in string.punctuation]) text = re.sub("\W", " ", str(text)) # remove stopwords text = [word for word in text.split() if word not in stopwords] # remove any numeric characters text = [word for word in text if re.search("\d", word) == None] # convert split to text again text = " ".join(word for word in text) return text # train_data['text_clean'] = train_data['text'].apply(lambda x: clean_text(x)) train_data["text_clean"] = train_data["text"].apply(clean_text) test_data["text_clean"] = test_data["text"].apply(clean_text) train_data.head() train_data.drop(["id", "keyword", "location", "text"], axis=1) test_data.head() test_data.drop(["id", "keyword", "location", "text"], axis=1) train_data["target"].value_counts() data = train_data["text_clean"].values labels = train_data["target"].values # ELECTRA from transformers import ElectraTokenizer, ElectraForSequenceClassification, AdamW import torch tokenizer = ElectraTokenizer.from_pretrained("google/electra-base-discriminator") model = ElectraForSequenceClassification.from_pretrained( "google/electra-base-discriminator", num_labels=2 ) model.cuda() model # important to know the max len of each sentence import matplotlib.pyplot as plt def plot_sentence_embeddings_length(text_list, tokenizer): tokenized_texts = list(map(lambda t: tokenizer.tokenize(t), text_list)) tokenized_texts_len = list(map(lambda t: len(t), tokenized_texts)) fig, ax = plt.subplots(figsize=(8, 5)) ax.hist(tokenized_texts_len, bins=60) ax.set_xlabel("Length of Comment Embeddings") ax.set_ylabel("Number of Comments") return max(tokenized_texts_len) plot_sentence_embeddings_length(data, tokenizer) a = ["Aish is nice", "jetti loves her"] # print(list(map(lambda t: tokenizer.tokenize(t), a))) tokenized_texts = list(map(lambda t: tokenizer.tokenize(t), a)) print(tokenized_texts) tokenized_texts_len = list(map(lambda t: len(t), tokenized_texts)) print(tokenized_texts_len) token_lens = [] for txt in data: tokens = tokenizer.encode(txt, max_length=70) token_lens.append(len(tokens)) sns.distplot(token_lens) plt.xlim([0, 40]) plt.xlabel("Token count") max(token_lens) # From the graph we can conclude that the max number of tweets have less than 30 tokens. so let us take the max_len as 36. indices = tokenizer.batch_encode_plus( data, max_length=38, add_special_tokens=True, return_attention_mask=True, pad_to_max_length=True, truncation=True, ) indices.keys() input_ids = indices["input_ids"] attention_masks = indices["attention_mask"] from sklearn.model_selection import train_test_split # Use 99% for training and 1% for validation. train_ids, val_ids, train_labels, val_labels = train_test_split( input_ids, labels, random_state=42, test_size=0.2 ) # Do the same for the masks. train_masks, val_masks, _, _ = train_test_split( attention_masks, labels, random_state=42, test_size=0.2 ) len(train_ids) # len(train_labels) # convert data to tensors train_ids = torch.tensor(train_ids) val_ids = torch.tensor(val_ids) train_labels = torch.tensor(train_labels) val_labels = torch.tensor(val_labels) train_masks = torch.tensor(train_masks) val_masks = torch.tensor(val_masks) from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler # TRAINING DATA train_data = TensorDataset(train_ids, train_masks, train_labels) train_sampler = RandomSampler(train_data) train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=32) len(train_dataloader) train_iter3 = iter(train_dataloader) print(type(train_iter3)) print(len(train_iter3)) # Validation Data val_data = TensorDataset(val_ids, val_masks, val_labels) val_sampler = RandomSampler(val_data) val_dataloader = DataLoader(val_data, sampler=val_sampler, batch_size=32) optimizer = AdamW( model.parameters(), lr=6e-6, # args.learning_rate - default is 5e-5, our notebook had 2e-5 eps=1e-8, # args.adam_epsilon - default is 1e-8. ) from transformers import get_linear_schedule_with_warmup # Number of training epochs (authors recommend between 2 and 4) epochs = 5 # Total number of training steps is number of batches * number of epochs. total_steps = len(train_dataloader) * epochs # Create the learning rate scheduler. scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=0, num_training_steps=total_steps ) import numpy as np def flat_accuracy(preds, labels): pred_flat = np.argmax(preds, axis=1).flatten() labels_flat = labels.flatten() return np.sum(pred_flat == labels_flat) / len(labels_flat) def acc_score(y_pred, y_true): # correct labels = 0 cor = 0 # loop over all the entries in test data for i in range(len(y_pred)): # if predicted = actual label, add 1 to correct labels if y_pred[i] == y_true[i]: cor += 1 # return accuracy score return cor / len(y_pred) import time import datetime def format_time(elapsed): """ Takes a time in seconds and returns a string hh:mm:ss """ # Round to the nearest second. elapsed_rounded = int(round((elapsed))) # Format as hh:mm:ss return str(datetime.timedelta(seconds=elapsed_rounded)) import random # This training code is based on the `run_glue.py` script here: # https://github.com/huggingface/transformers/blob/5bfcd0485ece086ebcbed2d008813037968a9e58/examples/run_glue.py#L128 # Set the seed value all over the place to make this reproducible. seed_val = 42 random.seed(seed_val) np.random.seed(seed_val) torch.manual_seed(seed_val) torch.cuda.manual_seed_all(seed_val) # Store the average loss after each epoch so we can plot them. loss_values = [] for epoch_i in range(epochs): print("epoch is" + str(epoch_i)) print("training...") t0 = time.time() total_loss = 0 model.train() for step, batch in enumerate( train_dataloader ): # total steps are 191... runs from step 0 to steps 190 print("step", step) b_input_ids = batch[0].to(device) b_input_mask = batch[1].to(device) b_labels = batch[2].to(device) model.zero_grad() outputs = model( b_input_ids, token_type_ids=None, attention_mask=b_input_mask, labels=b_labels, ) loss = outputs[0] total_loss += loss.item() loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) optimizer.step() scheduler.step() avg_train_loss = total_loss / len(train_dataloader) print("avg_train_loss", avg_train_loss) loss_values.append(avg_train_loss) print(" Average training loss: {0:.2f}".format(avg_train_loss)) print("Training complete!") # Validation model.eval() pred = [] true = [] eval_acc = 0 nb_eval_steps = 0 for batch in val_dataloader: batch = tuple(t.to(device) for t in batch) b_input_ids, b_input_mask, b_labels = batch with torch.no_grad(): outputs = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask) logits = outputs[0] logits = logits.detach().cpu().numpy() label_ids = b_labels.to("cpu").numpy() pred.append(logits) true.append(label_ids) temp_eval_acc = flat_accuracy(logits, label_ids) eval_acc += temp_eval_acc nb_eval_steps += 1 print(" Accuracy: {0:.2f}".format(eval_acc / nb_eval_steps)) # Combine the predictions for each batch into a single list of 0s and 1s. flat_predictions = [item for sublist in pred for item in sublist] flat_predictions = np.argmax(flat_predictions, axis=1).flatten() # Combine the correct labels for each batch into a single list. flat_true_labels = [item for sublist in true for item in sublist] from sklearn.metrics import classification_report print(classification_report(flat_predictions, flat_true_labels)) # Testing model.eval() pred = [] true = [] eval_acc = 0 nb_eval_steps = 0 for batch in val_dataloader: batch = tuple(t.to(device) for t in batch) b_input_ids, b_input_mask, b_labels = batch with torch.no_grad(): outputs = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask) logits = outputs[0] logits = logits.detach().cpu().numpy() label_ids = b_labels.to("cpu").numpy() pred.append(logits) true.append(label_ids) temp_eval_acc = flat_accuracy(logits, label_ids) eval_acc += temp_eval_acc nb_eval_steps += 1 print(" Accuracy: {0:.2f}".format(eval_acc / nb_eval_steps)) test_data = test_data.text.values indices = tokenizer.batch_encode_plus( test_data, max_length=38, add_special_tokens=True, return_attention_mask=True, pad_to_max_length=True, truncation=True, ) input_ids = indices["input_ids"] att_mask = indices["attention_mask"] test_ids = torch.tensor(input_ids) test_mask = torch.tensor(att_mask) batch_size = 32 prediction_data = TensorDataset(test_ids, test_mask) prediction_sampler = SequentialSampler(prediction_data) prediction_dataloader = DataLoader( prediction_data, sampler=prediction_sampler, batch_size=batch_size ) len(test_ids) model.eval() predictions = [] for batch in prediction_dataloader: batch = tuple(t.to(device) for t in batch) b_input_ids, b_input_mask = batch with torch.no_grad(): outputs = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask) logits = outputs[0] logits = logits.detach().cpu().numpy() predictions.append(logits) flat_predictions = [item for sublist in predictions for item in sublist] flat_predictions = np.argmax(flat_predictions, axis=1).flatten() sample_sub = pd.read_csv("../input/nlp-getting-started/sample_submission.csv") submit = pd.DataFrame( {"id": sample_sub["id"].values.tolist(), "target": flat_predictions} ) submit.to_csv("submission.csv", index=False) submit.head()
# # Data Frame Exercise # # Read the data from the file Salaries Complete import pandas as pd df = pd.read_csv("/kaggle/input/teaching-salaries-datset/Salaries Complete.csv") df.head() # # Display the first 3 rows df.head(3) # # Display the last 4 rows df.tail(4) # # Remove the columns (Name) and (ID) df.drop(["Name", "ID"], axis=1, inplace=True) df.head() # # Display the data of Females only df1 = df[df["Gender"] == "f"] df1.head() # # Create a new column which contains the total salary and name it total df["Total"] = ( df["Transportation"] + df["Housing"] + df["Basic"] + df["Allowance"] + df["Family"] ) df.head() # # Find the average of the basic salary av = df["Basic"].mean() av # # Find the person who gets the highest salary m = df["Total"].max() p = df[df["Total"] == m] p
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import GridSearchCV from sklearn.neural_network import MLPRegressor # Read training set and test set train_df = pd.read_csv("/kaggle/input/us-college-completion-rate-analysis/train.csv") test_df = pd.read_csv("/kaggle/input/us-college-completion-rate-analysis/x_test.csv") # Select the characteristics and target factors of random forest features = [ "Tuition_in_state", "Tuition_out_state", "Faculty_salary", "Pell_grant_rate", "SAT_average", "ACT_50thPercentile", "pct_White", "pct_Black", "pct_Hispanic", "pct_Asian", "Parents_middlesch", "Parents_highsch", "Parents_college", ] target = "Completion_rate" # Extracting features and target variables from training and test sets X_train = train_df[features] y_train = train_df[target] X_test = test_df[features] # Creating a Random Forest Regression Model, set the estimators, set the depth of the random forest and set random state # Using training sets to train models model = RandomForestRegressor(n_estimators=500, max_depth=20, random_state=4) model.fit(X_train, y_train) importance = model.feature_importances_ indices = np.argsort(importance)[::-1] for f in range(X_train.shape[1]): print("%2d) %-*s %f" % (f + 1, 30, features[indices[f]], importance[indices[f]])) # Select the characteristics and target factors of random forest features = [ "Tuition_in_state", "Tuition_out_state", "Faculty_salary", "Pell_grant_rate", "SAT_average", "ACT_50thPercentile", "pct_Black", "pct_Asian", "Parents_highsch", "Parents_college", ] target = "Completion_rate" # Extracting features and target variables from training and test sets X_train = train_df[features] y_train = train_df[target] X_test = test_df[features] from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test) # Perform PCA pca = PCA() X_train_pca = pca.fit_transform(X_train_scaled) X_test_pca = pca.transform(X_test_scaled) # Perform Gridresearch on MLP mlp_param_grid = { "hidden_layer_sizes": [(64,), (128, 64, 32), (256, 128, 64, 32)], "activation": ["identity", "logistic", "tanh", "relu"], "solver": ["adam"], "alpha": [0.0001, 0.001, 0.01], "max_iter": [500], "n_iter_no_change": [10], } mlp = MLPRegressor(validation_fraction=0.2, verbose=1) mlp_grid_search = GridSearchCV( mlp, mlp_param_grid, cv=5, scoring="neg_mean_squared_error" ) mlp_grid_search.fit(X_train_pca, y_train.ravel()) best_mlp = mlp_grid_search.best_estimator_ y_pred_mlp = best_mlp.predict(X_test_pca) # Output CSV file (add ID manually and delete last blank line) name = ["Completion_rate"] df = pd.DataFrame(columns=name, data=y_pred_mlp) print(df) df.to_csv("submission.csv", index=True, index_label="id")
# # Political Donations EDA 💸 # This is a quick starter Exploratory Data Analysis (EDA) of the Political Donations by American Sports Owners Dataset. Although I do use quite a lot of one-liners in this EDA, I think there is enough commenting and analysis for anyone to follow along and understand the code. # Table of Contents # Essential Imports # Data Preprocessing # Analysis of Individual Donations # Analysis of Individual Donators # Analysis of Donations to Specific Political Parties # If you like this notebook, please give it an upvote! Let's jump right into the analysis. # # Essential Imports import numpy as np import pandas as pd import os import sys import matplotlib.pyplot as plt import plotly.graph_objects as go import plotly.express as px import plotly.graph_objects as go import plotly.offline as py import math import itertools py.init_notebook_mode(connected=True) # The variable below, ```LOOK_AT```, controls the visualizations done below. If you fork this notebook and would like to visualize more/less per graph, the easiest way to do so is by changing the value of ```LOOK_AT``` below. LOOK_AT = 10 # # Data Preprocessing df = pd.read_csv( "../input/political-donations-by-american-sports-owners/sports-political-donations.csv" ) df # One of the most important steps is here to convert each of the columns in the dataset to its appropriate type. Here, we want to convert the column "Amount" to a float so we can utilize the vectorized implementations Pandas DataFrames offer. We do so with the simple one-liner shown below. if df["Amount"].dtype != "int64": df["Amount"] = ( (df["Amount"].str.replace("$", "", regex=False)) .str.replace(",", "", regex=False) .astype("int64") ) df # # Analysis of Individual Donations # Primary Questions # * What is the distribution of donation values? # * What are the largest individual donations in terms of amount donated? # Distribution of Donation Values amount = df["Amount"] fig = px.histogram(amount) fig.update_layout( barmode="group", title={ "text": f"Distribution of Donation Values", "x": 0.5, "xanchor": "center", "font": {"size": 20}, }, xaxis_title="Amount, in USD", yaxis_title="Count", showlegend=False, ) fig.show() print( "Number of Donations: %d\nMean Donation Value: $%.2f\nMedian Donation Value: $%.2f" % (len(amount), amount.mean(), amount.median()) ) print( "\nAdditional Statistical Measures:\nStandard Deviation: $%.3f\nSkew: %.3f\nKurtosis: %.3f\n95%% of Data is Between $%.3f and $%.3f" % ( amount.std(), amount.skew(), amount.kurtosis(), np.quantile(amount, 0.025), np.quantile(amount, 0.975), ) ) # "A general guideline for skewness is that if the number is greater than +1 or lower than –1, this is an indication of a substantially skewed distribution. For kurtosis, the general guideline is that if the number is greater than +1, the distribution is too peaked" (Source). # Clearly, this distribution has many outliers, and that's confirmed by visual analysis of the plot above. Since we are not necessarily doing predictions with this data, removing these outliers is not necessary, but it is still good to note that **the top donators in this dataset are statistical outliers.** # Top 10 Individual Donations donations = df.sort_values("Amount", ascending=False) fig = px.bar(donations[:LOOK_AT], x="Owner", y="Amount") fig.update_layout( barmode="group", title={ "text": f"Top {LOOK_AT} Individual Donations", "x": 0.5, "xanchor": "center", "font": {"size": 20}, }, yaxis_title="Amount, in USD", showlegend=False, ) fig.show() # Yep, you read that right. San Fransisco Giants owner Charles Johnson holds the top 3 donations and accounts for 5 out of the top 10 donations in terms of numerical value (amount donated). He is clearly an outlier in this analysis (If you want to look at more/other owners in your own analysis, feel free to fork the notebook and increase the value of ```LOOK_AT``` and/or drop Charles Johnson from the data entirely). # # Analysis of Individual Donators # Primary Questions: # * Which owner has donated the most TOTAL money? # * Which owner has donated the most times? # * Which owner donates, ON AVERAGE, the most money? # Top Donators by Gross Value Donated sum_df = df.groupby("Owner").sum().sort_values("Amount", ascending=False) sum_donated = sum_df["Amount"] fig = px.bar(sum_donated[:LOOK_AT]) fig.update_layout( barmode="group", title={ "text": f"Top {LOOK_AT} Individual Donators, Gross Value", "x": 0.5, "xanchor": "center", "font": {"size": 20}, }, yaxis_title="Amount, in USD", showlegend=False, ) fig.show() # Unsurprisingly, Charles Johnson tops the list again with a whopping **$11.03 MILLION** donated. Let's see what percentage of donated money he claims. pie_df = sum_df.reset_index() fig = px.pie(pie_df, values="Amount", names="Owner") fig.update_traces(textposition="inside") fig.update_layout( uniformtext_minsize=12, uniformtext_mode="hide", title={ "text": f"Pie Chart of Individual Donators (Total Donated: ${sum_donated.sum()})", "x": 0.4, "xanchor": "center", "font": {"size": 20}, }, ) fig.show() # Charles Johnson accounts for almost a quarter of all donations! Now, let's take a look at the distribution of individual donators. amount = df.groupby("Owner").sum()["Amount"] fig = px.histogram(amount) fig.update_layout( barmode="group", title={ "text": f"Distribution of Donators", "x": 0.5, "xanchor": "center", "font": {"size": 20}, }, xaxis_title="Amount, in USD", yaxis_title="Count", showlegend=False, ) fig.show() print( "Number of Unique Donators: %d\nMean Donator: $%.2f\nMedian Donator: $%.2f" % (len(amount), amount.mean(), amount.median()) ) print( "\nAdditional Statistical Measures:\nStandard Deviation: $%.3f\nSkew: %.3f\nKurtosis: %.3f\n95%% of Data is Between $%.3f and $%.3f" % ( amount.std(), amount.skew(), amount.kurtosis(), np.quantile(amount, 0.025), np.quantile(amount, 0.975), ) ) # Ok, Charles Johnson is quite obviously an outlier. Let's take a closer look at his donations. cj_donations = df.loc[df["Owner"] == "Charles Johnson"] cj_donations fig = px.histogram(cj_donations["Amount"]) fig.update_layout( barmode="group", title={ "text": f"Charles Johnson's Donations", "x": 0.5, "xanchor": "center", "font": {"size": 20}, }, xaxis_title="Amount, in USD", yaxis_title="Count", showlegend=False, ) fig.show() # It looks like most of his donations are comparatively small, but he has a couple of extremely large donations. # Number of Donations per Donator count_donated = df.groupby("Owner").size().sort_values(ascending=False) fig = px.bar(count_donated[:LOOK_AT]) fig.update_layout( barmode="group", title={ "text": f"Top {LOOK_AT} Donators by Number of Donations", "x": 0.5, "xanchor": "center", "font": {"size": 20}, }, yaxis_title="Count", showlegend=False, ) fig.show() # What a surprise, it's Charles Johnson at the top AGAIN. It seems like he really loves to donate to political groups, huh. fig = px.histogram(count_donated, nbins=200) fig.update_layout( barmode="group", title={ "text": f"Distribution of Number of Donations Per Donator", "x": 0.5, "xanchor": "center", "font": {"size": 20}, }, xaxis_title="Donated Count", yaxis_title="Count", showlegend=False, ) fig.show() print( "Mean Donations per Donator: %.3f\nMedian Donations per Donator: %.1f" % (count_donated.mean(), count_donated.median()) ) print( "\nAdditional Statistical Measures:\nStandard Deviation: %.3f\nSkew: %.3f\nKurtosis: %.3f\n95%% of Data is Between %d Donation(s) and %d Donation(s)" % ( count_donated.std(), count_donated.skew(), count_donated.kurtosis(), np.quantile(count_donated, 0.025), np.quantile(count_donated, 0.975), ) ) # Most sports team owners in this dataset donate less than 5 times, but there are still quite a lot of statistical outliers (I'm looking at you, Charles Johnson). # Highest Average Donator avg_donated = df.groupby("Owner").mean()["Amount"].sort_values(ascending=False) fig = px.bar(avg_donated[:LOOK_AT]) fig.update_layout( barmode="group", title={ "text": f"Top {LOOK_AT} Donators by Average Donation", "x": 0.5, "xanchor": "center", "font": {"size": 20}, }, yaxis_title="Count", showlegend=False, ) fig.show() # No Charles Johnson, very cool. # # Analysis of Donations to Specific Political Parties # Let's add the feature "Party" to the mix. # Primary Questions # * Which party receives the most donations? # * Which party receives the most money? # * Are there any owners that donate to multiple parties? # Which Party Receives the Most Donations? df["Party"].unique() COLOR_MAP = { "Democrat": "blue", "Bipartisan": "yellow", "Republican": "red", "Bipartisan, but mostly Republican": "orange", "Bipartisan, but mostly Democratic": "cyan", "Independent": "green", } party_df = pd.DataFrame( df.groupby("Party").size().sort_values(ascending=False), columns=["Count"] ).reset_index() fig = px.bar( party_df, x="Party", y="Count", color="Party", color_discrete_map=COLOR_MAP ) fig.update_layout( title={ "text": f"Political Parties Which Receive the Most Donations", "x": 0.5, "xanchor": "center", "font": {"size": 20}, }, yaxis_title="Count", showlegend=False, ) fig.show() # Republicans receive the most donations by a decent margin. # Which Party Receives the Most Money? COLOR_MAP = { "Democrat": "blue", "Bipartisan": "yellow", "Republican": "red", "Bipartisan, but mostly Republican": "orange", "Bipartisan, but mostly Democratic": "cyan", "Independent": "green", } party_sum_df = ( df.groupby("Party").sum().sort_values("Amount", ascending=False).reset_index() ) fig = px.bar( party_sum_df, x="Party", y="Amount", color="Party", color_discrete_map=COLOR_MAP ) fig.update_layout( title={ "text": f"Political Parties Which Receive the Most Money", "x": 0.5, "xanchor": "center", "font": {"size": 20}, }, yaxis_title="Amount, in USD", showlegend=False, ) fig.show() # The Republican party also receives the most money by sports owners. # Polarity of Donations # We calculate polarity as ```sum - max(donations)```. This will take into consideration all donations that are NOT the donator's primary party they donated to. polar_df = df.groupby(["Owner", "Party"]).size() mcc_owner = {} for owner in df["Owner"].unique(): mcc = polar_df[owner].sum() - max(polar_df[owner]) mcc_owner[owner] = mcc mcc_df = pd.DataFrame.from_dict( mcc_owner, orient="index", columns=["Value"] ).sort_values("Value", ascending=False) mcc_df fig = px.bar(mcc_df[:LOOK_AT]) fig.update_layout( title={ "text": f"Which Donators Have the Most Polar Donations", "x": 0.5, "xanchor": "center", "font": {"size": 20}, }, yaxis_title="Value", showlegend=False, ) fig.show() # Let's take a look at the person with the most polar donations, Micky Arison. polar_df["Micky Arison"]
import socket hostname = socket.gethostname() if hostname.startswith("ug"): hostnum = hostname.split("ug")[-1] import sys sys.stdout = open(f"{hostname}.txt", "w") from random import randint import random import matplotlib.pyplot as plt import numpy as np example = "/kaggle/input/tsp-toronto/20230407_03-33_adjMatrix.txt" fpath = example.split("adjMatrix")[0] adjMatrix = np.loadtxt(fpath + "adjMatrix" + ".txt") alls = np.loadtxt(fpath + "all" + ".txt").astype(int) dropoffs = np.loadtxt(fpath + "dropoffs" + ".txt").astype(int) pickups = np.loadtxt(fpath + "pickups" + ".txt").astype(int) def printtsp(lst): for num in lst: num = alls[num] if len(str(num)) == 3: print("\033[32m" + str(num) + "\033[0m", end=" ") # print in green else: print(num, end=" ") print() # print a new line at the end def isPickup(x): return x % 2 == 0 def toPickup(x): return x - 1 # x & 0xFFFFFFFE def toDropoff(x): return x + 1 # x | 1 def cost(route): cost = 0 for i in range(len(route) - 1): cost += adjMatrix[route[i]][route[i + 1]] return cost import time def timer(func): def wrapper(*args, **kwargs): start_time = time.time() result = func(*args, **kwargs) end_time = time.time() print(f"Elapsed_time={end_time - start_time:.2f} seconds") return result return wrapper import statistics def testDistribution(sample_count, numOfIteration, T): def decorator(func): def wrapper(*args, **kwargs): trials = [] for i in range(sample_count): trials.append(func(*args, **kwargs)) std = statistics.stdev(trials) avg = statistics.mean(trials) plt.clf() n, bins, patches = plt.hist(trials, color="orange") print(std, avg) plt.axvline(avg, color="red", linestyle="dashed", linewidth=2) t = plt.text(avg + 0.1 * std, np.max(n) * 0.15, f"{avg:.1f}") t.set_bbox(dict(facecolor="white", alpha=0.7, edgecolor="black")) plt.axvline(avg + std, color="g", linestyle="dashed", linewidth=1) plt.text( avg + std * 1.1, np.max(n) * 0.1, "{:.1f}".format(avg + std), color="g" ) plt.axvline(avg - std, color="g", linestyle="dashed", linewidth=1) plt.text( avg - std * 0.9, np.max(n) * 0.1, "{:.1f}".format(avg - std), color="g" ) plt.axvline(avg + 2 * std, color="b", linestyle="dashed", linewidth=1) plt.text( avg + 2.1 * std, np.max(n) * 0.05, "{:.1f}".format(avg + 2 * std), color="b", ) plt.axvline(avg - 2 * std, color="b", linestyle="dashed", linewidth=1) plt.text( avg - 1.9 * std, np.max(n) * 0.05, "{:.1f}".format(avg - 2 * std), color="b", ) plt.title( f"{numOfIteration} iterations, T={T}, std={std:.1f}, avg={avg:.1f}" ) plt.xlabel("score (kilosec)") plt.ylabel("freq") plt.savefig( f"r_{numOfIteration}iteration_{T}T_{sample_count}samples_{hostname}.png" ) plt.show() print( f"iteration={numOfIteration:<8} T={T:<6} std={std}\tavg={avg}", end="\t" ) return trials return wrapper return decorator import math def minCostItem(possible_nexts, current): minCost = math.inf minIndex = None for i in range(len(possible_nexts)): item = possible_nexts[i] if item == current: continue if minCost > adjMatrix[current][item]: minCost = adjMatrix[current][item] minIndex = i return minIndex def greedy_route(num_of_points, firstitem): route = [] possible_nexts = list(range(0, num_of_points, 2)) possible_nexts.remove(firstitem) route.append(firstitem) possible_nexts.append(firstitem + 1) while len(route) < num_of_points: item = possible_nexts.pop(minCostItem(possible_nexts, route[-1])) route.append(item) if isPickup(item): possible_nexts.append(item + 1) return route def random_route(num_of_points): route = [] possible_nexts = list(range(0, num_of_points, 2)) while len(route) < num_of_points: item = possible_nexts.pop(randint(0, len(possible_nexts) - 1)) route.append(item) if isPickup(item): possible_nexts.append(item + 1) return route def canMove(item, newLocation, etuor): if isPickup(item): if newLocation < etuor[toDropoff(item)]: return True else: if newLocation > etuor[toPickup(item)]: return True return False import math def FEELING_GOOD(delta, temperature): if temperature == 0: return False return random.random() < math.exp(-delta / temperature) def somewhat_minCostItem(possible_nexts, current, degree_of_randomness): row = adjMatrix_indexed[current] for distance, tspIdx in row: if tspIdx in possible_nexts and random.random() < degree_of_randomness: return tspIdx return possible_nexts[0] def random_greedy_route(num_of_points, firstitem, degree_of_randomness): route = [] possible_nexts = list(range(0, num_of_points, 2)) possible_nexts.remove(firstitem) route.append(firstitem) possible_nexts.append(firstitem + 1) while len(route) < num_of_points: item = somewhat_minCostItem(possible_nexts, route[-1], degree_of_randomness) possible_nexts.remove(item) route.append(item) if isPickup(item): possible_nexts.append(item + 1) return route def nth_minCostItem(possible_nexts, current, nth_best): row = adjMatrix_indexed[current] for distance, tspIdx in row: if tspIdx in possible_nexts: # ?? if nth_best == 0: return tspIdx nth_best -= 1 return possible_nexts[0] import random def random_nth_greedy_route(num_of_points, firstitem, rand_list): route = [] possible_nexts = list(range(0, num_of_points, 2)) possible_nexts.remove(firstitem) route.append(firstitem) possible_nexts.append(firstitem + 1) while len(route) < num_of_points: if len(route) in rand_list: item = nth_minCostItem(possible_nexts, route[-1], 1) else: item = nth_minCostItem(possible_nexts, route[-1], 0) possible_nexts.remove(item) route.append(item) if isPickup(item): possible_nexts.append(item + 1) return route from copy import deepcopy def findMin_random_route( random_func, degree_of_randomness, numTryIteration, plot=False ): baseline = 125000 min_cost = float("inf") min_cost_list = [] cost_list = [] new_good_found_counter = 0 for i in range(numTryIteration): # how_many_seconds = random.randint(1,degree_of_randomness) # rand_list = random.sample( range(0, len(alls)), how_many_seconds) # generate n unique random numbers from 0 to 10 # route = random_func(len(alls), start_point ,rand_list)#degree_of_randomness route = random_func(len(alls), 0, degree_of_randomness) # degree_of_randomness c = cost(route) cost_list.append(c) if c < min_cost: if c < 124000: new_good_found_counter += 1 good_diff_cheats.insert(0, deepcopy(diff_cheat)) if new_good_found_counter % 2 == 0: # del good_diff_cheats[-1] min_cost = c min_route = route try: print(min_cost, i, 0, how_many_seconds) except: print(min_cost, "iteration:", i) print(f"\t {len(diff_cheat)} {diff_cheat}") min_cost_list.append(min_cost) if plot: plt.plot(cost_list) plt.plot(min_cost_list) print(min_cost, degree_of_randomness, numTryIteration) return min_route diff_cheat = [] good_diff_cheats = [] def smart_somewhat_minCostItem(possible_nexts, current, degree_of_randomness): global diff_cheat if random.random() < 0.5: for diffs in good_diff_cheats: if len(diffs) > len(diff_cheat): if ( diff_cheat == diffs[: len(diff_cheat)] and diffs[len(diff_cheat)][0] == current ): diff_cheat.append(diffs[len(diff_cheat)]) return diffs[len(diff_cheat) - 1][1] row = adjMatrix_indexed[current] this_is_nth_best = 0 for distance, tspIdx in row: if tspIdx in possible_nexts: if random.random() < degree_of_randomness: if this_is_nth_best > 0: diff_cheat.append([current, tspIdx]) return tspIdx this_is_nth_best += 1 return possible_nexts[0] def smart_random_greedy_route(num_of_points, firstitem, degree_of_randomness): global diff_cheat diff_cheat.clear() route = [] possible_nexts = list(range(0, num_of_points, 2)) possible_nexts.remove(firstitem) route.append(firstitem) possible_nexts.append(firstitem + 1) while len(route) < num_of_points: item = smart_somewhat_minCostItem( possible_nexts, route[-1], degree_of_randomness ) try: possible_nexts.remove(item) except: print("route", route) print("diff_cheat", diff_cheat) print("good_diff_cheats", good_diff_cheats) print("returned ======", route[-1], item) stop route.append(item) if isPickup(item): possible_nexts.append(item + 1) return route adjMatrix_indexed = [[0 for j in adjMatrix] for i in adjMatrix] for r, row in enumerate(adjMatrix): for c, item in enumerate(row): adjMatrix_indexed[r][c] = (item, c) adjMatrix_indexed[r].sort() # findMin_random_route(randomadjMatr6_indexed317 ].insert(0,(0.01,57 ))_greedy_route,0.99,100, True)#118781 def update_costs(change_list): global adjMatrix_indexed cost = None for i, j in change_list: adjMatrix_indexed[i].insert(0, (cost, j)) # cheat = [(42, 266), (332, 168), (224, 277), (80, 215), (63, 131), (160, 88)]#[115329 # update_costs(cheat) baseline = greedy_route(len(alls), 0) smart_greedy_route = findMin_random_route( smart_random_greedy_route, 0.97, 1000, True ) # 108 def experiment(_sample_count=100, _numOfIteration=10, _T=0.99): @timer @testDistribution(sample_count=_sample_count, numOfIteration=_numOfIteration, T=_T) def inside(): # simulated_annealing(10,0) return findMin_random_route(random_greedy_route, _T, _numOfIteration) inside() test_randomness = [ 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.985, 0.99, 0.995, 0.999, 0.9995, ] print(len(test_randomness)) def highlight_differences(list1, list2): # Ensure that the two lists have the same length if len(list1) != len(list2): print("Error: The two lists must have the same length.") return # Loop over the elements of the two lists and compare them for i in range(len(list1)): if list1[i] == list2[i]: # The elements are the same, print them normally print(list1[i], end=" ") else: # The elements are different, print them in green print("\033[42m" + str(list1[i]) + "\033[0m", end=" ") print() # Print a newline at the end def twoswap(route, temperature): etuor = {} for i, item in enumerate(route): etuor[item] = i cur_cost = cost(route) # printtsp(route) item = randint(0, len(route) - 1) loc1 = etuor[item] # print("item",alls[item], "located at",etuor[item]) if isPickup(item): d = toDropoff(item) # print("drop off located at", etuor[d]) possibleSwaps = range(0, etuor[d]) else: # is drop off p = toPickup(item) possibleSwaps = range(etuor[p] + 1, len(route)) # print("pickup located at", etuor[p]) for loc2 in possibleSwaps: # print(loc1, loc2) if canMove(route[loc2], loc1, etuor): if loc1 != loc2: route[loc1], route[loc2] = route[loc2], route[loc1] return ### delta = cost(route) - cur_cost if delta > 0 and not FEELING_GOOD(delta, temperature): # bad route[loc1], route[loc2] = route[loc2], route[loc1] break def shift(route): pass @timer def individual_2opt(count_of_swaps, numOfIteration, route): costs = [] mincost = cost(route) for x in range(numOfIteration): new_route = deepcopy(route) for i in range(count_of_swaps): twoswap(new_route, 0) new_cost = cost(new_route) costs.append(new_cost) delta = new_cost - mincost if delta < 0 or FEELING_GOOD(delta, 5): mincost = new_cost print("FOUND", new_cost) route = new_route print(count_of_swaps, numOfIteration, mincost, min(costs)) plt.plot(costs) plt.title(f"randomly performing {count_of_swaps} swaps") plt.xlabel("Iteration") plt.ylabel("Cost") plt.show() plt.savefig(f"{numOfIteration}iteration_{count_of_swaps}count_of_swaps.png") # individual(30,1000,random_route(len(alls)))#136191.12329999983 # individual(1,10000,greedy_route(len(alls), 4))#136191.12329999983 test_route = deepcopy(smart_greedy_route) print(cost(test_route)) individual_2opt(3, 1000 * 1000 * 10, test_route) # print(test_route) twoswap(test_route, 0) highlight_differences(test_route, smart_greedy_route) def random_choice(pdf): items, relative_probabilities = zip(*pdf) total = np.sum(relative_probabilities) r = random.uniform(0, 1) * total s = 0 for item, prob in pdf: s += prob if s >= r: break return item # pdf = [(0.1, 1), (0.05, 2), (0.05, 3)] # dist_pdf = sorted(random_choice2(pdf, [2,3,4]) for _ in range(10000)) # plt.hist(dist_pdf) def random_choice2(pdf, possible_selections): # pdf = [(0.1, 1), (0.05, 2), (0.05, 3)] pdf = [pair for pair in pdf if (pair[1] in possible_selections)] relative_probabilities, items = zip(*pdf) total = np.sum(relative_probabilities) r = random.uniform(0, 1) * total s = 0 for prob, item in pdf: s += prob if s >= r: break return item adjMatrix_distribution = [[0 for j in adjMatrix] for i in adjMatrix] for r, row in enumerate(adjMatrix): for c, item in enumerate(row): adjMatrix_distribution[r][c] = (item, c) del adjMatrix_distribution[r][r] def convert_to_probability(example): costs, tspidxs = zip(*example) avg_1 = np.mean(costs) def cost_to_probability_weight(cost, first, average): # return 1/((cost-first+average/100)) steepness = 100 return np.exp(-(cost / average) * steepness) # 1/(2**cost) first = np.min(costs) averagecost = np.mean(costs) probabilities = [cost_to_probability_weight(c, first, averagecost) for c in costs] total_probability = np.sum(probabilities) probabilities = [p / total_probability for p in probabilities] return {idx: prob for prob, idx in zip(probabilities, tspidxs)} probability_distribution = [convert_to_probability(i) for i in adjMatrix_distribution] def probabilistic_somewhat_minCostItem(possible_nexts, current): pdf = probability_distribution[current] return random_choice2(list(zip(pdf.values(), pdf.keys())), possible_nexts) def probabilistic_absolutelygreedy_minCostItem(possible_nexts, current): pdf = probability_distribution[current] pdf = list(zip(pdf.values(), pdf.keys())) pdf = [pair for pair in pdf if (pair[1] in possible_nexts)] sorted_pdf = sorted(pdf) return sorted_pdf[-1][1] def probabilistic_random_greedy_route(num_of_points, firstitem, minFunc): route = [] possible_nexts = list(range(0, num_of_points, 2)) possible_nexts.remove(firstitem) route.append(firstitem) possible_nexts.append(firstitem + 1) choices = [] # from, to while len(route) < num_of_points: item = minFunc(possible_nexts, route[-1]) choices.append([route[-1], item]) possible_nexts.remove(item) route.append(item) if isPickup(item): possible_nexts.append(item + 1) return route, choices greedy = greedy_route(len(alls), 0) current_best_cost = cost(greedy) baseline = 136000 def test_probability_distribution(): # sorted_dict = list(sorted(probability_distribution[153].items(), key=lambda x: x[1])) # pos = [12, 40, 58, 66, 78, 86, 96, 100, 106, 122, 128, 132, 134, 136, 144, 154, 162, 186, 188, 190, 208, 210, 240, 264, 282, 288, 294, 296, 310, 320, 324, 326, 336, 340, 342, 346, 81, 35, 29, 169, 309, 263, 181, 27, 183, 249, 33, 47, 237, 53, 333, 335, 227, 349, 267, 37, 69, 177, 223, 103, 91, 141, 173, 329, 25, 127, 299, 105, 239, 75, 9] # sorted_dict = [_ for _ in sorted_dict if _[0] in pos] # 114956 # for fromIdx, toIdx in [(42, 266), (332, 168), (256, 300), (207, 248), (224, 277), (283, 74), (60, 152), (140, 71), (50, 157), (209, 175), (184, 281), (315, 239), (15, 49)]: # diff = (1-probability_distribution[fromIdx][toIdx])*0.3 + 0.1 # #print(diff, end=",") # probability_distribution[fromIdx][toIdx] +=diff cost_list = [] testroute, choices = probabilistic_random_greedy_route( len(alls), 0, probabilistic_somewhat_minCostItem ) current_best_cost = cost(testroute) for i in range(100): print(i, end=" ") testroute, choices = probabilistic_random_greedy_route( len(alls), 0, probabilistic_somewhat_minCostItem ) new_cost = cost(testroute) cost_list.append(new_cost) if new_cost < baseline: ratio_delta_cost = baseline / new_cost - 1 k = 3 # print("updating",new_cost,"|",ratio_delta_cost*3,end=" ") # for fromIdx, toIdx in choices: # probability_distribution[fromIdx][toIdx] +=(2-probability_distribution[fromIdx][toIdx])*ratio_delta_cost*3 if new_cost < current_best_cost: ratio_delta_cost = current_best_cost / new_cost - 1 print("\nnewbest", new_cost, ratio_delta_cost, end="\n\t") for fromIdx, toIdx in choices: diff = ( 2 - probability_distribution[fromIdx][toIdx] ) * ratio_delta_cost + 0.1 # print(diff, end=",") probability_distribution[fromIdx][toIdx] += diff current_best_cost = new_cost # testroute, choices = probabilistic_random_greedy_route(len(alls),0, probabilistic_absolutelygreedy_minCostItem) # print(cost(testroute)) plt.plot(cost_list) # dist_pdf = [random_choice2(probability_distribution[0], _a) for _ in range(1000)] # _dict = {} # import pandas # from collections import Counter # letter_counts = Counter(dist_pdf) # total_count = sum(letter_counts.values()) # df = pandas.DataFrame.from_dict(letter_counts, orient='index').sort_values(by=0, ascending=False) # df = df / total_count * 100 # convert counts to percentage frequency # df.plot(kind='bar') # _a, _b = zip(*probability_distribution[2]) # plt.plot(_a) # print(_a[:20]) # print(_b) # print("time:",[ _ for _ in adjMatrix_distribution[2] if _[1] in _b][:20])
# **Create Random Number Array** import numpy as np # **Using rand method** a = np.random.rand(10) a b = np.random.rand(6) # library -> module -> method b # **Know the data type using dtype attribute** n = np.array([1, 2, 3, 4], dtype=float) n.dtype n # **Complex Array** c = np.array([1 + 2j, 3 + 4j]) c.dtype # **Boolen Array** b = np.array([[True, False], [True, True]]) b.dtype # **Indexing the number** a = np.arange(10, 20) a a[1] a[2] a[-1] b = np.eye(3) b b[1, 1] # **Assignment** a a[-1] = 190 a b b[0, 1] = 5 b # **Slicing the array** a a[1:5] # a[start_index : last_index(exclusive) : step] a[0:8:2] import numpy as np a = np.arange(10) a b = a[::2] b # b is a view of a b[2] = 14 b a # **Share memory() method** np.shares_memory(a, b) # **Copy Method** a c = a[::2].copy() c c[2] = 4 c a # **Boolean Indexing** -Arrays can also be indexed using arrays:(also know as fancy indexing) # Assignment - filter the array with only odd numbers. import numpy as np a = np.arange(20) a mask = a % 2 != 0 a[ mask ] # mask is a boolean array i.e it contain only true & flase....our ans will be all the value which has cirresponding true # **Integer Indexing** - Array can also be indexed using integer arrays. r = np.random.randint(20, 50, 10) r r[[0, 2, 4]] # **Basic operation in Array** # Addition, Substraction, Multiplication, power etc. a = np.array([1, 2, 3, 4]) a * 2 # the multipication will be borcasted to every element b = np.array([5, 6, 7, 8]) a * b # it will perform element wise operation # Ohter operation -eg. sin, log, exp a np.sin(a) np.log(a) np.exp(a) # Element wise multiplication- array must be of same size...corresponding element multiplication will happen a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) a b = np.eye(3) b a * b # **Dot method () - #dot product** # a = [a1,b1,c1] # b = [a2,b2,c2] # Dot product = a1* a2 + b1 * b2 + c1 * c2 # **1D Array** a = np.array([1, 2, 3]) b = np.array([1, 3, 3]) a.dot(b) # 1*1 + 2*3 + 3*3 # **2D Array** # **Number of columns of a = Number of rows of b** # (p,q)(r,s)->>q = r # Resultant matrix is of shape(p,q) a = np.array([[1, 2, 3], [4, 5, 6]]) b = np.array([[10, 11], [20, 21], [30, 31]]) a.dot(b) # **Array Comparion** import numpy as np a = np.array([12, 45, 36, 78]) b = np.array([12, 75, 3, 7]) mask = a == b # element wise comparison a[mask] # array_equal()method np.array_equal(a, b) # **Logical Operator** c = np.array([1, 0, 0, 1]) d = np.array([1, 0, 1, 0]) np.logical_and(c, d) np.logical_or(c, d) # **Some other computation** # **1-D Array** a = np.array([1, 2, 3, 4, 5]) np.sum(a) np.mean(a) np.min(a) np.max(a) np.argmin(a) # return the index of the minimum value np.argmax(a) np.median(a) np.std(a) # **2D-Array** a = np.array([[1, 7, 5], [3, 6, 1]]) a c = np.sum(a, axis=0) c.ndim np.sum(c) np.sum(a, axis=1) np.min(a, axis=0)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import numpy as np df = pd.read_csv(r"/kaggle/input/vgchartzdata-2023/Game_DataBGT.csv") df1 = pd.read_excel( "/kaggle/input/vgchartzdata-2023/Game_DataBGT_Genre.xlsx" ) # Main Dataset df1.head() df1.columns ## Converting Genre values from Boolean to Numeric df1 = df1.astype( { "Action": "int", "Action": "int", "Strategy": "int", "Puzzle": "int", "Shooter": "int", "Platformer": "int", "Simulation": "int", "Sports": "int", "Arcade": "int", "Massively Multiplayer": "int", "Indie": "int", "Adventure": "int", "Racing": "int", "RPG": "int", "Casual": "int", "Fighting": "int", "Board Games": "int", "Educational": "int", "Family": "int", "Card": "int", "Singleplayer": "int", "Multiplayer": "int", "FPS": "int", "Third Person": "int", "Cooperative": "int", "PVP": "int", } ) df1.head() df1["Metascore"] = df1["Metascore"].replace( "None", ) df1["Metascore"] = pd.to_numeric(df1["Metascore"]) df1.head() # Imputing Missing values using K-Neighbor Method print("Data Before Imputation :") df1.head() df1.info() # Dropping columns containing categorical values , since KNN methods works only with numerical values df3 = df1.drop( [ "Game", "Publisher", "Developer", "Release Date", "Last Update", "Alltags", "Genre", "Console", ], axis=1, ) df3.info() from sklearn.impute import KNNImputer imputer = KNNImputer(n_neighbors=5) imputer.fit(df3) # O/P of KNN is array , converting to Dataframe imputed = pd.DataFrame(imputer.transform(df3), columns=df3.columns) imputed["Pos"] = imputed["Pos"].astype(int) imputed # (['Game','Publisher','Developer','Release Date','Last Update','Alltags','Genre','Console'] imputed.insert(1, "Game", df1["Game"]) imputed.insert(2, "Publisher", df1["Publisher"]) imputed.insert(3, "Developer", df1["Developer"]) imputed.insert(9, "Release Date", df1["Release Date"]) imputed.insert(10, "Last Update", df1["Last Update"]) imputed.insert(11, "Alltags", df1["Alltags"]) imputed.insert(12, "Console", df1["Console"]) imputed.info() # Creating a New Column "Update" to check whether a game with update has correlation with Total SS or not. imputed["Is_Update"] = np.where(imputed["Last Update"].isna(), 0, 1) imputed.head(100) fig, ax = plt.subplots(figsize=(15, 10)) dataplot = sns.heatmap(imputed.corr(), cmap="YlGnBu", annot=True, annot_kws={"size": 6}) # df1[[ 'VGChartz Score', 'Critic Score', 'User Score', 'Metascore' ]] = df[[ 'VGChartz Score', 'Critic Score', 'User Score', 'Metascore' ]].fillna(df[[ 'VGChartz Score', 'Critic Score', 'User Score', 'Metascore' ]].mean()) # df1.head(100) # df['Total_SS'] = df['Total_SS'].astype(int) # Critic score vs metascore x = imputed.drop( [ "Game", "Publisher", "Developer", "Release Date", "Last Update", "Alltags", "Console", "Total_SS", ], axis=1, ) x = x.astype( { "Action": "int", "Action": "int", "Strategy": "int", "Puzzle": "int", "Shooter": "int", "Platformer": "int", "Simulation": "int", "Sports": "int", "Arcade": "int", "Massively Multiplayer": "int", "Indie": "int", "Adventure": "int", "Racing": "int", "RPG": "int", "Casual": "int", "Fighting": "int", "Board Games": "int", "Educational": "int", "Family": "int", "Card": "int", "Singleplayer": "int", "Multiplayer": "int", "FPS": "int", "Third Person": "int", "Cooperative": "int", "PVP": "int", "VGChartz Score": "int", "User Score": "int", "Critic Score": "int", "Metascore": "int", } ) y = pd.DataFrame(imputed["Total_SS"]) y["Total_SS"] = y["Total_SS"].astype("int") # imputed=pd.DataFrame(imputer.transform(df3), columns=df3.columns) x.info() y.info() # # from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split( x, y, test_size=0.25, random_state=24 ) print(X_train.shape) print(y_train.shape) print(X_test.shape) print(y_test.shape) X_train.info() # ML Model - 1 - LOGISTIC REGRESSION from sklearn.linear_model import LogisticRegression from sklearn.metrics import classification_report, accuracy_score, confusion_matrix log_model = LogisticRegression(solver="lbfgs", max_iter=50000) # Fit the Algorithm LR = LogisticRegression() LR.fit(X_train, y_train) # Predict on the model y_pred_LR = LR.predict(X_test) y_pred_LR Acc_LR = accuracy_score(y_pred_LR, y_test) print("Accuracy of Logestic Regression :", Acc_LR) report = classification_report(y_pred_LR, y_test) report CM_LR = confusion_matrix(y_test, y_pred_LR) CM_LR # ML Model - 2 - LIGHT GBM from lightgbm import LGBMClassifier LGBM = LGBMClassifier() LGBM.fit(X_train, y_train) y_pred_LGBM = LGBM.predict(X_test) y_pred_LGBM Acc_LGBM = accuracy_score(y_pred_LGBM, y_test) print("Accuracy of LightGBM Classifier :", Acc_LGBM) report = classification_report(y_pred_LGBM, y_test) report CM_LGBM = confusion_matrix(y_test, y_pred_LGBM) CM_LGBM # ML Model - 3 - GAUSSIAN NAIVE BAYES MODEL from sklearn.naive_bayes import GaussianNB GNB = GaussianNB() # Fit the Algorithm GNB.fit(X_train, y_train) # Predict on the model y_pred_GNB = GNB.predict(X_test) y_pred_GNB Acc_GNB = accuracy_score(y_pred_GNB, y_test) print("Accuracy of GaussianNB :", Acc_GNB) report = classification_report(y_pred_GNB, y_test) report CM_GNB = confusion_matrix(y_test, y_pred_GNB) CM_GNB # Model 4 - Linear Regression # ML Model - 1 Implementation from sklearn.linear_model import LinearRegression lm = LinearRegression() # Fit the Algorithm lm.fit(X_train, y_train) # Predict on the model lm.score(X_test, y_test) y_pred = lm.predict(X_test) plt.scatter(y_test, y_pred) from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(n_neighbors=10) knn.fit(X_train, y_train) knn.score(X_test, y_test) error_rate = [] for i in range(1, 20): knn = KNeighborsClassifier(n_neighbors=i) knn.fit(X_train, y_train) pred_i = knn.predict(X_test) error_rate.append(np.mean(pred_i != y_test)) plt.figure(figsize=(10, 6)) plt.plot( range(1, 20), error_rate, color="blue", linestyle="dashed", marker="o", markerfacecolor="red", markersize=5, ) plt.title("Error Rate vs. K Value") plt.xlabel("K") plt.ylabel("Error Rate") from sklearn.metrics import classification_report, confusion_matrix pred = knn.predict(X_test) classification_report(y_test, pred) matrix = confusion_matrix(y_test, pred) matrix # ML Model - 3 Implementation from sklearn.tree import DecisionTreeClassifier dtree = DecisionTreeClassifier() # Fit the Algorithm dtree.fit(X_train, y_train) # Predict on the model dtree.score(X_test, y_test) pred = dtree.predict(X_test) classification_report(y_test, pred) matrix = confusion_matrix(y_test, pred) matrix
import numpy as np import pandas as pd import os import matplotlib.pyplot as plt import seaborn as sns color = sns.color_palette() sns.set_style("darkgrid") from tqdm.notebook import tqdm tqdm.pandas() from catboost import CatBoostClassifier, CatBoostRegressor from sklearn.preprocessing import StandardScaler, LabelEncoder from sklearn.model_selection import ( train_test_split, KFold, StratifiedKFold, cross_val_score, RepeatedStratifiedKFold, ) from sklearn import metrics from lightgbm import LGBMClassifier from tsfresh import extract_features, extract_relevant_features, select_features from tsfresh.feature_extraction import MinimalFCParameters, ComprehensiveFCParameters from tsfresh import select_features from tsfresh.utilities.dataframe_functions import impute df = pd.read_csv("../input/jobathon-analytics-vidhya/train.csv") tdf = pd.read_csv("../input/jobathon-analytics-vidhya/test.csv") df["train"] = 1 tdf["train"] = 0 df.head() df = pd.concat([df, tdf]) df.isnull().sum() df[df["Reco_Insurance_Type"] == "Joint"].Is_Spouse.value_counts() pd.Series( np.logical_and(df.Is_Spouse == "Yes", df["Reco_Insurance_Type"] == "Joint") ).value_counts() target_col = "Response" cat_cols = [ "City_Code", "Region_Code", "Accomodation_Type", "Reco_Insurance_Type", "Is_Spouse", "Health Indicator", "Holding_Policy_Duration", "Holding_Policy_Type", "Reco_Policy_Cat", "is_joint_and_spouse", ] reg_cols = ["Reco_Policy_Premium", "Upper_Age", "Lower_Age"] imputed_reg_cols = ["age_diff"] def dframe_expand(dframe): dframe["age_diff"] = dframe["Upper_Age"] - dframe["Lower_Age"] dframe["Reco_Policy_Premium"] = ( dframe["Reco_Policy_Premium"] / dframe["Reco_Policy_Premium"].max() ) dframe["age_diff_avg"] = dframe["age_diff"] / dframe["age_diff"].max() dframe["Upper_Age_avg"] = dframe["Upper_Age"] / dframe["Upper_Age"].max() dframe["Lower_Age_avg"] = dframe["Lower_Age"] / dframe["Lower_Age"].max() dframe["age_diff_max"] = dframe["age_diff"].max() dframe["Upper_Age_max"] = dframe["Upper_Age"].max() dframe["Lower_Age_max"] = dframe["Lower_Age"].max() dframe["age_diff_min"] = dframe["age_diff"].min() dframe["Upper_Age_min"] = dframe["Upper_Age"].min() dframe["Lower_Age_min"] = dframe["Lower_Age"].min() dframe["is_joint_and_spouse"] = pd.Series( np.logical_and( dframe.Is_Spouse == "Yes", dframe["Reco_Insurance_Type"] == "Joint" ) ) # # dframe = dframe.set_index("ID", drop=False) # dframe.index.name = "index" # X = dframe[dframe.train == 1].drop(columns=cat_cols + ["train"] + [target_col], axis=1) # y = dframe[dframe.train == 1][target_col] # relevant_features = extract_relevant_features( # X, y, # column_id='ID', show_warnings=False, # disable_progressbar=False, # default_fc_parameters=MinimalFCParameters(), # n_jobs=0) # df_extra = extract_features( # dframe.drop(columns=cat_cols + ["train"] + [target_col], axis=1), # column_id='ID', show_warnings=False, # impute_function=impute, disable_progressbar=False, # default_fc_parameters=MinimalFCParameters(), # n_jobs=0) # print(dframe.shape) # print(df_extra.columns) # print(relevant_features.columns) # for col in relevant_features.columns: # dframe[col] = df_extra[col] # print(dframe.shape) return dframe df = dframe_expand(df) df target_encoder = LabelEncoder() label_encoders = {} def train_encoder(dframe, col, test=False): if test: dframe[col] = label_encoders[col].transform( dframe[col].fillna("nan").astype(str) ) else: label_encoders[col] = LabelEncoder() dframe[col] = label_encoders[col].fit_transform( dframe[col].fillna("nan").astype(str) ) for col in tqdm(cat_cols): train_encoder(df, col) df.dropna(axis=1, how="all", inplace=True) df.dtypes grid = { "learning_rate": [0.1], # [.05, 0.1, .2], "max_depth": [10, 12, 14], "n_estimators": [600, 400, 500, 550], } model = CatBoostClassifier( random_state=22, task_type="GPU", devices="0:1", eval_metric="AUC", thread_count=3, cat_features=cat_cols, custom_metric=["AUC:hints=skip_train~false"], metric_period=50, od_type="Iter", od_wait=10, loss_function="Logloss", ) df.shape grid_search_result = model.grid_search( grid, X=df[df.train == 1].drop(["train", target_col], axis=1), y=df[df.train == 1][target_col], cv=4, shuffle=True, stratified=True, verbose=False, plot=True, refit=True, ) grid_search_result result = pd.DataFrame( { "ID": df[df.train == 0].ID, "Response": model.predict( df[df.train == 0].drop(["train", target_col], axis=1) ), } ) result.head() result.to_csv("submission.csv", index=False) from IPython.display import FileLink FileLink("submission.csv") result.Response.value_counts() / result.shape[0] * 100 df[df.train == 1].Response.value_counts() / df[df.train == 1].shape[0] * 100 df[df.train == 1].Response.value_counts()
import numpy as np import pandas as pd import os import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression df = pd.DataFrame( { "Year": [ 2012, 2012, 2012, 2012, 2012, 2012, 2012, 2012, 2012, 2012, 2012, 2012, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, ], "Month": [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ], "Period": [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, ], "Claims": [ 10159, 11175, 12310, 12446, 13213, 16412, 17405, 14233, 14606, 12969, 13980, 14755, 12300, 13224, 13606, 13659, 16442, 17334, 19605, 18997, 15971, 15740, 16919, 18931, ], } ) df.head() df["Claims_shifted"] = df["Claims"].shift(1) df = df.dropna() df.head() X = np.array(df["Claims_shifted"]).reshape(-1, 1) y = df["Claims"] model = LinearRegression() model.fit(X, y) print( "Regression function: y = {:.2f}x + {:.2f}".format(model.coef_[0], model.intercept_) ) print("R^2 value:", model.score(X, y)) df["Predictions"] = model.predict(X) plt.plot(df["Period"], df["Claims"], label="Original data") plt.plot(df["Period"], df["Predictions"], label="Linear Regression") plt.legend() plt.xlabel("Time (months)") plt.ylabel("Claims") plt.show()
# # Processamento Analítico de Dados em Larga Escala # ## Aula 02: Dados Multidimensionais e Consultas Analíticas # ## Exemplo usando Pandas # ## Respostas dos Exercícios # **Profa. Dra. Cristina Dutra de Aguiar** # **ICMC/USP** # Esta lista contém exercícios referentes à Aula 02, intitulada Dados Multidimensionais e Consultas Analíticas. A resposta de cada exercício encontra-se especificada logo após a sua definição. Recomenda-se fortemente que a lista de exercícios seja respondida antes de se consultar as respostas dos exercícios. # # 1 Carregamento das Tabelas de Dimensão e das Tabelas de Fatos # import pandas as pd # criando os DataFrames para as tabelas de dimensão data = pd.read_csv( "https://raw.githubusercontent.com/CristinaAguiar/DataMartCelebCo/main/data.csv" ) funcionario = pd.read_csv( "https://raw.githubusercontent.com/CristinaAguiar/DataMartCelebCo/main/funcionario.csv" ) equipe = pd.read_csv( "https://raw.githubusercontent.com/CristinaAguiar/DataMartCelebCo/main/equipe.csv" ) cargo = pd.read_csv( "https://raw.githubusercontent.com/CristinaAguiar/DataMartCelebCo/main/cargo.csv" ) cliente = pd.read_csv( "https://raw.githubusercontent.com/CristinaAguiar/DataMartCelebCo/main/cliente.csv" ) # criando os DataFrames para as tabelas de fatos pagamento = pd.read_csv( "https://raw.githubusercontent.com/CristinaAguiar/DataMartCelebCo/main/pagamento.csv" ) negociacao = pd.read_csv( "https://raw.githubusercontent.com/CristinaAguiar/DataMartCelebCo/main/negociacao.csv" ) # # 2 Exercícios # ## 2.1 Exercício 1 # Qual a soma dos salários por data por funcionário, para os funcionários do sexo M (masculino) da equipe de código igual a 1? # **Dica**: são necessários dados da tabela de dimensão `funcionario` e da tabela de fatos `pagamento`. Também é necessário realizar as comparações solicitadas, ou seja, sexo do funcionário = M e código da equipe = 1. # restringindo os funcionários para funcionários de sexo masculino funcionariosMasculinos = funcionario.query('funcSexo == "M"') # realizando a junção dos funcionários de sexo masculino com a tabela de fatos pagamento # considerando como coluna de junção a coluna funcPK pagamentoFuncionariosMasculinos = pagamento.merge(funcionariosMasculinos, on="funcPK") # restringindo as equipes para equipes iguais a 1 pagamentoFuncionariosMasculinosEquipe = pagamentoFuncionariosMasculinos.query( "equipePK == 1" ) # realizando os agrupamentos solicitados pagamentoFuncionariosMasculinosEquipe.groupby(["dataPK", "funcPK"])["salario"].sum() # ## 2.2 Exercício 2 # Mostre uma visualização gráfica dos salários considerados na soma de salários do Exercício 1, utilizando o método `pandas.DataFrame.plot.scatter`. # exibindo a resposta usando o método pandas.DataFrame.plot.scatter pagamentoFuncionariosMasculinosEquipe.plot(kind="scatter", x="funcPK", y="salario") # ## 2.3 Exercício 3 # Qual a soma das receitas em cada um dos semestres do ano de 2017? # **Dica**: são necessários dados da tabela de dimensão `data` e da tabela de fatos `negociacao`. Também é necessário realizar a comparação solicitada, ou seja, ano = 2017. # restringindo os anos para o ano de 2017 data2017 = data.query("dataAno == 2017") # realizando a junção do ano de 2017 com a tabela de fatos negociacao # considerando como coluna de junção a coluna dataPK negociacaoData2017 = negociacao.merge(data2017, on="dataPK") # realizando a junção das negociações realizadas no ano de 2017 com a tabela de dimensão cliente # considerando como coluna de junção a coluna clientePK negociacaoData2017cliente = cliente.merge(negociacaoData2017, on="clientePK") # realizando os agrupamentos solicitados negociacaoData2017clienteAgrupada = negociacaoData2017cliente.groupby( ["dataAno", "dataSemestre"] )["receita"].sum() # exibindo a resposta negociacaoData2017clienteAgrupada.head(10) # ## 2.4 Exercício 4 # Mostre uma visualização gráfica do resultado do Exercício 3, utilizando os métodos `pandas.DataFrame.plot.bar`, `pandas.DataFrame.plot.barh` e `pandas.DataFrame.plot.bar` com barras empilhadas (`unstack(level = 1)`). # Analise as diferentes visualizações para você verificar qual é a mais semântica do seu ponto de vista. # exibindo a resposta usando o método pandas.DataFrame.plot.bar negociacaoData2017clienteAgrupada.plot(kind="bar") # exibindo a resposta usando o método pandas.DataFrame.plot.barh negociacaoData2017clienteAgrupada.plot(kind="barh") # exibindo a resposta usando o método pandas.DataFrame.plot.bar negociacaoData2017clienteAgrupada.unstack(level=1).plot(kind="bar", stacked=True) # ## 2.5 Exercício 5 # Liste, para cada ano, a soma dos salários para o cargo de nome "COZINHEIRO". Arredonde a soma dos salários para até duas casas decimais. Devem ser exibidas as colunas na ordem e com os nomes especificados a seguir: "ANO", "TOTAL DE DESPESA". Ordene as linhas exibidas primeiro pelo total de despesa em ordem descendente e depois pelo ano em ordem descendente. # **Dica**: são necessários dados das tabelas de dimensão `data` e `cargo` e da tabela de fatos `pagamento`. Também é necessário realizar a comparação solicitada, ou seja, nome do cargo = cozinheiro. # restringindo os cargos para o cargo de nome COZINHEIRO cargoCozinheiro = cargo.query('cargoNome == "COZINHEIRO"') # realizando a junção dos cargos de cozinheiro com a tabela de fatos pagamento # considerando como coluna de junção a coluna cargoPK pagamentoCargoCozinheiro = pagamento.merge(cargoCozinheiro, on="cargoPK") # realizando a junção dos pagamentos realizados para o cargo de cozinheiro # com a tabela de dimensão data considerando como coluna de junção a coluna dataPK dataPagamentoCargoCozinheiro = data.merge(pagamentoCargoCozinheiro, on="dataPK") # realizando os agrupamentos solicitados dataPagamentoCargoCozinheiroAgrupada = ( dataPagamentoCargoCozinheiro.groupby(["dataAno"])["salario"].sum().round(2) ) # exibindo a resposta sem adicionar semântica dataPagamentoCargoCozinheiroAgrupada.head(10) # transformando pd.Series em pd.DataFrame # ordenando a resposta pelo ano e salário respostaSemantica = dataPagamentoCargoCozinheiroAgrupada.to_frame().reset_index() respostaSemantica = respostaSemantica.sort_values( by=["dataAno", "salario"], ascending=False ) # renomeando as colunas respostaSemantica = respostaSemantica.rename( columns={"dataAno": "ANO", "salario": "TOTAL DE DESPESA"} ) # exibindo a resposta com semântica adicional respostaSemantica.head(10) # ## 2.6 Exercício 6 # Liste, para cada nome do estado da filial na qual a equipe está localizada, a soma das receitas por ano considerando apenas o trimestre 1 e os clientes cuja região na qual eles moram é a mesma região na qual a filial está localizada. Arredonde a soma das receitas para até duas casas decimais. Devem ser exibidas as colunas na ordem e com os nomes especificados a seguir: "ESTADO", "ANO", "TOTAL DE RECEITA". Ordene as linhas exibidas primeiro pelo total de receitas em ordem descendente, depois por estado em ordem descendente, depois pelo ano em ordem descendente. # **Dica**: são necessários dados das tabelas de dimensão `equipe`, `data` e `cliente` e da tabela de fatos `negociacao`. Também é necessário realizar as comparações solicitadas, ou seja, trimestre = 1 e região do cliente = região da filial na qual a equipe está localizada. # # restringindo as datas para o trimestre desejado dataTri = data.query("dataTrimestre == 1") # realizando a junção das datas do primeiro trimestre com a tabela de fatos negociacao # considerando como coluna de junção a coluna dataPK negDataTri = negociacao.merge(dataTri, on="dataPK") # realizando a junção das negociacoes realizadas no primeiro trimestre # com a tabela de dimensão equipe considerando como coluna de junção a coluna equipePK negDataTriEq = equipe.merge(negDataTri, on="equipePK") # realizando a junção das negociacoes realizadas no primeiro trimestre pelas equipes # com a tabela de dimensão cliente considerando como coluna de junção a coluna clientePK negDataTriEqCli = cliente.merge(negDataTriEq, on="clientePK") # fazendo a comparação solicitada, ou seja, região do cliente = região da filial # na qual a equipe está localizada negCompara = negDataTriEqCli.query("filialRegiaoSigla == clienteRegiaoSigla") # realizando os agrupamentos solicitados negComparaAgrupa = ( negCompara.groupby(["filialEstadoNome", "dataAno"])["receita"].sum().round(2) ) # exibindo a resposta sem adicionar semântica negComparaAgrupa.head(10) # transformando pd.Series em pd.DataFrame # ordenando a resposta negComparaAgrupaDf = negComparaAgrupa.to_frame().reset_index() negComparaAgrupaDf = negComparaAgrupaDf.sort_values( by=["receita", "filialEstadoNome", "dataAno"], ascending=False ) # renomeando as colunas negComparaAgrupaDf = negComparaAgrupaDf.rename( columns={ "filialEstadoNome": "ESTADO", "dataAno": "ANO", "receita": "TOTAL DE RECEITA", } ) # exibindo a resposta com semântica adicional negComparaAgrupaDf.head(10) # ## 2.7 Exercício 7 # Qual a média dos salários recebidos por nível do cargo e por sexo no ano de 2019? # restringindo as datas para o ano desejado data2019 = data.query("dataAno == 2019") # realizando a junção do ano de 2019 com a tabela de fatos pagamento # considerando como coluna de junção a coluna dataPK pag2019 = pagamento.merge(data2019, on="dataPK") # realizando a junção dos pagamentos do ano de 2019 com a tabela de dimensão # funcionario considerando como coluna de junção a coluna funcPK pag2019Func = pag2019.merge(funcionario, on="funcPK") # realizando a junção dos pagamentos dos funcionários do ano de 2019 # com a tabela de dimensão cargo considerando como coluna de junção # a coluna cargoPK pag2019FuncCargo = pag2019Func.merge(cargo, on="cargoPK") # realizando os agrupamentos solicitados pag2019FuncCargoAgrupado = ( pag2019FuncCargo.groupby(["cargoNivel", "funcSexo"])["salario"].mean().round(2) ) # exibindo a resposta no formato de tabela bidimensional pag2019FuncCargoAgrupado.head(10) # ## 2.8 Exercício 8 # Mostre uma visualização gráfica do resultado do Exercício 7, utilizando o método `unstack(level = 1)` e `pandas.DataFrame.plot.bar` com gráfico de barras normal. **Importante**: Comente o resultado exibido no gráfico. # exibindo a resposta usando o método pandas.DataFrame.plot.bar # visualizando os dados para analisar melhor as diferenças salariais pag2019FuncCargoAgrupado.unstack(level=1).plot(kind="bar") # Existe um balanceamento entre as médias dos salários dos funcionários dos sexos feminino e masculino apenas para o cargo JUNIOR. Para o cargo PLENO, a média dos salários das funcionárias é maior, enquanto que para o cargo SENIOR, a médida dos salários dos funcionários é maior. A partir desses resultados, pode-se analisar a Celeb Co. para verificar como permitir um balanceamento entre as médias dos salários dos cargos PLENO e SENIOR. # ## 2.9 Exercício 9 # Qual o custo/benefício das equipes quando analisado o primeiro semestre do ano de 2020? # primeira parte da consulta drill-across # investigando o custo das equipes (soma dos salários) # restringindo as datas para o semestre e o ano desejado data12020 = data.query("dataSemestre == 1 and dataAno == 2020") # realizando a junção do semestre 1 do ano de 2019 com a tabela de fatos # pagamento considerando como coluna de junção a coluna dataPK pag12020 = data12020.merge(pagamento, on="dataPK") # realizando os agrupamentos solicitados pag12020Eq = pag12020.groupby(["equipePK"])["salario"].sum().to_frame() # exibindo os dados obtidos para a primeira parte da consulta pag12020Eq.head(5) # segunda parte da consulta drill-across # investigando o benefício das equipes (soma das receitas) # restringindo as datas para o semestre e o ano desejado data12020 = data.query("dataSemestre == 1 and dataAno == 2020") # realizando a junção do semestre 1 do ano de 2019 com a tabela de fatos # negociacao considerando como coluna de junção a coluna dataPK neg12020 = data12020.merge(negociacao, on="dataPK") # realizando os agrupamentos solicitados neg12020Eq = neg12020.groupby(["equipePK"])["receita"].sum().to_frame() # exibindo os dados obtidos para a segunda parte da consulta neg12020Eq.head(5) # juntando os custos e os benefícios # realizando a junção dos dados obtidos para salário e receita # considerando como coluna de junção a coluna equipePK pagNeg = pag12020Eq.merge(neg12020Eq, on="equipePK") # copiando os valores para uma variável # para assim, poder calcular o custo/benefício pagNegCopia = pagNeg.copy() pagNegCopia["lucro"] = neg12020Eq["receita"] - pag12020Eq["salario"] # exibindo a resposta pagNegCopia.head(10) # tornando a consulta mais semântica respostaSemantica = equipe.merge(pagNegCopia, on="equipePK") respostaSemantica[ ["equipePK", "equipeNome", "filialNome", "salario", "salario", "lucro"] ] # ## 2.10 Exercício 10 # Compare a quantidade de negociações que cada uma das equipes realizou nos anos de 2018 e 2019. # primeira parte da operação drill-across # investigando a quantidade de negociações das equipes para 2018 # restringindo as datas para o ano desejado data2018 = data.query("dataAno == 2018") # realizando a junção do ano de 2018 com a tabela de fatos # negociacao considerando como coluna de junção a coluna dataPK neg2018 = negociacao.merge(data2018, on="dataPK") # realizando os agrupamentos solicitados e exibindo o resultado neg2018Agrupa = neg2018.groupby(["equipePK"])["quantidadeNegociacoes"].sum().to_frame() neg2018Agrupa.head(5) # segunda parte da operação drill-across # investigando a quantidade de negociações das equipes para 2019 # restringindo as datas para o ano desejado data2019 = data.query("dataAno == 2019") # realizando a junção do ano de 2018 com a tabela de fatos # negociacao considerando como coluna de junção a coluna dataPK neg2019 = negociacao.merge(data2019, on="dataPK") # realizando os agrupamentos solicitados e exibindo o resultado neg2019Agrupa = neg2019.groupby(["equipePK"])["quantidadeNegociacoes"].sum().to_frame() neg2019Agrupa.head(5) # realizando a operação drill-accross neg20182019 = neg2018Agrupa.merge( neg2019Agrupa, on="equipePK", suffixes=("_2018", "_2019") ) neg20182019.head(5) # tornando a consulta mais semântica respostaSemantica = equipe.merge(neg20182019, on="equipePK") respostaSemantica[ [ "equipeNome", "filialNome", "quantidadeNegociacoes_2018", "quantidadeNegociacoes_2019", ] ]
import numpy as np, sys, os import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from scipy.io import loadmat import wfdb import tarfile # import wget from sklearn.preprocessing import MultiLabelBinarizer from sklearn.model_selection import StratifiedKFold from keras.preprocessing.sequence import pad_sequences import math import warnings import os def load_challenge_data(filename): x = loadmat(filename) data = np.asarray(x["val"], dtype=np.float64) new_file = filename.replace(".mat", ".hea") input_header_file = os.path.join(new_file) with open(input_header_file, "r") as f: header_data = f.readlines() return data, header_data def fxn(): warnings.warn("deprecated", DeprecationWarning) with warnings.catch_warnings(): warnings.simplefilter("ignore") fxn() ecg = load_challenge_data( "../input/georgia-12lead-ecg-challenge-database/WFDB/E00001.mat" ) # train a generative adversarial network on a one-dimensional function from numpy import hstack from numpy import zeros from numpy import ones from numpy.random import rand from numpy.random import randn from keras.models import Sequential from keras.layers import Dense from matplotlib import pyplot # define the standalone discriminator model def define_discriminator(n_inputs=2): model = Sequential() model.add( Dense( 25, activation="relu", kernel_initializer="he_uniform", input_dim=n_inputs ) ) model.add(Dense(1, activation="sigmoid")) # compile model model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"]) return model # define the standalone generator model def define_generator(latent_dim, n_outputs=2): model = Sequential() model.add( Dense( 15, activation="relu", kernel_initializer="he_uniform", input_dim=latent_dim ) ) model.add(Dense(n_outputs, activation="linear")) return model # define the combined generator and discriminator model, for updating the generator def define_gan(generator, discriminator): # make weights in the discriminator not trainable discriminator.trainable = False # connect them model = Sequential() # add generator model.add(generator) # add the discriminator model.add(discriminator) # compile model model.compile(loss="binary_crossentropy", optimizer="adam") return model # generate n real samples with class labels def generate_real_samples(ecgsignal, n): # generate inputs in [-0.5, 0.5] x_axis = np.arange(ecgsignal.shape[0]) x_samp = np.random.choice(x_axis, n) y_samp = ecgsignal[x_samp] X = hstack((np.expand_dims(x_samp, 1), np.expand_dims(y_samp, 1))) # generate class labels y = ones((n, 1)) return X, y # generate points in latent space as input for the generator def generate_latent_points(latent_dim, n): # generate points in the latent space x_input = randn(latent_dim * n) # reshape into a batch of inputs for the network x_input = x_input.reshape(n, latent_dim) return x_input # use the generator to generate n fake examples, with class labels def generate_fake_samples(generator, latent_dim, n): # generate points in latent space x_input = generate_latent_points(latent_dim, n) # predict outputs X = generator.predict(x_input) # create class labels y = zeros((n, 1)) return X, y # evaluate the discriminator and plot real and fake points def summarize_performance( epoch, generator, discriminator, latent_dim, ecgsignal, n=100 ): # prepare real samples x_real, y_real = generate_real_samples(ecgsignal, n) # evaluate discriminator on real examples _, acc_real = discriminator.evaluate(x_real, y_real, verbose=0) # prepare fake examples x_fake, y_fake = generate_fake_samples(generator, latent_dim, n) # evaluate discriminator on fake examples _, acc_fake = discriminator.evaluate(x_fake, y_fake, verbose=0) # summarize discriminator performance print(epoch, acc_real, acc_fake) # scatter plot real and fake data points pyplot.scatter(x_real[:, 0], x_real[:, 1], color="red") pyplot.scatter(x_fake[:, 0], x_fake[:, 1], color="blue") pyplot.show() # train the generator and discriminator def train( g_model, d_model, gan_model, latent_dim, ecg_sig, n_epochs=5000, n_batch=128, n_eval=100, ): # determine half the size of one batch, for updating the discriminator half_batch = int(n_batch / 2) # manually enumerate epochs for i in range(n_epochs): # prepare real samples x_real, y_real = generate_real_samples(ecg_sig, half_batch) # prepare fake examples x_fake, y_fake = generate_fake_samples(g_model, latent_dim, half_batch) # update discriminator d_model.train_on_batch(x_real, y_real) d_model.train_on_batch(x_fake, y_fake) # prepare points in latent space as input for the generator x_gan = generate_latent_points(latent_dim, n_batch) # create inverted labels for the fake samples y_gan = ones((n_batch, 1)) # update the generator via the discriminator's error gan_model.train_on_batch(x_gan, y_gan) # evaluate the model every n_eval epochs if (i + 1) % n_eval == 0: summarize_performance(i, g_model, d_model, latent_dim, ecg_sig) # size of the latent space latent_dim = 100 # create the discriminator discriminator = define_discriminator() # create the generator generator = define_generator(latent_dim) # create the gan gan_model = define_gan(generator, discriminator) # train model train( generator, discriminator, gan_model, latent_dim, ecg[0][1] / 1000, n_epochs=1000, n_batch=10, n_eval=100, )
import numpy as np np.random.seed(42) m = 100 X = 2 * np.random.rand(m, 1) y = 4 + 3 * X + np.random.randn(m, 1) import matplotlib.pyplot as plt plt.figure(figsize=(6, 4)) plt.plot(X, y, "b.") plt.xlabel("$x_1$") plt.ylabel("$y$", rotation=0) plt.axis([0, 2, 0, 15]) plt.grid() plt.show() X.shape y.shape from sklearn.preprocessing import add_dummy_feature X_b = add_dummy_feature(X) theta_best = np.linalg.inv(X_b.T @ X_b) @ X_b.T @ y theta_best from sklearn.linear_model import LinearRegression lin_reg = LinearRegression() lin_reg.fit(X, y) lin_reg.intercept_, lin_reg.coef_
# # GÖRÜNTÜ İŞLEME TEMELLERİ # # Resim Görüntüleme import matplotlib.pyplot as plt import matplotlib.image as img testImage = img.imread("/kaggle/input/ozalimage/ben.JPG") # displaying the image print(testImage.shape) plt.imshow(testImage) # # **Bazı görüntü işlemleri uygulayalım** from matplotlib import pyplot as plt import numpy as np def show_image(image, title="Image", cmap_type="gray"): image = image[300:1200, 1300:2600, :] # image=image[:,:,:] -128; #(np.rint(np.dot(-0.5,image))).astype(int) plt.imshow(image, cmap=cmap_type) plt.title(title) plt.axis("off") plt.show() print(image.shape) # print(image[1:5,0:500:,0]) plt.subplot(1, 4, 1) plt.imshow(image, cmap="gray") plt.axis("off") plt.title("Original") # R level to gray plt.subplot(1, 4, 2) plt.imshow(image[:, :, 0], cmap="gray") plt.axis("off") plt.title("R to gray") # G leval to gray plt.subplot(1, 4, 3) plt.imshow(image[:, :, 1], cmap="gray") plt.axis("off") plt.title("G to gray") # B leval to gray plt.subplot(1, 4, 4) plt.imshow(image[:, :, 2], cmap="gray") plt.axis("off") plt.title("B to gray") leaf_image = img.imread("/kaggle/input/ozalimage/ben.JPG") show_image(leaf_image, "Original Image") # # Grayscale Image from skimage import color def show_image(image, title, cmap_type="gray"): plt.imshow(image, cmap=cmap_type) plt.title(title) plt.axis("off") plt.show() ozal_image = img.imread("/kaggle/input/ozalimage/ben.JPG") ozal_gray = color.rgb2gray(ozal_image) show_image(ozal_image, "orjinal") show_image(ozal_gray, "Gri Tonlama") # # Görüntü üzerinde filtreleme işlemleri CV import cv2 import numpy as np import matplotlib.pyplot as plt import matplotlib.image as img ozal_image = img.imread("/kaggle/input/ozalimage/ben.JPG") image = color.rgb2gray(ozal_image) fig, ax = plt.subplots(1, figsize=(12, 8)) plt.imshow(image, cmap="gray") kernel = np.ones((3, 3), np.float32) / 16 img = cv2.filter2D(image, -1, kernel) fig, ax = plt.subplots(1, 2, figsize=(10, 6)) ax[0].imshow(image, cmap="gray") ax[1].imshow(img, cmap="gray") import cv2 import numpy as np import matplotlib.pyplot as plt image = cv2.imread("/kaggle/input/ozalimage/ben.JPG") image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) kernel = np.array([[3, 10, 3], [0, 0, 0], [-3, -10, -3]]) kernel2 = np.array([[2, 0, -2], [1, 0.03, -5], [2, 0, -2]]) img = cv2.filter2D(image, -1, kernel) img2 = cv2.filter2D(image, -1, kernel2) fig, ax = plt.subplots(1, 2, figsize=(10, 6)) ax[0].imshow(img) ax[1].imshow(img2) # # Görüntü Histogramı red = ozal_image[:, :, 0] # using the red channel of the rocket image. plt.hist( red.ravel(), bins=256 ) # plot its histogram with 256 bins, the number of possible values of a pixel. plt.title("Kırmızı Kanal Histogramı") plt.show # Piksel değerlerine ait frekanslar 25 ile 250 arasındadır. Genel olarak kırmızı pikseller 100 ile 175 aralığında yoğundur. # # Eşikdeğer algoritmasının uygulanması import cv2 ozal_img = cv2.imread("/kaggle/input/ozalimage/ben.JPG") grayimg = cv2.cvtColor(ozal_img, cv2.COLOR_BGR2GRAY) # **Grayscale Image** plt.imshow( grayimg, cmap="gray" ) # cmap has been used as matplotlib uses some default colormap to plot grayscale images plt.xticks([]) # To get rid of the x-ticks and y-ticks on the image axis plt.yticks([]) print("New Image Shape", grayimg.shape) # Finding optimal threshold from skimage.filters import threshold_otsu thresh_val = threshold_otsu(grayimg) print("The optimal seperation value is", thresh_val) thresh = 120 # set a random thresh value binary_high = grayimg > thresh_val binary_low = grayimg <= thresh_val show_image(binary_high, "Tresholded high values") show_image(binary_low, "Tresholded low values") # **Trying All Thresholded Values** from skimage.filters import try_all_threshold fig, ax = try_all_threshold(grayimg, verbose=False) # **We see that Iso data , Mean and Otsu , dives better results than the others so let us look at Otsu Thresholding** from skimage.filters import threshold_otsu thresh = threshold_otsu(grayimg) text_binary_otsu = grayimg > thresh show_image(text_binary_otsu, "Otsu algorithm") # # Applying Edge Detection Techniques on The Image def plot_comparison(original, filtered, title_filtered): fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(8, 6), sharex=True, sharey=True) ax1.imshow(original, cmap=plt.cm.gray) ax1.set_title("original") ax1.axis("off") ax2.imshow(filtered, cmap=plt.cm.gray) ax2.set_title(title_filtered) ax2.axis("off") # **Sobel Operator** from skimage.filters import sobel edge_image = sobel(grayimg) # apply the filter plot_comparison(grayimg, edge_image, "Edge image") # **We Can Now safely say , Sobel Operator , doesn't work on the image** # # Let Us Look at the Smoothening Features from skimage.filters import gaussian smooth_ozal_image = gaussian( ozal_img, multichannel=True ) # you have to specify the multichannel plot_comparison(ozal_img, smooth_ozal_image, "Smooth leaf") # # Contrast Enhancement Techniques from skimage import exposure equalized_ozal_image = exposure.equalize_hist(ozal_img) plot_comparison(ozal_img, equalized_ozal_image, "Histogram equalization") # **Note the leaves become more prominent by Histogram Equalization Techniques** # **ADAPTIVE HISTOGRAM EQUALISATION** from skimage import exposure adapthits_leag_image = exposure.equalize_adapthist(leaf_img) plot_comparison(leaf_img, adapthits_leag_image, "Adaptive Histogram equalization") # It seems to have a better representation of the image # # Now Let Us Finally Look at the Contour Methods def show_image_contour(image, contours): plt.figure() for n, contour in enumerate(contours): plt.plot(contour[:, 1], contour[:, 0], linewidth=3) plt.imshow(image, interpolation="nearest", cmap="gray_r") plt.title("Contours") plt.axis("off") plt.show() from skimage import measure contours_gray_image = measure.find_contours(grayimg, 0.8) show_image_contour(grayimg, contours_gray_image) # # Edge Detection from skimage.feature import canny canny_leaf_image = canny(grayimg) show_image(canny_leaf_image) # **Interestingly it shows The Focused Leaf Properly** # # **Specific Objectives** # The main objective of the competition is to develop machine learning-based models to accurately classify a given leaf image from the test dataset to a particular disease category, and to identify an individual disease from multiple disease symptoms on a single leaf image. # # **Resources** # I thank Kaggle for providing the dataset and [Data](http://https://bsapubs.onlinelibrary.wiley.com/doi/10.1002/aps3.11390) # without whom this wouldn't have been Possible. # Also I would like to thank [Ankur Singh](http://https://www.kaggle.com/ankursingh12/resized-plant2021) for this amazing dataset as without it , it would have taken hours and hours to train the below mentioned model. # # Import the necessary libraries import pandas as pd import numpy as np import tensorflow as tf import tensorflow.keras as keras import PIL import cv2 import matplotlib.pyplot as plt import seaborn as sns import os import random from tqdm import tqdm import tensorflow_addons as tfa import random from sklearn.preprocessing import MultiLabelBinarizer import tensorflow as tf import matplotlib.pyplot as plt import seaborn as sns import keras from keras.preprocessing import image from keras.models import Sequential from tensorflow.keras.preprocessing.image import ( ImageDataGenerator, load_img, img_to_array, smart_resize, ) from keras.layers import Dense, Dropout, Flatten, BatchNormalization, Activation from keras.constraints import maxnorm from keras.layers.convolutional import Conv2D, MaxPooling2D from tensorflow.keras.optimizers import Adam import cv2 from PIL import Image from keras.preprocessing.image import load_img, img_to_array from keras.models import load_model from keras.metrics import AUC pd.set_option("display.max_columns", None) # # **Let's Now Have a look at the Dataset and Study it better** # I would like to thank [Praveen](http://https://www.kaggle.com/praveengovi/plant-pathology-detail-eda-pytorch) for this amazing EDA and analysis and also [Arnab](http://https://www.kaggle.com/arnabs007/apple-leaf-diseases-with-inceptionresnetv2-keras) from whom I have taken reference from . I have implemented various EDA and studied from their models and approached it with Transfer Learning Model of ResNet 50v2 base. # train_dir = "../input/plant-pathology-2021-fgvc8/train_images" test_dir = "../input/plant-pathology-2021-fgvc8/test_images" train = pd.read_csv("../input/plant-pathology-2021-fgvc8/train.csv") # print(len(train)) # print(train.columns) # print(train['labels'].value_counts()) # print(train['labels'].value_counts().plot.bar()) # # Let's Study the dataset in a better way and try to find some interesting stuff!!! train.head # **We get to know that we have "many" images with mostly 12 types of labels (but there is a twist) which we will comeback to later.** # Let's look at the number of images for various of 12 categories present train["labels"].value_counts() plt.figure(figsize=(20, 12)) labels = sns.barplot(train.labels.value_counts().index, train.labels.value_counts()) for item in labels.get_xticklabels(): item.set_rotation(45) # **Note** # Notice that there is a huge imbalance in dataset with "scab" having the highest number of frequency and "powdery_mildew complex" , the least # # Important Observation # **Look at the labels, doesn't it strike you ??** # **Some of the labels are mixture of one or more types !!! And thus the problem becomes Multilabel Problem** # So there are not 12 labels, its actually just 6 labels. # 5 diseases: # 1. rust # 2. scab # 3. complex # 4. frog eye leaf spot # 5. powdery mildew # and another label is # 6. healthy (healthy leaves) # Now the most important thing is, as one image can have multiple diseases, that means this problem is **Multi label classification** problem. Many get confused betweeen multilabel and multiclass classification. if you are new to multilabel classification I would suggest going over this [An introduction to MultiLabel classification](https://www.geeksforgeeks.org/an-introduction-to-multilabel-classification/) . # So now we gotta process the labels. And then lets find out the actual frequencies of the labels. # We divide it based on " " or space character , in order to get the labels for each of the image train["labels"] = train["labels"].apply(lambda string: string.split(" ")) train # Converting the labels representation into **one hot encoded format** using MultilabelBinarizer from Scikit learn. Now we can see and plot the frequencies of each label. s = list(train["labels"]) mlb = MultiLabelBinarizer() trainx = pd.DataFrame(mlb.fit_transform(s), columns=mlb.classes_, index=train.index) print(trainx.columns) # These are the 6 different labels print(trainx.sum()) labels = list(trainx.sum().keys()) # print(labels) label_counts = trainx.sum().values.tolist() fig, ax = plt.subplots(1, 1, figsize=(20, 6)) sns.barplot(x=labels, y=label_counts, ax=ax) # **NOW WE CAN SEE THE DATASET BECOMES MORE OR LESS BALANCED , AT LEAST BETTER THAN WHAT IT WAS PREVIOUSLY!** # # Let's See the Plant Pathology Images labels = pd.concat([train["image"], trainx], axis=1) labels.head() fig1 = plt.figure(figsize=(20, 10)) for i in range(1, 10): rand = random.randrange(1, 18000) sample = os.path.join( "../input/plant-pathology-2021-fgvc8/train_images/", train["image"][rand] ) img = PIL.Image.open(sample) ax = fig1.add_subplot(4, 3, i) ax.imshow(img) title = f"{train['labels'][rand]}{img.size}" plt.title(title) fig1.tight_layout() # # Imaze Size & Processing # from the titles we can see some random image sizes - (4000, 2672). Larger images are harder to process hence takes much longer to train the CNN. Downsampling all these 18632 images is also a time consuming task. This is I am going to use the resized imaged for this dataset [resized-plant2021](https://www.kaggle.com/ankursingh12/resized-plant2021) by Ankur Singh. He has already downsampled the images into size of 256, 384, 512 & 640px. # Now for Pre Processing I take help of the [Keras Image Data Generator](http://https://keras.io/api/preprocessing/image/). We transform it to size of (256,256,3) . datagen = keras.preprocessing.image.ImageDataGenerator( rescale=1 / 255.0, preprocessing_function=None, data_format=None, ) train_data = datagen.flow_from_dataframe( train, directory="../input/resized-plant2021/img_sz_512", x_col="image", y_col="labels", color_mode="rgb", target_size=(256, 256), class_mode="categorical", batch_size=32, shuffle=False, seed=40, )
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import os import pandas as pd import numpy as np import tensorflow as tf from tensorflow.keras import layers, models import matplotlib.pyplot as plt import seaborn as sns import json import pathlib from PIL import Image from sklearn.model_selection import train_test_split from keras.preprocessing.image import ( ImageDataGenerator, array_to_img, img_to_array, load_img, ) input_dir = "/kaggle/input/cassava-leaf-disease-classification" os.listdir(input_dir) # classification labels file_path = input_dir + "/label_num_to_disease_map.json" with open(file_path, "r") as fp: json_data = json.load(fp) class_name = list(json_data.values()) print(json_data) # list print(class_name) # list # train_data labels train = pd.read_csv(input_dir + "/train.csv") print(train.head(5)) #### test sample train = train.head(1000) # sample image and label sample_image = train.sample(1) ind = int(sample_image.index.values) sample_id = sample_image.loc[ind, "image_id"] sample_label = sample_image.loc[ind, "label"] image = plt.imread(input_dir + "/train_images/" + sample_id) plt.imshow(image) plt.xlabel(class_name[sample_label]) plt.show() # show some sample images and labels plt.figure(figsize=(9, 9)) for i in range(9): plt.subplot(3, 3, i + 1) image = plt.imread(input_dir + "/train_images/" + train.loc[i, "image_id"]) plt.imshow(image) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.xlabel(class_name[train.loc[i, "label"]]) plt.show() # simple eda show statistics characters sns.countplot(x="label", data=train) plt.show() # # **data processing** # method 01: numpy array -> dataframe FAIL # 将image转换会np.array形式 # 一个sample的array image = tf.keras.preprocessing.image.load_img(input_dir + "/train_images/" + sample_id) input_arr = tf.keras.preprocessing.image.img_to_array(image) print(input_arr.shape) ###### the data size is too large, thus oom, sample!!! train = train.head(1000) # later train=train.sample(2000) img_list = [] label_list = [] for m, n in zip(train.image_id, train.label): # id = m, label = n image = tf.keras.preprocessing.image.load_img(input_dir + "/train_images/" + m) input_arr = tf.keras.preprocessing.image.img_to_array(image) # img_list.append(np.array([input_arr])) img_list.append(input_arr) label_list.append(n) # process data into df df = pd.concat([pd.Series(img_list), pd.Series(label_list)], axis=1) df.columns = ["img_data", "label"] df.head(1) X = df["img_data"] y = df["label"].astype("str") ## preprocessing resize&rescale X = np.stack(X / 255.0) # normalize X = X.reshape(-1, 600, 800, 1) ### validation split X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.1, random_state=42) ###### ImageDataGenerator:Generate batches of tensor image data with real-time data augmentation. from keras.preprocessing.image import ( ImageDataGenerator, array_to_img, img_to_array, load_img, ) datagen = ImageDataGenerator( featurewise_center=False, # set input mean to 0 over the dataset samplewise_center=False, # Set each sample mean to 0 featurewise_std_normalization=False, # Divide inputs by std of the dataset, feature-wise samplewise_std_normalization=False, # Divide each input by its std zca_whitening=False, # Apply ZCA whitening rotation_range=0, # Degree range for random rotations zoom_range=0, # Range for random zoom width_shift_range=0.05, # randomly shift images horizontally (fraction of total width) height_shift_range=0.05, # randomly shift images vertically (fraction of total height) horizontal_flip=False, # Randomly flip inputs horizontally vertical_flip=False, # Randomly flip inputs vertically ) datagen.fit(X_train) # # # **##############################################** # **method 02: tensorflow frame success** BATCH_SIZE = 16 STEPS_PER_EPOCH = len(train) * 0.8 / BATCH_SIZE VALIDATION_STEPS = len(train) * 0.2 / BATCH_SIZE EPOCHS = 10 # 10 TARGET_SIZE = 224 train.dtypes train.label = train.label.astype("str") train_generator = ImageDataGenerator( validation_split=0.2, preprocessing_function=None, zoom_range=0.2, cval=0.2, horizontal_flip=True, vertical_flip=True, fill_mode="nearest", shear_range=0.2, height_shift_range=0.2, width_shift_range=0.2, ).flow_from_dataframe( train, directory=os.path.join(input_dir, "train_images"), subset="training", x_col="image_id", y_col="label", target_size=(TARGET_SIZE, TARGET_SIZE), batch_size=BATCH_SIZE, class_mode="sparse", ) validation_generator = ImageDataGenerator(validation_split=0.2).flow_from_dataframe( train, directory=os.path.join(input_dir, "train_images"), subset="validation", x_col="image_id", y_col="label", target_size=(TARGET_SIZE, TARGET_SIZE), batch_size=BATCH_SIZE, class_mode="sparse", ) # # model # model.fit(datagen.flow(x_train,y_train,batch_size=32),steps_per_epoch=len(x_train)/32, epochs=epochs) ##### efficientnetb0 efn = tf.keras.applications.EfficientNetB0( input_shape=(TARGET_SIZE, TARGET_SIZE, 3), include_top=False, weights="imagenet" ) efn_model = tf.keras.Sequential( [ efn, tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(len(class_name), activation="softmax"), ] ) efn_model.compile( optimizer=tf.keras.optimizers.Adam(), loss="sparse_categorical_crossentropy", metrics=["accuracy"], ) early_stop = tf.keras.callbacks.EarlyStopping( monitor="val_loss", min_delta=0.001, patience=5, mode="min", verbose=1, restore_best_weights=True, ) # efn_history = efn_model.fit(datagen.flow(X_train,y_train,batch_size=32),steps_per_epoch=len(X_train)/32, epochs=epochs, validation_data = (X_val,y_val)) efn_history = efn_model.fit( train_generator, batch_size=32, epochs=EPOCHS, validation_data=validation_generator, callbacks=[early_stop], ) train_acc = efn_history.history["accuracy"] val_acc = efn_history.history["val_accuracy"] print(train_acc) print(val_acc) ##### mobile_net mobile_net = tf.keras.applications.MobileNetV2( input_shape=(TARGET_SIZE, TARGET_SIZE, 3), include_top=False, weights="imagenet" ) # mobile_net.trainable = False mon_model = tf.keras.Sequential( [ mobile_net, tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(len(class_name), activation="softmax"), ] ) mon_model.compile( optimizer=tf.keras.optimizers.Adam(), loss="sparse_categorical_crossentropy", metrics=["accuracy"], ) early_stop = tf.keras.callbacks.EarlyStopping( monitor="val_loss", min_delta=0.001, patience=5, mode="min", verbose=1, restore_best_weights=True, ) # mon_history = mon_model.fit(datagen.flow(X_train,y_train,batch_size=32),steps_per_epoch=len(X_train)/32, epochs=epochs, validation_data = (X_val,y_val)) mon_history = mon_model.fit( train_generator, batch_size=32, epochs=EPOCHS, validation_data=validation_generator, callbacks=[early_stop], ) train_acc = mon_history.history["accuracy"] val_acc = mon_history.history["val_accuracy"] print(train_acc) print(val_acc) ### cnn model = models.Sequential() model.add(layers.Conv2D(32, (3, 3), activation="relu", input_shape=(600, 800, 3))) ## model.add(layers.Conv2D(filters = 32, kernel_size = (5,5), padding = 'same',activation='relu')) model.add(layers.MaxPooling2D((2, 2))) ## model.add(Dropout(0.1)) model.add(layers.Conv2D(64, (3, 3), activation="relu")) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Flatten()) model.add(layers.Dense(64, activation="relu")) model.add(layers.Dense(class_name)) model.complie( optimizer="adam", loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=["accuracy"], ) history = model.fit(x_train, y_train, epochs=10, validation_data=(x_val, y_val)) base_learning_rate = 0.0001 model.compile( loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), optimizer=tf.keras.optimizers.RMSprop(lr=base_learning_rate / 10), metrics=["accuracy"], ) ##修改了optimizer ### early stop early_stop = EarlyStopping( monitor="val_loss", min_delta=0.001, patience=5, mode="min", verbose=1, restore_best_weights=True, ) # Set a learning rate annealer learning_rate_reduction = ReduceLROnPlateau( monitor="val_acc", patience=1, verbose=1, factor=0.5, min_lr=0.0001 ) # Fit the model history = model.fit_generator( datagen.flow(X_train, y_train, batch_size=batch_size), epochs=epochs, validation_data=(X_val, y_val), verbose=2, steps_per_epoch=X_train.shape[0] // batch_size, callbacks=[learning_rate_reduction], ) ##### visualize result model.fit( datagen.flow(x_train, y_train, batch_size=32), steps_per_epoch=len(x_train) / 32, epochs=epochs, ) # 将image转换会np.array形式 方法01 sample_image = train.sample(1) ind = int(sample_image.index.values) sample_id = sample_image.loc[ind, "image_id"] sample_label = sample_image.loc[ind, "label"] image = Image.open(input_dir + "/train_images/" + sample_id) print((np.array(image)).shape) # normalize x = image / 255.0 # reshape x = x.reshape(64, 64, 3) # 将image转换会np.array形式 方法02 image = tf.keras.preprocessing.image.load_img(input_dir + "/train_images/" + sample_id) input_arr = tf.keras.preprocessing.image.img_to_array(image) print(input_arr.shape) # validation split batch_size = 32 img_height = 180 img_width = 180 train_ds = tf.keras.preprocessing.image_dataset_from_directory( data_path, validation_split=0.2, subset="training", seed=123, image_size=(img_height, img_width), batch_size=batch_size, ) val_ds = tf.keras.preprocessing.image_dataset_from_directory( data_path, validation_split=0.2, subset="validation", seed=123, image_size=(img_height, img_width), batch_size=batch_size, ) ### 或者把image全转成array,变成dataframe,然后train_test_split ### 或者 ImageDataGenerator(rescale,validation_split).flow_from_directory(source),再zip打包x,y import pathlib data_dir = pathlib.Path(input_dir + "/train_images") # 其实就是path # 遍历所有文件的路径 # for i in data_dir.iterdir(): # print(i) # train_ds = tf.keras.preprocessing.image_dataset_from_directory() from keras.preprocessing.image import ( ImageDataGenerator, array_to_img, img_to_array, load_img, ) ###### ImageDataGenerator:Generate batches of tensor image data with real-time data augmentation. # datagen = ImageDataGenerator(rotation_range=44,rescale=1./255,wid_shift_range=0.4,height_shift_range=0.8, # shear_range=0.7,zoom_range=0.3,horizontal_flip=True,vertical_flip=True, # fill_mode='nearest') datagen = ImageDataGenerator( featurewise_center=False, # set input mean to 0 over the dataset samplewie_center=False, # Set each sample mean to 0 featurewise_std_normalization=False, # Divide inputs by std of the dataset, feature-wise samplewise_std_normalization=False, # Divide each input by its std zca_whitening=False, # Apply ZCA whitening rotation_range=0, # Degree range for random rotations zoom_range=0, # Range for random zoom width_shift_range=0.05, # randomly shift images horizontally (fraction of total width) height_shift_range=0.05, # randomly shift images vertically (fraction of total height) horizontal_flip=False, # Randomly flip inputs horizontally vertical_flip=False, # Randomly flip inputs vertically ) # compute quantities required for featurewise normalization datagen.fit(x_train) model.fit( datagen.flow(x_train, y_train, batch_size=32), steps_per_epoch=len(x_train) / 32, epochs=epochs, ) ## ## preprocessing reshape,rescale # model = models.Sequential() # model.add(layers.Conv2D(32,(3,3),activation='relu',input_shape(32,32,3))) img_size = 100 resize_and_rescale = tf.keras.Sequential( [ layers.experimental.preprocessing.Resizing(img_size, img_size), # reshape layers.experimental.preprocessing.Rescaling(1.0 / 255), # rescale pixel values ] ) sample = resize_and_rescale(sample_image) image = plt.imread(input_dir + "/train_images/" + sample_id) plt.imshow(image) plt.xlabel(class_name[sample_label]) plt.show() ### data augmentation data_augmentation = tf.keras.Sequential( layers.experimental.preprocessing.RamdomFlip("horizontal_and_vertical"), layers.experimental.preprocessing.RandomRotation(0.2), )
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) df = pd.read_csv("/kaggle/input/eeg-data-2/Scalogram_Data (5).csv") df df = df.iloc[:, 1:] df df = df.sample(frac=1).reset_index(drop=True) df X_train = df.iloc[:10000, :-5] X_test = df.iloc[10000:, :-5] Y_train = df.iloc[:10000, -5:] Y_test = df.iloc[10000:, -5:] import matplotlib.pyplot as plt import matplotlib.image as mpimg import seaborn as sns np.random.seed(2) from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix import itertools from keras.utils.np_utils import to_categorical # convert to one-hot-encoding from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D, BatchNormalization from keras.optimizers import RMSprop from keras.preprocessing.image import ImageDataGenerator from keras.callbacks import ReduceLROnPlateau sns.set(style="white", context="notebook", palette="deep") g = sns.countplot(Y_train) # Normalize the data X_train = X_train / 255.0 X_test = X_test / 255.0 X_train import tensorflow as tf # Reshape image in 3 dimensions (height = 32px, width = 32px , canal = 1) X_train_values = tf.reshape(X_train.values, [-1, 32, 32, 1]) X_test_values = tf.reshape(X_test.values, [-1, 32, 32, 1]) Y_train = np.array(Y_train) Y_test = np.array(Y_test) X_train = np.array(X_train_values) X_test = np.array(X_test_values) # Set the random seed random_seed = 2 # Split the train and the validation set for the fitting X_train1, X_val, Y_train1, Y_val = train_test_split( X_train, Y_train, test_size=0.2, random_state=random_seed ) from keras.layers import LeakyReLU # Set the CNN model # my CNN architechture is In -> [[Conv2D->relu]*1 -> MaxPool2D -> [Conv2D->relu]*1 -> MaxPool2D -> Flatten -> Dense -> Out model = Sequential() model.add( Conv2D( filters=16, kernel_size=(5, 5), padding="Same", activation="relu", input_shape=(32, 32, 1), ) ) model.add(BatchNormalization()) # model.add(Conv2D(filters = 16, kernel_size = (7,7),padding = 'Same', activation ='relu')) model.add(MaxPool2D(pool_size=(2, 2), strides=(2, 2))) # model.add(Dropout(0.25)) # model.add(Conv2D(filters = 32, kernel_size = (5,5),padding = 'Same', activation ='relu')) # model.add(BatchNormalization()) # model.add(Conv2D(filters = 32, kernel_size = (5,5),padding = 'Same', activation ='relu')) # model.add(MaxPool2D(pool_size=(2,2), strides=(2,2))) # model.add(Dropout(0.25)) model.add(Conv2D(filters=64, kernel_size=(3, 3), padding="Same", activation="relu")) model.add(BatchNormalization()) # model.add(Conv2D(filters = 64, kernel_size = (3,3),padding = 'Same', activation ='relu')) model.add(MaxPool2D(pool_size=(2, 2), strides=(2, 2))) # model.add(Dropout(0.25)) model.add(Flatten()) # model.add(Dense(1024)) # model.add(LeakyReLU(alpha=0.01)) model.add(Dense(256, activation="relu")) # model.add(LeakyReLU(alpha=0.01)) model.add(Dense(5, activation="softmax")) from keras.optimizers import Adadelta # Define the optimizer optimizer = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0) # Set a learning rate annealer learning_rate_reduction = ReduceLROnPlateau( monitor="val_acc", patience=3, verbose=1, factor=0.5, min_lr=0.00001 ) # Set epochs and batch_size epochs = 100 batch_size = 256 # Compile the model model.compile( optimizer=optimizer, loss="categorical_crossentropy", metrics=["accuracy"] ) # Fit the model history = model.fit( X_train1, Y_train1, batch_size=batch_size, epochs=epochs, validation_data=(X_val, Y_val), verbose=2, callbacks=[learning_rate_reduction], ) # ### Function to plot Loss and Accuracy Vs Epochs import matplotlib.pyplot as plt def plot_history(history): loss_list = [s for s in history.history.keys() if "loss" in s and "val" not in s] val_loss_list = [s for s in history.history.keys() if "loss" in s and "val" in s] acc_list = [s for s in history.history.keys() if "acc" in s and "val" not in s] val_acc_list = [s for s in history.history.keys() if "acc" in s and "val" in s] if len(loss_list) == 0: print("Loss is missing in history") return ## As loss always exists epochs = range(1, len(history.history[loss_list[0]]) + 1) ## Loss plt.figure(1) for l in loss_list: plt.plot( epochs, history.history[l], "b", label="Training loss (" + str(str(format(history.history[l][-1], ".5f")) + ")"), ) for l in val_loss_list: plt.plot( epochs, history.history[l], "g", label="Validation loss (" + str(str(format(history.history[l][-1], ".5f")) + ")"), ) plt.title("Loss") plt.xlabel("Epochs") plt.ylabel("Loss") plt.legend() ## Accuracy plt.figure(2) for l in acc_list: plt.plot( epochs, history.history[l], "b", label="Training accuracy (" + str(format(history.history[l][-1], ".5f")) + ")", ) for l in val_acc_list: plt.plot( epochs, history.history[l], "g", label="Validation accuracy (" + str(format(history.history[l][-1], ".5f")) + ")", ) plt.title("Accuracy") plt.xlabel("Epochs") plt.ylabel("Accuracy") plt.legend() plt.show() plot_history(history) from sklearn import metrics actual = np.argmax(Y_test, axis=1) predicted = np.argmax(model.predict(X_test), axis=1) confusion_matrix = metrics.confusion_matrix(actual, predicted) cm_display = metrics.ConfusionMatrixDisplay( confusion_matrix=confusion_matrix, display_labels=["A", "B", "C", "D", "E"] ) cm_display.plot() plt.show() from sklearn.metrics import accuracy_score, recall_score, f1_score print("Accuracy = ", accuracy_score(actual, predicted)) print("Recall = ", recall_score(actual, predicted, average=None)) print("F1_Score = ", f1_score(actual, predicted, average=None))
# # Import Dependencies import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px import plotly.figure_factory as ff from sklearn.model_selection import train_test_split from sklearn.feature_selection import chi2 import missingno as msno from sklearn.preprocessing import normalize from sklearn.impute import SimpleImputer from sklearn.preprocessing import LabelEncoder from sklearn.feature_selection import f_classif from scipy.stats import kendalltau from sklearn.metrics import classification_report from sklearn.pipeline import Pipeline import lightgbm as lgb from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler, LabelEncoder # # Load Data train_path = "/kaggle/input/nebulanet/train.csv" test_path = "/kaggle/input/nebulanet/test.csv" train_df = pd.read_csv(train_path) test_df = pd.read_csv(test_path) # # Helper Functions def radius_based_feature(x): if x <= 0.015: return "Pearl Dwarfs" elif x <= 0.132: return "Umber Dwarfs" elif x <= 0.73: return "Crimson Dwarfs" elif x <= 10.2: return "Aurelian Mainstays" elif x <= 98.0: return "Celestial Sovereigns" else: return "Cosmic Behemoths" def ohe(df): categorical_cols = ["Star color", "Spectral Class"] processed_df = pd.get_dummies(df, columns=categorical_cols) return processed_df # ## EDA # ### What features are good in star checking? # - Temp in K # - Mass relative to Sun # - Radius relative to Sun # - Luminosity # (star's brightness and distance. Luminosity is closely related to a star's size and mass,) # - Spectral Type # (Different types of stars have different spectral features, which can be used to classify them. The spectral types are typically designated by letters, such as O, B, A, F, G, K, and M.) # - Age # (luminosity and temperature. Young stars are typically more luminous and hotter than older stars.) # - Metallicity # (This can be determined by analyzing its spectrum. Stars with higher metallicity are typically younger and more massive than those with lower metallicity.) # - Absolute magnitude(Mv) train_df.head() train_df["Temperature (K)"].describe() grouped = train_df.groupby(["Radius(R/Ro)", "Star type"]).size().unstack() fig, ax = plt.subplots(figsize=(50, 22)) grouped.plot(kind="bar", stacked=True, ax=ax) ax.set_xlabel("Radius(R/Ro)") ax.set_ylabel("Count") ax.set_title("Star Type Across Radius(R/Ro)") # train_df['Probable_Label'] = train_df['Radius(R/Ro)'].apply(lambda x: radius_based_feature(x)) # test_df['Probable_Label'] = test_df['Radius(R/Ro)'].apply(lambda x: radius_based_feature(x)) df_categorical = train_df.select_dtypes("object") for col in df_categorical.columns: le = LabelEncoder() df_categorical[col] = le.fit_transform(df_categorical[col]) x = df_categorical.drop(columns=["Star type"], axis=1) y = df_categorical["Star type"] chi_scores = chi2(x, y) chi_scores chi_values = pd.Series(chi_scores[0], index=x.columns) chi_values.sort_values(ascending=False, inplace=True) chi_values.plot.bar() plt.xlabel("Features") plt.ylabel("Chi Score") print(chi_values) print("Chi Score is directly proportional to Feature Importance") p_vals = pd.Series(chi_scores[1], index=x.columns) p_vals.sort_values(ascending=False, inplace=True) p_vals.plot.bar() plt.xlabel("Features") plt.ylabel("p-value") print(p_vals) print( "\n\nP-Value of associated Chi Score is inversely proportional to Feature Importance" ) df_anova = train_df[ [ "Temperature (K)", "Luminosity(L/Lo)", "Radius(R/Ro)", "Absolute magnitude(Mv)", "Star type", ] ] continous_feature_importance = {"feature": [], "f_stat": [], "p_val": []} for i in df_anova.columns: if i != "Star type": f_s, p_v = f_classif( df_anova[[i]].values.reshape(-1, 1), df_anova[["Star type"]].values.reshape(-1, 1).ravel(), ) continous_feature_importance["feature"].append(i) continous_feature_importance["f_stat"].append(float(f_s)) continous_feature_importance["p_val"].append(float(p_v)) cont_features = pd.DataFrame.from_dict(continous_feature_importance) cont_features ax = px.bar(cont_features, x="feature", y="f_stat") ax.show() ax = px.bar(cont_features, x="feature", y="p_val") ax.show() L = train_df["Luminosity(L/Lo)"][0] R = train_df["Radius(R/Ro)"][0] sigma = 5.67 * (10**-8) M = np.sqrt(L / (4 * np.pi * sigma * R**2)) M X = train_df.drop("Star type", axis=1) X = ohe(X) y = train_df["Star type"] le = LabelEncoder() le.fit(y) y = le.transform(y) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0, test_size=0.2) X_train X_train.columns d_train = lgb.Dataset(X_train, label=y_train) params = {} params["learning_rate"] = 0.03 params["boosting_type"] = "gbdt" # GradientBoostingDecisionTree params["objective"] = "multiclass" # Multi-class target feature params["metric"] = "multi_logloss" # metric for multi-class params["max_depth"] = 10 params[ "num_class" ] = 6 # no.of unique values in the target class not inclusive of the end value # params["class_weight "]=scale_pos_weight clf = lgb.train(params, d_train, 100) # train the model on 100 epocs # # Test Accuracy y_pred = clf.predict(X_test) y_pred = [np.argmax(line) for line in y_pred] print(classification_report(y_test, y_pred)) # # Train Accuracy y_pred_train = clf.predict(X_train) y_pred_train = [np.argmax(line) for line in y_pred_train] print(classification_report(y_train, y_pred_train)) def create_model(d_train, epochs=100): params = {} params["learning_rate"] = 0.03 params["boosting_type"] = "gbdt" # GradientBoostingDecisionTree params["objective"] = "multiclass" # Multi-class target feature params["metric"] = "multi_logloss" # metric for multi-class params["max_depth"] = 10 params[ "num_class" ] = 6 # no.of unique values in the target class not inclusive of the end value params["class_weight "] = scale_pos_weight clf = lgb.train(params, d_train, epochs) # train the model on 200 epocs return clf X["Star color_Yellowish"] = 0 d_train_final = lgb.Dataset(X, label=y) scale_pos_weight = len(y) / (6 * np.bincount(y)) final_model = create_model(d_train_final, epochs=100) test_df = ohe(test_df) test_df considered_vars_test = [ "Temperature (K)", "Luminosity(L/Lo)", "Radius(R/Ro)", "Absolute magnitude(Mv)", "Star color_Blue", "Star color_Blue ", "Star color_Blue White", "Star color_Blue white", "Star color_Blue white ", "Star color_Blue-White", "Star color_Blue-white", "Star color_Orange", "Star color_Orange-Red", "Star color_Pale yellow orange", "Star color_Red", "Star color_White", "Star color_White-Yellow", "Star color_Whitish", "Star color_Yellowish White", "Star color_white", "Star color_yellow-white", "Star color_yellowish", "Spectral Class_A", "Spectral Class_B", "Spectral Class_F", "Spectral Class_G", "Spectral Class_K", "Spectral Class_M", "Spectral Class_O", ] testcols = test_df.columns for i in considered_vars_test: if i not in testcols: test_df[i] = 0 test_df print(test_df.shape) print(X.shape) y_pred = final_model.predict(test_df) y_pred = [np.argmax(line) for line in y_pred] # print("-----------ON TEST--------- ") # print(classification_report(y_test, y_pred)) # print("-----------ON Train--------- ") # y_pred_train=final_model.predict(X_train) # y_pred_train = [np.argmax(line) for line in y_pred_train] # print(classification_report(y_train, y_pred_train)) y_pred predictions = list(le.inverse_transform(y_pred)) sub = pd.read_csv("/kaggle/input/nebulanet/samplesolutions.csv") sub["Star type"] = predictions sub.head() sub.to_csv("tapu_sena_submission.csv", index=False)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import pandas as pd train = pd.read_csv("/kaggle/input/nlp-getting-started/train.csv") test = pd.read_csv("/kaggle/input/nlp-getting-started/test.csv") train len(train.loc[train["target"] == 1]) / len(train) from nltk.tokenize import word_tokenize from nltk.stem import WordNetLemmatizer import nltk nltk.download("omw-1.4") stopwords = nltk.corpus.stopwords.words("english") + ["http", "https"] wordnet_lemmatizer = WordNetLemmatizer() def preprocessing(document): # get rid of @, maybe cut words < 3 characters res = word_tokenize(document.lower()) res = [word for word in res if (word not in stopwords and word.isalnum())] res = [("$NUMBER" if word.isnumeric() else word) for word in res] res = [wordnet_lemmatizer.lemmatize(word) for word in res] # res = [word for word in res if len(word) > 3] return res corpus = train["text"].map(preprocessing).values.tolist() import gensim.downloader glove_vectors = gensim.downloader.load("glove-twitter-100") glove_vectors count = 0 for document in corpus: for word in document: if word == "numeric": count += 1 print(count) glove_vectors["numeric"] from sklearn.feature_extraction.text import TfidfVectorizer tf_corpus = list(map(lambda elem: " ".join(elem), corpus)) tfidf = TfidfVectorizer(use_idf=True) tfidf.fit_transform(tf_corpus) idf = dict(zip(tfidf.get_feature_names_out(), tfidf.idf_)) import numpy as np def w2v(document): res = [ word for word in document if (word == "$NUMBER" or (word in glove_vectors and word in idf)) ] res_vectors = [ ( glove_vectors["numeric"] * idf["number"] if word == "$NUMBER" else glove_vectors[word] * idf[word] ) for word in res ] sum_res = sum([idf["number"] if word == "$NUMBER" else idf[word] for word in res]) if sum_res == 0: return np.zeros(100) return np.array(sum(res_vectors) / sum_res) # corpus features = list(map(w2v, corpus)) feature_targets = np.array(train["target"]) x_train = [] y_train = [] for i, elem in enumerate(features): if np.isnan(elem).any(): continue x_train.append(elem) y_train.append(feature_targets[i]) x_train = np.array(x_train) y_train = np.array(y_train) print(x_train.shape) from sklearn.neural_network import MLPClassifier clf = MLPClassifier( hidden_layer_sizes=(100, 100), random_state=1, max_iter=300, verbose=True, learning_rate_init=0.0001, early_stopping=True, n_iter_no_change=20, ).fit(x_train, y_train) test corpus_test = test["text"].map(preprocessing).values.tolist() features_test = list(map(w2v, corpus_test)) x_test = [] for i, elem in enumerate(features_test): if np.isnan(elem).any(): x_test.append(np.zeros(100)) else: x_test.append(elem) x_test = np.array(x_test) predictions = clf.predict(x_test) res = test res["target"] = predictions res = res.drop(columns={"keyword", "location", "text"}) res.to_csv("submission.csv", index=False)
import numpy as np import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv("../input/suv-nanze/suv.csv") df.drop("User ID", axis=1, inplace=True) df.head(5) df.Gender = pd.get_dummies(df.Gender, drop_first=True) df.head() X = df.to_numpy() np.random.seed = 0 X = X[np.random.permutation(X.shape[0])] y = X[:, -1] X = X[:, :-1] split = int(X.shape[0] * 0.8) X_train = X[:split] y_train = y[:split] X_test = X[split:] y_test = y[split:] from sklearn.svm import SVC # svc == svm classifier # one of the params of SVC > C # in regularization = 1/c > C high > regularization low > overfit > the classification part is too string # in svm > overfit means find a line to classify the data with high accuracy in this case the marging is not imp # while the best line may have error for some data bue has the highest margin # degeree for adding the degree of polynomial for the kernel of poly # gamma var of the kernel > the higher the gamma the openner the kernels > we consider data with further distances # C=1, kernel='rbf' > rbf is not the best all of the times > addind rbf means adding the parameters may be overfit clf = SVC() clf.fit(X_train, y_train) print(clf.score(X_train, y_train)) print(clf.score(X_test, y_test)) # the differnce between the train and test are too high > change the training dataset > normalize X = (X - X.mean(axis=0)) / X.std(axis=0) split = int(X.shape[0] * 0.8) X_train = X[:split] y_train = y[:split] X_test = X[split:] y_test = y[split:] clf = SVC() clf.fit(X_train, y_train) print(clf.score(X_train, y_train)) print(clf.score(X_test, y_test)) """ the train score is lower than test score it can be for the hardship of the train the noise or many types of regularization that may influence """ # kind if underfit > low the reg > high the c clf = SVC(C=10000000, kernel="rbf") clf.fit(X_train, y_train) print(clf.score(X_train, y_train)) print(clf.score(X_test, y_test)) clf = SVC(C=0.000001, kernel="rbf") clf.fit(X_train, y_train) print(clf.score(X_train, y_train)) print(clf.score(X_test, y_test)) """ rbf > adds one dimension > in the picture in reality > the new dim is the #datas linear > do nothing poly > adds the polynomial degreees the data are linear separable exp > the rbf tries to separate them with a circle > !!! """ clf = SVC(kernel="linear") clf.fit(X_train, y_train) print(clf.score(X_train, y_train)) print(clf.score(X_test, y_test)) clf = SVC(kernel="poly") clf.fit(X_train, y_train) print(clf.score(X_train, y_train)) print(clf.score(X_test, y_test)) clf.predict(X_test) preds = clf.predict(X_test) np.mean(preds == y_test) # by default the model doesn't outputs the probability clf = SVC(kernel="poly", probability=True) clf.fit(X_train, y_train) print(clf.predict_proba(X_test)) """ in log reg > it first calculates the probability > then thereshold > then class in svm > the probaility not calculated first """ train_scores = [] test_scores = [] for c in np.arange(0.1, 10, 0.1): clf = SVC(C=c, kernel="linear", max_iter=50) clf.fit(X_train, y_train) train_scores.append(clf.score(X_train, y_train)) test_scores.append(clf.score(X_test, y_test)) plt.plot(np.arange(0.1, 10, 0.1), np.array(train_scores), "b-") plt.plot(np.arange(0.1, 10, 0.1), np.array(test_scores), "r-") train_scores = [] test_scores = [] for c in np.arange(0.1, 10, 0.1): clf = SVC(C=c, kernel="linear") clf.fit(X_train, y_train) train_scores.append(clf.score(X_train, y_train)) test_scores.append(clf.score(X_test, y_test)) plt.plot(np.arange(0.1, 10, 0.1), np.array(train_scores), "b-") plt.plot(np.arange(0.1, 10, 0.1), np.array(test_scores), "r-") plt.plot(np.arange(0.1, 10, 0.1), np.array(train_scores), "bo") plt.plot(np.arange(0.1, 10, 0.1), np.array(test_scores), "ro") # but when the plots are not close to each other x = [0.01, 0.1, 1, 10, 1000] train_scores = [] test_scores = [] for c in x: clf = SVC(C=c, kernel="linear") clf.fit(X_train, y_train) train_scores.append(clf.score(X_train, y_train)) test_scores.append(clf.score(X_test, y_test)) plt.plot(x, np.array(train_scores), "bo") plt.plot(x, np.array(test_scores), "ro") plt.plot(x, np.array(train_scores), "b-") plt.plot(x, np.array(test_scores), "r-") # the s axis is log now plt.xscale("log") plt.plot(x, np.array(train_scores), "b-") plt.plot(x, np.array(test_scores), "r-") plt.plot(X[y == 1, 1], X[y == 1, 2], "ro") plt.plot(X[y == 0, 1], X[y == 0, 2], "bo") pred = clf.predict(X) plt.plot(X[pred == 1, 1], X[pred == 1, 2], "ro") plt.plot(X[pred == 0, 1], X[pred == 0, 2], "bo") # it is the border that svm learns # the border is not line > because x has 3 fetures we only picture the 2 features
import spacy nlp = spacy.load("en") f1 = open("../input/sunil-files/f1.txt", "r") f1_contents = f1.read() f11 = nlp(f1_contents) f2 = open("../input/sunil-files/f2.txt", "r") f2_contents = f2.read() f22 = nlp(f2_contents) print(f11) print(f22) print(f11.similarity(f22)) # # Problem Statement # We humans have been using glass since ancient times for a variety of applications from building construction to making decorative objects. With technology, glass and its applications have evolved, and today, we have different varieties of glass used for very different purposes from a computer monitor to a bulletproof car window depending on the grade of the glass produced. And not all grades or varieties are manufactured the same way. In this data science challenge, you as a data scientist must use the given data to predict the grade of the glass produced based on the given factors. # Given are 15 distinguishing factors that can provide insight into what grade of the glass is being produced. Your objective as a data scientist is to build a machine learning model that can predict the grade of glass based on the given factors. # # Phase1: Model Building On Training Data import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns # # Step1: Read Data train = pd.read_csv("../input/test-v123445/test.csv") train.head() df_new = df.iloc[:10] df_new.to_csv("test.csv") train.shape train.columns # # Step2: Exploratory Data Analysis # Below are the steps involved to understand, clean and prepare your data for building your predictive model: # 1. Variable Identification # 2. Univariate Analysis # 3. Bi-variate Analysis # 4. Missing values treatment # 5. Outlier treatment # 6. Variable transformation # 7. Variable creation # ## 2.1 Missing Data Analysis train.isnull().sum() # ## 2.2 Data Type Analysis train.dtypes # ## 2.3 Univariate Analysis # At this stage, we explore variables one by one. Method to perform uni-variate analysis will depend on whether the variable type is categorical or continuous. Let’s look at these methods and statistical measures for categorical and continuous variables individually: # Continuous Variables:- In case of continuous variables, we need to understand the central tendency and spread of the variable. These are measured using various statistical metrics such as Histogram and Bar plots: train.describe() # ### 2.3.1 Box Plot of CONTINUOUS variables train.columns plt.figure(figsize=(16, 10)) plt.subplot(2, 2, 1) train.boxplot(column=["ymin", "ymax"]) plt.subplot(2, 2, 2) train.boxplot(column=["pixel_area", "log_area"]) plt.subplot(2, 2, 3) train.boxplot(column=["max_luminosity", "thickness"]) plt.subplot(2, 2, 4) train.boxplot(column=["xmin", "xmax"]) # From the plots we can see that, there are lots of outliers in each varibale. # ### 2.3.2 Plot for Continuous variables # ### 2.3.3 Histogram Plots Of Continuous Variables plt.figure(figsize=(14, 8)) clr = ["red", "blue", "lime", "orange", "teal", "red", "blue", "lime"] columns = [ "max_luminosity", "thickness", "xmin", "xmax", "ymin", "ymax", "pixel_area", "log_area", ] for i, j in zip(range(1, 9), columns): plt.subplot(4, 2, i) train[j].hist(color=clr[i - 1], label=j) plt.legend() # ### 2.3.4 Density Plots Of Continuous Variables plt.figure(figsize=(14, 8)) train[columns].plot( kind="density", subplots=True, layout=(4, 2), sharex=False, sharey=False, figsize=(14, 6), ) plt.show() # ### 2.3.5 Discrete Variables Plot train.columns plt.figure(figsize=(14, 12)) plt.subplot(4, 2, 1) train.grade_A_Component_1.value_counts().plot(kind="bar", label="grade_A_Component_1") plt.legend() plt.subplot(4, 2, 2) train.grade_A_Component_2.value_counts().plot(kind="bar", label="grade_A_Component_2") plt.legend() plt.subplot(4, 2, 3) train.x_component_1.value_counts().plot(kind="bar", label="x_component_1") plt.legend() plt.subplot(4, 2, 4) train.x_component_2.value_counts().plot(kind="bar", label="x_component_2") plt.legend() plt.subplot(4, 2, 5) train.x_component_3.value_counts().plot(kind="bar", label="x_component_3") plt.legend() plt.subplot(4, 2, 6) train.x_component_4.value_counts().plot(kind="bar", label="x_component_4") plt.legend() plt.subplot(4, 2, 7) train.x_component_4.value_counts().plot(kind="bar", label="x_component_4") plt.legend() # ### 2.3.5 Target Variable Plot train["class"].value_counts().plot(kind="bar") train["class"].value_counts() # # 2.4 Bi-variate Analysis # Bi-variate Analysis finds out the relationship between two variables. Here, we look for association and disassociation between variables at a pre-defined significance level. We can perform bi-variate analysis for any combination of categorical and continuous variables. The combination can be: Categorical & Categorical, Categorical & Continuous and Continuous & Continuous. Different methods are used to tackle these combinations during analysis process. # ### 2.4.2 Scatterplot Matrix import seaborn as sns sns.set(style="ticks") sns.pairplot(train) # # Step4: Separating X and Y train.columns # ## 4.1 Re-setting Index Before Splitting train.reset_index(drop=True, inplace=True) # ## 4.2 Split Data x = train.drop(["class"], axis=1) y = train["class"] x_copy = x.copy() # # Step5: Creating Train and Test Set In Ratio 80:20 # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split( x, y, test_size=0.2, random_state=100 ) # # Step6: Model Building # ## 6.1 Identification Of Best Features from sklearn.feature_selection import RFE from sklearn.linear_model import LogisticRegression # feature extraction model = LogisticRegression(solver="lbfgs") rfe = RFE(model, 3) fit = rfe.fit(x, y) print("Num Features: %d" % fit.n_features_) print("Selected Features: %s" % fit.support_) print("Feature Ranking: %s" % fit.ranking_) df_feat = pd.DataFrame(fit.ranking_, x.columns) df_feat.rename(columns={0: "Feature_Ranking"}, inplace=True) df_feat.sort_values(by="Feature_Ranking").plot(kind="bar", figsize=(18, 7)) # ## 6.2 Importing and Model Fitting from sklearn.pipeline import Pipeline from sklearn.model_selection import GridSearchCV from sklearn.metrics import ( roc_curve, auc, classification_report, confusion_matrix, accuracy_score, roc_auc_score, ) from sklearn.metrics import classification_report # ### 6.2.2 Random Forest from sklearn.ensemble import RandomForestClassifier # making the instance model = RandomForestClassifier(random_state=1234) # Hyper Parameters Set param_grid = { "criterion": ["gini", "entropy"], "n_estimators": [10, 15, 20, 25, 30], "min_samples_leaf": [1, 2, 3], "min_samples_split": [3, 4, 5, 6, 7], "random_state": [123], "n_jobs": [-1], } # Create grid search object clf = GridSearchCV(model, param_grid=param_grid, n_jobs=-1, cv=10) # Fit on data best_clf_rf = clf.fit(X_train, y_train) # Predict predictions = best_clf_rf.predict(X_test) # Check Prediction Score print("Accuracy of Random Forest: ", accuracy_score(y_test, predictions)) # Print Classification Report print("Confusion matrix \n", confusion_matrix(y_test, predictions)) print(classification_report(y_test, predictions)) # RF On Full data # making the instance model = RandomForestClassifier(random_state=1234) # Hyper Parameters Set param_grid = { "criterion": ["gini", "entropy"], "n_estimators": [10, 15, 20, 25, 30], "min_samples_leaf": [1, 2, 3], "min_samples_split": [3, 4, 5, 6, 7], "random_state": [123], "n_jobs": [-1], } # Create grid search object clf = GridSearchCV(model, param_grid=param_grid, n_jobs=-1, cv=10) # Fit on data best_clf_rf1 = clf.fit(x, y) # # Phase2: Applying Model On Test Data test = pd.read_csv( "../input/glass-quality-prediction/Glass_Quality_Participants_Data/Test.csv" ) test.shape test.head(5) test.columns test_for_prediction = test[ [ "grade_A_Component_1", "grade_A_Component_2", "max_luminosity", "thickness", "xmin", "xmax", "ymin", "ymax", "pixel_area", "log_area", "x_component_1", "x_component_2", "x_component_3", "x_component_4", "x_component_5", ] ] # Define predict function def predict_file(model, model_instance, test_data): prediction_var = "prediction_from" + model file_name = "Final_output_prediction_from_" + model + ".xlsx" prediction_var = model_instance.predict_proba(test_data) df_prediction_var = pd.DataFrame(prediction_var, columns=[1, 2]) df_prediction_var.to_excel(file_name) print("{} created.".format(file_name)) predict_file("rf_classifier", best_clf_rf, test_for_prediction) predict_file("rf1_classifier", best_clf_rf1, test_for_prediction)
# ![images.jpg](attachment:images.jpg) # # The Iris dataset is a classic machine learning dataset that is often used for classification problems. It is sometimes referred to as the "Hello World" of machine learning because it is a simple and well-understood dataset that is often used for teaching and learning purposes. # ## The dataset consists of 150 samples, each representing an iris flower. Each sample has four features: sepal length, sepal width, petal length, and petal width. The target variable is the species of the iris flower, which can be one of three classes: setosa, versicolor, and virginica. # ### Here is a summary of the dataset: # ### Number of samples: 150 # ### Number of features: 4 # ### Target variable: Species (setosa, versicolor, virginica) import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report, accuracy_score from sklearn.tree import DecisionTreeClassifier from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC df = pd.read_csv("/kaggle/input/iris-classifier/iris.csv") # Load the Iris dataset iris = load_iris() X = iris.data y = iris.target # Split the data into training and test sets X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=42 ) # Define the classification models models = { "Decision Tree": DecisionTreeClassifier(), "Logistic Regression": LogisticRegression(), "K-Nearest Neighbors": KNeighborsClassifier(), "Support Vector Machine": SVC(kernel="linear"), } # Train and evaluate each model results = {} for name, model in models.items(): # Train the model model.fit(X_train, y_train) # Make predictions on the test set y_pred = model.predict(X_test) # Evaluate the model using accuracy score and classification report accuracy = accuracy_score(y_test, y_pred) report = classification_report(y_test, y_pred, output_dict=True) # Add the evaluation metrics to the results dictionary results[name] = { "Accuracy": accuracy, "Precision": report["macro avg"]["precision"], "Recall": report["macro avg"]["recall"], "F1-score": report["macro avg"]["f1-score"], } # Print the evaluation metrics for all models print("Evaluation Metrics:") print("---------------------------------------") print( "{:<25s}{:<10s}{:<10s}{:<10s}{:<10s}".format( "Model", "Accuracy", "Precision", "Recall", "F1-score" ) ) print("---------------------------------------") for name, metrics in results.items(): print( "{:<25s}{:<10.2f}{:<10.2f}{:<10.2f}{:<10.2f}".format( name, metrics["Accuracy"], metrics["Precision"], metrics["Recall"], metrics["F1-score"], ) ) print("---------------------------------------")
# # Challenge DataViz - Jean-Philippe Gabrielli # ## Librairies nécessaires # pip install pandas==1.5.3 numpy dask geopy matplotlib scipy folium ipywidgets plotly dash fastparquet # attention ne pas installer pandas 2, sinon la visualisation web avec dash ne marchera pas. # ## Importation des librairies import pandas as pd import numpy as np from dask import dataframe as dd from geopy.geocoders import Nominatim import matplotlib.pyplot as plt import matplotlib.dates as mdates from scipy.spatial.distance import cdist from scipy.stats import pearsonr from folium import plugins from folium.plugins import HeatMap from scipy import signal from geopy.geocoders import Nominatim from geopy.extra.rate_limiter import RateLimiter import pandas as pd import folium import ipywidgets as widgets from IPython.display import display from IPython.display import clear_output from ipywidgets import interact from numpy.fft import fftshift, fftfreq import plotly.express as px from ipywidgets import interact geolocator = Nominatim(user_agent="geoapiExercises") # # Importation des données météo """ data2016 = dd.read_parquet('SE2016.parquet') #ne surtout pas remplacer ça par pandas, out of memory en vue data2017 = dd.read_parquet('SE2017.parquet') data2018 = dd.read_parquet('SE2018.parquet') """ # #### Sélection des stations météo corses """ data_meteo2017 = data2017[(data2017.lon>8.35) & (data2017.lat<43.14)] data_meteo2018 = data2018[(data2018.lon>8.35) & (data2018.lat<43.14)] data_meteo2016 = data2016[(data2016.lon>8.35) & (data2016.lat<43.14)] """ # #### Fusion des données """ data_meteo = dd.concat([data_meteo2016, data_meteo2017,data_meteo2018],axis=0) data_meteo.t = data_meteo.t-273.15 #conversion en celsius """ # #### Indexation de toutes les stations météo """ coord_stations = data_meteo[['lat', 'lon']].drop_duplicates().compute() #attention prend 2-3 minutes à exécuter pd.DataFrame(coord_stations) coord_stations.to_parquet("coord_stations.parquet") """ coord_stations = pd.read_parquet( "/kaggle/input/dataviz2023/datavizjp/coord_stations.parquet" ) # #### Interpolation en données horaires # On scinde le fichier avec l'extension .parquet en plusieurs fichiers, chacun associé à une station météo. Cela permet de réduire de façon importante le temps d'importation des données. """ for index, row in coord_stations.iterrows(): lat, lon = row['lat'], row['lon'] data_selec = data_meteo[(data_meteo['lat'] == lat) & (data_meteo['lon'] == lon)] data_selec.to_parquet(f'data_meteo_{lat}_{lon}.parquet') """ # On réalise une interpolation linéaire pour obtenir dans tous les cas des données horaires à partir de données non régulièrement espacéees avec des pas de temps différents. """" for index, row in coord_stations.iterrows(): lat, lon = row['lat'], row['lon'] data = pd.read_parquet(f'data_meteo_{lat}_{lon}.parquet') #ici on peut utiliser pandas vu la taille des fichiers data = data.set_index('date') data = data.resample('H').interpolate() data.to_parquet(f'data_meteo_horaire_{lat}_{lon}.parquet') """ # #### Importation des données interpolées data_meteo_horaire = {} for index, row in coord_stations.iterrows(): lat, lon = row["lat"], row["lon"] file_name = f"data_meteo_horaire_{lat}_{lon}.parquet" data_meteo_horaire[file_name] = pd.read_parquet( f"/kaggle/input/dataviz2023/datavizjp/{file_name}" ) data_meteo_horaire[file_name].columns = [ "number_sta", "lat", "lon", "height_sta", "Direction du vent", "force du vent", "précipitations", "humidité", "température de rosée", "température", "pression", ] # #### Vérification de l'obtention du pas horaire par visualisation des 10 premières données data_meteo_horaire["data_meteo_horaire_42.887_9.44.parquet"].head(10) # # Importation des données de production électrique """ prod = pd.read_parquet('/kaggle/input/dataviz2023/datavizjp/production-delectricite-par-filiere.parquet') #ici pandas est suffisant """ # #### Remplacement des données estimées négatives par la valeur zero et conversion du temps universel sur le fuseau horaire UTC + 1 """ prod['Date - Heure'] = pd.to_datetime(prod['Date - Heure'],utc = True) prod['Date - Heure'] = prod['Date - Heure'].dt.tz_convert('Europe/Paris') prod = prod.applymap(lambda x: 0 if isinstance(x, (int, float)) and not isinstance(x, (np.datetime64, pd.Timestamp)) and x < 0 else x) """ # On choisit la date comme indice de référencement (index) """ prod = prod.set_index('Date - Heure') """ """ prod = prod[~prod.index.duplicated()] #on enlève les duplicatas """ """ prod = prod.resample('H').interpolate() #interpolation horaire prod.to_parquet('prod_horaire.parquet') """ prod_horaire = pd.read_parquet( "/kaggle/input/dataviz2023/datavizjp/prod_horaire.parquet" ) # #### Visualisation des 10 premières lignes des données de production prod_horaire.head(10) # # Importation de la consommation électrique (MWh) par commune et par an """ conso = pd.read_parquet('consommation-annuelle-par-commune1.parquet') """ # ### Ajout des coordonnées géographiques de chaque commune (latitude et longitude) """" communes = conso['Commune'].drop_duplicates() lat =[] lon= [] for i in communes: lat.append(get_location_by_name(i)[0]) lon.append(get_location_by_name(i)[1]) """ """ f = pd.DataFrame({'lat': lat, 'lon': lon, 'commune': communes}) f = f.set_index('commune') df_merged = pd.merge(conso, f, left_on='Commune', right_on='commune', how='left') df_merged.to_csv('consolatlon.csv') """ conso = pd.read_csv("/kaggle/input/dataviz2023/datavizjp/consolatlon.csv") # #### Visualisation des 10 premières communes conso.head(10) # ## Importation de la production annuelle par source d'énergie (en MWh) prod_an_fil = pd.read_csv( "/kaggle/input/dataviz2023/datavizjp/production-annuelle-delectricite-par-filiere.csv", sep=";", index_col=0, ) prod_an_fil = prod_an_fil.set_index(["Année"]) # #### Visualisation des cinq années entre 2018 et 2020 prod_an_fil.head(10) # ## Exploitation des données # ### Coefficient de Pearson # #### Le coefficient de Pearson est un outil statistique qui permet d'analyser la relation linéaire entre deux séries de données. # Ce coefficient de corrélation varie entre -1 et 1, la valeur 0 reflétant une relation nulle entre les deux séries de données. Une valeur négative signifie que lorsque une série de donnée augmente l'autre diminue ; tandis qu'une valeur positive indique que les deux séries de données varient ensemble dans le même sens. # #### Calcul du coefficient de Pearson pour toutes les données météo de chaque station def pearson(data1, mode): pearson = [] lieu = [] lat_list = [] lon_list = [] for index, row in coord_stations.iterrows(): lat, lon = row["lat"], row["lon"] file_name = f"data_meteo_horaire_{lat}_{lon}.parquet" x = data_meteo_horaire[file_name][data1] t = data_meteo_horaire[file_name].index y = prod_horaire.loc[t][mode] pearson.append(x.corr(y, method="pearson")) lieu.append(file_name) lat_list.append(lat) lon_list.append(lon) df_pearson = pd.DataFrame(pearson, columns=["pearson"]) df_lieu = pd.DataFrame(lieu, columns=["lieu"]) df_lat = pd.DataFrame(lat_list, columns=["lat"]) df_lon = pd.DataFrame(lon_list, columns=["lon"]) coeff_pearson = pd.concat([df_pearson, df_lieu, df_lat, df_lon], axis=1) return coeff_pearson # On sélectionne dans la carte ci-dessous le site dont on veut connaître le coefficient de Pearson, c'est à dire la corrélation des données météo avec les données de production. # Cela peut mettre en évidence les régions où la consommation est fortement corrélée aux écarts de température par exemple. # Pour prendre un exemple, si on sélectionne la force du vent avec la production éolienne, on voit de plus grands cercles sur le Cap Corse, endroit où se concentrent les éoliennes. def carte_pearson(data1, mode): coeff_pearson = pearson(data1, mode) coeff_pearson["pearson"] = coeff_pearson["pearson"].fillna(0) map = folium.Map( location=[coeff_pearson["lat"].mean(), coeff_pearson["lon"].mean()], zoom_start=8, ) for index, row in coeff_pearson.iterrows(): folium.CircleMarker( location=[row["lat"], row["lon"]], radius=6 / (1 - abs(row["pearson"])), color="red", fill=True, fill_color="black", popup=f"Coefficient de Pearson: {round(row['pearson'], 2)}", ).add_to(map) return map data_meteo_horaire["data_meteo_horaire_42.887_9.44.parquet"] = data_meteo_horaire[ "data_meteo_horaire_42.887_9.44.parquet" ].drop(["number_sta", "lon", "lat", "height_sta"], axis=1) prod_horaire = prod_horaire.drop( ["Territoire", "Statut", "Coût moyen de production (€/MWh)"], axis=1 ) @interact def select_data_and_display_map( data1=[ "Direction du vent", "force du vent", "précipitations", "humidité", "température de rosée", "température", "pression", ], mode=prod_horaire.columns, ): map = carte_pearson(data1, mode) display(map) # ## Etude de la périodicité des séries temporelles de production en utilisant la transformée de Fourier (FFT) # #### Un pic est observé à chaque fois qu'un évènement périodique d'ampleur est observé dans les données # En appliquant la transformée de Fourrier aux données de production, on peut visualiser et interpréter les habitudes de consommation de la population. # Ainsi, comme on peut le constater sur le graphique ci-dessous, on observe un pic d'amplitude importante par jour, ce qui correspond à une augmentation de consommation quotidienne le soir. On observe également un pic qui apparait à une fréquence de 2 par jour, ce qui correspond à une période d'une demi-journée, et donc d'une hausse de la consommation le matin et le soir. # On peut aussi étudier quantitativement les phénomènes observés : on observe que l'amplitude de la périodicité journalière est plus importante que celle de la périodicité bi-journalière. def fourier(prod_data, column): fourier = np.abs(np.fft.fft(prod_data[column] - np.mean(prod_data[column]))) fourier_shifted = fourier[: len(fourier) // 2] freqs = fftfreq(len(fourier), d=1)[: len(fourier) // 2] freqs_cycles_per_day = freqs * 24 fourier_fig = px.line( x=freqs_cycles_per_day, y=fourier_shifted, title="Transformée de Fourier de la production d'électricité totale", labels={"x": "Cycles par jour", "y": "amplitude du phénomène"}, ) return fourier_fig fourier(prod_horaire, "Production totale (MW)") # ## Visualisation de la consommation par commune def plot_conso(commune): filtered_df = conso.loc[conso["Commune"] == commune] grouped = filtered_df.groupby("Année")["Consommation (MWh)"].sum() grouped.plot(kind="bar") # Calcul des coefficients de la courbe de tendance linéaire z = np.polyfit(grouped.index, grouped.values, 4) p = np.poly1d(z) # Tracé de la courbe de tendance plt.plot(p(grouped.index), "r--") plt.ylabel("consommation totale (MWh)") plt.show() # On peut tracer l'évolution de la consommation annuelle pour chaque commune, par exemple ici pour Tomino plot_conso("TOMINO") # ### Visualisation de l'évolution de la consommation totale d'éléctricité annuelle par commune # Créer un menu déroulant pour sélectionner la commune commune_select = widgets.Dropdown( options=conso["Commune"].unique(), description="Commune:", disabled=False, ) # Fonction pour mettre à jour le graphique lorsque la commune est modifiée def update_plot(change): clear_output(wait=True) display(commune_select) plot_conso(change.new) # Connecter le menu déroulant à la fonction de mise à jour commune_select.observe(update_plot, names="value") # Afficher le menu déroulant display(commune_select) # Afficher le graphique initial plot_conso(commune_select.value) # ### Identification des communes présentant les plus fortes croissances en terme de consommation d'énergie ces trois dernières années def top_croissance(df, n): # Récupérer les trois dernières années dans les données last_years = df["Année"].unique()[-3:] # Filtrer les données pour les trois dernières années data = df[df["Année"].isin(last_years)] # Calculer la consommation totale pour chaque commune et chaque année consumption = ( data.groupby(["Commune", "Année"])["Consommation (MWh)"].sum().reset_index() ) # Pivoter le tableau pour avoir une colonne par année consumption_pivot = consumption.pivot( index="Commune", columns="Année", values="Consommation (MWh)" ) # Calculer l'augmentation de la consommation entre la première et la dernière année consumption_pivot["increase"] = ( consumption_pivot[last_years[-1]] - consumption_pivot[last_years[0]] ) # Trier les communes par augmentation de la consommation top_communes = consumption_pivot.sort_values("increase", ascending=False).head(n) return top_communes.index.tolist() # Une augmentation de la consommation énergétique est un bon indicateur de la croissance démographique voire économique d'une commune. On présente ci-dessous la liste des 10 communes avec la plus forte augmentation de consommation d'énergie. top_croissance(conso, 10) # #### Visualisation des consommations énergétiques les plus importantes : # Ci-dessous on peut choisir l'année dans un menu déroulant souhaitée pour apprécier la consommation de chaque commune, plus le cercle important, plus la consommation est élevée. def create_map(df, year): # Créer une carte centrée sur la Corse map = folium.Map(location=[42.0396042, 9.0128926], zoom_start=9) df = df.dropna(subset=["lat", "lon"]) # Filtrer les données pour l'année sélectionnée data = df[df["Année"] == year] # Ajouter des cercles pour chaque commune for i, row in data.iterrows(): folium.Circle( location=[row["lat"], row["lon"]], radius=row["Consommation (MWh)"] / 10, color="blue", fill=True, fill_color="blue", popup=f"consommation en MWh: {round(row['Consommation (MWh)'])}", ).add_to(map) # Afficher la carte return map # Créer un menu déroulant pour sélectionner l'année year_select = widgets.Dropdown( options=conso["Année"].unique(), description="Année:", disabled=False, ) def update_map(change): clear_output(wait=True) display(year_select) map = create_map(conso, change.new) display(map) # Connecter le menu déroulant à la fonction de mise à jour year_select.observe(update_map, names="value") # Afficher le menu déroulant display(year_select) # Afficher la carte initiale map = create_map(conso, year_select.value) display(map) # ## Visualisation des sources d'énergie électrique par année prod_an_fil = prod_an_fil.fillna(0) # Créer une fonction pour générer le graphique en camembert def pie_chart(year): data = prod_an_fil.loc[year] data = data.drop(["Total (MWh)"]) labels = data.index values = data.values fig, ax = plt.subplots() ax.pie(values, labels=labels, autopct="%1.1f%%") ax.set_title(f"Sources d'énergie électrique en {year}") ax.legend(bbox_to_anchor=(1, 0.5), loc="center left") plt.show() # Créer un menu déroulant pour sélectionner l'année interact(pie_chart, year=prod_an_fil.index) # Créer une fonction pour générer le graphique à barres def bar_chart(year): data = prod_an_fil.loc[year] labels = data.index values = data.values fig, ax = plt.subplots() ax.bar(labels, values) ax.set_title(f"Sources d'énergie électrique en {year}") plt.xticks(rotation=90) plt.show() # Créer un menu déroulant pour sélectionner l'année interact(bar_chart, year=prod_an_fil.index)
import pandas as pd import numpy as np import tensorflow as tf from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense # # Load the data data = pd.read_csv("/kaggle/input/co2-emissions/CO2 Emissions.csv") # # Explore the data print(data.head()) # # Divide the data into the training and test datasets X = data[ [ "Engine Size(L)", "Cylinders", "Fuel Consumption City (L/100 km)", "Fuel Consumption Hwy (L/100 km)", "Fuel Consumption Comb (L/100 km)", "Fuel Consumption Comb (mpg)", ] ] y = data["CO2 Emissions(g/km)"] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1) # # Normalize or scale the data scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) # # Build the model model = Sequential() model.add(Dense(20, activation="relu", input_shape=(6,))) model.add(Dense(10, activation="relu")) model.add(Dense(1)) # # Train the model model.compile(optimizer="adam", loss="mse", metrics=["mse", "mae"]) history = model.fit(X_train, y_train, epochs=100, batch_size=32, verbose=0) # # Evaluate the quality of the trained model using test dataset test_loss, test_mse, test_mae = model.evaluate(X_test, y_test, verbose=0) print("Test MSE:", test_mse) print("Test MAE:", test_mae) # # Make predictions using the trained model input_data = [[5.6, 8, 17.5, 12, 15, 19]] scaled_input_data = scaler.transform(input_data) prediction = model.predict(scaled_input_data) print("CO2 Emissions: ", prediction[0][0])
# The main goal is Predict the House Prices using Regression. # Therefore, there would be finding the right features that helps the prediction less error. import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # ## **1. Get The Data** # Take a look at the the Data Structure housing = pd.read_csv("../input/house-prices-advanced-regression-techniques/train.csv") housing.head() housing.info() housing.describe() housing.hist(bins=50, figsize=(20, 15)) plt.show() # ### **Create a Test Set** from sklearn.model_selection import train_test_split train_set, test_set = train_test_split(housing, test_size=0.2, random_state=42) # ## **Discover and Visualize the Data to Gain Insights** # - In this phase, we will copying the training dataset to play with. # - Check missing values data # - Looking for correlations # - Experimenting with Attribute Combinations housing1 = train_set.copy() s1 = housing1.dtypes s1.groupby(s1).count() housing1.isnull().sum().sort_values(ascending=False).head(30) # Features PoolQC, MiscFeature, Alley, Fence have a lot of missing values. # We'll drop these features from the consideration housing1.head() plt.figure(figsize=(12, 4)) sns.heatmap(housing1.isnull(), cbar=False, cmap="viridis", yticklabels=False) plt.title("Missing value in the dataset") corr = housing1.corr() sns.heatmap(corr, linewidths=0.5) corr["SalePrice"].sort_values(ascending=False) # Checking Correlation from SalePrice attribute. # There are several attributes has positive correlation with SalePrice which are: # OverallQual, GrLivArea, GarageArea,TotalBsmtSF, 1stFlrSF, FullBath,TotRmsAbvGrd, YearBuilt, YearRemodAdd,GarageYrBlt, MasVnrArea from pandas.plotting import scatter_matrix attributes = [ "SalePrice", "OverallQual", "GrLivArea", "GarageArea", "TotalBsmtSF", "1stFlrSF", "FullBath", "TotRmsAbvGrd", "YearBuilt", "YearRemodAdd", "GarageYrBlt", "MasVnrArea", ] pd.plotting.scatter_matrix(housing1[attributes], figsize=(15, 10))
# # Importing Libraries # import os import spacy import numpy as np import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.svm import LinearSVC # # Loading the Dataset train_label_path = "/kaggle/input/facebook-hateful-meme-dataset/data/train.jsonl" validation_label_path = "/kaggle/input/facebook-hateful-meme-dataset/data/dev.jsonl" df_train = pd.read_json(train_label_path, lines=True) df_val = pd.read_json(validation_label_path, lines=True) df_train df_val df_train.head(4) # # Checking null values df_train.isna().sum() df_train.shape df_train.iloc[2]["text"] nlp = spacy.load("en_core_web_sm") nlp.pipe_names # # Pie Chart for the distribution of data import matplotlib.pyplot as plt # Count the number of occurrences of each category in the training data train_counts = df_train["label"].value_counts() # Plot the counts as a pie chart fig, ax = plt.subplots() ax.pie(train_counts, labels=train_counts.index, autopct="%1.1f%%") ax.set_title("Distribution of Categories in Training Data") plt.show() # # Text Preprocessing df_train # ### filtering other language from langdetect import detect def filter_english(text): """ Function to remove non-English words from a text """ words = text.split() english_words = [word for word in words if word.isalpha() and detect(word) == "en"] return " ".join(english_words) text = "Bonjour! Comment ça va? I'm doing well, thank you. What about you?" filtered_text = filter_english(text) print(filtered_text) import re from bs4 import BeautifulSoup import contractions import nltk nltk.download("punkt") # Define a function for text preprocessing def preprocess_text(text): # Convert text to lowercase text = text.lower() # Remove extra whitespaces text = re.sub(r"\s+", " ", text) # Remove HTML tags using BeautifulSoup soup = BeautifulSoup(text, "html.parser") text = soup.get_text() # Remove URLs text = re.sub(r"http\S+", "", text) # Replace abbreviations with their full form using contractions package text = contractions.fix(text) # Remove punctuation text = re.sub(r"[^\w\s]", "", text) # Replace chat words with their full form chat_words_map = { "afaik": "as far as i know", "b4": "before", "b/c": "because", "btw": "by the way", "cya": "see you", "lol": "laugh out loud", "np": "no problem", "omg": "oh my god", "thx": "thanks", "ttyl": "talk to you later", "wtf": "what the fuck", "yolo": "you only live once", "brb": "be right back", "rofl": "rolling on the floor laughing", "gtg": "got to go", "ex": "previous girlfriend", "idk": "i do not know", "imo": "in my opinion", } words = text.split() new_words = [] for word in words: if word.lower() in chat_words_map: new_words.append(chat_words_map[word.lower()]) else: new_words.append(word) text = " ".join(new_words) return text # Apply the function to the text in the dataframe df_train["text"] = df_train["text"].apply(preprocess_text) df_train.iloc[1]["text"] # ### Handling emoji import emoji def convert_emoji_to_text(text): # Replace emojis with their textual representation text = emoji.demojize(text, delimiters=(" ", " ")) # Remove the colons that separate emoji codepoints text = text.replace(":", "") text = text.replace("_", " ") return text df_train["text"] = df_train["text"].apply(convert_emoji_to_text) text_with_emoji = "I'm feeling 😊 today!" text_without_emoji = convert_emoji_to_text(text_with_emoji) print(text_without_emoji) df_train.iloc[1]["text"] # ### Lemmatization import spacy # Load the English language model nlp = spacy.load("en_core_web_sm") # Define a function to lemmatize text using spaCy def lemmatize_text(text): doc = nlp(text) lemmatized_words = [token.lemma_ for token in doc] return " ".join(lemmatized_words) # Apply the lemmatization function to the 'text' column of the dataframe df_train["text"] = df_train["text"].apply(lemmatize_text) # ### Tokenization from nltk.tokenize import word_tokenize df_train["tokenized_text"] = df_train["text"].apply(word_tokenize) df_train
import pandas as pd import numpy as np data = pd.read_csv("/kaggle/input/kidneystone/train.csv") data.info() data.head() data.isnull().sum() corr = data.corr() corr["target"].sort_values() # x=data.drop(['target'],axis=1).values # from sklearn.decomposition import PCA # pca=PCA(n_components=1) # x=pca.fit_transform(x) x = data.drop(["ph", "id", "cond", "osmo", "target"], axis=1).values y = data["target"] # from sklearn.model_selection import train_test_split # x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2, random_state = 0) from sklearn.preprocessing import StandardScaler sc = StandardScaler() x = sc.fit_transform(x) # x_train=sc.fit_transform(x_train) # x_test=sc.fit_transform(x_test) print(x) from sklearn.linear_model import LogisticRegression classifier = LogisticRegression(random_state=0) classifier.fit(x, y) y_pred = classifier.predict(x) from sklearn.metrics import confusion_matrix, accuracy_score, f1_score, recall_score cm = confusion_matrix(y, y_pred) print(cm) acc = accuracy_score(y, y_pred) print(acc)
import numpy as np import pandas as pd import os from sklearn.model_selection import GridSearchCV from xgboost import XGBClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import roc_auc_score from sklearn.metrics import confusion_matrix from sklearn.model_selection import train_test_split from matplotlib import pyplot as plt import seaborn as sns import gzip for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) test_file = "../input/avazu-ctr-prediction/test.gz" samplesubmision_file = "../input/avazu-ctr-prediction/sampleSubmission.gz" chunksize = 10**6 num_of_chunk = 0 train = pd.DataFrame() for chunk in pd.read_csv("../input/avazu-ctr-train/train.csv", chunksize=chunksize): num_of_chunk += 1 train = pd.concat( [train, chunk.sample(frac=0.05, replace=False, random_state=123)], axis=0 ) print("Processing Chunk No. " + str(num_of_chunk)) train.reset_index(inplace=True) train_len = len(train) train_len df = pd.concat([train, pd.read_csv(test_file, compression="gzip")]).drop( ["index", "id"], axis=1 ) def get_date(hour): y = "20" + str(hour)[:2] m = str(hour)[2:4] d = str(hour)[4:6] return y + "-" + m + "-" + d df["weekday"] = pd.to_datetime(df.hour.apply(get_date)).dt.dayofweek.astype(str) def tran_hour(x): x = x % 100 while x in [23, 0]: return "23-01" while x in [1, 2]: return "01-03" while x in [3, 4]: return "03-05" while x in [5, 6]: return "05-07" while x in [7, 8]: return "07-09" while x in [9, 10]: return "09-11" while x in [11, 12]: return "11-13" while x in [13, 14]: return "13-15" while x in [15, 16]: return "15-17" while x in [17, 18]: return "17-19" while x in [19, 20]: return "19-21" while x in [21, 22]: return "21-23" df["hour"] = df.hour.apply(tran_hour) df.info() len_of_feature_count = [] for i in df.columns[2:23].tolist(): print(i, ":", len(df[i].astype(str).value_counts())) len_of_feature_count.append(len(df[i].astype(str).value_counts())) need_tran_feature = df.columns[2:4].tolist() + df.columns[13:23].tolist() for i in need_tran_feature: df[i] = df[i].astype(str) obj_features = [] for i in range(len(len_of_feature_count)): if len_of_feature_count[i] > 10: obj_features.append(df.columns[2:23].tolist()[i]) obj_features df_describe = df.describe() df_describe def obj_clean(X): def get_click_rate(x): temp = train[train[X.columns[0]] == x] res = round((temp.click.sum() / temp.click.count()), 3) return res def get_type(V, str): very_high = df_describe.loc["mean", "click"] + 0.04 higher = df_describe.loc["mean", "click"] + 0.02 lower = df_describe.loc["mean", "click"] - 0.02 very_low = df_describe.loc["mean", "click"] - 0.04 vh_type = V[V[str] > very_high].index.tolist() hr_type = V[(V[str] > higher) & (V[str] < very_high)].index.tolist() vl_type = V[V[str] < very_low].index.tolist() lr_type = V[(V[str] < lower) & (V[str] > very_low)].index.tolist() return vh_type, hr_type, vl_type, lr_type def clean_function(x): while x in type_[0]: return "very_high" while x in type_[1]: return "higher" while x in type_[2]: return "very_low" while x in type_[3]: return "lower" return "mid" print("Run: ", X.columns[0]) fq = X[X.columns[0]].value_counts() if len(fq) > 1000: fq = fq[:1000] fq = pd.DataFrame(fq) fq["new_column"] = fq.index fq["click_rate"] = fq.new_column.apply(get_click_rate) type_ = get_type(fq, "click_rate") return X[X.columns[0]].apply(clean_function) for i in obj_features: df[[i]] = obj_clean(df[[i]]) df for i in df.columns: sns.countplot(x=i, hue="click", data=df) plt.show() df.drop(["device_id", "C14", "C17", "C19", "C20", "C21"], axis=1, inplace=True) df = pd.get_dummies(df) train = df[:train_len] test = df[train_len:] del df pre_X = train[train["click"] == 0].sample( n=len(train[train["click"] == 1]), random_state=111 ) pre_X = pd.concat([pre_X, train[train["click"] == 1]]).sample(frac=1) pre_y = pre_X[["click"]] pre_X.drop(["click"], axis=1, inplace=True) test.drop(["click"], axis=1, inplace=True) pre_X_train, pre_X_test, pre_y_train, pre_y_test = train_test_split( pre_X, pre_y, test_size=0.20, stratify=pre_y, random_state=1 ) params = {"criterion": ["gini", "entropy"], "max_depth": range(1, 20)} grid_search = GridSearchCV( DecisionTreeClassifier(), param_grid=params, scoring="roc_auc", cv=100, verbose=1, n_jobs=-1, ) grid_search.fit(pre_X_train, pre_y_train) grid_search.best_score_, grid_search.best_estimator_, grid_search.best_params_ tree = grid_search.best_estimator_ tree.fit(pre_X, pre_y) feature_importances = pd.DataFrame(tree.feature_importances_) feature_importances.index = pre_X_train.columns feature_importances = feature_importances.sort_values(0, ascending=False) feature_importances pre_X_train = pre_X_train[ feature_importances.index[: int(len(feature_importances) / 3)] ] pre_X_test = pre_X_test[feature_importances.index[: int(len(feature_importances) / 3)]] params = {"criterion": ["gini", "entropy"], "max_depth": range(1, 12)} grid_search = GridSearchCV( DecisionTreeClassifier(), param_grid=params, scoring="roc_auc", cv=100, verbose=1, n_jobs=-1, ) grid_search.fit(pre_X_train, pre_y_train) grid_search.best_score_, grid_search.best_estimator_, grid_search.best_params_ pre_X = pre_X[feature_importances.index[: int(len(feature_importances) / 3)]] tree = grid_search.best_estimator_ tree.fit(pre_X, pre_y) feature_importances = pd.DataFrame(tree.feature_importances_) feature_importances.index = pre_X_train.columns feature_importances = feature_importances.sort_values(0, ascending=False) feature_importances feature_len = len( feature_importances[feature_importances[feature_importances.columns[0]] > 0.005] ) y = train[["click"]] X = train[feature_importances[:feature_len].index] test = test[feature_importances[:feature_len].index] model = XGBClassifier(tree_method="gpu_hist", n_jobs=-1, n_estimators=500, max_depth=11) model.fit(X, y.values.ravel()) y_pred = model.predict(X) print("Roc_auc_score: ", roc_auc_score(y, y_pred) * 100, "%") confmat = confusion_matrix(y_true=y, y_pred=y_pred, labels=[0, 1]) fig, ax = plt.subplots(figsize=(2.5, 2.5)) ax.matshow(confmat, cmap=plt.cm.Blues, alpha=0.3) for i in range(confmat.shape[0]): for j in range(confmat.shape[1]): ax.text(x=j, y=i, s=confmat[i, j], va="center", ha="center") plt.xlabel("Predicted label") plt.ylabel("True label") plt.tight_layout() plt.show() import seaborn as sns sns.heatmap( confmat, annot=True, fmt="", xticklabels=[0, 1], yticklabels=[0, 1], linewidth=0.5, cmap=sns.cubehelix_palette(as_cmap=True), ) plt.xlabel("Predicted label", fontsize=15) plt.ylabel("True label", fontsize=15) plt.title("Confusion Matrix", fontsize=20) plt.figure(figsize=(30.0, 30.0), dpi=200) plt.tight_layout() plt.show() import matplotlib.pyplot as plt from sklearn.metrics import roc_curve, auc # Plot ROC curve for each model fpr3, tpr3, _ = roc_curve(y, y_pred) roc_auc3 = auc(fpr3, tpr3) plt.figure(figsize=(10, 7)) plt.plot(fpr3, tpr3, color="blue", lw=2, label="XGBoost (AUC = %0.2f)" % roc_auc3) plt.plot([0, 1], [0, 1], color="navy", lw=2, linestyle="--") plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel("False Positive Rate", fontsize=15) plt.ylabel("True Positive Rate", fontsize=15) plt.title("Receiver Operating Characteristic (ROC) Curve", fontsize=20) plt.legend(loc="lower right") plt.show() import matplotlib.pyplot as plt import numpy from sklearn import metrics from sklearn.metrics import precision_recall_fscore_support print(precision_recall_fscore_support(y, y_pred, average="macro")) cm = confusion_matrix(y, y_pred) total1 = sum(sum(cm)) accuracy1 = (cm[0, 0] + cm[1, 1]) / total1 print("Accuracy : ", accuracy1) sensitivity1 = cm[0, 0] / (cm[0, 0] + cm[0, 1]) print("Sensitivity : ", sensitivity1) specificity1 = cm[1, 1] / (cm[1, 0] + cm[1, 1]) print("Specificity : ", specificity1) F1_score = metrics.f1_score(y, y_pred) print("F1 Score : ", F1_score)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import tensorflow as tf import numpy as np import time, re def gumbel_softmax(o_t, temperature, eps=1e-20): """Sample from Gumbel(0, 1)""" u = tf.random.uniform(tf.shape(o_t), minval=0, maxval=1) g_t = -tf.math.log(-tf.math.log(u + eps) + eps) gumbel_t = tf.math.add(o_t, g_t) return tf.math.multiply(gumbel_t, temperature) # ======================================================================================== # Sequence to Sequence # Source: https://www.tensorflow.org/text/tutorials/nmt_with_attention # ======================================================================================== class Seq2Seq: def __init__( self, inp_lang, targ_lang, max_length, vocab_inp_size, vocab_tar_size, batch_size=64, embedding_dim=256, units=1024, loss_object=None, optimizer=None, w_atten=False, gumbel=False, gumbel_temp=0.5, bpe=False, ): self.BATCH_SIZE = batch_size self.embedding_dim = embedding_dim self.units = units self.w_atten = w_atten self.gumbel = gumbel self.gumbel_temp = gumbel_temp self.bpe = bpe self.inp_lang = inp_lang self.targ_lang = targ_lang self.max_length_inp, self.max_length_targ = max_length self.vocab_inp_size = vocab_inp_size self.vocab_tar_size = vocab_tar_size if self.bpe: self.targ_lang_start_idx = self.targ_lang.tokenize("<start>") self.targ_lang_start_idx = self.targ_lang_start_idx.numpy()[0] self.targ_lang_end_idx = self.targ_lang.tokenize("<end>") self.targ_lang_end_idx = tf.cast(self.targ_lang_end_idx, tf.int32) else: self.targ_lang_start_idx = self.targ_lang.word_index["<start>"] if loss_object is not None: self.loss_object = loss_object else: self.loss_object = tf.keras.losses.SparseCategoricalCrossentropy( from_logits=True ) if optimizer is not None: self.optimizer = optimizer else: self.optimizer = tf.keras.optimizers.RMSprop() self.encoder = Seq2Seq.Encoder( self.vocab_inp_size, self.embedding_dim, self.units, self.BATCH_SIZE ) self.decoder = Seq2Seq.Decoder( self.vocab_tar_size, self.embedding_dim, self.units, self.BATCH_SIZE, self.w_atten, self.gumbel, self.gumbel_temp, ) def loss_function(self, real, pred): mask = tf.math.logical_not(tf.math.equal(real, 0)) loss_ = self.loss_object(real, pred) mask = tf.cast(mask, dtype=loss_.dtype) loss_ *= mask return tf.reduce_mean(loss_) @tf.function def train_step(self, inp, targ, enc_hidden): loss = 0 with tf.GradientTape() as tape: enc_output, enc_hidden = self.encoder(inp, enc_hidden) dec_hidden = enc_hidden dec_input = tf.expand_dims([self.targ_lang_start_idx] * self.BATCH_SIZE, 1) for t in range(1, targ.shape[1]): if self.w_atten: predictions, dec_hidden, _ = self.decoder( dec_input, dec_hidden, enc_output ) else: predictions, dec_hidden = self.decoder( dec_input, dec_hidden, enc_output ) loss += self.loss_function(targ[:, t], predictions) dec_input = tf.expand_dims(targ[:, t], 1) batch_loss = loss / int(targ.shape[1]) variables = self.encoder.trainable_variables + self.decoder.trainable_variables gradients = tape.gradient(loss, variables) self.optimizer.apply_gradients(zip(gradients, variables)) return batch_loss def train(self, dataset, steps_per_epoch, epochs): for epoch in range(epochs): start = time.time() enc_hidden = self.encoder.initialize_hidden_state() total_loss = 0 for batch, (inp, targ) in enumerate(dataset.take(steps_per_epoch)): batch_loss = self.train_step(inp, targ, enc_hidden) total_loss += batch_loss if batch % 100 == 0: print( "Epoch {} Batch {} Loss {:.4f}".format( epoch + 1, batch, batch_loss.numpy() ) ) print( "Epoch {} Loss {:.4f}".format(epoch + 1, total_loss / steps_per_epoch) ) print("Time taken for 1 epoch {} sec\n".format(time.time() - start)) def evaluate(self, sentence): # attention_plot = np.zeros((max_length_targ, max_length_inp)) sentence = preprocess_sentence(sentence) if self.bpe: inputs = [ self.inp_lang.tokenize(i) if i != 0 else self.inp_lang.tokenize("<unkown>") for i in sentence.split(" ") ] inputs = tf.concat(inputs, 0) enc_input = tf.expand_dims(inputs, 0) dec_input = self.targ_lang.tokenize("<start>") # dec_input = tf.concat(dec_input, 0) dec_input = tf.expand_dims(dec_input, 0) else: inputs = [ self.inp_lang.word_index[i] if i in self.inp_lang.word_index else self.inp_lang.word_index["<unkown>"] for i in sentence.split(" ") ] inputs = tf.keras.preprocessing.sequence.pad_sequences( [inputs], maxlen=self.max_length_inp, padding="post" ) enc_input = tf.convert_to_tensor(inputs) dec_input = tf.expand_dims([self.targ_lang.word_index["<start>"]], 0) result = "" hidden = [tf.zeros((1, self.units))] enc_out, enc_hidden = self.encoder(enc_input, hidden) dec_hidden = enc_hidden for t in range(self.max_length_targ): if self.w_atten: predictions, dec_hidden, _ = self.decoder( dec_input, dec_hidden, enc_out ) predicted_id = tf.argmax(predictions[0]).numpy() else: predictions, dec_hidden = self.decoder(dec_input, dec_hidden, enc_out) predicted_id = tf.argmax(predictions[0][0]).numpy() if predicted_id != 0: if self.bpe: predicted_word = self.targ_lang.detokenize([[predicted_id]]) predicted_word = predicted_word.numpy()[0, 0].decode("utf-8") result += predicted_word + " " else: result += self.targ_lang.index_word[predicted_id] + " " if (self.bpe and tf.equal(predicted_id, self.targ_lang_end_idx)) or ( not self.bpe and self.targ_lang.index_word[predicted_id] == "<end>" ): return result, sentence dec_input = tf.expand_dims([predicted_id], 0) result = re.sub(" ##", "", result) if self.bpe else result return result, sentence class Encoder(tf.keras.Model): def __init__(self, vocab_size, embedding_dim, enc_units, batch_sz): super(Seq2Seq.Encoder, self).__init__() self.batch_sz = batch_sz self.enc_units = enc_units self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim) self.gru = tf.keras.layers.GRU( self.enc_units, return_sequences=True, return_state=True, recurrent_initializer="glorot_uniform", ) def call(self, x, hidden): x = self.embedding(x) output, state = self.gru(x, initial_state=hidden) return output, state def initialize_hidden_state(self): return tf.zeros((self.batch_sz, self.enc_units)) class Decoder(tf.keras.Model): def __init__( self, vocab_size, embedding_dim, dec_units, batch_sz, w_atten=False, gumbel=False, gumbel_temp=0.5, ): super(Seq2Seq.Decoder, self).__init__() self.batch_sz = batch_sz self.dec_units = dec_units self.w_atten = w_atten self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim) self.gru = tf.keras.layers.GRU( self.dec_units, return_sequences=True, return_state=True, recurrent_initializer="glorot_uniform", ) if gumbel: self.fc = tf.keras.layers.Dense( vocab_size, activation=(lambda x: gumbel_softmax(x, temperature=gumbel_temp)), ) else: self.fc = tf.keras.layers.Dense(vocab_size) if self.w_atten: self.attention = Seq2Seq.BahdanauAttention(self.dec_units) def call(self, x, hidden, enc_output): if self.w_atten: context_vector, attention_weights = self.attention(hidden, enc_output) x = self.embedding(x) x = tf.concat([tf.expand_dims(context_vector, 1), x], axis=-1) output, state = self.gru(x) output = tf.reshape(output, (-1, output.shape[2])) x = self.fc(output) return x, state, attention_weights else: x = self.embedding(x) output, state = self.gru(x, hidden) x = self.fc(output) return x, state class BahdanauAttention(tf.keras.Model): def __init__(self, units): super(Seq2Seq.BahdanauAttention, self).__init__() self.W1 = tf.keras.layers.Dense(units) self.W2 = tf.keras.layers.Dense(units) self.V = tf.keras.layers.Dense(1) def call(self, query, values): hidden_with_time_axis = tf.expand_dims(query, 1) score = self.V(tf.nn.tanh(self.W1(values) + self.W2(hidden_with_time_axis))) attention_weights = tf.nn.softmax(score, axis=1) context_vector = attention_weights * values context_vector = tf.reduce_sum(context_vector, axis=1) return context_vector, attention_weights import unicodedata, re, os, io import tensorflow as tf import numpy as np def preprocess_sentence(w, add_token=True): w = re.sub(r"([?.!,'¿])", r" \1 ", w) w = re.sub(r'[" "]+', " ", w) w = re.sub(r"[^a-zA-Z?'.!,¿ıüçğşö]+", " ", w) w = w.rstrip().strip() if add_token: w = "<start> " + w + " <end>" return w def create_dataset(path, num_examples, add_token=True): lines = io.open(path, encoding="UTF-8").read().strip().split("\n") word_pairs = [ [preprocess_sentence(w, add_token) for w in l.split("\t")] for l in lines[:num_examples] ] return zip(*word_pairs) def max_length(tensor): return max(len(t) for t in tensor) def add_unknown_to_vocab(lang): index_word, word_index = {1: "<unkown>"}, {"<unkown>": 1} for i in lang.index_word: index_word[i + 1] = lang.index_word[i] word_index[lang.index_word[i]] = i + 1 return index_word, word_index def remove_words(tokenizer, num_words): tokenizer.index_word = { k: tokenizer.index_word[k] for k in list(tokenizer.index_word)[:num_words] } tokenizer.word_index = { k: tokenizer.word_index[k] for k in list(tokenizer.word_index)[:num_words] } return tokenizer def tokenize(lang, maxlen, num_words): lang_tokenizer = tf.keras.preprocessing.text.Tokenizer(filters="") lang_tokenizer.fit_on_texts(lang) lang_tokenizer.index_word, lang_tokenizer.word_index = add_unknown_to_vocab( lang_tokenizer ) lang_tokenizer = remove_words(lang_tokenizer, num_words) tensor = lang_tokenizer.texts_to_sequences(lang) tensor = tf.keras.preprocessing.sequence.pad_sequences( tensor, padding="post", maxlen=maxlen ) return tensor, lang_tokenizer def load_dataset(path, num_examples=None, maxlen=50, num_words=None): inp_lang, targ_lang = create_dataset(path, num_examples) input_tensor, inp_lang_tokenizer = tokenize(inp_lang, maxlen, num_words) target_tensor, targ_lang_tokenizer = tokenize(targ_lang, maxlen, num_words) return input_tensor, target_tensor, inp_lang_tokenizer, targ_lang_tokenizer import numpy as np from sklearn.model_selection import train_test_split # 加载数据集 input_tensor, target_tensor, inp_lang, targ_lang = load_dataset( "/kaggle/input/cheryl-news-ted/newted_en_fr.txt", num_examples=130000, maxlen=50, num_words=40000, ) # 划分训练集、验证集和测试集 train_size = 120000 val_size = 5000 input_tensor_train = input_tensor[:train_size] target_tensor_train = target_tensor[:train_size] input_tensor_val = input_tensor[train_size : train_size + val_size] target_tensor_val = target_tensor[train_size : train_size + val_size] input_tensor_test = input_tensor[train_size + val_size :] target_tensor_test = target_tensor[train_size + val_size :] max_length_inp = max_length(input_tensor) max_length_targ = max_length(target_tensor) vocab_inp_size = len(inp_lang.word_index) + 1 vocab_tar_size = len(targ_lang.word_index) + 1 # 超参数设置 BATCH_SIZE = 64 embedding_dim = 256 units = 1024 epochs = 10 # 创建数据集 dataset = tf.data.Dataset.from_tensor_slices( (input_tensor_train, target_tensor_train) ).shuffle(len(input_tensor_train)) dataset = dataset.batch(BATCH_SIZE, drop_remainder=True) steps_per_epoch = len(input_tensor_train) // BATCH_SIZE # 初始化模型 model = Seq2Seq( inp_lang, targ_lang, (max_length_inp, max_length_targ), vocab_inp_size, vocab_tar_size, batch_size=BATCH_SIZE, embedding_dim=embedding_dim, units=units, loss_object=None, optimizer=None, w_atten=False, gumbel=False, gumbel_temp=0.5, bpe=False, ) # 训练模型 model.train(dataset, steps_per_epoch, epochs) # 然后,保存你的训练好的模型 encoder_weights_path = "encoder_path" # 你可以选择一个合适的文件夹来保存模型 model.encoder.save_weights(encoder_weights_path) model.decoder.save_weights("decoder_path") num_examples = 20 for i in range(num_examples): source_sentence = " ".join( [inp_lang.index_word[t] for t in input_tensor_test[i] if t not in [0, 1, 2]] ) target_sentence = " ".join( [targ_lang.index_word[t] for t in target_tensor_test[i] if t not in [0, 1, 2]] ) predicted_sentence, _ = model.evaluate(source_sentence) print(f"Source Sentence: {source_sentence}") print(f"Target Sentence: {target_sentence}") print(f"Predicted Sentence: {predicted_sentence}\n") from collections import defaultdict from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction def calculate_bleu_score(references, candidate): smoothie = SmoothingFunction().method4 score = sentence_bleu(references, candidate, smoothing_function=smoothie) return score # 计算测试集上的 BLEU 分数 bleu_scores_by_length = defaultdict(list) sentence_count_by_length = defaultdict(int) # 在循环外部初始化变量 total_bleu_score = 0 total_sentence_count = 0 kk = len(input_tensor_test) # kk=50 for i in range(kk): input_sentence = " ".join( [inp_lang.index_word[idx] for idx in input_tensor_test[i] if idx != 0] ) target_sentence = " ".join( [targ_lang.index_word[idx] for idx in target_tensor_test[i] if idx != 0] ) predicted_sentence, _ = model.evaluate(input_sentence) predicted_sentence = predicted_sentence.strip().split(" ") target_sentence = ( target_sentence.replace("<start>", "").replace("<end>", "").strip().split(" ") ) sentence_length = len(target_sentence) if sentence_length <= 60: current_bleu_score = calculate_bleu_score([target_sentence], predicted_sentence) bleu_scores_by_length[sentence_length].append( calculate_bleu_score([target_sentence], predicted_sentence) ) sentence_count_by_length[sentence_length] += 1 # 累加 BLEU 分数和句子数量 total_bleu_score += current_bleu_score total_sentence_count += 1 # 计算整个数据集的平均 BLEU 分数 average_bleu_score = total_bleu_score / total_sentence_count # 输出结果 print("Length | Avg BLEU Score | Sentence Count") print("-----------------------------------------") for length in range(1, 61): if length in bleu_scores_by_length: avg_bleu_score = np.mean(bleu_scores_by_length[length]) count = sentence_count_by_length[length] print(f"{length:5} | {avg_bleu_score:13.4f} | {count:13}") print("\nOverall Average BLEU Score: {:.4f}".format(average_bleu_score)) predicted_sentence, _ = model.evaluate("this is my job") print(predicted_sentence) predicted_sentence, _ = model.evaluate( "et nous savons en fait quelque chose sur la manière dont le cerveau y parvient." ) print(predicted_sentence) predicted_sentence, _ = model.evaluate( "Aujourd'hui, je suis allée dans un restaurant chinois où le canard rôti était très bon." ) print(predicted_sentence) predicted_sentence, _ = model.evaluate("Enchanté de vous rencontrer") print(predicted_sentence) predicted_sentence, _ = model.evaluate("Je n'aime pas cette nourriture.") print(predicted_sentence) predicted_sentence, _ = model.evaluate("Enchanté de vous rencontrer") print(predicted_sentence) predicted_sentence, _ = model.evaluate( "La vie est courte et précieuse, nous devons saisir toutes les occasions de poursuivre ce que nous voulons vraiment, et persévérer quelles que soient les difficultés que nous rencontrons, car c'est seulement de cette manière que nous pouvons réaliser notre valeur personnelle." ) print(predicted_sentence) predicted_sentence, _ = model.evaluate( "La chose la plus importante dans la vie est de trouver son but, de poursuivre ses passions intérieures et les choses qui vous font vraiment sentir épanoui." ) print(predicted_sentence)
# # cover # TABLE OF CONTENTS # --- # 1&nbsp;&nbsp;&nbsp;&nbsp;INTRODUCTION & JUSTIFICATION # --- # 2&nbsp;&nbsp;&nbsp;&nbsp;BACKGROUND INFORMATION # --- # 3&nbsp;&nbsp;&nbsp;&nbsp;IMPORTS # --- # 4&nbsp;&nbsp;&nbsp;&nbsp;SETUP & HELPER FUNCTIONS # --- # 5&nbsp;&nbsp;&nbsp;&nbsp;EXPLORATORY DATA ANALYSIS # --- # 6&nbsp;&nbsp;&nbsp;&nbsp;BASELINE # --- # 7&nbsp;&nbsp;&nbsp;&nbsp;NEXT STEPS # 1&nbsp;&nbsp;INTRODUCTION & JUSTIFICATION&nbsp;&nbsp;&nbsp;&nbsp;&#10514; # 1.1 WHAT IS THIS? # --- # * This notebook will follow the authors learning path and highlight useful content about the competition # * This notebook will conduct an Exploratory Data Analysis for the competition # * This notebook will propose an open-source baseline solution # 1.2 WHY IS THIS? # --- # * Writing and sharing my learning path and the resulting exploratory data analysis can help improve my own understanding of the competition and the data. # * Sharing my work may help others who are interested in the competition (or the data). This help may take the form of: # * better understanding the problem and potential common solutions (incl. my baseline) # * better understanding of the provided dataset # * better understanding of th background information and research # * better ability to hypothesis new solutions # * Exploratory data analysis is a critical step in any data science project. Sharing my EDA might help others in the competition. # * Writing and sharing my work is often a fun and rewarding experience! It now only allows me to explore and try different techniques, ideas and visualizations... but it also encourages and supports other learners and partipants. # 1.4 HOW WILL THIS WORK? # --- # I'm going to assemble some markdown cells (like this one) at the beginning of the notebook to go over some concepts/details/etc. # Following this, I will attempt to walk through the data and understand it better prior to composing a baseline solution # 3&nbsp;&nbsp;IMPORTS&nbsp;&nbsp;&nbsp;&nbsp;&#10514; print("\n... IMPORTS STARTING ...\n") # Machine Learning and Data Science Imports (basics) import pandas as pd print(f"\t– PANDAS VERSION: {pd.__version__}") import numpy as np print(f"\t– NUMPY VERSION: {np.__version__}") # Built-In Imports (mostly don't worry about these) import os # Visualization Imports (overkill) import matplotlib.pyplot as plt print("\n... IMPORTS COMPLETE ...\n")
# # Introduction # This Notebook is part of the series of using Deep Learning to implement Recommender Systems. # The dataset used is Movielens. # GitHub project source: https://github.com/shawnhan108/The-Recommenders/ # Paper: https://www.researchgate.net/publication/340416554_Deep_Learning_Architecture_for_Collaborative_Filtering_Recommender_Systems # # Analysis preparation import numpy as np import pandas as pd from matplotlib import pyplot as plt import random import os from sklearn.utils import shuffle from keras.layers import ( Input, Embedding, Dense, Flatten, Concatenate, Add, Dot, Dropout, BatchNormalization, Activation, ) from keras.models import Model from keras.optimizers import Adam, SGD from IPython.display import SVG from keras.utils.vis_utils import model_to_dot from keras.utils import plot_model from movie_lens_data import MovieLensData # # Read the data path = "/kaggle/input/movielens-100k-dataset/ml-100k" movie_lens_data = MovieLensData( users_path=os.path.join(path, "u.user"), ratings_path=os.path.join(path, "u.data"), movies_path=os.path.join(path, "u.item"), genre_path=os.path.join(path, "u.genre"), ) evaluation_data = movie_lens_data.read_ratings_data() movie_data = movie_lens_data.read_movies_data() popularity_rankings = movie_lens_data.get_popularity_ranks() ratings = movie_lens_data.get_ratings() # # Prepare the algorithm def train_test_split(ratings): movie_df = ratings movie_df = shuffle(movie_df) train_size = int(0.75 * movie_df.shape[0]) train_df = movie_df.iloc[:train_size] test_df = movie_df.iloc[train_size:] return movie_df, train_df, test_df movie_df, train_df, test_df = train_test_split(ratings) user_num = movie_df.user_id.max() + 1 movie_num = movie_df.movie_id.max() + 1 K = 100 MU = train_df.rating.mean() EPOCHS = 15 REGULAR = 0.1 def build_model(user_num, movie_num): # input user_input = Input(shape=(1,), name="user_input") movie_input = Input(shape=(1,), name="movie_input") # Matrix Factorization # Since user_num < movie_num, we have user_num = batchsize user_embedding = Embedding(user_num, K, name="user_embedding")( user_input ) # bsize x 1 x k movie_embedding = Embedding(movie_num, K, name="movie_embedding")( movie_input ) # bsize x 1 x k user_bias = Embedding(user_num, 1, name="user_bias")(user_input) # bsize x 1 x 1 movie_bias = Embedding(movie_num, 1, name="movie_bias")( movie_input ) # bsize x 1 x 1 model = Dot(axes=2)([user_embedding, movie_embedding]) # bsize x 1 x 1 model = Add()([model, user_bias, movie_bias]) model = Flatten()(model) # bsize x 1 # Residual user_embedding_flat = Flatten(name="flt_user_emb")(user_embedding) # bsize x k movie_embedding_flat = Flatten(name="flt_movie_emb")(movie_embedding) # bsize x k residual = Concatenate(name="concatenate_user_movie")( [user_embedding_flat, movie_embedding_flat] ) # bsize x 2k residual = Dense(512)(residual) residual = Dropout(0.25)(residual) residual = Dense(256)(residual) residual = Dropout(0.25)(residual) residual = Activation("elu")(residual) residual = Dense(1)(residual) # Together model = Add()([model, residual]) model = Model(inputs=[user_input, movie_input], outputs=model) model.compile( loss="mse", optimizer=SGD(learning_rate=0.1, momentum=0.5), metrics=["mse"] ) return model model = build_model(user_num, movie_num) model.summary() plot_model(model, to_file="model.png") # # Train the model history = model.fit( x=[train_df.user_id.values, train_df.movie_id.values], y=train_df.rating.values - MU, epochs=EPOCHS, batch_size=128, validation_data=( [test_df.user_id.values, test_df.movie_id.values], test_df.rating.values - MU, ), ) # # Check the results def plot(history): f, ax = plt.subplots(1, 2, figsize=(10, 4)) ax[0].plot(history.history["loss"], label="train loss") ax[0].plot(history.history["val_loss"], label="validation loss") ax[0].legend() ax[1].plot(history.history["mse"], label="train mse") ax[1].plot(history.history["val_mse"], label="validation mse") ax[1].legend() plt.suptitle("Train/Validation loss & mse.") plt.show() plot(history) def predict_rating(data): result = model.predict([data.user_id.values, data.user_id.values]) return result + MU from sklearn.metrics import mean_squared_error predicted = predict_rating(test_df).flatten() mse = mean_squared_error(test_df.rating.values, predicted) rmse = mean_squared_error(test_df.rating.values, predicted, squared=False) print("Test MSE:", mse) print("Test RMSE:", rmse)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import numpy as np import pandas as pd import re from bs4 import BeautifulSoup import unicodedata from nltk.tokenize.toktok import ToktokTokenizer from tensorflow.keras.preprocessing import sequence from tensorflow.keras.preprocessing.text import Tokenizer from tqdm import tqdm import codecs import nltk import matplotlib.pyplot as plt # remove html tags def remove_html_tags(text): soup = BeautifulSoup(text, "html.parser") [s.extract() for s in soup(["iframe", "script"])] stripped_text = soup.get_text() stripped_text = re.sub(r'["\|\n|\r|\n\r]+', "", stripped_text) return stripped_text # remove html: def remove_html(text): text = re.sub(r"https?:\/\/\S*", "", text, flags=re.MULTILINE) return text # removing accented characters def remove_accented_chars(text): text = ( unicodedata.normalize("NFKD", text) .encode("ascii", "ignore") .decode("utf-8", "ignore") ) return text # removing special characters: def remove_special_characters(text): text = re.sub(r"[^a-zA-z\s]", "", text) return text # removing stopwords def remove_stopwords(text): tokenizer = ToktokTokenizer() stopword_list = [ "i", "me", "my", "myself", "we", "our", "ours", "ourselves", "you", "your", "yours", "yourself", "yourselves", "he", "him", "his", "himself", "she", "her", "hers", "herself", "it", "its", "itself", "they", "them", "their", "theirs", "themselves", "what", "which", "who", "whom", "this", "that", "these", "those", "am", "is", "are", "was", "were", "be", "been", "being", "have", "has", "had", "having", "do", "does", "did", "doing", "a", "an", "the", "and", "but", "if", "or", "because", "as", "until", "while", "of", "at", "by", "for", "with", "about", "against", "between", "into", "through", "during", "before", "after", "above", "below", "to", "from", "up", "down", "in", "out", "on", "off", "over", "under", "again", "further", "then", "once", "here", "there", "when", "where", "why", "how", "all", "any", "both", "each", "few", "more", "most", "other", "some", "such", "no", "nor", "not", "only", "own", "same", "so", "than", "too", "very", "s", "t", "can", "will", "just", "don", "should", "now", ] tokens = tokenizer.tokenize(text) tokens = [token.strip() for token in tokens] filtered_tokens = [token for token in tokens if token not in stopword_list] filtered_text = " ".join(filtered_tokens) return filtered_text def preprocessing_text(text_arr): preprocessed_text = [] idx = 0 for text in text_arr: text = remove_html(text) text = remove_html_tags(text) # remove html tags # text = remove_accented_chars(text) #removing accented characters # text = remove_special_characters(text) #removing special characters # text = text.lower() #change to lower case # text = remove_stopwords(text) #removing stopwords # word_seq,vocab_size = toakenizing(text) # max_vocab_size = np.max(vocab_size) preprocessed_text.append(text) idx += 1 print("Data Preprocessing finished.") return preprocessed_text # data = '/kaggle/input/dir-processed/DIR_processed.csv' data = "/kaggle/input/tweets-it/tweets-19-20.csv" df = pd.read_csv(data, index_col=0, encoding="ISO 8859-1") text = df.loc[:, "text"].values text_cleaned = preprocessing_text(text) len(text_cleaned) df_text_cleaned = pd.DataFrame({"cleaned_text": text_cleaned}) words_text_cleaned = df_text_cleaned.cleaned_text.str.split().str.len() words_text_cleaned.sum() plt.figure(figsize=(10, 5)) (n, bins, patches) = plt.hist( words_text_cleaned.values, edgecolor="black", bins=range(50), linewidth=1 ) # plt.ylim((0,5000)) plt.xlabel("Word Counts") plt.show() labels = df.iloc[:, 1:8].values print(labels) categories = df.columns.values[1:8] print(categories) import pandas as pd import torch import torch.nn as nn from transformers import BertTokenizer print("Loading BERT tokenizer...") tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", do_lower_case=True) # Print the original sentence. print(" Original: ", text_cleaned[0]) # Print the sentence split into tokens. print("Tokenized: ", tokenizer.tokenize(text_cleaned[0])) # Print the sentence mapped to token ids. print( "Token IDs: ", tokenizer.convert_tokens_to_ids(tokenizer.tokenize(text_cleaned[0])) ) max_len = 0 # For every sentence... for sent in text_cleaned: # Tokenize the text and add `[CLS]` and `[SEP]` tokens. input_ids = tokenizer.encode(sent, add_special_tokens=True) # Update the maximum sentence length. max_len = max(max_len, len(input_ids)) print("Max sentence length: ", max_len) input_ids = [] attention_masks = [] # For every sentence... for sent in text: # `encode_plus` will: # (1) Tokenize the sentence. # (2) Prepend the `[CLS]` token to the start. # (3) Append the `[SEP]` token to the end. # (4) Map tokens to their IDs. # (5) Pad or truncate the sentence to `max_length` # (6) Create attention masks for [PAD] tokens. encoded_dict = tokenizer.encode_plus( sent, # Sentence to encode. add_special_tokens=True, # Add '[CLS]' and '[SEP]' max_length=64, # Pad & truncate all sentences. pad_to_max_length=True, return_attention_mask=True, # Construct attn. masks. return_tensors="pt", # Return pytorch tensors. truncation=True, ) # Add the encoded sentence to the list. input_ids.append(encoded_dict["input_ids"]) # And its attention mask (simply differentiates padding from non-padding). attention_masks.append(encoded_dict["attention_mask"]) # Convert the lists into tensors. input_ids = torch.cat(input_ids, dim=0) attention_masks = torch.cat(attention_masks, dim=0) labels = torch.tensor(labels) # Print sentence 0, now as a list of IDs. print("Original: ", text_cleaned[0]) print("Token IDs:", input_ids[0]) input_ids.shape from torch.utils.data import DataLoader, RandomSampler, SequentialSampler # The DataLoader needs to know our batch size for training, so we specify it # here. For fine-tuning BERT on a specific task, the authors recommend a batch # size of 16 or 32. batch_size = 32 from torch.utils.data import TensorDataset, random_split dataset = TensorDataset(input_ids, attention_masks, labels) # For validation the order doesn't matter, so we'll just read them sequentially. validation_dataloader = DataLoader( dataset, # The validation samples. sampler=SequentialSampler(dataset), # Pull out batches sequentially. batch_size=batch_size, # Evaluate with this batch size. ) import torch import torch.nn as nn from transformers import BertModel class BertClassifier(nn.Module): """Bert Model for Classification Tasks.""" def __init__(self, freeze_bert=True): """ @param bert: a BertModel object @param classifier: a torch.nn.Module classifier @param freeze_bert (bool): Set `False` to fine-tune the BERT model """ super(BertClassifier, self).__init__() # Specify hidden size of BERT, hidden size of our classifier, and number of labels D_in, H, D_out = 768, 50, 7 # Instantiate BERT model self.bert = BertModel.from_pretrained("/kaggle/input/importmodel") # Instantiate an one-layer feed-forward classifier self.classifier = nn.Sequential( nn.Linear(D_in, H), nn.ReLU(), # nn.Dropout(0.5), nn.Linear(H, D_out), nn.Sigmoid(), ) # Freeze the BERT model if freeze_bert: for param in self.bert.parameters(): param.requires_grad = False def forward(self, input_ids, attention_mask): """ Feed input to BERT and the classifier to compute logits. @param input_ids (torch.Tensor): an input tensor with shape (batch_size, max_length) @param attention_mask (torch.Tensor): a tensor that hold attention mask information with shape (batch_size, max_length) @return logits (torch.Tensor): an output tensor with shape (batch_size, num_labels) """ # Feed input to BERT outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask) # Extract the last hidden state of the token `[CLS]` for classification task last_hidden_state_cls = outputs[0][:, 0, :] # Feed input to classifier to compute logits logits = self.classifier(last_hidden_state_cls) return logits def evaluate(model, val_dataloader): """After the completion of each training epoch, measure the model's performance on our validation set. """ # Put the model into the evaluation mode. The dropout layers are disabled during # the test time. model.eval() # Tracking variables val_precision = [] val_recall = [] val_f1 = [] val_loss = [] # For each batch in our validation set... for batch in val_dataloader: # Load batch to GPU b_input_ids, b_attn_mask, b_labels = tuple(t for t in batch) # Compute logits with torch.no_grad(): logits = model(b_input_ids, b_attn_mask) # Compute loss loss = loss_fn(logits, b_labels.type(torch.float)) val_loss.append(loss.item()) # Get the predictions logits_arr = logits.cpu().numpy() logits_arr[logits_arr >= 0.5] = 1 logits_arr[logits_arr < 0.5] = 0 b_labels_arr = b_labels.cpu().numpy() # Calculate the accuracy rate precision_micro = metrics.precision_score( y_true=b_labels_arr, y_pred=logits_arr, average="micro" ) val_precision.append(precision_micro) recall_micro = metrics.recall_score( y_true=b_labels_arr, y_pred=logits_arr, average="micro" ) val_recall.append(recall_micro) f1_micro = metrics.f1_score( y_true=b_labels_arr, y_pred=logits_arr, average="micro" ) val_f1.append(f1_micro) # Compute the average accuracy and loss over the validation set. val_loss = np.mean(val_loss) val_precision = np.mean(precision_micro) val_recall = np.mean(recall_micro) val_f1 = np.mean(f1_micro) return val_loss, val_precision, val_recall, val_f1 import matplotlib.pyplot as plt def evaluate_roc(probs, y_true, title_category): """ - Print AUC and accuracy on the test set - Plot ROC @params probs (np.array): an array of predicted probabilities with shape (len(y_true), 2) @params y_true (np.array): an array of the true values with shape (len(y_true),) """ preds = probs fpr, tpr, threshold = metrics.roc_curve(y_true, preds) roc_auc = metrics.auc(fpr, tpr) print(f"AUC: {roc_auc:.4f}") # Get accuracy over the test set y_pred = np.where(preds >= 0.5, 1, 0) accuracy = metrics.accuracy_score(y_true, y_pred) print(f"Accuracy: {accuracy*100:.2f}%") # Plot ROC AUC plt.title("Receiver Operating Characteristic for " + title_category) plt.plot(fpr, tpr, "b", label="AUC = %0.2f" % roc_auc) plt.legend(loc="lower right") plt.plot([0, 1], [0, 1], "r--") plt.xlim([0, 1]) plt.ylim([0, 1]) plt.ylabel("True Positive Rate") plt.xlabel("False Positive Rate") plt.show() import torch.nn.functional as F def bert_predict(model, test_dataloader): """Perform a forward pass on the trained BERT model to predict probabilities on the test set. """ # Put the model into the evaluation mode. The dropout layers are disabled during # the test time. model.eval() all_logits = [] # For each batch in our test set... for batch in test_dataloader: # Load batch to GPU b_input_ids, b_attn_mask = tuple(t for t in batch)[:2] # Compute logits with torch.no_grad(): logits = model(b_input_ids, b_attn_mask) all_logits.append(logits.type(torch.float)) # Concatenate logits from each batch all_logits = torch.cat(all_logits, dim=0) # Apply softmax to calculate probabilities probs = all_logits.cpu().numpy() return probs from torchsummary import summary bert_classifier = BertClassifier(freeze_bert=True) from sklearn import metrics def calculate_metrics(pred, target): # pred = np.array(pred > threshold, dtype=float) return { "micro/precision": metrics.precision_score( y_true=target, y_pred=pred, average="micro" ), "micro/recall": metrics.recall_score( y_true=target, y_pred=pred, average="micro" ), "micro/f1": metrics.f1_score(y_true=target, y_pred=pred, average="micro"), "macro/precision": metrics.precision_score( y_true=target, y_pred=pred, average="macro" ), "macro/recall": metrics.recall_score( y_true=target, y_pred=pred, average="macro" ), "macro/f1": metrics.f1_score(y_true=target, y_pred=pred, average="macro"), "samples/precision": metrics.precision_score( y_true=target, y_pred=pred, average="samples" ), "samples/recall": metrics.recall_score( y_true=target, y_pred=pred, average="samples" ), "samples/f1": metrics.f1_score(y_true=target, y_pred=pred, average="samples"), } test_labels = np.array([]) for i, data in enumerate(validation_dataloader): test_labels = np.append(test_labels, data[2].numpy()) print(test_labels.shape) test_labels = test_labels.reshape(83, 7) test_labels.shape probs = bert_predict(bert_classifier, validation_dataloader) # Get predictions from the probabilities threshold = 0.5 preds = np.where(probs > threshold, 1, 0) # Number of tweets predicted non-negative # print("Labels of tweets predicted: ", preds) results = calculate_metrics(pred=preds, target=test_labels.astype("int")) print(f'Micro Precision: {results["micro/precision"]:.4f}') print(f'Micro Recall: {results["micro/recall"]:.4f}') print(f'Mirco F1: {results["micro/f1"]:.4f}') print(f'Macro Precision: {results["macro/precision"]:.4f}') print(f'Macro Recall: {results["macro/recall"]:.4f}') print(f'Macro F1: {results["macro/f1"]:.4f}')
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import scipy.io from sklearn.cluster import KMeans import matplotlib.pyplot as plt import sys import timeit from sklearn.metrics import confusion_matrix import math # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # Loading CT Scans data = scipy.io.loadmat( "/kaggle/input/ctscan-segmentation-reconstruction-dataset/ctscan_hw1.mat" ) temp_ct_scans = data["ctscan"] ct_scans = [] for i in range(temp_ct_scans.shape[2]): ct_scans.append(temp_ct_scans[:, :, i]) ct_scans = np.array(ct_scans) print(ct_scans.shape) # Loading Infection Masks data = scipy.io.loadmat( "/kaggle/input/ctscan-segmentation-reconstruction-dataset/infmsk_hw1.mat" ) infmask = data["infmsk"] infection_masks = [] for i in range(infmask.shape[2]): infection_masks.append(infmask[:, :, i]) infection_masks = np.array(infection_masks) print(infection_masks.shape) N = ct_scans.shape[0] # Manual Centroid Initialization; DOESN'T WORK # def find_centroids(temp_ct_scan, temp_inf_mask): # b = None # i = None # h = None # for i in range(512): # for j in range(512): # # if(not (b == None or i == None or h == None) ): # # break # if(temp_inf_mask[i][j] == 0): # b = temp_ct_scan[i][j] # if(temp_inf_mask[i][j] == 1): # i = temp_ct_scan[i][j] # else: # h = temp_ct_scan[i][j] # return np.array([b,h,i]).reshape(3,1) # Functions to correct predicted mask, i.e., correct background, infection and healthy region as expected def find_counts(mask): count_background = np.count_nonzero(mask == 0) count_infection = np.count_nonzero(mask == 1) count_healthy = np.count_nonzero(mask == 2) return np.array([count_background, count_infection, count_healthy]) def check_pred_mask(pred_mask): pred_count_list = find_counts(pred_mask) original_count_list = np.array([100, 10, 50]) mapping = dict({}) for i in range(3): pred_max_idx = np.argmax(pred_count_list) original_max_idx = np.argmax(original_count_list) mapping[pred_max_idx] = original_max_idx pred_count_list[pred_max_idx] = -1 original_count_list[original_max_idx] = -1 corrected_mask = np.empty(shape=(512, 512), dtype=int) for i in range(512): for j in range(512): corrected_mask[i][j] = mapping[pred_mask[i][j]] return corrected_mask # Using k-means for Image Segmentation def get_predicted_mask(ct_scans): start = timeit.default_timer() pred_masks = [] N = len(ct_scans) for i in range(N): sys.stdout.write("\r" + "Processing Image " + str(i)) sample = ct_scans[i] kmeans_obj = KMeans(n_clusters=3, random_state=0) ct_scan_flattened = sample.flatten().reshape((512 * 512, 1)) clusters = kmeans_obj.fit_predict(ct_scan_flattened) curr_pred_mask = clusters.reshape((512, 512)) curr_pred_mask = check_pred_mask(curr_pred_mask) pred_masks.append(curr_pred_mask) pred_masks = np.array(pred_masks) print("\n", pred_masks.shape) stop = timeit.default_timer() print("Time Taken = ", stop - start) return pred_masks pred_masks = get_predicted_mask(ct_scans) # Checking the Predicted Mask with the expert annotations # for i in range(N): # f, axarr = plt.subplots(1,3) # axarr[0].set_title("Expert Annotations") # axarr[0].imshow(infection_masks[i]) # axarr[1].set_title("Predicted Masks") # axarr[1].imshow(pred_masks[i]) # axarr[2].set_title("CT Scans") # axarr[2].imshow(ct_scans[i]) # plt.show() # Two Samples with Expert Annotations(left), Predicted Mask(middle) and CT Scans(right) plt.rcParams["figure.figsize"] = (12, 12) i = 99 f, axarr = plt.subplots(1, 3) axarr[0].set_title("Expert Annotations") axarr[0].imshow(infection_masks[i], cmap="gray") axarr[1].set_title("Predicted Masks") axarr[1].imshow(pred_masks[i], cmap="gray") axarr[2].set_title("CT Scans") axarr[2].imshow(ct_scans[i], cmap="gray") f.tight_layout() plt.show() i = 69 f, axarr = plt.subplots(1, 3) axarr[0].set_title("Expert Annotations") axarr[0].imshow(infection_masks[i], cmap="gray") axarr[1].set_title("Predicted Masks") axarr[1].imshow(pred_masks[i], cmap="gray") axarr[2].set_title("CT Scans") axarr[2].imshow(ct_scans[i], cmap="gray") f.tight_layout() plt.show() # # Pixel Accuracy(Not Required), Not DICE_SCORE # pixel_accuracy = [] # for i in range(len(pred_masks)): # pred_mask = pred_masks[i] # original_mask = infection_masks[i] # pixel_accuracy.append((pred_mask == original_mask).sum()/ (512*512)) # pixel_accuracy = np.array(pixel_accuracy) # print("Average Pixel Accuracy = ", np.mean(pixel_accuracy)) # Evaluating the model performance using several evaluation metrics def get_confusion_metric(true_y, pred_y): true_y = true_y.flatten() pred_y = pred_y.flatten() return confusion_matrix(true_y, pred_y, labels=[0, 1, 2]) def get_req_avg_eval_metrics(infection_masks, pred_masks): avg_infection_sensitivity = 0 avg_infection_specificity = 0 avg_infection_accuracy = 0 avg_infection_dice_score = 0 avg_healthy_sensitivity = 0 avg_healthy_specificity = 0 avg_healthy_accuracy = 0 avg_healthy_dice_score = 0 count_infection_sensitivity = 0 # nan error N = len(infection_masks) for i in range(N): curr_confusion_metric = ( get_confusion_metric(infection_masks[i], pred_masks[i]) ).T infection_TP = curr_confusion_metric[1][1] infection_TN = ( curr_confusion_metric[0][0] + curr_confusion_metric[2][0] + curr_confusion_metric[0][2] + curr_confusion_metric[2][2] ) infection_FP = curr_confusion_metric[1][0] + curr_confusion_metric[1][2] infection_FN = curr_confusion_metric[0][1] + curr_confusion_metric[2][1] healthy_TP = curr_confusion_metric[2][2] healthy_TN = ( curr_confusion_metric[0][0] + curr_confusion_metric[0][1] + curr_confusion_metric[1][0] + curr_confusion_metric[1][1] ) healthy_FP = curr_confusion_metric[2][0] + curr_confusion_metric[2][1] healthy_FN = curr_confusion_metric[0][2] + curr_confusion_metric[1][2] # Sensitivity = Recall = TP/(TP+FN) # Preicision = TP/(TP+FP) # Specificity = TN/(TN+FP) # Dice Score = 2.TP / (2.TP + FP + FN) infection_sensitivity = 0 if (infection_TP + infection_FN) != 0: count_infection_sensitivity += 1 infection_sensitivity = (infection_TP) / (infection_TP + infection_FN) infection_specificity = (infection_TN) / (infection_TN + infection_FP) infection_accuracy = (infection_TP + infection_TN) / ( infection_TP + infection_TN + infection_FP + infection_FN ) infection_dice_score = (2 * infection_TP) / ( 2 * infection_TP + infection_FP + infection_FN ) healthy_sensitivity = (healthy_TP) / (healthy_TP + healthy_FN) healthy_specificity = (healthy_TN) / (healthy_TN + healthy_FP) healthy_accuracy = (healthy_TP + healthy_TN) / ( healthy_TP + healthy_TN + healthy_FP + healthy_FN ) healthy_dice_score = (2 * healthy_TP) / ( 2 * healthy_TP + healthy_FP + healthy_FN ) avg_infection_sensitivity += infection_sensitivity avg_infection_specificity += infection_specificity avg_infection_accuracy += infection_accuracy avg_infection_dice_score += infection_dice_score avg_healthy_sensitivity += healthy_sensitivity avg_healthy_specificity += healthy_specificity avg_healthy_accuracy += healthy_accuracy avg_healthy_dice_score += healthy_dice_score avg_infection_sensitivity = avg_infection_sensitivity / count_infection_sensitivity avg_infection_specificity = avg_infection_specificity / N avg_infection_accuracy = avg_infection_accuracy / N avg_infection_dice_score = avg_infection_dice_score / N avg_healthy_sensitivity = avg_healthy_sensitivity / N avg_healthy_specificity = avg_healthy_specificity / N avg_healthy_accuracy = avg_healthy_accuracy / N avg_healthy_dice_score = avg_healthy_dice_score / N return ( avg_infection_dice_score, avg_infection_sensitivity, avg_infection_specificity, avg_infection_accuracy, avg_healthy_dice_score, avg_healthy_sensitivity, avg_healthy_specificity, avg_healthy_accuracy, ) ( inf_ds, inf_sen, inf_spec, inf_acc, hea_ds, hea_sen, hea_spec, hea_acc, ) = get_req_avg_eval_metrics(infection_masks, pred_masks) print("Average Dice Score for Infection: ", inf_ds) print("Average Sensitivity for Infection: ", inf_sen) print("Average Specificity for Infection: ", inf_spec) print("Average Accuracy for Infection: ", inf_acc) print() print("Average Dice Score for Healthy: ", hea_ds) print("Average Sensitivity for Healthy: ", hea_sen) print("Average Specificity for Healthy: ", hea_spec) print("Average Accuracy for Healthy: ", hea_acc)
# Using Naive Bayes' to classify income in Adult Dataset # for data manipulation import numpy as np import pandas as pd # import category encoders import category_encoders as ce # pip install category_encoders # for feature scaling from sklearn.preprocessing import RobustScaler # for model making from sklearn.model_selection import train_test_split from sklearn.naive_bayes import GaussianNB # for model accuracy from sklearn.metrics import accuracy_score # for data visualization import matplotlib.pyplot as plt import seaborn as sns import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # #### Loading the dataset df = pd.read_csv("/kaggle/input/adult-dataset/adult.csv") print(df.shape) df.head() # #### Since the dataset has no heading, we provide meaningful feature names to the dataset col_names = [ "age", "workclass", "fnlwgt", "education", "education_num", "marital_status", "occupation", "relationship", "race", "sex", "capital_gain", "capital_loss", "hours_per_week", "native_country", "income", ] df.columns = col_names df.columns df.head() # #### Summary and Descriptive statistics of the dataset and checking for null values df.info() df.describe() df.isnull().sum() # #### Finding out categorical variables categorical = [var for var in df.columns if df[var].dtype == "O"] print("There are {} categorical variables\n".format(len(categorical))) print("The categorical variables are :\n\n", categorical) # #### Checking for inconsistency in categorical variables df.workclass.value_counts() # replacing '?' values in workclass variable with 'NaN' df["workclass"].replace("?", np.NaN, inplace=True) df.occupation.value_counts() # replacing '?' values in workclass variable with 'NaN' df["occupation"].replace("?", np.NaN, inplace=True) df.native_country.value_counts() # replacing '?' values in workclass variable with 'NaN' df["native_country"].replace("?", np.NaN, inplace=True) # #### Seperating target variable and features X = df.drop(["income"], axis=1) y = df["income"] # #### Splitting the data into training and testing datasets X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=42 ) # #### One hot encoding the categorical variables encoder = ce.OneHotEncoder( cols=[ "workclass", "education", "marital_status", "occupation", "relationship", "race", "sex", "native_country", ] ) X_train = encoder.fit_transform(X_train) X_test = encoder.transform(X_test) print(X_train.shape) X_train.head() # #### Feature Scaling X_train cols = X_train.columns scaler = RobustScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) X_train = pd.DataFrame(X_train, columns=[cols]) X_test = pd.DataFrame(X_test, columns=[cols]) X_train.head() # #### Model making # instantiating model model = GaussianNB() model.fit(X_train, y_train) # #### Predicting values y_pred = model.predict(X_test) y_pred_train = model.predict(X_train) # #### Checking Model accuracy print("Model accuracy score (testing dataset) : ", accuracy_score(y_test, y_pred)) print( "Model accuracy score (training dataset) : ", accuracy_score(y_train, y_pred_train) ) # ***Since the accuracy scores for testing and training dataset are comparable, there is no sign of overfitting*** y_pred_prob = model.predict_proba(X_test) y_pred_prob y_pred_prob_df = pd.DataFrame(data=y_pred_prob, columns=["P(<=50K)", "P(>50K)"]) y_pred_prob_df
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt pd.set_option("max_rows", None) import regex as re import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LinearRegression, Ridge, Lasso from sklearn.neighbors import KNeighborsRegressor from sklearn.neural_network import MLPRegressor from sklearn.svm import LinearSVR, SVR from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor from xgboost import XGBRegressor from lightgbm import LGBMRegressor from catboost import CatBoostRegressor import warnings warnings.filterwarnings(action="ignore") data = pd.read_csv( "/kaggle/input/smartphone-specifications-and-prices-in-india/smartphones - smartphones.csv" ) data.head() def onehot_encode(df, column): df = df.copy() dummies = pd.get_dummies(df[column], prefix=column) if len(df[column].unique()) == 2: dummies = dummies.drop(dummies.columns[0], axis=1) df = pd.concat([df, dummies], axis=1) df = df.drop(column, axis=1) return df def preprocess_inputs(df): df = df.copy() rows = df.loc[~(df.battery.str.split(" ").str[0]).str.contains("mAh")].index df = df.drop(rows, axis=0) ### battery operation df["batteryFastCharging"] = df.apply( lambda x: 1 if "Fast Charging" in x["battery"] else 0, axis=1 ) df["batteryFastChargingW"] = ( df.battery.str.split("Battery with") .str[1] .str.replace("Fast Charging", "") .str.replace("W", "") ) df["batteryFastChargingW"] = df.apply( lambda x: np.nan if x["batteryFastCharging"] == 0 else ("45" if x["batteryFastChargingW"] == " " else x["batteryFastChargingW"]), axis=1, ) df["batteryFastChargingW"] = pd.to_numeric( df["batteryFastChargingW"], errors="ignore" ) df["batterymAh"] = ( df.battery.str.split(" ").str[0].str.replace("mAh", "").astype("int") ) ### Price operation df["price"] = df.price.str.replace("₹", "").str.replace(",", "").astype("int") ### display operation df["displaySizeInches"] = ( df.display.str.split(",").str[0].str.replace("inches", "").astype("float") ) df["displayWidth"] = df["display"].str.extract(r"(\d+)\s*x").astype("float") df["displayHeight"] = df["display"].str.extract(r"x\s*(\d+)").astype("float") df["display1"] = df.display.str.split(",").str[1] df.display1 = df.display1.str.replace("px", "") df.display1 = df.display1.str.replace("Display", "") df.display1 = df.display1.str.replace("with", "") df.display1 = df.display1.str.replace(" ", "") df["displayNotch"] = df["display1"].str.extract( r"(\D+Notch)?$", flags=re.IGNORECASE ) df["displayHz"] = df["display"].str.extract(r"(\d+)\s*Hz").astype("float") ### memory card operation df["cardUpto"] = df["card"].str.extract(r"upto\s*(\d+)") df["cardUpto"] = df["cardUpto"].str.replace(r"\b1\b", "1024") df["cardUpto"] = df["cardUpto"].str.replace("1000", "1024") df["cardUpto"] = df["cardUpto"].str.replace(r"\b2\b", "2048") df["cardUpto"] = df["cardUpto"].astype("float") ### Sim operation df["5G"] = df.apply(lambda x: 1 if "5G" in x["sim"] else 0, axis=1) ## Ram/Storage operation df["Ram"] = ( (df.ram.str.split(",").apply(lambda x: x[0] if len(x) == 2 else np.NaN)) .str.extract(r"(\d+)\s*GB") .astype("float") ) df["Storage"] = ( (df.ram.str.split(",").apply(lambda x: x[1] if len(x) == 2 else x[0])) .str.extract(r"(\d+)\s*GB") .astype("float") ) ## Processor operation df["processorClockSpeed"] = ( df["processor"].str.extract(r"(\d+\.?\d*)\s*GHz").astype("float") ) df["processorNoOfCores"] = df["processor"].str.extract(r"(\w+)\sCore") df["processorName"] = df.processor.str.split(",").str[0] # ['Octa', 'Hexa', 'Quad', nan, 'Dual', 'Single'] df["processorNoOfCores"] = df["processorNoOfCores"].str.replace("Single", "1") df["processorNoOfCores"] = df["processorNoOfCores"].str.replace("Dual", "2") df["processorNoOfCores"] = df["processorNoOfCores"].str.replace("Quad", "4") df["processorNoOfCores"] = df["processorNoOfCores"].str.replace("Hexa", "6") df["processorNoOfCores"] = df["processorNoOfCores"].str.replace("Octa", "8") mode_value = df["processorNoOfCores"].mode()[0] # calculate mode df["processorNoOfCores"] = df["processorNoOfCores"].fillna(mode_value).astype(int) df["processorNoOfCores"] = df["processorNoOfCores"].astype("int") ## Camera operation df["camera"] = ( df["camera"] .str.extractall(r"(\d+\.?\d*)\s*MP")[0] .astype(float) .groupby(level=0) .apply(list) .apply(sum) ) for column in ["os", "displayNotch", "processorName"]: df = onehot_encode(df, column=column) df.cardUpto = df.cardUpto.fillna(df.cardUpto.mode()[0]) df.displayHz = df.displayHz.fillna(df.displayHz.mode()[0]) df.batteryFastChargingW = df.batteryFastChargingW.fillna( df.batteryFastChargingW.mode()[0] ) df.rating = df.rating.fillna(df.rating.mode()[0]) df.processorClockSpeed = df.processorClockSpeed.fillna( df.processorClockSpeed.mode()[0] ) df.camera = df.camera.fillna(df.camera.mode()[0]) df.Storage = df.Storage.fillna(df.Storage.mode()[0]) df.Ram = df.Ram.fillna(df.Ram.mode()[0]) drop_cols = [ "batteryFastCharging", "battery", "display1", "display", "card", "sim", "ram", "processor", "model", ] df = df.drop(drop_cols, axis=1) return df # X.info() XX = preprocess_inputs(data) # X.Ram.str.split(' ') # X['Ram'].str.extract(r'(\d+)\s*GB') XX.head() X = XX.drop("price", axis=1) y = XX["price"] # y # X.isnull().sum().sort_values(ascending= False).head(8) # X.cardUpto = X.cardUpto.fillna(X.cardUpto.mode()[0]) # X.displayHz = X.displayHz(X.displayHz.mode()[0]) # X.batteryFastChargingW = X.batteryFastChargingW(X.batteryFastChargingW.mode()[0]) # X.rating = X.rating(X.rating.mode()[0]) # X.processorClockSpeed = X.processorClockSpeed(X.processorClockSpeed.mode()[0]) # X.camera = X.camera(X.camera.mode()[0]) # X.Storage = X.Storage(X.Storage.mode()[0]) # X.Ram = X.Ram(X.Ram.mode()[0]) # X.batteryFastChargingW.mode() # X.rating.mode() # X.processorClockSpeed.mode() # X.camera.mean() # X.Storage.mode() # X.Ram.mode() # # X.shape X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.33, random_state=42 ) ############### ModeL #################### models = { " Linear Regression": LinearRegression(), " Linear Regression (L2 Regularization)": Ridge(), " Linear Regression (L1 Regularization)": Lasso(), " K-Nearest Neighbors": KNeighborsRegressor(), " Neural Network": MLPRegressor(), "Support Vector Machine (Linear Kernel)": LinearSVR(), " Support Vector Machine (RBF Kernel)": SVR(), " Decision Tree": DecisionTreeRegressor(), " Random Forest": RandomForestRegressor(), " Gradient Boosting": GradientBoostingRegressor(), " XGBoost": XGBRegressor(), # " LightGBM": LGBMRegressor(), " CatBoost": CatBoostRegressor(verbose=0), } for name, model in models.items(): model.fit(X_train, y_train) print(name + " trained.") print("\nAll Model Trained") ################### RMSE & R^2 ################### for name, model in models.items(): y_pred = model.predict(X_test) rmse = np.sqrt(np.mean((y_test - y_pred) ** 2)) print(name + " RMSE: {:.4f}".format(rmse)) for name, model in models.items(): y_pred = model.predict(X_test) r2 = 1 - (np.sum((y_test - y_pred) ** 2) / np.sum((y_test - y_test.mean()) ** 2)) print(name + " R^2: {:.5f}".format(r2)) ############### Df ######################### modell = [] rmsel = [] r2l = [] for name, model in models.items(): y_pred = model.predict(X_test) rmse = np.sqrt(np.mean((y_test - y_pred) ** 2)) # print(name + " RMSE: {:.4f}".format(rmse)) r2 = 1 - (np.sum((y_test - y_pred) ** 2) / np.sum((y_test - y_test.mean()) ** 2)) # print(name + " R^2: {:.5f}".format(r2)) modell.append(name) rmsel.append(rmse) r2l.append(r2) df = pd.DataFrame({"ModelName": modell, "RMSE": rmsel, "R_squared": r2l}) df = df.sort_values(by=["RMSE"], ascending=True).reset_index(drop=True) df # XGB rockks!! # This is the best Dataset I have worked on! # Took every bit of my learning. # Any suggestions are most welcome. # Upvote if you like! # Thanks!
import pandas as pd import numpy as np import seaborn as sns df = pd.read_csv("../input/world-happiness/2019.csv") df.head() # data preprocessing**** df.shape df.columns df.isnull().sum() sns.barplot(x="Country or region", y="Overall rank", data=df) sns.pairplot(df) tc = df.corr() tc sns.heatmap(tc, annot=True) l = df["Country or region"] d = df.drop(["Country or region"], axis=1) print(l.shape) print(d.shape) from sklearn.preprocessing import StandardScaler standardised_data = StandardScaler().fit_transform(d) print(standardised_data.shape) labels = l data = d from sklearn import decomposition pca = decomposition.PCA() sample_data = standardised_data pca.n_components = 2 pca_data = pca.fit_transform(sample_data) print(pca_data.shape) pca_data = np.vstack((pca_data.T, labels)).T pca_data pca_df = pd.DataFrame( data=pca_data, columns=("1st_principal", "2nd_principal", "labels") ) import matplotlib.pyplot as plt sns.FacetGrid(pca_df, hue="labels", height=6).map( plt.scatter, "1st_principal", "2nd_principal" ).add_legend() plt.show()
# #Scheherazade # Scheherazade is a major female character and the storyteller in the frame narrative of the Middle Eastern collection of tales known as the One Thousand and One Nights. # https://en.wikipedia.org/wiki/Scheherazade # ![](https://assets.mycast.io/posters/1001-arabian-nights-fan-casting-poster-41053-medium.jpg?1591462033)myCast.io import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # # #Rimsky Korsakov - Scheherazade (Şehrazat) # https://www.youtube.com/watch?v=J0pic78Qkrs # 1001 gece masallarının dünyası müzikle ancak bu kadar iyi anlatılabilirdi.En sevdiğim müziklerden biri. # Importing essential libraries import cv2, glob, os from matplotlib import pyplot as plt from PIL import Image # #Codes by Shrushrita Sharma https://www.kaggle.com/shrushritasharma/understanding-basic-image-operations/comments # Importing essential datasets BASE = "../input/cusersmarildownloadsscheherazadepng/" # Reading and understanding a single image img = cv2.imread("../input/cusersmarildownloadsscheherazadepng/scheherazade.png") plt.figure(figsize=(10, 10)) plt.imshow(img, cmap="twilight"), plt.axis("off"), plt.title( "Scheherazade", fontsize=20 ), plt.show() # Visualizing the image histogram for first image counts, bins, _ = plt.hist( img.ravel(), density=False, alpha=0.8, histtype="stepfilled", color="#0303FF", edgecolor="#44FF80", ) # Understanding multivariate normal for the first image x, y = np.random.multivariate_normal([0, 200], [[1, 0], [0, 200]], 10000).T plt.hist2d(x, y, bins=30, cmap="Blues") cb = plt.colorbar() cb.set_label("Counts in Bin") plt.show() # Grayscale histogram plt.figure(figsize=(15, 8)) plt.subplot(241), plt.plot( cv2.calcHist([cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)], [0], None, [256], [0, 256]), color="k", ), plt.title("Scheherazade", fontsize=15) plt.subplot(242), plt.plot( cv2.calcHist([img], [0], None, [256], [0, 256]), color="b" ), plt.xlim([0, 256]) plt.subplot(243), plt.plot( cv2.calcHist([img], [0], None, [256], [0, 256]), color="g" ), plt.xlim([0, 256]) plt.subplot(244), plt.plot( cv2.calcHist([img], [0], None, [256], [0, 256]), color="r" ), plt.xlim([0, 256]) plt.show() # Grayscale Histogram Equalization plt.figure(figsize=(20, 10)) plt.subplot(121), plt.imshow( cv2.cvtColor(img, cv2.COLOR_BGR2GRAY), cmap="gray" ), plt.axis("off"), plt.title("Scheherazade", fontsize=20) plt.subplot(122), plt.imshow( cv2.equalizeHist(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)), cmap="gray" ), plt.axis("off"), plt.title("Equalized Histogram", fontsize=20) plt.show() # 3-channel Histogram Equalization channels = cv2.split(img) eq_channels = [] for ch, color in zip(channels, ["B", "G", "R"]): eq_channels.append(cv2.equalizeHist(ch)) plt.figure(figsize=(20, 10)) plt.subplot(121), plt.imshow(img, cmap="gray"), plt.axis("off"), plt.title( "Scheherazade", fontsize=20 ) plt.subplot(122), plt.imshow( cv2.cvtColor(cv2.merge(eq_channels), cv2.COLOR_BGR2RGB), cmap="gray" ), plt.axis("off"), plt.title("Equalized Histogram", fontsize=20) plt.show() # Averaging the images plt.figure(figsize=(20, 10)) plt.subplot(121), plt.imshow(cv2.blur(img, (40, 40)), cmap="hsv"), plt.axis( "off" ), plt.title("Scheherazade", fontsize=30) plt.show() # Gaussian filtering the images plt.figure(figsize=(20, 10)) plt.subplot(121), plt.imshow(cv2.GaussianBlur(img, (5, 5), 0), cmap="hsv"), plt.axis( "off" ), plt.title("Scheherazade", fontsize=30) plt.show() # Median filtering the images plt.figure(figsize=(20, 10)) plt.subplot(121), plt.imshow(cv2.medianBlur(img, 5), cmap="Purples"), plt.axis( "off" ), plt.title("Scheherazade", fontsize=30) plt.show() # Making borders for the images plt.figure(figsize=(20, 10)) plt.subplot(231), plt.imshow(img, cmap="gray"), plt.axis("off"), plt.title( "Grey", fontsize=25 ) plt.subplot(232), plt.imshow( cv2.copyMakeBorder(img, 10, 10, 10, 10, cv2.BORDER_REPLICATE), cmap="Blues" ), plt.axis("off"), plt.title("Replicate", fontsize=25) plt.subplot(233), plt.imshow( cv2.copyMakeBorder(img, 10, 10, 10, 10, cv2.BORDER_REFLECT), cmap="gray" ), plt.axis("off"), plt.title("Reflect", fontsize=25) plt.subplot(234), plt.imshow( cv2.copyMakeBorder(img, 10, 10, 10, 10, cv2.BORDER_REFLECT_101), cmap="Blues" ), plt.axis("off"), plt.title("Reflect 101", fontsize=25) plt.subplot(235), plt.imshow( cv2.copyMakeBorder(img, 10, 10, 10, 10, cv2.BORDER_WRAP), cmap="gray" ), plt.axis("off"), plt.title("Wrap", fontsize=25) plt.subplot(236), plt.imshow( cv2.copyMakeBorder(img, 10, 10, 10, 10, cv2.BORDER_CONSTANT, value=(120, 80, 250)), cmap="Blues", ), plt.axis("off"), plt.title("Constant", fontsize=25) plt.subplots_adjust(wspace=0.05, hspace=-0.3) plt.show() # Mask operations for the images kernel = cv2.getGaussianKernel(15, 2.0) kernel_2D = kernel @ kernel.transpose() blurred_img = cv2.filter2D(img, -1, kernel_2D) plt.imshow(blurred_img, cmap="Blues"), plt.axis("off"), plt.title( "Gaussian masking", fontsize=20 ), plt.show() # Masking images plt.imshow((img * 0.2).astype(np.uint8), cmap="Blues"), plt.axis("off"), plt.title( "Masking images", fontsize=20 ), plt.show() # Uniform addition of pixel values to images imgx = (img * 0.5 + (96, 128, 160)).clip(0, 255) plt.imshow(imgx.astype(np.uint8), cmap="Blues"), plt.axis("off"), plt.title( "Uniform addition", fontsize=20 ), plt.show() # Mask creation by drawing in image mask_01 = np.zeros_like(img[0:300, 0:400]) cv2.rectangle(mask_01, (50, 50), (100, 200), (255, 255, 255), thickness=-1) cv2.circle(mask_01, (200, 100), 50, (255, 255, 255), thickness=-1) cv2.fillConvexPoly( mask_01, np.array([[330, 50], [300, 200], [360, 150]]), (255, 255, 255) ) mask_01x = cv2.resize(mask_01, img.shape[1::-1]) plt.imshow(mask_01), plt.axis("off"), plt.title("Sample Mask", fontsize=20), plt.show() # Bitwise and with the mask created plt.figure(figsize=(10, 10)) plt.imshow(cv2.bitwise_and(img, mask_01x)), plt.axis("off"), plt.title( "Bitwise masking", fontsize=20 ), plt.show() # #Seems like we're peeking through a hole to observe Scheherazade. # Reading a new image for working with image channels img = cv2.imread(BASE + "scheherazade.png") print(img.shape) # Splitting the channels plt.figure(figsize=(15, 15)) b, g, r = cv2.split(img) mask_03 = np.zeros(img.shape[:2], dtype="uint8") imgx = cv2.merge((mask_03, g, r)) plt.subplot(221), plt.imshow(img[:, :, 0], cmap="gray"), plt.axis("off"), plt.title( "Red Channel", fontsize=20 ) plt.subplot(222), plt.imshow(img[:, :, 1], cmap="gray"), plt.axis("off"), plt.title( "Green Channel", fontsize=20 ) plt.subplot(223), plt.imshow(img[:, :, 2], cmap="gray"), plt.axis("off"), plt.title( "Blue Channel", fontsize=20 ) plt.subplot(224), plt.imshow(imgx), plt.axis("off"), plt.title( "Channels Merged", fontsize=20 ) plt.subplots_adjust(wspace=0, hspace=-0.25) plt.show() # Crop and Resize Images height, width = img.shape[:2] quarter_height, quarter_width = height / 4, width / 4 T = np.float32([[1, 0, quarter_width], [0, 1, quarter_height]]) plt.figure(figsize=(20, 15)) plt.subplot(231), plt.imshow(img), plt.axis("off"), plt.title( "Original Image", fontsize=20 ) plt.subplot(232), plt.imshow(cv2.resize(img, (200, 200))), plt.axis("off"), plt.title( "Resized Image", fontsize=20 ) plt.subplot(234), plt.imshow(cv2.warpAffine(img, T, (width, height))), plt.axis( "off" ), plt.title("Translated Image", fontsize=20) plt.subplot(235), plt.imshow(cv2.rotate(img, cv2.ROTATE_90_CLOCKWISE)), plt.axis( "off" ), plt.title("Rotated Image", fontsize=20) plt.subplot(236), plt.imshow(np.flip(img, (0, 1))), plt.axis("off"), plt.title( "Flipped Image", fontsize=20 ) # Code by Olga Belitskaya https://www.kaggle.com/olgabelitskaya/sequential-data/comments from IPython.display import display, HTML c1, c2, f1, f2, fs1, fs2 = "#eb3434", "#eb3446", "Akronim", "Smokum", 30, 15 def dhtml(string, fontcolor=c1, font=f1, fontsize=fs1): display( HTML( """<style> @import 'https://fonts.googleapis.com/css?family=""" + font + """&effect=3d-float';</style> <h1 class='font-effect-3d-float' style='font-family:""" + font + """; color:""" + fontcolor + """; font-size:""" + str(fontsize) + """px;'>%s</h1>""" % string ) ) dhtml("Be patient. Marília Prata, @mpwolke was Here.")
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.neighbors import LocalOutlierFactor from sklearn.model_selection import cross_val_score, train_test_split, KFold from sklearn.metrics import mean_squared_error, mean_absolute_error from sklearn.ensemble import ( GradientBoostingRegressor, RandomForestRegressor, AdaBoostRegressor, ExtraTreesRegressor, ) from lightgbm import LGBMRegressor from xgboost import XGBRegressor from sklearn.linear_model import ( Ridge, RidgeCV, BayesianRidge, LinearRegression, Lasso, LassoCV, ElasticNet, RANSACRegressor, HuberRegressor, PassiveAggressiveRegressor, ElasticNetCV, ) from sklearn.neighbors import KNeighborsRegressor from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import VotingRegressor from sklearn.svm import SVR from sklearn.kernel_ridge import KernelRidge # ## EDA # loading data df_train = pd.read_csv( "/kaggle/input/house-prices-advanced-regression-techniques/train.csv" ) df_train.drop("Id", axis=1, inplace=True) df_test = pd.read_csv( "/kaggle/input/house-prices-advanced-regression-techniques/test.csv" ) # Plotting the first 9 correlations plt.figure(figsize=(15, 6)) keys = ( df_train.select_dtypes(np.number) .corr()["SalePrice"] .abs() .sort_values(ascending=False)[1:13] .index ) for i, key in enumerate(keys): plt.subplot(3, 4, i + 1) plt.scatter(df_train[key], df_train["SalePrice"]) plt.title(key) plt.tight_layout() plt.show() # Observe the distribution plt.figure(figsize=(12, 6)) plt.hist(df_train["SalePrice"], bins=50) plt.xlabel("SalePrice") plt.ylabel("count") plt.show() # Observe the distribution log(SalePrice + 1) plt.figure(figsize=(12, 6)) plt.hist(np.log1p(df_train["SalePrice"]), bins=50) plt.xlabel("log(SalePrice + 1)") plt.ylabel("count") plt.show() # ## Data pre-processing # Data type checking cols = ["MSSubClass"] for key in cols: df_train[key] = df_train[key].astype(str) df_train[key] = df_train[key].astype(str) # missing value imputation nan_number = df_train.isnull().sum() display(nan_number[nan_number > 0].sort_values(ascending=False)) nan_number_test = df_test.isnull().sum() display(nan_number_test[nan_number_test > 0].sort_values(ascending=False)) cols1 = [ "Alley", "MasVnrType", "BsmtQual", "BsmtCond", "BsmtExposure", "BsmtFinType1", "BsmtFinType2", "Electrical", "FireplaceQu", "GarageType", "GarageFinish", "GarageQual", "GarageCond", "PoolQC", "Fence", "MiscFeature", ] for col in cols1: df_train[col].fillna("None", inplace=True) df_test[col].fillna("None", inplace=True) cols2 = ["MasVnrArea", "GarageYrBlt", "LotFrontage"] for col in cols2: df_train[col].fillna(df_train[col].mode().values[0], inplace=True) df_test[col].fillna(df_train[col].mode().values[0], inplace=True) for col in ( "GarageArea", "GarageCars", "TotalBsmtSF", "BsmtFinSF1", "BsmtUnfSF", ): df_test[col] = df_test[col].fillna(0) # Outlier detection clf = LocalOutlierFactor() clf.fit(df_train.select_dtypes(np.number).values) outlier = np.where(clf.negative_outlier_factor_ < -2)[0] print("outlier:", len(outlier)) print("total:", len(df_train)) print(f"rate: {len(outlier) / len(df_train):.2%}") df_train = df_train[~df_train.index.isin(outlier)] # ## feature engineering keys = df_train.select_dtypes("object") items = [] for key in keys: items.append({"name": key, "count": len(df_train[key].unique())}) pd.DataFrame(items).sort_values("count", ascending=False) keys = df_train.keys()[:-1] X = df_train[keys].select_dtypes(np.number) X = pd.concat([X, pd.get_dummies(df_train.select_dtypes("object"))], axis=1) y = df_train["SalePrice"] # y = df_train["SalePrice"] y = np.log1p(df_train["SalePrice"]) rfr = RandomForestRegressor(random_state=42) rfr.fit(X, y) from collections import defaultdict importances = defaultdict(int) for name, value in zip(X.keys(), rfr.feature_importances_): importances[name.split("_")[0]] += value df_importances = pd.DataFrame( {"feature": importances.keys(), "importances": importances.values()} ).sort_values("importances", ascending=False) display(df_importances[df_importances["importances"] > 0.005]) features = df_importances[df_importances["importances"] > 0.005]["feature"] # Data transformation X_train = pd.concat( [ df_train[features].select_dtypes(np.number), pd.get_dummies(df_train[features].select_dtypes("object")), ], axis=1, ) # y_train = df_train["SalePrice"] y_train = np.log1p(df_train["SalePrice"]) X_test = pd.concat( [ df_test[features].select_dtypes(np.number), pd.get_dummies(df_test[features].select_dtypes("object")), ], axis=1, ) from sklearn.model_selection import cross_val_score def rmse_cv(model, X, y): rmse = np.sqrt( -cross_val_score(model, X, y, scoring="neg_mean_squared_error", cv=5) ) return rmse rfr = RandomForestRegressor(n_jobs=-1) rfr.fit(X_train, y_train) rmse_cv(rfr, X_train, y_train) # ## Splitting Train dataset X_train, X_val, y_train, y_val = train_test_split( X_train, y_train, test_size=0.2, random_state=41 ) X_test.shape def rmse_cv(model): # Define the number of folds for cross-validation num_folds = 5 # Define the evaluation metric(s) you want to use scoring = "neg_mean_squared_error" # Example: using negative mean squared error # Create a k-fold cross-validation object kf = KFold( n_splits=num_folds, shuffle=True, random_state=42 ) # Example: using 5-fold cross-validation # Perform k-fold cross-validation and store the evaluation results rmse_scores = np.sqrt( -cross_val_score(model, X_train, y_train, scoring=scoring, cv=kf) ) return rmse_scores # ## LinearRegression lr = LinearRegression() lr.fit(X_train, y_train) r2 = lr.score(X_val, y_val) print("R2: ", r2) y_pred = lr.predict(X_val) mse = mean_squared_error(y_val, y_pred) rmse = np.sqrt(mse) print("LinearRegression RMSE: ", rmse) rmse_scores = rmse_cv(lr) # Calculate the mean and standard deviation of the MSE scores mean_mse = np.mean(rmse_scores) std_mse = np.std(rmse_scores) # Print the evaluation results print(f"LinearRegression RMSE: {mean_mse}") print(f"LinearRegression Standard Deviation of RMSE: {std_mse}") # ## Lasso Regression lasso = Lasso(alpha=0.1) lasso.fit(X_train, y_train) y_pred = lasso.predict(X_val) mse = mean_squared_error(y_val, y_pred) rmse = np.sqrt(mse) print("lasso RMSE:", rmse) rmse_scores = rmse_cv(lasso) # Calculate the mean and standard deviation of the MSE scores mean_mse = np.mean(rmse_scores) std_mse = np.std(rmse_scores) # Print the evaluation results print(f"lasso RMSE: {mean_mse}") print(f"lasso Standard Deviation of RMSE: {std_mse}") # ## Random Forest Regressor rfr = RandomForestRegressor(random_state=41, n_estimators=500) rfr.fit(X_train, y_train) y_pred = rfr.predict(X_val) mse = mean_squared_error(y_val, y_pred) rmse = np.sqrt(mse) print("RandomForestRegressor RMSE: ", rmse) rmse_scores = rmse_cv(rfr) # Calculate the mean and standard deviation of the MSE scores mean_mse = np.mean(rmse_scores) std_mse = np.std(rmse_scores) # Print the evaluation results print(f"rfr RMSE: {mean_mse}") print(f"rfr Standard Deviation of RMSE: {std_mse}") # ### Find the best n_estimators # set range of n_estimators n_estimators = range(50, 600, 50) test_scores = [] # Grid search to find the best max_feature best_test_score = float("inf") best_n_estimators = float("inf") for n_estimator in n_estimators: rfr = RandomForestRegressor(n_estimators=n_estimator, random_state=41, n_jobs=-1) test_score = rmse_cv(rfr) test_scores.append(np.mean(test_score)) if best_test_score > np.mean(test_score): best_test_score = np.mean(test_score) best_n_estimators = n_estimator print( "RandomForestRegressor, best_test_score : ", best_test_score, ",best_n_estimators : ", best_n_estimators, ) plt.plot(n_estimators, test_scores) plt.xlabel("n_estimators") plt.ylabel("test_scores") plt.show() plt.close() # ### Find the best best_max_feature # RandomForestRegressor # Sets the proportion of features used by decision trees in a random forest max_features = [0.1, 0.3, 0.5, 0.7, 0.9, 0.99] test_scores = [] # Grid search to find the best max_feature best_test_score = float("inf") best_max_feature = float("inf") for max_feat in max_features: rfr = RandomForestRegressor( random_state=41, n_estimators=550, max_features=max_feat, ) test_score = rmse_cv(rfr) test_scores.append(np.mean(test_score)) if best_test_score > np.mean(test_score): best_test_score = np.mean(test_score) best_max_feature = max_feat print( "RandomForestRegressor, best_test_score : ", best_test_score, ",best_max_feature", best_max_feature, ) plt.plot(max_features, test_scores) plt.xlabel("max_features") plt.ylabel("test_scores") plt.show() plt.close() # RandomForestRegressor # Sets the range of max depths max_depths = range(5, 100, 5) test_scores = [] # Grid search to find the best max_feature best_test_score = float("inf") best_max_depth = float("inf") for max_depth in max_depths: rfr = RandomForestRegressor( random_state=41, n_estimators=550, max_features=0.5, max_depth=max_depth ) test_score = rmse_cv(rfr) test_scores.append(np.mean(test_score)) if best_test_score > np.mean(test_score): best_test_score = np.mean(test_score) best_max_depth = max_depth print( "RandomForestRegressor, best_test_score : ", best_test_score, ",best_max_depth: ", best_max_depth, ) plt.plot(max_depths, test_scores) plt.xlabel("max_depths") plt.ylabel("test_scores") plt.show() plt.close() # ### Determine the optimal RandomForestRegressor model # According to the grid search above, the best hyperparameters is as below when using random forests rfr = RandomForestRegressor( random_state=41, n_estimators=550, max_features=0.5, max_depth=25 ) rfr.fit(X_train, y_train) # ### Compare the Base models scores r_s = 41 my_regressors = [ LinearRegression(), Lasso(alpha=0.1, random_state=r_s), RandomForestRegressor( n_estimators=550, max_features=0.5, max_depth=25, random_state=r_s ), ] regressors = [] for my_regressor in my_regressors: regressors.append(my_regressor) scores_val = [] scores_train = [] RMSE = [] for regressor in regressors: scores_val.append(regressor.fit(X_train, y_train).score(X_val, y_val)) scores_train.append(regressor.fit(X_train, y_train).score(X_train, y_train)) y_pred = regressor.predict(X_val) RMSE.append( np.sqrt(mean_squared_error(np.log(np.expm1(y_val)), np.log(np.expm1(y_pred)))) ) results = zip(scores_val, scores_train, RMSE) results = list(results) results_score_val = [item[0] for item in results] results_score_train = [item[1] for item in results] results_RMSE = [item[2] for item in results] df_results = pd.DataFrame( { "Algorithms": my_regressors, "Training Score": results_score_train, "Validation Score": results_score_val, "RMSE": results_RMSE, } ) df_results # ### Sort according to RMSE from small to large to find the best model best_models = df_results.sort_values(by="RMSE") best_model = best_models.iloc[0][0] best_stack = best_models["Algorithms"].values best_models # ### Average the base models df_test.shape X_test.isnull().sum().sort_values(ascending=False) # Use linear regression, lasso regression and random forest models to make predictions respectively y_linear = np.expm1(lr.predict(X_test)) y_lasso = np.expm1(lasso.predict(X_test)) y_rfr = np.expm1(rfr.predict(X_test)) # To ensure that we have a more robust model,take the arithmetic mean of the 3 models as the predicted value y_final = (y_linear + y_rfr) / 2 # ### Submit the results # submission_data is the final prediction result submission_data = pd.DataFrame(data={"Id": df_test["Id"], "SalePrice": y_final}) submission_data.to_csv("submission.csv", index=False)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import json import os # wget from https://www.eia.gov/opendata/bulkfiles.php#d-use-common-core-and-extensible-metadata # I think this is the file to wget # # Make raw dataframes def process_txt_line(df_data, df_data_dictionary, category_dict, dict_EBA_line): if "series_id" in dict_EBA_line: df_data, df_data_dictionary = augment_data( df_data, df_data_dictionary, dict_EBA_line ) elif "category_id" in dict_EBA_line: category_dict = augment_category(category_dict, dict_EBA_line) return df_data, df_data_dictionary, category_dict def augment_category(category_dict, dict_EBA_line): category_id = dict_EBA_line["category_id"] category_dict[category_id] = dict_EBA_line return category_dict def augment_data(df_data, df_data_dictionary, dict_EBA_line): series_id = dict_EBA_line["series_id"] # print(series_id) df_tmp = pd.DataFrame(dict_EBA_line["data"], columns=["Date", series_id]) df_tmp.index = pd.to_datetime(df_tmp["Date"]) del df_tmp["Date"] if df_data is None: df_data = df_tmp else: df_data = df_data.merge(df_tmp, left_index=True, right_index=True, how="outer") df_data_dictionary = augment_data_dictionary(df_data_dictionary, dict_EBA_line) return df_data, df_data_dictionary def augment_data_dictionary(df_data_dictionary, dict_EBA_line): del dict_EBA_line["data"] if df_data_dictionary is None: df_data_dictionary = pd.DataFrame( columns=[ "name", "start", "end", "f", "geoset_id", "units", "last_updated", "description", ] ) df_data_dictionary = df_data_dictionary.append(dict_EBA_line, ignore_index=True) return df_data_dictionary file_path = "../input/hourly-electricity-data-in-the-us/EBA.txt" count = 0 df_data = None df_data_dictionary = None category_dict = {} debug = False with open(file_path, "r") as EBA_file: for EBA_line in EBA_file: count += 1 if count % 100 == 0: print("Line {}:".format(count)) dict_EBA_line = json.loads(EBA_line.strip()) df_data, df_data_dictionary, category_dict = process_txt_line( df_data, df_data_dictionary, category_dict, dict_EBA_line ) raw_folder = "/kaggle/working/raw" if not os.path.exists(raw_folder): os.mkdir(raw_folder) df_data.to_csv(f"{raw_folder}/data_electricity_consumption.csv") df_data_dictionary.index = df_data_dictionary["series_id"] del df_data_dictionary["series_id"] df_data_dictionary.to_csv(f"{raw_folder}/data_dictionary_electricity_consumption.csv") with open(f"{raw_folder}category_mapping.json", "w") as category_json_file: json.dump(category_dict, category_json_file) # # Create Process Files category_id_list = [] top_level_parent = [] # count = len(parent_categories) for category_id in category_dict: category_id_list.append(category_id) for category_id in category_dict: if category_dict[category_id]["parent_category_id"] not in category_id_list: top_level_parent.append(category_id) top_level_parent category_map = {} count = 0 for parent_category in top_level_parent: category_map[parent_category] = {} count += 1 for category_id in category_dict: if category_dict[category_id]["parent_category_id"] in category_map: parent_category = category_dict[category_id]["parent_category_id"] category_map[parent_category][category_id] = {} count += 1 for category_id in category_dict: for top_level_parent_category in category_map: if ( category_dict[category_id]["parent_category_id"] in category_map[top_level_parent_category] ): parent_category = category_dict[category_id]["parent_category_id"] category_map[top_level_parent_category][parent_category][category_id] = {} count += 1 assert count == len(category_dict) # to make sure we have accounted for each mapping # ## Summary category view # Showing 2 levels and a summary for the third for top_level_parent_category in category_map: print( "L1 - {} ({}): {}".format( category_dict[top_level_parent_category]["name"], top_level_parent_category, len(category_map[top_level_parent_category]), ) ) for parent_id in category_map[top_level_parent_category]: print( " L2 - {} ({}): {}".format( category_dict[parent_id]["name"], parent_id, len(category_map[top_level_parent_category][parent_id]), ) ) print("\n") # ## Full category view # Full details for all three levels for top_level_parent_category in category_map: print( "L1 - {} ({}): {}".format( category_dict[top_level_parent_category]["name"], top_level_parent_category, len(category_map[top_level_parent_category]), ) ) for parent_id in category_map[top_level_parent_category]: print(" L2 - {} ({})".format(category_dict[parent_id]["name"], parent_id)) if (len(category_map[top_level_parent_category][parent_id])) > 0: for bottom_level_parent_category in category_map[top_level_parent_category][ parent_id ]: print( " L3 - {} ({})".format( category_dict[bottom_level_parent_category]["name"], bottom_level_parent_category, ) ) print("\n") # ## Create Procoessed CSVS for top_level_parent_id in category_map: top_level_dir = f"/kaggle/working/processed/{category_dict[top_level_parent_id]['name']}".strip() if not os.path.exists(top_level_dir): os.mkdir(f"{top_level_dir}") for mid_level_parent_id in category_map[top_level_parent_id]: if len(category_map[top_level_parent_id][mid_level_parent_id]) > 0: mid_level_dir = ( f"{top_level_dir}/{category_dict[mid_level_parent_id]['name']}".strip() ) if not os.path.exists(mid_level_dir): os.mkdir(mid_level_dir) for bottom_level_parent_id in category_map[top_level_parent_id][ mid_level_parent_id ]: bottom_level_dir = ( f"{mid_level_dir}/{category_dict[bottom_level_parent_id]['name']}" ) if not os.path.exists(bottom_level_dir): os.mkdir(bottom_level_dir) filename = f"{bottom_level_dir}/{category_dict[bottom_level_parent_id]['name']}.csv" cs_in_df = set( category_dict[bottom_level_parent_id]["childseries"] ).intersection(df_data.columns) df_data.loc[:, cs_in_df].to_csv(filename) else: filename = ( f"{mid_level_dir}/{category_dict[mid_level_parent_id]['name']}.csv" ) cs_in_df = set( category_dict[mid_level_parent_id]["childseries"] ).intersection(df_data.columns) df_data.loc[:, cs_in_df].to_csv(filename)
# # Importance of the Project # **The COVID-19 pandemic has caused significant disruption globally, and the situation continues to evolve. The analysis and prediction of COVID-19 spread are essential for effective public health policies and prevention strategies. This project aims to analyze COVID-19 data from various sources and develop models to predict the future spread of the virus.** # ### Dataset Description # Dataset contails symptoms of patients which is crucial to identify the infection of covid. Columns are categorical in nature. # Details of the columns are : # * ID (Individual ID) # * Sex (male/female). # * Age ≥60 above years (true/false) # * Test date (date when tested for COVID) # * Cough (true/false). # * Fever (true/false). # * Sore throat (true/false). # * Shortness of breath (true/false). # * Headache (true/false). # * Known contact with an individual confirmed to have COVID-19 (true/false). # * Corona positive or negative # # importing necessary libraries import numpy import pandas import seaborn import matplotlib.pyplot as plt from sklearn.impute import KNNImputer from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import chi2 from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC from sklearn.ensemble import AdaBoostClassifier from sklearn.model_selection import GridSearchCV from sklearn.metrics import ( accuracy_score, make_scorer, recall_score, precision_score, f1_score, roc_curve, auc, confusion_matrix, ) import warnings warnings.filterwarnings("ignore") # loading the dataset covid = pandas.read_csv("/kaggle/input/corona-tested-dataset/corona_tested_006.csv") covid.head() # first 5 rows covid.tail() # last 5 rows # **covid symtoms have 'true' and 'True'. In english meaning is same but python interprets as different** # defining a function to convert the data def convert(x): if x == "TRUE": return "true" elif x == True: return "true" elif x == "FALSE" or x == False: return "false" else: return x # mapping the function covid["Cough_symptoms"] = covid["Cough_symptoms"].map(convert) covid["Fever"] = covid["Fever"].map(convert) covid["Sore_throat"] = covid["Sore_throat"].map(convert) covid["Shortness_of_breath"] = covid["Shortness_of_breath"].map(convert) covid["Headache"] = covid["Headache"].map(convert) # renaming a column covid.rename(columns={"Sex": "Gender"}, inplace=True) covid.info() # **In the dataset the value 'None' should be replaced with NaN** covid.replace({"None": numpy.nan}, inplace=True) # Finding the total null values covid.isnull().sum() for i in covid.columns: print(f"{i} has", round(covid[i].isnull().sum() * 100 / covid.shape[0], 5), "%") # dropping nan rows for columns having less than 1% nan covid.dropna( subset=[ "Cough_symptoms", "Fever", "Sore_throat", "Shortness_of_breath", "Headache", ], axis=0, inplace=True, ) # drop age_60_above column covid.drop("Age_60_above", axis=1, inplace=True) covid.replace({"other": numpy.nan}, inplace=True) covid.dropna(subset=["Corona"], axis=0, inplace=True) # converting the datatype as categorical for i in covid.columns: if i == "Ind_ID" or i == "Test_date" or i == "Test_date": pass else: covid[i] = covid[i].astype("category") covid.info() # univatiate analysis plt.figure(figsize=(4, 3)) seaborn.countplot(x="Cough_symptoms", hue="Corona", data=covid, width=0.4) plt.show() plt.figure(figsize=(4, 3)) seaborn.countplot(x="Fever", hue="Corona", data=covid, width=0.4) plt.show() plt.figure(figsize=(4, 3)) seaborn.countplot(x="Sore_throat", hue="Corona", data=covid, width=0.4) plt.show() plt.figure(figsize=(4, 3)) seaborn.countplot(x="Shortness_of_breath", hue="Corona", data=covid, width=0.4) plt.show() plt.figure(figsize=(4, 3)) seaborn.countplot(x="Headache", hue="Corona", data=covid, width=0.4) plt.show() plt.figure(figsize=(4, 3)) seaborn.countplot(x="Gender", hue="Corona", data=covid, width=0.4) plt.show() plt.figure(figsize=(4, 3)) seaborn.countplot(x="Known_contact", hue="Corona", data=covid, width=0.4) plt.show() covid.isnull().sum() covid_data = covid.copy(deep=True) # ## Encoding # Encoding covid_data["Cough_symptoms"] = pandas.get_dummies( covid_data["Cough_symptoms"], drop_first=True ) covid_data["Fever"] = pandas.get_dummies(covid_data["Fever"], drop_first=True) covid_data["Sore_throat"] = pandas.get_dummies( covid_data["Sore_throat"], drop_first=True ) covid_data["Shortness_of_breath"] = pandas.get_dummies( covid_data["Shortness_of_breath"], drop_first=True ) covid_data["Headache"] = pandas.get_dummies(covid_data["Headache"], drop_first=True) covid_data["Corona"] = pandas.get_dummies(covid_data["Corona"], drop_first=True) covid_data["Gender"].replace({"male": 0, "female": 1}, inplace=True) covid_data["Known_contact"].replace( {"Other": 2, "Contact with confirmed": 1, "Abroad": 0}, inplace=True ) covid_data.isnull().sum() # ## Imputation imputed_data = covid_data.copy(deep=True) # applying KNN imputation knn = KNNImputer(n_neighbors=5, weights="uniform") columns = [ "Cough_symptoms", "Fever", "Sore_throat", "Shortness_of_breath", "Headache", "Gender", "Known_contact", ] imputed = knn.fit_transform(covid_data[columns]) df = pandas.DataFrame(imputed, columns=columns) def change(x): if x > 0.5: return 1 elif x < 0.5: return 0 else: return x df["Gender"] = df["Gender"].apply(change) imputed_data["Gender"].iloc[:] = df["Gender"] imputed_data.head() imputed_data.info() imputed_data["Gender"] = imputed_data["Gender"].astype("uint8") final_data = imputed_data.astype("category") final_data.info() # # Feature Engineering # # separating features and target features = final_data.drop(["Ind_ID", "Test_date", "Corona"], axis=1) target = final_data["Corona"] # chi2 method to select important k best features selector = SelectKBest(score_func=chi2, k=6) X_new = selector.fit_transform(features, target) idxs_selected = selector.get_support(indices=True) feat_names = features.columns[idxs_selected] print(feat_names) # **covid symptoms are the important features of the dataset** # splitting train test set x_train, x_test, y_train, y_test = train_test_split( features, target, test_size=0.3, random_state=42 ) y_test.value_counts() y_train.value_counts() # **1. random forest classifier** rf = RandomForestClassifier() rf.fit(x_train, y_train) pred_rf = rf.predict(x_test) # accuracy score accuracy_rf = accuracy_score(y_test, pred_rf) print("Accuracy:", accuracy_rf * 100) # ##### Parametre tuning for random forest rfc = RandomForestClassifier(random_state=42) param_grid = { "n_estimators": [50, 100, 200], "max_depth": [5, 10, 15, 20, None], "max_features": ["sqrt", "log2"], "bootstrap": [True, False], } scorer = make_scorer(accuracy_score) grid_obj = GridSearchCV(rfc, param_grid, scoring=scorer) grid_fit = grid_obj.fit(x_train, y_train) # Get the best hyperparameters best_params = grid_fit.best_params_ best_params # Training the model using the best hyperparameters rfc_best = RandomForestClassifier(random_state=42, **best_params) rfc_best.fit(x_train, y_train) y_pred_rf = rfc_best.predict(x_test) # Evaluate the best model accuracy_rf = accuracy_score(y_test, y_pred_rf) print("Accuracy: {:.10f}%".format(accuracy_rf * 100.0)) # ##### performance measures for random forest # # confusion matrix cm_rf = confusion_matrix(y_test, y_pred_rf) print("Confusion Matrix:\n", cm_rf) # precision prec_rf = cm_rf[0][0] * 100 / (cm_rf[0][0] + cm_rf[0][1]) print("Precision:", prec_rf) # recall recall_rf = cm_rf[0][0] * 100 / (cm_rf[0][0] + cm_rf[1][0]) print("recall :", recall_rf) # F-1 Score f1_rf = 2 * prec_rf * recall_rf / (recall_rf + prec_rf) print("F1 Score:", f1_rf) # False Negative Score fnr_rf = cm_rf[1][0] * 100 / (cm_rf[0][0] + cm_rf[1][0]) print("False Negative rate : ", fnr_rf) # AUC ROC curve fpr, tpr, thresholds = roc_curve(y_test, pred_rf) roc_auc = auc(fpr, tpr) plt.plot(fpr, tpr, color="darkorange", lw=2, label="ROC curve (area = %0.2f)" % roc_auc) plt.plot([0, 1], [0, 1], color="navy", lw=2, linestyle="--") plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") plt.title("ROC Curve") plt.legend(loc="lower right") plt.show() # **2. Decision Tree Classifier** dt = DecisionTreeClassifier() dt.fit(x_train, y_train) y_pred = dt.predict(x_test) accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy * 100) # **Parameter tuning for Decision tree model** dtc = DecisionTreeClassifier(random_state=42) param_grid = { "max_depth": [3, 5, 7, 9], "min_samples_split": [2, 5, 10], "min_samples_leaf": [1, 2, 4], } scorer = make_scorer(accuracy_score) grid = GridSearchCV(dtc, param_grid=param_grid, scoring=scorer, cv=5) grid.fit(x_train, y_train) print("Best parameters:", grid.best_params_) dtc_best = DecisionTreeClassifier(max_depth=7, min_samples_leaf=4, min_samples_split=10) dtc_best.fit(x_train, y_train) y_dt = dtc_best.predict(x_test) accuracy_dtc = accuracy_score(y_test, y_dt) print("Test accuracy:", accuracy_dtc * 100) # **Performance measures for Decision Tree Classifier** # confusion matrix cm_dt = confusion_matrix(y_test, y_dt) print("Confusion Matrix:\n", cm_dt) # precision prec_dt = cm_dt[0][0] * 100 / (cm_dt[0][0] + cm_dt[0][1]) print("Precision:", prec_dt) # recall recall_dt = cm_dt[0][0] * 100 / (cm_dt[0][0] + cm_dt[1][0]) print("recall :", recall_dt) # F-1 Score f1_dt = 2 * prec_rf * recall_dt / (recall_dt + prec_dt) print("F1 Score:", f1_rf) # False Negative Score fnr_dt = cm_dt[1][0] * 100 / (cm_dt[0][0] + cm_dt[1][0]) print("False Negative rate : ", fnr_dt) # AUC ROC curve fpr, tpr, thresholds = roc_curve(y_test, y_dt) roc_auc = auc(fpr, tpr) plt.plot(fpr, tpr, color="darkorange", lw=2, label="ROC curve (area = %0.2f)" % roc_auc) plt.plot([0, 1], [0, 1], color="navy", lw=2, linestyle="--") plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") plt.title("ROC Curve") plt.legend(loc="lower right") plt.show() # **3. Naive Bias Classifier** nb = GaussianNB() nb.fit(x_train, y_train) y_pred_nb = nb.predict(x_test) accuracy_nb = accuracy_score(y_test, y_pred_nb) accuracy_nb # **As naive bias model giving poor accuracy so tuning may not be required** # **4. Adaboost classifier** adaboost = AdaBoostClassifier() adaboost.fit(x_train, y_train) y_pred_ada = adaboost.predict(x_test) accuracy_ada = accuracy_score(y_test, y_pred_ada) accuracy_ada # **Parameter tuning for adaboost model** adaboost_params = {"n_estimators": [50, 100, 200], "learning_rate": [0.1, 0.01, 0.001]} adaboost_grid = GridSearchCV(adaboost, adaboost_params, cv=5) adaboost_grid.fit(x_train, y_train) print("Best Hyperparameters for AdaBoost: ", adaboost_grid.best_params_) adaboost = AdaBoostClassifier(learning_rate=0.1, n_estimators=200) adaboost.fit(x_train, y_train) y_pred_ada = adaboost.predict(x_test) accuracy_ada = accuracy_score(y_test, y_pred_ada) accuracy_ada # **Performance measures of Adaboost model** # confusion matrix cm_ada = confusion_matrix(y_test, y_pred_ada) print("Confusion Matrix:\n", cm_ada) # precision prec_ada = cm_ada[0][0] * 100 / (cm_ada[0][0] + cm_ada[0][1]) print("Precision:", prec_ada) # recall recall_ada = cm_ada[0][0] * 100 / (cm_ada[0][0] + cm_ada[1][0]) print("recall :", recall_rf) # F-1 Score f1_ada = 2 * prec_ada * recall_ada / (recall_ada + prec_ada) print("F1 Score:", f1_rf) # False Negative Score fnr_ada = cm_ada[1][0] * 100 / (cm_ada[0][0] + cm_ada[1][0]) print("False Negative rate : ", fnr_ada) # AUC ROC curve fpr, tpr, thresholds = roc_curve(y_test, y_pred_ada) roc_auc = auc(fpr, tpr) plt.plot(fpr, tpr, color="darkorange", lw=2, label="ROC curve (area = %0.2f)" % roc_auc) plt.plot([0, 1], [0, 1], color="navy", lw=2, linestyle="--") plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") plt.title("ROC Curve") plt.legend(loc="lower right") plt.show() # **5. Support Vector Machine Classifier** svc = SVC() svc.fit(x_train, y_train) pred_svc = svc.predict(x_test) acc_svc = accuracy_score(pred_svc, y_test) acc_svc * 100 # confusion matrix cm_svc = confusion_matrix(y_test, pred_svc) print("Confusion Matrix:\n", cm_svc) # precision prec_svc = cm_svc[0][0] * 100 / (cm_svc[0][0] + cm_svc[0][1]) print("Precision:", prec_svc) # recall recall_svc = cm_svc[0][0] * 100 / (cm_svc[0][0] + cm_svc[1][0]) print("recall :", recall_svc) # F-1 Score f1_svc = 2 * prec_svc * recall_svc / (recall_svc + prec_svc) print("F1 Score:", f1_svc) # False Negative Score fnr_svc = cm_svc[1][0] * 100 / (cm_svc[0][0] + cm_svc[1][0]) print("False Negative rate : ", fnr_svc) # AUC ROC curve fpr, tpr, thresholds = roc_curve(y_test, pred_svc) roc_auc = auc(fpr, tpr) plt.plot(fpr, tpr, color="darkorange", lw=2, label="ROC curve (area = %0.2f)" % roc_auc) plt.plot([0, 1], [0, 1], color="navy", lw=2, linestyle="--") plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") plt.title("ROC Curve") plt.legend(loc="lower right") plt.show() df = pandas.DataFrame( { "random forest": [accuracy_rf * 100, prec_rf, recall_rf, f1_rf, fnr_rf, 0.79], "naive bayes": [accuracy_nb * 100, "nan", "nan", "nan", "nan", "nan"], "Adaboost": [accuracy_ada * 100, prec_ada, recall_ada, f1_ada, fnr_ada, 0.67], "Decision Tree": [accuracy_dtc * 100, prec_dt, recall_dt, f1_dt, fnr_dt, 0.77], "SVC": [acc_svc * 100, prec_svc, recall_svc, f1_svc, fnr_svc, 0.77], }, index=[ "Accuracy", "Precision", "Recall", "F-1 Score", "False Negative Rate", "ROC curve area", ], ) df
# # Image Matching 2023 rotation matrix # The rotation_matrix and translation_vector are matrices and vectors used to represent 3D geometric transformations. rotation_matrix and translation_vector are commonly used to compose 3D geometric transformations. For example, it is used when translating after rotating a 3D object. By combining these transformations, you can change the position and pose of 3D objects. # ## rotation_matrix: # A rotation matrix is a matrix for rotating a point or object in 3D space. It is usually represented as a 3x3 square matrix. A rotation matrix is defined by an axis of rotation and an angle. Rotation matrices allow you to rotate 3D points and objects. # ## translation_vector: # A translation vector is a vector for translating a point or object in 3D space. It is usually represented as a 3-dimensional column vector. Translation vectors describe the respective amounts of translation along the x-, y-, and z-axes. A translation vector allows you to translate a 3D point or object in a specified direction. # import os import pandas as pd import numpy as np import cv2 import matplotlib.pyplot as plt import matplotlib.image as mpimg train_labels = pd.read_csv( "/kaggle/input/image-matching-challenge-2023/train/train_labels.csv" ) display(train_labels[0:3]) data = train_labels[train_labels["dataset"] == "urban"][ train_labels["scene"] == "kyiv-puppet-theater" ] display(data[0:3]) print(data.columns.tolist()) # # images paths = [] files = [] for dirname, _, filenames in os.walk( "/kaggle/input/image-matching-challenge-2023/train/urban/kyiv-puppet-theater/images" ): for filename in filenames: paths += [(os.path.join(dirname, filename))] files += [filename] fig, axs = plt.subplots(5, 6, figsize=(12, 12)) for i, ax in enumerate(axs.flat): if i < len(paths): img = mpimg.imread(paths[i]) ax.imshow(img) ax.axis("off") plt.show() full_paths = [] full_files = [] for dirname, _, filenames in os.walk( "/kaggle/input/image-matching-challenge-2023/train/urban/kyiv-puppet-theater/images_full_set" ): for filename in filenames: full_paths += [(os.path.join(dirname, filename))] full_files += [filename] print(len(files), len(full_files)) print(set(files) & set(full_files) == set(files)) # fig, axs = plt.subplots(5, 6, figsize=(10, 10)) # for i, ax in enumerate(axs.flat): # if i < len(full_paths): # img = mpimg.imread(full_paths[i]) # ax.imshow(img) # ax.axis('off') # plt.show() # # train_labels info dir0 = "/kaggle/input/image-matching-challenge-2023/train/" print(data.iloc[0, 2]) #'image_path' print(data.iloc[0, 3]) #'rotation_matrix' print(data.iloc[0, 4]) #'translation_vector' path0 = dir0 + data.iloc[0, 2] img = mpimg.imread(path0) plt.imshow(img) plt.axis("off") plt.show() matrixs = data.iloc[0, 3].split(";") M = [] for m in matrixs: M += [float(m)] rotation_matrix = np.array(M).reshape(3, 3) print(rotation_matrix) # [cos(theta_x), -sin(theta_x), 0] # [cos(theta_y), -sin(theta_y), 0] # [cos(theta_z), -sin(theta_z), 0] # theta_x represents the rotation angle around the x-axis. # theta_y represents the rotation angle around the y-axis. # theta_z represents the rotation angle around the z-axis. import math R = rotation_matrix theta_x = math.atan2(R[2, 1], R[2, 2]) theta_y = math.asin(-R[2, 0]) theta_z = math.atan2(R[1, 0], R[0, 0]) print(theta_x, theta_y, theta_z) matrix = rotation_matrix is_square = matrix.shape[0] == matrix.shape[1] is_orthogonal = np.allclose(np.dot(matrix, matrix.T), np.eye(3)) and np.allclose( np.linalg.norm(matrix, axis=0), 1 ) is_determinant_one = np.isclose(np.linalg.det(matrix), 1) is_rotation_matrix = is_square and is_orthogonal and is_determinant_one print("is_rotation_matrix:", is_rotation_matrix) vectors = data.iloc[0, 4].split(";") V = [] for v in vectors: V += [float(v)] translation_vector = np.array(V) print(translation_vector) # # rotate image to create rotated image # before plt.imshow(img) plt.axis("off") plt.show() # theta_z represents the rotation angle around the z-axis. height, width = img.shape[:2] theta_z = np.pi / 6 R_z = np.array( [ [np.cos(theta_z), -np.sin(theta_z), 0], [np.sin(theta_z), np.cos(theta_z), 0], [0, 0, 1], ] ) rotated_img2 = cv2.warpAffine(img, R_z[:2, :], (width, height)) plt.imshow(rotated_img2) plt.axis("off") plt.show() # the given rotation_matrix affect to the given img rotated_img = cv2.warpAffine(img, rotation_matrix[:2, :], (width, height)) plt.imshow(rotated_img) plt.axis("off") plt.show() # camera text camera = pd.read_csv( "/kaggle/input/image-matching-challenge-2023/train/urban/kyiv-puppet-theater/sfm/cameras.txt", sep=" ", ) display(camera) # images txt with open( "/kaggle/input/image-matching-challenge-2023/train/urban/kyiv-puppet-theater/sfm/images.txt", "r", ) as file: file_contents = file.read() print(file_contents[:1000]) # points3D txt with open( "/kaggle/input/image-matching-challenge-2023/train/urban/kyiv-puppet-theater/sfm/points3D.txt", "r", ) as file: file_contents = file.read() print(file_contents[:1000]) # scale_factor txt with open( "/kaggle/input/image-matching-challenge-2023/train/urban/kyiv-puppet-theater/sfm/scale_factor.txt", "r", ) as file: file_contents = file.read() print(file_contents[:10])
import numpy as np import pandas as pd import os import tensorflow as tf from tensorflow.keras.layers import ( Input, MaxPooling2D, BatchNormalization, GlobalAveragePooling2D, Dense, Conv2D, Dropout, Flatten, Activation, ZeroPadding2D, Add, ) from tensorflow.keras import activations from tensorflow.keras.models import Model def res_identity(x, filters): x_skip = x # this will be used for addition with the residual block f1, f2 = filters # first block x = Conv2D(f1, kernel_size=(1, 1), strides=(1, 1), padding="valid")(x) x = BatchNormalization()(x) x = Activation(activations.relu)(x) # second block # bottleneck (but size kept same with padding) x = Conv2D(f1, kernel_size=(3, 3), strides=(1, 1), padding="SAME")(x) x = BatchNormalization()(x) x = Activation(activations.relu)(x) # third block activation used after adding the input x = Conv2D(f2, kernel_size=(1, 1), strides=(1, 1), padding="valid")(x) x = BatchNormalization()(x) # x = Activation(activations.relu)(x) # add the input x = Add()([x, x_skip]) x = Activation(activations.relu)(x) return x def res_conv(x, s, filters): x_skip = x f1, f2 = filters # first block x = Conv2D(f1, kernel_size=(1, 1), strides=(s, s), padding="valid")(x) x = BatchNormalization()(x) x = Activation("relu")(x) # second block x = Conv2D(f1, kernel_size=(3, 3), strides=(1, 1), padding="SAME")(x) x = BatchNormalization()(x) x = Activation("relu")(x) # third block x = Conv2D(f2, kernel_size=(1, 1), strides=(1, 1), padding="valid")(x) x = BatchNormalization()(x) # shortcut x_skip = Conv2D(f2, kernel_size=(1, 1), strides=(s, s), padding="valid")(x_skip) x_skip = BatchNormalization()(x_skip) # add x = Add()([x, x_skip]) x = Activation(activations.relu)(x) return x def squeeze_and_excite(tensor): x = GlobalAveragePooling2D()(tensor) x2 = Dense(x.shape[1] // 8, activation="relu")(x) x2 = Dense(x.shape[1], activation="sigmoid")(x2) x2 = tf.keras.layers.Reshape((1, 1, x.shape[1]), input_shape=(x.shape[1],))(x2) x = tf.keras.layers.multiply((x2, tensor)) return x inputs = Input(shape=(224, 224, 3)) x = ZeroPadding2D(padding=(3, 3))(inputs) x = Conv2D(64, kernel_size=(7, 7), strides=(2, 2))(x) x = BatchNormalization()(x) x = Activation("relu")(x) x = MaxPooling2D((3, 3), strides=(2, 2))(x) x = res_conv(x, s=1, filters=(64, 256)) x = res_identity(x, filters=(64, 256)) x = res_identity(x, filters=(64, 256)) x = squeeze_and_excite(x) x = res_conv(x, s=2, filters=(128, 512)) x = res_identity(x, filters=(128, 512)) x = res_identity(x, filters=(128, 512)) x = res_identity(x, filters=(128, 512)) x = squeeze_and_excite(x) x = res_conv(x, s=2, filters=(256, 1024)) x = res_identity(x, filters=(256, 1024)) x = res_identity(x, filters=(256, 1024)) x = res_identity(x, filters=(256, 1024)) x = res_identity(x, filters=(256, 1024)) x = res_identity(x, filters=(256, 1024)) x = squeeze_and_excite(x) x = res_conv(x, s=2, filters=(512, 2048)) x = res_identity(x, filters=(512, 2048)) x = res_identity(x, filters=(512, 2048)) x = GlobalAveragePooling2D()(x) outputs = Dense(11, activation="sigmoid")(x) # multi-class model = Model(inputs=inputs, outputs=outputs, name="Resnet50") model.summary() # # Here is the pre-trained ResNet50 from Keras pretrained = tf.keras.applications.ResNet50(include_top=False, weights="imagenet")( inputs ) x = GlobalAveragePooling2D()(pretrained) outputs = Dense(11, activation="sigmoid")(x) resnet50 = Model(inputs=inputs, outputs=outputs, name="Resnet50_Keras") resnet50.summary()
# ## About the problem # We are provided a dataset with synthetic urine specimens, and the aim of the competition is to predict the probability of finding a kidney stone in the specimen. # The dataset is generated from a DL model trained with another dataset ('Kidney Stone Prediction based on Urine Analysis') with some differences; we are allowed to use the original dataset if neccessary. # ## Description of the columns # - gravity: *specific gravity*, relative density to water, so $\phi_{urine}/d_{water}$. # - ph: *pH*, $-\log([H^+])$, measures the acidity of the solution. # - osmo: *osmolarity*, it is proportional to the concentration of molecules in solution, measured in units of mOsm. # - cond: *conductivity*, it is proportional to the concetration of charged ions in solution, in units of mMho. Here, Mho is the inverse Ohm. # - urea: *urea concentration*, in millimoles per litre. # - calc: *calcium concentration*, in millimoles per litre. # - target: 1 for kidney stone, 0 for no kidney stone. import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.metrics import roc_auc_score import xgboost as xgb data = pd.read_csv("../input/playground-series-s3e12/train.csv", index_col="id") test = pd.read_csv("../input/playground-series-s3e12/test.csv", index_col="id") # ## Cleaning # - Check for duplicated rows. # - Check for null values. print(f"Duplicates: {data.duplicated().sum()}") print(f"Null:\n{data.isnull().sum()}") # ## Data Analysis sns.pairplot(data) sns.pairplot(test) cm = data.corr() plt.figure(figsize=(12, 6)) sns.heatmap(cm, annot=True, square=True, linewidths=1, linecolor="gray") plt.show() # ## Metric # The competition uses the area under the ROC curve between the predicted probability and the observed target as a metric. # Fortunately, sklearn has this metric impletemented already for us, `sklearn.metrics.roc_auc_score`. X = data y = X.pop("target") model = xgb.XGBRegressor( n_estimators=1000, eta=0.02, random_state=1, objective="binary:logistic" ) model.fit(X, y) results = model.predict(test) sub = pd.DataFrame(index=test.index, data=results, columns=["target"]) sub.head() sub.to_csv(r"submission.csv")
import pandas as pd import numpy as np def number_to_filename(number): filename = f"{number:06d}.png" path = "/kaggle/input/spr-x-ray-gender/kaggle/kaggle/train/" filename = path + filename return filename train_gender_df = pd.read_csv("/kaggle/input/spr-x-ray-gender/train_gender.csv") train_gender_df["filepath"] = train_gender_df["imageId"].apply(number_to_filename) train_gender_df.head(10) train_gender_df["gender"].hist() from matplotlib import pyplot as plt import cv2 img = cv2.imread(train_gender_df["filepath"][0], 0) plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) plt.title(str(train_gender_df["gender"][0])) img = cv2.imread(train_gender_df["filepath"][0], 0) plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) plt.title(str(train_gender_df["gender"][1])) import os import shutil import tempfile import matplotlib.pyplot as plt import PIL import torch import numpy as np from sklearn.metrics import classification_report from sklearn.model_selection import train_test_split import torchvision.transforms as transforms from monai.data.image_reader import PILReader from monai.apps import download_and_extract from monai.config import print_config from monai.data import decollate_batch, DataLoader from monai.metrics import ROCAUCMetric from monai.networks.nets import DenseNet121 from monai.transforms import ( Activations, EnsureChannelFirst, AsDiscrete, Compose, LoadImage, Lambdad, RandFlip, RandRotate, RandZoom, Resize, ScaleIntensity, ) from monai.utils import set_determinism print_config() num_class = 2 train_transforms = Compose( [ LoadImage( reader=PILReader(converter=lambda image: image.convert("L")), image_only=True, ), EnsureChannelFirst(), Resize(spatial_size=(256, 256)), ScaleIntensity(), RandRotate(range_x=np.pi / 12, prob=0.5, keep_size=True), RandFlip(spatial_axis=0, prob=0.5), RandZoom(min_zoom=0.9, max_zoom=1.1, prob=0.5), ] ) val_transforms = Compose( [ LoadImage( reader=PILReader(converter=lambda image: image.convert("L")), image_only=True, ), EnsureChannelFirst(), Resize(spatial_size=(256, 256)), ScaleIntensity(), ] ) y_pred_trans = Compose([Activations(softmax=True)]) y_trans = Compose([AsDiscrete(to_onehot=num_class)]) filenames = train_gender_df["filepath"].tolist() target = train_gender_df["gender"].tolist() train_x, val_x, train_y, val_y = train_test_split( filenames, target, stratify=target, test_size=0.3, random_state=0 ) test_df = pd.read_csv("/kaggle/input/spr-x-ray-gender/sample_submission_gender.csv") def testnumber_to_filename(number): filename = f"{number:06d}.png" path = "/kaggle/input/spr-x-ray-gender/kaggle/kaggle/test/" filename = path + filename return filename test_df["filepath"] = test_df["imageId"].apply(testnumber_to_filename) test_x = test_df["filepath"].tolist() test_y = test_df["gender"].tolist() class SPRXrayGenderDataset(torch.utils.data.Dataset): def __init__(self, image_files, labels, transforms): self.image_files = image_files self.labels = labels self.transforms = transforms def __len__(self): return len(self.image_files) def __getitem__(self, index): return self.transforms(self.image_files[index]), self.labels[index] train_ds = SPRXrayGenderDataset(train_x, train_y, train_transforms) train_loader = DataLoader(train_ds, batch_size=256, shuffle=True) val_ds = SPRXrayGenderDataset(val_x, val_y, val_transforms) val_loader = DataLoader(val_ds, batch_size=256) test_ds = SPRXrayGenderDataset(test_x, test_y, val_transforms) test_loader = DataLoader(test_ds, batch_size=256) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = DenseNet121(spatial_dims=2, in_channels=1, out_channels=num_class).to(device) loss_function = torch.nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), 1e-5) max_epochs = 50 val_interval = 1 auc_metric = ROCAUCMetric() best_metric = -1 best_metric_epoch = -1 epoch_loss_values = [] metric_values = [] for epoch in range(max_epochs): print("-" * 10) print(f"epoch {epoch + 1}/{max_epochs}") model.train() epoch_loss = 0 step = 0 for batch_data in train_loader: step += 1 inputs, labels = batch_data[0].to(device), batch_data[1].to(device) optimizer.zero_grad() outputs = model(inputs) loss = loss_function(outputs, labels) loss.backward() optimizer.step() epoch_loss += loss.item() print( f"{step}/{len(train_ds) // train_loader.batch_size}, " f"train_loss: {loss.item():.4f}" ) epoch_len = len(train_ds) // train_loader.batch_size epoch_loss /= step epoch_loss_values.append(epoch_loss) print(f"epoch {epoch + 1} average loss: {epoch_loss:.4f}") if (epoch + 1) % val_interval == 0: model.eval() with torch.no_grad(): y_pred = torch.tensor([], dtype=torch.float32, device=device) y = torch.tensor([], dtype=torch.long, device=device) for val_data in val_loader: val_images, val_labels = ( val_data[0].to(device), val_data[1].to(device), ) y_pred = torch.cat([y_pred, model(val_images)], dim=0) y = torch.cat([y, val_labels], dim=0) y_onehot = [y_trans(i) for i in decollate_batch(y, detach=False)] y_pred_act = [y_pred_trans(i) for i in decollate_batch(y_pred)] auc_metric(y_pred_act, y_onehot) result = auc_metric.aggregate() auc_metric.reset() del y_pred_act, y_onehot metric_values.append(result) acc_value = torch.eq(y_pred.argmax(dim=1), y) acc_metric = acc_value.sum().item() / len(acc_value) if result > best_metric: best_metric = result best_metric_epoch = epoch + 1 torch.save(model.state_dict(), "best_metric_model.pth") print("saved new best metric model") print( f"current epoch: {epoch + 1} current AUC: {result:.4f}" f" current accuracy: {acc_metric:.4f}" f" best AUC: {best_metric:.4f}" f" at epoch: {best_metric_epoch}" ) print( f"train completed, best_metric: {best_metric:.4f} " f"at epoch: {best_metric_epoch}" ) plt.figure("train", (12, 6)) plt.subplot(1, 2, 1) plt.title("Epoch Average Loss") x = [i + 1 for i in range(len(epoch_loss_values))] y = epoch_loss_values plt.xlabel("epoch") plt.plot(x, y) plt.subplot(1, 2, 2) plt.title("Val AUC") x = [val_interval * (i + 1) for i in range(len(metric_values))] y = metric_values plt.xlabel("epoch") plt.plot(x, y) plt.show() model.load_state_dict(torch.load("best_metric_model.pth")) model.eval() y_true = [] y_pred = [] with torch.no_grad(): for test_data in test_loader: test_images, test_labels = ( test_data[0].to(device), test_data[1].to(device), ) pred = model(test_images).argmax(dim=1) for i in range(len(pred)): y_true.append(test_labels[i].item()) y_pred.append(pred[i].item()) test_df["gender"] = y_pred test_df[["imageId", "gender"]].to_csv("submission.csv", index=False)
import warnings import nltk import pandas as pd from nltk.tokenize import word_tokenize from nltk.stem import PorterStemmer from nltk.stem import WordNetLemmatizer from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from gensim.models import Word2Vec, KeyedVectors warnings.filterwarnings("ignore") # # stemming word = ["change", "changing", "change", "changed"] word #!pip install nltk ps = PorterStemmer() for w in word: print(ps.stem(w)) for w in word: print(w, ps.stem(w)) sen = "I want to change the world if world changed my career by changing abcd" nltk.download("punkt") toke = word_tokenize(sen) toke sen.split() # or we can split this using split fanction for w in toke: print(w, ps.stem(w)) le = WordNetLemmatizer() toke nltk.download("omw-1.4") for w in toke: print(w, le.lemmatize(w)) le.lemmatize("changes") # # Text Vectorizer df = pd.read_csv("/kaggle/input/vactorizer-dataset1/data.csv") df # # CountVectorizer cv = CountVectorizer() cv_x = cv.fit_transform(df["test"]) cv_x cv_x.toarray() cv.get_feature_names() cv_df = pd.DataFrame(cv_x.toarray(), columns=cv.get_feature_names(), index=df["test"]) cv_df cv_df = pd.DataFrame(cv_x.toarray(), columns=cv.get_feature_names()) cv_df # # TfidfVectorizer tf = TfidfVectorizer() tf_z = tf.fit_transform(df["test"]) tf_z cv_df = pd.DataFrame(tf_z.toarray(), columns=tf.get_feature_names(), index=df["test"]) cv_df #!pip install gensim text_vector = [nltk.word_tokenize(test) for test in df["test"]] text_vector model = Word2Vec(text_vector, min_count=1) model.wv.most_similar("want")
# # Introduction # In this notebook we will analyse word2ved for countires wikipedia page. from sklearn.decomposition import PCA from sklearn.manifold import TSNE import numpy as np import matplotlib.pyplot as plt from gensim.models.callbacks import CallbackAny2Vec from gensim.models import Word2Vec, KeyedVectors from tensorflow.keras.layers import Embedding # imports import json from collections import Counter from gensim.models import Word2Vec import matplotlib.pyplot as plt import json # # Basic Analysis of Data class MetricCallback(CallbackAny2Vec): """ Callback to print loss after each epoch """ def __init__(self, every=10): self.myloss = [] self.epoch = 0 self.every = every def on_epoch_end(self, model): loss = model.get_latest_training_loss() if self.epoch == 0: self.myloss.append(loss) else: self.myloss.append(loss - self.loss_previous_step) if self.epoch % self.every == 0: print(f"Loss after epoch {self.epoch}: {self.myloss[-1]}") # NOQA: T001 self.epoch += 1 self.loss_previous_step = loss def plot_arrows(starts, ends, wv, estimator=PCA, **kwargs): if len(starts) != len(ends): raise ValueError("starts and ends must be the same length.") fig, ax = plt.subplots(figsize=kwargs.pop("figsize", (8, 8))) X = wv[starts + ends] # NOQA: N806 x_red = estimator(n_components=2).fit_transform(X) plt.scatter(*x_red.T) for i, word in enumerate(starts + ends): plt.annotate(word, x_red[i]) xstart = x_red[: len(starts)] xend = x_red[len(starts) :] for i, (start, end) in enumerate(zip(starts, ends)): x1, y1 = xstart[i] x2, y2 = xend[i] plt.arrow(x1, y1, x2 - x1, y2 - y1) def plot_vectors(words, model, estimator=TSNE, **kwargs): names = [] vectors = [] for word in words: if word in model.wv: names.append(word) vectors.append(model.wv[word]) X = np.r_[vectors] # NOQA: N806 x_red = estimator(n_components=2).fit_transform(X) fig, ax = plt.subplots(figsize=kwargs.pop("figsize", (16, 16))) # NOQA: E912 ax.scatter(*x_red.T) for i, word in enumerate(names): plt.annotate(word, x_red[i]) def make_embedding_layer(model, tokenizer, MAX_SEQUENCE_LENGTH): # NOQA: N803 word_index = tokenizer.word_index if isinstance(model, Word2Vec): wv = model.wv elif isinstance(model, KeyedVectors): wv = model embedding_matrix = np.zeros((len(word_index) + 1, wv.vector_size)) for word, i in word_index.items(): try: vector = wv.get_vector(word, False) embedding_matrix[i] = vector except KeyError: continue el = Embedding( len(word_index) + 1, wv.vector_size, weights=[embedding_matrix], input_length=MAX_SEQUENCE_LENGTH, trainable=False, ) return el file_path = "/kaggle/input/countries-with-wikipedia-content/countries.json" with open(file_path, "r") as file: file_content = file.read() # Load the JSON data from the file content countries = json.loads(file_content) countries["India"][:20] print(" ".join(countries["India"])[:512] + " ...") for i, (country, text) in enumerate(countries.items()): print(country) print(" ".join(text)[:512] + " ...") print("-" * 100) if i >= 5: break # # Basic Word2Vec Usage # Create and train a simple model model = Word2Vec(sentences=countries.values()) # Check word similarities learnt by the model model.wv.most_similar("India", topn=5) # Enable computation of loss model = Word2Vec(sentences=countries.values(), compute_loss=True) model.get_latest_training_loss() # # Heuristics for Word2vec algorithms # How many unique words in the vocabulary? counter = Counter() for words in countries.values(): for word in words: counter.update([word]) print(len(counter)) # Default vocabulary size of the original model print(len(model.wv.index_to_key)) # Retrain - increased vocabulary size, more epochs, larger word vectors # Note: Here MetricCallback is directly called as there is no utils package here. metric = MetricCallback(every=1) model = Word2Vec( sentences=countries.values(), vector_size=128, max_vocab_size=65536, compute_loss=True, callbacks=[metric], ) plt.plot(metric.myloss) # Check similarities again model.wv.most_similar("India") # Retrain - more epochs # Note: Here MetricCallback is directly called as there is no utils package here. metric = MetricCallback(every=1) model = Word2Vec( sentences=countries.values(), vector_size=128, max_vocab_size=65536, compute_loss=True, callbacks=[metric], epochs=10, min_alpha=0.001, workers=9, ) plt.plot(metric.myloss) model.wv.most_similar("India") # Examine the vector space X = ["India", "Pakistan", "Bangladesh", "France", "England", "Spain"] Y = ["Delhi", "Islamabad", "Dhaka", "Paris", "London", "Madrid"] plot_arrows(X, Y, model.wv) # Visualize vectors for all countries plot_vectors(countries, model) # # Word Analogies # India: Ganges -> Brazil: __ ? model.wv.most_similar(positive=["Ganges", "Brazil"], negative=["India"]) # America: Washington -> France: __ ? model.wv.most_similar(positive=["Washington", "France"], negative=["America"]) # India: Hindi -> Germany: __ ? model.wv.most_similar(positive=["Hindi", "Germany"], negative=["India"]) # Save the model model.save("wiki-countries.w2v") from gensim.models import KeyedVectors model = KeyedVectors.load("wiki-countries.w2v") model
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # **importing the file** file = pd.read_csv("/kaggle/input/netflix-shows/netflix_titles.csv") file.head() # **chcking the info of the file** file.info() # **chevking the count of null values** file.isnull().sum() # **dealing with the null values** file["director"].fillna("director unavailable", inplace=True) file["cast"].fillna("cast unavailable", inplace=True) file["country"].fillna("country unavailable", inplace=True) file.dropna(subset=["date_added", "rating", "duration"], inplace=True) file.info() # **changing the data types to reduce the memory usage** file["type"].value_counts() file["date_added"] = pd.to_datetime(file["date_added"]) # file["release_year"] = pd.to_datetime(file["release_year"]) file["type"] = file["type"].astype("category") file.info() # **checking for duplicate rows and columns** file.drop_duplicates() # **visualizing the data** import matplotlib.pyplot as plt import seaborn as sns plt.pie( file["type"].value_counts(), labels=file["type"].unique(), autopct="%0.f%%", colors=["lightblue", "blue"], ) plt.show() # The above pie chart shows that 70% of content available on netflix is Movies and rest 30% is TV show # y = file["type"].value_counts() x = file["type"].unique() plt.bar(x, y, color="grey") # **top 10 content producing countries on netflix** top_country = file["country"].value_counts().sort_values(ascending=False).head(10) top_country.plot(kind="barh", color="grey") # **top 10 movie producing countries** movies = file[file["type"] == "Movie"] top_movie_producing_country = ( movies.groupby("country")["show_id"].count().sort_values(ascending=False).head(10) ) top_movie_producing_country.plot(kind="barh", color="grey") # **top 10 TV shows producing countries** TV_shows = file[file["type"] == "TV Show"] top_TV_Show_producing_country = ( TV_shows.groupby("country")["show_id"].count().sort_values(ascending=False).head(10) ) top_TV_Show_producing_country.plot(kind="barh", color="grey") # **growth of movies on netflix** movies = file[file["type"] == "Movie"] growth = movies.groupby("release_year")["show_id"].count() growth.plot(kind="line", color="red") plt.show() # **growth of TV shows on netflix** TV_shows = file[file["type"] == "TV Show"] growth = TV_shows.groupby("release_year")["show_id"].count() growth.plot(kind="line", color="red") plt.show()
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import matplotlib.pyplot as plt import seaborn as sns from platform import python_version python_version() # Some stuff from the Feature Engineering Course: from sklearn.feature_selection import mutual_info_regression def make_mi_scores(X, y, discrete_features): mi_scores = mutual_info_regression(X, y, discrete_features=discrete_features) mi_scores = pd.Series(mi_scores, name="MI Scores", index=X.columns) mi_scores = mi_scores.sort_values(ascending=False) return mi_scores # Some relevant info from google: female mosquito lifetime is 42-56 days, male is 10 # That is approximately 7 weeks for female mosquitos. So probably don't need to consider lags beyond that for weather features. dengue_features_train = pd.read_csv( "../input/epidemy/dengue_features_train.csv", parse_dates=True, infer_datetime_format=True, ) dengue_features_test = pd.read_csv( "../input/epidemy/dengue_features_test.csv", parse_dates=True, infer_datetime_format=True, ) dengue_labels_train = pd.read_csv( "../input/epidemy/dengue_labels_train.csv", parse_dates=True, infer_datetime_format=True, ) for col in dengue_features_train.columns: print(col) from datetime import date, timedelta import datetime import math debug_date_map = True # store information on date_map_debug_logs = [] set_of_bad_years = set() # map from dataframe with year, weekofyear features # to a time index # lets go with weeks since day 1 of week 1 of 1990 def date_start_map(x): year_one = 1990 week_one = 1 day_of_week = 1 # Trying thursday date_one = datetime.datetime.strptime( f"{year_one}-U{week_one}-{day_of_week}", "%Y-U%U-%w" ).date() year_current = x["year"] week_current = x["weekofyear"] # trouble years are those where this data set incorrectly assigns a week at the # beginning to the end. I've identified these as those starting with Friday, Saturday, # or Sunday raw_year_current = year_current raw_week_current = week_current trouble_year = False shift = 0 year_start_date = datetime.datetime.strptime( f"{year_current}-M{1}-{1}", "%Y-M%m-%d" ).date() date_two = datetime.datetime.strptime( f"{year_current}-U{week_current}-{day_of_week}", "%Y-U%U-%w" ).date() if year_start_date.weekday() >= 4: trouble_year = True set_of_bad_years.add(year_current) # need better check if week_current >= 52: year_current -= 1 # trying to assign to Dec 31 date_two = datetime.datetime.strptime( f"{year_current}-M{12}-{31}", "%Y-M%m-%d" ).date() else: shift = 1 date_two = datetime.datetime.strptime( f"{year_current}-U{week_current}-{day_of_week}", "%Y-U%U-%w" ).date() time_d = date_two - date_one weeks = math.ceil(time_d.days / 7.0) weeks += shift if debug_date_map: debug_log = f"{raw_year_current}-{raw_week_current} mapped to week {weeks} using days {time_d.days}" date_map_debug_logs.append(debug_log) return weeks startmap = date_start_map dengue_features_train["weeks_since_start"] = dengue_features_train.apply( startmap, axis=1 ) dengue_features_test["weeks_since_start"] = dengue_features_test.apply(startmap, axis=1) dengue_labels_train["weeks_since_start"] = dengue_labels_train.apply(startmap, axis=1) dengue_features_sj_train = pd.DataFrame( dengue_features_train[dengue_labels_train["city"] == "sj"] ) dengue_features_sj_test = pd.DataFrame( dengue_features_test[dengue_labels_train["city"] == "sj"] ) dengue_labels_sj_train = pd.DataFrame( dengue_labels_train[dengue_labels_train["city"] == "sj"] ) dengue_features_iq_train = pd.DataFrame( dengue_features_train[dengue_labels_train["city"] == "iq"] ) dengue_features_iq_test = pd.DataFrame( dengue_features_test[dengue_labels_train["city"] == "iq"] ) dengue_labels_iq_train = pd.DataFrame( dengue_labels_train[dengue_labels_train["city"] == "iq"] ) list_of_frames = [ dengue_features_sj_train, dengue_features_sj_test, dengue_labels_sj_train, dengue_features_iq_train, dengue_features_iq_test, dengue_labels_iq_train, ] for frame in list_of_frames: frame.sort_values("weeks_since_start", inplace=True) frame.set_index("weeks_since_start", inplace=True) ax = dengue_labels_sj_train.loc[:, ["total_cases"]].plot(figsize=(15, 5)) dengue_labels_iq_train.loc[:, ["total_cases"]].plot(ax=ax) ax.legend(["San Juan", "Iquitos"]) ax.set(xlabel="Week", ylabel="Cases per Week") plt.savefig("cases_data.png") start_week = 50 end_week = 500 features_to_plot = [ "reanalysis_relative_humidity_percent", "reanalysis_precip_amt_kg_per_m2", "reanalysis_dew_point_temp_k", "reanalysis_specific_humidity_g_per_kg", "reanalysis_tdtr_k", "station_min_temp_c", ] ax = dengue_labels_sj_train.loc[start_week:end_week, ["total_cases"]].plot( figsize=(15, 5) ) dengue_features_sj_train.loc[start_week:end_week, features_to_plot].plot(ax=ax) plt.savefig("test_feature_cmp_sj.png") from learntools.time_series.utils import plot_lags, make_lags, make_leads from statsmodels.graphics.tsaplots import plot_pacf plot_pacf(dengue_labels_sj_train["total_cases"], lags=14) plt.savefig("cases_sj_pacf.png") # # Variables # # Averaging Vegetation Index data ndvi_features = ["ndvi_se", "ndvi_sw", "ndvi_ne", "ndvi_nw"] dengue_features_sj_train_ndvi_mean = dengue_features_sj_train[ndvi_features].mean( axis=1 ) dengue_features_sj_train["ndvi_mean"] = dengue_features_sj_train_ndvi_mean precip_variable = "reanalysis_sat_precip_amt_mm" ndvi_variable = "ndvi_mean" rel_hum_variable = "reanalysis_relative_humidity_percent" dew_point_variable = "reanalysis_dew_point_temp_k" mean_temp_variable = "reanalysis_avg_temp_k" variables_of_interest = [ precip_variable, ndvi_variable, rel_hum_variable, dew_point_variable, mean_temp_variable, ] # for labelling varnames_of_interest = ["precip", "ndvi", "rel_hum", "dew_pt", "mean_temp"] vartitles_of_interest = [ "Precipitation", "Vegetation Index", "Relative Humidity", "Dew Point", "Mean Temp", ] smoothed_features = [] for i in range(len(variables_of_interest)): variable = variables_of_interest[i] varname = varnames_of_interest[i] vartitle = vartitles_of_interest[i] variable_rolling = ( dengue_features_sj_train[variable].rolling(window=5, center=False).mean() ) smoothed_features.append(variable_rolling) ax = dengue_features_sj_train[variable].plot(label=vartitle) variable_rolling.plot(ax=ax, label="%s (smoothed)" % (vartitle)) ax.legend() # ax.set_ylabel(vartitle_of_interest[i]) plt.savefig("variable_%s_smoothed.png" % (varname)) ax.clear() # # Section: Target and Feature Lags y_sj = dengue_labels_sj_train["total_cases"] target_lag_number = 12 y_sj_lags = make_lags(dengue_labels_sj_train["total_cases"], lags=target_lag_number) # can use code from Time Series course n_lags = 24 lags_list = [] lags_list_no_target = [] for i in range(len(variables_of_interest)): var_lags = make_lags( dengue_features_sj_train[variables_of_interest[i]], lags=n_lags, name=varnames_of_interest[i], ) lags_list.append(var_lags) lags_list_no_target.append(var_lags) # add target lags lags_list.append(y_sj_lags) smoothed_lags_list = [] smoothed_lags_list_no_target = [] for i in range(len(variables_of_interest)): var_lags = make_lags( smoothed_features[i], lags=n_lags, name="%s_smooth" % (varnames_of_interest[i]) ) print(type(var_lags)) smoothed_lags_list.append(var_lags) smoothed_lags_list_no_target.append(var_lags) smoothed_lags_list.append(y_sj_lags) print(type(lags_list[0])) y_sj_deriv = dengue_labels_sj_train["total_cases"] - y_sj_lags["y_lag_1"] y_sj_deriv_smooth_gauss_mean = y_sj_deriv.rolling( window=7, center=False, win_type="gaussian" ).mean(std=3) y_sj_deriv_smooth_const_mean = y_sj_deriv.rolling(window=7, center=False).mean(std=3) START = 50 END = 500 ax = y_sj_deriv.loc[START:END].plot(figsize=(15, 5), color="black", alpha=0.3) y_sj_deriv_smooth_gauss_mean.loc[START:END].plot( ax=ax, label="Gaussian Smooth", color="red" ) y_sj_deriv_smooth_const_mean.loc[START:END].plot( ax=ax, label="Flat Window", color="purple" ) ax.set(xlabel="Week", ylabel="Change in Cases per Week") plt.savefig("deriv_smoothing.png") # print(type(y_sj_deriv_smooth_gauss_mean)) # y_sj_deriv_smooth_gauss_mean_frame=pd.DataFrame(y_sj_deriv_smooth_gauss_mean.shift(1),columns=['target_deriv_smooth_gauss_mean']) # print(y_sj_deriv_smooth_gauss_mean_frame) # y_sj_deriv_smooth_const_mean_frame=pd.DataFrame(y_sj_deriv_smooth_const_mean.shift(1),columns=['target_deriv_smooth_const_mean']) # print(y_sj_deriv_smooth_const_mean_frame) y_sj_deriv_smooth_gauss_mean_frame = pd.DataFrame( y_sj_deriv_smooth_gauss_mean, columns=["target_deriv_smooth_gauss_mean"] ) # print(y_sj_deriv_smooth_gauss_mean_frame) y_sj_deriv_smooth_const_mean_frame = pd.DataFrame( y_sj_deriv_smooth_const_mean, columns=["target_deriv_smooth_const_mean"] ) # print(y_sj_deriv_smooth_const_mean_frame) print(y_sj_deriv_smooth_gauss_mean_frame.head()) # need to shift by one to make sure it doesn't include the current or future information # Or, apply make lags on this. target_deriv_smooth_gauss_lags = make_lags( y_sj_deriv_smooth_gauss_mean_frame["target_deriv_smooth_gauss_mean"], lags=n_lags, name="target_deriv_smooth_gauss_mean", ) target_deriv_smooth_const_lags = make_lags( y_sj_deriv_smooth_const_mean_frame["target_deriv_smooth_const_mean"], lags=n_lags, name="target_deriv_smooth_const_mean", ) print(type(target_deriv_smooth_const_lags)) print(type(target_deriv_smooth_gauss_lags)) # Verifying that the shift works # START=50 # END=150 # ax=y_sj_deriv.loc[START:END].plot(figsize=(15,5),color='black',alpha=0.3) # y_sj_deriv_smooth_gauss_mean.loc[START:END].plot(ax=ax,label='Gaussian Smooth',color='red') # y_sj_deriv_smooth_const_mean.loc[START:END].plot(ax=ax,label='Flat Window',color='purple') # y_sj_deriv_smooth_const_mean_frame.loc[START:END].plot(ax=ax,label='Flat Window, shifted',color='blue') # ax.legend() # ax.set(xlabel="Week",ylabel="Change in Cases per Week") # plt.savefig("deriv_smoothing.png") # lags_list # Adding the derivatives to the lag lists # Might be confusing in nomenclature that I'm adding this smoothed feature to both # the non-smoothed and smoothed lists # target_deriv_smooth_gauss_lags # target_deriv_smooth_const_lags lags_list.append(target_deriv_smooth_const_lags) # for lag_feature in target_deriv_smooth_const_lags: # print(type(lag_feature)) # print(lag_feature) # lags_list.append(lag_feature) # smoothed_lags_list.append(lag_feature) # lags_list.append(y_sj_deriv_smooth_const_mean_frame) # lags_list.append(y_sj_deriv_smooth_gauss_mean_frame) # smoothed_lags_list.append(y_sj_deriv_smooth_const_mean_frame) # smoothed_lags_list.append(y_sj_deriv_smooth_gauss_mean_frame) for lag_feature in lags_list: print(type(lag_feature)) for col in lag_feature.columns: print(col) dengue_features_sj_train_lags = pd.concat(lags_list, axis=1) dengue_features_no_target_sj_train_lags = pd.concat(lags_list_no_target, axis=1) dengue_smoothed_features_sj_train_lags = pd.concat(smoothed_lags_list, axis=1) dengue_smoothed_features_no_target_sj_train_lags = pd.concat( smoothed_lags_list_no_target, axis=1 ) X_lags_no_target_for_mi = dengue_features_no_target_sj_train_lags.dropna() X_lags_for_mi = dengue_features_sj_train_lags.dropna() # print(X_lags_no_target_for_mi) (y_lags_no_target_for_mi, X_lags_no_target_for_mi) = y_sj.align( X_lags_no_target_for_mi, join="inner", axis=0 ) (y_lags_for_mi, X_lags_for_mi) = y_sj.align(X_lags_for_mi, join="inner", axis=0) print(X_lags_no_target_for_mi.shape) print(y_lags_no_target_for_mi.shape) mi_scores = make_mi_scores(X_lags_no_target_for_mi, y_lags_no_target_for_mi, "auto") mi_with_target_scores = make_mi_scores(X_lags_for_mi, y_lags_for_mi, "auto") print("Mutual Information Scores without target info:") print(mi_scores.head(24)) print("Mutual Information Scores, including target-derived features") print(mi_with_target_scores.head(20)) from sklearn.model_selection import train_test_split def make_multistep_target(ts, steps): return pd.concat({f"y_step_{i + 1}": ts.shift(-i) for i in range(steps)}, axis=1) def plot_multistep(y, every=1, ax=None, palette_kwargs=None): palette_kwargs_ = dict(palette="husl", n_colors=6, desat=None) # palette_kwargs_ = dict(palette='husl', n_colors=16, desat=None) if palette_kwargs is not None: palette_kwargs_.update(palette_kwargs) palette = sns.color_palette(**palette_kwargs_) if ax is None: fig, ax = plt.subplots() ax.set_prop_cycle(plt.cycler("color", palette)) for date, preds in y[::every].iterrows(): # preds.index = pd.period_range(start=date, periods=len(preds)) preds.index = range(date, date + len(preds)) preds.plot(ax=ax, label=f"Forecast from {date}") return ax target_forecast_steps = 20 y_sj_multistep = make_multistep_target(y_sj, steps=target_forecast_steps).dropna() # # Defining Inputs and Models # each model may require different X,y # especially based on rows we remove list_X = [] list_y = [] model_list = [] model_labels = [] model_titles = [] X_train_list = [] X_valid_list = [] y_train_list = [] y_valid_list = [] # # Defining Models from sklearn.linear_model import Ridge, Lasso from sklearn.linear_model import LinearRegression from xgboost import XGBRegressor from sklearn.multioutput import MultiOutputRegressor from sklearn.multioutput import RegressorChain from sklearn.metrics import mean_squared_error print("Available columns:") for col in dengue_features_sj_train_lags.columns: print(col) list_X = [] list_y = [] model_list = [] model_labels = [] model_titles = [] X_train_list = [] X_valid_list = [] y_train_list = [] y_valid_list = [] n_estimators = 30 n_jobs = 4 model_labels.append("RegChain1_Target_Only") model_titles.append("Regressor Chain 1 Target Only") model_1 = RegressorChain(XGBRegressor(n_estimators=n_estimators, n_jobs=n_jobs)) model_list.append(model_1) features_for_model = [ "y_lag_1", "y_lag_2", "y_lag_3", "y_lag_4", "y_lag_5", "y_lag_6", "y_lag_7", "y_lag_8", "y_lag_9", "y_lag_10", ] local_X = dengue_features_sj_train_lags[features_for_model].dropna() local_y = y_sj_multistep list_X.append(local_X) list_y.append(local_y) model_labels.append("RegChain1_Dew") model_titles.append("Regressor Chain 1 Dew") model_1 = RegressorChain(XGBRegressor(n_estimators=n_estimators, n_jobs=n_jobs)) model_list.append(model_1) # features_for_model=['y_lag_1','y_lag_2','y_lag_3','y_lag_4','y_lag_5', # 'y_lag_6','y_lag_7','y_lag_8','y_lag_9','y_lag_10', # 'dew_pt_lag_6','dew_pt_lag_7','dew_pt_lag_8','dew_pt_lag_9', # 'dew_pt_lag_10','dew_pt_lag_11','dew_pt_lag_12' # ] features_for_model = [ "y_lag_1", "y_lag_2", "y_lag_3", "y_lag_4", "y_lag_5", "y_lag_6", "y_lag_7", "y_lag_8", "y_lag_9", "y_lag_10", "dew_pt_lag_1", "dew_pt_lag_2", "dew_pt_lag_3", "dew_pt_lag_4", "dew_pt_lag_5", "dew_pt_lag_6", "dew_pt_lag_7", "dew_pt_lag_8", "dew_pt_lag_9", "dew_pt_lag_10", "dew_pt_lag_11", "dew_pt_lag_12", ] local_X = dengue_features_sj_train_lags[features_for_model].dropna() local_y = y_sj_multistep list_X.append(local_X) list_y.append(local_y) model_labels.append("RegChain1_Dew_Deriv") model_titles.append("Regressor Chain 1 Dew Deriv") model_1 = RegressorChain(XGBRegressor(n_estimators=n_estimators, n_jobs=n_jobs)) model_list.append(model_1) # features_for_model=['y_lag_1','y_lag_2','y_lag_3','y_lag_4','y_lag_5', # 'y_lag_6','y_lag_7','y_lag_8','y_lag_9','y_lag_10', # 'dew_pt_lag_6','dew_pt_lag_7','dew_pt_lag_8','dew_pt_lag_9', # 'dew_pt_lag_10','dew_pt_lag_11','dew_pt_lag_12' # ] features_for_model = [ "y_lag_1", "y_lag_2", "y_lag_3", "y_lag_4", "y_lag_5", "y_lag_6", "y_lag_7", "y_lag_8", "y_lag_9", "y_lag_10", "target_deriv_smooth_const_mean_lag_1", "target_deriv_smooth_const_mean_lag_2", "target_deriv_smooth_const_mean_lag_3", "target_deriv_smooth_const_mean_lag_4", "target_deriv_smooth_const_mean_lag_5", "dew_pt_lag_1", "dew_pt_lag_2", "dew_pt_lag_3", "dew_pt_lag_4", "dew_pt_lag_5", "dew_pt_lag_6", "dew_pt_lag_7", "dew_pt_lag_8", "dew_pt_lag_9", "dew_pt_lag_10", "dew_pt_lag_11", "dew_pt_lag_12", ] local_X = dengue_features_sj_train_lags[features_for_model].dropna() local_y = y_sj_multistep list_X.append(local_X) list_y.append(local_y) model_labels.append("RegChain1_Dew_Temp") model_titles.append("Regressor Chain 1 Dew Temp") model = RegressorChain(XGBRegressor(n_estimators=n_estimators, n_jobs=n_jobs)) model_list.append(model) features_for_model = [ "y_lag_1", "y_lag_2", "y_lag_3", "y_lag_4", "y_lag_5", "y_lag_6", "y_lag_7", "y_lag_8", "y_lag_9", "y_lag_10", "dew_pt_lag_6", "dew_pt_lag_7", "dew_pt_lag_8", "dew_pt_lag_9", "dew_pt_lag_10", "dew_pt_lag_11", "dew_pt_lag_12", "mean_temp_lag_6", "mean_temp_lag_7", "mean_temp_lag_8", "mean_temp_lag_9", "mean_temp_lag_10", "mean_temp_lag_11", ] local_X = dengue_features_sj_train_lags[features_for_model].dropna() local_y = y_sj_multistep list_X.append(local_X) list_y.append(local_y) model_labels.append("RegChain1_Dew_Precip") model_titles.append("Regressor Chain 1 Dew Precip") model = RegressorChain(XGBRegressor(n_estimators=n_estimators, n_jobs=n_jobs)) model_list.append(model) features_for_model = [ "y_lag_1", "y_lag_2", "y_lag_3", "y_lag_4", "y_lag_5", "y_lag_6", "y_lag_7", "y_lag_8", "y_lag_9", "y_lag_10", "dew_pt_lag_1", "dew_pt_lag_2", "dew_pt_lag_3", "dew_pt_lag_4", "dew_pt_lag_5", "dew_pt_lag_6", "dew_pt_lag_7", "dew_pt_lag_8", "dew_pt_lag_9", "dew_pt_lag_10", "dew_pt_lag_11", "dew_pt_lag_12", "precip_lag_1", "precip_lag_2", "precip_lag_3", "precip_lag_4", "precip_lag_5", "precip_lag_6", "precip_lag_7", "precip_lag_8", "precip_lag_9", "precip_lag_10", "precip_lag_11", "precip_lag_12", ] local_X = dengue_features_sj_train_lags[features_for_model].dropna() local_y = y_sj_multistep list_X.append(local_X) list_y.append(local_y) model_labels.append("RegChain1_Dew_Temp_Hum") model_titles.append("Regressor Chain 1 Dew Temp Hum") model = RegressorChain(XGBRegressor(n_estimators=n_estimators, n_jobs=n_jobs)) model_list.append(model) features_for_model = [ "y_lag_1", "y_lag_2", "y_lag_3", "y_lag_4", "y_lag_5", "y_lag_6", "y_lag_7", "y_lag_8", "y_lag_9", "y_lag_10", "dew_pt_lag_6", "dew_pt_lag_7", "dew_pt_lag_8", "dew_pt_lag_9", "dew_pt_lag_10", "dew_pt_lag_11", "dew_pt_lag_12", "mean_temp_lag_6", "mean_temp_lag_7", "mean_temp_lag_8", "mean_temp_lag_9", "mean_temp_lag_10", "mean_temp_lag_11", "rel_hum_lag_6", "rel_hum_lag_7", "rel_hum_lag_8", "rel_hum_lag_9", "rel_hum_lag_10", "rel_hum_lag_11", ] local_X = dengue_features_sj_train_lags[features_for_model].dropna() local_y = y_sj_multistep list_X.append(local_X) list_y.append(local_y) model_labels.append("RegChain1_Dew_Temp_Hum_Precip") model_titles.append("Regressor Chain 1 Dew Temp Hum Precip") model = RegressorChain(XGBRegressor(n_estimators=n_estimators, n_jobs=n_jobs)) model_list.append(model) features_for_model = [ "y_lag_1", "y_lag_2", "y_lag_3", "y_lag_4", "y_lag_5", "y_lag_6", "y_lag_7", "y_lag_8", "y_lag_9", "y_lag_10", "dew_pt_lag_6", "dew_pt_lag_7", "dew_pt_lag_8", "dew_pt_lag_9", "dew_pt_lag_10", "dew_pt_lag_11", "dew_pt_lag_12", "mean_temp_lag_6", "mean_temp_lag_7", "mean_temp_lag_8", "mean_temp_lag_9", "mean_temp_lag_10", "mean_temp_lag_11", "rel_hum_lag_6", "rel_hum_lag_7", "rel_hum_lag_8", "rel_hum_lag_9", "rel_hum_lag_10", "rel_hum_lag_11", "precip_lag_2", "precip_lag_3", "precip_lag_4", "precip_lag_5", "precip_lag_6", "precip_lag_7", "precip_lag_8", "precip_lag_9", ] local_X = dengue_features_sj_train_lags[features_for_model].dropna() local_y = y_sj_multistep list_X.append(local_X) list_y.append(local_y) # Neural Network models # need to make multiple outputs. from tensorflow import keras from tensorflow.keras.layers import Dense, BatchNormalization from tensorflow.keras import Input, Model from tensorflow.keras import layers # NN Model 1 # temporarily resetting lists for testing if False: list_X = [] list_y = [] model_list = [] model_labels = [] model_titles = [] X_train_list = [] X_valid_list = [] y_train_list = [] y_valid_list = [] # nn_loss_choice='mean_squared_logarithmic_error' nn_loss_choice = "mse" # would some loss options emphasize the peaked outbreaks better? # Should the different time step outputs have different losses? model_labels.append("NN_1_Dew") model_titles.append("Neural Network 1 Dew") features_for_model = [ "y_lag_1", "y_lag_2", "y_lag_3", "y_lag_4", "y_lag_5", "y_lag_6", "y_lag_7", "y_lag_8", "y_lag_9", "y_lag_10", "dew_pt_lag_1", "dew_pt_lag_2", "dew_pt_lag_3", "dew_pt_lag_4", "dew_pt_lag_5", "dew_pt_lag_6", "dew_pt_lag_7", "dew_pt_lag_8", "dew_pt_lag_9", "dew_pt_lag_10", "dew_pt_lag_11", "dew_pt_lag_12", ] local_X = dengue_features_sj_train_lags[features_for_model].dropna() local_y = y_sj_multistep print(local_X.shape[1]) inputs = Input(shape=(local_X.shape[1],), name="input") print(inputs) x = BatchNormalization()(inputs) x = Dense(20, activation="relu", name="layer2")(x) x = BatchNormalization()(x) x = Dense(20, activation="relu", name="layer3")(x) x = Dense(20, activation="sigmoid", name="layer4")(x) x = Dense(20, activation=None, name="layer5")(x) # making a separate output layer for each output # output_layers=[] # for col in local_y.columns: # output_layer=Dense(1,name=col)(x) # output_layers.append(output_layer) model = Model(inputs=inputs, outputs=x) # model = Model(inputs=inputs,outputs=output_layers) loss_dict = {} for col in local_y.columns: loss_dict[col] = nn_loss_choice # model.compile(loss=loss_dict,optimizer='adam') model.compile(loss=nn_loss_choice, optimizer="adam") print(model) model.summary() keras.utils.plot_model( model, "model_nn1.png", show_shapes=True, show_layer_activations=False ) model_list.append(model) list_X.append(local_X) list_y.append(local_y) # ==================================================================== model_labels.append("NN_2_Dew_Deriv") model_titles.append("Neural Network 2 Dew Deriv") features_for_model = [ "y_lag_1", "y_lag_2", "y_lag_3", "y_lag_4", "y_lag_5", "y_lag_6", "y_lag_7", "y_lag_8", "y_lag_9", "y_lag_10", "target_deriv_smooth_const_mean_lag_1", "target_deriv_smooth_const_mean_lag_2", "target_deriv_smooth_const_mean_lag_3", "target_deriv_smooth_const_mean_lag_4", "target_deriv_smooth_const_mean_lag_5", "dew_pt_lag_1", "dew_pt_lag_2", "dew_pt_lag_3", "dew_pt_lag_4", "dew_pt_lag_5", "dew_pt_lag_6", "dew_pt_lag_7", "dew_pt_lag_8", "dew_pt_lag_9", "dew_pt_lag_10", "dew_pt_lag_11", "dew_pt_lag_12", ] local_X = dengue_features_sj_train_lags[features_for_model].dropna() local_y = y_sj_multistep inputs = Input(shape=(local_X.shape[1],), name="input") x = BatchNormalization()(inputs) x = Dense(20, activation="relu", name="layer2")(x) x = BatchNormalization()(x) x = Dense(20, activation="relu", name="layer3")(x) x = Dense(20, activation="sigmoid", name="layer4")(x) x = Dense(20, activation=None, name="layer5")(x) model = Model(inputs=inputs, outputs=x) model.compile(loss=nn_loss_choice, optimizer="adam") print(model) model.summary() keras.utils.plot_model( model, f"model_nn_{model_labels[-1]}.png", show_shapes=True, show_layer_activations=False, ) model_list.append(model) list_X.append(local_X) list_y.append(local_y) # ==================================================================== model_labels.append("NN_3_Dew_Precip") model_titles.append("Neural Network 3 Dew Precip") features_for_model = [ "y_lag_1", "y_lag_2", "y_lag_3", "y_lag_4", "y_lag_5", "y_lag_6", "y_lag_7", "y_lag_8", "y_lag_9", "y_lag_10", "dew_pt_lag_1", "dew_pt_lag_2", "dew_pt_lag_3", "dew_pt_lag_4", "dew_pt_lag_5", "dew_pt_lag_6", "dew_pt_lag_7", "dew_pt_lag_8", "dew_pt_lag_9", "dew_pt_lag_10", "dew_pt_lag_11", "dew_pt_lag_12", "precip_lag_1", "precip_lag_2", "precip_lag_3", "precip_lag_4", "precip_lag_5", "precip_lag_6", "precip_lag_7", "precip_lag_8", "precip_lag_9", "precip_lag_10", "precip_lag_11", "precip_lag_12", ] local_X = dengue_features_sj_train_lags[features_for_model].dropna() local_y = y_sj_multistep print(local_X.shape[1]) inputs = Input(shape=(local_X.shape[1],), name="input") print(inputs) x = BatchNormalization()(inputs) x = Dense(20, activation="relu", name="layer2")(x) x = BatchNormalization()(x) x = Dense(20, activation="relu", name="layer3")(x) x = Dense(20, activation="sigmoid", name="layer4")(x) x = Dense(20, activation=None, name="layer5")(x) # making a separate output layer for each output # output_layers=[] # for col in local_y.columns: # output_layer=Dense(1,name=col)(x) # output_layers.append(output_layer) model = Model(inputs=inputs, outputs=x) # model = Model(inputs=inputs,outputs=output_layers) loss_dict = {} for col in local_y.columns: loss_dict[col] = nn_loss_choice # model.compile(loss=loss_dict,optimizer='adam') model.compile(loss=nn_loss_choice, optimizer="adam") print(model) model.summary() keras.utils.plot_model( model, "model_nn3.png", show_shapes=True, show_layer_activations=False ) model_list.append(model) list_X.append(local_X) list_y.append(local_y) # 'rel_hum_lag_6','rel_hum_lag_7','rel_hum_lag_8', # 'rel_hum_lag_9','rel_hum_lag_10','rel_hum_lag_11', # ==================================================================== model_labels.append("NN_4_Dew_Precip_Hum") model_titles.append("Neural Network 4 Dew Precip Humid") features_for_model = [ "y_lag_1", "y_lag_2", "y_lag_3", "y_lag_4", "y_lag_5", "y_lag_6", "y_lag_7", "y_lag_8", "y_lag_9", "y_lag_10", "dew_pt_lag_1", "dew_pt_lag_2", "dew_pt_lag_3", "dew_pt_lag_4", "dew_pt_lag_5", "dew_pt_lag_6", "dew_pt_lag_7", "dew_pt_lag_8", "dew_pt_lag_9", "dew_pt_lag_10", "dew_pt_lag_11", "dew_pt_lag_12", "precip_lag_1", "precip_lag_2", "precip_lag_3", "precip_lag_4", "precip_lag_5", "precip_lag_6", "precip_lag_7", "precip_lag_8", "precip_lag_9", "precip_lag_10", "precip_lag_11", "precip_lag_12", "rel_hum_lag_1", "rel_hum_lag_2", "rel_hum_lag_3", "rel_hum_lag_4", "rel_hum_lag_5", "rel_hum_lag_6", "rel_hum_lag_7", "rel_hum_lag_8", "rel_hum_lag_9", "rel_hum_lag_10", "rel_hum_lag_11", "rel_hum_lag_12", ] local_X = dengue_features_sj_train_lags[features_for_model].dropna() local_y = y_sj_multistep print(local_X.shape[1]) inputs = Input(shape=(local_X.shape[1],), name="input") print(inputs) x = BatchNormalization()(inputs) x = Dense(20, activation="relu", name="layer2")(x) x = BatchNormalization()(x) x = Dense(20, activation="relu", name="layer3")(x) x = Dense(20, activation="sigmoid", name="layer4")(x) x = Dense(20, activation=None, name="layer5")(x) model = Model(inputs=inputs, outputs=x) # model = Model(inputs=inputs,outputs=output_layers) loss_dict = {} for col in local_y.columns: loss_dict[col] = nn_loss_choice # model.compile(loss=loss_dict,optimizer='adam') model.compile(loss=nn_loss_choice, optimizer="adam") print(model) model.summary() keras.utils.plot_model( model, "model_nn4.png", show_shapes=True, show_layer_activations=False ) model_list.append(model) list_X.append(local_X) list_y.append(local_y) # code from https://www.kaggle.com/code/ryanholbrook/dropout-and-batch-normalization # layers.Dense(16, activation='relu'), # layers.BatchNormalization(), # model = keras.Sequential([ # layers.Dense(1024, activation='relu', input_shape=[11]), # layers.Dropout(0.3), # layers.BatchNormalization(), # layers.Dense(1024, activation='relu'), # layers.Dropout(0.3), # layers.BatchNormalization(), # layers.Dense(1024, activation='relu'), # layers.Dropout(0.3), # layers.BatchNormalization(), # layers.Dense(1), # ]) # code from https://www.kaggle.com/code/nicapotato/keras-timeseries-multi-step-multi-output # code from https://stackoverflow.com/questions/44036971/multiple-outputs-in-keras # inputs = Input(shape=(3,), name='input') # x = Dense(16, activation='relu', name='16')(inputs) # x = Dense(32, activation='relu', name='32')(x) # output1 = Dense(1, name='cont_out')(x) # output2 = Dense(3, activation='softmax', name='cat_out')(x) # model = Model(inputs=inputs, outputs=[output1, output2]) # model.compile(loss={'cont_out': 'mean_absolute_error', # 'cat_out': 'sparse_categorical_crossentropy'}, # optimizer='adam', # metrics={'cat_out': tf.metrics.SparseCategoricalAccuracy(name='acc')}) # history = model.fit(X, {'cont_out': Y, 'cat_out': Z}, epochs=10, batch_size=8) # Time Series Only Models # # Split the data # Also, we can choose to standardize the data here (so we can make sure to just get the mean and std from the training sets) # Switch to standardize all inputs enable_standardize_all = True test_size = 400 for i in range(len(list_X)): local_X = list_X[i] local_y = list_y[i] local_y, local_X = local_y.align(local_X, join="inner", axis=0) X_train, X_valid, y_train, y_valid = train_test_split( local_X, local_y, test_size=test_size, shuffle=False ) if enable_standardize_all: X_valid = (X_valid - X_train.mean()) / X_train.std() X_train = (X_train - X_train.mean()) / X_train.std() X_train_list.append(X_train) X_valid_list.append(X_valid) y_train_list.append(y_train) y_valid_list.append(y_valid) # # Run the Fits # For fitting methods that give histories fit_histories = [] fit_history_labels = [] fit_history_indices = [] for i in range(len(model_list)): model = model_list[i] model_label = model_labels[i] X_train = X_train_list[i] y_train = y_train_list[i] X_valid = X_valid_list[i] y_valid = y_valid_list[i] # can add choices based on tags in the model_label # maybe add NN to the beginning print(f"Fitting model {model_label}") # print(y_train.head()) if model_label[0:2] == "NN": print("I think this is a Neural Net model. Fitting accordingly.") # FIXME increase epochs after debugging # num_epochs=10 num_epochs = 800 batch_size = 10 # batch_size=50 history = model.fit( X_train, y_train, epochs=num_epochs, validation_data=(X_valid, y_valid), batch_size=batch_size, verbose=0, ) # history = model.fit(X_train,y_train,epochs=num_epochs,batch_size=52,verbose=0) # history = model.fit(X_train,y_train) fit_histories.append(history) fit_history_labels.append(model_label) fit_history_indices.append(i) else: ##history = model.fit(X, {'cont_out': Y, 'cat_out': Z}, epochs=10, batch_size=8) model.fit(X_train, y_train) # history = model.fit(X_train,y_train) # fit_histories.append(history) # fit_history_labels.append(model_label) # fit_history_indices.append(i) # print(type(history)) print(f" Finished fitting model {model_label}") # history = model.fit( # X_train, y_train, # validation_data=(X_valid, y_valid), # batch_size=256, # epochs=100, # verbose=0, # ) # Show the learning curves # history_df = pd.DataFrame(history.history) # history_df.loc[:, ['loss', 'val_loss']].plot(); for i in range(len(fit_history_indices)): history = fit_histories[i] label = fit_history_labels[i] fit_index = fit_history_indices[i] # global model index print(f"Giving fitting history information for {label}") print(type(history)) print(history) history_df = pd.DataFrame(history.history) print(history_df.columns) # Start the plot at epoch 5 history_df.loc[5:, ["loss", "val_loss"]].plot() plt.legend([f"Model {i+1} Training Loss", f"Model {i+1} Validation Loss"]) plt.savefig(f"model_{label}_fit_history.png") # history_df.loc[5:, ['y_step_10_loss', 'val_y_step_10_loss']].plot() # plt.legend(['Training Loss (Step 10)','Validation Loss (Step 10)']) # plt.savefig(f'model_{label}_fit_history.png') # # Produce Predictions y_pred_train_list = [] y_pred_valid_list = [] for i in range(len(model_list)): model = model_list[i] model_label = model_labels[i] X_train = X_train_list[i] y_train = y_train_list[i] X_valid = X_valid_list[i] y_valid = y_valid_list[i] print(f"Producing predictions for model {model_label}") if model_label[0:2] == "NN": print( "I think this is a Neural Net model. Formatting input and output accordingly." ) temp_predict_train = model.predict(X_train) print(type(temp_predict_train[0])) y_pred_train = pd.DataFrame( temp_predict_train, index=y_train.index, columns=y_train.columns ) print(f"y_pred_train df has shape {y_pred_train.shape}") temp_predict_valid = model.predict(X_valid) print(type(temp_predict_valid)) # if model_label != 'NN_1_Dew': # temp_predict_valid=np.concatenate(temp_predict_valid,axis=1) y_pred_valid = pd.DataFrame( temp_predict_valid, index=y_valid.index, columns=y_valid.columns ) else: y_pred_train = pd.DataFrame( model.predict(X_train), index=y_train.index, columns=y_train.columns, ).clip(0.0) y_pred_valid = pd.DataFrame( model.predict(X_valid), index=y_valid.index, columns=y_valid.columns, ).clip(0.0) y_pred_train_list.append(y_pred_train) y_pred_valid_list.append(y_pred_valid) # # Run Metrics import tensorflow_addons as tfa rmse_train_list = [] rmse_valid_list = [] rsquare_list = [] # metric for NNs r_square_metric = tfa.metrics.RSquare() for i in range(len(model_list)): model = model_list[i] model_label = model_labels[i] X_valid = X_valid_list[i] y_train = y_train_list[i] y_valid = y_valid_list[i] y_pred_train = y_pred_train_list[i] y_pred_valid = y_pred_valid_list[i] print(f"y_train has type {type(y_train)}") print(f"y_pred_train has type {type(y_pred_train)}") print(f"y_train has shape {y_train.shape}") print(f"y_pred_train has shape {y_pred_train.shape}") train_rmse = mean_squared_error(y_train, y_pred_train, squared=False) test_rmse = mean_squared_error(y_valid, y_pred_valid, squared=False) if model_label[0:2] == "NN": print(type(model)) # storing 3, an impossible value, for now r_square = 3 # r_square = tfa.metrics.RSquare # r_square=model.score(X_valid,y_valid) else: r_square = model.score(X_valid, y_valid) rmse_train_list.append(train_rmse) rmse_valid_list.append(test_rmse) rsquare_list.append(r_square) print("===========================================") print(f"Model {model_label}") print(f" RMSE(training,valid)=({train_rmse:.2f},{test_rmse:.2f})") print(f" R^2(valid)=({r_square:.2f})") # print('Model Two:') # print((f"Train RMSE: {train_rmse:.2f}\n" f"Test RMSE: {test_rmse:.2f}")) # print('') # r_square=model_2.score(X_2_valid,y_2_valid) # print(f"Model 2 Train R^2: {r_square:.2f}\n") print(rmse_train_list) print(rmse_valid_list) print(rsquare_list) # # Plot Results for i in range(len(model_list)): y_pred_train = y_pred_train_list[i] y_pred_valid = y_pred_valid_list[i] model_name = model_labels[i] model_title = model_titles[i] EVERY = 20 START = 50 END = 550 fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(15, 10)) line1 = y_sj.loc[START:END].plot(ax=ax1, label="Data", color="black") x = plot_multistep(y_pred_train.loc[START:END], ax=ax1, every=EVERY) ax1.set_ylabel("Weekly Cases") ax1.legend(["Data (Training)", f"Model {i+1}:{model_title} Forecasts (training)"]) EVERY = 20 START = 600 END = 1100 # fig, ax = plt.subplots(1, 1, figsize=(11, 4)) line1 = y_sj.loc[START:END].plot(ax=ax2, label="Data", color="black") x = plot_multistep(y_pred_valid.loc[START:END], ax=ax2, every=EVERY) ax2.set_ylabel("Weekly Cases") ax2.legend(["Data (Validation)", f"Model {i+1}:{model_title} Forecasts"]) plt.savefig(f"model_{i+1}_{model_name}.png")
# # Context # Stock marketing is the pillar of the economy of this world and one of the best place to invest to grow our finance. I am interested in learning how different elements like cpi, ppe, fed interest rate, fund and others stock will affect the stock value. I used historical value along with random tree classification to predict the stock in next quater. Of course, just using these value wouldn't not be enough to accurately in predicting the stock value(eps, p/e ratio, balance sheet analysis of a company and their relative stock will be my next project) but I try to least understand which feature(correlation) will be important in changing the stock value and indentify trend. # **Why random forest** # I want to predict whether the stock will go up or down using historical data, so this is a binary prediction - supervised learning, binary classificaiton and random forest is one of the best algorithm in binary classification especially on over-fitting the data as when I test run it, the training data perform really well but not the prediction. # # Data Dictionary # The dataset has the following information: # * cpi - Consumer price index (inflation) # * ppp - Purchasing Power Index # * Fed Interest - interest rate of borrowing # * Fed Fund - Total value of the assets of all Federal Reserve Banks # * Stock - stock price of each company monetly # * Debt - total us debt # * Productivity - Nonfarm productibity, labor, manufacture # * SP 500 - sp 500 price to earning ratio # * volte - market volotile # * real yeild - interest rate with inflation adjustment will get the real change in purchase power # * Volume - volume traded on different venue # data source - https://www.cboe.com/us/equities/market_share/ , https://fred.stlouisfed.org/, https://fiscaldata.treasury.gov/datasets/monthly-statement-public-debt/summary-of-treasury-securities-outstanding, https://www.bls.gov/productivity/data.htm # # 1. Data Clean # Import the necessary libraries and briefly explain the use of each library import pandas as pd import numpy as np import os import glob import matplotlib.pyplot as plt import warnings import difflib warnings.filterwarnings("ignore") from dateutil.relativedelta import relativedelta import featuretools as ft import datetime as dt from sklearn.ensemble import RandomForestClassifier import matplotlib.pyplot as plt import seaborn as sns # Feataurestools for feature engineering from sklearn.model_selection import train_test_split from sklearn.impute import SimpleImputer from sklearn.metrics import ( confusion_matrix, accuracy_score, ConfusionMatrixDisplay, f1_score, ) # Importing gradient boosting regressor, to make prediction from sklearn.metrics import r2_score from sklearn.linear_model import LinearRegression from sklearn.ensemble import RandomForestRegressor from sklearn.tree import DecisionTreeRegressor from sklearn.model_selection import RandomizedSearchCV from sklearn.model_selection import GridSearchCV from scipy.stats import randint as sp_randint from warnings import simplefilter # ignore all future warnings simplefilter(action="ignore", category=FutureWarning) warnings.simplefilter("ignore", FutureWarning) path = os.getcwd() excel_files = glob.glob(os.path.join(r"/kaggle/input/stock2011/stock/cpi", "*.xlsx")) xls_files = glob.glob(os.path.join(r"/kaggle/input/stock2011/stock/cpi", "*.xls")) cpi_month = {} cpi_month2 = {} excel_files = glob.glob(os.path.join(r"/kaggle/input/stock2011/stock/cpi", "*.xlsx")) xls_files = glob.glob(os.path.join(r"/kaggle/input/stock2011/stock/cpi", "*.xls")) volume_files = glob.glob( os.path.join(r"/kaggle/input/stock2011/stock/market_volume", "*.csv") ) cpi_month = {} cpi_month2 = {} prod = {} volume = {} for f in excel_files: cpi_month[f.split("/")[-1].split(".")[0]] = pd.read_excel(f) for f in xls_files: cpi_month2[f.split("/")[-1].split(".")[0]] = pd.read_excel(f) for f in cpi_month: cpi_month[f].columns = cpi_month[f].iloc[10] cpi_month[f] = cpi_month[f].drop(cpi_month[f].index[0:11]) cpi_month[f] = cpi_month[f].drop(["HALF1", "HALF2", "Year"], axis=1) if "Annual" in cpi_month[f].columns: cpi_month[f] = cpi_month[f].drop(["Annual"], axis=1) for f in volume_files: volume[f.split("/")[-1].split(".")[0]] = pd.read_csv(f) date = pd.date_range(start="1/1/2012", end="12/1/2021", freq="MS") cpi_allitem = {} for f in cpi_month: k = pd.Series() for i in range(0, len(cpi_month[f]) - 1): k = pd.concat([k, cpi_month[f].iloc[i, :]], ignore_index=True) df = pd.DataFrame(data=k) df.index = date df = df.rename(columns={0: "cpi"}) cpi_allitem[f] = df final_cpi = pd.DataFrame(data=date, columns=["Date"], index=date) for i in cpi_month2: cpi_month2[i] = cpi_month2[i].iloc[11:, :] k = cpi_month2[i] k.columns = ["Date", i] cpi_month2[i].index = date final_cpi = pd.concat([final_cpi, cpi_month2[i].iloc[:, 1]], axis=1) # #Above is all the cpi and fed data. Below is volume and gdp data clean volume_df = pd.DataFrame() for i in volume: temp_df = pd.DataFrame(data=volume[i]) temp_df = temp_df[ [ "Month", "Market Participant", "Total Shares", "Total Notional", "Total Trade Count", ] ] for k in range(0, len(temp_df)): new_temp = pd.DataFrame(temp_df.iloc[k, 2:]).T # new_temp = new_temp.drop('Market Participant', axis=1) new_temp.columns = [ temp_df["Market Participant"][k] + "Total Share", temp_df["Market Participant"][k] + "Total Notionale", temp_df["Market Participant"][k] + "Total Trade Count", ] new_temp.index = [temp_df["Month"][k]] volume_df = pd.concat([volume_df, new_temp], axis=0) volumefinal_df = pd.DataFrame() for i in volume_df.columns: volume_df2 = volume_df[i].dropna() volumefinal_df = pd.concat([volumefinal_df, volume_df2], axis=1) volumefinal_df = volumefinal_df.dropna(axis=1) volumefinal_df.index = date final_cpi = pd.concat([final_cpi, volumefinal_df], axis=1) print(volumefinal_df) debt = pd.read_csv(r"/kaggle/input/stock2011/stock/debt/debt.csv") debt = debt[debt["Security Type Description"] == "Total Public Debt Outstanding"] debt.index = debt["Record Date"] debt = debt.sort_index() debt = debt.iloc[1:-1, :] debt.index = date debt = debt["Total Public Debt Outstanding (in Millions)"] debt.columns = ["Debt"] debt = debt.astype(int) final_cpi = pd.concat([final_cpi, debt], axis=1) pe = pd.read_csv( r"/kaggle/input/stock2011/stock/sp500 pe/MULTPL-SP500_PE_RATIO_MONTH (1).csv" ) pe.columns = ["Date", "SP500PE"] pe["Date"] = pe["Date"].apply(lambda x: dt.datetime.strptime(x, "%Y-%m-%d")) pe.index = pe["Date"] pe = pe.sort_index() pe.index = date pe = pe.drop("Date", axis=1) pe.columns = ["SP500PE"] final_cpi = pd.concat([final_cpi, pe], axis=1) print(final_cpi) yield_bond = pd.read_excel( r"/kaggle/input/stock2011/stock/yield after inflation/DFII10.xls" ) yield_bond = yield_bond.iloc[11:, :] yield_bond.index = date yield_bond = yield_bond.drop("FRED Graph Observations", axis=1) yield_bond.columns = ["yield"] final_cpi = pd.concat([final_cpi, yield_bond], axis=1) gdp = pd.read_excel(r"/kaggle/input/stock2011/stock/gdp_monthly.xlsx") gdp.columns = ["date", "gdp"] xls_files = glob.glob(os.path.join(r"/kaggle/input/stock2011/stock", "*.xls")) pce_group = {} for f in xls_files: pce_group[f.split("/")[-1].split(".")[0]] = pd.read_excel(f) for f in pce_group: pce_group[f] = pce_group[f].drop(pce_group[f].index[0:9]) pce_group[f].columns = ["Date", "pce"] pce_group[f] = pce_group[f].drop(pce_group[f].index[0]) gdp["gdp"] = gdp["gdp"].astype(str) gdp["gdp"] = gdp["gdp"].str.replace("[T.]", "") gdp["gdp"] = gdp["gdp"].str.replace("1631954", "16319") gdp["gdp"] = gdp["gdp"].astype(int) for i in range(0, len(gdp)): gdp["gdp"].iloc[i] = gdp["gdp"].iloc[i] * 100 for i in pce_group: pce_group[i] = pce_group[i].reset_index(drop=True) pce_group.pop("GDP", None) for i in pce_group: k = pd.DataFrame(pce_group[i]) k.columns = ["Date", i] k.index = date final_cpi = pd.concat([final_cpi, pce_group[i].iloc[:, 1]], axis=1) gdp = gdp.sort_values("date") gdp.index = date final_cpi = pd.concat([final_cpi, gdp.iloc[:, 1]], axis=1) print(gdp) final_cpi["gdp"] = final_cpi["gdp"].replace(np.nan, 24520) final_cpi.index = date date2 = final_cpi["Date"] final_df = final_cpi final_cpi = final_cpi.drop("Date", axis=1) for col in final_cpi.columns: final_cpi[col] = final_cpi[col].astype(float) final_df[col] = final_df[col].astype(float) for col in final_cpi.columns: print(col) print("Skew :", round(final_cpi[col].skew(), 2)) plt.figure(figsize=(15, 4)) plt.subplot(1, 2, 1) final_cpi[col].hist(bins=10, grid=False) plt.ylabel("count") plt.subplot(1, 2, 2) sns.boxplot(x=final_cpi[col]) plt.show() plt.figure(figsize=(8, 8)) sns.heatmap(final_cpi.corr()) plt.show() # As we can see from the data, most of the graph skew ro the right, which make sense as economy is growing as a whole. From the correlation graph, we can also see that purchasing power, fed fund, and apparel cpi has almost no correlation in all data, which mean we can consider removing it, so do the apparel cpi. Beside that, also all data has strong correlation in their relationship. In this case, we will still keep the data for now, as I want to see the correlation of all data when stock value is added in. # Fromk the correlation graph, we can see that the volume actually does not has too many relationship with cpi, pce, debt, and yield. However, we can see that cpi, pce, debt, and yield are highly correlated with each other. GDP is only correlated with purchase power. # # Stock Data Clean # I have collected average stock price of different companny every month and I will combine them with my data above for a random forest classification. # csv_files = glob.glob( os.path.join(r"/kaggle/input/stock2011/stock/stock_month_new", "*.csv") ) excel_files = glob.glob( os.path.join(r"/kaggle/input/stock2011/stock/stock_month_new", "*.xlsx") ) stock_month = {} for f in csv_files: stock_month[f.split("/")[-1].split(".")[0]] = pd.read_csv(f) for f in excel_files: stock_month[f.split("/")[-1].split(".")[0]] = pd.read_excel(f) for i in stock_month: stock_month[i]["Date"] = pd.to_datetime(stock_month[i]["Date"]) stock_month["crudeoil_month"] = stock_month["crudeoil_month"].iloc[:105, :] # correct date to day 1 for i in stock_month: date = stock_month[i]["Date"] stock_month[i]["Date"] = stock_month[i]["Date"].to_numpy().astype("datetime64[M]") for j in range(1, len(date)): if abs(stock_month[i]["Date"][j] - stock_month[i]["Date"][j - 1]).days > 31: stock_month[i]["Date"][j] = stock_month[i]["Date"][j] + relativedelta( months=1 ) stock_month[i]["Date"] = stock_month[i]["Date"].to_numpy().astype("datetime64[M]") for i in stock_month: k = stock_month[i].columns j = difflib.get_close_matches("close", k) df = pd.DataFrame(data=stock_month[i][j]) df.columns = [i] stock_month[i]["Date"] = stock_month[i]["Date"].drop_duplicates() df.index = stock_month[i]["Date"] final_df = pd.concat([final_df, df], axis=1) for i in range(0, len(final_df["crudeoil_month"]) - 1): if pd.isnull(final_df["crudeoil_month"].iloc[i]): final_df["crudeoil_month"].iloc[i] = ( final_df["crudeoil_month"].iloc[i - 1] + final_df["crudeoil_month"].iloc[i + 1] ) / 2 final_df = final_df.iloc[2:-1, :] final_df = final_df.reset_index() month = final_df["Date"].apply(lambda x: x.month) final_df["ID"] = np.nan final_df["Quater"] = np.nan final_df.insert(1, "Month", month) quater = 0 for i in range(0, len(final_df)): if 0 < final_df["Month"][i] <= 3: quater = 1 elif 3 < final_df["Month"][i] <= 6: quater = 2 elif 6 < final_df["Month"][i] <= 9: quater = 3 elif 9 < final_df["Month"][i] <= 12: quater = 4 final_df["Quater"][i] = quater final_df["ID"][i] = ( str(final_df["Date"][i].year) + "-" + str(final_df["Date"][i].month) + "Q" + str(quater) ) cols = final_df.columns.tolist() cols = cols[-2:-1] + cols[0:2] + cols[-1:] + cols[2:-2] final_df = final_df[cols] k = 1 final_df = final_df.drop(["index"], axis=1) for i in range(4, len(final_df.columns)): i = i + k k = k + 2 final_df.insert(i, str(final_df.columns[i - 1] + "change"), np.nan) for q in range(1, len(final_df)): final_df[final_df.columns[i]][q] = ( final_df[final_df.columns[i - 1]][q] - final_df[final_df.columns[i - 1]][q - 1] ) final_df.insert(i + 1, str(final_df.columns[i] + "UpDown"), np.nan) for j in range(1, len(final_df)): if final_df[final_df.columns[i]][j] > 0: final_df[final_df.columns[i + 1]][j] = 1 else: final_df[final_df.columns[i + 1]][j] = 0 final_df = final_df.iloc[1:, ::] final_df2 = final_df final_df3 = final_df final_df = final_df.drop("Date", axis=1) final_df = final_df.drop("ID", axis=1) # # Random Forest Classifier # Below I choose one random stock. For example, amazon's stock to check performance of random forest. from sklearn.model_selection import train_test_split # Splitting the data into train and test X = final_df.drop("amazon_monthchangeUpDown", axis=1) # Putting response variable to y Y = final_df["amazon_monthchangeUpDown"] X_train, X_test, y_train, y_test = train_test_split( X, Y, train_size=0.7, random_state=42 ) classifier_rf = RandomForestClassifier( random_state=42, n_jobs=-1, max_depth=5, n_estimators=100, oob_score=True, verbose=2 ) classifier_rf.fit(X_train, y_train) # checking the oob score print(classifier_rf.oob_score_) da = RandomForestClassifier( max_depth=3, min_samples_leaf=5, n_estimators=600, n_jobs=-1, random_state=42 ) real_df = da.fit(X_train, y_train) print("da = ", real_df) print(da.get_params()) imp_df = pd.DataFrame({"Varname": X_train.columns, "Imp": da.feature_importances_}) imp_df = imp_df.sort_values(by="Imp", ascending=False) print(imp_df) dada = da.predict(X_test) print(da.score(X_test, y_test)) # # The below show how I get feature importance da = RandomForestClassifier( max_depth=3, min_samples_leaf=5, n_estimators=600, n_jobs=-1, random_state=42 ) real_df = da.fit(X_train, y_train) print("da = ", real_df) print(da.get_params()) imp_df = pd.DataFrame({"Varname": X_train.columns, "Imp": da.feature_importances_}) imp_df = imp_df.sort_values(by="Imp", ascending=False) print(imp_df) dada = da.predict(X_test) print(da.score(X_test, y_test)) # Now that I tested how to get the model score, and their feature importance, I want to first further clean up my data for better performance. For the data, we want to focus on only the change on the market as their value does not mean much but the change anhd rate of change of their value. So I will remove all their value and **leave only their change in the same month and next month as the end goal for this project is to predict the change in next month/quater.** final_df2 = final_df2.drop(["ID", "Month", "Date", "Quater"], axis=1) new_threem_df = pd.DataFrame() last_df = pd.DataFrame() for i in final_df2.columns: quater = 1 new_threem_df = pd.DataFrame() j = 1 o = 0 p = 3 for k in range(0, int(len(final_df2) / 3)): if quater == 5: quater = 1 yk = pd.DataFrame( data=[final_df2[i].iloc[o:p]], index=[str(final_df3["Date"][j].year) + "Quater" + str(quater)], ) yk.columns = [i + "1", i + "2", i + "3"] new_threem_df = pd.concat([new_threem_df, yk], ignore_index=False) quater = quater + 1 p = p + 3 o = o + 3 j = j + 3 last_df = pd.concat([last_df, new_threem_df], axis=1) reindex = last_df.index.tolist() reindex = reindex[1:] + ["2021Quater4"] last_df.index = reindex list_df = [] j = 2 for i in range(3, int(len(last_df.columns) / 3) + 1): list_df = [] name = last_df.columns[j - 2] # dont count for change column name = name[-7:-1] if any([x in name for x in ["change", "UpDown"]]): j = j + 3 continue else: for k in range(0, len(last_df)): if last_df.iloc[k, j] - last_df.iloc[k, j - 2] > 0: list_df.append(1) else: list_df.append(0) list2 = list_df list2 = list2[1:] + [np.nan] last_df.insert(j + 1, last_df.columns[j - 2] + "quaterUpDown", list_df) last_df.insert(j + 2, last_df.columns[j - 2] + "NextQuaterUpDown", list2) j = j + 5 clean_last = pd.DataFrame() j = 3 for i in range(0, int(len(last_df.columns) / 3)): clean_last = pd.concat([clean_last, last_df.iloc[:, j : j + 8]], axis=1) j = j + 11 # drop next quater up down in xf # remember to change param for final run next_df = clean_last clean_last.drop(last_df.tail(1).index, inplace=True) all_bestrf = {} accuracy = {} count = 0 # using f1 score as most of the time all stock should be grwoing with gdp growing for i in clean_last.columns: list_df = [] name = i name1 = i[-16::] count = 0 if any([x in name1 for x in ["NextQuaterUpDown"]]): xf_unclean = clean_last for k in xf_unclean.columns: if k[-16::] in ["NextQuaterUpDown"]: if k == name: continue else: xf_unclean = xf_unclean.drop(k, axis=1) Xf = xf_unclean.drop(name, axis=1) Yf = xf_unclean[name] Xf_train, Xf_test, Yf_train, Yf_test = train_test_split( Xf, Yf, train_size=0.6, random_state=1 ) oo = 1 while oo == 1: # First create the base model to tune rf = RandomForestClassifier() n_estimators = sp_randint(10, 100) max_features = ["log2", "sqrt", None] max_depth = sp_randint(5, 20) min_samples_split = sp_randint(100, 1000) min_samples_leaf = sp_randint(2, 20) bootstrap = [True, False] # Create the random grid random_grid = { "n_estimators": n_estimators.rvs(10), #'max_features': max_features, "max_depth": max_depth.rvs(10), #'min_samples_split': min_samples_split.rvs(10), #'min_samples_leaf': min_samples_leaf, "bootstrap": bootstrap, "criterion": ["gini", "entropy"], "max_leaf_nodes": sp_randint(5, 100), } rf_random = RandomizedSearchCV( estimator=rf, param_distributions=random_grid, n_iter=20, cv=3, n_jobs=-1, ) # Instantiate the grid search model # Create a random forest classifier rf_random.fit(Xf_train, Yf_train) best_rf = rf_random.best_estimator_ predict_ff = best_rf.predict(Xf_test) predict_ftrain = best_rf.predict(Xf_train) print("Testing Score :", f1_score(Yf_test, predict_ff)) print("Training score:", f1_score(Yf_train, predict_ftrain)) print("predict test =", predict_ff) print("Real test=", Yf_test.array) # the accuracy for the model can be adjusted but in kaggle, without computational power, I put it low if ( f1_score(Yf_test, predict_ff) < 0.5 or f1_score(Yf_train, predict_ftrain) < 0.5 ): if count < 30: if f1_score(Yf_test, predict_ff) == 0: accuracy[name] = float(1) all_bestrf[name] = best_rf imp_df = pd.DataFrame( { "Varname": Xf_train.columns, "Imp": best_rf.feature_importances_, } ) imp_df = imp_df.sort_values(by="Imp", ascending=False) print(imp_df) oo = 0 else: count = count + 1 continue else: accuracy[name] = f1_score(Yf_test, predict_ff) all_bestrf[name] = best_rf imp_df = pd.DataFrame( { "Varname": Xf_train.columns, "Imp": best_rf.feature_importances_, } ) imp_df = imp_df.sort_values(by="Imp", ascending=False) print(imp_df) oo = 0 else: oo = 0 accuracy[name] = f1_score(Yf_test, predict_ff) # cm = confusion_matrix(Yf_test, predict_ff) # ConfusionMatrixDisplay(confusion_matrix=cm).plot() # plt.show() imp_df = pd.DataFrame( {"Varname": Xf_train.columns, "Imp": best_rf.feature_importances_} ) imp_df = imp_df.sort_values(by="Imp", ascending=False) print(imp_df) all_bestrf[name] = best_rf print("Done:", i) print(all_bestrf)
import pandas as pd a = pd.read_csv( "/kaggle/input/bigbasket-entire-product-list-28k-datapoints/BigBasket Products.csv" ) a b = pd.read_csv( "/kaggle/input/bigbasket-entire-product-list-28k-datapoints/BigBasket Products.csv", usecols=["product", "category", "sub_category", "rating"], ) b.head() b.info() # **Assigning Multi Level Index** a.set_index("category") # single index a.head(20) a.set_index(["category", "sub_category"]) # multi level index # it automatically clubs the data # inplace=True should be passed for permanent update # **We can have n number of index levels based on the requirements** a.reset_index(inplace=True) a # **Index Details** b = pd.read_csv( "/kaggle/input/bigbasket-entire-product-list-28k-datapoints/BigBasket Products.csv", usecols=["product", "category", "sub_category", "rating"], index_col=["category", "sub_category"], ) b.head() # **Fetch Index** b.index b.index[0] b.index.names # **Fetch the Index using get level_values** b.index._get_level_values(0) # it will return the 0th level index b.index.get_level_values("sub_category") # can befetched using name of index too
# # Imports # * Import all modules used in this notebook import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from keras.utils.np_utils import to_categorical from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense from tensorflow.keras.layers import Dropout, Flatten, Activation, BatchNormalization from tensorflow.keras.layers import Conv2D, MaxPooling2D from keras.optimizers import Adam from keras.callbacks import ReduceLROnPlateau from keras.preprocessing.image import ImageDataGenerator import tensorflow as tf # # Fetch data from CSV files # * Provided with test.csv and train.csv # * Read data in using Pandas # * Inspect the data sets # test_data = pd.read_csv("../input/digit-recognizer/test.csv") train_data = pd.read_csv("../input/digit-recognizer/train.csv") test_data.head() train_data.head() # # Preprocess Data # * Split train data into X_train and y_train. # * X_train will consist of all columns except 'label' column # * y_train will consist of only the 'label' column # * The given test data does not have a 'label' column, so no need for preprocessing X_train = train_data.drop(labels=["label"], axis=1) y_train = train_data["label"] X_test = test_data # # Normalize Data # * The given images contain pixels with values in the range of 0-255 # * We want to normalize these values into a value between 0.0 and 1.0 in order to make calculations easier and allow our model to learn at a faster rate X_train = X_train / 255.0 X_test = X_test / 255.0 # # Reshape Data # * The data provided is formatted as 784 pixels, but we want to reshape our data to represent 28x28 pixel images print("Original X_train: ", X_train.shape) print("Original X_test: ", X_test.shape) X_train = X_train.values.reshape(-1, 28, 28, 1) X_test = X_test.values.reshape(-1, 28, 28, 1) print("Reshaped X_train: ", X_train.shape) print("Reshaped X_test: ", X_test.shape) # # One-hot-encode # * Since we want to classify our data into ten classes (for digits 0-9) we can one hot encode our y_train with 10 values. y_train = to_categorical(y_train, num_classes=10) # # Create Validation Set # * From our training data, we will extract a validation set to use when training our model # * We will use a 90%-10% training-validation split X_train, X_val, y_train, y_val = train_test_split( X_train, y_train, test_size=0.1, random_state=144 ) # # Create Model # * Initialize a convolutional neural network # * Utilize dropout layers in order to deal with the model overfitting # * Compile the model using the Adam optimizer model = Sequential() model.add( Conv2D( filters=64, kernel_size=(5, 5), padding="same", activation="relu", input_shape=(28, 28, 1), ) ) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.2)) model.add(Conv2D(filters=64, kernel_size=(3, 3), padding="same", activation="relu")) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.2)) model.add(Conv2D(filters=128, kernel_size=(5, 5), padding="same", activation="relu")) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.2)) model.add(Conv2D(filters=128, kernel_size=(3, 3), padding="same", activation="relu")) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.2)) model.add(Flatten()) model.add(Dense(256, activation="relu")) model.add(Dropout(0.4)) model.add(Dense(10, activation="softmax")) model.summary() model.compile(loss="categorical_crossentropy", optimizer=Adam(), metrics=["accuracy"]) # # Data Augmentation # * Generate augmented data from our training training data using the ImageDataGenerator # * We don't want to have generated data that is vertically or horizontally flipped, for the case of 9 and 6 datagen = ImageDataGenerator( rotation_range=10, horizontal_flip=False, vertical_flip=False ) datagen.fit(X_train) # # Train our Model # * Fit the model over 30 epochs # * Found that a batch size of 64 worked well # * We use ReduceLROnPlateau in order to half the learning rate when the validation accuracy flattens out over 3 epochs, helping our model better locate a minimum during optimization epochs = 30 batch_len = 64 learning_rate_reduction = ReduceLROnPlateau( monitor="val_accuracy", patience=3, verbose=1, factor=0.5, min_lr=0.00001 ) history = model.fit( datagen.flow(X_train, y_train, batch_size=batch_len), steps_per_epoch=len(X_train) // batch_len, epochs=epochs, validation_data=(X_val, y_val), callbacks=[learning_rate_reduction], ) # # Plot Loss and Accuracy plt.plot(history.history["loss"]) plt.plot(history.history["val_loss"]) plt.title("Model Loss") plt.ylabel("Loss") plt.xlabel("Epochs") plt.legend(["train", "val"]) plt.show() plt.plot(history.history["accuracy"]) plt.plot(history.history["val_accuracy"]) plt.title("Model Accuracy") plt.ylabel("Accuracy") plt.xlabel("Epochs") plt.legend(["train", "val"]) plt.show() # # Predict Test Data # * Using our model, we can predit which digit each of the images given in our test set is # * Store our model's predictions in a csv file res = model.predict(X_test) res = np.argmax(res, axis=1) res = pd.Series(res, name="Label") result = pd.concat([pd.Series(range(1, 28001), name="ImageId"), res], axis=1) result.to_csv("result.csv", index=False)
import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression dataset = pd.read_csv("/kaggle/input/salary-data/Salary_Data.csv") dataset x = dataset.iloc[:, :-1].values y = dataset.iloc[:, :1].values print("Year experience") print(x) print("Salary") print(y) plt.plot(x, y, color="red") plt.title("Salary vs Experience(Raw dataset)") plt.xlabel("Years of experience") plt.ylabel("Salary") plt.show() x_train, x_test, y_train, y_test = train_test_split( x, y, test_size=1 / 4, random_state=0 ) lin_regressor = LinearRegression() lin_regressor.fit(x_train, y_train) y_pred = lin_regressor.predict(x_test) y_pred plt.scatter(x_train, y_train, color="green") plt.plot(x_train, lin_regressor.predict(x_train), color="red") plt.title("Salary vs Experience(Train dataset)") plt.xlabel("Years of experience") plt.ylabel("Salary") plt.show() plt.scatter(x_test, y_test, color="green") plt.plot(x_test, lin_regressor.predict(x_test), color="red") plt.title("Salary vs Experience(Test dataset)") plt.xlabel("Years of experience") plt.ylabel("Salary") plt.show()
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os import shutil for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: source_path = os.path.join(dirname, filename) print(source_path) shutil.copyfile(source_path, filename) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" ## You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # install and input alpha_vantage import importlib try: from alpha_vantage.timeseries import TimeSeries except ImportError: print("alpha_vantage is not installed, installing now...") import requests import time import io from kaggle_secrets import UserSecretsClient user_secrets = UserSecretsClient() secret_value_0 = user_secrets.get_secret("alpha_key1") secret_value_1 = user_secrets.get_secret("alpha_key2") # All constants variables in this script ALPHA_ACCESS = secret_value_1 ENDPOINT = "https://www.alphavantage.co/query" ALPHA_MIN_LIMIT = 4 ALPHA_DAILY_LIMIT = 490 PROGRESS = "download_progress.csv" METADATA = "meta.csv" SLEEPTIMER = 60 def get_data_from_alpha_vantage(function, symbol, access_key): """ Get JSON data from Alpha Vantage. Parameters: - function (string) : time series of the data you want to enquire e.g. 'TIME_SERIES_WEEKLY_ADJUSTED', 'TIME_SERIES_DAILY' - symbol (string) : symbol of the equity you want to enquire e.g. 'IBM' - access_key (string) : access key to Alpha Vantage Return: alpha_data_dict (dictionary): JSON data from Alpha Vantage as a dictionary """ # set params for alpha vantage API params = { "function": function, "symbol": symbol, # Replace with the symbol of the stock you're interested in "outputsize": "full", "datatype": "csv", "apikey": access_key, # Replace with your Alpha Vantage API key } # if per minute limit has been reached, update download_progress.csv and sleep for SLEEPTIMER seconds if daily_counter % ALPHA_MIN_LIMIT == 0: update_progress_csv(download_progress_df) # update download_progress.csv time.sleep(SLEEPTIMER) # sleep for SLEEPTIMER seconds # get json from Alpha Vantage try: response = requests.get(ENDPOINT, params=params) print(response) data = response.content.decode("utf-8") alpha_data = pd.read_csv(io.StringIO(data)) alpha_data.to_csv(symbol + ".csv") except Exception as e: print("Error:", str(e)) def get_listing_status(access_key): """ Get JSON data from Alpha Vantage. Parameters: - function (string) : time series of the data you want to enquire e.g. 'TIME_SERIES_WEEKLY_ADJUSTED', 'TIME_SERIES_DAILY' - symbol (string) : symbol of the equity you want to enquire e.g. 'IBM' - access_key (string) : access key to Alpha Vantage Return: alpha_data_dict (dictionary): JSON data from Alpha Vantage as a dictionary """ # set params for alpha vantage API params = { "function": "LISTING_STATUS", "apikey": access_key, # Replace with your Alpha Vantage API key } # if per minute limit has been reached, update download_progress.csv and sleep for SLEEPTIMER seconds if daily_counter % ALPHA_MIN_LIMIT == 0: update_progress_csv(download_progress_df) # update download_progress.csv time.sleep(SLEEPTIMER) # sleep for SLEEPTIMER seconds # get json from Alpha Vantage try: response = requests.get(ENDPOINT, params=params) print(response) data = response.content.decode("utf-8") listing_status = pd.read_csv(io.StringIO(data)) except Exception as e: print("Error:", str(e)) listing_status = {} return listing_status def update_progress(progress_df, symbol, status): """ Update download progress of a symbol Parameters: - progress_df (DataFrame) : DataFrame which records the download status of each symbol - symbol (string) : symbol of the equity you want to enquire e.g. 'IBM' - status (string) : download status of the symbol i.e. 'Not Started' / 'Downloaded' / 'Failed' """ progress_df.loc[progress_df["Symbol"] == symbol, "Status"] = status def update_progress_csv(progress_df): """ Update download progress csv file with DataFrame Parameters: - progress_df (DataFrame) : DataFrame which records the download status of each symbol """ progress_df.to_csv(PROGRESS, index=False) def alpha_dict_to_csv(alpha_data_dict, function_key): """ Export data from Alpha Vantage to csv files: Meta Data ( Symbol, Last Updated Date and Time Zone ) of all symbols which includes to meta.csv, time series data to csv file with symbol as the name Parameters: - alpha_data_dict (dictionary) : dictionary which contains data from Alpha Vantage - symbol (string) : symbol of the equity you want to enquire e.g. 'IBM' - function_key (string) : key of the data which contain the time series you enquire e.g. 'Weekly Adjusted Time Series', 'Time Series (Daily)' """ meta_data = { "Symbol": alpha_data_dict["Meta Data"]["2. Symbol"], "Last_Refreshed": alpha_data_dict["Meta Data"]["3. Last Refreshed"], "Time_Zone": alpha_data_dict["Meta Data"]["4. Time Zone"], } meta_df = pd.DataFrame(meta_data, index=[0]) meta_df.to_csv(METADATA, mode="a", header=False, index=False) rows = [] alpha_data_df = pd.DataFrame( columns=[ "Date", "Open", "High", "Low", "Close", "Adjusted_Close", "Volume", "Dividend_Amount", ] ) for date, values in alpha_data_dict[function_key].items(): row = { "Date": date, "Open": values["1. open"], "High": values["2. high"], "Low": values["3. low"], "Close": values["4. close"], "Adjusted_Close": values["5. adjusted close"], "Volume": values["6. volume"], "Dividend_Amount": values.get("7. dividend amount", 0), } alpha_data_df = alpha_data_df.append(row, ignore_index=True) alpha_data_df["Date"] = pd.to_datetime(alpha_data_df["Date"]) # Convert columns to float types alpha_data_df[float_cols] = alpha_data_df[float_cols].astype(float) # export the dataframe to a csv file alpha_data_df.to_csv(symbol + ".csv", index=False) daily_counter = 1 # counter of daily requests # Load download progress if progress file exist, otherwise create a new dataframe for recording progress if os.path.isfile(PROGRESS): download_progress_df = pd.read_csv(PROGRESS) else: # full_tickers_df = pd.read_csv('/kaggle/input/nasdaq20230311/nasdaq_screener_1678529494978.csv', keep_default_na=False, na_values=['']) # download_progress_df = pd.DataFrame({'Symbol' : full_tickers_df['Symbol'], 'Status' : 'Not Started'}) full_tickers_df = get_listing_status(ALPHA_ACCESS) download_progress_df = pd.DataFrame( {"Symbol": full_tickers_df["symbol"], "Status": "Not Started"} ) float_cols = [ "Open", "High", "Low", "Close", "Adjusted_Close", "Volume", "Dividend_Amount", ] # list of symbols which haven't been downloaded yet undownloaded_df = download_progress_df[download_progress_df["Status"] == "Not Started"] # get time series weekly adjusted data of each ticker from Alpha Vantage to csv files for symbol in undownloaded_df.Symbol: # if daily limit not reached yet if daily_counter <= ALPHA_DAILY_LIMIT: get_data_from_alpha_vantage("TIME_SERIES_DAILY_ADJUSTED", symbol, ALPHA_ACCESS) # if len(alpha_data_dict) > 0: try: # alpha_dict_to_csv(alpha_data_dict, 'Weekly Adjusted Time Series') update_progress(download_progress_df, symbol, "Downloaded") except Exception as e: update_progress(download_progress_df, symbol, "Failed") print(e, symbol) # else: # update_progress(download_progress_df, symbol, "Failed") daily_counter += 1 else: # update download_prgress.csv and break the for loop # update_progress_csv(download_progress_df) break update_progress_csv(download_progress_df) # if data of all tickers have been downloaded if download_progress_df[download_progress_df["Status"] == "Not Started"].empty: print("All downloaded !") """ download_progress_old = pd.read_csv(PROGRESS) daily_counter = 1 full_tickers_new = pd.read_csv('https://www.alphavantage.co/query?function=LISTING_STATUS&apikey='+ALPHA_ACCESS) download_progress_new = pd.DataFrame({'Symbol' : full_tickers_new['symbol'], 'Status' : 'Not Started'}) downloaded = download_progress_old.loc[download_progress_old['Status'] == 'Downloaded'] for index, row in downloaded.iterrows(): # Check if the Symbol is in df_old if row['Symbol'] in download_progress_new['Symbol'].values: # Update the Status column in df_new based on the value in df_old download_progress_new.loc[download_progress_new['Symbol'] == row['Symbol'], 'Status'] = 'Downloaded' """ # remove files from working folder #!rm -rf /kaggle/working/*
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import pandas as pd import nltk from nltk.corpus import stopwords from nltk.tokenize import word_tokenize # ## Reading and understanding the data df = pd.read_csv( "../input/demonetization-in-india-twitter-data/demonetization-tweets.csv", encoding="ISO-8859-1", ) df.head() df.shape # ## Cleaning the tweets df = df["text"] df = pd.DataFrame({"tweet": df}) df.head() # Removing few characters df["cleaned_tweet"] = df["tweet"].replace( r'\'|\"|\,|\.|\?|\+|\-|\/|\=|\(|\)|\n|"', "", regex=True ) # Replacing few double spaces with single space df["cleaned_tweet"] = df["cleaned_tweet"].replace(" ", " ") # remove emoticons form the tweets df["cleaned_tweet"] = df["cleaned_tweet"].replace(r"<ed>", "", regex=True) df["cleaned_tweet"] = df["cleaned_tweet"].replace( r"\B<U+.*>|<U+.*>\B|<U+.*>", "", regex=True ) # convert tweets to lowercase df["cleaned_tweet"] = df["cleaned_tweet"].str.lower() # remove user mentions df["cleaned_tweet"] = df["cleaned_tweet"].replace(r"^(@\w+)", "", regex=True) # remove 'rt' in the beginning df["cleaned_tweet"] = df["cleaned_tweet"].replace(r"^(rt @)", "", regex=True) # remove_symbols df["cleaned_tweet"] = df["cleaned_tweet"].replace(r"[^a-zA-Z0-9]", " ", regex=True) # remove punctuations df["cleaned_tweet"] = df["cleaned_tweet"].replace( r'[[]!"#$%\'()\*+,-./:;<=>?^_`{|}]+', "", regex=True ) # remove_URL(x): df["cleaned_tweet"] = df["cleaned_tweet"].replace(r"https.*$", "", regex=True) # remove 'amp' in the text df["cleaned_tweet"] = df["cleaned_tweet"].replace(r"amp", "", regex=True) # remove words of length 1 or 2 df["cleaned_tweet"] = df["cleaned_tweet"].replace(r"\b[a-zA-Z]{1,2}\b", "", regex=True) # remove extra spaces in the tweet df["cleaned_tweet"] = df["cleaned_tweet"].replace(r"^\s+|\s+$", " ", regex=True) # Now we have the cleaned_tweet. But the stop words are still present. We can use this cleaned_tweet forcreating phrases and ranking the phrases from the tweets. # We will also remove the stop words and name the column as fully_cleaned_tweet. This will be used for clustering the sentiments. # list of words to remove words_to_remove = [ "ax", "i", "you", "edu", "s", "t", "m", "subject", "can", "lines", "re", "what", "there", "all", "we", "one", "the", "a", "an", "of", "or", "in", "for", "by", "on", "but", "is", "in", "a", "not", "with", "as", "was", "if", "they", "are", "this", "and", "it", "have", "has", "from", "at", "my", "be", "by", "not", "that", "to", "from", "com", "org", "like", "likes", "so", "said", "from", "what", "told", "over", "more", "other", "have", "last", "with", "this", "that", "such", "when", "been", "says", "will", "also", "where", "why", "would", "today", "in", "on", "you", "r", "d", "u", "hw", "wat", "oly", "s", "b", "ht", "rt", "p", "the", "th", "n", "was", "via", ] # remove stopwords and words_to_remove stop_words = set(stopwords.words("english")) mystopwords = [stop_words, words_to_remove] df["fully_cleaned_tweet"] = df["cleaned_tweet"].apply( lambda x: " ".join([word for word in x.split() if word not in mystopwords]) ) df.head()
# 画像分類をやってみたい人向けのコードです。 # 波形をスペクトログラムにすると画像として扱えるので、 # motionの画像とmusicの画像とをモデルに入れて、 # もし対応するなら1,しないなら0として学習させます。 import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt from sklearn.model_selection import KFold df = pd.read_csv("/kaggle/input/data-science-osaka-spring-2023/train.csv") df["label"] = 1 df["fold"] = -1 kf = KFold(n_splits=3, shuffle=True, random_state=0) for fold, (_, valid_idx) in enumerate(kf.split(df)): df.loc[valid_idx, "fold"] = fold print(df["fold"].value_counts()) import librosa idx = 0 motion_id = df["ID"].values[idx] music_id = df["music"].values[idx] motion = pd.read_csv( f"/kaggle/input/data-science-osaka-spring-2023/motion/motion/{motion_id}.csv" )[["GYRO_X", "GYRO_Y", "GYRO_Z"]].values wave, sr = librosa.load( f"/kaggle/input/data-science-osaka-spring-2023/music/music/{music_id}.wav" ) print(motion.shape, len(wave), sr) # CQTは低周波でも特徴を拾いやすい、らしいです。 # musicはlibrosaでスペクトログラムにしました。 import torch from nnAudio.Spectrogram import CQT1992v2 qtransform = CQT1992v2(sr=32, fmin=1, fmax=16, hop_length=16, trainable=False) image = qtransform(torch.from_numpy(motion).float().permute(1, 0)) plt.figure(figsize=(20, 4)) for i, img in enumerate(image): plt.subplot(1, 3, i + 1) plt.imshow(img) plt.show() melspec = librosa.amplitude_to_db(np.abs(librosa.stft(wave))) plt.imshow(melspec) plt.show() # こんな感じで、波形を画像化します。 # # Dataset # ディープラーニングをしたいなら、下記のDatasetは飽きるほど書くので練習してみるといいかもしれません。 # init, len, getitemが必須です。 # init: 初期化条件。データとか色々定義する。 # len: データの長さ。 # getitem: idxを行番号として、データを取り出す。 import torchvision from torch.utils.data import Dataset, DataLoader class CustomData(Dataset): def __init__(self, data, qtransform): self.data = data self.qtransform = qtransform def __len__(self): return len(self.data) def normalize(self, x): _mean = x.mean() _std = x.std() x = (x - _mean) / _std _max = x.max() _min = x.min() x = (x - _min) / (_max - _min) return x def __getitem__(self, idx): motion_id = self.data["ID"].values[idx] music_id = self.data["music"].values[idx] motion = pd.read_csv( f"/kaggle/input/data-science-osaka-spring-2023/motion/motion/{motion_id}.csv" )[["GYRO_X", "GYRO_Y", "GYRO_Z"]].values motion = motion[-1000:, :] wave, sr = librosa.load( f"/kaggle/input/data-science-osaka-spring-2023/music/music/{music_id}.wav" ) motion_image = self.qtransform(torch.from_numpy(motion).float().permute(1, 0)) motion_image = self.normalize(motion_image) music_image = librosa.amplitude_to_db(np.abs(librosa.stft(wave))) music_image = torchvision.transforms.Resize([256, 256])( torch.from_numpy(music_image).unsqueeze(0) ) music_image = self.normalize(music_image) label = self.data["label"].values[idx] label = torch.tensor(label, dtype=torch.float) return motion_image, music_image, label qtransform = CQT1992v2(sr=32, fmin=1, fmax=16, hop_length=16, trainable=False) ds = CustomData(df, qtransform) motion, music, label = ds[0] print(motion.shape, music.shape, label) # 各行の出力は、motion画像(3 x 縦横)、music画像(1 x 縦横)、ラベルです。 # # Model # timmを使うと優秀なモデルを簡単に定義できます。 # 外部データなしなので、pretrained = Falseにしています。 # motionの特徴とmusicの特徴をcatでつなげて、最終的にheadで分類させます。 import timm import torch.nn as nn class CustomModel(nn.Module): def __init__(self): super().__init__() self.motion_model = timm.create_model( "efficientnetv2_s", pretrained=False, in_chans=3, num_classes=0 ) self.music_model = timm.create_model( "efficientnet_b0", pretrained=False, in_chans=1, num_classes=0 ) self.head = nn.Sequential( nn.Linear( in_features=self.motion_model.num_features + self.music_model.num_features, out_features=128, ), nn.BatchNorm1d(128), nn.Dropout(p=0.1), nn.ReLU(), nn.Linear(in_features=128, out_features=1), ) def forward(self, motion, music): x1 = self.motion_model(motion) x2 = self.music_model(music) logits = self.head(torch.cat([x1, x2], dim=-1)) return logits model = CustomModel() dl = DataLoader(ds, batch_size=4) b = next(iter(dl)) print(b[0].shape, b[1].shape, b[2].shape) # batch_size x 3 x 縦横, batch_size x 1 x 縦横, batch_size logits = model(b[0], b[1]) print(logits.shape) # モデルに入れると、batch_size x 1のサイズで予測結果を出します。 # # Training fold = 0 train = df.loc[df.fold != fold].reset_index(drop=True) valid = df.loc[df.fold == fold].reset_index(drop=True) train_musics = train["music"].unique() valid_musics = valid["music"].unique() print(len(train_musics), len(valid_musics)) train = pd.merge( pd.DataFrame( [(i, m) for i in train["ID"] for m in train_musics], columns=["ID", "music"] ), train[["ID", "music", "label"]], how="left", on=["ID", "music"], ).fillna(0) valid = pd.merge( pd.DataFrame( [(i, m) for i in valid["ID"] for m in valid_musics], columns=["ID", "music"] ), valid[["ID", "music", "label"]], how="left", on=["ID", "music"], ).fillna(0) print(train.shape, valid.shape) # 以下のループで学習と検証を繰り返します。 # これもだいたいはよくある書き方なので、 # 初めての方はググりつつ書いてみると練習になると思います。 from timm.utils import AverageMeter from tqdm.notebook import tqdm, trange train_ds = CustomData(train, qtransform) valid_ds = CustomData(valid, qtransform) train_dl = DataLoader( train_ds, batch_size=32, shuffle=True, drop_last=True, pin_memory=True, num_workers=2, ) valid_dl = DataLoader( valid_ds, batch_size=32 * 2, shuffle=False, drop_last=False, pin_memory=True, num_workers=2, ) model = CustomModel().cuda() optimizer = torch.optim.Adam(model.parameters(), lr=1e-4) criterion = nn.BCEWithLogitsLoss() scheduler = torch.optim.lr_scheduler.CosineAnnealingLR( optimizer, T_max=10, eta_min=1e-6, verbose=True ) history = {"train": [], "valid": []} for e in range(10): print(f"\n- Epoch: {e} -") model.train() train_loss = AverageMeter() pbar = tqdm(train_dl) for b in pbar: motion = b[0].cuda() music = b[1].cuda() label = b[2].cuda() logits = model(motion, music) loss = criterion(logits.reshape(-1, 1), label.reshape(-1, 1)) loss.backward() optimizer.step() optimizer.zero_grad() train_loss.update(val=loss.item(), n=len(motion)) pbar.set_postfix(TrainLoss=train_loss.avg) scheduler.step() model.eval() valid_loss = AverageMeter() with torch.no_grad(): for b in tqdm(valid_dl): motion = b[0].cuda() music = b[1].cuda() label = b[2].cuda() logits = model(motion, music) loss = criterion(logits.reshape(-1, 1), label.reshape(-1, 1)) valid_loss.update(val=loss.item(), n=len(motion)) print("TrainLoss:", train_loss.avg) print("ValidLoss:", valid_loss.avg) history["train"].append(train_loss.avg) history["valid"].append(valid_loss.avg) plt.plot(history["train"]) plt.plot(history["valid"]) plt.legend() plt.show() # # Evaluation # AUCとMAP@7を見ておきます。 # 予測は検証時とほぼ同じ書き方で、モデルの出力をくっつけるだけです。 preds = [] model.eval() with torch.no_grad(): for b in tqdm(valid_dl): logits = model(b[0].cuda(), b[1].cuda()) preds += logits.sigmoid().cpu().reshape(-1).tolist() valid["prob"] = preds valid.head() from sklearn.metrics import roc_auc_score auc = roc_auc_score(valid["label"], valid["prob"]) print("AUC:", auc) oof = valid.sort_values(by=["ID", "prob"], ascending=[True, False]) oof = ( oof.groupby("ID")["music"] .agg(list) .reset_index() .rename(columns={"music": "preds"}) ) oof = oof.merge(df[["ID", "music"]], how="left", on="ID") oof.head() def map_per_row(label, predictions): try: return 1 / (predictions[:7].index(label) + 1) except ValueError: return 0.0 def calc_metric(labels, predictions): return np.mean([map_per_row(l, p) for l, p in zip(labels, predictions)]) score = calc_metric(oof["music"], oof["preds"]) print("MAP:", score) # # Inference test_musics = [i for i in range(250) if i not in sorted(df["music"].unique())] test = pd.DataFrame( [(i, m) for i in np.arange(100, 250) for m in test_musics], columns=["ID", "music"] ) test["label"] = -1 test_ds = CustomData(test, qtransform) test_dl = DataLoader( test_ds, batch_size=32 * 2, shuffle=False, drop_last=False, pin_memory=True, num_workers=2, ) preds = [] model.eval() with torch.no_grad(): for b in tqdm(test_dl): logits = model(b[0].cuda(), b[1].cuda()) preds += logits.sigmoid().cpu().reshape(-1).tolist() test["prob"] = preds submit = test.sort_values(by=["ID", "prob"], ascending=[True, False]) submit = submit.groupby("ID")["music"].agg(list).reset_index() submit["music"] = submit["music"].apply(lambda x: " ".join([str(i) for i in x][:7])) submit.to_csv("submission.csv", index=False) submit.head()
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session train = pd.read_csv( "/kaggle/input/house-prices-advanced-regression-techniques/train.csv" ) test = pd.read_csv("/kaggle/input/house-prices-advanced-regression-techniques/test.csv") df = pd.concat([test, train]) print(df.head(10)) df = df.reset_index() df = df.reset_index(drop=True) # 1459 + 1460 # # Eksik veri tespiti # **isna** fonksiyonu eksik verileri daha kolay bulmamızı sağlar data = [] j = 0 for i in train: data.append(df.iloc[:, j : j + 1].isna().sum()) # print(data[j]) j += 1 # eksik verileri olan kolonları tespit edelim # eksik verisi olan kolonlar / ne kadar eksik olduğu: # LotFrontage 259 # Alley 1369 # MasVnrType 8 # MasVnrArea 8 # BsmtQual 37 # BsmtCond 37 # BsmtExposure 38 # BsmtFinType1 37 # BsmtFinType2 38 # Electrical 1 # FireplaceQu 690 # GarageType 81 # GarageYrBlt 81 # GarageFinish 81 # GarageQual 81 # GarageCond 81 # PoolQC 1453 # Fence 1179 # MiscFeature 1406 # # # # Eksik veri görselleştirme # missingno kütüphanesi kullanılarak eksik veriler görselleştririlebilir import missingno as msno msno.bar(df) # # Eksik verilerde Deletion yöntemi # import warningsher kolonda 1460 veri var. eksik veri oranı %40'ın üzerinde olan kolonları modelde kullanmama kararı aldık. Bu yüzden Alley, FireplaceQu, PoolQC, fence, Miscfeature kolonlarına burada veda ediyoruz. Geri kalan kolonları uygun tekniklerle doldurmaya çalışacağız :) total_data = df.shape[0] column_shape = df.shape[1] data = 0 i = 0 while i <= column_shape: data = (df.iloc[:, i : i + 1].isna().sum() / total_data) * 100 data = data.to_numpy() if data > 40: df = df.drop(df.iloc[:, i : i + 1], axis=1) i += 1 # print(df.head(10)) # YAzdığım bu fonksiyon sayesinde belli bir eksik veri oranının üzerindeki kolonları kolayca silebilirsiniz. çıkan error mesajını görmezden gelebilirsiniz şimdilik. Onu daha sonra çözeceğim Ş: # # eksik veri doldurma yöntemleri # eksik veri türleri: tamamen rastgele, rastgele , rastgele değil. # # fillna # df.iloc[:,3:4].fillna("sample") # fillna fonksiyonu ile eksik veriler istenilen değer ile doldurulabilir # # SimpleImputer data = df["LotFrontage"] print("data before modeling") print(data.head(30)) data = data.values data = data.reshape(-1, 1) from sklearn.impute import SimpleImputer fea_transformer = SimpleImputer(strategy="median") values = fea_transformer.fit_transform(data) data = pd.DataFrame(values) print("data after modeling") print(data.head(30)) # eksik veriler **simpleimputer** yöntemi ile de doldurulabilir. Simpleimputer yöntemi verileri *mean*(ortalama), *median*(medyan),*most_frequent* (mod) değerleri ile doldurur. Yukarıdaki örnekte LotFrontage kolonu median değeri ile dolduruldu. # # KNN algoritması ile eksik veri doldurma data = df["LotFrontage"] print("data before modeling") print(data.head(30)) data = data.values data = data.reshape(-1, 1) from sklearn.impute import KNNImputer fea_transformer = KNNImputer(n_neighbors=3) values = fea_transformer.fit_transform(data) data = pd.DataFrame(values) print("data after modeling") print(data.head(30)) # Eksik veriler makine öğrenmesi modelleri ile de doldurulabilir. yukarıda knn algoritması ile LotFrontage kolonunu doldurduk # # Yöntem seçimi # Eksik veri doldurma yöntemlerinden birkaçını tanıdığımıza göre hangi kolonda hangi yöntemi kullanacağımıza kara vermeliyiz df = df.fillna(df.mode().iloc[0]) msno.bar(df)