script
stringlengths
113
767k
# # Import Libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn import metrics from sklearn.metrics import ( accuracy_score, confusion_matrix, ConfusionMatrixDisplay, classification_report, ) import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) import warnings warnings.filterwarnings("ignore") # # Import Dataset train_df = pd.read_csv("/kaggle/input/customer-segmentation/Train.csv") test_df = pd.read_csv("/kaggle/input/customer-segmentation/Test.csv") df = pd.concat([train_df, test_df]) df.head(30) # # Data Cleaning # dropping the rows having NaN values df = df.dropna() df.info() df["Segmentation"].value_counts() print("Gender: ", df["Gender"].unique()) print("Ever_Married: ", df["Ever_Married"].unique()) print("Graduated: ", df["Graduated"].unique()) df["Gender"] = df["Gender"].apply(lambda x: 1 if x == "Male" else 0) df["Ever_Married"] = df["Ever_Married"].apply(lambda x: 1 if x == "Yes" else 0) df["Graduated"] = df["Graduated"].apply(lambda x: 1 if x == "Yes" else 0) df["Spending_Score"].unique() df["Spending_Score"].replace(to_replace="Low", value=0, inplace=True) df["Spending_Score"].replace(to_replace="Average", value=1, inplace=True) df["Spending_Score"].replace(to_replace="High", value=2, inplace=True) df["Var_1"].unique() df["Var_1"].replace(to_replace="Cat_1", value=1, inplace=True) df["Var_1"].replace(to_replace="Cat_2", value=2, inplace=True) df["Var_1"].replace(to_replace="Cat_3", value=3, inplace=True) df["Var_1"].replace(to_replace="Cat_4", value=4, inplace=True) df["Var_1"].replace(to_replace="Cat_5", value=5, inplace=True) df["Var_1"].replace(to_replace="Cat_6", value=6, inplace=True) df["Var_1"].replace(to_replace="Cat_7", value=7, inplace=True) df["Segmentation"].unique() df["Segmentation"].replace(to_replace="A", value=0, inplace=True) df["Segmentation"].replace(to_replace="B", value=1, inplace=True) df["Segmentation"].replace(to_replace="C", value=2, inplace=True) df["Segmentation"].replace(to_replace="D", value=3, inplace=True) df label = {0: "A", 1: "B", 2: "C", 3: "D"} plotdata = sns.pairplot(df.replace({"Segmentation": label}), hue="Segmentation") plotdata.fig.suptitle("Pair Plot Analysis", y=1.08) x = df[ [ "Gender", "Ever_Married", "Age", "Graduated", "Work_Experience", "Spending_Score", "Family_Size", "Var_1", ] ].values x y = df.iloc[:, 10].values y # # Train & Test Spilitting x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=1) print(x_train.shape) # # Logistic Regression model = LogisticRegression(max_iter=600) model.fit(x_train, y_train) y_pred_lr = model.predict(x_test) print("Accuracy : ", accuracy_score(y_test, y_pred_lr)) cr = classification_report(y_test, y_pred_lr) print("\t\tClassification Report\n" + "--" * 28 + "\n", cr) cm = confusion_matrix(y_test, y_pred_lr) print(cm) cm = confusion_matrix(y_test, y_pred_lr) sns.heatmap(cm, annot=True) cm_display = metrics.ConfusionMatrixDisplay( confusion_matrix=confusion_matrix(y_test, y_pred_lr), display_labels=["A", "B", "C", "D"], ) cm_display.plot() plt.show() # # Random Forest model_rf = RandomForestClassifier(n_estimators=30, criterion="entropy", random_state=0) model_rf.fit(x_train, y_train) y_pred_rf = model_rf.predict(x_test) print("Accuracy : ", accuracy_score(y_test, y_pred_rf)) cr = classification_report(y_test, y_pred_rf) print("\t\tClassification Report\n" + "--" * 28 + "\n", cr) cm_display = metrics.ConfusionMatrixDisplay( confusion_matrix=confusion_matrix(y_test, y_pred_rf), display_labels=["A", "B", "C", "D"], ) cm_display.plot() plt.show() # # KNN iteration = 25 error_rate = [] acc = [] scores = {} for i in range(1, iteration): model_knn = KNeighborsClassifier(n_neighbors=i) model_knn.fit(x_train, y_train) y_pred_knn = model_knn.predict(x_test) error_rate.append(np.mean(y_pred_knn != y_test)) scores[i] = metrics.accuracy_score(y_test, y_pred_knn) acc.append(metrics.accuracy_score(y_test, y_pred_knn)) scores plt.figure(figsize=(10, 6)) plt.plot( range(1, iteration), error_rate, color="blue", linestyle="dashed", marker="o", markerfacecolor="red", markersize=10, ) plt.title("Error Rate vs. K Value") plt.xlabel("K") plt.ylabel("Error Rate") print("Minimum error:-", min(error_rate), "at K =", error_rate.index(min(error_rate))) plt.figure(figsize=(10, 6)) plt.plot( range(1, iteration), acc, color="blue", linestyle="dashed", marker="o", markerfacecolor="red", markersize=10, ) plt.title("Accuracy vs. K Value") plt.xlabel("K") plt.ylabel("Accuracy") print("Maximum accuracy:-", max(acc), "at K =", acc.index(max(acc))) model_knn = KNeighborsClassifier(n_neighbors=23) model_knn.fit(x_train, y_train) y_pred_knn = model_knn.predict(x_test) print("Accuracy : ", accuracy_score(y_test, y_pred_knn)) cr = classification_report(y_test, y_pred_knn) print("\t\tClassification Report\n" + "--" * 28 + "\n", cr) cm_display = metrics.ConfusionMatrixDisplay( confusion_matrix=confusion_matrix(y_test, y_pred_knn), display_labels=["A", "B", "C", "D"], ) cm_display.plot() plt.show()
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings("ignore") # # import data dataset_raw = pd.read_csv( "/kaggle/input/higher-education-predictors-of-student-retention/dataset.csv" ) print(dataset_raw.shape) dataset_raw.head().T # # data description # > Marital status - The marital status of the student. (Categorical) # > Application mode - The method of application used by the student. (Categorical) # > Application order - The order in which the student applied. (Numerical) # > Course - The course taken by the student. (Categorical) # > Daytime/evening attendance - Whether the student attends classes during the day or in the evening. (Categorical) # > Previous qualification - The qualification obtained by the student before enrolling in higher education. (Categorical) # > Nacionality - The nationality of the student. (Categorical) # > Mother's qualification The qualification of the student's mother. (Categorical) # > Father's qualification The qualification of the student's father. (Categorical) # > Mother's occupation The occupation of the student's mother. (Categorical) # > Father's occupation The occupation of the student's father. (Categorical) # > Displaced - Whether the student is a displaced person. (Categorical) # > Educational special needs - Whether the student has any special educational needs. (Categorical) # > Debtor - Whether the student is a debtor. (Categorical) # > Tuition fees up to date - Whether the student's tuition fees are up to date. (Categorical) # > Gender - The gender of the student. (Categorical) # > Scholarship holder - Whether the student is a scholarship holder. (Categorical) # > Age at enrollment - The age of the student at the time of enrollment. (Numerical) # > International - Whether the student is an international student. (Categorical) # > Curricular units 1st sem (credited) - The number of curricular units credited by the student in the first semester. (Numerical) # > Curricular units 1st sem (enrolled) - The number of curricular units enrolled by the student in the first semester. (Numerical) # > Curricular units 1st sem (evaluations) - The number of curricular units evaluated by the student in the first semester. (Numerical) # > Curricular units 1st sem (approved) - The number of curricular units approved by the student in the first semester. (Numerical) dataset_raw.info() dataset_raw.describe(include="all").T dataset = dataset_raw.copy() dataset.shape dataset["Target"].value_counts() # # target and features target = dataset["Target"] features = dataset.drop(["Target"], axis=1) target.shape, features.shape from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression logit = LogisticRegression() print(cross_val_score(logit, features, target, scoring="accuracy")) print(cross_val_score(logit, features, target, scoring="f1_macro")) from sklearn.model_selection import train_test_split, KFold kf = KFold(n_splits=30, shuffle=True, random_state=2304) for tr_idx, te_idx in kf.split(features): X_train, X_test = features.iloc[tr_idx], features.iloc[te_idx] y_train, y_test = target.iloc[tr_idx], target.iloc[te_idx] X_train.shape, X_test.shape, y_train.shape, y_test.shape from sklearn.preprocessing import LabelEncoder le = LabelEncoder() y_train = le.fit_transform(y_train) print(y_train) y_test = le.fit_transform(y_test) y_test # 0: Dropout, 1: Enrolled, 2: Graduate # # modeling from xgboost import XGBClassifier model = XGBClassifier( n_estimators=100, random_state=2304, eval_metric="mlogloss" ) # use_label_encoder=False model.fit(X_train, y_train) print(model.score(X_train, y_train)) print(model.score(X_test, y_test)) pred_proba = model.predict_proba(X_test)[:, 1] pred_proba[:10] pred_label = model.predict(X_test) pred_label[:100] y_test[:100] classes = np.unique(y_train) classes from yellowbrick.classifier import confusion_matrix plt.figure(figsize=(3, 3)) confusion_matrix(model, X_train, y_train, X_test, y_test, classes=classes) plt.show() import seaborn as sns XGBClassifier_importances_values = model.feature_importances_ XGBClassifier_importances = pd.Series( XGBClassifier_importances_values, index=X_train.columns ) XGBClassifier_top34 = XGBClassifier_importances.sort_values(ascending=False)[:34] plt.figure(figsize=(8, 6)) plt.title("Feature importances Top 34") sns.barplot(x=XGBClassifier_top34, y=XGBClassifier_top34.index) plt.show() XGBClassifier_top34[:10] dataset_important = dataset[ [ "Target", "Curricular units 2nd sem (approved)", "Tuition fees up to date", "Curricular units 1st sem (enrolled)", "Curricular units 2nd sem (enrolled)", "Curricular units 1st sem (approved)", "Scholarship holder", "Curricular units 1st sem (evaluations)", "Debtor", "Curricular units 2nd sem (evaluations)", ] ] dataset_important.head() g = sns.pairplot(dataset_important, hue="Target") plt.show() # # update to increase accuracy corr_rate_threshold = 0.85 cor_matrix = features.corr().abs() cor_matrix # remove mirror and diagonal values upper_tri = cor_matrix.where(np.triu(np.ones(cor_matrix.shape), k=1).astype(bool)) upper_tri # Drop columns with higher correlation than rate_corr_threshold to_drop = [ column for column in upper_tri.columns if any(upper_tri[column] >= corr_rate_threshold) ] print(to_drop) selected_features = features.drop(features[to_drop], axis=1) selected_features.head() features = selected_features.copy() kf = KFold(n_splits=30, shuffle=True, random_state=2304) for tr_idx, te_idx in kf.split(features): X_train, X_test = features.iloc[tr_idx], features.iloc[te_idx] y_train, y_test = target.iloc[tr_idx], target.iloc[te_idx] X_train.shape, X_test.shape, y_train.shape, y_test.shape from sklearn.preprocessing import LabelEncoder le = LabelEncoder() y_train = le.fit_transform(y_train) print(y_train) y_test = le.fit_transform(y_test) y_test # 0: Dropout, 1: Enrolled, 2: Graduate model.fit(X_train, y_train) print(model.score(X_train, y_train)) print(model.score(X_test, y_test)) pred_proba = model.predict_proba(X_test)[:, 1] pred_proba[:10] pred_label = model.predict(X_test) pred_label[:100] from yellowbrick.classifier import confusion_matrix plt.figure(figsize=(3, 3)) confusion_matrix(model, X_train, y_train, X_test, y_test, classes=classes) plt.show()
from pathlib import Path from functools import partial import json from time import time import pandas as pd import numpy as np from scipy import stats from sklearn.model_selection import ( StratifiedKFold, RepeatedStratifiedKFold, GridSearchCV, train_test_split, ) from sklearn.compose import ColumnTransformer from sklearn.pipeline import make_pipeline, Pipeline from sklearn.linear_model import Lasso, Ridge, LinearRegression, LogisticRegression from sklearn.metrics import mean_squared_error, log_loss, roc_auc_score rmse = partial(mean_squared_error, squared=False) from sklearn.preprocessing import ( StandardScaler, OneHotEncoder, OrdinalEncoder, MinMaxScaler, LabelEncoder, ) from sklearn.impute import SimpleImputer from sklearn.base import BaseEstimator, TransformerMixin from category_encoders import TargetEncoder, LeaveOneOutEncoder, WOEEncoder from xgboost import XGBRegressor, XGBClassifier from lightgbm import LGBMRegressor, LGBMClassifier, log_evaluation, early_stopping from catboost import CatBoostRegressor, CatBoostClassifier import torch DEVICE = "gpu" if torch.cuda.is_available() else "cpu" DEVICE_XGB = "gpu_hist" if torch.cuda.is_available() else "auto" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") import matplotlib.pyplot as plt import seaborn as sns sns.set_style("whitegrid") sns.set_context("notebook", font_scale=1.1) # Uncomment to use AutoML import flaml from autogluon.tabular import TabularPredictor import optuna # # # This notebook contains a framework for classification analysis that I built over the number of playground episodes. # ## The Code # Use Optuna to find optimal weights instead of mean. # See https://www.kaggle.com/code/tetsutani/ps3e11-eda-xgb-lgbm-cat-ensemble-lb-0-29267#Define-Model class OptunaWeights: def __init__(self, random_state): self.study = None self.weights = None self.random_state = random_state def _objective(self, trial, y_true, y_preds): # Define the weights for the predictions from each model weights = [trial.suggest_float(f"weight{n}", 0, 1) for n in range(len(y_preds))] # Calculate the weighted prediction weighted_pred = np.average(np.array(y_preds).T, axis=1, weights=weights) # Calculate the score for the weighted prediction score = np.sqrt(roc_auc_score(y_true, weighted_pred)) return score def fit(self, y_true, y_preds, n_trials=300): optuna.logging.set_verbosity(optuna.logging.ERROR) sampler = optuna.samplers.CmaEsSampler(seed=self.random_state) self.study = optuna.create_study( sampler=sampler, study_name="OptunaWeights", direction="minimize" ) objective_partial = partial(self._objective, y_true=y_true, y_preds=y_preds) self.study.optimize(objective_partial, n_trials=n_trials) self.weights = [ self.study.best_params[f"weight{n}"] for n in range(len(y_preds)) ] def predict(self, y_preds): assert ( self.weights is not None ), "OptunaWeights error, must be fitted before predict" weighted_pred = np.average(np.array(y_preds).T, axis=1, weights=self.weights) return weighted_pred def fit_predict(self, y_true, y_preds, n_trials=300): self.fit(y_true, y_preds, n_trials=n_trials) return self.predict(y_preds) def weights(self): return self.weights METRICS = {"logloss": log_loss, "rocauc": roc_auc_score} LOWER_IS_BETTER = {"logloss": True, "rocauc": False} class ClassificationPlayer: """The main class to simplify EDA and modelling.""" def __init__(self, dataset_name, original_filename, target, metric="logloss"): self.df_train = pd.read_csv( f"/kaggle/input/{dataset_name}/train.csv", index_col=0 ) self.df_test = pd.read_csv( f"/kaggle/input/{dataset_name}/test.csv", index_col=0 ) self.df_original = pd.read_csv(original_filename) self.target = target self.y_train = self.df_train[target] self.y_original = self.df_original[target] # self.cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=0) self.cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=10, random_state=0) self.metric_fn = METRICS[metric] self.lower_is_better = LOWER_IS_BETTER[metric] self.leaderboard = {} self.models = {} self.oof_preds = {} self.test_preds = {} self._view_data() def perform_eda(self, num_features): """Perform basic EDA.""" self.num_features = num_features self._check_missing() self._plot_target() self._plot_feature_distribution() self._plot_correlation() def train_model( self, model_fn=None, num_features=None, feature_fn=None, use_original_data=False, model_name=None, early_stopping_rounds=200, return_models=False, verbose=False, ): """Train `model_fn` with self.cv, optinally with `feature_fn` to create addtional features and `use_original_data`. Can save test predictions for submission. """ self.num_features = num_features df_train = self.df_train.copy() df_original = self.df_original.copy() df_test = self.df_test.copy() if feature_fn is not None: feature_fn(df_train) feature_fn(df_test) if use_original_data: feature_fn(df_original) oof_preds = np.zeros(len(df_train)) pipelines = [] for fold, (idx_tr, idx_vl) in enumerate(self.cv.split(df_train, self.y_train)): # Fold train: add the entire original data df_tr, y_tr = df_train.iloc[idx_tr], self.y_train[idx_tr] if use_original_data: df_tr = pd.concat([df_tr, df_original]) y_tr = np.hstack([y_tr, self.y_original]) # Fold validation: just synthetic data df_vl, y_vl = df_train.iloc[idx_vl], self.y_train[idx_vl] # eval_set for early stopping pipeline = self._build_pipeline(model_fn) pipeline["proc"].fit(df_tr, y_tr) X_vl = pipeline["proc"].transform(df_vl) eval_set = [(X_vl, y_vl)] if type(pipeline["model"]) == CatBoostClassifier: pipeline.fit( df_tr, y_tr, model__eval_set=eval_set, model__early_stopping_rounds=early_stopping_rounds, model__verbose=verbose, ) elif type(pipeline["model"]) == XGBClassifier: pipeline["model"].early_stopping_rounds = early_stopping_rounds pipeline.fit( df_tr, y_tr, model__eval_set=eval_set, model__verbose=verbose ) elif type(pipeline["model"]) == LGBMClassifier: callbacks = [early_stopping(early_stopping_rounds), log_evaluation(-1)] pipeline.fit( df_tr, y_tr, model__eval_set=eval_set, model__callbacks=callbacks ) else: pipeline.fit(df_tr, y_tr) oof_preds[idx_vl] = pipeline.predict_proba(df_vl)[:, 1] score = self.metric_fn(y_vl, oof_preds[idx_vl]) pipelines.append(pipeline) if verbose: print(f"Fold {fold} score = {score:.4f}") score = self.metric_fn(self.y_train, oof_preds) print(f" OOF score={score:.4f}") if model_name is not None: df = pd.DataFrame(data={"id": df_train.index, self.target: oof_preds}) df.to_csv(f"{model_name}_oof_preds.csv", index=None) y_pred = np.mean( [p.predict_proba(df_test)[:, 1] for p in pipelines], axis=0 ) df = pd.DataFrame(data={"id": df_test.index, self.target: y_pred}) df.to_csv(f"{model_name}_test_preds.csv", index=None) self.leaderboard[model_name] = score self.models[model_name] = pipelines self.oof_preds[model_name] = oof_preds self.test_preds[model_name] = y_pred if return_models: return pipelines def show_leaderboard(self): display( pd.DataFrame( self.leaderboard.values(), index=self.leaderboard.keys(), columns=["CV score"], ).sort_values("CV score", ascending=self.lower_is_better) ) def build_mean_ensemble(self, model_names, ensemble_name): """Create an ensemble of provided model names by taking average of predictions. Save oof_preds and test_preds. """ preds = np.mean([self.oof_preds[m] for m in model_names], axis=0) df = pd.DataFrame(data={"id": self.df_train.index, self.target: preds}) df.to_csv(f"{ensemble_name}_oof_preds.csv", index=None) score = self.metric_fn(self.y_train, preds) print(f"Ensemble score={score:.4f}") preds = np.mean([self.test_preds[m] for m in model_names], axis=0) df = pd.DataFrame(data={"id": self.df_test.index, self.target: preds}) df.to_csv(f"{ensemble_name}_test_preds.csv", index=None) def build_weighted_ensemble(self, model_names, ensemble_name, random_state=0): """Create an ensemble of provided model names by using weights optimized with Optuna. Save oof_preds and test_preds. """ optweights = OptunaWeights(random_state=random_state) preds = [self.oof_preds[m] for m in model_names] preds = optweights.fit_predict(self.y_train, preds) print("Weights") print(list(zip(model_names, optweights.weights))) df = pd.DataFrame(data={"id": self.df_train.index, self.target: preds}) df.to_csv(f"{ensemble_name}_oof_preds.csv", index=None) score = self.metric_fn(self.y_train, preds) print(f"Ensemble score={score:.4f}") preds = np.mean([self.test_preds[m] for m in model_names], axis=0) df = pd.DataFrame(data={"id": self.df_test.index, self.target: preds}) df.to_csv(f"{ensemble_name}_test_preds.csv", index=None) def _view_data(self): """Glance at the data.""" df = pd.DataFrame( [len(self.df_train), len(self.df_test), len(self.df_original)], index=["train", "test", "original"], columns=["count"], ) display(df) print("Train data") print(self.df_train.info()) display(self.df_train.head()) def _check_missing(self): """Count missing data in train and test sets.""" df = pd.concat( [ pd.DataFrame( self.df_train.drop(columns=[self.target]).isnull().sum(), columns=["missing train"], ), pd.DataFrame(self.df_test.isnull().sum(), columns=["missing test"]), pd.DataFrame( self.df_original.drop(columns=[self.target]).isnull().sum(), columns=["missing original"], ), ], axis=1, ) display(df) def _plot_target(self): """Plot distribution of the target feature synthetic train vs. original dataset.""" df = pd.concat( [ pd.DataFrame(self.df_train[self.target].value_counts()), pd.DataFrame(self.df_original[self.target].value_counts()), pd.DataFrame( self.df_train[self.target].value_counts(normalize=True) * 100 ).round(1), pd.DataFrame( self.df_original[self.target].value_counts(normalize=True) * 100 ).round(1), ], axis=1, ) df.columns = ["train", "test", "train (%)", "test (%)"] df.index.name = self.target display(df) def _plot_feature_distribution(self): """Plot feature distribution grouped by the 3 sets.""" features = self.df_test.columns df_train = self.df_train.copy() df_test = self.df_test.copy() df_original = self.df_original.copy() df_train["set"] = "train" df_original["set"] = "original" df_test["set"] = "test" df_combined = pd.concat([df_train, df_test, df_original]) ncols = 2 nrows = np.ceil(len(features) / ncols).astype(int) fig, axs = plt.subplots(ncols=ncols, nrows=nrows, figsize=(15, nrows * 3)) for c, ax in zip(features, axs.flatten()): if c in self.num_features: sns.boxplot(data=df_combined, x=c, ax=ax, y="set") else: sns.countplot(data=df_combined, x="set", ax=ax, hue=c) fig.suptitle("Distribution of features by set") plt.tight_layout(rect=[0, 0, 1, 0.98]) plt.show() def _plot_correlation(self): """Plot correlation between numerical features and the target feature.""" plt.figure(figsize=(8, 8)) features = self.num_features + [self.target] corr = self.df_train[features].corr() annot_labels = np.where(corr.abs() > 0.5, corr.round(1).astype(str), "") upper_triangle = np.triu(np.ones_like(corr, dtype=bool)) sns.heatmap( corr, mask=upper_triangle, vmin=-1, vmax=1, center=0, square=True, annot=annot_labels, cmap="coolwarm", linewidths=0.5, fmt="", ) plt.title("Correlation between numerical features and the target feature") plt.show() def _build_pipeline(self, model_fn): num_proc = make_pipeline(SimpleImputer(strategy="mean"), StandardScaler()) processing = ColumnTransformer([("num", num_proc, self.num_features)]) return Pipeline([("proc", processing), ("model", model_fn())]) # ## Episode 12: Kidney Stone Prediction # [Source: Kaggle](https://www.kaggle.com/datasets/vuppalaadithyasairam/kidney-stone-prediction-based-on-urine-analysis) # ## Data at a glance # Original dataset is [Kidney Stone Prediction based on Urine Analysis](https://www.kaggle.com/datasets/vuppalaadithyasairam/kidney-stone-prediction-based-on-urine-analysis). Metric is ROCAUC. # This dataset can be used to predict the presence of kidney stones based on urine analysis. # The 79 urine specimens, were analyzed in an effort to determine if certain physical characteristics of the urine might be related to the formation of calcium oxalate crystals. # The six physical characteristics of the urine are: # 1. specific gravity, the density of the urine relative to water; # 2. pH, the negative logarithm of the hydrogen ion; # 3. osmolarity (mOsm), a unit used in biology and medicine but not in physical chemistry. Osmolarity is proportional to the concentration of molecules in solution; # 4. conductivity (mMho milliMho). One Mho is one reciprocal Ohm. Conductivity is proportional to the concentration of charged ions in solution; # 5. urea concentration in millimoles per litre; # 6. calcium concentration (CALC) in millimolesllitre. # ## Initialize the player player = ClassificationPlayer( dataset_name="playground-series-s3e12", original_filename="/kaggle/input/kidney-stone-prediction-based-on-urine-analysis/kindey stone urine analysis.csv", target="target", metric="rocauc", ) # Notes: # # - All features are numerical. # - A binary classification 0-1. # - The dataset sizes are absolutely tiny! # ## Basic EDA # I will check # - missing values # - distribution of the target feature # - distribution of features grouped by different datasets # - correlation of numerical features and the target feature # Use all features as numerical features num_features = player.df_test.columns.tolist() player.perform_eda(num_features) # Notes: # # - This is a pretty balanced dataset. # - Synthetic and original have similar ratio. # - There are no missing values. # - The three datasets are pretty similar. # ## Baseline models # For a classification task, I will train one model with default logistic regression and 3 GBDT models. models = [ ("logit", partial(LogisticRegression, random_state=0)), ("lgbm", partial(LGBMClassifier, random_state=0)), ("xgb", partial(XGBClassifier, random_state=0)), ("cb", partial(CatBoostClassifier, random_state=0)), ] for model_name, model_fn in models: print(model_name) player.train_model( model_fn=model_fn, num_features=num_features, model_name=model_name ) print() player.show_leaderboard() # ## Which features are the most important? # using CatBoost model df = pd.DataFrame({"feature": num_features}) df["importance"] = np.array( [p["model"].feature_importances_ for p in player.models["cb"]] ).mean(axis=0) plt.figure(figsize=(8, 8)) sns.barplot(data=df.sort_values("importance"), x="importance", y="feature") # Notes: # # `calc` is dominant. # ## Adding original data # by simply specifying `use_original_data=True` to `train_model` method. prefix = "extra_data_" for model_name, model_fn in models: print(model_name) player.train_model( model_fn=model_fn, num_features=num_features, use_original_data=True, model_name=prefix + model_name, ) print() player.show_leaderboard() # Notes: # # - Adding extra data improves performance. # ## Adding features def add_features(df): # Ratio of calcium concentration to urea concentration: df["calc_urea_ratio"] = df["calc"] / df["urea"] # Ratio of specific gravity to osmolarity: df["gravity_osm_ratio"] = df["gravity"] / df["osmo"] # Product of calcium concentration and osmolarity: df["calc_osm_product"] = df["calc"] * df["osmo"] # Product of specific gravity and conductivity: df["gravity_cond_product"] = df["gravity"] * df["cond"] # Ratio of calcium concentration to specific gravity: df["calc_gravity_ratio"] = df["calc"] / df["gravity"] # Ratio of urea concentration to specific gravity: df["urea_gravity_ratio"] = df["urea"] / df["gravity"] # Product of osmolarity and conductivity: df["osm_cond_product"] = df["osmo"] * df["cond"] # Ratio of calcium concentration to osmolarity: df["calc_osm_ratio"] = df["calc"] / df["osmo"] # Ratio of urea concentration to osmolarity: df["urea_osm_ratio"] = df["urea"] / df["osmo"] # Product of specific gravity and urea concentration: df["gravity_urea_product"] = df["gravity"] * df["urea"] prefix = "extra_features_" new_features = [ "calc_urea_ratio", # 'gravity_osm_ratio', "calc_osm_product", "gravity_cond_product", "calc_gravity_ratio", # 'urea_gravity_ratio', "osm_cond_product", "calc_osm_ratio", # 'urea_osm_ratio', # 'gravity_urea_product' ] extra_features = num_features + new_features for model_name, model_fn in models: print(model_name) player.train_model( model_fn=model_fn, num_features=extra_features, feature_fn=add_features, model_name=prefix + model_name, ) print() player.show_leaderboard() df = pd.DataFrame({"feature": extra_features}) df["importance"] = np.array( [p["model"].feature_importances_ for p in player.models["extra_features_cb"]] ).mean(axis=0) plt.figure(figsize=(8, 8)) sns.barplot(data=df.sort_values("importance"), x="importance", y="feature") prefix = "extra_features_extra_data_" for model_name, model_fn in models: print(model_name) player.train_model( model_fn=model_fn, use_original_data=True, num_features=extra_features, feature_fn=add_features, model_name=prefix + model_name, ) print() player.show_leaderboard() # ## AutoML with FLAML # Get transformed data for auto ML player.num_features = extra_features num_processing = player._build_pipeline(LogisticRegression)["proc"] df = pd.concat([player.df_train, player.df_original]) add_features(df) X = num_processing.fit_transform(df) y = df[player.target] TIME_BUDGET = 60 * 60 * 2 EARLY_STOPPING_ROUNDS = 200 tuned = True if not tuned: for model in ["lgbm", "xgboost", "catboost"]: auto_flaml = flaml.AutoML() auto_flaml.fit( X, y, task="classification", metric="roc_auc", estimator_list=[model], time_budget=TIME_BUDGET, early_stop=EARLY_STOPPING_ROUNDS, verbose=0, ) print(model) print(auto_flaml.best_config) else: lgbm_params = { "n_estimators": 27, "num_leaves": 5, "min_child_samples": 11, "learning_rate": 0.11829523417382827, "log_max_bin": 5, "colsample_bytree": 0.08246842146207267, "reg_alpha": 1.654704291470382, "reg_lambda": 0.008061086792332105, } xgb_params = { "n_estimators": 17, "max_leaves": 6, "min_child_weight": 24.197965349022034, "learning_rate": 0.2535908861429132, "subsample": 0.9299408964701006, "colsample_bylevel": 1.0, "colsample_bytree": 1.0, "reg_alpha": 0.7136202942152321, "reg_lambda": 0.0014127090088201812, } cb_params = { "early_stopping_rounds": 26, "learning_rate": 0.014212146103441932, "n_estimators": 80, } prefix = "extra_features_extra_data_tuned_" models = [ ("lgbm", partial(LGBMClassifier, random_state=0, **lgbm_params)), ("xgb", partial(XGBClassifier, random_state=0, **xgb_params)), ("cb", partial(CatBoostClassifier, random_state=0, **cb_params)), ] for model_name, model_fn in models: print(model_name) player.train_model( model_fn=model_fn, use_original_data=True, num_features=extra_features, feature_fn=add_features, model_name=prefix + model_name, ) print() player.show_leaderboard() # ## Ensembling # Simply taking average of predictions from models player.build_mean_ensemble( [ "extra_features_extra_data_tuned_lgbm", "extra_features_extra_data_tuned_xgb", "extra_features_extra_data_tuned_cb", ], "tuned_mean_ensemble", ) player.build_weighted_ensemble( [ "extra_features_extra_data_tuned_lgbm", "extra_features_extra_data_tuned_xgb", "extra_features_extra_data_tuned_cb", ], "tuned_weighted_ensemble", ) # ## Submission # --- # ## Episode 10: Pulsar # ### Data at a glance # Original dataset is [Pulsar Classification For Class Prediction](https://www.kaggle.com/datasets/brsdincer/pulsar-classification-for-class-prediction). Metric is logloss. # COLUMNS: Based on Integrated Profile of Observation # - Mean_Integrated: Mean of Observations # - SD: Standard deviation of Observations # - EK: Excess kurtosis of Observations # - Skewness: In probability theory and statistics, skewness is a measure of the asymmetry of the probability distribution of a real-valued random variable about its mean. Skewness of Observations. # - Mean _ DMSNR _ Curve: Mean of DM SNR CURVE of Observations # - SD _ DMSNR _ Curve: Standard deviation of DM SNR CURVE of Observations # - EK _ DMSNR _ Curve: Excess kurtosis of DM SNR CURVE of Observations # - Skewness _ DMSNR _ Curve: Skewness of DM SNR CURVE of Observations # - Class: 0 - 1 # WHAT IS DM SNR CURVE: # Radio waves emitted from pulsars reach earth after traveling long distances in space which is filled with free electrons. The important point is that pulsars emit a wide range of frequencies, and the amount by which the electrons slow down the wave depends on the frequency. Waves with higher frequency are sowed down less as compared to waves with higher frequency. It means dispersion. # ### Initialize the player # player = ClassificationPlayer( # dataset_name='playground-series-s3e10', # original_filename='/kaggle/input/pulsar-classification-for-class-prediction/Pulsar.csv', # target='Class') # Notes: # # - All features are numerical. # - A binary classification 0-1. # - The train and test sets are much bigger than the original dataset. # ### Basic EDA # I will check # - missing values # - distribution of the target feature # - distribution of features grouped by different datasets # - correlation of numerical features and the target feature # # Use all features as numerical features # num_features = player.df_test.columns.tolist() # player.perform_eda(num_features) # Notes: # # - This is an imbalanced dataset. # - Synthetic and original have similar ratio. # - There are no missing values. # - The three datasets are pretty similar # - There are lots of data points outside of the whiskers # ### Baseline models # For a classification task, I will train one model with default logistic regression and 3 GBDT models. # models = [ # ('logit', partial(LogisticRegression, random_state=0)), # ('lgbm', partial(LGBMClassifier, random_state=0)), # ('xgb', partial(XGBClassifier, random_state=0)), # ('cb', partial(CatBoostClassifier, random_state=0)) # ] # for model_name, model_fn in models: # print(model_name) # player.train_model(model_fn=model_fn, num_features=num_features, model_name=model_name) # print() # player.show_leaderboard() # ### Which features are the most important? # using CatBoost model # df = pd.DataFrame({'feature': num_features}) # df['importance'] = np.array([p['model'].feature_importances_ for p in player.models['cb']]).mean(axis=0) # plt.figure(figsize=(8,8)) # sns.barplot(data=df.sort_values('importance'), x='importance', y='feature') # Notes: # # `EK` is dominant. # ### Adding original data # prefix = 'extra_data_' # for model_name, model_fn in models: # print(model_name) # player.train_model(model_fn=model_fn, num_features=num_features, use_original_data=True, model_name=prefix+model_name) # print() # player.show_leaderboard() # Notes: # # Adding extra data reduces performance. # ### Hypeparameters tuning with FLAML # X_train = player.df_train.drop(columns=[player.target]).values # flaml_tuned = True # TIME_BUDGET = 60 * 60 # EARLY_STOPPING_ROUNDS = 500 # if not flaml_tuned: # for model_name in ['lgbm', 'xgboost', 'catboost']: # auto_flaml = flaml.AutoML() # auto_flaml.fit(X_train, player.y_train, task='classification', estimator_list=[model_name], time_budget=TIME_BUDGET, early_stop=EARLY_STOPPING_ROUNDS, verbose=0) # print(model_name) # print(auto_flaml.best_config) # lgbm_params = {'n_estimators': 1638, 'num_leaves': 11, 'min_child_samples': 3, 'learning_rate': 0.07882443919605875, 'log_max_bin': 9, 'colsample_bytree': 1.0, 'reg_alpha': 0.13230350130113055, 'reg_lambda': 0.06434703980686605} # xgb_params = {'n_estimators': 1439, 'max_leaves': 1768, 'min_child_weight': 128.0, 'learning_rate': 0.03036795903376639, 'subsample': 0.7309168526251735, 'colsample_bylevel': 0.9813842382888714, 'colsample_bytree': 0.9900179111373784, 'reg_alpha': 0.0009765625, 'reg_lambda': 1.7380418720213944} # cb_params = {'early_stopping_rounds': 13, 'learning_rate': 0.18671482954894983, 'n_estimators': 100} # models = [ # ('lgbm', partial(LGBMClassifier, random_state=0, **lgbm_params)), # ('xgb', partial(XGBClassifier, random_state=0, **xgb_params)), # ('cb', partial(CatBoostClassifier, random_state=0, **cb_params)) # ] # prefix = 'tuned_' # for model_name, model_fn in models: # print(model_name) # player.train_model(model_fn=model_fn, num_features=num_features, model_name=prefix+model_name) # print() # player.show_leaderboard() # ### Mean Ensembling # player.build_mean_ensemble(['tuned_lgbm', 'tuned_xgb', 'tuned_cb'], 'mean_ensemble')
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session train = pd.read_csv("../input/tabular-playground-series-mar-2021/train.csv") test = pd.read_csv("../input/tabular-playground-series-mar-2021/test.csv") train.head() train.describe() train.info() test.info() corr_matrix = train.corr() corr_matrix["target"].sort_values(ascending=False) labels = train.pop("target") train = train.drop(["cat10"], axis=1) test = test.drop(["cat10"], axis=1) numerics = ["int16", "int32", "int64", "float16", "float32", "float64"] train_num = train.select_dtypes(include=numerics) from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler num_pipeline = Pipeline( [ ("std_scaler", StandardScaler()), ] ) from sklearn.preprocessing import OneHotEncoder, LabelEncoder, OrdinalEncoder cat_attribs = list(train.select_dtypes(include=object)) cat_attribs from sklearn.compose import ColumnTransformer num_attribs = list(train_num) full_pipeline = ColumnTransformer( [("num", num_pipeline, num_attribs), ("cat", OneHotEncoder(), cat_attribs)] ) train_prepared = full_pipeline.fit_transform(train) test_prepared = full_pipeline.transform(test) from sklearn.decomposition import PCA from sklearn.decomposition import TruncatedSVD from sklearn.linear_model import LogisticRegression from sklearn.pipeline import Pipeline from sklearn.model_selection import GridSearchCV pca = TruncatedSVD() logistic = LogisticRegression(max_iter=10000, tol=0.1) pipe = Pipeline(steps=[("pca", pca), ("logistic", logistic)]) # Parameters of pipelines can be set using ‘__’ separated parameter names: param_grid = { "pca__n_components": [60, 75, 90, 105, 120], "logistic__C": np.logspace(-4, 4, 4), } search = GridSearchCV(pipe, param_grid, n_jobs=-1) search.fit(train_prepared, labels) print("Best parameter (CV score=%0.3f):" % search.best_score_) print(search.best_params_) y_pred = search.predict(test_prepared) output = pd.DataFrame({"PassengerId": test.id, "Survived": y_pred}) output.to_csv("my_submission.csv", index=False) print("Your pipeline submission was successfully saved!")
# # Packages import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from scipy.stats import mannwhitneyu import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # *** # *** # # Reading Data fuel = pd.read_table("/kaggle/input/gas-prices-in-brazil/2004-2021.tsv") fuel.head() fuel.info() # The date columns need type transformation. # ## Data transformation fuel["DATA INICIAL"] = pd.to_datetime(fuel["DATA INICIAL"]) fuel["DATA FINAL"] = pd.to_datetime(fuel["DATA FINAL"]) fuel["year"] = fuel["DATA FINAL"].dt.year fuel["month"] = fuel["DATA FINAL"].dt.month fuel = fuel.reindex( columns=[ "DATA INICIAL", "DATA FINAL", "year", "month", "REGIÃO", "ESTADO", "PRODUTO", "NÚMERO DE POSTOS PESQUISADOS", "UNIDADE DE MEDIDA", "PREÇO MÉDIO REVENDA", "DESVIO PADRÃO REVENDA", "PREÇO MÍNIMO REVENDA", "PREÇO MÁXIMO REVENDA", "MARGEM MÉDIA REVENDA", "COEF DE VARIAÇÃO REVENDA", "PREÇO MÉDIO DISTRIBUIÇÃO", "DESVIO PADRÃO DISTRIBUIÇÃO", "PREÇO MÍNIMO DISTRIBUIÇÃO", "PREÇO MÁXIMO DISTRIBUIÇÃO", "COEF DE VARIAÇÃO DISTRIBUIÇÃO", ] ) fuel.dtypes fuel = fuel.drop( [ "DESVIO PADRÃO REVENDA", "PREÇO MÍNIMO REVENDA", "PREÇO MÁXIMO REVENDA", "MARGEM MÉDIA REVENDA", "COEF DE VARIAÇÃO REVENDA", "PREÇO MÉDIO DISTRIBUIÇÃO", "DESVIO PADRÃO DISTRIBUIÇÃO", "PREÇO MÍNIMO DISTRIBUIÇÃO", "PREÇO MÁXIMO DISTRIBUIÇÃO", "COEF DE VARIAÇÃO DISTRIBUIÇÃO", ], axis="columns", ) fuel = fuel.rename( columns={ "DATA INICIAL": "first_date", "DATA FINAL": "last_date", "REGIÃO": "region", "ESTADO": "state", "PRODUTO": "product", "NÚMERO DE POSTOS PESQUISADOS": "gas_stations_researched", "UNIDADE DE MEDIDA": "measure_unit", "PREÇO MÉDIO REVENDA": "sale_avg_price", } ) fuel.head() # *** # *** # # Exploratory Analysis # Setting graph style sns.set_palette("Accent") sns.set_style("darkgrid") fuel["product"].unique() # Gasoline, Diesel and Ethanol are the most common fuel types in Brazil. plt.figure(figsize=(20, 15)) ax = plt.subplot(3, 1, 1) ax.set_title("Gasoline Price Evolution from 2004 to 2021", fontsize=18, loc="left") ax.set_xlabel("Year", fontsize=14) ax.set_ylabel("Average price (R$)", fontsize=14) ax = sns.lineplot( x="year", y="sale_avg_price", hue="region", data=fuel.query('product == "GASOLINA COMUM"'), errorbar=None, ) ax = plt.subplot(3, 1, 2) ax.set_title("Ethanol Price Evolution from 2004 to 2021", fontsize=18, loc="left") ax.set_xlabel("Year", fontsize=14) ax.set_ylabel("Average price (R$)", fontsize=14) ax = sns.lineplot( x="year", y="sale_avg_price", hue="region", data=fuel.query('product == "ETANOL HIDRATADO"'), errorbar=None, ) ax = plt.subplot(3, 1, 3) ax.set_title("Diesel Price Evolution from 2004 to 2021", fontsize=18, loc="left") ax.set_xlabel("Year", fontsize=14) ax.set_ylabel("Average price (R$)", fontsize=14) ax = sns.lineplot( x="year", y="sale_avg_price", hue="region", data=fuel.query('product == "ÓLEO DIESEL"'), errorbar=None, ) ax = ax # All the fuel types had a similar price growth through years in all regions. # The south and southeast regions showed the lowest prices for Diesel and Ethanol, but southeast had an increase in Gasoline price after 2015. # North region had the highest average prices for all fuel types. # We can take a deeper look into de states of these 3 regions. # ### **North region** fuel_north = fuel.copy() fuel_north = fuel_north.query('region == "NORTE"') fuel_north["growth"] = fuel_north.sale_avg_price.diff() fuel_north["accel"] = fuel_north.growth.diff() fig, axs = plt.subplots(3, 3, figsize=(20, 20)) # Plots sns.lineplot( x="year", y="sale_avg_price", hue="state", data=fuel_north.query('product == "GASOLINA COMUM"'), ax=axs[0, 0], errorbar=None, ) sns.lineplot( x="year", y="growth", hue="state", data=fuel_north.query('product == "GASOLINA COMUM"'), ax=axs[0, 1], errorbar=None, ) sns.lineplot( x="year", y="accel", hue="state", data=fuel_north.query('product == "GASOLINA COMUM"'), ax=axs[0, 2], errorbar=None, ) sns.lineplot( x="year", y="sale_avg_price", hue="state", data=fuel_north.query('product == "ETANOL HIDRATADO"'), ax=axs[1, 0], errorbar=None, ) sns.lineplot( x="year", y="growth", hue="state", data=fuel_north.query('product == "ETANOL HIDRATADO"'), ax=axs[1, 1], errorbar=None, ) sns.lineplot( x="year", y="accel", hue="state", data=fuel_north.query('product == "ETANOL HIDRATADO"'), ax=axs[1, 2], errorbar=None, ) sns.lineplot( x="year", y="sale_avg_price", hue="state", data=fuel_north.query('product == "ÓLEO DIESEL"'), ax=axs[2, 0], errorbar=None, ) sns.lineplot( x="year", y="growth", hue="state", data=fuel_north.query('product == "ÓLEO DIESEL"'), ax=axs[2, 1], errorbar=None, ) sns.lineplot( x="year", y="accel", hue="state", data=fuel_north.query('product == "ÓLEO DIESEL"'), ax=axs[2, 2], errorbar=None, ) # Plot titles axs[0, 0].set_title( "Gasoline Prices in North Region from 2004 to 2021", fontsize=14, loc="left" ) axs[0, 1].set_title( "Gasoline Price Growth in North Region from 2004 to 2021", fontsize=14, loc="left" ) axs[0, 2].set_title( "Gasoline Price Acceleration in North Region from 2004 to 2021", fontsize=14, loc="left", ) axs[1, 0].set_title( "Ethanol Prices in North Region from 2004 to 2021", fontsize=14, loc="left" ) axs[1, 1].set_title( "Ethanol Price Growth in North Region from 2004 to 2021", fontsize=14, loc="left" ) axs[1, 2].set_title( "Ethanol Price Acceleration in North Region from 2004 to 2021", fontsize=14, loc="left", ) axs[2, 0].set_title( "Diesel Prices in North Region from 2004 to 2021", fontsize=14, loc="left" ) axs[2, 1].set_title( "Ethanol Price Growth in North Region from 2004 to 2021", fontsize=14, loc="left" ) axs[2, 2].set_title( "Ethanol Price Growth in North Region from 2004 to 2021", fontsize=14, loc="left" ) # Labels axs[0, 0].set_xlabel("Year", fontsize=12) axs[0, 0].set_ylabel("Price (R$)", fontsize=12) axs[0, 1].set_xlabel("Year", fontsize=12) axs[0, 1].set_ylabel("Growth (R$)", fontsize=12) axs[0, 2].set_xlabel("Year", fontsize=12) axs[0, 2].set_ylabel("Acceleration (R$)", fontsize=12) axs[1, 0].set_xlabel("Year", fontsize=12) axs[1, 0].set_ylabel("Price (R$)", fontsize=12) axs[1, 1].set_xlabel("Year", fontsize=12) axs[1, 1].set_ylabel("Growth (R$)", fontsize=12) axs[1, 2].set_xlabel("Year", fontsize=12) axs[1, 2].set_ylabel("Acceleration (R$)", fontsize=12) axs[2, 0].set_xlabel("Year", fontsize=12) axs[2, 0].set_ylabel("Price (R$)", fontsize=12) axs[2, 1].set_xlabel("Year", fontsize=12) axs[2, 1].set_ylabel("Growth (R$)", fontsize=12) axs[2, 2].set_xlabel("Year", fontsize=12) axs[2, 2].set_ylabel("Acceleration (R$)", fontsize=12) # Reducing space between plots fig.tight_layout() plt.show() # The state of Acre had the highest prices for Diesel and Gasoline. Ethanol price growth were less constant and there was not a predominat state with higher prices. # Tocantis showed the lowest prices for Diesel (through whole period) and for Ethanol (until late 2015). It did'nt happen for Gasoline, that had Amazonas until 2011 and then Amapá with lowest prices. # Until 2012 the price changes were more constant, but after it became more unstable, specially for Gasoline and Ethanol. # ### **Southeast region** fuel_southeast = fuel.copy() fuel_southeast = fuel_southeast.query('region == "SUDESTE"') fuel_southeast["growth"] = fuel_southeast.sale_avg_price.diff() fuel_southeast["accel"] = fuel_southeast.growth.diff() fig, axs = plt.subplots(3, 3, figsize=(20, 20)) sns.lineplot( x="year", y="sale_avg_price", hue="state", data=fuel_southeast.query('product == "GASOLINA COMUM"'), ax=axs[0, 0], errorbar=None, ) sns.lineplot( x="year", y="growth", hue="state", data=fuel_southeast.query('product == "GASOLINA COMUM"'), ax=axs[0, 1], errorbar=None, ) sns.lineplot( x="year", y="accel", hue="state", data=fuel_southeast.query('product == "GASOLINA COMUM"'), ax=axs[0, 2], errorbar=None, ) sns.lineplot( x="year", y="sale_avg_price", hue="state", data=fuel_southeast.query('product == "ETANOL HIDRATADO"'), ax=axs[1, 0], errorbar=None, ) sns.lineplot( x="year", y="growth", hue="state", data=fuel_southeast.query('product == "ETANOL HIDRATADO"'), ax=axs[1, 1], errorbar=None, ) sns.lineplot( x="year", y="accel", hue="state", data=fuel_southeast.query('product == "ETANOL HIDRATADO"'), ax=axs[1, 2], errorbar=None, ) sns.lineplot( x="year", y="sale_avg_price", hue="state", data=fuel_southeast.query('product == "ÓLEO DIESEL"'), ax=axs[2, 0], errorbar=None, ) sns.lineplot( x="year", y="growth", hue="state", data=fuel_southeast.query('product == "ÓLEO DIESEL"'), ax=axs[2, 1], errorbar=None, ) sns.lineplot( x="year", y="accel", hue="state", data=fuel_southeast.query('product == "ÓLEO DIESEL"'), ax=axs[2, 2], errorbar=None, ) axs[0, 0].set_title( "Gasoline Prices in Southeast Region from 2004 to 2021", fontsize=14, loc="left" ) axs[0, 1].set_title( "Gasoline Price Growth in Southeast Region from 2004 to 2021", fontsize=14, loc="left", ) axs[0, 2].set_title( "Gasoline Price Acceleration in Southeast Region from 2004 to 2021", fontsize=14, loc="left", ) axs[1, 0].set_title( "Ethanol Prices in Southeast Region from 2004 to 2021", fontsize=14, loc="left" ) axs[1, 1].set_title( "Ethanol Price Growth in Southeast Region from 2004 to 2021", fontsize=14, loc="left", ) axs[1, 2].set_title( "Ethanol Price Acceleration in Southeast Region from 2004 to 2021", fontsize=14, loc="left", ) axs[2, 0].set_title( "Diesel Prices in Southeast Region from 2004 to 2021", fontsize=14, loc="left" ) axs[2, 1].set_title( "Ethanol Price Growth in Southeast Region from 2004 to 2021", fontsize=14, loc="left", ) axs[2, 2].set_title( "Ethanol Price Growth in Southeast Region from 2004 to 2021", fontsize=14, loc="left", ) axs[0, 0].set_xlabel("Year", fontsize=12) axs[0, 0].set_ylabel("Price (R$)", fontsize=12) axs[0, 1].set_xlabel("Year", fontsize=12) axs[0, 1].set_ylabel("Growth (R$)", fontsize=12) axs[0, 2].set_xlabel("Year", fontsize=12) axs[0, 2].set_ylabel("Acceleration (R$)", fontsize=12) axs[1, 0].set_xlabel("Year", fontsize=12) axs[1, 0].set_ylabel("Price (R$)", fontsize=12) axs[1, 1].set_xlabel("Year", fontsize=12) axs[1, 1].set_ylabel("Growth (R$)", fontsize=12) axs[1, 2].set_xlabel("Year", fontsize=12) axs[1, 2].set_ylabel("Acceleration (R$)", fontsize=12) axs[2, 0].set_xlabel("Year", fontsize=12) axs[2, 0].set_ylabel("Price (R$)", fontsize=12) axs[2, 1].set_xlabel("Year", fontsize=12) axs[2, 1].set_ylabel("Growth (R$)", fontsize=12) axs[2, 2].set_xlabel("Year", fontsize=12) axs[2, 2].set_ylabel("Acceleration (R$)", fontsize=12) fig.tight_layout() plt.show() # São Paulo state has the lowest prices for Gasoline and Ethanol, but only after 2012 for Diesel. # The Gasoline highest prices came from Espírito Santo until 2011 and then from Rio de Janeiro. It was similar with Ethanol, Espírito Santo up to 2017 then Rio de Janeiro. # Espírito Santo had the highest prices in Diesel until 2012. # Similar to North region, the prices suffered more changes after 2012, mostly with Diesel in Espírito Santo. # ### **South region** fuel_south = fuel.copy() fuel_south = fuel_south.query('region == "SUL"') fuel_south["growth"] = fuel_south.sale_avg_price.diff() fuel_south["accel"] = fuel_south.growth.diff() fig, axs = plt.subplots(3, 3, figsize=(20, 20)) sns.lineplot( x="year", y="sale_avg_price", hue="state", data=fuel_south.query('product == "GASOLINA COMUM"'), ax=axs[0, 0], errorbar=None, ) sns.lineplot( x="year", y="growth", hue="state", data=fuel_south.query('product == "GASOLINA COMUM"'), ax=axs[0, 1], errorbar=None, ) sns.lineplot( x="year", y="accel", hue="state", data=fuel_south.query('product == "GASOLINA COMUM"'), ax=axs[0, 2], errorbar=None, ) sns.lineplot( x="year", y="sale_avg_price", hue="state", data=fuel_south.query('product == "ETANOL HIDRATADO"'), ax=axs[1, 0], errorbar=None, ) sns.lineplot( x="year", y="growth", hue="state", data=fuel_south.query('product == "ETANOL HIDRATADO"'), ax=axs[1, 1], errorbar=None, ) sns.lineplot( x="year", y="accel", hue="state", data=fuel_south.query('product == "ETANOL HIDRATADO"'), ax=axs[1, 2], errorbar=None, ) sns.lineplot( x="year", y="sale_avg_price", hue="state", data=fuel_south.query('product == "ÓLEO DIESEL"'), ax=axs[2, 0], errorbar=None, ) sns.lineplot( x="year", y="growth", hue="state", data=fuel_south.query('product == "ÓLEO DIESEL"'), ax=axs[2, 1], errorbar=None, ) sns.lineplot( x="year", y="accel", hue="state", data=fuel_south.query('product == "ÓLEO DIESEL"'), ax=axs[2, 2], errorbar=None, ) axs[0, 0].set_title( "Gasoline Prices in South Region from 2004 to 2021", fontsize=14, loc="left" ) axs[0, 1].set_title( "Gasoline Price Growth in South Region from 2004 to 2021", fontsize=14, loc="left" ) axs[0, 2].set_title( "Gasoline Price Acceleration in South Region from 2004 to 2021", fontsize=14, loc="left", ) axs[1, 0].set_title( "Ethanol Prices in South Region from 2004 to 2021", fontsize=14, loc="left" ) axs[1, 1].set_title( "Ethanol Price Growth in South Region from 2004 to 2021", fontsize=14, loc="left" ) axs[1, 2].set_title( "Ethanol Price Acceleration in South Region from 2004 to 2021", fontsize=14, loc="left", ) axs[2, 0].set_title( "Diesel Prices in South Region from 2004 to 2021", fontsize=14, loc="left" ) axs[2, 1].set_title( "Ethanol Price Growth in South Region from 2004 to 2021", fontsize=14, loc="left" ) axs[2, 2].set_title( "Ethanol Price Growth in South Region from 2004 to 2021", fontsize=14, loc="left" ) axs[0, 0].set_xlabel("Year", fontsize=12) axs[0, 0].set_ylabel("Price (R$)", fontsize=12) axs[0, 1].set_xlabel("Year", fontsize=12) axs[0, 1].set_ylabel("Growth (R$)", fontsize=12) axs[0, 2].set_xlabel("Year", fontsize=12) axs[0, 2].set_ylabel("Acceleration (R$)", fontsize=12) axs[1, 0].set_xlabel("Year", fontsize=12) axs[1, 0].set_ylabel("Price (R$)", fontsize=12) axs[1, 1].set_xlabel("Year", fontsize=12) axs[1, 1].set_ylabel("Growth (R$)", fontsize=12) axs[1, 2].set_xlabel("Year", fontsize=12) axs[1, 2].set_ylabel("Acceleration (R$)", fontsize=12) axs[2, 0].set_xlabel("Year", fontsize=12) axs[2, 0].set_ylabel("Price (R$)", fontsize=12) axs[2, 1].set_xlabel("Year", fontsize=12) axs[2, 1].set_ylabel("Growth (R$)", fontsize=12) axs[2, 2].set_xlabel("Year", fontsize=12) axs[2, 2].set_ylabel("Acceleration (R$)", fontsize=12) fig.tight_layout() plt.show() # The state of Paraná showed the lowest prices for Diesel and Ethanol (the whole period) and for Gasoline until 2012. # Rio Grande do Sul had the highest prices for all fuel types. # Again, there was a major change in price growth after 2012, specially with Gasoline. # *** # *** # # Hypothesis Test # The samples collected to create this dataset shows that prices in north are higher than in south, but to confirm it a statistical test can be run. # As the prices grow similar for all fuel types, Gasoline was choosen for this test. # **Hnull:** # > There is not enough evidence to suggest that the North gas prices are significantly higher than the South gas prices. # **Halt:** # > The North gas prices are significantly higher than the South gas prices. north_prices = fuel.query( 'region == "NORTE" & product == "GASOLINA COMUM"' ).sale_avg_price south_prices = fuel.query( 'region == "SUL" & product == "GASOLINA COMUM"' ).sale_avg_price stat, p = mannwhitneyu(north_prices, south_prices, alternative="greater") if p < 0.05: print( "The North gas prices are significantly higher than the South gas prices, at a confidence level of 95%." ) else: print( "There is not enough evidence to suggest that the North gas prices are significantly higher than the South gas prices, at a confidence level of 95%." )
# # Abstrak # This experiment presents on sentiment analysis using a convolutional neural network (CNN) applied to financial news. The objective of the experiment was to classify news articles as either positive and negative sentiment based on their content. The dataset used in the experiment consisted of a collection of financial news articles. The CNN model was trained on this dataset and achieved an accuracy of 80.20%, precision of 78.35%, recall of 74.80%, and an F1-score of 76.05%. These results demonstrate the effectiveness of the CNN approach in sentiment analysis on financial news, and suggest that it could be a valuable tool for financial decision-making and trading strategies. Overall, this experiment provides insights into the potential applications of CNNs in sentiment analysis and contributes in this area. # # Introduction # Sentiment analysis is the process of determining the emotional tone of a piece of text, and it has become increasingly important in today's fast-paced digital world. One area where sentiment analysis is particularly relevant is in financial news, where accurate and timely information can mean the difference between success and failure. In recent years, convolutional neural networks (CNNs) have emerged as a powerful tool for sentiment analysis, thanks to their ability to learn complex patterns and relationships in large datasets. In this context, using CNNs for sentiment analysis on financial news has become a promising area of research, with the potential to improve financial decision-making and create more effective trading strategies. In this experiment, we will explore the basics of sentiment analysis and how it can be applied to financial news using CNNs. # # Literature review # Convolutional Neural Networks (CNNs) are a popular type of deep learning model used for image and video processing, natural language processing, and speech recognition. Here are some of the pros and cons of using CNNs: # Pros: # * Highly effective at image recognition: CNNs can accurately classify and segment images, even when the images are complex and contain multiple objects or backgrounds. # * Efficient at processing large datasets: CNNs can be trained on large datasets without overfitting, making them useful for big data applications. # * Robust to image variation: CNNs can recognize images even when they are rotated, scaled, or partially occluded, making them useful for real-world applications. # * Can be fine-tuned: CNNs can be fine-tuned to work well on specific tasks, such as object detection, face recognition, or speech recognition. # * Automates feature extraction: CNNs can automatically extract relevant features from images, reducing the need for manual feature engineering. # Cons: # * Requires large datasets: CNNs require large amounts of labeled data to be trained effectively, which can be expensive and time-consuming to obtain. # * Computationally expensive: CNNs can be computationally expensive to train and require powerful hardware, such as GPUs or TPUs. # * Difficult to interpret: CNNs are often considered as "black box" models, as it is difficult to understand how they make their predictions, making them unsuitable for some applications where interpretability is important. # * Sensitivity to hyperparameters: CNNs require a lot of tuning of hyperparameters to obtain optimal performance, which can be challenging and time-consuming. # * Limited to structured data: CNNs are best suited for structured data, such as images or speech signals, and may not be suitable for other types of data, such as unstructured text data. # # Experiment # ## Install libary import warnings warnings.filterwarnings("ignore") # ## Load data import pandas as pd df = pd.read_csv( "/kaggle/input/sentiment-analysis-for-financial-news/all-data.csv", delimiter=",", encoding="latin-1", header=None, ) df = df.rename(columns=lambda x: ["Sentiment", "Sentence"][x]) df.info() df = df[["Sentence", "Sentiment"]] df.head() # ## Exploratory data analysis df = df[df.Sentiment != "neutral"] df.head() df.info() # ### Sentiment distribution import seaborn as sns import matplotlib.pyplot as plt sentiment = df["Sentiment"].value_counts() plt.figure(figsize=(12, 4)) sns.barplot(x=sentiment.index, y=sentiment.values, alpha=0.8) plt.ylabel("Number of Occurrences", fontsize=12) plt.xlabel("sentiment", fontsize=12) plt.xticks(rotation=90) plt.show() # ## Data preparation # ### Data cleaning from bs4 import BeautifulSoup def strip_html_tags(text): soup = BeautifulSoup(text, "html.parser") [s.extract() for s in soup(["iframe", "script"])] stripped_text = soup.get_text() stripped_text = re.sub(r"[\r|\n|\r\n]+", "\n", stripped_text) return stripped_text def remove_accented_chars(text): text = ( unicodedata.normalize("NFKD", text) .encode("ascii", "ignore") .decode("utf-8", "ignore") ) return text def stopwords_removal(words): list_stopwords = nltk.corpus.stopwords.words("english") return [word for word in words if word not in list_stopwords] import re import nltk import tqdm import unicodedata import contractions from nltk.tokenize import word_tokenize def pre_process_corpus(docs): norm_docs = [] for doc in tqdm.tqdm(docs): # case folding doc = doc.lower() # remove special characters\whitespaces doc = strip_html_tags(doc) doc = doc.translate(doc.maketrans("\n\t\r", " ")) doc = remove_accented_chars(doc) doc = contractions.fix(doc) doc = re.sub(r"[^a-zA-Z0-9\s]", "", doc, re.I | re.A) doc = re.sub(" +", " ", doc) doc = doc.strip() # tokenize doc = word_tokenize(doc) # filtering doc = stopwords_removal(doc) norm_docs.append(doc) norm_docs = [" ".join(word) for word in norm_docs] return norm_docs df.Sentence = pre_process_corpus(df.Sentence) df.head() # ### Handling imbalance (oversampling) from sklearn.utils import resample # Separate majority and minority classes in training data for upsampling data_majority = df[df["Sentiment"] == "positive"] data_minority = df[df["Sentiment"] == "negative"] print("majority class before upsample:", data_majority.shape) print("minority class before upsample:", data_minority.shape) # Upsample minority class data_minority_upsampled = resample( data_minority, replace=True, # sample with replacement n_samples=data_majority.shape[0], # to match majority class random_state=123, ) # reproducible results # Combine majority class with upsampled minority class df_balance = pd.concat([data_majority, data_minority_upsampled]) # Display new class counts print("After upsampling\n", df_balance.Sentiment.value_counts(), sep="") # ### Data splitting from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split( df.Sentence, df.Sentiment, test_size=0.1, random_state=42 ) X_train.shape, X_test.shape, y_train.shape, y_test.shape # ### Tokenizer from tensorflow.keras.preprocessing.text import Tokenizer token = Tokenizer() token.fit_on_texts(X_train) vocab = len(token.index_word) + 1 print("Vocabulary size={}".format(len(token.word_index))) print("Number of Documents={}".format(token.document_count)) # ### Sequence X_train = token.texts_to_sequences(X_train) X_test = token.texts_to_sequences(X_test) train_lens = [len(s) for s in X_train] test_lens = [len(s) for s in X_test] fig, ax = plt.subplots(1, 2, figsize=(12, 6)) h1 = ax[0].hist(train_lens) h2 = ax[1].hist(test_lens) from tensorflow.keras.preprocessing.sequence import pad_sequences # padding MAX_SEQUENCE_LENGTH = 30 X_train = pad_sequences(X_train, maxlen=MAX_SEQUENCE_LENGTH, padding="post") X_test = pad_sequences(X_test, maxlen=MAX_SEQUENCE_LENGTH, padding="post") X_train.shape, X_test.shape # ### Encoding Labels from sklearn.preprocessing import LabelEncoder le = LabelEncoder() num_classes = 2 # positive -> 1, negative -> 0 y_train = le.fit_transform(y_train) y_test = le.transform(y_test) # ## Modelling # ### Build model import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Embedding, Activation, Dropout from tensorflow.keras.layers import Conv1D, MaxPooling1D, GlobalMaxPooling1D vec_size = 300 model = Sequential() model.add(Embedding(vocab, vec_size, input_length=MAX_SEQUENCE_LENGTH)) model.add(Conv1D(64, 8, activation="relu")) model.add(MaxPooling1D(2)) model.add(Dropout(0.1)) model.add(Dense(8, activation="relu")) model.add(Dropout(0.1)) model.add(Dense(4, activation="relu")) model.add(Dropout(0.1)) model.add(GlobalMaxPooling1D()) model.add(Dense(1, activation="sigmoid")) model.compile( loss="binary_crossentropy", optimizer=tf.optimizers.Adam(learning_rate=0.0001), metrics=["accuracy"], ) model.summary() # ### Train model from keras.callbacks import EarlyStopping from keras.callbacks import ModelCheckpoint epochs = 100 batch_size = 4 es = EarlyStopping(monitor="val_loss", mode="min", verbose=1, patience=5) mc = ModelCheckpoint( "./best_model/best_model_cnn1d.h5", monitor="val_accuracy", mode="max", verbose=1, save_best_only=True, ) history = model.fit( X_train, y_train, batch_size=batch_size, shuffle=True, validation_split=0.1, epochs=epochs, verbose=1, callbacks=[es, mc], ) # ## Evaluation # ### Model Accuracy from keras.models import load_model saved_model = load_model("./best_model/best_model_cnn1d.h5") train_acc = saved_model.evaluate(X_train, y_train, verbose=1) test_acc = saved_model.evaluate(X_test, y_test, verbose=1) print("Train: %.2f%%, Test: %.2f%%" % (train_acc[1] * 100, test_acc[1] * 100)) # ### Identify Overfitting # summarize history for accuracy plt.plot(history.history["accuracy"]) plt.plot(history.history["val_accuracy"]) plt.title("model accuracy") plt.ylabel("accuracy") plt.xlabel("epoch") plt.legend(["train", "test"], loc="upper left") plt.show() # summarize history for loss plt.plot(history.history["loss"]) plt.plot(history.history["val_loss"]) plt.title("model loss") plt.ylabel("loss") plt.xlabel("epoch") plt.legend(["train", "test"], loc="upper left") plt.show() # ### Confusion Matrix def predictions(x): prediction_probs = model.predict(x) predictions = [1 if prob > 0.5 else 0 for prob in prediction_probs] return predictions from sklearn.metrics import ( confusion_matrix, classification_report, roc_auc_score, roc_curve, ) from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score labels = ["positive", "negative"] print("CNN 1D Accuracy: %.2f%%" % (accuracy_score(y_test, predictions(X_test)) * 100)) print( "CNN 1D Precision: %.2f%%" % (precision_score(y_test, predictions(X_test), average="macro") * 100) ) print( "CNN 1D Recall: %.2f%%" % (recall_score(y_test, predictions(X_test), average="macro") * 100) ) print( "CNN 1D f1_score: %.2f%%" % (f1_score(y_test, predictions(X_test), average="macro") * 100) ) print("================================================\n") print(classification_report(y_test, predictions(X_test))) pd.DataFrame( confusion_matrix(y_test, predictions(X_test)), index=labels, columns=labels ) # ### ROC AUC def plot_roc_curve(y_test, y_pred): fpr, tpr, thresholds = roc_curve(y_test, y_pred) plt.plot(fpr, tpr) plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") plot_roc_curve(y_test, predictions(X_test)) print("model AUC score: %.2f%%" % (roc_auc_score(y_test, predictions(X_test)) * 100))
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from pathlib import Path import matplotlib.pyplot as plt import scipy.optimize as so from scipy.special import erfc df = pd.read_csv("/kaggle/input/rpc-event-charge/rpc_data_kaggle.csv", index_col=0) df["voltage"] = df.voltage.astype(int) df.head() axs = ( df.query("is_detected and event_type == 1") .groupby("voltage") .event_charge.plot.hist(bins=np.arange(0, 5, 0.2), histtype="step", legend=True) ) def expomodgaus(x, h, m, s, t): """Parameters definition: from: https://en.wikipedia.org/wiki/Exponentially_modified_Gaussian_distribution h = height m = mean s = sigma t = tau """ return ( h * s / t * np.sqrt(np.pi / 2) * np.exp(1 / 2 * (s / t) ** 2 - (x - m) / t) * erfc(1 / np.sqrt(2) * (s / t - (x - m) / s)) ) # # Are these distributions following some particular pdf? # Check the plot below for ix, group in df.query("is_detected and event_type == 1").groupby("voltage"): bins, edges = np.histogram(group.event_charge, bins=np.arange(0, 100, 0.1)) plt.plot(edges[:-1], bins) plt.xlim(0, 20)
# # Data Preprocessing # COMP20121 Machine Learning for Data Analytics # Author: [Jun He](https://sites.google.com/site/hejunhomepage/) # ## Learning objectives # * Understand the necessity of data preprocessing # * Introduce data preprocessing methods: 1. Data cleansing 2. Data scaling 3. Data transformation # * Implement preprocessing with Sklearn and Pandas # ## Part 1: Data cleaning # ### Why data pre-processing? # Raw data often are incomplete, noisy and may contain: # * Obsolete fields # * Missing values # * Outliers # * Erroneous values # * Data format is not suitable for machine learning models # **Data cleansing or cleaning** is the process of detecting and correcting missing values, incorrect values, inaccurate values or irrelevant values in data # ### Example: missing or incorrect data # # * Example: a customer data set # * Check whether there are missing or incorrect data import pandas as pd df = pd.read_csv("/kaggle/input/aimldata/data-cleaning-customer.csv") print(df.to_latex()) # ### Understand data type: categorical and numerical # * A column takes different values, also called a **variable, feature, attribute**. # * Columns `Zip`, `Gender` and `Martial status` belong to **categorical variables**, which represent the category, class or type. A categorical variable can be encoded as numbers, but these numbers do not have the same meaning as a numerical value. # * Categorical variables have no arithmetic operations. For example: what is the meaning of Zip code $$10048 + 90210=?$$ # * Categorical variables can be further classified into two types. # * **Nominal**: no default or natural order. Examples:, town of residence, colour of car, male or female. # * **Ordinal**: with an order. Example: Questionnaire responses coded: 1 = strongly disagree, 2 = disagree, 3 = indifferent, 4 = agree, 5 = strongly agree. # * Columns `Age`, `Income` and `Transaction Amount` columns are **numerical variables**, which represent the measurement or number. They have variables have arithmetic operations. For example, Income $$ 75000 + 50000 = 125000$$ # ### Check zip code column # df.iloc[:, 1:2] df_T = df.iloc[:, 1:2].T print(df_T.to_latex()) # U.S. Zip Code is five digits. Why J2S7K7 or four digits? # * Not all countries use same zip code format, 90210 (U.S.) vs. J2S7K7 (Canada) # * We should expect unusual values in some fields, for example, in global commerce # * 06269 (New England states): leading zero is truncated # * In a database numeirc field, leading zero is often chopped-off # ### Check Gender Column df.iloc[:, 2:3] df_T = df.iloc[:, 2:3].T print(df_T.to_latex()) # * Is there any missing value? # * Discuss anomaly with database administrator # ### Income Field df.iloc[:, 3:4] df_T = df.iloc[:, 3:4].T print(df_T.to_latex()) # **$10,000,000** # * Assumed to measure gross annual income # * Possibly valid # * Still considered outlier (extreme data value) # * Some statistical and data mining methods affected by outliers # **-\$40,000?** # * Income less than $0? # * Value beyond bounds for expected income, therefore an error # * Caused by data entry error? # * Discuss anomaly with database administrator # **\$99,999** # * Other values appear rounded to nearest \$5,000 # * Value may be completely valid # * Value represents database code used to denote missing value? # * Confirm values in expected unit of measure, such as U.S. dollars # * Which unit of measure for income? # * Customer with zip code J2S7K7 in Canadian dollars? # * Discuss anomaly with database administrator # ### Check age column df.iloc[:, 4:5] df_T = df.iloc[:, 4:5].T print(df_T.to_latex()) # Age Field Contains “C”? # * Other records have numeric values for field # * Record categorized into group labelled “C” # * Value must be resolved # * Data mining software expects numeric values for field # Age Field Contains 0? # * Zero-value used to indicate missing/unknown value? # * Customer refused to provide their age? # ### Check Martial status df.iloc[:, 5:6] # # Marital Status Field Contains “S”? # * What does this symbol mean? # * Does “S” imply single or separated? # * Discuss anomaly with database administrator print(df.iloc[:, 5:6].to_latex()) # ## A big data cleaning task: missing values # Sources of Missing Values # * User forgot to fill in a field. # * Data lost # * Programming error. # * Users chose not to fill out a field # Missing Value types # * Clearly labelled by `NA, n/a, NAN` # * Others such as `--, -1, 99,999` # ### Handle missing values # * Missing values pose problems to data analysis methods # * More common in databases containing large number of fields # * Absence of information rarely beneficial to task of analysis # * In contrast, having more data almost always better # * Careful analysis required to handle issue # **Example:** Load a house data set and check missing or incorrect data # Note: in Kaggle Code setting, you must turn on Internet for access the link `https://` import pandas as pd # url = "https://raw.githubusercontent.com/dataoptimal/posts/master/data%20cleaning%20with%20python%20and%20pandas/property%20data.csv" url = "/kaggle/input/aimldata/data-cleaning-property.csv" df2 = pd.read_csv(url) df2 print(df2.to_latex()) # ### Check standard missing values # * **standard missing values** either take `NaN` values or blank # * `datafram.isnull() method` checks both these standard missing value. Return Boolean True: `False` or `True` # * Example: check missing values in ST_NUM and NUM_BEDROOMS columns by the method `dataframe.isna()` # Looking at the ST_NUM column df2["ST_NUM_NA"] = df2["ST_NUM"].isna() print(df2[["ST_NUM", "ST_NUM_NA"]].to_latex()) # ### Detect non-standard missing values # * Missing values sometimes are denoted by `na`, `?`, `--` and other notation. # * They belong to non-standard missing values and cannot be detected by method `dataframe.isna()` or `isnull()` # * For example, the 8th value `na` is a missing value but is detected by `False`. df2["NUM_BEDROOMS_NA"] = df2["NUM_BEDROOMS"].isna() print(df2[["NUM_BEDROOMS", "NUM_BEDROOMS_NA"]].to_latex()) # ### Import non-standard missing values as standard missing values # * Manually check the notation of non-standard missing values # * Mannualy create a list of missing values: `missing_values = ["n.a.","?","NA","n/a", "na", "--"]` # * Need to read data using user-defined missing values `na_values = missing_values` # * Example: the 8th value `na` is replaced by a standard missing value `NAN` # Making a list of missing value types missing_values = ["n.a.", "?", "NA", "n/a", "na", "--"] # url = "https://raw.githubusercontent.com/dataoptimal/posts/master/data%20cleaning%20with%20python%20and%20pandas/property%20data.csv" url = "/kaggle/input/aimldata/data-cleaning-property.csv" df = pd.read_csv(url, na_values=missing_values) df2 = pd.read_csv(url, na_values=missing_values) # Looking at the NUM_BEDROOMS column df2 print(df2.to_latex()) # ### Calculate total missing values for each feature # * use combined method `isna().sum()` or `isnull().sum()` # * return the total number of standard missing value in each feature, but it non-standard (unexpected or incorrect) values probably are not counted print(df2.isna().sum().to_latex()) df2["NUM_BEDROOMS_NA"] = df2["NUM_BEDROOMS"].isna() print(df2[["NUM_BEDROOMS", "NUM_BEDROOMS_NA"]].to_latex()) # ### Handle missing data: Drop missing values # * In Pandas dataframe, use method \alert{df.dropna()} # * Simple but dangerous! Not recommended # * Assume that only 5% of data values are missing from a data set of 30 features, and the missing values are spread evenly throughout the data, # * Then almost 80% of the records would have at least one missing value # * Example: drop all rows with missing values and keep the outcome in Dataframe 4 # * Only one sample is left. df3 = df2.dropna() df3 print(df3.to_latex()) # ### Replace missing values with user-defined constant # * In Pandas dataframe, use method `fillna` # * Example: replace the NAN value in ST_NUM column by 125 df2["ST_NUM"].fillna(125, inplace=True) print(df2["ST_NUM"]) print(df2["ST_NUM"].to_latex()) # ### Replace missing values with median or mean # * First clacluate the median /mean of the feature column, then replace missing value by the median # * **Median** = the value separating the higher half from the lower half of a data sample, e.g. median = 3 for `[1,1,3,5,6]` # * **Mean** = the sum of the sampled data divided by the number of items in the data sample, e.g. mean = 3.2 for `[1,1,3,5,6]` # * Domain experts should be consulted regarding approach to replace missing values # * Mean only works in numerical data # Example: replace the missing value in NUM_BEDROOMS column by media by method `dataframe['NUM_BEDROOMS'].median()` # Replace using median df2["NUM_BEDROOMS"].fillna(df2["NUM_BEDROOMS"].median(), inplace=True) df2["NUM_BEDROOMS"] print(df["NUM_BEDROOMS"].to_latex(), df2["NUM_BEDROOMS"].to_latex()) # ### Replace missing Values with mode # * **Mode** = the value that appears most often in a data sample, e.g. mode = Y for `[Y, Y, N, Y]` # * Mode works in both numerical and categorical data # * Cacluate the mode of the feature column, then replace missing value by the mode # * Example: the OWN_OCCUPIED column takes values Y and N and Mode = Y # * Method `dataframe['OWN_OCCUPIED'].mode()[0]` # # Replace using mode df2["OWN_OCCUPIED"].fillna(df2["OWN_OCCUPIED"].mode()[0], inplace=True) df2["OWN_OCCUPIED"] print(df["OWN_OCCUPIED"].to_latex(), df2["OWN_OCCUPIED"].to_latex()) # ### Replace a missing value in a specific location # * Mannual replace a missing value in a specific location # *Example:* replace 4th value in PID column by `100005000` df2.loc[4, "PID"] = 100005000 df2["PID"] print(df["PID"].to_latex(), df2["PID"].to_latex()) # ## Unexpected or incorrect values # ### Detect unexpected or incorrect values # * Need specific checking for unexpected or incorrect values # * Example: `OWN_OCCUPIED` column takes `Yes` or `No` values, but the value `12` is wrong. Method `isna` cannot check this value # * A solution is to exclude any value rather `Y` and `N` during data input statge # Looking at the OWN_OCCUPIED column print(df2["OWN_OCCUPIED"]) print(df2["OWN_OCCUPIED"].isna()) df2.loc[3, "OWN_OCCUPIED"] = "Y" df2["OWN_OCCUPIED"] print(df["OWN_OCCUPIED"].to_latex(), df2["OWN_OCCUPIED"].to_latex()) # Making a list of missing value types # missing_values = ["n.a.","?","NA","n/a", "na", "--"] # url = "https://raw.githubusercontent.com/dataoptimal/posts/master/data%20cleaning%20with%20python%20and%20pandas/property%20data.csv" # df2 = pd.read_csv(url, na_values = missing_values) # df2 # ## duplicate data df3 = pd.DataFrame( { "brand": ["Yum Yum", "Yum Yum", "Indomie", "Indomie", "Indomie"], "style": ["cup", "cup", "cup", "pack", "pack"], "rating": [4, 4, 3.5, 15, 5], } ) df3 print(df3.to_latex()) df3.duplicated() print(df3.to_latex(), df3.duplicated().to_latex()) df3.drop_duplicates() print(df.to_latex()) # ## Part 2 Data normalization # ### Why scale numerical features to a range? # * Numerical features might have different ranges # * Example: in building a machine learning model for predicting the performance of a player in baseball, two features have ranges as # (1) Batting average: `[ 0.0, 0.400 ]`, (2) Number of home runs: `[ 0, 70 ]` # * `Number of home runs` with greater ranges tend to have larger influence on machine learning model’s results than `Batting average` # * Therefore, numeric feature values should be normalized # * Standardizes scale of effect of each feature on machine learning model’s results # ### Method 1: Min-Max scaler # * Min-max scaler scales the value of a numerical variable to the interval, often between 0 and 1 # $$ X’ =\frac{X-\min}{\max -\min}$$ # * Example: min-max normalization of a column (1,2,3,4,5). $\max=5, \min =1$. # * After min_max normalization, (0, 0.25, 0.5, 0.75, 1) # * In Sklean library, `MinMaxScaler` transforms features by scaling each feature to a given range (default at (0,1)). from sklearn import preprocessing import numpy as np # A feature is a column. (1,2,3,4,5) must be represented into a column, not a row! X = np.array([[1.0], [2.0], [3.0], [4.0], [5.0]]) print("before min-max normalization \n", X) scaler = preprocessing.MinMaxScaler() # create a scaler X_new = scaler.fit_transform(X) # fit and transform data print("after min-max normalization \n", X_new) # ### Outliers # * MIN-MAX scaler is sensitive to **outliers** (extreme values) # * Example: (1,2,3, 4,100). 100 is an outlier, extremely large compared with other values. After min_max scaling, (0., 0.01010101, 0.02020202, 0.03030303,1.) # A feature is a column. (1,2,3,4,5) must be represented into a column, not a row! from sklearn.preprocessing import RobustScaler X = np.array([[1.0], [2.0], [3.0], [4.0], [100.0]]) scaler = preprocessing.MinMaxScaler() # create a scaler X_new = scaler.fit_transform(X) # fit and transform data print("before min-max normalization \n", X) print("after min-max normalization \n", X_new) # ### Method 2: Standard Scaler # * Standard Scaler scales a numerical feature to mean =0 and standard deviation =1 # * The standard score of a sample $X$ is calculated as: # $$ # Z = \frac{X- \mu}{std} # $$ # where $\mu$ is the mean of $X$ and $std$ its the standard deviation # * **Mean $\mu$** = the sum of the sampled data divided by the number of items in the data samples $X$ # * **Standard deviation $std$** = a measure of the amount of variation or dispersion of a data samples $X$ # Example: Given the feature column X= (1,2,3,4,5), $\mu=3, std =1.14$. # Using Sklearn method `preprocessing.StandardScaler()` to create a standard scaler # After scaling, $\mu=1, std =1$. from sklearn import preprocessing import numpy as np X = np.array([[1.0], [2.0], [3.0], [4.0], [5.0]]) print("before min-max normalization \n", X) print("mean", np.mean(X, axis=0)) print("std", np.std(X, axis=0)) scaler = preprocessing.StandardScaler() # create a scaler X_new = scaler.fit_transform(X) # fit and transform data print("after min-max normalization \n", X_new) print("mean", np.mean(X_new, axis=0)) print("std", np.std(X_new, axis=0)) # ## Part 3 Data transformation # ### why convert categorical features into numerical? # * In most data analysis problems, datasets contain categorical features such as `Gender` and `Martial status` # * However, many machine learnng models like artificial neural networks cannot handle categorical features # * These categorical features must encoded into numerical ones as an input to a model # * There are no silver bullets # ### Method 1: OrdinalEncoder (Lable Encoder) # * Encode categorical **feature values** as an integer array # * **Feature names** are NOT encoded # * Example: `No = 0`, `Yes =1` # create a data frame import pandas as pd # import numpy as np df = pd.DataFrame( [ ["M", "O-", "medium"], ["M", "O-", "high"], ["F", "O+", "high"], ["F", "AB", "low"], ["F", "B+", "NA"], ] ) # create a data frame df.columns = ["gender", "blood_type", "edu_level"] # add columns name to data frame df print(df.to_latex()) from sklearn.preprocessing import OrdinalEncoder encoder = OrdinalEncoder() # create an encoder with order df["edu_level"] = encoder.fit_transform( df["edu_level"].values.reshape(-1, 1) ) # fit encoder with data and transfer data df # ## Order, order # * We are not happy with the order: medium = 3, high = 1 # * We want to encode in the order: low =1, medium = 2, high = 3, and NA =0 # * In `OrdinalEncoder`, we can do it by setting `categories=[['NA', 'low', 'medium', 'high']]` import pandas as pd import numpy as np df = pd.DataFrame( [ ["M", "O-", "medium"], ["M", "O-", "high"], ["F", "O+", "high"], ["F", "AB", "low"], ["F", "B+", "NA"], ] ) # create a data frame df.columns = ["gender", "blood_type", "edu_level"] # add columns name to data frame df from sklearn.preprocessing import OrdinalEncoder encoder = OrdinalEncoder( categories=[["NA", "low", "medium", "high"]] ) # create an encoder with order df["edu_level"] = encoder.fit_transform( df["edu_level"].values.reshape(-1, 1) ) # fit encoder with the column edu_level but only this column df.head() # ### Method 2: OneHotEncoder # * Example: `'gender', 'blood_type'` are nominal variables without an order. # * They are encoded into integers `2, 1,0` with an order $2>1>0$. # * This may be interpreted as being ordered. We don't want this order. # * Nominal data are NOT suitable for ordinal encoding # * **OneHotEncoder** transforms each categorical feature with `n_categories` possible values into `n_categories` binary features, with one of them 1, and all others 0. # * `Male` is encoded to `[0, 1]`, `Female` to `[1, 0]` without order # * `OneHotEncoder`: the input is an array-like of integers or strings # * It creates a binary column for each category and returns an array import pandas as pd import numpy as np df = pd.DataFrame( [ ["M", "O-", "medium"], ["M", "O-", "high"], ["F", "O+", "high"], ["F", "AB", "low"], ["F", "B+", "NA"], ] ) # create a data frame df.columns = ["gender", "blood_type", "edu_level"] # add columns name to data frame df from sklearn.preprocessing import OneHotEncoder encoder = OneHotEncoder() # create an encoder X_gender = encoder.fit_transform( df["gender"].values.reshape(-1, 1) ).toarray() # fit encoder with data and transfer data print("gender", X_gender) X_blood = encoder.fit_transform( df["blood_type"].values.reshape(-1, 1) ).toarray() # fit encoder with data and transfer data print("blood_type", X_blood) # * `O-` = 0. 0. 0. 1., `O+` = 0. 0. 1. 0. # ### Put encoded data to a data frame # * So far, we have encoded `['gender', 'blood_type', 'edu_level']` separately # * We can concatenate the results into one array using `numpy.concatenate` with parameter `axis=1` # * Then we create a new data frame with 6 columns and add their feature names # X_Encode = np.concatenate((X_gender, X_blood, X_edu), axis=1) df_Encode = pd.DataFrame(X_Encode) df_Encode.columns = [ "gender_F", "gender_M", "blood_B+", "blood_AB", "blood_O+", "blood_O-", "edu_level", ] # add columns name to data frame df_Encode
# ## Video Game Recommendation System import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import warnings from sklearn.neighbors import NearestNeighbors from sklearn.preprocessing import StandardScaler from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity warnings.filterwarnings("ignore") # ### Importing and Transforming Dataset # The dataset was obtained from Video Game Sales with Ratings in Kaggle, which were web scraped by Gregory Smith from VGChartz Video Games Sales. The collection of data includes details such as the game's title, genre, the platform it runs on, the company that published it, and other relevant information. From year 1980 up to 2020, the dataset includes a wide range of video game releases that spans over four decades. video_games_df = pd.read_csv( "/kaggle/input/video-game-sales-with-ratings/Video_Games_Sales_as_at_22_Dec_2016.csv" ) print(f"No. of records: {video_games_df.shape[0]}") video_games_df.head(5) # We removed certain features from the dataset as they are not significant for our recommendation system such as the release year, developer and the sales for each region. video_games_filtered_df = video_games_df[ ["Name", "Platform", "Genre", "Critic_Score", "User_Score", "Rating"] ] video_games_filtered_df.info() # ### Exploratory Data Analysis # Check the total number of missing values for each feature in the dataset video_games_filtered_df.isna().sum().sort_values(ascending=False) # Remove the records with missing data in the `Name` and `Genre` features. Substitute the term `Unknown` for any missing information in the `Rating` field. # Remove missing values video_games_filtered_df.dropna(subset=["Name", "Genre"], axis=0, inplace=True) video_games_filtered_df = video_games_filtered_df.reset_index(drop=True) # Value substitution video_games_filtered_df.fillna({"Rating": "Unknown"}, inplace=True) video_games_filtered_df[["Name", "Genre", "Rating"]].isna().sum() # Examine the frequency of data types for each categorical feature: `Genre`, `Platform`, and `Rating`. features = video_games_filtered_df[["Genre", "Platform", "Rating"]].columns for idx, feature in enumerate(features): plt.figure(figsize=(14, 4)) sns.countplot(data=video_games_filtered_df, x=feature) plt.show() # From the charts above, we can say that: # - There is a scarcity of data available for certain platforms such as SCD, WS, and GG, and ratings such as 'K-A', 'AO’, and 'RP'. # - Almost half of the dataset has undefined rating value. # We will only consider video games with a defined rating value. Therefore, all ratings marked as 'Unknown' will be dropped from the dataset video_games_filtered_df = video_games_filtered_df.query("Rating != 'Unknown'") plt.figure(figsize=(14, 4)) sns.countplot(data=video_games_filtered_df, x="Rating") plt.show() # Create additional features that correspond to `User_Score` and `Critic_score` variables. Replace all missing and 'tbd' values with a specific value -- the imputed data is calculated as the mean value of the respective feature within a particular genre, e.g. the average of all scores under the 'Action' category. # Replace 'tbd' value to NaN video_games_filtered_df["User_Score"] = np.where( video_games_filtered_df["User_Score"] == "tbd", np.nan, video_games_filtered_df["User_Score"], ).astype(float) # Group the records by Genre, then aggregate them calculating the average of both Critic Score and User Score video_game_grpby_genre = video_games_filtered_df[ ["Genre", "Critic_Score", "User_Score"] ].groupby("Genre", as_index=False) video_game_score_mean = video_game_grpby_genre.agg( Ave_Critic_Score=("Critic_Score", "mean"), Ave_User_Score=("User_Score", "mean") ) # Merge the average scores with the main dataframe video_games_filtered_df = video_games_filtered_df.merge( video_game_score_mean, on="Genre" ) video_games_filtered_df video_games_filtered_df["Critic_Score_Imputed"] = np.where( video_games_filtered_df["Critic_Score"].isna(), video_games_filtered_df["Ave_Critic_Score"], video_games_filtered_df["Critic_Score"], ) video_games_filtered_df["User_Score_Imputed"] = np.where( video_games_filtered_df["User_Score"].isna(), video_games_filtered_df["Ave_User_Score"], video_games_filtered_df["User_Score"], ) video_games_filtered_df # Compare the summary statistics of `User_Score` and `Critic_Score` and the new feature with imputed values, i.e.`User_Score_Imputed` and `Critic_Score_Imputed`. The results below show that filling in missing values has no significant impact on the average and the standard deviation. video_games_filtered_df[ ["Critic_Score", "Critic_Score_Imputed", "User_Score", "User_Score_Imputed"] ].describe() # Drop all the fields related to critic and user scores except for the new features with imputed values. video_games_final_df = video_games_filtered_df.drop( columns=["User_Score", "Critic_Score", "Ave_Critic_Score", "Ave_User_Score"], axis=1 ) video_games_final_df = video_games_final_df.reset_index(drop=True) video_games_final_df = video_games_final_df.rename( columns={"Critic_Score_Imputed": "Critic_Score", "User_Score_Imputed": "User_Score"} ) video_games_final_df.info() # Analyze the data distribution for `Critic_Score` and `User_Score`, and assess the correlation between these two features. hist, bins = np.histogram(video_games_final_df["Critic_Score"], bins=10, range=(0, 100)) plt.bar(bins[:-1], hist, width=(bins[1] - bins[0]), align="edge") plt.xlabel("Critic Score") plt.ylabel("Frequency") plt.title("Critic Score Distribution for all Video Games") plt.show() hist, bins = np.histogram(video_games_final_df["User_Score"], bins=10, range=(0, 10)) plt.bar(bins[:-1], hist, width=(bins[1] - bins[0]), align="edge") plt.xlabel("User Score") plt.ylabel("Frequency") plt.title("User Score Distribution for all Video Games") plt.show() plt.figure(figsize=(8, 8)) ax = sns.regplot( x=video_games_final_df["User_Score"], y=video_games_final_df["Critic_Score"], line_kws={"color": "black"}, scatter_kws={"s": 4}, ) ax.set( xlabel="User Score", ylabel="Critic Score", title="User Scores vs. Critic Scores" ) # Display the dataframe information to quickly understand its structure and characteristics. video_games_final_df.info() # ### Converting Categorical Features to Dummy Indicators # Obtain all categorical features, except for the title of the game. categorical_columns = [ name for name in video_games_final_df.columns if video_games_final_df[name].dtype == "O" ] categorical_columns = categorical_columns[1:] print(f"There are {len(categorical_columns)} categorical features:\n") print(", ".join(categorical_columns)) # Transform all categorical attributes into binary dummy variables where the value is 0 (representing No) or 1 (representing Yes). video_games_df_dummy = pd.get_dummies( data=video_games_final_df, columns=categorical_columns ) video_games_df_dummy.head(5) # After the conversion, the variables have expanded from the original 6 columns to a total of 40 columns. video_games_df_dummy.info() # ### Standardizing the Numerical Features # Transform numerical data to a standardized form by scaling them to have a mean of 0 and a standard deviation of 1. The purpose of standardization is to ensure that all features are on a similar scale and have equal importance in determining the output variable. features = video_games_df_dummy.drop(columns=["Name"], axis=1) scale = StandardScaler() scaled_features = scale.fit_transform(features) scaled_features = pd.DataFrame(scaled_features, columns=features.columns) scaled_features.head(5) # ### Creating a Model # The machine learning algorithm `NearestNeighbors` will be utilized to identify the data points nearest to a given input, with the aid of the `cosine similarity` measurement to determine the similarity or dissimilarity between data points. model = NearestNeighbors(n_neighbors=11, metric="cosine", algorithm="brute").fit( scaled_features ) print(model) # As we included `n_neighbors=1` as a parameter for our model, it will generate 11 indices and distances of games that are similar to the user input, including the input itself. vg_distances, vg_indices = model.kneighbors(scaled_features) print("List of indexes and distances for the first 5 game:\n") print(vg_indices[:5], "\n") print(vg_distances[:5]) # `TfidfVectorizer` is a feature extraction method commonly used in natural language processing and information retrieval tasks. In this case, it is used to suggest a video game title based on the user input (i.e. game that doesn't exist in the records) by evaluating the importance of words in the input relative to the existing records. game_names = video_games_df_dummy["Name"].drop_duplicates() game_names = game_names.reset_index(drop=True) vectorizer = TfidfVectorizer(use_idf=True) vectorizer.fit(game_names) print(vectorizer) game_title_vectors = vectorizer.transform(game_names) game_title_vectors # ### Testing the Model # The program utilizes the above-mentioned model to provide video game recommendations to users. It will ask user to enter the game's name and, optionally, the platform to filter the results. The list of recommended games will be arranged in ascending order based on the calculated distances. On the other hand, if the game's name is not in the record, the program will suggest a new name of the game that has the closest match to the input. def VideoGameTitleRecommender(video_game_name): """ This function will recommend a game title that has the closest match to the input """ query_vector = vectorizer.transform([video_game_name]) similarity_scores = cosine_similarity(query_vector, game_title_vectors) closest_match_index = similarity_scores.argmax() closest_match_game_name = game_names[closest_match_index] return closest_match_game_name def VideoGameRecommender(video_game_name, video_game_platform="Any"): """ This function will provide game recommendations based on various features of the game """ default_platform = "Any" # User input: Game Title and Platform if video_game_platform != default_platform: video_game_idx = video_games_final_df.query( "Name == @video_game_name & Platform == @video_game_platform" ).index if video_game_idx.empty: video_game_idx = video_games_final_df.query( "Name == @video_game_name" ).index if not video_game_idx.empty: print( f"Note: The game is not available on the specified platform. Recommendations will be based only on the game's title.\n" ) video_game_platform = default_platform # User input: Game Title only else: video_game_idx = video_games_final_df.query("Name == @video_game_name").index if video_game_idx.empty: # If the game entered by the user doesn't exist in the records, the program will recommend a new game similar to the input closest_match_game_name = VideoGameTitleRecommender(video_game_name) print(f"'{video_game_name}' doesn't exist in the records.\n") print( f"You may want to try '{closest_match_game_name}', which is the closest match to the input." ) else: # User input: Game Title only if video_game_platform == default_platform: # Place in a separate dataframe the indices and distances, then sort the record by distance in ascending order vg_combined_dist_idx_df = pd.DataFrame() for idx in video_game_idx: # Remove from the list any game that shares the same name as the input vg_dist_idx_df = pd.concat( [ pd.DataFrame(vg_indices[idx][1:]), pd.DataFrame(vg_distances[idx][1:]), ], axis=1, ) vg_combined_dist_idx_df = pd.concat( [vg_combined_dist_idx_df, vg_dist_idx_df] ) vg_combined_dist_idx_df = vg_combined_dist_idx_df.set_axis( ["Index", "Distance"], axis=1, inplace=False ).reset_index(drop=True) vg_combined_dist_idx_df = vg_combined_dist_idx_df.sort_values( by="Distance", ascending=True ) video_game_list = video_games_final_df.iloc[ vg_combined_dist_idx_df["Index"] ] # Remove any duplicate game names to provide the user with a diverse selection of recommended games video_game_list = video_game_list.drop_duplicates( subset=["Name"], keep="first" ) # Get the first 10 games in the list video_game_list = video_game_list.head(10) # Get the distance of the games similar to the input recommended_distances = np.array( vg_combined_dist_idx_df["Distance"].head(10) ) # User input: Game Title and Platform else: # Remove from the list any game that shares the same name as the input recommended_idx = vg_indices[video_game_idx[0]][1:] video_game_list = video_games_final_df.iloc[recommended_idx] # Get the distance of the games similar to the input recommended_distances = np.array(vg_distances[video_game_idx[0]][1:]) print( f"Top 10 Recommended Video Games for '{video_game_name}' [platform:{video_game_platform}]" ) video_game_list = video_game_list.reset_index(drop=True) recommended_video_game_list = pd.concat( [ video_game_list, pd.DataFrame(recommended_distances, columns=["Similarity_Distance"]), ], axis=1, ) display(recommended_video_game_list.style.hide_index()) # __TEST DATA #1__ # __Input:__ Video Game Title # __Expected Result:__ The program merges recommendations from all platforms of the game, arranges the similiarity distances in ascending order, then displays only the first 10 games that has the smallest calculated distance. VideoGameRecommender("Call of Duty: World at War") # __TEST DATA #2__ # __Input:__ Video Game Title and Platform # __Expected Result:__ The platform helps to limit the results and display only recommended games based on the specified game and platform. # NOTE: If a platform has limited data like GG and PCFX, the program might suggest games from other platforms based on various factors when calculating the features similarity. VideoGameRecommender("Call of Duty: World at War", "PC") # __TEST DATA #3__ # __Input:__ Video Game Title and Platform # __Constraint:__ Video game is not available on the specified platform # __Expected Result:__ Since the video game is not available on the specified platform, the recommendation is based solely on the game title and ignores the platform. VideoGameRecommender("Call of Duty: World at War", "XB") # __TEST DATA #4__ # __Input:__ Video Game Title # __Constraint:__ Video game is not available in the records # __Expected Result:__ No recommendation is shown but the program provides the user with the game title that has closest match to the input. VideoGameRecommender("Call of Duty")
import matplotlib.pyplot as plt import seaborn as sns import keras from keras.models import Sequential, Model from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report, confusion_matrix from tensorflow.keras.applications import VGG19, VGG16 import cv2 import os import random import tensorflow as tf import numpy as np import pandas as pd from keras.models import load_model from tensorflow.keras.applications.imagenet_utils import preprocess_input from sklearn.metrics.pairwise import cosine_similarity image_array = np.load("/kaggle/input/tu-n-5-vgg19-37494b/images.npy") label_array = np.load("/kaggle/input/tu-n-5-vgg19-37494b/labels_onehot.npy") categories = [ "Automotive", "Baby", "Home Improvement", "Kitchen & Dining", "Pet Supplies", ] # Tải mô hình từ tệp "my_model.h5" # feat_extractor = load_model('/kaggle/input/tu-n-5-vgg19-37494b/my_model.h5') # feat_extractor.summary() # load the model vgg_model = VGG19(weights="imagenet") # remove the last layers in order to get features instead of predictions feat_extractor = Model( inputs=vgg_model.input, outputs=vgg_model.get_layer("fc2").output ) # print the layers of the CNN feat_extractor.summary() from tensorflow.keras.applications.imagenet_utils import preprocess_input importedImages = [] for img in image_array: # Convert the images to array image_batch = np.expand_dims(img, axis=0) importedImages.append(image_batch) images = np.vstack(importedImages) processed_imgs = preprocess_input(images.copy()) # extract the images features imgs_features = feat_extractor.predict(processed_imgs) print("features successfully extracted!") imgs_features.shape files = [] for i in range(0, len(image_array)): files.append(str(i) + ".jpeg") # compute cosine similarities between images cosSimilarities = cosine_similarity(imgs_features) # store the results into a pandas dataframe cos_similarities_df = pd.DataFrame(cosSimilarities, columns=files, index=files) cos_similarities_df # function to retrieve the most similar products for a given one import re def image_recommend(pid, num_recommend=5): """ PID: Product ID of the original item in our dataset num_recommend : Number of most similar images to retrieve """ # Displaying the original product- Image, PID, Name, Brand print("-----------------------------------------------------------------------") print("Original product:") print("-----------------------------------------------------------------------") print("\nProduct ID : ", pid) plt.imshow(image_array[pid]) plt.show() # getting the indexes and scores of the N most similar products closest_imgs = ( cos_similarities_df[files[pid]] .sort_values(ascending=False)[1 : num_recommend + 1] .index ) closest_imgs_scores = cos_similarities_df[files[pid]].sort_values(ascending=False)[ 1 : num_recommend + 1 ] _re_digits = re.compile( r"\d+" ) # We use regex to extract only the pids from file names closest_imgs_pid = [] for element in closest_imgs: closest_imgs_pid += [int(n) for n in _re_digits.findall(element)] # Displaying the recommended products- Image, PID, Name, Brand and Similarity Score print("-----------------------------------------------------------------------") print("Most similar products:") print("-----------------------------------------------------------------------") for i in closest_imgs: print("\nProduct ID : ", int(i[:-5])) print("Similarity score : ", closest_imgs_scores[i]) plt.imshow(image_array[int(i[:-5])]) plt.show() image_recommend(1000, 5) def image_recommend(pid, num_recommend=5): """ pid: Product ID của sản phẩm gốc trong tập dữ liệu num_recommend: số lượng sản phẩm tương tự để đề xuất """ closest_imgs = ( cos_similarities_df[files[pid]] .sort_values(ascending=False)[1 : num_recommend + 1] .index ) closest_imgs_scores = cos_similarities_df[files[pid]].sort_values(ascending=False)[ 1 : num_recommend + 1 ] _re_digits = re.compile(r"\d+") closest_imgs_pid = [] for element in closest_imgs: closest_imgs_pid += [int(n) for n in _re_digits.findall(element)] fig, axs = plt.subplots(1, num_recommend + 1, figsize=(15, 5)) axs[0].imshow(image_array[pid]) axs[0].set_title("Sản phẩm gốc") axs[0].axis("off") for i, img in enumerate(closest_imgs): img_id = int(img[:-5]) axs[i + 1].imshow(image_array[img_id]) axs[i + 1].set_title( f"#{i+1}: Mã SP {img_id}\nĐiểm tương đồng: {closest_imgs_scores[img]:.2f}" ) axs[i + 1].axis("off") plt.show() from faker import Faker import random # Tạo đối tượng faker để sinh ngẫu nhiên tên người dùng fake = Faker() # Tạo DataFrame với 5 hàng và 6 cột, bao gồm tên user và tên ảnh df = pd.DataFrame(columns=["User", "Image1", "Image2", "Image3", "Image4", "Image5"]) # Sinh ngẫu nhiên dữ liệu cho DataFrame for i in range(5): user = fake.name() images = [str(random.randint(0, 1249)) for i in range(5)] df.loc[i] = [user] + images print(df) def recommend_images_for_user(user, num_recommend=5): """ user: tên người dùng trong DataFrame df num_recommend: số lượng sản phẩm tương tự để đề xuất """ # Lấy ID của tất cả các hình ảnh được chọn để khuyến nghị img_ids = [int(df[df["User"] == user][f"Image{i}"].values[0]) for i in range(1, 6)] # Thực hiện khuyến nghị cho từng hình ảnh for i, img_id in enumerate(img_ids): print(f"Khuyến nghị cho {user} - Hình ảnh {i+1}:") image_recommend(img_id, num_recommend) recommend_images_for_user(df["User"][0], num_recommend=5)
import warnings import numpy as np import pandas as pd from scipy.stats import probplot from statsmodels.tsa.stattools import adfuller import matplotlib.pyplot as plt from matplotlib import cycler import seaborn as sns import gc pd.set_option("display.max_rows", 500) pd.set_option("display.max_columns", 500) pd.plotting.register_matplotlib_converters() warnings.filterwarnings("ignore") med = pd.read_csv("/kaggle/input/gdz-elektrik-datathon-2023/med.csv") df = pd.read_csv("/kaggle/input/gdz-elektrik-datathon-2023/train.csv") sample_submission = pd.read_csv( "/kaggle/input/gdz-elektrik-datathon-2023/sample_submission.csv" ) # Asagidaki grafik ve yontemler Kagglein Time Series kursundan alinip uyarlandi. # # Trend Analysis df["Tarih"] = pd.to_datetime(df["Tarih"]) df = df.set_index("Tarih") moving_average = df.rolling( window=365 * 24, # 365-day window center=True, # puts the average at the center of the window min_periods=183 * 24, # choose about half the window size ).mean() # compute the mean (could also do median, std, min, max, ...) ax = df.plot(style=".", color="0.5") moving_average.plot( ax=ax, linewidth=3, title="Enerji Tuketimi - 365-Day Moving Average", legend=False, ) from statsmodels.tsa.deterministic import DeterministicProcess dp = DeterministicProcess( index=df.index, # dates from the training data constant=True, # dummy feature for the bias (y_intercept) order=1, # the time dummy (trend) drop=True, # drop terms if necessary to avoid collinearity ) # `in_sample` creates features for the dates given in the `index` argument X = dp.in_sample() X.head() x_index = X.index from sklearn.linear_model import LinearRegression y = df["Dağıtılan Enerji (MWh)"] # the target # The intercept is the same as the `const` feature from # DeterministicProcess. LinearRegression behaves badly with duplicated # features, so we need to be sure to exclude it here. model = LinearRegression(fit_intercept=False) model.fit(X, y) y_pred = pd.Series(model.predict(X), index=x_index) from datetime import datetime date_range = pd.date_range( datetime(2022, 8, 1, 0, 0, 0), datetime(2022, 8, 31, 23, 0, 0), freq="H" ) X = dp.out_of_sample(steps=744) y_fore = pd.Series(model.predict(X), index=date_range) y_fore.head() plot_params = dict( color="0.75", style=".-", markeredgecolor="0.25", markerfacecolor="0.25", legend=False, ) ax = df.plot(title="Enerji Tuketimi - Linear Trend Forecast", **plot_params) ax = y_pred.plot(ax=ax, linewidth=3, label="Trend") ax = y_fore.plot(ax=ax, linewidth=3, label="Trend Forecast", color="C3") _ = ax.legend() monthly_trend = y_fore[-1] - y_fore[0] monthly_trend # # Seasonality Analysis from pathlib import Path from warnings import simplefilter import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from sklearn.linear_model import LinearRegression from statsmodels.tsa.deterministic import CalendarFourier, DeterministicProcess simplefilter("ignore") # Set Matplotlib defaults plt.style.use("seaborn-whitegrid") plt.rc("figure", autolayout=True, figsize=(11, 5)) plt.rc( "axes", labelweight="bold", labelsize="large", titleweight="bold", titlesize=16, titlepad=10, ) plot_params = dict( color="0.75", style=".-", markeredgecolor="0.25", markerfacecolor="0.25", legend=False, ) # annotations: https://stackoverflow.com/a/49238256/5769929 def seasonal_plot(X, y, period, freq, ax=None): if ax is None: _, ax = plt.subplots() palette = sns.color_palette( "husl", n_colors=X[period].nunique(), ) ax = sns.lineplot( x=freq, y=y, hue=period, data=X, ci=False, ax=ax, palette=palette, legend=False, ) ax.set_title(f"Seasonal Plot ({period}/{freq})") for line, name in zip(ax.lines, X[period].unique()): y_ = line.get_ydata()[-1] ax.annotate( name, xy=(1, y_), xytext=(6, 0), color=line.get_color(), xycoords=ax.get_yaxis_transform(), textcoords="offset points", size=14, va="center", ) return ax def plot_periodogram(ts, detrend="linear", ax=None): from scipy.signal import periodogram fs = pd.Timedelta("1Y") / pd.Timedelta("1H") freqencies, spectrum = periodogram( ts, fs=fs, detrend=detrend, window="boxcar", scaling="spectrum", ) if ax is None: _, ax = plt.subplots() ax.step(freqencies, spectrum, color="purple") ax.set_xscale("log") ax.set_xticks([1, 2, 4, 6, 12, 26, 52, 104, 52 * 7]) ax.set_xticklabels( [ "Annual (1)", "Semiannual (2)", "Quarterly (4)", "Bimonthly (6)", "Monthly (12)", "Biweekly (26)", "Weekly (52)", "Semiweekly (104)", "Daily", ], rotation=90, ) ax.ticklabel_format(axis="y", style="sci", scilimits=(0, 0)) ax.set_ylabel("Variance") ax.set_title("Periodogram") return ax X = df.copy() # days within a week X["day"] = X.index.dayofweek # the x-axis (freq) X["week"] = X.index.week # the seasonal period (period) X["hour"] = X.index.hour # the seasonal period (period) # days within a year X["dayofyear"] = X.index.dayofyear X["year"] = X.index.year fig, (ax0, ax1, ax2) = plt.subplots(3, 1, figsize=(15, 11)) seasonal_plot(X, y="Dağıtılan Enerji (MWh)", period="week", freq="day", ax=ax0) seasonal_plot(X, y="Dağıtılan Enerji (MWh)", period="year", freq="dayofyear", ax=ax1) seasonal_plot(X, y="Dağıtılan Enerji (MWh)", period="day", freq="hour", ax=ax2) plot_periodogram(df["Dağıtılan Enerji (MWh)"])
# ## Cyclistic membership analysis # #### This case study from the Google Data Analytics professional certificate provided on coursera.org. This project focuses on analyzing a fictional company named "Cyclistic" based in Chicago. The data source for this project is provided by the real bike-sharing company "Divvy" [here](https://divvy-tripdata.s3.amazonaws.com/index.html). The objective of this project is to analyze the two types of memberships from this service which are labeled as Casual and Annual members. # ### 1. The business objective and preparing the data # The scenario is as follows "a junior data analyst working in the marketing analyst team at Cyclistic, a bike-share company in Chicago. The director of marketing believes the company’s future success depends on maximizing the number of annual memberships. Therefore, your team wants to understand how casual riders and annual members use Cyclistic bikes differently. From these insights, your team will design a new marketing strategy to convert casual riders into annual members. But first, Cyclistic executives must approve your recommendations, so they must be backed up with compelling data insights and professional data visualizations". # The first step is to establish the business question."Cyclistic" is trying to increase its revenue, and to do this they want to know how they can convert daily and weekly riders into anual passes. Their theory is that these annual passes generate more revenue, this could be because its a year long commitment and guarantees a steady stream or because it is cheaper to use the service for short periods than to commit to the annual pass. What we need to answer with the data is first to see if this theory holds and then analyze the data to convert these casual riders into annual members. By answering these questions we can inform the executive team on how to proceed with the marketing campaign which will attract the casual riders into becoming annual members, by doing this we will answer the business question which is how the company can generate more revenue from the service. # As the file sizes are too large to do a quick analysis using sheets I will organize the data by using BigQuery. To use Bigquery first we have to download the following package and create a Client object: # Importing the BQ API client from google.cloud import bigquery # Constructing the reference for the client = bigquery.Client(project="ultra-depot-382223") # The next step is to reference the dataset: # Contructing the reference for the Cyclistic trip data dataset_ref = client.dataset("cyclistic_trip_data", project="ultra-depot-382223") # ### 2. Processing the data # For the the processing of the data I ahve taken the following steps to clean and order the data: # 1. Once I have downloaded, renamed the data I have separated the original data into a specific folder. # 2. I have uploaded this original data into BigQuery and stored them all in the same Dataset in an ascending order. # 3. I will now proceed to clean the data, for this I will use BigQuery where I will use the following checklist for the cleaning process: # -Remove duplicates: By using the command SELECT DISTINCT I can view how many rows are returned that are unique, then repeat this process for every month: # query = """ SELECT DISTINCT COUNT(ride_id) AS unique_rides, COUNT(ride_id) AS total_ids FROM `ultra-depot-382223.cyclistic_trip_data.23-02`; """
# İş Problemi # Şirketi terk edecek müşterileri tahmin edebilecek bir makine öğrenmesi modeli # geliştirilmesi beklenmektedir. # Veri Seti Hikayesi # Telco müşteri kaybı verileri, üçüncü çeyrekte Kaliforniya'daki 7043 müşteriye ev telefonu ve İnternet hizmetleri sağlayan hayali # bir telekom şirketi hakkında bilgi içerir. Hangi müşterilerin hizmetlerinden ayrıldığını, kaldığını veya hizmete kaydolduğunu # gösterir. # CustomerId Müşteri İd’si # Gender Cinsiyet # SeniorCitizen Müşterinin yaşlı olup olmadığı (1, 0) # Partner Müşterinin bir ortağı olup olmadığı (Evet, Hayır) # Dependents Müşterinin bakmakla yükümlü olduğu kişiler olup olmadığı (Evet, Hayır # tenure Müşterinin şirkette kaldığı ay sayısı # PhoneService Müşterinin telefon hizmeti olup olmadığı (Evet, Hayır) # MultipleLines Müşterinin birden fazla hattı olup olmadığı (Evet, Hayır, Telefon hizmeti yok) # InternetService Müşterinin internet servis sağlayıcısı (DSL, Fiber optik, Hayır) # OnlineSecurity Müşterinin çevrimiçi güvenliğinin olup olmadığı (Evet, Hayır, İnternet hizmeti yok) # OnlineBackup Müşterinin online yedeğinin olup olmadığı (Evet, Hayır, İnternet hizmeti yok) # DeviceProtection Müşterinin cihaz korumasına sahip olup olmadığı (Evet, Hayır, İnternet hizmeti yok) # TechSupport Müşterinin teknik destek alıp almadığı (Evet, Hayır, İnternet hizmeti yok) # StreamingTV Müşterinin TV yayını olup olmadığı (Evet, Hayır, İnternet hizmeti yok) # StreamingMovies Müşterinin film akışı olup olmadığı (Evet, Hayır, İnternet hizmeti yok) # Contract Müşterinin sözleşme süresi (Aydan aya, Bir yıl, İki yıl) # PaperlessBilling Müşterinin kağıtsız faturası olup olmadığı (Evet, Hayır) # PaymentMethod Müşterinin ödeme yöntemi (Elektronik çek, Posta çeki, Banka havalesi (otomatik), Kredi kartı (otomatik)) # MonthlyCharges Müşteriden aylık olarak tahsil edilen tutar # TotalCharges Müşteriden tahsil edilen toplam tutar # Churn Müşterinin kullanıp kullanmadığı (Evet veya Hayır) # 2. Data Preparation import pandas as pd import numpy as np df = pd.read_csv("/kaggle/input/telecom-dataset/telco.csv") df.head() df["TotalCharges"][0] df.shape # Analyzing variables # Adım 1: Numerik ve kategorik değişkenleri yakalayınız. def grab_col_names(dataframe, cat_th=10, car_th=20): # cat_cols, cat_but_car # 1- Categorical variables cat_cols = [col for col in dataframe.columns if dataframe[col].dtypes == "O"] # 2- Numeric but actually categorical (class) num_but_cat = [ col for col in dataframe.columns if dataframe[col].nunique() < cat_th and dataframe[col].dtypes != "O" ] # 3 - Categorical but actually each cardinal, that is, unique cat_but_car = [ col for col in dataframe.columns if dataframe[col].nunique() > car_th and dataframe[col].dtypes == "O" ] # 4 - Collect the cat_cols and num_but_cat variables cat_cols = cat_cols + num_but_cat # 5- Subtract the cardinal variable from cat_cols cat_cols = [col for col in cat_cols if col not in cat_but_car] # num_cols num_cols = [col for col in dataframe.columns if dataframe[col].dtypes != "O"] num_cols = [col for col in num_cols if col not in num_but_cat] print(f"Observations: {dataframe.shape[0]}") print(f"Variables: {dataframe.shape[1]}") print(f"cat_cols: {len(cat_cols)}") print(f"num_cols: {len(num_cols)}") print(f"cat_but_car: {len(cat_but_car)}") print(f"num_but_cat: {len(num_but_cat)}") return cat_cols, num_cols, cat_but_car cat_cols, num_cols, cat_but_car = grab_col_names(df) # Adım 2: Gerekli düzenlemeleri yapınız. (Tip hatası olan değişkenler gibi) cat_cols num_cols cat_but_car df.dtypes df.SeniorCitizen = df.SeniorCitizen.astype("object") df["MonthlyCharges"].nunique() df.isnull().sum() df.TotalCharges = pd.to_numeric(df.TotalCharges, errors="coerce") df.isnull().sum() df.TotalCharges = df.TotalCharges.astype("float") # Adım 3: Numerik ve kategorik değişkenlerin veri içindeki dağılımını gözlemleyiniz # Adım 4: Kategorik değişkenler ile hedef değişken incelemesini yapınız. df.groupby("Churn")["gender"].value_counts() # Adım 5: Aykırı gözlem var mı inceleyiniz. def outlier_thresholds(dataframe, col_name, q1=0.5, q3=0.95): quartile1 = dataframe[col_name].quantile(q1) quartile3 = dataframe[col_name].quantile(q3) interquantile_range = quartile3 - quartile1 up_limit = quartile3 + 1.5 * interquantile_range low_limit = quartile1 - 1.5 * interquantile_range return low_limit, up_limit def check_outlier(dataframe, col_name): low_limit, up_limit = outlier_thresholds(dataframe, col_name) if dataframe[ (dataframe[col_name] > up_limit) | (dataframe[col_name] < low_limit) ].any(axis=None): return True else: return False for col in num_cols: print(col, check_outlier(df, col)) # Adım 6: Eksik gözlem var mı inceleyiniz. df.isnull().sum()
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session sample_csv = pd.read_csv( "/kaggle/input/mkn-ml2-2021-competition-1-timeseries/sample.csv" ) test_csv = pd.read_csv("/kaggle/input/mkn-ml2-2021-competition-1-timeseries/test.csv") train_csv = pd.read_csv("/kaggle/input/mkn-ml2-2021-competition-1-timeseries/train.csv") train_csv.head() from datetime import datetime import matplotlib.pylab as plt # for visualization # for making sure matplotlib plots are generated in Jupyter notebook itself from matplotlib.pylab import rcParams rcParams["figure.figsize"] = 10, 6 df = train_csv.copy() df = df.set_index(["ds"]) df.head() print(len(df)) ## plot graph plt.xlabel("Date & Time") plt.ylabel("y value") plt.plot(df[:96]) plt.show() # ## Предобработка и оценка стационарности: # Determine rolling statistics rolmean = df.rolling( window=24 ).mean() # window size 12 denotes 12 months, giving rolling mean at yearly level rolstd = df.rolling(window=24).std() # Plot rolling statistics plt.figure() plt.plot(df, color="blue", label="Original") plt.plot(rolmean, color="red", label="Rolling Mean") plt.plot(rolstd, color="black", label="Rolling Std") plt.legend(loc="best") plt.title("Rolling Mean & Standard Deviation") plt.show(block=False) # Стационарность: # - const среднее значение и дисперсия # - Критерий Дика-Фуллера from statsmodels.tsa.stattools import adfuller # Perform Augmented Dickey–Fuller test: adf, pvalue, usedlag, nobs, critical_values, icbest = adfuller(df.y, autolag="AIC") print("Results of Dickey Fuller Test: ") print("p-value:", pvalue) print("ADF statistic:", adf) print(critical_values) # Augmented Dickey-Fuller (ADF) test is a type of statistical test called a unit root test. Unit roots are a cause for non-stationarity. # **Null Hypothesis (H0)**: Time series has a unit root. (Time series is not stationary). # **Alternate Hypothesis (H1)**: Time series has no unit root (Time series is stationary). # If the null hypothesis can be rejected, we can conclude that the time series is stationary. # There are two ways to rejects the null hypothesis: # On the one hand, the null hypothesis can be rejected if the p-value is below a set significance level. The defaults significance level is 5% # - **p-value > significance level (default: 0.05)**: Fail to reject the null hypothesis (H0), the data has a unit root and is non-stationary. # - **p-value <= significance level (default: 0.05)**: Reject the null hypothesis (H0), the data does not have a unit root and is stationary. # On the other hand, the null hypothesis can be rejects if the test statistic is less than the critical value. # - **ADF statistic > critical value**: Fail to reject the null hypothesis (H0), the data has a unit root and is non-stationary. # - **ADF statistic < critical value**: Reject the null hypothesis (H0), the data does not have a unit root and is stationary. # Способы приведения к стационарности: # - преобразование (log, BoxCox) # - дифференцирование from scipy import stats # LOG df_log = df.copy() df_log.y = np.log(df.y) plt.plot(df_log) plt.show() _, pvalue, _, _, _, _ = adfuller(df_log.y, autolag="AIC") print("LOG p-value:", pvalue) # BoxCox df_boxcox = df.copy() df_boxcox.y, lmbda_boxcox = stats.boxcox(df.y) plt.plot(df_boxcox) plt.show() _, pvalue, _, _, _, _ = adfuller(df_boxcox.y, autolag="AIC") print("BoxCox p-value:", pvalue) print("Lambda: ", lmbda_boxcox) # diff df_diff = df.copy() df_diff.y = np.append([0], np.diff(df.y)) plt.plot(df_diff) plt.show() _, pvalue, _, _, _, _ = adfuller(df_diff.y, autolag="AIC") print("Diff p-value:", pvalue) # boxcox + diff df_diff_boxcox = df.copy() df_diff_boxcox.y = np.append([0], np.diff(df_boxcox.y)) plt.plot(df_diff_boxcox) plt.show() _, pvalue, _, _, _, _ = adfuller(df_diff_boxcox.y, autolag="AIC") print("BoxCox + Diff p-value:", pvalue) # log + diff df_diff_log = df.copy() df_diff_log.y = np.append([0], np.diff(df_log.y)) plt.plot(df_diff_log) plt.show() _, pvalue, _, _, _, _ = adfuller(df_diff_log.y, autolag="AIC") print("Log + Diff p-value:", pvalue) # boxcox + diff^2 df_diff2_boxcox = df.copy() df_diff2_boxcox.y = np.append([0], np.diff(df_diff_boxcox.y)) plt.plot(df_diff2_boxcox) plt.show() _, pvalue, _, _, _, _ = adfuller(df_diff2_boxcox.y, autolag="AIC") print("Log + Diff^2 p-value:", pvalue) from statsmodels.graphics.tsaplots import plot_acf from statsmodels.graphics.tsaplots import plot_pacf print("RAW") f, ax = plt.subplots(nrows=2, ncols=1, figsize=(16, 8)) plot_acf(df.y, lags=24, ax=ax[0]) plot_pacf(df.y, lags=24, ax=ax[1]) plt.show() print("BoxCox + diff") f, ax = plt.subplots(nrows=2, ncols=1, figsize=(16, 8)) plot_acf(df_diff_log.y, lags=12, ax=ax[0]) plot_pacf(df_diff_log.y, lags=12, ax=ax[1]) plt.show()
# # Predict Vehicle Price using 'car data.csv' # ## Introduction # The **objective** of this Homework is to use Random Forests to predict vehicle sell price. # This week its focus on fitting the data against a random forest model and getting some results. Next week we will continue with this exercise and try to improve the result. # It is recommended to use Mean Squared Error (MSE) as your evaluation metric. # ## About the dataset # You may use any or all of the provided [datasets](https://www.kaggle.com/nehalbirla/vehicle-dataset-from-cardekho), but we recommend starting with ‘car_data.csv’. # This dataset contains information about used cars listed on www.cardekho.com This data can be used for a lot of purposes such as price prediction to exemplify the use of linear regression in Machine Learning. The columns in the given dataset is as follows: # - Car Name/Model # - Year # - Selling Price (100k Indian rupee) # - Present Price (100k Indian rupee) # - Mileage (kms) # - Fuel Type # - Seller Type: Defines whether the seller is a dealer or an individual. # - Transmission: Defines whether the car has a manual or automatic transmission. # - (Number of Previous) Owners # ## Imports # Import all libraries we are using in our notebook. # We also need to get our input data available inside the notebook. # 1. Imports recommended by Kaggle # Kaggle's default Python 3 environment comes with many helpful analytics libraries installed import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt # visualizations import seaborn as sns # data visualization library based on matplotlib, in general easier to use than matplotlib. # 2. Imports need to Get our input data available in the notebook. # Input data files are available in the read-only "../input/" directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # 3. Imports needed to Use Random Forest. from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error # ## Loading the Dataset # 1. Load the data from CSV file car_filepath = "../input/vehicle-dataset-from-cardekho/car data.csv" car_data = pd.read_csv(car_filepath) # 2. Clean up column names car_data = car_data.rename( columns={ "Selling_Price": "Selling Price (100k rupee)", "Present_Price": "Present Price (100k rupee)", "Kms_Driven": "Mileage (km)", "Fuel_Type": "Fuel Type", "Seller_Type": "Seller Type", "Owner": "Number of Previous Owners", "Car_Name": "Car Model", } ) # ## Quick Inspection of the Data # Show the first 5 rows of data, so that we get a rough understanding about the dataset. car_data.head() # Show basic information about the data set, so that we can inspect data types and non-null counts. car_data.info() # Lets double-check if we have any null values... car_data.isnull().sum() # -> There is no null data present in this data set. # Now, let's have a quick look at some statistics about or data... car_data.describe() # The above statistics give us a little bit insight into how our dataset is distributed. # However, we'll need to do some Exploratory Data Analysis to better understand our data. # ## Exploratory Data Analysis (EDA) # ### 1. Number of Previous Owners # **Question:** What is the relationship between number of previous owners and selling price? # **Expectation:** More previous owners relates to a lower (median) selling prices. # **Observation**: This expectation is not fulfilled for the car(s) that have 3 previous owners. (see below) sns.boxplot( data=car_data, x="Number of Previous Owners", y="Selling Price (100k rupee)" ) # **Question:** Why does the category with 3 owners have a higher (median) selling price? # **Observation:** There is only 1 car in our dataset that had 3 previous owners, so I would not consider it statistically significant. (see below) car_data["Number of Previous Owners"].value_counts() # ### 2. Car Model # **Question:** Do we actually have multiple cars with the same Car Model? # **Observation:** Yes, we do have multiple cars with the same Car Model. (see below) car_data["Car Model"].value_counts() # Let's isolate the most common car "city" and see if we can find something interesting... car_data[car_data["Car Model"] == "city"].Year.value_counts() # 2015 is the most common year for the Car Model "city", so let's only focus on that data... city_cars_from_2015 = car_data[ (car_data["Car Model"] == "city") & (car_data["Year"] == 2015) ] city_cars_from_2015 # **Question:** What is the relationship between Selling Price and Mileage (for the most common Car Model and Year)? # **Expectation:** Higher Mileage relates to lower Selling Price. # **Observation:** Based on this data, there does not appears to be an obvious relationship between Selling Price and Mileage. However, there might be a stronger relationship between Selling Price and Present Price. sns.scatterplot( city_cars_from_2015, x="Mileage (km)", y="Selling Price (100k rupee)", hue="Present Price (100k rupee)", ) # ### 3. Transmission Type # **Question:** How many cars do we have for each Transmission Type? car_data["Transmission"].value_counts() # **Question:** Is there a relationship between Transmission Type and Selling Price? # **Observation:** The majority of cars with Manual Transmissions appear to have lower Selling Prices. sns.kdeplot( data=car_data, x="Selling Price (100k rupee)", hue="Transmission", fill=True, cut=0 ) # ### 4. Seller Type # **Question:** How many cars do we have for each Seller Type? car_data["Seller Type"].value_counts() # **Question:** Is there a relationship between Seller Type and Selling Price? # **Observation:** Cars sold by individuals have a lower Selling Price than cars solled by dealerships. sns.kdeplot( data=car_data, x="Selling Price (100k rupee)", hue="Seller Type", fill=True, cut=0 ) # ### 5. Year # **Question:** How many cars do we have for each Transmission Type? (car_data["Year"]).value_counts() # **Warning** - we should not make a kdeplot for categories with 1 entry, so let's remove data entries with year 2004 and 2018. # **Question:** Is there a relationship between Year and Selling Price? # **Expectation:** Newer cars have higher Selling Prices. # **Observation:** Things are not as simple as 'expected'. # 1. Remove the years of 2004 and 2018 car_data_subset = car_data[(car_data["Year"] != 2018) & (car_data["Year"] != 2004)] car_data_subset["Year"].value_counts() # 2. Create the plot sns.kdeplot( data=car_data_subset, x="Selling Price (100k rupee)", hue="Year", fill=True, cut=0 ) # This plot is a little too crowded to visually inspect. Let's just look at the statistics per year... car_data_subset[["Year", "Selling Price (100k rupee)"]].groupby("Year").describe() fig = plt.figure(figsize=(12, 6)) sns.boxplot( data=car_data_subset[["Year", "Selling Price (100k rupee)"]], x="Year", y="Selling Price (100k rupee)", ) fig = plt.figure(figsize=(12, 6)) car_data_subset[["Year", "Selling Price (100k rupee)"]].groupby("Year").median() sns_plot = sns.lineplot( car_data_subset[["Year", "Selling Price (100k rupee)"]].groupby("Year").mean() ) # Remove Legend and use Y axis label instead. sns_plot.set_ylabel("Median Selling Price (100k rupee)") sns_plot.get_legend().remove() # ### 6. Fuel Type # **Question:** Is there a relationship between Fuel Type and Selling Price? # **Observation:** Diesel Cars show a tendency to have higher Selling Price than Petrol Cars. sns.kdeplot( data=car_data, x="Selling Price (100k rupee)", hue="Fuel Type", fill=True, cut=0 ) # ### 7. Mileage # **Question:** Is there a relationship between Mileage and Selling Price? # **Observation:** No clear relationship in the scatter plot. sns.scatterplot( car_data, x="Mileage (km)", y="Selling Price (100k rupee)", hue="Number of Previous Owners", ) # ### 8. Present Price # **Question:** Is there a relationship between Selling Price and Present Price? # **Observation:** Yes, there appears to be a relationship. sns.scatterplot( car_data, x="Present Price (100k rupee)", y="Selling Price (100k rupee)", hue="Number of Previous Owners", ) # Lets now look at additional features that might impact the selling price... # **Observation:** Cars with Manual Transmissions generally do not have the highest Selling Prices. (except for that one outlier) sns.scatterplot( car_data, x="Present Price (100k rupee)", y="Selling Price (100k rupee)", hue="Transmission", ) # **Observation:** Individual Sellers generally have lower Selling Prices than Dealerships. sns.scatterplot( car_data, x="Present Price (100k rupee)", y="Selling Price (100k rupee)", hue="Seller Type", ) # **Observation:** Older Cars tend to have a lower 'Selling Prices / Present Price' ratio. sns.scatterplot( car_data, x="Present Price (100k rupee)", y="Selling Price (100k rupee)", hue="Year" ) car_data_subset = car_data car_data_subset["Ratio of Selling Price over Present Price"] = ( car_data_subset["Selling Price (100k rupee)"] / car_data_subset["Present Price (100k rupee)"] ) sns.scatterplot( car_data_subset, x="Present Price (100k rupee)", y="Ratio of Selling Price over Present Price", hue="Year", ) # **Observation:** If you only care about the most recent years, then it might be possible to use a linear regression model. sns.lmplot( data=car_data, x="Present Price (100k rupee)", y="Selling Price (100k rupee)", hue="Year", ) sns.scatterplot( data=car_data, x="Present Price (100k rupee)", y="Selling Price (100k rupee)", hue="Mileage (km)", ) # ## Random Forest without any optimizations from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error # ### 1. Map Categories to Numerical Values. # **Question:** Which Columns do we have? car_data.columns # **Question:** What are the data types of each column? car_data.dtypes # **Apply One Hot Encoding to all Categorical Values...** car_data_one_hot_encoded = pd.get_dummies(car_data) car_data_one_hot_encoded.head() # ### 2. Use Random Forest to Predict Car Price. # 1. Seperate Prediction Target y from Features X y = car_data_one_hot_encoded["Selling Price (100k rupee)"] X = car_data_one_hot_encoded.drop(columns=["Selling Price (100k rupee)"]) # 2. Split data into Training and Validation data for both features and target. # The split is based on a random number generator. Supplying a numeric value to # the random_state argument guarantees we get the same split every time we # run this script. train_X, validation_X, train_y, validition_y = train_test_split(X, y, random_state=0) # 3. Defined the model forest_model = RandomForestRegressor(random_state=1) # 4. Fit the model forest_model.fit(train_X, train_y) # 5. Get predicted prices using validation dataset car_data_price_predictions = forest_model.predict(validation_X) mse_without_optimizations = mean_squared_error(validition_y, car_data_price_predictions) print(f"MSE (without optimizations) = {mse_without_optimizations}")
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # # Predicting the diameter of an asteroid # ***Part A - data Set Preparation*** # Missing values # # Importing Libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler import warnings warnings.simplefilter(action="ignore", category=FutureWarning) # # Load Data Set df = pd.read_csv("../input/prediction-of-asteroid-diameter/Asteroid_Updated.csv") # # Data Set Exploration # Exploring the data set to understand better df.head() df.shape df.columns len(df.columns) # # Part A - Data Set Preparation # **A1. Renaming Columns** # Renaming columns for better understanding new_columns_dict = { "name": "obj_name", "a": "semi-major_axis(au)", "e": "eccentricity", "i": "x-y_inclination(deg)", "om": "longitude_asc_node", "w": "argument_perihelion", "q": "perihelion_dist(au)", "ad": "aphelion_dist(au)", "per_y": "orbital_period", "data_arc": "data_arc(d)", "condition_code": "condition_code", "n_obs_used": "n_obs_used", "H": "abs_mag_para", "neo": "near_earth_obj", "pha": "physically_hazardous_asteroid", "diameter": "diameter", "extent": "axial_ellipsoid_dim(Km)", "albedo": "geo_albedo", "rot_per": "rot_per(h)", "GM": "std_gravitational_para", "BV": "bv_color_mag_diff", "UB": "ub_color_mag_diff", "IR": "ir_color_mag_diff", "spec_B": "SMASSII_spec_tax_type", "spec_T": "Tholen_spec_tax_type", "G": "mag_slope_para", "moid": "earth_min_oribit_inter_dist(au)", "class": "class", "n": "mean_motion(deg/d)", "per": "orbital_period(d)", "ma": "mean_anomaly(deg)", } df = df.rename(columns=new_columns_dict) df.columns # **A2. Missing Values** # count of missing values missing = pd.concat([pd.isnull(df).sum(), 100 * pd.isnull(df).mean()], axis=1) missing.columns = ["count", "%"] missing.sort_values("count") # The target feature 'diameter' has significant number of missing values df["diameter"].notnull().sum() # Still it has considerable number of rows to proceed after removing vacant rows # removing rows where diamter values are missing df = df.dropna(axis=0, subset=["diameter"]) len(df.index) # The total number of rows are matching the number of rows with non null diameter values # # New percentage of missing values missing2 = pd.concat([pd.isnull(df).sum(), 100 * pd.isnull(df).mean()], axis=1) missing2.columns = ["count", "%"] missing2.sort_values("count") # It's confirmed that missing values from 'diameter' columns has been removed. The data set still has input variables with high percentage of missing values. Using those to in ML model may fetch wrong results. Thus removing columns with high percentage of missing values # columns to drop drop_list = [ "abs_mag_para", "geo_albedo", "obj_name", "rot_per(h)", "SMASSII_spec_tax_type", "bv_color_mag_diff", "Tholen_spec_tax_type", "ub_color_mag_diff", "mag_slope_para", "axial_ellipsoid_dim(Km)", "std_gravitational_para", "ir_color_mag_diff", ] df.drop(drop_list, axis=1, inplace=True) len(df.columns) # Initially 31 columns were there; now it has reduced to 19 # **A3. Data type corrections** # data types df.dtypes # Checking object features df.select_dtypes("object").head() # diamter should not be an object; its a numerical value # converting diameter to numerical value # df['diameter']=pd.to_numeric(df['diameter']) # Error in conversion at position 15 # checking the value at position 15 df["diameter"].iloc[15] # its a string. converting it to number df.at[15, "diameter"] = 226 # checking the value again df["diameter"].iloc[15] df["diameter"] = pd.to_numeric(df["diameter"]) # Now the conversion is succesful # **A4. Unique Values** # unique values of object features df["condition_code"].unique() df["near_earth_obj"].unique() df["physically_hazardous_asteroid"].unique() df["class"].unique() # 'condition code' has mix of data types. Convert it to integers df["condition_code"] = df["condition_code"].astype("int") df["condition_code"].unique() # Now all the values seem fine # **A5.Value Counts** # Check whether each features has enough variation to construct model; if in a particular column, one of the value dominates others by huge margin, the ML model may fetch biased results. df["near_earth_obj"].value_counts() df["physically_hazardous_asteroid"].value_counts() df["class"].value_counts() # Enough variations are there to keep the features # Checking out the integer features df.select_dtypes("int64") # number of obseravtions should be of integer type. so keeping it the same # Checking out float features df.select_dtypes("float64") # All the above features suit float type df.describe().T # Data Arc still has missing values. Looking at the distribution of each features df.hist(figsize=(20, 20)) plt.show() # Data Arc seems to have high variation. boxplot for same will give better idea sns.boxplot(df["data_arc(d)"]) # Data arc is much skewed so its better to fill the missing values with median than mean df["data_arc(d)"] = df["data_arc(d)"].fillna(df["data_arc(d)"].median()) df.describe().T df.info() # **Further checking on Object Features** # Deep dive into object variables for checking whether they are interconnected data_type = df.dtypes data_type[(data_type == "object")].index.tolist() # A common unit in astronomy is the astronomical unit (au), and is roughly equal to the distance from the Earth to the Sun or 150 million kilometers. # **Near Earth Object (NEO)** : An asteroid or comet that is less than 1.3 au from the sun. # **Physically Hazardous**: Determined by whether it is an NEO and its size. # **Class**: This is the orbit class, such as if it is part of the main asteroid belt, orbits a larger planet, or is near earth. # **Physically hazardous** classifier is based out of **diameter**(target), so it cannot be used for modelling. # **Near Earth Object** classifier is already explained in class, so it is not needed for further exploration drop_list = ["near_earth_obj", "physically_hazardous_asteroid"] df.drop(drop_list, axis=1, inplace=True) # **checking how the target (diameter) is distributed over orbit class** # Set Plot Colors sns.set_palette("inferno", 11) sns.boxplot(x="class", y="diameter", data=df) plt.yscale("log") # There does appear to be some relationship between the diameter of an asteroid and where it orbits. Orbits are determined by strength of gravity, which is determined by the size of the two objects and how close they are to each other. So, it makes sense that larger asteroids are going to be closer to the larger planets, than to Earth # **Explore the target variable** df["diameter"].describe() # **How the target variable distributed over the class classifier** class_group = df.groupby("class").agg( {"diameter": ["mean", "median", "min", "max", "std", "var", "count"]} ) print(class_group) # **Distribution of Condition code over diameter** sns.boxplot(x="condition_code", y="diameter", data=df) plt.yscale("log") # It is evdient that diameter doesn't change much over different condition code. So no need to keep it for modelling df.drop("condition_code", axis=1, inplace=True) # **Explore the numerical features- Correlation** plt.figure(figsize=(20, 10)) sns.set(font_scale=1.4) sns.heatmap(df.corr(), annot=True, cmap="inferno", fmt=".2f", annot_kws={"size": 16}) # Few features are correlated. Removing them # orbital_period(d) and orbital_period df.drop("orbital_period", axis=1, inplace=True) # perihelion_distance and earth_min_orbit_inter_dist(au) df.drop("earth_min_oribit_inter_dist(au)", axis=1, inplace=True) df.shape # copying the current data frame into another variable for future purposes df2 = df # assign dummy values to categorical variable df = pd.get_dummies(df, columns=["class"]) df.columns df.head() df.shape # # Part B - Model building # Split data into features and target y = df["diameter"] # target x = df.drop(columns="diameter") # independent features # Standardize the features # apply a standardized scaler to the data SS_scaler = StandardScaler() # Fit the standard scaler to the data x_std = SS_scaler.fit_transform(x) # Create Training and Testing data X_train, X_test, Y_train, Y_test = train_test_split( x_std, y, test_size=0.2, random_state=42 ) from sklearn.metrics import mean_squared_error from sklearn.metrics import r2_score # # Linear Regression from sklearn.linear_model import LinearRegression model = LinearRegression() model.fit(X_train, Y_train) diameter_prediction = model.predict(X_test) mse = mean_squared_error(Y_test, diameter_prediction) rmse = np.sqrt(mse) print("root mean squared error:" + str(rmse)) r2 = r2_score(Y_test, diameter_prediction) print("r2:", r2) # r2 square need to be improved print(f"constant={model.intercept_}") print(f"coefficients={model.coef_}") # **Adjusted r2** n = 137636 # number of observation p = 23 # number of independent variables R2 = 0.3008495396647336 adj_r2 = 1 - (1 - R2) * (n - 1) / (n - p - 1) print(f"Adjusted r2 score={adj_r2}") # **Ridge Regression** from sklearn.linear_model import Ridge model = Ridge() model.fit(X_train, Y_train) model.predict(X_test) diameterPrediction = model.predict(X_test) mse = mean_squared_error(Y_test, diameterPrediction) rmse = np.sqrt(mse) print("root mean square error : " + str(rmse)) r2 = r2_score(Y_test, diameterPrediction) print("R2 Score : ", r2) # Still r2 score is not improved. so introduce hyperparameter tuning for ridge regression from sklearn.model_selection import GridSearchCV # iteration tool ridge = Ridge() parameters = { "alpha": [ 1e-15, 1e-10, 1e-8, 1e-3, 1e-2, 1, 5, 10, 20, 25, 30, 35, 40, 45, 50, 60, 70, 85, 100, 105, 125, 145, 150, 160, 168, 170, 172, 171, 180, 200, 210, ] } ridge_regressor = GridSearchCV( ridge, parameters, scoring="neg_mean_squared_error", cv=5 ) ridge_regressor.fit(X_train, Y_train) print(ridge_regressor.best_params_) # best alpha value to use # applying alpha=170 in ridge instead of default value 1 model = Ridge(alpha=210) model.fit(X_train, Y_train) model.predict(X_test) diameterPrediction = model.predict(X_test) mse = mean_squared_error(Y_test, diameterPrediction) rmse = np.sqrt(mse) print("root mean square error : " + str(rmse)) r2 = r2_score(Y_test, diameterPrediction) print("R2 Score : ", r2) # We can see a minute improvement in the r2 value # **Lasso** from sklearn import linear_model model = linear_model.Lasso(alpha=0.1) model.fit(X_train, Y_train) model.predict(X_test) diameterPrediction = model.predict(X_test) mse = mean_squared_error(Y_test, diameterPrediction) rmse = np.sqrt(mse) print("root mean square error : " + str(rmse)) r2 = r2_score(Y_test, diameterPrediction) print("R2 Score : ", r2) # r2 score is better than ridge regression even before hyperparameter tuning # **Lasso with hyper parameter tuning** from sklearn.linear_model import Lasso from sklearn.model_selection import GridSearchCV lasso = Lasso() parameters = { "alpha": [ 1e-15, 1e-10, 1e-8, 1e-3, 1e-2, 1, 5, 10, 20, 25, 30, 35, 40, 45, 50, 60, 70, 85, 100, 105, 125, 145, 150, 160, 168, 170, 172, 171, 180, 200, ] } lasso_regressor = GridSearchCV( lasso, parameters, scoring="neg_mean_squared_error", cv=5 ) lasso_regressor.fit(X_train, Y_train) print(lasso_regressor.best_params_) # best alpha value to use # using this alpha in lasso from sklearn import linear_model model = linear_model.Lasso(alpha=1e-15) model.fit(X_train, Y_train) model.predict(X_test) diameterPrediction = model.predict(X_test) mse = mean_squared_error(Y_test, diameterPrediction) rmse = np.sqrt(mse) print("root mean square error : " + str(rmse)) r2 = r2_score(Y_test, diameterPrediction) print("R2 Score : ", r2) # This hyper parameter tuning reduced the r2 value. So maybe we have to change grid search to randomised search, k fold search, cross validation etc. # **KNN** from sklearn.neighbors import KNeighborsRegressor model = KNeighborsRegressor() model.fit(X_train, Y_train) model.predict(X_test) diameterPrediction = model.predict(X_test) mse = mean_squared_error(Y_test, diameterPrediction) rmse = np.sqrt(mse) print("root mean square error : " + str(rmse)) r2 = r2_score(Y_test, diameterPrediction) print("R2 Score : ", r2) # r2 has improved. Now its more than 0.5 # KNN hyper parameter tuning """ from sklearn.model_selection import KFold KNN=KNeighborsRegressor() seed=13 kfold=KFold(n_splits=3,shuffle=True,random_state=seed) #Define candidate hyperparameters hp_candidates=[{'n_neighbors':[4,5,6,7],'weights':['uniform','distance']}] #search for best parameters grid=GridSearchCV(estimator=KNN,param_grid=hp_candidates,cv=kfold,scoring='r2') grid.fit(X_train,Y_train) """ # grid.best_params_ #finding best hyper parameters """ model=KNeighborsRegressor(n_neighbors=6,weights='distance') model.fit(X_train,Y_train) model.predict(X_test) diameterPrediction = model.predict(X_test) mse = mean_squared_error(Y_test, diameterPrediction) rmse = np.sqrt(mse) print("root mean square error : "+str(rmse)) r2 = r2_score(Y_test,diameterPrediction) print("R2 Score : ",r2) """ # **SVR** """ from sklearn.svm import SVR model = SVR() model.fit(X_train, Y_train) model.predict(X_test) diameterPrediction = model.predict(X_test) mse = mean_squared_error(Y_test, diameterPrediction) rmse = np.sqrt(mse) print("root mean square error : "+str(rmse)) r2 = r2_score(Y_test,diameterPrediction) print("R2 Score : ",r2) """ # Here the r2 score is less than KNN # Hyper parameter tuning for improving r2 score """ param_grid={'C':[0.1,1,10,100,1000], # 'gama':[1,0.1,0.01,0.001,0.0001], # 'kernel':['linear','rbf','poly','sigmoid']} #grid=GridSearchCV(SVR(),param_grid,refit=True,verbose=3) #grid.fit(x_train,y_train) #time consuming processing """ # **Decision Tree** from sklearn.tree import DecisionTreeRegressor model = DecisionTreeRegressor() model.fit(X_train, Y_train) model.predict(X_test) diameterPrediction = model.predict(X_test) mse = mean_squared_error(Y_test, diameterPrediction) rmse = np.sqrt(mse) print("root mean square error : " + str(rmse)) r2 = r2_score(Y_test, diameterPrediction) print("R2 Score : ", r2) # **Random Forest** from sklearn.ensemble import RandomForestRegressor model = RandomForestRegressor() model.fit(X_train, Y_train) model.predict(X_test) diameterPrediction = model.predict(X_test) mse = mean_squared_error(Y_test, diameterPrediction) rmse = np.sqrt(mse) print("root mean square error : " + str(rmse)) r2 = r2_score(Y_test, diameterPrediction) print("R2 Score : ", r2) # **Ada Boost** from sklearn.ensemble import AdaBoostRegressor from sklearn.metrics import mean_squared_error # for getting the mean squared error from sklearn.metrics import r2_score # to get the accuracy of each model # Create adaboost classifer object AdaModel = AdaBoostRegressor(n_estimators=100, learning_rate=1) # Train Adaboost Classifer model = AdaModel.fit(X_train, Y_train) # Predict the response for test dataset diameterPrediction = model.predict(X_test) mse = mean_squared_error(Y_test, diameterPrediction) rmse = np.sqrt(mse) print("root mean square error : " + str(rmse)) r2 = r2_score(Y_test, diameterPrediction) print("R2 Score : ", r2) # #Time taken : 10 sec # AdaBoost - With customized Base Model = linear regression # Import Support Vector Regressor from sklearn.linear_model import LinearRegression LR = LinearRegression() # Create adaboost classifer object abc = AdaBoostRegressor(n_estimators=200, base_estimator=LR, learning_rate=1) model = abc.fit(X_train, Y_train) diameterPrediction = model.predict(X_test) mse = mean_squared_error(Y_test, diameterPrediction) rmse = np.sqrt(mse) print("root mean square error : " + str(rmse)) r2 = r2_score(Y_test, diameterPrediction) print("R2 Score : ", r2) # AdaBoost - With customized Base Model = knn """ from sklearn.neighbors import KNeighborsRegressor KNN = KNeighborsRegressor() # Create adaboost classifer object abc =AdaBoostRegressor(n_estimators=200, base_estimator=KNN,learning_rate=1) model = abc.fit(X_train, Y_train) """ """ diameterPrediction = model.predict(X_test) mse = mean_squared_error(Y_test, diameterPrediction) rmse = np.sqrt(mse) print("root mean square error : "+str(rmse)) r2 = r2_score(Y_test,diameterPrediction) print("R2 Score : ",r2) """ # Gradient Boost # Create gradientboost REGRESSOR object from sklearn.ensemble import GradientBoostingRegressor gradientregressor = GradientBoostingRegressor( max_depth=2, n_estimators=3, learning_rate=1.0 ) # Train gradientboost REGRESSOR model = gradientregressor.fit(X_train, Y_train) # Predict the response for test dataset diameterPrediction = model.predict(X_test) mse = mean_squared_error(Y_test, diameterPrediction) rmse = np.sqrt(mse) print("root mean square error : " + str(rmse)) r2 = r2_score(Y_test, diameterPrediction) print("R2 Score : ", r2) """ #Hyper Parameter tuning (Will take more time) from sklearn.model_selection import GridSearchCV LR = {'learning_rate':[0.15,0.1,0.10,0.05], 'n_estimators':[100,150,200,250]} tuning = GridSearchCV(estimator =GradientBoostingRegressor(), param_grid = LR, scoring='r2') tuning.fit(X_train,y_train) tuning.best_params_, tuning.best_score_ """ # I am choosing 'n_estimators=200,learning_rate=0.15' gradientregressor = GradientBoostingRegressor( max_depth=2, n_estimators=200, learning_rate=0.15 ) model = gradientregressor.fit(X_train, Y_train) diameterPrediction = model.predict(X_test) r2 = r2_score(Y_test, diameterPrediction) print("R2 Score : ", r2) # XG Boost from xgboost import XGBRegressor from sklearn.svm import SVR # Running various models models = [] models.append(("SVM", SVR())) models.append(("XGB", XGBRegressor(eta=0.01, gamma=10))) # eta = 0.01,gamma = 10 """' import time # evaluate each model in turn results = [] names = [] for name, model in models: start_time = time.time() model.fit(X_train, Y_train) y_pred = model.predict(X_test) predictions = [round(value) for value in y_pred] # evaluate predictions R2 = r2_score(Y_test, predictions) print("R2 Score", (R2),name) print("Time_Taken", (time.time() - start_time)) """ # CAT Boost from catboost import CatBoostRegressor, Pool df2["class"] # Split data into features and target. y = df2["diameter"] X = df2.drop(columns="diameter") from catboost import CatBoostRegressor, Pool X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.20, random_state=42 ) pool_train = Pool(X_train, Y_train, cat_features=["class"]) pool_test = Pool(X_test, cat_features=["class"]) import time start = time.time() cbr = CatBoostRegressor(iterations=500, max_depth=2) cbr.fit(pool_train) diameterPrediction = cbr.predict(X_test) mse = mean_squared_error(y_test, diameterPrediction) rmse = np.sqrt(mse) print("root mean square error : " + str(rmse)) r2 = r2_score(y_test, diameterPrediction) print("R2 Score : ", r2) end = time.time() diff = end - start print("Execution time:", diff) # Light GBM import lightgbm """ start = time.time() lgbmr = lightgbm.LGBMRegressor() lgbmr.fit(X_train, Y_train) y_pred = lgbmr.predict(X_test) mse = mean_squared_error(Y_test, diameterPrediction) rmse = np.sqrt(mse) print("root mean square error : "+str(rmse)) r2 = r2_score(Y_test,diameterPrediction) print("R2 Score : ",r2) end = time.time() diff = end - start print('Execution time:', diff) """
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) break # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import torch import os, sys, json, cv2, random, torchvision import pandas as pd import numpy as np import matplotlib.pyplot as plt from tqdm import tqdm from torchvision import transforms from sklearn.model_selection import train_test_split from sklearn.metrics import ( auc, f1_score, roc_curve, classification_report, confusion_matrix, ) import seaborn as sns from torch.utils.data import DataLoader, Dataset from torch.utils.tensorboard import SummaryWriter from PIL import Image import torch.nn as nn from itertools import cycle from numpy import interp net = torchvision.models.vit_b_16(pretrained=True) net.heads = nn.Sequential(nn.Linear(768, 4)) def read_split_data(root, plot_image=False): filepaths = [] labels = [] bad_images = [] random.seed(0) assert os.path.exists(root), "wdnmd, 你tm路径不对啊!" classes = [ cla for cla in os.listdir(root) if os.path.isdir(os.path.join(root, cla)) ] classes.sort() class_indices = {k: v for v, k in enumerate(classes)} json_str = json.dumps({v: k for k, v in class_indices.items()}, indent=4) with open("classes_indices.json", "w") as json_file: json_file.write(json_str) every_class_num = [] supported = [".jpg", ".png", ".jpeg", ".PNG", ".JPG", ".JPEG"] for klass in classes: classpath = os.path.join(root, klass) images = [ os.path.join(root, klass, i) for i in os.listdir(classpath) if os.path.splitext(i)[-1] in supported ] every_class_num.append(len(images)) flist = sorted(os.listdir(classpath)) desc = f"{klass:23s}" for f in tqdm(flist, ncols=110, desc=desc, unit="file", colour="blue"): fpath = os.path.join(classpath, f) fl = f.lower() index = fl.rfind(".") ext = fl[index:] if ext in supported: try: img = cv2.imread(fpath) filepaths.append(fpath) labels.append(klass) except: bad_images.append(fpath) print("defective image file: ", fpath) else: bad_images.append(fpath) Fseries = pd.Series(filepaths, name="filepaths") Lseries = pd.Series(labels, name="labels") df = pd.concat([Fseries, Lseries], axis=1) print(f"{len(df.labels.unique())} kind of images were found in the dataset") train_df, test_df = train_test_split( df, train_size=0.8, shuffle=True, random_state=123, stratify=df["labels"] ) train_image_path = train_df["filepaths"].tolist() val_image_path = test_df["filepaths"].tolist() train_image_label = [class_indices[i] for i in train_df["labels"].tolist()] val_image_label = [class_indices[i] for i in test_df["labels"].tolist()] sample_df = train_df.sample(n=50, replace=False) ht, wt, count = 0, 0, 0 for i in range(len(sample_df)): fpath = sample_df["filepaths"].iloc[i] try: img = cv2.imread(fpath) h = img.shape[0] w = img.shape[1] ht += h wt += w count += 1 except: pass have = int(ht / count) wave = int(wt / count) aspect_ratio = have / wave print( "{} images were found in the dataset.\n{} for training, {} for validation".format( sum(every_class_num), len(train_image_path), len(val_image_path) ) ) print( "average image height= ", have, " average image width= ", wave, " aspect ratio h/w= ", aspect_ratio, ) if plot_image: plt.bar(range(len(classes)), every_class_num, align="center") plt.xticks(range(len(classes)), classes) for i, v in enumerate(every_class_num): plt.text(x=i, y=v + 5, s=str(v), ha="center") plt.xlabel("image class") plt.ylabel("number of images") plt.title("class distribution") plt.show() return ( train_image_path, train_image_label, val_image_path, val_image_label, class_indices, ) def train_one_epoch(model, train_loader, optimizer, device, epoch, scalar=None): model.train() loss_function = nn.CrossEntropyLoss() sample_num, train_acc, train_loss = 0, 0, 0 optimizer.zero_grad() train_bar = tqdm(train_loader, file=sys.stdout, colour="red") for step, data in enumerate(train_bar): optimizer.zero_grad() images, labels = data sample_num += images.shape[0] images = images.to(device) labels = labels.to(device) if scalar is not None: with torch.cuda.amp.autocast(): outputs = model(images) loss = loss_function(outputs, labels) else: outputs = model(images) loss = loss_function(outputs, labels) train_acc += (torch.argmax(outputs, dim=1) == labels).sum().item() train_loss += loss.item() if scalar is not None: scalar.scale(loss).backward() scalar.step(optimizer) scalar.update() else: loss.backward() optimizer.step() train_bar.desc = "[train epoch {}] loss: {:.3f}, acc: {:.3f}".format( epoch, train_loss / (step + 1), train_acc / sample_num ) return round(train_loss / (step + 1), 3), round(train_acc / sample_num, 3) @torch.no_grad() def val_step(model, valid_loader, device, epoch): model.eval() loss_function = nn.CrossEntropyLoss() sample_num, valid_acc, valid_loss = 0, 0, 0 valid_bar = tqdm(valid_loader, file=sys.stdout, colour="red") for step, data in enumerate(valid_bar): images, labels = data sample_num += images.shape[0] images = images.to(device) labels = labels.to(device) outputs = model(images) loss = loss_function(outputs, labels) valid_loss += loss.item() valid_acc += (torch.argmax(outputs, dim=1) == labels).sum().item() valid_bar.desc = "[valid epoch {}] loss: {:.3f}, acc: {:.3f}".format( epoch, valid_loss / (step + 1), valid_acc / sample_num ) return round(valid_loss / (step + 1), 3), round(valid_acc / sample_num, 3) def Plot_ROC(net, val_loader, save_name, device): try: json_file = open("./classes_indices.json", "r") class_indict = json.load(json_file) except Exception as e: print(e) exit(-1) score_list = [] label_list = [] net.load_state_dict(torch.load(save_name)) for i, data in enumerate(val_loader): images, labels = data images, labels = images.to(device), labels.to(device) outputs = torch.softmax(net(images), dim=1) score_tmp = outputs score_list.extend(score_tmp.detach().cpu().numpy()) label_list.extend(labels.cpu().numpy()) score_array = np.array(score_list) # 将label转换成onehot形式 label_tensor = torch.tensor(label_list) label_tensor = label_tensor.reshape((label_tensor.shape[0], 1)) label_onehot = torch.zeros(label_tensor.shape[0], len(class_indict.keys())) label_onehot.scatter_(dim=1, index=label_tensor, value=1) label_onehot = np.array(label_onehot) print("score_array:", score_array.shape) # (batchsize, classnum) print("label_onehot:", label_onehot.shape) # torch.Size([batchsize, classnum]) # 调用sklearn库,计算每个类别对应的fpr和tpr fpr_dict = dict() tpr_dict = dict() roc_auc_dict = dict() for i in range(len(class_indict.keys())): fpr_dict[i], tpr_dict[i], _ = roc_curve(label_onehot[:, i], score_array[:, i]) roc_auc_dict[i] = auc(fpr_dict[i], tpr_dict[i]) # micro fpr_dict["micro"], tpr_dict["micro"], _ = roc_curve( label_onehot.ravel(), score_array.ravel() ) roc_auc_dict["micro"] = auc(fpr_dict["micro"], tpr_dict["micro"]) # macro # First aggregate all false positive rates all_fpr = np.unique( np.concatenate([fpr_dict[i] for i in range(len(class_indict.keys()))]) ) # Then interpolate all ROC curves at this points mean_tpr = np.zeros_like(all_fpr) for i in range(len(set(label_list))): mean_tpr += interp(all_fpr, fpr_dict[i], tpr_dict[i]) # Finally average it and compute AUC mean_tpr /= len(class_indict.keys()) fpr_dict["macro"] = all_fpr tpr_dict["macro"] = mean_tpr roc_auc_dict["macro"] = auc(fpr_dict["macro"], tpr_dict["macro"]) # 绘制所有类别平均的roc曲线 plt.figure(figsize=(12, 12)) lw = 2 plt.plot( fpr_dict["micro"], tpr_dict["micro"], label="micro-average ROC curve (area = {0:0.2f})" "".format(roc_auc_dict["micro"]), color="deeppink", linestyle=":", linewidth=4, ) plt.plot( fpr_dict["macro"], tpr_dict["macro"], label="macro-average ROC curve (area = {0:0.2f})" "".format(roc_auc_dict["macro"]), color="navy", linestyle=":", linewidth=4, ) colors = cycle(["aqua", "darkorange", "cornflowerblue"]) for i, color in zip(range(len(class_indict.keys())), colors): plt.plot( fpr_dict[i], tpr_dict[i], color=color, lw=lw, label="ROC curve of class {0} (area = {1:0.2f})" "".format(class_indict[str(i)], roc_auc_dict[i]), ) plt.plot([0, 1], [0, 1], "k--", lw=lw, label="Chance", color="red") plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") plt.title("Receiver operating characteristic to multi-class") plt.legend(loc="lower right") plt.savefig("./save_images/multi_classes_roc.png") plt.show() def Predictor(net, test_loader, save_name, device): try: json_file = open("./classes_indices.json", "r") class_indict = json.load(json_file) except Exception as e: print(e) exit(-1) errors = 0 y_pred, y_true = [], [] net.load_state_dict(torch.load(save_name)) net.eval() with torch.no_grad(): for data in test_loader: images, labels = data images, labels = images.to(device), labels.to(device) preds = torch.argmax(torch.softmax(net(images), dim=1), dim=1) for i in range(len(preds)): y_pred.append(preds[i].cpu()) y_true.append(labels[i].cpu()) tests = len(y_pred) for i in range(tests): pred_index = y_pred[i] true_index = y_true[i] if pred_index != true_index: errors += 1 acc = (1 - errors / tests) * 100 print(f"there were {errors} errors in {tests} tests for an accuracy of {acc:6.2f}%") ypred = np.array(y_pred) ytrue = np.array(y_true) f1score = f1_score(ytrue, ypred, average="weighted") * 100 print(f"The F1-score was {f1score:.3f}") class_count = len(list(class_indict.values())) classes = list(class_indict.values()) cm = confusion_matrix(ytrue, ypred) plt.figure(figsize=(16, 8)) plt.subplot(1, 2, 1) sns.heatmap(cm, annot=True, vmin=0, fmt="g", cmap="Blues", cbar=False) plt.xticks(np.arange(class_count) + 0.5, classes, rotation=45, fontsize=14) plt.yticks(np.arange(class_count) + 0.5, classes, rotation=0, fontsize=14) plt.xlabel("Predicted", fontsize=14) plt.ylabel("True", fontsize=14) plt.title("Confusion Matrix") plt.subplot(1, 2, 2) sns.heatmap(cm / np.sum(cm), annot=True, fmt=".1%") plt.xticks(np.arange(class_count) + 0.5, classes, rotation=45, fontsize=14) plt.yticks(np.arange(class_count) + 0.5, classes, rotation=0, fontsize=14) plt.xlabel("Predicted", fontsize=14) plt.ylabel("True", fontsize=14) plt.savefig("./save_images/confusion_matrix.png") plt.show() clr = classification_report(y_true, y_pred, target_names=classes, digits=4) print("Classification Report:\n----------------------\n", clr) class MyDataset(Dataset): def __init__(self, image_path, image_labels, transforms=None): self.image_path = image_path self.image_labels = image_labels self.transforms = transforms def __getitem__(self, item): image = Image.open(self.image_path[item]).convert("RGB") label = self.image_labels[item] if self.transforms: image = self.transforms(image) return image, label def __len__(self): return len(self.image_path) @staticmethod def collate_fn(batch): image, label = tuple(zip(*batch)) image = torch.stack(image, dim=0) label = torch.as_tensor(label) return image, label root = r"/kaggle/input/big-cats-image-classification-dataset/animals/" batch_size = 32 device = "cuda" if torch.cuda.is_available() else "cpu" epochs = 1 lr = 0.0001 weight_decay = 0.00001 data_transform = { "train": transforms.Compose( [ transforms.RandomResizedCrop(224), transforms.ToTensor(), transforms.RandomHorizontalFlip(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ), "valid": transforms.Compose( [ transforms.Resize((224, 224)), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ), } def main(root, batch_size, model, epochs, lr): if os.path.exists("./weights") is False: os.makedirs("./weights") if os.path.exists("./save_images") is False: os.makedirs("./save_images") ( train_image_path, train_image_label, val_image_path, val_image_label, class_indices, ) = read_split_data(root) # 实例化训练数据集 train_dataset = MyDataset( train_image_path, train_image_label, data_transform["train"] ) # 实例化验证数据集 val_dataset = MyDataset(val_image_path, val_image_label, data_transform["valid"]) sys_name = sys.platform train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=batch_size, shuffle=True, pin_memory=True, num_workers=0, collate_fn=train_dataset.collate_fn, ) val_loader = torch.utils.data.DataLoader( val_dataset, batch_size=batch_size, shuffle=False, pin_memory=True, num_workers=0, collate_fn=val_dataset.collate_fn, ) optimizer = torch.optim.AdamW(model.parameters(), lr=lr, weight_decay=weight_decay) for epoch in range(epochs): train_loss, train_accuracy = train_one_epoch( model, train_loader, optimizer, device, epoch, scalar=None ) valid_loss, valid_accuracy = val_step(model, val_loader, device, epoch) torch.save(model.state_dict(), "./weights/model.pth".format(epoch)) print("Finished Training!!!") Predictor(model, val_loader, "./weights/model.pth", device) Plot_ROC(model, val_loader, "./weights/model.pth", device) if __name__ == "__main__": main(root, batch_size, net.to(device), epochs, lr)
import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) import tensorflow as tf from tensorflow.keras.preprocessing.image import ImageDataGenerator # Define the parameters for image preprocessing and augmentation datagen = ImageDataGenerator( rescale=1.0 / 255, # Rescale pixel values to [0, 1] rotation_range=20, # Randomly rotate images up to 20 degrees width_shift_range=0.1, # Randomly shift images horizontally up to 10% height_shift_range=0.1, # Randomly shift images vertically up to 10% shear_range=0.1, # Randomly shear images up to 10% zoom_range=0.1, # Randomly zoom images up to 10% horizontal_flip=True, # Randomly flip images horizontally fill_mode="nearest", # Fill any gaps created by rotation or shifting with the nearest pixel value validation_split=0.2, # Split the dataset into training and validation with an 80-20 ratio ) # Set the path to your image dataset and the batch size data_dir = "/kaggle/input/medical-tests-multi-class-image-dataset/CNN_dataset" batch_size = 32 # Use the image data generator to generate batches of augmented images for training and validation train_generator = datagen.flow_from_directory( data_dir, target_size=(224, 224), # Resize images to 224x224 pixels batch_size=batch_size, class_mode="categorical", # Set class mode to categorical for multi-class classification tasks subset="training", # Specify that we want to use the training set ) val_generator = datagen.flow_from_directory( data_dir, target_size=(224, 224), batch_size=batch_size, class_mode="categorical", subset="validation", # Specify that we want to use the validation set ) from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout # Define the CNN architecture model = Sequential() model.add(Conv2D(32, (3, 3), activation="relu", input_shape=(224, 224, 3))) model.add(MaxPooling2D((2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(64, (3, 3), activation="relu")) model.add(MaxPooling2D((2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(128, (3, 3), activation="relu")) model.add(MaxPooling2D((2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(64, activation="relu")) model.add(Dropout(0.5)) model.add( Dense(5, activation="softmax") ) # num_classes is the number of classes in your dataset model.summary() # Compile the model model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"]) # Train the model on the training set and validate on the validation set history = model.fit(train_generator, epochs=10, validation_data=val_generator) # Evaluate the model on the test set test_loss, test_acc = model.evaluate(test_generator) print("Test accuracy:", test_acc)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # **Importing Libraries** import pandas as pd import numpy as np import matplotlib.pyplot as plt from matplotlib import style import random from sklearn.model_selection import train_test_split from sklearn import * import keras from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.preprocessing import LabelEncoder import re from sklearn.model_selection import train_test_split from sklearn.utils import shuffle from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.pipeline import Pipeline from sklearn.metrics import roc_auc_score from sklearn.metrics import accuracy_score df = pd.read_csv("/kaggle/input/mushroom-classification/mushrooms.csv") df df.info() df.shape # **Check for the Missing Values in the Dataset** df.isnull().sum() # No Missing Values df df["Label"] = df["class"].map({"e": 0, "p": 1}) df y_train = df["Label"] # We need Numerical data for training the Random Forest Classifier Model. # To do the necessary conversion, we can use Label Encoding. # **What is Label Encoding?** # Label Encoding refers to converting the labels into numeric form so as to convert it into the machine-readable form. Machine learning algorithms can then decide in a better way on how those labels must be operated. It is an important pre-processing step for the structured dataset in supervised learning. def Label_encode(feat): LabelE = LabelEncoder() LabelE.fit(feat) print(feat.name, LabelE.classes_) return LabelE.transform(feat) for col in df.columns: df[str(col)] = Label_encode(df[str(col)]) df x_df = df.drop("class", 1) x_df = df.drop("Label", 1) x_train = x_df x_train x_train.shape y_train.shape X_train, X_test, y_train, y_test = train_test_split( x_train, y_train, test_size=0.20, random_state=42 ) rfc = RandomForestClassifier() rfc.fit(X_train, y_train) # **Function to evaluate the performance of the model -** def evaluate(model, test_features, test_labels): predictions = model.predict(test_features) errors = abs(predictions - test_labels) mape = 100 * abs(np.mean(errors / test_labels)) accuracy = metrics.accuracy_score(test_labels, predictions) print("Model Performance") print("Average Error: {:0.4f} degrees.".format(np.mean(errors))) print("Accuracy = {:0.2f}%.".format(accuracy)) print("Exact Accuracy Value: ") return accuracy evaluate(rfc, X_test, y_test) y_predict = rfc.predict(X_test) print("accuracy: {}%".format(round(accuracy_score(y_test, y_predict) * 100, 4)))
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # ### Importing the data import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import StratifiedKFold, KFold from xgboost import XGBClassifier from xgboost import XGBRegressor from sklearn.metrics import roc_auc_score from sklearn.metrics import mean_squared_log_error data = pd.read_csv("/kaggle/input/us-college-completion-rate-analysis/train.csv") test = pd.read_csv("/kaggle/input/us-college-completion-rate-analysis/x_test.csv") data = data.drop(columns=["Unnamed: 0"], axis=1) test = test.drop(columns=["Unnamed: 0"], axis=1) print(data.shape, test.shape) data.dtypes def summary(df): print(f"data shape: {df.shape}") sum = pd.DataFrame(df.dtypes, columns=["data type"]) sum["missing"] = df.isnull().sum().values * 100 sum["%missing"] = df.isnull().sum().values / df.shape[0] sum["unique"] = df.nunique().values desc = pd.DataFrame(df.describe().transpose()) sum["mean"] = desc["mean"].values sum["std"] = desc["std"].values sum["min"] = desc["min"].values sum["max"] = desc["max"].values return sum summary(data) summary(test) sns.displot(data, x="Completion_rate", kde=True) import math features = test.columns n_bins = 50 histplot_hyperparams = {"kde": True, "alpha": 0.4, "stat": "percent", "bins": n_bins} columns = features n_cols = 4 n_rows = math.ceil(len(columns) / n_cols) fig, ax = plt.subplots(n_rows, n_cols, figsize=(20, n_rows * 4), dpi=300) ax = ax.flatten() for i, column in enumerate(columns): plot_axes = [ax[i]] sns.kdeplot(data[column], label="Train", ax=ax[i]) sns.kdeplot(test[column], label="Test", ax=ax[i]) for i in range(i + 1, len(ax)): ax[i].axis("off") fig.legend( handles, labels, loc="upper center", bbox_to_anchor=(0.5, 1.05), fontsize=25, ncol=3 ) plt.tight_layout() columns = features n_cols = 4 n_rows = math.ceil(len(columns) / n_cols) fig, ax = plt.subplots(n_rows, n_cols, figsize=(20, n_rows * 4), dpi=300) ax = ax.flatten() for i, column in enumerate(columns): plot_axes = [ax[i]] sns.boxplot(data[column], ax=ax[i]) for i in range(i + 1, len(ax)): ax[i].axis("off") corr = data.iloc[:, :].corr() plt.subplots(figsize=(9, 9), dpi=300) sns.heatmap(corr, annot=True, cmap="Blues") plt.title("Correlation Matrix", size=16) train = data.drop("Completion_rate", axis=1) train["istrain"] = 1 test["istrain"] = 0 X = pd.concat([train, test], axis=0) y = X["istrain"] X = X.drop("istrain", axis=1) skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=37) clf = XGBClassifier(seed=37) for i, (train_index, test_index) in enumerate(skf.split(X, y)): x0, x1 = X.iloc[train_index], X.iloc[test_index] y0, y1 = y.iloc[train_index], y.iloc[test_index] clf.fit(x0, y0) pred = clf.predict_proba(x1)[:, 1] print(f"Fold {i+1} AUC Score:", roc_auc_score(y1, pred)) data["Completion_rate"] = np.log(data["Completion_rate"]) xgb_params = { "booster": "gbtree", "objective": "reg:squarederror", "eval_metric": "rmse", "learning_rate": 0.1, "max_depth": 8, "n_estimators": 9999, "early_stopping_rounds": 200, "subsample": 1.0, "colsample_bytree": 1.0, "seed": 42, } data X = data.drop("Completion_rate", axis=1) y = data["Completion_rate"] kf = KFold(n_splits=5, shuffle=True, random_state=37) best_iteration_xgb = [] scores = [] MODELS = [] for i, (train_index, valid_index) in enumerate(kf.split(X, y)): print("#" * 25) print("### Fold", i + 1) print("#" * 25) X_train = X.iloc[train_index] y_train = y.iloc[train_index] X_valid = X.iloc[valid_index] y_valid = y.iloc[valid_index] model = XGBRegressor(**xgb_params) model.fit( X_train, y_train, eval_set=[(X_train, y_train), (X_valid, y_valid)], verbose=0 ) MODELS.append(model) fold_score = mean_squared_log_error( np.exp(y_valid), np.exp(model.predict(X_valid)), squared=False ) print(f"Fold RMSLE Score:", fold_score) scores.append(fold_score) fold_importance_df = pd.DataFrame() fold_importance_df["feature"] = X_train.columns fold_importance_df["importance"] = model.feature_importances_ best_iteration_xgb.append(model.best_ntree_limit) print("Fold Feature Importance:") display(fold_importance_df.sort_values(by="importance", ascending=False).head(10)) print() print(f"Average Vaildation RMSLE Score:", sum(scores) / 5) from sklearn.model_selection import train_test_split train, dev = train_test_split(data, test_size=0.2, random_state=3) x_train, x_dev = train.iloc[:, 1:], dev.iloc[:, 1:] # x_train,x_dev = train.iloc[:,2:],dev.iloc[:,2:] y_train, y_dev = train["Completion_rate"], dev["Completion_rate"] x_train # r2_score(y_pred_auto,y_dev) from sklearn.metrics import r2_score from sklearn.linear_model import LinearRegression, Ridge, Lasso from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor from sklearn import svm from xgboost import XGBRegressor lr = LinearRegression() ridge = Ridge() lasso = Lasso() dt = DecisionTreeRegressor(max_depth=7) svr = svm.SVR() rf = RandomForestRegressor(max_depth=19, n_estimators=55) gb = GradientBoostingRegressor(max_depth=6, n_estimators=250, learning_rate=0.1) xgb = XGBRegressor( n_estimators=250, max_depth=8, learning_rate=0.2031, n_jobs=-1, random_state=3 ) lr.fit(x_train, y_train) ridge.fit(x_train, y_train) lasso.fit(x_train, y_train) dt.fit(x_train, y_train) svr.fit(x_train, y_train) rf.fit(x_train, y_train) gb.fit(x_train, y_train) xgb.fit(x_train, y_train) xgb = XGBRegressor( n_estimators=250, max_depth=8, learning_rate=0.2031, n_jobs=-1, random_state=3 ) xgb.fit(X, y) y_pred_lr = lr.predict(x_dev) y_pred_ridge = ridge.predict(x_dev) y_pred_lasso = lasso.predict(x_dev) y_pred_dt = dt.predict(x_dev) y_pred_svr = svr.predict(x_dev) y_pred_rf = rf.predict(x_dev) y_pred_gb = gb.predict(x_dev) y_pred_xgb = xgb.predict(x_dev) r2_score(gb.predict(x_train), y_train), r2_score(y_pred_gb, y_dev) from sklearn.model_selection import GridSearchCV rf = RandomForestRegressor(random_state=3) paras = [{"max_depth": [18, 19, 20, 21, 22], "n_estimators": [45, 50, 55, 60]}] grid_search_rf = GridSearchCV( estimator=rf, param_grid=paras, cv=5, scoring="neg_mean_squared_error" ) grid_search_rf.fit(x_train, y_train) # grid_search_rf.best_params_ import xgboost as xgb from sklearn.model_selection import GridSearchCV xgb_model = xgb.XGBRegressor() param_grid = { # 'learning_rate': [0.01, 0.05, 0.1, 0.5], "max_depth": [3, 5, 7, 10], "n_estimators": [50, 100, 150, 200, 300, 500], # 'subsample': [0.6, 0.8, 1.0], # 'colsample_bytree': [0.6, 0.8, 1.0], } grid_search = GridSearchCV( estimator=xgb_model, param_grid=param_grid, cv=5, n_jobs=-1, scoring="neg_mean_squared_error", ) grid_search.fit(x_train, y_train) print("Best parameters found: ", grid_search.best_params_) print("Lowest RMSE found: ", np.sqrt(np.abs(grid_search.best_score_))) best_xgb = grid_search.best_estimator_ y_pred = best_xgb.predict(x_test) mse_xgb = mean_squared_error(y_pred_xgb, y_dev) mse_xgb # gb = GradientBoostingRegressor(random_state=3) # paras = [{"max_depth":[5,6,7],"n_estimators":[200,250],"learning_rate":[0.1,0.05]}] # grid_search_gb = GridSearchCV(estimator=gb,param_grid=paras,cv=5,scoring="neg_mean_squared_error") # grid_search_gb.fit(x_train,y_train) # grid_search_gb.best_params_ from sklearn.metrics import mean_squared_error mse_lr = mean_squared_error(y_pred_lr, y_dev) mse_ridge = mean_squared_error(y_pred_ridge, y_dev) mse_lasso = mean_squared_error(y_pred_lasso, y_dev) mse_dt = mean_squared_error(y_pred_dt, y_dev) mse_svr = mean_squared_error(y_pred_svr, y_dev) mse_rf = mean_squared_error(y_pred_rf, y_dev) mse_gb = mean_squared_error(y_pred_gb, y_dev) mse_xgb = mean_squared_error(y_pred_xgb, y_dev) # mse_automl=mean_squared_error(y_pred_auto,y_dev) mse_lr, mse_ridge, mse_lasso, mse_dt, mse_svr, mse_rf data_V = { "Models": [ "Linear Regression", "Ridge Regression", "Lasso Regression", "Decision Tree", "Support Vector Regression", "Random Forest", "gb", "xgb", ], "MSE": [mse_lr, mse_ridge, mse_lasso, mse_dt, mse_svr, mse_rf, mse_gb, mse_xgb], } # data_V = {'Models': ['Linear Regression', 'Ridge Regression', 'Lasso Regression', 'Decision Tree', 'Support Vector Regression', 'Random Forest',"gb","xgb","auto"], # 'MSE': [mse_lr, mse_ridge, mse_lasso, mse_dt, mse_svr, mse_rf,mse_gb,mse_xgb,mse_automl]} df = pd.DataFrame(data_V) df.sort_values(by="MSE", ascending=True, inplace=True) df.reset_index(drop=True, inplace=True) df test = pd.read_csv("/kaggle/input/us-college-completion-rate-analysis/x_test.csv") x_test = test.iloc[:, 1:] x_test x_train y_pred = xgb.predict(X) y_pred # ### Creating our submission submission = pd.DataFrame.from_dict({"Completion_rate": y_pred}) submission # submission['Completion_rate'] submission.to_csv("submission.csv", index=True, index_label="id")
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # # **TASK 1 : CLASSIFICATION** # USING ONE HOT ENCODING import pandas as pd df = pd.read_csv("/kaggle/input/cleaned-dataset/Data-Cleaned.csv") df = df.drop("Unnamed: 0", axis=1) df = df.drop("MONTHS_BALANCE", axis=1) df import pandas as pd from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from xgboost import XGBClassifier from imblearn.over_sampling import SMOTE # Load the dataset df = pd.read_csv("/kaggle/input/cleaned-dataset/Data-Cleaned.csv") df = df.drop("Unnamed: 0", axis=1) df = df.drop("MONTHS_BALANCE", axis=1) # Select relevant columns and encode categorical variables using One-Hot encoding cat_cols = [ "OCCUPATION_TYPE", "CODE_GENDER", "FLAG_OWN_CAR", "FLAG_OWN_REALTY", "NAME_INCOME_TYPE", "NAME_EDUCATION_TYPE", "NAME_FAMILY_STATUS", "NAME_HOUSING_TYPE", ] df = pd.get_dummies(df, columns=cat_cols) from sklearn.preprocessing import StandardScaler num_cols = ["AMT_INCOME_TOTAL", "CNT_FAM_MEMBERS", "YEARS_BIRTH", "YEARS_EMPLOYED"] scaler = StandardScaler() df[num_cols] = scaler.fit_transform(df[num_cols]) # Split the data into training and testing sets X_train, X_test, y_train, y_test = train_test_split( df.drop(["STATUS"], axis=1), df["STATUS"], test_size=0.3, random_state=42 ) # Use SMOTE to over-sample the minority class smote = SMOTE(random_state=42) X_train_smote, y_train_smote = smote.fit_resample(X_train, y_train) # create list of models to try models = [ {"name": "Logistic Regression", "model": LogisticRegression(max_iter=200)}, {"name": "Decision Tree", "model": DecisionTreeClassifier()}, { "name": "Random Forest - Tuned", "model": RandomForestClassifier( n_estimators=300, max_depth=16, min_samples_leaf=10, max_features=8 ), }, { "name": "XGBoost - Tuned", "model": XGBClassifier(n_estimators=300, learning_rate=0.1, max_depth=5), }, ] # train and evaluate each model for model in models: clf = model["model"] clf.fit(X_train_smote, y_train_smote) y_pred = clf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) precision = precision_score(y_test, y_pred) recall = recall_score(y_test, y_pred) f1 = f1_score(y_test, y_pred) print(f"{model['name']} results:") print(f"Accuracy: {accuracy}") print(f"Precision: {precision}") print(f"Recall: {recall}") print(f"F1 Score: {f1}") print() y_train # ### ***If the goal is to identify customers who are likely to default on their credit card bills in order to take proactive measures to prevent this from happening, you may want to prioritize recall over precision. This is because missing a customer who is likely to default could be more costly than incorrectly identifying a customer as likely to default when they actually won't.*** df import pandas as pd from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from xgboost import XGBClassifier from imblearn.under_sampling import RandomUnderSampler # Load the dataset df = pd.read_csv("/kaggle/input/cleaned-dataset/Data-Cleaned.csv") df = df.drop("Unnamed: 0", axis=1) df = df.drop("MONTHS_BALANCE", axis=1) # Select relevant columns and encode categorical variables cat_cols = [ "OCCUPATION_TYPE", "CODE_GENDER", "FLAG_OWN_CAR", "FLAG_OWN_REALTY", "NAME_INCOME_TYPE", "NAME_EDUCATION_TYPE", "NAME_FAMILY_STATUS", "NAME_HOUSING_TYPE", ] le = LabelEncoder() for col in cat_cols: df[col] = le.fit_transform(df[col]) # Split the data into training and testing sets X_train, X_test, y_train, y_test = train_test_split( df.drop(["STATUS"], axis=1), df["STATUS"], test_size=0.3, random_state=42 ) # undersample training set undersampler = RandomUnderSampler(random_state=42) X_train_under, y_train_under = undersampler.fit_resample(X_train, y_train) # create list of models to try models = [ {"name": "Logistic Regression", "model": LogisticRegression()}, {"name": "Decision Tree", "model": DecisionTreeClassifier()}, { "name": "Random Forest - Tuned", "model": RandomForestClassifier( n_estimators=300, max_depth=16, min_samples_leaf=10, max_features=8 ), }, { "name": "XGBoost - Tuned", "model": XGBClassifier(n_estimators=300, learning_rate=0.1, max_depth=5), }, ] # train and evaluate each model for model in models: clf = model["model"] clf.fit(X_train_under, y_train_under) y_pred = clf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) precision = precision_score(y_test, y_pred) recall = recall_score(y_test, y_pred) f1 = f1_score(y_test, y_pred) print(f"{model['name']} results:") print(f"Accuracy: {accuracy}") print(f"Precision: {precision}") print(f"Recall: {recall}") print(f"F1 Score: {f1}") print() # If logistic regression is giving only 36% accuracy, then it could be due to several reasons: # -**The data may not be well separated by a linear boundary**, and hence logistic regression may not be a suitable algorithm. # -The data may be imbalanced, with one class having significantly fewer examples than the other, leading to a low accuracy(*which is not the cas here since undersampling is done*). # # **TASK 2: CLUSTERING** # # RISK ASSESMENT # **Finding Most Important Features** # Split the data into features and STATUS X = df.drop(["STATUS"], axis=1) y = df["STATUS"] # Train a Random Forest classifier on the data rfc = RandomForestClassifier(n_estimators=300, random_state=42) rfc.fit(X, y) # Get the feature importances importances = rfc.feature_importances_ # Get the column names of the features feature_names = X.columns.tolist() # Combine the two into a dictionary feature_importances = dict(zip(feature_names, importances)) # Sort the dictionary by the importance score sorted_features = sorted(feature_importances.items(), key=lambda x: x[1], reverse=True) # Print the top 10 features print("Top 10 features:") for feature, importance in sorted_features[:10]: print(f"{feature}: {importance}") from sklearn.cluster import KMeans from sklearn.preprocessing import StandardScaler, OneHotEncoder import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv("/kaggle/input/cleaned-dataset/Data-Cleaned.csv") df = df.drop("Unnamed: 0", axis=1) df = df.drop("MONTHS_BALANCE", axis=1) # Select the relevant columns cols = [ "YEARS_EMPLOYED", "YEARS_BIRTH", "AMT_INCOME_TOTAL", "OCCUPATION_TYPE", "NAME_FAMILY_STATUS", "NAME_INCOME_TYPE", "CNT_FAM_MEMBERS", "NAME_EDUCATION_TYPE", "FLAG_PHONE", "CNT_CHILDREN", "STATUS", ] df = df[cols] # Perform one-hot encoding on categorical features cat_cols = [ "OCCUPATION_TYPE", "NAME_FAMILY_STATUS", "NAME_INCOME_TYPE", "NAME_EDUCATION_TYPE", ] df = pd.get_dummies(df, prefix="OCCUPATION_TYPE_", columns=["OCCUPATION_TYPE"]) # Scale the numerical features num_cols = [ "YEARS_EMPLOYED", "YEARS_BIRTH", "AMT_INCOME_TOTAL", "CNT_FAM_MEMBERS", "CNT_CHILDREN", ] scaler = StandardScaler() df[num_cols] = scaler.fit_transform(df[num_cols]) # Select the top 10 contributing features top_features = [ "YEARS_EMPLOYED", "YEARS_BIRTH", "AMT_INCOME_TOTAL", "OCCUPATION_TYPE__Laborers", "OCCUPATION_TYPE__Sales staff", "OCCUPATION_TYPE__Core staff", "OCCUPATION_TYPE__Managers", "OCCUPATION_TYPE__Drivers", "OCCUPATION_TYPE__High skill tech staff", "OCCUPATION_TYPE__Accountants", "STATUS", ] df = df[top_features] # Fit KMeans clustering model kmeans = KMeans(n_clusters=3, random_state=0).fit(df.drop(["STATUS"], axis=1)) # Visualize clusters colors = {0: "red", 1: "blue", 2: "green"} df["cluster"] = kmeans.labels_ df["color"] = df["cluster"].map(colors) ax = df.plot.scatter(x="YEARS_EMPLOYED", y="AMT_INCOME_TOTAL", c=df["color"], alpha=0.5) ax.set_xlabel("YEARS_EMPLOYED") ax.set_ylabel("AMT_INCOME_TOTAL") plt.show() import pandas as pd df = pd.read_csv("/kaggle/input/cleaned-dataset/Data-Cleaned.csv") df = df.drop("Unnamed: 0", axis=1) df = df.drop("MONTHS_BALANCE", axis=1) import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.cluster import KMeans from sklearn.preprocessing import LabelEncoder, MinMaxScaler # Drop irrelevant features df.drop( ["FLAG_MOBIL", "FLAG_WORK_PHONE", "FLAG_PHONE", "FLAG_EMAIL"], axis=1, inplace=True ) # Convert categorical features to numerical using Label Encoding cat_cols = df.select_dtypes(include="object").columns.tolist() le = LabelEncoder() for col in cat_cols: df[col] = le.fit_transform(df[col].astype(str)) # Scale the features scaler = MinMaxScaler() df[df.columns] = scaler.fit_transform(df[df.columns]) # Elbow method to find optimal number of clusters wcss = [] for i in range(1, 11): kmeans = KMeans(n_clusters=i, init="k-means++", random_state=42) kmeans.fit(df) wcss.append(kmeans.inertia_) plt.figure(figsize=(8, 6)) sns.lineplot(x=range(1, 11), y=wcss, marker="o", color="blue") plt.title("Elbow Method") plt.xlabel("Number of clusters") plt.ylabel("WCSS") plt.show() # KMeans clustering with optimal number of clusters kmeans = KMeans(n_clusters=3, init="k-means++", random_state=42) pred_clusters = kmeans.fit_predict(df) # Visualize the clusters in 2D using PCA from sklearn.decomposition import PCA pca = PCA(n_components=2) pca.fit(df) pca_df = pd.DataFrame(pca.transform(df), columns=["pca1", "pca2"]) pca_df["Cluster"] = pred_clusters sns.scatterplot(x="pca1", y="pca2", hue="Cluster", data=pca_df, palette="Set1") plt.title("Clustering Results") plt.show() df.dtypes import pandas as pd import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn.cluster import KMeans from sklearn.preprocessing import LabelEncoder, MinMaxScaler # Load the dataset df = pd.read_csv("/kaggle/input/cleaned-dataset/Data-Cleaned.csv") df.drop( [ "Unnamed: 0", "MONTHS_BALANCE", "FLAG_MOBIL", "FLAG_WORK_PHONE", "FLAG_PHONE", "FLAG_EMAIL", ], axis=1, inplace=True, ) # Convert categorical features to numerical using Label Encoding cat_cols = df.select_dtypes(include="object").columns.tolist() le = LabelEncoder() for col in cat_cols: df[col] = le.fit_transform(df[col].astype(str)) # Scale the features scaler = MinMaxScaler() df[df.columns] = scaler.fit_transform(df[df.columns]) # Elbow method to find optimal number of clusters wcss = [] for i in range(1, 11): kmeans = KMeans(n_clusters=i, init="k-means++", random_state=42) kmeans.fit(df) wcss.append(kmeans.inertia_) plt.figure(figsize=(8, 6)) sns.lineplot(x=range(1, 11), y=wcss, marker="o", color="blue") plt.title("Elbow Method") plt.xlabel("Number of clusters") plt.ylabel("WCSS") plt.show() # KMeans clustering with optimal number of clusters kmeans = KMeans(n_clusters=3, init="k-means++", random_state=42) pred_clusters = kmeans.fit_predict(df) df["Cluster"] = pred_clusters # 3D scatter plot of clusters fig = plt.figure(figsize=(8, 6)) ax = fig.add_subplot(111, projection="3d") xs = df["YEARS_EMPLOYED"] ys = df["AMT_INCOME_TOTAL"] zs = df["NAME_HOUSING_TYPE"] c = df["Cluster"] ax.scatter(xs, ys, zs, c=c, cmap="Set1") ax.set_xlabel("YEARS_EMPLOYED") ax.set_ylabel("AMT_INCOME_TOTAL") ax.set_zlabel("NAME_HOUSING_TYPE") plt.title("Clustering Results") plt.show() df import pandas as pd df = pd.read_csv("/kaggle/input/cleaned-dataset/Data-Cleaned.csv") df = df.drop("Unnamed: 0", axis=1) df = df.drop("MONTHS_BALANCE", axis=1) import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.cluster import KMeans from sklearn.preprocessing import LabelEncoder, MinMaxScaler # Drop irrelevant features df.drop( ["FLAG_MOBIL", "FLAG_WORK_PHONE", "FLAG_PHONE", "FLAG_EMAIL"], axis=1, inplace=True ) # Convert categorical features to numerical using Label Encoding cat_cols = df.select_dtypes(include="object").columns.tolist() le = LabelEncoder() for col in cat_cols: df[col] = le.fit_transform(df[col].astype(str)) # Scale the features scaler = MinMaxScaler() df[df.columns] = scaler.fit_transform(df[df.columns]) df = df[["YEARS_EMPLOYED", "AMT_INCOME_TOTAL"]] # Elbow method to find optimal number of clusters wcss = [] for i in range(1, 11): kmeans = KMeans(n_clusters=i, init="k-means++", random_state=42) kmeans.fit(df) wcss.append(kmeans.inertia_) plt.figure(figsize=(8, 6)) sns.lineplot(x=range(1, 11), y=wcss, marker="o", color="blue") plt.title("Elbow Method") plt.xlabel("Number of clusters") plt.ylabel("WCSS") plt.show() # KMeans clustering with optimal number of clusters kmeans = KMeans(n_clusters=3, init="k-means++", random_state=42) pred_clusters = kmeans.fit_predict(df) # Visualize the clusters in 2D using PCA from sklearn.decomposition import PCA pca = PCA(n_components=2) pca.fit(df) pca_df = pd.DataFrame(pca.transform(df), columns=["pca1", "pca2"]) pca_df["Cluster"] = pred_clusters sns.scatterplot(x="pca1", y="pca2", hue="Cluster", data=pca_df, palette="Set1") plt.title("Clustering Results") plt.show() cluster_df = pd.DataFrame(df[["YEARS_EMPLOYED", "AMT_INCOME_TOTAL"]]) cluster_df["Cluster"] = pred_clusters cluster_means = cluster_df.groupby("Cluster").mean() print(cluster_means) import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.cluster import KMeans from sklearn.preprocessing import LabelEncoder, MinMaxScaler # Load data df = pd.read_csv("/kaggle/input/cleaned-dataset/Data-Cleaned.csv") df = df.drop("Unnamed: 0", axis=1) df = df.drop("MONTHS_BALANCE", axis=1) # Drop irrelevant features df.drop( ["FLAG_MOBIL", "FLAG_WORK_PHONE", "FLAG_PHONE", "FLAG_EMAIL"], axis=1, inplace=True ) # Convert categorical features to numerical using Label Encoding cat_cols = df.select_dtypes(include="object").columns.tolist() le = LabelEncoder() for col in cat_cols: df[col] = le.fit_transform(df[col].astype(str)) # Extract relevant features df = df[["YEARS_EMPLOYED", "AMT_INCOME_TOTAL", "NAME_HOUSING_TYPE"]] # Fit scaler on original data and transform data scaler = MinMaxScaler() df_scaled = scaler.fit_transform(df) # Elbow method to find optimal number of clusters wcss = [] for i in range(1, 11): kmeans = KMeans(n_clusters=i, init="k-means++", random_state=42) kmeans.fit(df_scaled) wcss.append(kmeans.inertia_) plt.figure(figsize=(8, 6)) sns.lineplot(x=range(1, 11), y=wcss, marker="o", color="blue") plt.title("Elbow Method") plt.xlabel("Number of clusters") plt.ylabel("WCSS") plt.show() # KMeans clustering with optimal number of clusters kmeans = KMeans(n_clusters=3, init="k-means++", random_state=42) pred_clusters = kmeans.fit_predict(df_scaled) # Inverse transform scaled data to get original data df_orig = scaler.inverse_transform(df_scaled) # Compute mean of original data for each cluster df_means = pd.DataFrame(df_orig, columns=df.columns) df_means["Cluster"] = pred_clusters df_means = df_means.groupby("Cluster").mean() # Invert the standardization process to get original means scale = scaler.scale_ min_val = scaler.min_ df_means[["YEARS_EMPLOYED", "AMT_INCOME_TOTAL", "NAME_HOUSING_TYPE"]] = ( df_means[["YEARS_EMPLOYED", "AMT_INCOME_TOTAL", "NAME_HOUSING_TYPE"]] * scale + min_val ) # Print the results print(df_means) df # Print the mean of each cluster for the original data cluster_means = df.groupby(pred_clusters).mean() print(cluster_means) df["Cluster"] = pred_clusters # Group the data by cluster and find the mode of each categorical variable cat_cols = ["NAME_HOUSING_TYPE"] cat_mode = df.groupby("Cluster")[cat_cols].apply(lambda x: x.mode().iloc[0]) # Print the mode of each categorical variable for each cluster print(cat_mode)
def attendance(attendance): if attendance > 80: return "Good" elif attendance > 60: return "Ok" else: return "Need improvement" s = int(input("Enter attendance")) attendance(s) l1 = [23, 67, 34, 90, 95] for i in l1: print(attendance(i)) list(map(attendance, l1)) # set(map(attendance, l1)) l2 = [23, 64, 78, 45, 78] l3 = [34, 7, 36, 9, 45] result = list(map(lambda x, y: x - y, l2, l3)) result
# Ml modules import sklearn # common modules imports import numpy as np import pandas as pd # for visualizations import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns mpl.rc("axes", labelsize=14) mpl.rc("xtick", labelsize=12) mpl.rc("ytick", labelsize=12) # DATASET PATH TRAIN_PATH = r"/kaggle/input/playground-series-s3e12/train.csv" TEST_PATH = r"/kaggle/input/playground-series-s3e12/test.csv" SAMPLE_SUB = r"/kaggle/input/playground-series-s3e12/sample_submission.csv" # # Load data train_df = pd.read_csv(TRAIN_PATH, index_col=["id"]) test_df = pd.read_csv(TEST_PATH, index_col=["id"]) sample_sub_df = pd.read_csv(SAMPLE_SUB, index_col=["id"]) features = ["gravity", "ph", "osmo", "cond", "urea", "calc"] target_feature = ["target"] # # Exploratory Data Analysis # ## About The Data and features # To predict the presence of kidney stones based on urine analysis. the urine specimens, analyzed in an effort to determine if certain physical characteristics of the urine might be related to the formation of calcium oxalate crystals. # - The `six physical` characteristics/`features` of the urine are: # # - (1) `specific gravity`, the density of the urine relative to water. # - (2) `pH`, the negative logarithm of the hydrogen ion. # - (3) `osmolarity (mOsm)`, a unit used in biology and medicine but not in physical chemistry. Osmolarity is proportional to the concentration of molecules in solution. # - (4) `conductivity (mMho milliMho)`, One Mho is one reciprocal Ohm. Conductivity is proportional to the concentration of charged ions in solution. # - (5) `urea concentration in millimoles per litre.` # - (6) `calcium concentration (CALC) in millimolesllitre.` # # More information about features # - `Specific gravity` is a measure of the density of a substance compared to the density of water. # In the context of urine and kidney stones, specific gravity is used as a diagnostic tool to evaluate the concentration of solutes in the urine. # When a person has kidney stones, the concentration of solutes in their urine can be high, leading to a higher specific gravity. # A specific gravity value above 1.020 is considered high and may indicate the presence of kidney stones or other urinary tract problems. # - `pH` of urine is a measure of its acidity or alkalinity. In the context of kidney stones, urine pH is an important factor as it can affect the formation of different types of kidney stones. # Most kidney stones are formed from calcium oxalate, which tends to form in acidic urine. Therefore, if the urine pH is too acidic (less than 5.5), it can increase the risk of calcium oxalate stone formation. On the other hand, if the urine pH is too alkaline (greater than 7.2), it can increase the risk of calcium phosphate stone formation. # Urinary tract infections (UTIs) can also affect urine pH. UTIs can increase the pH of urine, making it more alkaline, which can increase the risk of struvite stone formation.Therefore, measuring urine pH can be helpful in determining the type of kidney stone a person is likely to form and can help in devising preventive strategies. # - `Osmolarity` is a measure of the concentration of solutes in a solution. It can provide information about the concentration of solutes that can contribute to stone formation. High osmolarity in urine means that there are higher amounts of solutes, such as calcium, oxalate, and uric acid, which can lead to the formation of kidney stones. In contrast, low osmolarity indicates that the urine is more dilute and contains fewer solutes, which may reduce the risk of stone formation. # - `conductivity` of urine refers to the concentration of dissolved ions in the urine.conductivity can be used as a diagnostic tool to determine the presence of certain types of stones. For example, calcium-based stones tend to be highly conductive, while other types of stones, such as uric acid stones, are less conductive. # - `Urea` is a waste product that is produced by the liver during the breakdown of proteins and is excreted in the urine. measuring the concentration of urea in the urine can provide information about the solute concentration, which can contribute to the formation of kidney stones.High urea concentration in urine can indicate dehydration or a high protein diet, both of which can increase the risk of stone formation. However, low urea concentration may also indicate certain medical conditions, such as liver disease or low protein intake, which can affect the formation of kidney stones. # - `concentration of calcium` in the urine can provide information about the risk of stone formation.Most kidney stones are made up of calcium oxalate, and high levels of calcium in the urine can increase the risk of stone formation. However, low levels of calcium in the urine can also increase the risk of stone formation, as it can lead to an increase in oxalate levels, which can contribute to stone formation. # Taking a look at data train_df.head(5) train_df.isnull().any() train_df.info() # The data dosent contain any null value and all features are numeric # train_df.describe() train_df[train_df.target == 0].describe() train_df[train_df.target == 1].describe() def plot_numerical_data(X, hue): fig, axes = plt.subplots(1, 2, figsize=(15, 4)) sns.histplot(ax=axes[0], x=X, hue=hue, data=train_df, element="step", kde=True) sns.boxplot(ax=axes[1], x=hue, y=X, hue=hue, data=train_df) plot_numerical_data("gravity", "target") # From density and box plot we can see `specific gravity` after 1.020 shows increase in positives for kidney stones and drop in negatives which conclude that `heigh specefic gravity(above 1.020) can indicate persence of kidney stone but it alone can't say it surely` plot_numerical_data("ph", "target") def print_mean(col): df = train_df[col][train_df.target == 0].describe() print( "-ve mean & std:", train_df[col][train_df.target == 0].mean(), "+-", train_df[col][train_df.target == 0].std(), ) print( "+ve mean & std:", train_df[col][train_df.target == 0].mean(), "+-", train_df[col][train_df.target == 1].std(), ) print_mean("ph") # The distribution of both negitives and positives are simillar in this dataset # The `normal pH` of urine should ideally be `around 6.0 to 7.5` if the urine pH is `too acid` (`less than 5.5`) `or` if it is `too alkaline` `(greater than 7.2)` then there is a probability of kidney stones begin present plot_numerical_data("osmo", "target") print_mean("osmo") # `Heigh Osmolarity` of above or around 800 can `indicate presence of kidney stones` whereas `low Osmolarity` `reduces the chances of kidney stones` plot_numerical_data("cond", "target") # low conductivty reduces the chances of kidney stones where as heigh conducvity can tells us presence of kidney stones plot_numerical_data("urea", "target") print_mean("urea") plot_numerical_data("calc", "target") print_mean("calc") # With `heigh concentration of calcium ` there is `more probability of kidney stones` begin present where as `low concentration of calcium reduces the risk of kidney stones` # # Correlation corr = train_df.corr(method="pearson") matrix = np.triu(corr) sns.heatmap(corr, annot=True, cmap="Blues", mask=matrix) # - osmo and urea shows very strong correlation # - osmo:gravity and osmo & cond shows a pretty decent correlation. # - Apart from all ph shows a negitive correaltion to target # # Scaling and Model Training tr = train_df.copy() data = tr.drop(columns=["target"]) target = tr["target"] from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler from sklearn.model_selection import StratifiedKFold import xgboost from sklearn.metrics import roc_auc_score from colorama import Fore from sklearn.metrics import confusion_matrix data_pipline = Pipeline([("scaler", StandardScaler())]) X = data Y = target split = StratifiedKFold(random_state=42, shuffle=True) Fold = 0 # # Logistic Regression from sklearn.linear_model import LogisticRegression lg_train_score = [] lg_val_score = [] lg_model_list = [] for train_index, eval_index in split.split(X, Y): Fold = Fold + 1 x_train, y_train = X.iloc[train_index], Y.iloc[train_index] x_eval, y_eval = X.iloc[eval_index], Y.iloc[eval_index] model = LogisticRegression() X_train_prepared = data_pipline.fit_transform(x_train) X_eval_prepared = data_pipline.fit_transform(x_eval) print(f"Fold :{Fold}") model.fit(X_train_prepared, y_train) train_pred = roc_auc_score(y_train, model.predict_proba(X_train_prepared)[:, 1]) eval_pred = roc_auc_score(y_eval, model.predict_proba(X_eval_prepared)[:, 1]) lg_train_score.append(train_pred) lg_val_score.append(eval_pred) lg_model_list.append([data_pipline, model]) print(f"Val roc AUC score: {Fore.BLUE} {eval_pred}") print() print(f"{Fore.BLACK} Mean Val roc scores : {Fore.GREEN}{np.mean(lg_val_score)}") from sklearn.metrics import classification_report pred = model.predict(X_eval_prepared) print("confusion matrix :\n ", confusion_matrix(y_eval, pred)) print( "roc auc score : ", roc_auc_score(y_eval, model.predict_proba(X_eval_prepared)[:, 1]), ) print("classification report : \n", classification_report(y_eval, pred)) # # SVC from sklearn.svm import SVC svc_train_score = [] svc_val_score = [] svc_model_list = [] Fold = 0 for train_index, eval_index in split.split(X, Y): Fold = Fold + 1 x_train, y_train = X.iloc[train_index], Y.iloc[train_index] x_eval, y_eval = X.iloc[eval_index], Y.iloc[eval_index] model = SVC(probability=True) X_train_prepared = data_pipline.fit_transform(x_train) X_eval_prepared = data_pipline.fit_transform(x_eval) print(f"Fold :{Fold}") model.fit(X_train_prepared, y_train) train_pred = roc_auc_score(y_train, model.predict_proba(X_train_prepared)[:, 1]) eval_pred = roc_auc_score(y_eval, model.predict_proba(X_eval_prepared)[:, 1]) svc_train_score.append(train_pred) svc_val_score.append(eval_pred) svc_model_list.append([data_pipline, model]) print(f"{Fore.BLACK}Val roc AUC score: {Fore.BLUE} {eval_pred}") print() print(f"{Fore.BLACK}Mean Val roc scores : {Fore.GREEN}{np.mean(svc_val_score)}") from sklearn.metrics import classification_report pred = model.predict(X_eval_prepared) print("confusion matrix :\n ", confusion_matrix(y_eval, pred)) print( "roc auc score : ", roc_auc_score(y_eval, model.predict_proba(X_eval_prepared)[:, 1]), ) print("classification report : \n", classification_report(y_eval, pred)) # # Random Forest Classifier from sklearn.ensemble import RandomForestClassifier rf_train_score = [] rf_val_score = [] rf_model_list = [] Fold = 0 for train_index, eval_index in split.split(X, Y): Fold = Fold + 1 x_train, y_train = X.iloc[train_index], Y.iloc[train_index] x_eval, y_eval = X.iloc[eval_index], Y.iloc[eval_index] model = RandomForestClassifier() X_train_prepared = data_pipline.fit_transform(x_train) X_eval_prepared = data_pipline.fit_transform(x_eval) print(f"Fold :{Fold}") model.fit(X_train_prepared, y_train) train_pred = roc_auc_score(y_train, model.predict_proba(X_train_prepared)[:, 1]) eval_pred = roc_auc_score(y_eval, model.predict_proba(X_eval_prepared)[:, 1]) rf_train_score.append(train_pred) rf_val_score.append(eval_pred) rf_model_list.append([data_pipline, model]) print(f"{Fore.BLACK} Val roc AUC score: {Fore.BLUE} {eval_pred}") print() print(f"{Fore.BLACK} Mean Val roc scores : {Fore.GREEN}{np.mean(rf_val_score)}") from sklearn.metrics import classification_report pred = model.predict(X_eval_prepared) print("confusion matrix :\n ", confusion_matrix(y_eval, pred)) print( "roc auc score : ", roc_auc_score(y_eval, model.predict_proba(X_eval_prepared)[:, 1]), ) print("classification report : \n", classification_report(y_eval, pred)) # # AdaBoostClassifier from sklearn.ensemble import AdaBoostClassifier ab_train_score = [] ab_val_score = [] ab_model_list = [] Fold = 0 for train_index, eval_index in split.split(X, Y): Fold = Fold + 1 x_train, y_train = X.iloc[train_index], Y.iloc[train_index] x_eval, y_eval = X.iloc[eval_index], Y.iloc[eval_index] model = AdaBoostClassifier() X_train_prepared = data_pipline.fit_transform(x_train) X_eval_prepared = data_pipline.fit_transform(x_eval) print(f"Fold :{Fold}") model.fit(X_train_prepared, y_train) train_pred = roc_auc_score(y_train, model.predict_proba(X_train_prepared)[:, 1]) eval_pred = roc_auc_score(y_eval, model.predict_proba(X_eval_prepared)[:, 1]) ab_train_score.append(train_pred) ab_val_score.append(eval_pred) ab_model_list.append([data_pipline, model]) print(f"{Fore.BLACK} Val roc AUC score: {Fore.BLUE} {eval_pred}") print() print(f"{Fore.BLACK} Mean Val roc scores : {Fore.GREEN}{np.mean(ab_val_score)}") from sklearn.metrics import classification_report pred = model.predict(X_eval_prepared) print("confusion matrix :\n ", confusion_matrix(y_eval, pred)) print( "roc auc score : ", roc_auc_score(y_eval, model.predict_proba(X_eval_prepared)[:, 1]), ) print("classification report : \n", classification_report(y_eval, pred)) # # xgboost import xgboost xg_train_score = [] xg_val_score = [] xg_model_list = [] Fold = 0 for train_index, eval_index in split.split(X, Y): Fold = Fold + 1 x_train, y_train = X.iloc[train_index], Y.iloc[train_index] x_eval, y_eval = X.iloc[eval_index], Y.iloc[eval_index] model = xgboost.XGBClassifier() X_train_prepared = data_pipline.fit_transform(x_train) X_eval_prepared = data_pipline.fit_transform(x_eval) print(f"Fold :{Fold}") model.fit(X_train_prepared, y_train) train_pred = roc_auc_score(y_train, model.predict_proba(X_train_prepared)[:, 1]) eval_pred = roc_auc_score(y_eval, model.predict_proba(X_eval_prepared)[:, 1]) xg_train_score.append(train_pred) xg_val_score.append(eval_pred) xg_model_list.append([data_pipline, model]) print(f"{Fore.BLACK} Val roc AUC score: {Fore.BLUE} {eval_pred}") print("---") print(f"{Fore.BLACK} Mean Val roc scores : {Fore.GREEN}{np.mean(xg_val_score)}") from sklearn.metrics import classification_report pred = model.predict(X_eval_prepared) print("confusion matrix :\n ", confusion_matrix(y_eval, pred)) print( "roc auc score : ", roc_auc_score(y_eval, model.predict_proba(X_eval_prepared)[:, 1]), ) print("classification report : \n", classification_report(y_eval, pred)) # # Voting Ensemble from sklearn.ensemble import VotingClassifier classifiers = [ ("lr", lg_model_list[4][1]), ("svc", svc_model_list[4][1]), ("rf_clf", rf_model_list[4][1]), ("ada", ab_model_list[4][1]), ("xg", xg_model_list[4][1]), ] vot_train_score = [] vot_val_score = [] vot_model_list = [] Fold = 0 for train_index, eval_index in split.split(X, Y): Fold = Fold + 1 x_train, y_train = X.iloc[train_index], Y.iloc[train_index] x_eval, y_eval = X.iloc[eval_index], Y.iloc[eval_index] model = voting_clf = VotingClassifier( estimators=classifiers, verbose=True, n_jobs=-1, voting="soft" ) X_train_prepared = data_pipline.fit_transform(x_train) X_eval_prepared = data_pipline.fit_transform(x_eval) print(f"Fold :{Fold}") model.fit(X_train_prepared, y_train) train_pred = roc_auc_score(y_train, model.predict_proba(X_train_prepared)[:, 1]) eval_pred = roc_auc_score(y_eval, model.predict_proba(X_eval_prepared)[:, 1]) vot_train_score.append(train_pred) vot_val_score.append(eval_pred) vot_model_list.append([data_pipline, model]) print(f"{Fore.BLACK} Val roc AUC score: {Fore.BLUE} {eval_pred}") print("---") print(f"{Fore.BLACK} Mean Val roc scores : {Fore.GREEN}{np.mean(vot_val_score)}") from sklearn.metrics import classification_report pred = model.predict(X_eval_prepared) print("confusion matrix :\n ", confusion_matrix(y_eval, pred)) print( "roc auc score : ", roc_auc_score(y_eval, model.predict_proba(X_eval_prepared)[:, 1]), ) print("classification report : \n", classification_report(y_eval, pred)) # # Test Data Predictions and submission test_data = data_pipline.transform(test_df) sample_sub_df.target = vot_model_list[4][1].predict_proba(test_data)[0:, 1] sample_sub_df.to_csv("submission.csv")
# # **Imports** # Bellow are all the imports used in the **Notebook**. # Common import keras from glob import glob from tqdm import tqdm import tensorflow as tf from numpy import zeros, random # Data from tensorflow.image import resize from keras.preprocessing.image import load_img, img_to_array # Data viz import matplotlib.pyplot as plt # Model from keras.models import Model, Sequential, load_model from keras.layers import ( Conv2D, Conv2DTranspose, concatenate, MaxPool2D, Dropout, BatchNormalization, Layer, Input, add, multiply, UpSampling2D, ) # Model Viz from tensorflow.keras.utils import plot_model # Callback from keras.callbacks import Callback # Torch import torch import torch.nn as nn import torch.nn.functional as F # # **Data** # The **foremost** thing that we need to accomplish is to **load the data**. def load_image(path): img = resize(img_to_array(load_img(path)) / 255.0, (256, 256)) return img # This function takes in the **path of the image** and load it using **keras functions**. root_path = "../input/butterfly-dataset/leedsbutterfly/images/" image_paths = sorted(glob(root_path + f"*.png")) mask_paths = [] for path in image_paths: mask_path = path.replace("images", "segmentations") mask_path = mask_path.replace(".png", "_seg0.png") mask_paths.append(mask_path) print(f"Total Number of Images : {len(image_paths)}") # This way, by **replacing the text** from the **path** we can easily get the **exact segmentation mask** for a **particular image**. images = zeros(shape=(len(image_paths), 256, 256, 3)) masks = zeros(shape=(len(image_paths), 256, 256, 3)) for n, (img_path, mask_path) in tqdm( enumerate(zip(image_paths, mask_paths)), desc="Loading" ): images[n] = load_image(img_path) masks[n] = load_image(mask_path) # Now, our **images and masks** are loaded. It's time to **visualize them. So that we can gain some insights about the data. # # **Data Visualization** def show_image(image, title=None, alpha=1): plt.imshow(image, alpha=alpha) plt.title(title) plt.axis("off") # The **below function** will **plot the mask** for us, **with various variations** and we can also use it as a **callback**. def show_mask(GRID, fig_size=(8, 20), model=None, join=False, alpha=0.5): # Config the GRID n_rows, n_cols = GRID n_images = n_rows * n_cols n = 1 plt.figure(figsize=fig_size) for i in range(1, n_images + 1): if model is None: if join: # Seect a Random Image and mask id = random.randint(len(images)) image, mask = images[id], masks[id] # plot the Mask over the Image plt.subplot(n_rows, n_cols, i) show_image(image) show_image(mask, alpha=alpha) else: if i % 2 == 0: plt.subplot(n_rows, n_cols, i) show_image(mask) else: # Seect a Random Image and mask id = random.randint(len(images)) image, mask = images[id], masks[id] # Plot Image plt.subplot(n_rows, n_cols, i) show_image(image) else: if join: if i % 2 == 0: # plot the Mask over the Image plt.subplot(n_rows, n_cols, i) show_image(image) show_image(pred_mask, alpha=alpha, title="Predicted Mask") else: # Seect a Random Image and mask id = random.randint(len(images)) image, mask = images[id], masks[id] pred_mask = model.predict(tf.expand_dims(image, axis=0))[0] pred_mask[pred_mask > 0.5] == 1 pred_mask[pred_mask <= 0.5] == 0 # plot the Mask over the Image plt.subplot(n_rows, n_cols, i) show_image(image) show_image(mask, alpha=alpha, title="Original Mask") else: if n == 1: # Seect a Random Image and mask id = random.randint(len(images)) image, mask = images[id], masks[id] pred_mask = model.predict(tf.expand_dims(image, axis=0))[0] pred_mask[pred_mask > 0.5] == 1 pred_mask[pred_mask <= 0.5] == 0 # plot the Mask over the Image plt.subplot(n_rows, n_cols, i) show_image(image, title="Original Image") n += 1 elif n == 2: # plot the Mask over the Image plt.subplot(n_rows, n_cols, i) show_image(mask, title="Original Mask") n += 1 elif n == 3: # plot the Mask over the Image plt.subplot(n_rows, n_cols, i) show_image(pred_mask, title="Predicted Mask") n = 1 plt.show() GRID = [5, 4] show_mask(GRID, fig_size=(15, 20)) # This can be a **tough task** for the model because the **image background** contains **a lot of objects**. Thus, using an **Attention UNet** would be a good idea. GRID = [5, 4] show_mask(GRID, fig_size=(15, 20), join=True) # Plotting the mask over the image gives us a **better visualization**. # # **Attention UNet - Encoder** # * The **main task** of the **Encoder** is to **downsample the images** by a **factor of 2**, but at the same time **learn the features** present in the image. # * The idea behind encoder is that it will gradually learn all the **useful features** and preserve them in a **latent representation**, which is present in the **last encoding layer**. # * A **small amount of dropout** is also added between the **convolutional layers** in the encoder so that each **layer is forced to learn the most useful features**. class Encoder(Layer): def __init__(self, filters, rate, pooling=True, **kwargs): super(Encoder, self).__init__(**kwargs) self.filters = filters self.rate = rate self.pooling = pooling self.c1 = Conv2D( filters, kernel_size=3, strides=1, padding="same", kernel_initializer="he_normal", activation="relu", ) self.drop = Dropout(rate) self.c2 = Conv2D( filters, kernel_size=3, strides=1, padding="same", kernel_initializer="he_normal", activation="relu", ) self.pool = MaxPool2D() def call(self, X): x = self.c2(self.drop(self.c1(X))) if self.pooling: y = self.pool(x) return y, x else: return x def get_config(self): base_config = super().get_config() return { **base_config, "filters": self.filters, "rate": self.rate, "pooling": self.pooling, } # class Encoder(nn.Module): # def __init__(self, filters, rate, pooling=True): # super(Encoder, self).__init__() # self.filters = filters # self.rate = rate # self.pooling = pooling # self.c1 = nn.Conv2d(3, filters, kernel_size=3, stride=1, padding=1) # self.drop = nn.Dropout(rate) # self.c2 = nn.Conv2d(filters, filters, kernel_size=3, stride=1, padding=1) # self.pool = nn.MaxPool2d(kernel_size=2, stride=2) # def call(self, x): # x = F.relu(self.c1(x)) # x = self.drop(x) # x = F.relu(self.c2(x)) # if self.pooling: # y = self.pool(x) # return y, x # else: # return x # def get_config(self): # return { # "filters":self.filters, # "rate":self.rate, # "pooling":self.pooling, # } # # **Attention UNet - Decoder** # * The **decoder** is just the **opposite** of the **encoder** in terms of **functioning** because it **Upsamples** the **input images** or the **input feature maps** by a **factor of 2**. # * The input to **the decoder** are the **latent representations** learned by the encoder. This means the **decoder** has access only to the **most useful features** and it **tries to replicate the segmentation mask** from these features. # * One **major reason** behind the **success of UNet architecture** are the **skip connections** from the **encoder to the decoder layer**. This allowed the **decoder to learn** the **spatial information** present in the original image.| class Decoder(Layer): def __init__(self, filters, rate, **kwargs): super(Decoder, self).__init__(**kwargs) self.filters = filters self.rate = rate self.cT = Conv2DTranspose( filters, kernel_size=3, strides=2, padding="same", kernel_initializer="he_normal", activation="relu", ) self.net = Encoder(filters, rate, pooling=False) def call(self, X): x, skip_x = X x = self.cT(x) c = concatenate([x, skip_x]) f = self.net(c) return f def get_config(self): base_config = super().get_config() return {**base_config, "filters": self.filters, "rate": self.rate} # class Decoder(nn.Module): # def __init__(self, filters, rate): # super(Decoder, self).__init__() # self.filters = filters # self.rate = rate # self.cT = nn.ConvTranspose2d(filters, filters, kernel_size=3, stride=2, padding=1, output_padding=1) # self.net = Encoder(filters, rate, pooling=False) # def call(self, x): # x = self.c2(self.drop(self.c1(x))) # if self.pooling: # y = self.pool(x) # return y, x # else: # return x # def get_config(self): # return { # "filters": self.filters, # "rate": self.rate # } # # **Attention UNet - Attention Gate** # The **idea behind the attention gate** is to add a **particular gate or a layer** between the **skip connections** so that the **skip connections can be refined** and only the **most important spatial information is fed to the decoder**. class AttentionGate(Layer): def __init__(self, filters, **kwargs): super(AttentionGate, self).__init__(**kwargs) self.filters = filters self.normal = Conv2D( filters, kernel_size=3, strides=1, padding="same", kernel_initializer="he_normal", activation="relu", ) self.down = Conv2D( filters, kernel_size=3, strides=2, padding="same", kernel_initializer="he_normal", activation="relu", ) self.learn = Conv2D(1, kernel_size=1, strides=1, activation="sigmoid") self.resample = UpSampling2D() def call(self, X): x, skip_x = X x = self.normal(x) skip = self.down(skip_x) a = add([x, skip]) l = self.learn(a) l = self.resample(l) f = multiply([l, skip_x]) return f def get_config(self): base_config = super().get_config() return {**base_config, "filters": self.filters} # class AttentionGate(nn.Module): # def __init__(self, filters): # super(AttentionGate, self).__init__() # self.filters = filters # self.normal = nn.Conv2d(filters, filters, kernel_size=3, stride=1, padding=1) # self.down = nn.Conv2d(filters, filters, kernel_size=3, stride=2, padding=1) # self.learn = nn.Conv2d(filters, 1, kernel_size=1, stride=1) # self.resample = nn.Upsample(scale_factor=2, mode='nearest') # def call(self, X): # x, skip_x = X # x = self.normal(x) # skip = self.down(skip_x) # a = x + skip # l = torch.sigmoid(self.learn(a)) # l = self.resample(l) # f = l * skip_x # return f # def get_config(self): # return {"filters": self.filters} # # **Attention UNet** # So the **Encoder, Decoder and the Attention Gate** is ready. It's time to combine all of them in complete our **Attention Unet** architecture. # Inputs image_input = Input(shape=(256, 256, 3), name="InputImage") # Encoder Phase p1, c1 = Encoder(32, 0.1, name="EncoderBlock1")(image_input) p2, c2 = Encoder(64, 0.1, name="EncoderBlock2")(p1) p3, c3 = Encoder(128, 0.2, name="EncoderBlock3")(p2) p4, c4 = Encoder(256, 0.2, name="EncoderBlock4")(p3) # Latent Representation encoding = Encoder(512, 0.3, pooling=False, name="Encoding")(p4) # Deocder + Attention Phase a1 = AttentionGate(256, name="Attention1")([encoding, c4]) d1 = Decoder(256, 0.2, name="DecoderBlock1")([encoding, a1]) a2 = AttentionGate(128, name="Attention2")([d1, c3]) d2 = Decoder(128, 0.2, name="DecoderBlock2")([d1, a2]) a3 = AttentionGate(64, name="Attention3")([d2, c2]) d3 = Decoder(64, 0.2, name="DecoderBlock3")([d2, a3]) a4 = AttentionGate(32, name="Attention4")([d3, c1]) d4 = Decoder(32, 0.1, name="DecoderBlock4")([d3, a4]) # Output Layer mask_out = Conv2D( 3, kernel_size=1, strides=1, activation="sigmoid", padding="same", name="MaskOut" )(d4) # Model att_unet = Model(inputs=[image_input], outputs=[mask_out], name="AttentionUNet") # Compile att_unet.compile(loss="binary_crossentropy", optimizer="adam") # # **Attention UNet - Visualization** # plot_model(att_unet, "AttentionUNet.png", show_shapes=True) # # **Custom Callback** # It will be a **good idea to visualize models performance after each epoch.** class ShowProgress(Callback): def on_epoch_end(self, epoch, logs=None): show_mask(GRID=[1, 1], model=self.model, join=False, fig_size=(20, 8)) self.model.save("AttentionUnet.h5") # # **Training** # **Training Attention UNet** is simple. Just train it like we train other models. att_unet.fit(images, masks, validation_split=0.1, epochs=20, callbacks=[ShowProgress()]) # # **Evaluation** att_unet = load_model( "../input/attention-unet-butterfly-segmentation/AttentionUnet.h5", custom_objects={ "Encoder": Encoder, "Decoder": Decoder, "AttentionGate": AttentionGate, }, ) show_mask(GRID=[10, 6], model=att_unet, join=False, fig_size=(20, 30)) show_mask(GRID=[10, 6], model=att_unet, join=True, fig_size=(20, 30), alpha=0.8)
# # Using a Pretrained VGG16 to classify retinal damage from OCT Scans # This notebook is inspired by these pages: # - [VGG16 Transfer Learning \- Pytorch \| Kaggle](https://www.kaggle.com/code/carloalbertobarbano/vgg16-transfer-learning-pytorch) # - [IgorSusmelj/pytorch\-styleguide: An unofficial styleguide and best practices summary for PyTorch](https://github.com/IgorSusmelj/pytorch-styleguide) # ## Import from __future__ import print_function, division import torch import torch.nn as nn import torch.optim as optim from torch.optim import lr_scheduler from torch.autograd import Variable import numpy as np from tqdm import tqdm import torchvision from torchvision import datasets, models, transforms from torchinfo import summary import matplotlib.pyplot as plt import time import os import copy from pathlib import Path plt.ion() use_gpu = torch.cuda.is_available() if use_gpu: print("Using CUDA") # - `torch.backends.cudnn.benchmark = True` enables cudnn auto-tuner to find the best algorithm to use for your hardware configuration # - `np.random.seed(1)` sets the seed of the NumPy pseudo-random number generator to 1, which allows to repdoduce the same sequences of random numbers across runs. # - `torch.manual_seed(1)` sets the seed for generating random tensors in the CPU by PyTorch. # - `torch.cuda.manual_seed(1)` sets the seed for generating random tensors in the GPU by PyTorch. # set flags / seeds torch.backends.cudnn.benchmark = True np.random.seed(1) torch.manual_seed(1) torch.cuda.manual_seed(1) # ## Prepare Dataset and Dataloader # ### Setting data directory # - `data_dir` holds a path to the data directory. # - `TRAIN`, `VAL` and `TEST` hold string values for three different subsets of data. data_dir = "../input/kermany2018/oct2017/OCT2017 " TRAIN = "train" VAL = "val" TEST = "test" # ### Setting transforms # For train: # - augmenting by randomly cropping and flipping the images to improve the model's ability to generalize to new data # - converting images to pytorch tensors # For val and test: # - resizing the images to 224x224 pixels to fit the VGG input size # - converting images to pytorch tensors # VGG-16 Takes 224x224 images as input, so we resize all of them data_transforms = { TRAIN: transforms.Compose( [ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), ] ), VAL: transforms.Compose( [ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), ] ), TEST: transforms.Compose( [ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), ] ), } # ### Setting datasets and dataloaders # - datasets # - `datasets.ImageFolder()` expects a directory containing subdirectories of images (one subdirectory per class), and creates a dataset where each image is paired with its corresponding label. # - `transform` argument is passed to specify image transformations to be applied defined above. # - The three datasets (TRAIN, VAL and TEST) are stored in a dictionary. # - dataloaders # - For each dataset, we creates a data loader by passing the corresponding `Dataset` object. # - `shuffle` parameter is set to `True` to shuffle the elements in each batch. # - `num_workers` is set to 2 to use 2 subprocesses to load in the background. # - The three dataloaders (TRAIN, VAL and TEST) are stored in a dictionary. # - Finally we store the sizes of the three datasets in a dictionary `dataset_sizes`. image_datasets = { x: datasets.ImageFolder(os.path.join(data_dir, x), transform=data_transforms[x]) for x in [TRAIN, VAL, TEST] } dataloaders = { x: torch.utils.data.DataLoader( image_datasets[x], batch_size=32, shuffle=True, num_workers=2 ) for x in [TRAIN, VAL, TEST] } dataset_sizes = {x: len(image_datasets[x]) for x in [TRAIN, VAL, TEST]} for x in [TRAIN, VAL, TEST]: print("Loaded {} images under {}".format(dataset_sizes[x], x)) print("Classes: ") class_names = image_datasets[TRAIN].classes print(image_datasets[TRAIN].classes) # ## Utils def imshow(inp, title=None): inp = inp.numpy().transpose((1, 2, 0)) # plt.figure(figsize=(10, 10)) plt.axis("off") plt.imshow(inp) if title is not None: plt.title(title) plt.pause(0.001) def show_databatch(inputs, classes): out = torchvision.utils.make_grid(inputs) imshow(out, title=[class_names[x] for x in classes]) # Get a batch of training data inputs, classes = next(iter(dataloaders[TRAIN])) show_databatch(inputs, classes) def visualize_model(model, data_loader, num_images=6): was_training = model.training # Set model for evaluation model.eval() images_so_far = 0 with torch.no_grad(): for i, data in enumerate(data_loader): if torch.cuda.is_available(): device = torch.device("cuda:0") else: device = torch.device("cpu") inputs, labels = data inputs_size = inputs.size(0) inputs = inputs.to(device) labels = labels.to(device) model.to(device) outputs = model(inputs) _, preds = torch.max(outputs.data, 1) predicted_labels = [preds[j] for j in range(inputs_size)] print("Ground truth:") show_databatch(inputs.detach().cpu(), labels.detach().cpu()) print("Prediction:") show_databatch(inputs.detach().cpu(), predicted_labels) del inputs, labels, outputs, preds, predicted_labels torch.cuda.empty_cache() images_so_far += inputs_size if images_so_far >= num_images: break model.train(mode=was_training) # Revert model back to original training state # This helper function will give us the accuracy of our model on the test set. def eval_model(model, data_loader, criterion, max_iters=None): since = time.time() avg_loss = 0 avg_acc = 0 loss_test = 0 acc_test = 0 total_size = 0 test_batches = len(data_loader) print("Evaluating model") print("-" * 10) model.eval() with torch.no_grad(): for i, data in enumerate(data_loader): if max_iters is None: pass elif i > max_iters: break if i % 5 == 0: message = ( f"\rTest batch {i}/{test_batches}" + " |" + f"Avg loss (test): {avg_loss:.4f}" + " |" + f"Avg acc (test): {avg_acc:.4f}" ) print(message, end="", flush=True) if torch.cuda.is_available(): device = torch.device("cuda:0") else: device = torch.device("cpu") inputs, labels = data inputs_size = inputs.size(0) inputs = inputs.to(device) labels = labels.to(device) model.to(device) outputs = model(inputs) _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels) loss_test += loss.item() acc_test += torch.sum(preds == labels) total_size += inputs_size avg_loss = loss_test / total_size avg_acc = acc_test / total_size del inputs, labels, outputs, preds torch.cuda.empty_cache() avg_loss = loss_test / total_size avg_acc = acc_test / total_size elapsed_time = time.time() - since print() print("=" * 10) print( "Evaluation completed in {:.0f}m {:.0f}s".format( elapsed_time // 60, elapsed_time % 60 ) ) print("Avg loss (test): {:.4f}".format(avg_loss)) print("Avg acc (test): {:.4f}".format(avg_acc)) print("-" * 10) def model_summary(model): batch_size = 2 return summary( model, input_size=(batch_size, 3, 224, 224), col_names=[ "output_size", "params_percent", "trainable", ], ) # ## Model creation class VGG16TL(nn.Module): def __init__(self, n_classes=4) -> None: super().__init__() self.n_classes = n_classes self.vgg = self._setup_vgg() def forward(self, x): x = self.vgg(x) return x def _setup_vgg(self): # load pretrained model vgg = models.vgg16_bn( weights="DEFAULT", ) # freeze weights of feature extractor for param in vgg.features.parameters(): param.requires_grad = False # replace last layer in_features = vgg.classifier[-1].in_features vgg.classifier[-1] = nn.Linear(in_features, self.n_classes) return vgg class ResNet50TL(nn.Module): def __init__(self, n_classes=4) -> None: super().__init__() self.n_classes = n_classes self.resnet = self._setup_resnet() def forward(self, x): x = self.resnet(x) return x def _setup_resnet(self): # load pretrained model resnet = models.resnet50( weights="DEFAULT", ) # freeze weights of feature extractor for param in resnet.parameters(): param.requires_grad = False # replace last layer in_features = resnet.fc.in_features resnet.fc = nn.Sequential( nn.Linear(in_features, 128), nn.ReLU(inplace=True), nn.Dropout(inplace=True), nn.Linear(128, self.n_classes), ) return resnet class EfficientNetTL(nn.Module): def __init__(self, n_classes=4) -> None: super().__init__() self.n_classes = n_classes self.efficientnet = self._setup_efficientnet() def forward(self, x): x = self.efficientnet(x) return x def _setup_efficientnet(self): # load pretrained model efficientnet = models.efficientnet_v2_s( weights="DEFAULT", ) # freeze weights of feature extractor for param in efficientnet.parameters(): param.requires_grad = False # replace last layer in_features = efficientnet.classifier[-1].in_features efficientnet.classifier[-1] = nn.Linear(in_features, self.n_classes) return efficientnet # ### Model Summaries vgg16 = VGG16TL() model_summary(vgg16) resnet50 = ResNet50TL() model_summary(resnet50) efficientnet = EfficientNetTL() model_summary(efficientnet) # ## Training class Trainer: def __init__( self, model, train_data_loader, val_data_loader, criterion, optimizer, num_epochs: int = 10, resume: bool = False, path_to_checkpoint=None, checkpoint_dir=None, ): self.model = model self.train_data_loader = train_data_loader self.val_data_loader = val_data_loader self.criterion = criterion self.optimizer = optimizer self.num_epochs = num_epochs self.resume = resume self.path_to_checkpoint = path_to_checkpoint self.n_iter = 0 self.start_epoch = 0 self.epoch = 0 self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.checkpoint_dir = checkpoint_dir self.train_losses = [] self.train_acc = [] if self.resume: ckpt = self.load_checkpoint(self.path_to_checkpoint) self.model.load_state_dict(ckpt["net"]) self.start_epoch = ckpt["epoch"] self.n_iter = ckpt["n_iter"] self.optimizer.load_state_dict(ckpt["optim"]) print("Last checkpoint restored") self.model.to(self.device) def train_step(self): self.model.train() correct = 0 total = 0 # use prefetch_generator and tqdm for iterating through data pbar = tqdm( enumerate(self.train_data_loader), total=len(self.train_data_loader) ) start_time = time.time() # for loop going through dataset for i, data in pbar: # data preparation img, label = data img = img.to(self.device) label = label.to(self.device) # It's very good practice to keep track of preparation time and computation time using tqdm to find any issues in your dataloader prepare_time = start_time - time.time() # forward and backward pass out = self.model(img) loss = self.criterion(out, label) self.optimizer.zero_grad() loss.backward() self.optimizer.step() _, predicted = torch.max(out.detach(), 1) total += label.size(0) correct += (predicted == label).sum().item() accuracy = 100 * correct / total # compute computation time and *compute_efficiency* # If compute_efficiency is nearly 1, prepare_time is negligible, that's good. process_time = start_time - time.time() - prepare_time compute_efficiency = process_time / (process_time + prepare_time) pbar.set_description( f"Compute efficiency: {compute_efficiency:.2f}, " f"loss: {loss.item():.2f}, acc: {accuracy:.2f}, epoch: {self.epoch}/{self.num_epochs}" ) start_time = time.time() self.train_losses.append(loss.item()) self.train_acc.append(accuracy) self.n_iter += 1 def validation_step(self): # bring model to evaluation mode self.model.eval() correct = 0 total = 0 pbar = tqdm( enumerate(self.val_data_loader), total=len(self.val_data_loader), ) with torch.no_grad(): for i, data in pbar: # data preparation img, label = data img = img.to(self.device) label = label.to(self.device) out = self.model(img) _, predicted = torch.max(out.detach(), 1) total += label.size(0) correct += (predicted == label).sum().item() accuracy = 100 * correct / total print(f"Accuracy on validation set: {accuracy:.2f}") def load_checkpoint(self, path_to_checkpoint): ckpt = torch.load(path_to_checkpoint) return ckpt def save_checkpoint(self): ckpt = { "net": self.model.state_dict(), "epoch": self.epoch, "n_iter": self.n_iter, "optim": self.optimizer.state_dict(), } ckpt_file_name = f"ckpt.pt" ckpt_path = os.path.join(self.checkpoint_dir, ckpt_file_name) if not os.path.exists(self.checkpoint_dir): os.makedirs(self.checkpoint_dir) torch.save(ckpt, ckpt_path) print(f"checkpoint is saved at {ckpt_path}!") def plot_train_progress(self): fig, ax1 = plt.subplots() ax2 = ax1.twinx() ax1.plot(self.train_losses, label="train_loss", color="tab:blue") ax2.plot(self.train_acc, label="train_acc", color="tab:orange") h1, l1 = ax1.get_legend_handles_labels() h2, l2 = ax2.get_legend_handles_labels() ax1.legend(h1 + h2, l1 + l2, loc="lower right") fig.show() def train(self): for epoch in range(self.start_epoch, self.num_epochs): # train step self.train_step() # validation step if epoch % 1 == 0: self.validation_step() self.epoch += 1 # save checkpoint self.save_checkpoint() # ### VGG16 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(vgg16.parameters(), lr=0.001, momentum=0.9) trainer_vgg = Trainer( model=vgg16, train_data_loader=dataloaders[TRAIN], val_data_loader=dataloaders[VAL], criterion=criterion, optimizer=optimizer, num_epochs=1, resume=False, checkpoint_dir="/kaggle/working/ckpt/vgg/", ) start_time = time.time() trainer_vgg.train() train_time = time.time() - start_time trainer_vgg.plot_train_progress() print("Train time:\t", train_time, "[sec]") vgg16 = trainer_vgg.model # ### ResNet50 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(resnet50.parameters(), lr=0.001, momentum=0.9) trainer_resnet = Trainer( model=resnet50, train_data_loader=dataloaders[TRAIN], val_data_loader=dataloaders[VAL], criterion=criterion, optimizer=optimizer, num_epochs=1, resume=False, checkpoint_dir="/kaggle/working/ckpt/resnet/", ) start_time = time.time() trainer_resnet.train() train_time = time.time() - start_time trainer_resnet.plot_train_progress() print("Train time:\t", train_time, "[sec]") resnet50 = trainer_resnet.model # ### EfficientNet criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(efficientnet.parameters(), lr=0.001, momentum=0.9) trainer_efficientnet = Trainer( model=efficientnet, train_data_loader=dataloaders[TRAIN], val_data_loader=dataloaders[VAL], criterion=criterion, optimizer=optimizer, num_epochs=1, resume=False, checkpoint_dir="/kaggle/working/ckpt/efficientnet/", ) start_time = time.time() trainer_efficientnet.train() train_time = time.time() - start_time trainer_efficientnet.plot_train_progress() print("Train time:\t", train_time, "[sec]") efficientnet = trainer_efficientnet.model # ## Model evaluation and visualization (after training) # Let's evaluate our model again after 2 epochs of training eval_model(vgg16, dataloaders[TEST], criterion) eval_model(resnet50, dataloaders[TEST], criterion) eval_model(efficientnet, dataloaders[TEST], criterion)
# ### Sources # * https://www.kaggle.com/code/startupsci/titanic-data-science-solutions # * https://www.kaggle.com/code/arthurtok/introduction-to-ensembling-stacking-in-python # * https://www.kaggle.com/code/alexisbcook/titanic-tutorial # # Define Steps # The 7 steps of a kaggle data competition are; # 1. Question or problem definition. # 2. Acquire training and testing data. # 3. Wrangle, prepare, cleanse the data. # 4. Analyze, identify patterns, and explore the data. # 5. Model, predict and solve the problem. # 6. Visualize, report, and present the problem solving steps and final solution. # 7. Supply or submit the results. # Luckily, the first four steps are fairly easy and straight forward. # ## 1. Problem Definition # Let's define the question or problem for this data set. From the Kaggle competition- # "Knowing from a training set of samples listing passengers who survived or did not survive the Titanic disaster, can our model determine based on a given test dataset not containing the survival information, if these passengers in the test dataset survived or not." # Here are some addititional facts about the Titanic incident. # * Sailed on April 15, 1912. # * Sank after colliding with an iceberg. # * Killed 1502 out of the 2224 passengers and crew. 32% survival rate. # * A large contributor to the loss of life was the less than optimal number of life boats. # * While some luck did play a part in the survival of a passenger, there were other attributes as well that signaled a greater chance of survival. # ## 2. Acquire Data import pandas as pd train_df = pd.read_csv("../input/titanic-data/train.csv") test_df = pd.read_csv("../input/titanic-data/test.csv") # ## 3. Wrangle, prepare, cleanse the data # Let's take a look at the data columns we're working. train_df.head() # From the view above, we are able to gather a few information bits. # * PassengerID - numeric, unique ID. # * Survived - numeric, 0 for dead, 1 for survived. # * Pclass - numeric, 1-3 for the ticket class of that passenger. # * Name - string, unique to the passenger (could have duplicates in rare circumstances). # * Sex - string, male or female. # * Age - numeric, age of passenger in whole number. # * SibSp - numeric, number of passengers and sibilings who were also onboard. # * Parch - numeric, number of parents and children who were also onboard. # * Ticket - string, the ticket number (could be unique, unsure). # * Fare - numeric, the amount of money paid for the ticket. # * Cabin - string, the cabin number of the passenger. # * Embarked - string, C = Cherbourg, Q = Queenstown, S = Southampton. print(train_df.info()) print(test_df.info()) # Our training data contains null values in the age, cabin, and embarked columns while the testing data contains nulls in age, fare, and cabin columns. print(train_df.describe()) print(train_df.describe(include=["O"])) # The above info let's us know that- # * The training dataset has a 38% survival rate (compared to the 32% actual survival rate). # * Average passenger age was 29. # * Average SibSp count was .5 and average Parch count was .4. # * Names are unique. # * Only 'male' and 'female' in training data set. Males make up 65% of the data. # ## 4. Data Exploration # "This is where the fun begins" - Anakin Skywalker. Lets bring in some plotting libraries to help us. # Lets bring in some plotting libraries to help us. import seaborn as sns import matplotlib.pyplot as plt # Now let's do some transformation and feature mapping to help with visualizations. drop_elements = ["PassengerId", "Name", "Ticket", "Cabin", "Embarked"] train_viz = train_df.drop(drop_elements, axis=1) train_viz["Sex"] = train_df["Sex"].map({"female": 0, "male": 1}).astype(int) # If you noticed, we dropped a few columns (PassengerID, Name, Ticket number, and Cabin number) that logically would not make sense to visualize. # We also mapped the sexes, 0 to female and 1 to male. colormap = plt.cm.RdBu plt.figure(figsize=(14, 12)) plt.title("Pearson Correlation of Features", y=1.05, size=15) sns.heatmap( train_viz.astype(float).corr(), linewidths=0.1, vmax=1.0, square=True, cmap=colormap, linecolor="white", annot=True, ) # Here is a correlation plot using some code from ANISOTROPIC's notebook. # Looking at the Survived column, we see a strong correlation between sex and class for survival rate. A female passenger is shown to correlate more with surviving, and as a passengers class increases (1 being first class, 2 being second class, etc.), their change of surviving decreases. # Other notes, a persons fare is strongly correlated with their class (makes sense), as well as age being correlated with class. Age and sibling/ spouse count were also slightly correlated. Parent and child counts were also strongly correlated with spouse and sibling counts. # Of note, age currently shows no correlation with survival rate, though we will continue our analysis to see if this changes. import math age_hold = [age for age in list(set(train_viz["Age"])) if not (math.isnan(age))] age_hold.sort() survive_rate = [] for age in age_hold: survive_rate.append( len(train_viz.loc[(train_viz["Age"] == age) & (train_viz["Survived"] == 1)]) / len(train_viz.loc[train_viz["Age"] == age]) ) # The above code is going to help us visualize the survival rate associated with age. We drop all NA values, sort our list, then calculate the survive rate for each discrete age. d = {"Age": age_hold, "Survival_Rate": survive_rate} df = pd.DataFrame(data=d, dtype=float) sns.barplot(data=df, x="Age", y="Survival_Rate", color="steelblue") plt.xticks([10, 20, 30, 40, 50, 60, 70, 80]) plt.show()
# Import files import pandas as pd import numpy as np import os import matplotlib.pyplot as plt import seaborn as sns # Get files for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Read files df = pd.read_csv( "/kaggle/input/in-class-competition-data-clustering-2023/Data4cluster.csv" ) submission = pd.read_csv( "/kaggle/input/in-class-competition-data-clustering-2023/SubData.csv" ) df submission # Analyse df df.describe() df.info() df.isna().sum() corr = df.corr() sns.heatmap(corr) corr # Prepare data df = df.drop("ID", axis=1) df X = df # Clustering from sklearn.cluster import KMeans model = KMeans(n_clusters=3, random_state=42) model.fit(X) prediction = model.labels_ prediction cluster_centres = model.cluster_centers_ cluster_centres unique, counts = np.unique(prediction, return_counts=True) dict(zip(unique, counts)) plt.scatter(X.iloc[:, 0], X.iloc[:, 1], c=prediction, s=50, cmap="viridis") centers = cluster_centres plt.scatter(centers[:, 0], centers[:, 1], c="black", s=200, alpha=0.5) # Prepare submission submission["Expected"] = prediction submission.to_csv("submission.csv", index=False) submission = pd.read_csv("submission.csv") submission
import pandas as pd import re import string from wordcloud import WordCloud from collections import Counter import numpy as np import warnings warnings.filterwarnings("ignore") import nltk from nltk import sent_tokenize, word_tokenize from nltk.corpus import stopwords import pandas as pd df = pd.read_csv("/kaggle/input/korean-preprocessed/cleaned_Mental_Health.csv") df.sample() df = df.dropna(how="any") indexmentalhealth = df[(df["Subreddit"] == "mentalhealth")].index df.drop(indexmentalhealth, inplace=True) df["Subreddit"].value_counts() def remove_url(text): re_url = re.compile("https?://\S+|www\.\S+") return re_url.sub("", str(text)) def remove_stopwords(text): new_list = [] words = word_tokenize(text) stopwrds = stopwords.words("english") for word in words: if word not in stopwrds: new_list.append(word) return " ".join(new_list) def remove_newline(text): return text.replace("\n", " ").replace("\r", "") def remove_emojis(text): emoj = re.compile( "[" "\U0001F600-\U0001F64F" # emoticons "\U0001F300-\U0001F5FF" # symbols & pictographs "\U0001F680-\U0001F6FF" # transport & map symbols "\U0001F1E0-\U0001F1FF" # flags (iOS) "\U00002500-\U00002BEF" # chinese char "\U00002702-\U000027B0" "\U00002702-\U000027B0" "\U000024C2-\U0001F251" "\U0001f926-\U0001f937" "\U00010000-\U0010ffff" "\u2640-\u2642" "\u2600-\u2B55" "\u200d" "\u23cf" "\u23e9" "\u231a" "\ufe0f" # dingbats "\u3030" "]+", re.UNICODE, ) return re.sub(emoj, "", text) def convert_lowercase(text): text = text.lower() return str(text) # Removes HTML syntaxes def remove_html(data): html_tag = re.compile(r"<.*?>") data = html_tag.sub(r"", data) return data def remove_whitespaces(text): text = re.sub(r"[^\w\s\']", " ", text) text = re.sub(" +", " ", text) return text def remove_brackets(text): text = re.sub(r"\[|\]|\(|\)|\{|\}|\<|\>", "", text) return text import re # Define the abbreviations dictionary abbr_dict = { "what's": "what is", "what're": "what are", "who's": "who is", "who're": "who are", "where's": "where is", "where're": "where are", "when's": "when is", "when're": "when are", "how's": "how is", "how're": "how are", "i'm": "i am", "we're": "we are", "you're": "you are", "they're": "they are", "it's": "it is", "he's": "he is", "she's": "she is", "that's": "that is", "there's": "there is", "there're": "there are", "i've": "i have", "we've": "we have", "you've": "you have", "they've": "they have", "who've": "who have", "would've": "would have", "not've": "not have", "i'll": "i will", "we'll": "we will", "you'll": "you will", "he'll": "he will", "she'll": "she will", "it'll": "it will", "they'll": "they will", "isn't": "is not", "wasn't": "was not", "aren't": "are not", "weren't": "were not", "can't": "can not", "couldn't": "could not", "don't": "do not", "didn't": "did not", "shouldn't": "should not", "wouldn't": "would not", "doesn't": "does not", "haven't": "have not", "hasn't": "has not", "hadn't": "had not", "won't": "will not", "gotta": "got to", "wanna": "want to", "imma": "i am going to", "lemme": "let me", "let's": "let us", "here's": "here is", "y'all": "you all", "gimme": "give me", "ain't": "am not", "aint": "am not", } # Define the function to replace the abbreviations def replace_abbreviations(text): text = re.sub("’", "'", text) # Replace '’' with '\' for word in text.split(): if word.lower() in abbr_dict: text = re.sub( r"\b{}\b".format(word), abbr_dict[word.lower()], text, flags=re.IGNORECASE, ) return text import texthero as hero from sklearn import preprocessing label_encoder = preprocessing.LabelEncoder() df["Subreddit"] = label_encoder.fit_transform(df["Subreddit"]) labels = list(label_encoder.classes_) df.sample() df["Sentence"][0] from sklearn.model_selection import train_test_split X = df["Sentence"].values y = df["Subreddit"].values # Split data into training and testing sets X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=42, stratify=df[["Subreddit"]] ) from sklearn.utils import class_weight class_weights = class_weight.compute_class_weight( class_weight="balanced", classes=np.unique(y_train), y=y_train ) class_weights = dict(zip(np.unique(y_train), class_weights)) class_weights from sklearn.linear_model import LogisticRegression from sklearn.pipeline import Pipeline from sklearn.metrics import classification_report from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.model_selection import cross_val_score clf = Pipeline([("vectorizer_tfidf", TfidfVectorizer()), ("LR", LogisticRegression())]) clf.get_params().keys() from sklearn.model_selection import StratifiedKFold, cross_val_score, GridSearchCV from sklearn.model_selection import RandomizedSearchCV import joblib params = [ { "LR__solver": ["saga"], "LR__penalty": ["elasticnet", "l1", "l2", "none"], "LR__max_iter": [50, 100, 200, 500, 1000, 2500], "LR__C": [0.001, 0.01, 0.1, 1, 10, 100, 1000], "LR__multi_class": ["auto", "ovr", "multinomial"], "LR__class_weight": [class_weights], }, { "LR__solver": ["newton-cg", "lbfgs"], "LR__penalty": ["l2", "none"], "LR__max_iter": [50, 100, 200, 500, 1000, 2500], "LR__C": [0.001, 0.01, 0.1, 1, 10, 100, 1000], "LR__multi_class": ["auto", "ovr", "multinomial"], "LR__class_weight": [class_weights], }, ] params2 = [ { "LR__solver": ["saga"], "LR__penalty": ["l2"], "LR__max_iter": [1000], "LR__C": [0.01, 0.1], "LR__multi_class": ["auto", "ovr", "multinomial"], "LR__class_weight": [class_weights], }, ] cv = StratifiedKFold(n_splits=5) search = RandomizedSearchCV( clf, scoring="balanced_accuracy", cv=cv, n_iter=100, param_distributions=params2, refit=True, n_jobs=-1, verbose=2, ) search.fit(X_train, y_train) clf = search.best_estimator_ print("Best parameters: ", search.best_params_) print("Best score: ", search.best_score_) joblib.dump(clf, "LR_best_model.pkl") y_pred = clf.predict(X_test) print("y_pred:", y_pred) print("y_test:", y_test) from sklearn.metrics import classification_report print(classification_report(y_test, y_pred, target_names=labels)) print(search.cv_results_)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # Read dataset stk = pd.read_csv("/kaggle/input/reliance-stock-price-dataset/reliance_data.csv") stk.head() stk.shape stk.columns = stk.columns.str.lower().str.replace("%", "") stk.columns = stk.columns.str.replace(" ", "_") stk.info() # check missing values print(stk.isnull().sum()) print(stk.shape) # Exploratory Data stk.describe() import seaborn as sns from matplotlib import pyplot as plt # check the correlation between the variables corr = stk.corr() plt.figure(figsize=(10, 8)) sns.heatmap( corr, vmin=None, vmax=None, cmap=None, center=None, annot_kws=None, linewidths=0, linecolor="black", cbar=True, ) # Create a list of the variables variables = ["prev_close", "open", "high", "low", "close", "volume", "turnover"] # Create a boxplot for each variable to check the distribution of data for variable in variables: sns.boxplot(x=variable, data=stk) plt.title(variable) plt.show() # ### Spliting data into train and test sets # import model selcection for splitting the data from sklearn import model_selection from sklearn.preprocessing import StandardScaler # split data train, test = model_selection.train_test_split(stk, test_size=0.2, random_state=42) # create the independent variable x_train and dependent variable y_train train_var = train.drop( [ "date", "symbol", "series", "last", "trades", "deliverable_volume", "deliverble", "close", ], axis=1, ) test_var = test.drop( [ "date", "symbol", "series", "last", "trades", "deliverable_volume", "deliverble", "close", ], axis=1, ) # Normalize the data using StandardScaler scaler = StandardScaler() X_train = scaler.fit_transform(train_var) X_test = scaler.transform(test_var) y_train = train.close y_test = test.close len(X_train), len(y_train), len(X_test), len(y_test) # ### Training and testing from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score, mean_squared_error # Fit linear regression to the training dataset lin = LinearRegression() lin.fit(X_train, y_train) # Get the coefficient and intercept of the line print(lin.coef_) lin.intercept_ # Predict the test set result of training data y_pred = lin.predict(X_test) y_pred # create dataframe for the prediction test_predictions = pd.DataFrame( { "Date": test["date"], "Series": test["series"], "Actual_value": test["close"], "Predicted_value": y_pred, }, columns=["Date", "Series", "Actual_value", "Predicted_value"], ) test_predictions # Evaluate the model on the testing set mse = mean_squared_error(y_test, y_pred) rmse = mean_squared_error(y_test, y_pred, squared=False) r2 = r2_score(y_test, y_pred) print("MSE:", mse) print("RMSE:", rmse) print("R-squared:", r2)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session train_data = pd.read_csv("/kaggle/input/spaceship-titanic/train.csv") test_data = pd.read_csv("/kaggle/input/spaceship-titanic/test.csv") test_data.head() test_data["Age"].mean() from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import mean_absolute_error from xgboost import XGBClassifier def get_mae(n_estimators, learning_rate, max_depth, train_X, val_X, train_y, val_y): model = XGBClassifier( n_estimators=n_estimators, learning_rate=learning_rate, max_depth=max_depth, random_state=0, early_stopping_rounds=5, ) model.fit(train_X, train_y, eval_set=[(val_X, val_y)], verbose=False) preds_val = model.predict(val_X) mae = mean_absolute_error(val_y, preds_val) return mae for col in train_data.columns: train_data[col + "_was_missing"] = train_data[col].isnull() for col in test_data.columns: test_data[col + "_was_missing"] = test_data[col].isnull() s = train_data.dtypes == "object" object_cols = list(s[s].index) train_data["Age"] = train_data["Age"].fillna(train_data["Age"].mean()) test_data["Age"] = test_data["Age"].fillna(test_data["Age"].mean()) # train_data['Transported'] = train_data['Transported'].replace(True, 1) # train_data['Transported'] = train_data['Transported'].replace(False, 0) train_data["Cabin"] = train_data["Cabin"].fillna("F/T") train_data["Deck"] = train_data["Cabin"].apply(lambda x: x[0]) train_data["Cabin"] = train_data["Cabin"].apply(lambda x: x[-1]) train_data["Cabin"] = train_data["Cabin"].replace("P", 0) train_data["Cabin"] = train_data["Cabin"].replace("S", 1) train_data["Cabin"] = train_data["Cabin"].replace("T", 0.5) test_data["Cabin"] = test_data["Cabin"].fillna("F/T") test_data["Deck"] = test_data["Cabin"].apply(lambda x: x[0]) test_data["Cabin"] = test_data["Cabin"].apply(lambda x: x[-1]) test_data["Cabin"] = test_data["Cabin"].replace("P", 0) test_data["Cabin"] = test_data["Cabin"].replace("S", 1) test_data["Cabin"] = test_data["Cabin"].replace("T", 0.5) test_data["Destination"] = test_data["Destination"].fillna( test_data["Destination"].mode() ) train_data["Destination"] = train_data["Destination"].fillna( train_data["Destination"].mode() ) test_data["VIP"] = test_data["VIP"].fillna(False) train_data["VIP"] = train_data["VIP"].fillna(False) test_data["VRDeck"] = test_data["VRDeck"].fillna(test_data["VRDeck"].mean()) train_data["VRDeck"] = train_data["VRDeck"].fillna(train_data["VRDeck"].mean()) test_data["Spa"] = test_data["Spa"].fillna(test_data["Spa"].mean()) train_data["Spa"] = train_data["Spa"].fillna(train_data["Spa"].mean()) test_data["ShoppingMall"] = test_data["ShoppingMall"].fillna( test_data["ShoppingMall"].mean() ) train_data["ShoppingMall"] = train_data["ShoppingMall"].fillna( train_data["ShoppingMall"].mean() ) test_data["FoodCourt"] = test_data["FoodCourt"].fillna(test_data["FoodCourt"].mean()) train_data["FoodCourt"] = train_data["FoodCourt"].fillna(train_data["FoodCourt"].mean()) test_data["RoomService"] = test_data["RoomService"].fillna( test_data["RoomService"].mean() ) train_data["RoomService"] = train_data["RoomService"].fillna( train_data["RoomService"].mean() ) test_data["HomePlanet"] = test_data["HomePlanet"].fillna(test_data["HomePlanet"].mode()) train_data["HomePlanet"] = train_data["HomePlanet"].fillna( train_data["HomePlanet"].mode() ) train_data.head() parch_dict = {} for ID in train_data["PassengerId"]: group_num = ID[:4] if group_num in parch_dict.keys(): parch_dict[group_num] += 1 else: parch_dict[group_num] = 1 ind = 0 for ID in train_data["PassengerId"]: group_num = ID[:4] train_data.loc[ind, "Parch"] = parch_dict[group_num] ind += 1 parch_dict = {} for ID in test_data["PassengerId"]: group_num = ID[:4] if group_num in parch_dict.keys(): parch_dict[group_num] += 1 else: parch_dict[group_num] = 1 ind = 0 for ID in test_data["PassengerId"]: group_num = ID[:4] test_data.loc[ind, "Parch"] = parch_dict[group_num] ind += 1 s = train_data.dtypes == "object" object_cols = object_cols + list(s[s].index) # test_data['FoodCourt'] = test_data['FoodCourt'].apply(lambda x: x = 0 for x < 19000 ) from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt features = [ "Deck", "VRDeck", "RoomService", "FoodCourt", "ShoppingMall", "Spa", "CryoSleep", "Cabin", "Age", "Parch", "VIP", ] X = pd.get_dummies(train_data[features]) y = train_data["Transported"] train_X, val_X, train_y, val_y = train_test_split( X, y, train_size=0.8, test_size=0.2, random_state=13 ) train_y = train_y.replace(True, 1) train_y = train_y.replace(False, 0) test_n = [100, 300, 500] test_rate = [0.01] test_depth = [4, 5, 6] small = 1 best_n = 5 best_depth = 5 best_rate = 0 print(object_cols) n_estimators = 300 max_depth = 6 learn_rate = 0.02 from sklearn.model_selection import cross_val_score y = train_data["Transported"] X = pd.get_dummies(train_data[features]) X_test = pd.get_dummies(test_data[features]) model = XGBClassifier( n_estimators=n_estimators, learning_rate=learn_rate, max_depth=max_depth, random_state=0, ) scores = -1 * cross_val_score(model, X, y, cv=5, scoring="neg_mean_absolute_error") print(scores) y = train_data["Transported"] X = pd.get_dummies(train_data[features]) X_test = pd.get_dummies(test_data[features]) model = XGBClassifier( n_estimators=n_estimators, learning_rate=learn_rate, max_depth=max_depth, random_state=0, ) model.fit(X, y, verbose=False) predictions = model.predict(X_test) arr = np.array([]) for val in predictions: if val == 1: arr = np.append(arr, "True") else: arr = np.append(arr, "False") print(arr) output = pd.DataFrame( {"PassengerId": test_data.PassengerId, "Transported": predictions} ) output.to_csv("submission.csv", index=False) print("Your submission was successfully saved!")
# **Linear regression with one variable from scratch** # While studying Machine Learning basics I\`ve decided to implement Linear Regression algorithm from scratch so that I\`ll know that I understood the topic properly. # At first let\`s import all libraries that we need for this task: import numpy as np import matplotlib.pyplot as plt # Now let\'s remember Linear Regression\`s formula: # $$\begin{align*} \newline f_{w,b}(x^{(i)}) = wx^{(i)} + b \newline \end{align*} $$ # Here we have: # $x$ - our variable,feature; # $y$ - target; # $w$ and $b$ - parameter\'s to be adjusted in the process of training. # Then let\'s generate $x$ and $y$ data for training and vizualize it: x = np.arange(50) delta = np.random.uniform(-10, 10, size=(50,)) y = x + delta plt.figure(figsize=(16, 6)) plt.xlabel("x values") plt.ylabel("y values") plt.ylim([-20, 70]) plt.scatter(x, y) # To train our linear regression model means - to find minimum value of a cost function. We will use a Squared Error Cost Function for this purpose # $$\begin{align*}J(w,b) = \frac{1}{2m} \sum\limits_{i = 0}^{m-1} (f_{w,b}(x^{(i)}) - y^{(i)})^2 \end{align*}$$ # Let\'s write a funtion for it: def cost_func(x_arr, y_arr, bias, weight): m = x_arr.shape[0] total_cost = 0 for i in range(m): pred = bias + weight * x_arr[i] y = y_arr[i] cost = (pred - y) ** 2 total_cost += cost return total_cost / (2 * m) # To find a minimum value for $J(w,b)$ we will use a Gradient Descent for finding tha appropriate values for our parammeters - $w$ and $b$. # To implement a Gradient Descent we need to create a loop that runs untill cost function reaches it\`s minimum. And one iteration will be:$$\begin{align*} \newline # \; w &= w - \alpha \frac{\partial J(w,b)}{\partial w}\; \newline # b &= b - \alpha \frac{\partial J(w,b)}{\partial b} \newline # \newline \end{align*} $$ # Here we have $\alpha$ - learning rate, for now we will hardcode it. And also we have partial derivatives:$$\begin{align*} \newline # \; \frac{\partial J(w,b)}{\partial w} \; \newline # \frac{\partial J(w,b)}{\partial b} \newline \newline # \end{align*}$$ # These are characterizing direction and rate of step (describing a slope of the function in the particular point). They are defined as: # $$\begin{align*} \newline # \frac{\partial J(w,b)}{\partial w} &= \frac{1}{m} \sum\limits_{i = 0}^{m-1} (f_{w,b}(x^{(i)}) - y^{(i)})x^{(i)}\\ # \frac{\partial J(w,b)}{\partial b} &= \frac{1}{m} \sum\limits_{i = 0}^{m-1} (f_{w,b}(x^{(i)}) - y^{(i)})\\ # \newline \end{align*}$$ # Let's write corresponding fuctions for partial derivatives and Gradient Descent itself: def derivative_J_b(x_arr, y_arr, bias, weight): m = x_arr.shape[0] total_cost = 0 for i in range(m): pred = bias + weight * x_arr[i] y = y_arr[i] cost = pred - y total_cost += cost return total_cost / m def derivative_J_w(x_arr, y_arr, bias, weight): m = x_arr.shape[0] total_cost = 0 for i in range(m): pred = bias + weight * x_arr[i] y = y_arr[i] cost = (pred - y) * x_arr[i] total_cost += cost return total_cost / m # gradient descent def grad_descent(x_array, y_array, bias_start, weight_start): old_cost = cost_func(x_array, y_array, bias_start, weight_start) alpha = 0.0001 convergence = False bias = bias_start weight = weight_start while convergence == False: temp_bias = bias - alpha * derivative_J_b(x_array, y_array, bias, weight) temp_weight = weight - alpha * derivative_J_w(x_array, y_array, bias, weight) new_cost = cost_func(x_array, y_array, temp_bias, temp_weight) if new_cost >= old_cost: convergence = True else: weight = temp_weight bias = temp_bias old_cost = new_cost return bias, weight # And now let\'s define our parameters $w$ and $b$ , train our model and vizualize the resulting line: w = 0 b = 0 b, w = grad_descent(x, y, b, w) m = x.shape[0] pred_arr = [] for i in range(m): pred = b + w * x[i] pred_arr.append(pred) plt.figure(figsize=(16, 6)) plt.xlabel("x values") plt.ylabel("y values") plt.scatter(x, y) plt.plot(x, pred_arr) plt.show() # Seems like a good result. Let\'s try to reverse $y$ values and look at the result: y = np.flip(y) b, w = grad_descent(x, y, b, w) m = x.shape[0] pred_arr = [] for i in range(m): pred = b + w * x[i] pred_arr.append(pred) plt.figure(figsize=(16, 6)) plt.xlabel("x values") plt.ylabel("y values") plt.scatter(x, y) plt.plot(x, pred_arr) plt.show()
import cupy as cp import cuml, cudf from sklearn.model_selection import train_test_split from cuml.linear_model import Ridge from cuml.neighbors import KNeighborsRegressor from cuml.svm import SVR from cuml.ensemble import RandomForestRegressor from cuml.preprocessing.TargetEncoder import TargetEncoder from sklearn.model_selection import GroupKFold, KFold from cuml.metrics import log_loss train_cr = cudf.read_csv( "../input/ncaaw-march-mania-2021/WNCAATourneyCompactResults.csv" ) train_seeds = cudf.read_csv("../input/ncaaw-march-mania-2021/WNCAATourneySeeds.csv") submission = cudf.read_csv( "../input/ncaaw-march-mania-2021/WSampleSubmissionStage1.csv" ) train_cr.head() train_seeds.head() submission.head() train_seeds["seed_int"] = [ int(train_seeds["Seed"][x][1:3]) for x in range(len(train_seeds)) ] drop_lbls = ["DayNum", "WScore", "LScore", "WLoc", "NumOT"] train_seeds.drop(labels=["Seed"], inplace=True, axis=1) train_cr.drop(labels=drop_lbls, inplace=True, axis=1) train_cr.head() train_seeds.head() ren1 = {"TeamID": "WTeamID", "seed_int": "WS"} ren2 = {"TeamID": "LTeamID", "seed_int": "LS"} df1 = cudf.merge( left=train_cr, right=train_seeds.rename(columns=ren1), how="left", on=["Season", "WTeamID"], ) df2 = cudf.merge( left=df1, right=train_seeds.rename(columns=ren2), on=["Season", "LTeamID"] ) df_w = cudf.DataFrame() df_w["dff"] = df2.WS - df2.LS df_w["rsl"] = 1 df_l = cudf.DataFrame() df_l["dff"] = -df_w["dff"] df_l["rsl"] = 0 df_prd = cudf.concat((df_w, df_l)) X = df_prd.dff.values.reshape(-1, 1) y = df_prd.rsl.values X_test = cp.zeros(shape=(len(submission), 1)) for ind, row in submission.to_pandas().iterrows(): yr, o, t = [int(x) for x in row.ID.split("_")] X_test[ind, 0] = ( train_seeds[ (train_seeds.TeamID == o) & (train_seeds.Season == yr) ].seed_int.values[0] - train_seeds[ (train_seeds.TeamID == t) & (train_seeds.Season == yr) ].seed_int.values[0] )
# # 타이타닉 대회 # 타이타닉호에 탑승한 승객에 대한 다양한 정보가 포함된 데이터 세트를 제공받고, 그 정보를 사용하여 사람들이 생존했는지 여부를 예측할 수 있는지 살펴봅니다. # Kaggle 대회는 두 개의 훈련 세트와 테스트 세트가 있습니다. # **훈련 세트**는 우리 모델을 훈련하는 데 사용할 수 있는 데이터를 포함합니다. 다양한 기술적 데이터를 포함하는 여러 개의 특성 열이 있으며, 이 경우에는 **생존(Survived)** 에 대해 예측하려는 대상 값 열도 있습니다 # **테스트 세트**는 모든 동일한 특성 열을 포함하지만, 예측 대상 값 열이 빠져있습니다. 또한 테스트 세트는 일반적으로 훈련 세트보다 적은 관측치(행)를 가지고 있습니다. # 훈련 세트와 테스트 세트 두 파일은 **test.csv**와 **train.csv**로 이름이 지정됩니다. # 먼저 훈련 세트와 테스트 세트를 불러 오고, 그 크기를 살펴봅시다. import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv("/kaggle/input/titanic/train.csv") test = pd.read_csv("/kaggle/input/titanic/test.csv") print("Dimensions of train: {}".format(train.shape)) print("Dimensions of test: {}".format(test.shape)) # # 데이터 탐색 # 데이터의 각 특성은 다음과 같습니다: # * **PassengerId**: 각 승객의 고유 식별자 # * **Survived**: 목표값으로, 0은 승객이 사망한 것을 의미하고, 1은 생존한 것을 의미 # * **Pclass**: 승객 등급 # * **Name**, **Sex**, **Age**: 이름, 성, 나이 # * **SibSp**: 승객이 타이타닉 호에 탑승한 동생/배우자 수 # * **Parch**: 승객이 타이타닉 호에 탑승한 부모/자녀 수 # * **Ticket**: 티켓 ID # * **Fare**: 지불한 가격 (파운드) # * **Cabin**: 승객의 객실 번호 # * **Embarked**: 승객이 타이타닉 호에 탑승한 장소 # 훈련 세트의 상위 5개열 추출합니다. train.head() # 이 경우, 타이타닉 호 재난을 이해하고 생존 결과에 영향을 미칠 수 있는 변수를 구체적으로 파악하는 것이 중요합니다. # 타이타닉 영화를 본 사람이라면 여성과 아이들이 구명보트를 선호 받았으며 (실제로도 그렇게 이루어졌습니다), 승객들 간의 큰 계급 격차를 기억할 것입니다. # 이는 **나이**, **성별** 및 **승객 등급(PClass)**이 생존 예측에 좋은 지표일 수 있다는 것을 나타냅니다. 이를 시각화하면서 **성별**과 **승객 등급(PClass)**을 탐색하여 시작하겠습니다. # 먼저 시각화를 위한 패키지들을 추가하고, 가장 중요한 생사여부에 대한 정보를 시각적으로 표시하도록 하겠습니다. 훈련데이터가 들어간 데이터 프레임 **train_df**에서 **Survived** 키를 통해 생사여부의 정보를 가져올 수 있습니다. import seaborn as sns import matplotlib.pyplot as plt f, ax = plt.subplots(1, 2, figsize=(18, 8)) train["Survived"].value_counts().plot.pie( explode=[0, 0.1], autopct="%1.1f%%", ax=ax[0], shadow=True ) ax[0].set_title("Survived") ax[0].set_ylabel("") sns.countplot(x="Survived", data=train, ax=ax[1]) # "Survived가 x축인지 y 인지 알려주어야" ax[1].set_title("Survived") plt.show() # 0은 사망, 1은 생존을 의미합니다. 즉 탑승객의 60% 이상이 사망했다는 결론을 얻을 수 있습니다. # 이번에는 남녀별 생존 비율을 확인해 보도록 하겠습니다. # 다음 코드는 **train_df['Survived']**의 데이터에서 성별을 기준으로 필터링된 값을 가지고 비교합니다. f, ax = plt.subplots(1, 2, figsize=(18, 8)) train["Survived"][train["Sex"] == "male"].value_counts().plot.pie( explode=[0, 0.1], autopct="%1.1f%%", ax=ax[0], shadow=True ) train["Survived"][train["Sex"] == "female"].value_counts().plot.pie( explode=[0, 0.1], autopct="%1.1f%%", ax=ax[1], shadow=True ) ax[0].set_title("Survived (male)") ax[1].set_title("Survived (female)") plt.show() sex_pivot = train.pivot_table(index="Sex", values="Survived") sex_pivot.plot.bar() plt.show() # 생존한 경우 **Survived** 열에는 승객이 생존하지 못한 경우 0, 생존한 경우 1이 포함되어 있으므로, 성별에 따라 데이터를 분할하고 이 열의 평균을 계산할 수 있습니다. # 따라서 위 그래프에서 남자의 사망률은 80% 이상인 반면 여자의 사망률은 약 25%정도임을 확인할 수 있습니다 # **Pclass** 열에 대해서도 같은 작업을 수행해 보겠습니다. class_pivot = train.pivot_table(index="Pclass", values="Survived") class_pivot.plot.bar() plt.show() # 이번에는 그래프가 아닌 **pandas**의 자체 **table** 기능을 사용해서 객실 등급 데이터인 **Pclass**를 탐색해 보도록 하겠습니다. pd.crosstab( [train["Sex"], train["Survived"]], train["Pclass"], margins=True ).style.background_gradient(cmap="summer_r") # 여기에서 우리가 확인할 수 있는 정보들은 다음과 같습니다. # * 1등 객실 여성의 생존률은 91/94 = 97%, 3등 객실 여성의 생존률은 50% # * 남성의 경우에 1등 객실 생존률은 37%, 3등 객실은 13% # 즉 낮은 등급의 객실의 사망률이 높았다는 것으로, 좋은 자리값을 했다는 것을 볼 수 있습니다. # # 나이 열(변수)을 탐색하고 변환하기 # **Sex**와 **PClass** 열은 범주형(categorical) 특징이라고 부릅니다. 즉, 값은 몇 가지 분리된 옵션을 나타냅니다(예: 승객이 남성인지 여성인지 여부). train["Age"].describe() # **Age** 열은 **0.42**에서 **80.0**까지의 숫자를 포함하고 있습니다. 또 다른 주목할 점은 이 열에는 **714**개의 값이 있으며, 이전 수업에서 발견한 학습 데이터 세트의 **814**개의 행보다 적은 것을 알 수 있습니다. 이는 결측값이 일부 존재한다는 것을 나타냅니다. # 우리는 살아남은 사람들과 나이에 따라 다른 연령대의 사망자들을 시각적으로 비교하기 위해 두 개의 히스토그램을 생성할 수 있습니다. survived = train[train["Survived"] == 1] died = train[train["Survived"] == 0] survived["Age"].plot.hist(alpha=0.5, color="red", bins=50) died["Age"].plot.hist(alpha=0.5, color="blue", bins=50) plt.legend(["Survived", "Died"]) plt.show() # 간단하게 판단할게 아니지만, 일부 연령 범위에서는 더 많은 승객들이 생존한 것으로 나타납니다. 여기서 빨간 막대가 파란 막대보다 높은 경우입니다. # 이를 머신러닝 모델에 유용하게 만들기 위해, **pandas.cut()** 함수를 사용해 연속적인 특성을 범주형 특성으로 분할하여 구간으로 나눌 수 있습니다. # 위에서 나타난 바와 같이 **Age** 열에는 결측값이 포함되어 있어 이를 처리해줘야합니다. 또한, 수정한 내용은 테스트 데이터에도 적용해야합니다. # * **andas.fillna()** 메서드를 사용하여 모든 결측값을 -0.5로 채 # * **Age** 열을 6개 구간으로 나눔 # * **결측값**, -1에서 0 사이 # * **유아**, 0에서 5 사이 # * **어린이**, 5에서 12 사이 # * **청소년**, 12에서 18 사이 # * **젊은 성인**, 18에서 35 사이 # * **성인**, 35에서 60 사이 # * **노인**, 60에서 100 사이 # 아래 그림은 이 함수가 데이터를 어떻게 변환하는지를 보여줍니다. # ![image.png](attachment:1f6e09bb-1ace-4237-82c2-479f309eb1e5.png)![image.png](attachment:4958f057-55fb-4a9f-8300-573e4a21752e.png) # 아래 코드는 **process_age()** 함수를 사용하여 **train**과 **test** 데이터프레임의 **Age** 컬럼을 범주형으로 변환합니다. 이후 변환된 데이터를 이용하여 **pivot table**을 만들고 시각화합니다. # 여기서 **process_age()** 함수는 입력받은 데이터프레임(df)의 "**Age**" 열을 가공하여 "**Age_categories**" 열을 추가하는 기능을 합니다. def process_age(df, cut_points, label_names): df["Age"] = df["Age"].fillna(-0.5) df["Age_categories"] = pd.cut(df["Age"], cut_points, labels=label_names) return df cut_points = [-1, 0, 5, 12, 18, 35, 60, 100] label_names = [ "Missing", "Infant", "Child", "Teenager", "Young Adult", "Adult", "Senior", ] train = process_age(train, cut_points, label_names) test = process_age(test, cut_points, label_names) pivot = train.pivot_table(index="Age_categories", values="Survived") pivot.plot.bar() plt.show() # # 머신 러닝 위해 데이터 준비하기 # 우리는 다음 세 가지 열이 생존을 예측하는 데 유용할 수 있다고 식별했습니다. # * **성별** # * **Pclass** # * **나이**, 또는 더 구체적으로 새롭게 만든 **Age_categories** # 모델을 구축하기 전에 이러한 열을 기계 학습에 맞게 준비해야합니다. 대부분의 머신러 알고리즘은 텍스트 레이블을 이해하지 못하므로 값을 숫자로 변환해야합니다. # 또한 관계가 없는 경우 숫자 관계를 시사하지 않도록 주의해야합니다. **데이터 사전**은 **Pclass** 열의 값이 1, 2 및 3임을 알려줍니다. train["Pclass"].value_counts() # 각 승객 클래스에 대한 순서관계가 있긴 하지만, 숫자 1, 2, 3 간의 관계와 동일하지 않습니다. # 이 관계를 제거하기 위해 **Pclass**의 각 고유 값에 대해 더미 열을 만들 수 있습니다: # **pandas.get_dummies()** 함수를 사용하여 **Pclass**에 대한 더미 열을 생성할 수 있습니다. 이 함수는 위에서 보여준 열들을 생성해줍니다. # **Pclass** 열에 대한 더미 열을 만들고 원래 데이터 프레임에 다시 추가하는 함수를 만듭니다. 그리고 그 함수를 **Pclass, Sex, Age_categories** 열에 대해 **train** 및 **test** 데이터 프레임에 적용합니다. def create_dummies(df, column_name): dummies = pd.get_dummies(df[column_name], prefix=column_name) df = pd.concat([df, dummies], axis=1) return df for column in ["Pclass", "Sex", "Age_categories"]: train = create_dummies(train, column) test = create_dummies(test, column) # # 첫번째 머신러닝 모델 만들기 # 데이터가 준비되었으니 첫번째 모델을 훈련시킬 준비가 되었습니다. 첫번째 모델로는 **Logistic Regression**을 사용합니다. 이는 분류 작업을 할 때 보통 처음으로 사용되는 모델입니다. # 이를 위해 머신러닝을 수행하는 데 많은 도구를 제공하는 **scikit-learn** 라이브러리를 사용합니다. **scikit-learn** 워크플로우는 주로 4단계로 구성됩니다. # * 사용하고자 하는 머신러닝 모델을 생성합니다. # * 모델을 훈련 데이터에 맞춥니다. # * 모델을 사용하여 예측합니다. # * 예측 결과의 정확도를 평가합니다. # **scikit-learn**에서 모델은 모두 별도의 클래스로 구현되며, 첫번째 단계는 생성할 클래스를 식별하는 것입니다. 이번에는 **LogisticRegression** 클래스를 사용하고자 합니다. # 클래스를 import하고 LogisticRegression 객체를 생성합니다. # 마지막으로 LogisticRegression.fit() 메서드를 사용하여 모델을 학습합니다. .fit() 메서드는 두 개의 인자 X와 y를 받습니다. X는 모델을 학습시킬 feature의 2차원 배열(데이터프레임과 유사한 형태)이어야 하며, y는 예측하고자 하는 target(또는 예측하고자 하는 열)의 1차원 배열(시리즈와 유사한 형태)이어야 합니다. # 이제 create_dummies() 함수로 생성된 모든 열을 사용하여 모델을 훈련해보겠습니다 from sklearn.linear_model import LogisticRegression columns = [ "Pclass_1", "Pclass_2", "Pclass_3", "Sex_female", "Sex_male", "Age_categories_Missing", "Age_categories_Infant", "Age_categories_Child", "Age_categories_Teenager", "Age_categories_Young Adult", "Age_categories_Adult", "Age_categories_Senior", ] lr = LogisticRegression() lr.fit(train[columns], train["Survived"]) LogisticRegression( C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, max_iter=100, multi_class="ovr", n_jobs=1, penalty="l2", random_state=None, solver="liblinear", tol=0.0001, verbose=0, warm_start=False, ) # 머신 러닝 모델을 학습했습니다. 이제 모델의 정확도를 파악하기 위해 몇 가지 예측을 해야합니다. # 예측에 사용할 수 있는 테스트 데이터프레임이 있습지만 이 데이터 프레임에는 생존 컬럼이 없기 때문에 정확도를 파악하려면 Kaggle에 제출해야합니다. # 학습 데이터프레임에 맞추고 예측할 수도 있지만 이렇게하면 모델이 **오버핏**될 가능성이 높습니다. 즉, 학습한 데이터와 동일한 데이터에서 테스트하기 때문에 잘 수행되지만 새로운데이터에서 훨씬 안좋은 결과를 보여주는 경우가 많습니다. # 학습 데이터프레임을 두 개로 나눌 수 있습니다. # * 모델을 학습하는 데 사용할 부분 (보통 관측치의 80 %) # * 예측을 수행하고 모델을 테스트하는 데 사용할 부분 (보통 관측치의 20 %) # 머신 러닝에서 이러한 두 부분을 각각 훈련 및 테스트라고 부릅니다. 하지만 우리는 Kaggle에 제출할 예측을 위해 사용할 테스트 데이터프레임과의 혼란을 방지하기 위해 여기서부터는 이러한 유형의 최종 예측에 사용되는 데이터를 홀드아웃 데이터라고 부르도록 합시다. # **scikit-learn** 라이브러리에는 데이터를 나누기 위해 사용할 수있는 유용한 **model_selection.train_test_split()** 함수가 있습니다. **train_test_split()** 함수는 모든 훈련 및 테스트에 사용할 데이터를 포함하는 **X**와 **y** 두 매개 변수를 받고 **train_X, train_y, test_X, test_y** 네 가지 개체를 반환합니다. # **train_test_split()** 함수에서는 **test_size**와 **random_state**와 같은 추가적인 매개변수를 사용합니다. holdout = test # from now on we will refer to this # dataframe as the holdout data from sklearn.model_selection import train_test_split all_X = train[columns] all_y = train["Survived"] train_X, test_X, train_y, test_y = train_test_split( all_X, all_y, test_size=0.20, random_state=0 ) # # 예측 및 정확도 측정 # 이제 우리는 데이터를 훈련 세트와 테스트 세트로 나누었으므로, 훈련 세트에서 모델을 다시 피팅하고 그 모델을 사용하여 테스트 세트에서 예측을 할 수 있습니다. # 모델을 피팅한 후에는 **LogisticRegression.predict()** 메소드를 사용하여 예측을 할 수 있습니다. # **predict()** 메소드는 하나의 매개변수 X를 사용하며, 이는 우리가 예측하려는 관측치의 특징들로 이루어진 2차원 배열입니다. X는 우리가 모델을 피팅할 때 사용한 배열과 정확히 **동일한 특징**을 가져야 합니다. 이 메소드는 예측의 **1차원 배열**을 **반환**합니다. # 다음은 Kaggle의 Titanic 대회의 평가 섹션 "올바르게 예측된 승객의 비율"로 계산된 점수를 사용하여 정확도를 계산합니다. # 첫 번째 정확도 점수를 계산해봅시다. from sklearn.metrics import accuracy_score lr = LogisticRegression() lr.fit(train_X, train_y) predictions = lr.predict(test_X) accuracy = accuracy_score(test_y, predictions) print(accuracy) # # 교차 검증(Cross validation)을 사용하여 더 정확한 오류 측정 # 모델의 정확도 점수는 20%의 테스트 세트에 대해 81.0%입니다. 이 데이터셋이 꽤 작기 때문에 모델이 과적합되어 있어서 전혀 보지 못한 데이터에서는 잘 동작하지 않을 가능성이 높습니다. # 때문에 교차 검증 기술을 사용하여 데이터를 다른 분할로 학습 및 테스트하고 정확도 점수를 평균화할 수 있습니다. # 가장 일반적인 교차 검증 방법은 **k-fold 교차 검증**입니다. **Fold** 는 모델을 학습하는 각 반복을 의미하고, **k**는 폴드의 수를 의미합니다. # **ross_val_score()** 함수는 각 **fold**의 **정확도 점수**들을 **numpy ndarray** 형태로 반환합니다. **cross_val_score()** 함수는 다양한 교차 검증 기술과 평가 지표를 사용할 수 있지만, 기본적으로는 **k-fold 검증**과 **정확도 점수**를 사용합니다. # 다음 코드는 **cross_val_score()** 함수를 사용하여 **교차 검증**을 수행하고, 만들어진 점수들의 **평균을 계산**합니다. from sklearn.model_selection import cross_val_score lr = LogisticRegression() scores = cross_val_score(lr, all_X, all_y, cv=10) scores.sort() accuracy = scores.mean() print(scores) print(accuracy) # # 새로운 데이터에 대한 예측 생성 # 우리가 수행한 k-fold 검증 결과, **76.4%** 부터 **87.6%** 까지 범위가 있는걸로 보아, 정확도 숫자가 각각의 폴드마다 다르다는 것을 볼 수 있습니다. # 우리의 **평균 정확도 점수**는 **80.2%** 였으며, 이는 간단한 **train/test 분할**에서 얻은 **81.0%** 와 크게 차이 나지 않습니다. 그러나 항상 모델에서 얻는 오류 메트릭이 정확한지 확인하기 위해 교차 검증을 사용해야 합니다. lr = LogisticRegression() lr.fit(all_X, all_y) holdout_predictions = lr.predict(holdout[columns]) # # 서브레슨 파일 생성하기 # Titanic 대회 평가 페이지에서는 다음과 같이 **sublesson** 파일에 대한 요구 사항을 명시하고 있습니다: # "**PassengerId**"와 "**Survived**" 두 개의 열만 포함하며, 헤더 행을 포함해 정확히 418개의 항목이 있어야 합니다. "**PassengerId**"는 어떤 순서로든 정렬할 수 있습니다. # 파일은 정확히 2개의 열을 가져야 합니다: # * PassengerId (어떤 순서로든 정렬됨) # * Survived (1은 생존, 0은 사망을 나타냄) # 앞서 본 **holdout_predictions**와 **holdout dataframe**의 **PassengerId** 열을 포함하는 새로운 데이터프레임을 만들어야 합니다. 이 두 데이터는 원래의 순서를 유지하므로 데이터를 일치시키는 데 걱정할 필요가 없습니다. # 이를 위해, **pandas.DataFrame()** 함수에 **딕셔너리**를 전달할 수 있습니다. holdout_ids = holdout["PassengerId"] sublesson_df = {"PassengerId": holdout_ids, "Survived": holdout_predictions} sublesson = pd.DataFrame(sublesson_df) # 마지막으로, **DataFrame.to_csv()** 메소드를 사용하여 데이터프레임을 **CSV 파일**로 저장합니다. index 매개변수가 False로 설정되어 있는지 확인해야합니다. 그렇지 않으면 CSV에 추가 열이 추가됩니다. sublesson.to_csv("sublesson.csv", index=False)
# ***1D ARRAY*** import numpy as np a = np.array([2, 3, 8, 5]) a # ***IMPLICIT CONVERSION*** b = np.array([1, 2, 3, 4.5]) b # ***USING ARANGE METHOD*** c = np.arange(10) c c = np.arange(10, 20, 2) c # ***MEMORY MANAGEMENT*** help(np.array) d = np.array([1, 2, 3, 4], dtype=np.int8) d d = np.array([1, 2, 300, 4], dtype=np.int16) d # ***USING LINSPACE METHODS*** e = np.linspace(10, 20, 5) e # ***ATTRIBUTES*** a.ndim a.shape # **2D ARRAY** a = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) a # ***ATTRIBUTES*** a.ndim a.shape # ***one's methods*** import numpy as np a = np.ones([3, 5]) a # ***ZEROS METHODS*** b = np.zeros([2, 3]) b # ***EYE METHODS*** c = np.eye(3) c # ***DIAGONAL METHODS*** d = np.diag([1, 2, 3]) d # ***EXTRACTING DIAGONALS*** np.diag(d) # **3D ARRAY** import numpy as np a = np.array([[311, 312, 313], [321, 322, 323], [331, 332, 333]]) a
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from io import StringIO import os import os.path import glob as glob import warnings # Now we will do EDA(Exploratory Data Analysis) def get_sensor_names_from_features(feature_names): feat_sensor_names = np.array([None for feat in feature_names]) for fi, feat in enumerate(feature_names): if feat.startswith("raw_acc"): feat_sensor_names[fi] = "Acc" pass elif feat.startswith("proc_gyro"): feat_sensor_names[fi] = "Gyro" pass elif feat.startswith("raw_magnet"): feat_sensor_names[fi] = "Magnet" pass elif feat.startswith("watch_acceleration"): feat_sensor_names[fi] = "WAcc" pass elif feat.startswith("watch_heading"): feat_sensor_names[fi] = "Compass" pass elif feat.startswith("location"): feat_sensor_names[fi] = "Loc" pass elif feat.startswith("location_quick_features"): feat_sensor_names[fi] = "Loc" pass elif feat.startswith("audio_naive"): feat_sensor_names[fi] = "Aud" pass elif feat.startswith("audio_properties"): feat_sensor_names[fi] = "AP" pass elif feat.startswith("discrete"): feat_sensor_names[fi] = "PS" pass elif feat.startswith("lf_measurements"): feat_sensor_names[fi] = "LF" pass else: raise ValueError("!!! Unsupported feature name: %s" % feat) pass return feat_sensor_names def validate_column_names_are_consistent(old_column_names, new_column_names): if len(old_column_names) != len(new_column_names): raise ValueError("!!! Inconsistent number of columns.") for ci in range(len(old_column_names)): if old_column_names[ci] != new_column_names[ci]: raise ValueError( "!!! Inconsistent column %d) %s != %s" % (ci, old_column_names[ci], new_column_names[ci]) ) pass return def get_label_pretty_name(label): if "FIX_walking" in label: return "Walking" if "FIX_running" in label: return "Running" if "LOC_main_workplace" in label: return "At main workplace" if "OR_indoors" in label: return "Indoors" if "OR_outside" in label: return "Outside" if "LOC_home" in label: return "At home" if "FIX_restaurant" in label: return "At a restaurant" if "OR_exercise" in label: return "Exercise" if "LOC_beach" in label: return "At the beach" if "OR_standing" in label: return "Standing" if "WATCHING_TV" in label: return "Watching TV" else: label.replace("label:", "") if label.endswith("_"): label = label[:-1] + ")" pass label = label.replace("__", " (").replace("_", " ") label = label[0] + label[1:].lower() label = label.replace("i m", "I'm") return label def get_phone_label(label): if label == "FIX_walking": return "Walking" if label == "FIX_running": return "Running" if label == "LOC_main_workplace": return "At main workplace" if label == "OR_indoors": return "Indoors" if label == "OR_outside": return "Outside" if label == "LOC_home": return "At home" if label == "FIX_restaurant": return "At a restaurant" if label == "OR_exercise": return "Exercise" if label == "LOC_beach": return "At the beach" if label == "OR_standing": return "Standing" if label == "WATCHING_TV": return "Watching TV" if label.endswith("_"): label = label[:-1] + ")" pass label = label.replace("__", " (").replace("_", " ") label = label[0] + label[1:].lower() label = label.replace("i m", "I'm") # if lable is phone related then return the label if "Phone" not in label: return label else: return False def get_sensor_names_from_features(feature_names): feat_sensor_names = np.array([None for feat in feature_names]) for fi, feat in enumerate(feature_names): if feat.startswith("raw_acc"): feat_sensor_names[fi] = "Acc" pass elif feat.startswith("proc_gyro"): feat_sensor_names[fi] = "Gyro" pass elif feat.startswith("raw_magnet"): feat_sensor_names[fi] = "Magnet" pass elif feat.startswith("watch_acceleration"): feat_sensor_names[fi] = "WAcc" pass elif feat.startswith("watch_heading"): feat_sensor_names[fi] = "Compass" pass elif feat.startswith("location"): feat_sensor_names[fi] = "Loc" pass elif feat.startswith("location_quick_features"): feat_sensor_names[fi] = "Loc" pass elif feat.startswith("audio_naive"): feat_sensor_names[fi] = "Aud" pass elif feat.startswith("audio_properties"): feat_sensor_names[fi] = "AP" pass elif feat.startswith("discrete"): feat_sensor_names[fi] = "PS" pass elif feat.startswith("lf_measurements"): feat_sensor_names[fi] = "LF" pass else: raise ValueError("!!! Unsupported feature name: %s" % feat) pass return feat_sensor_names def get_features_from_data(users_df): for ci, col in enumerate(users_df.columns): if col.startswith("label:"): first_label_ind = ci break pass feature_names = users_df.columns[1:first_label_ind] return np.array(feature_names) def project_features_to_selected_sensors(feature_names, sensors_to_use): feature_names_arr = [] for sensor in sensors_to_use: if sensor == "Acc": for feature in feature_names: # print (type(feature)) if feature.startswith("raw_acc"): feature_names_arr.append(feature) elif sensor == "WAcc": for feature in feature_names: if feature.startswith("watch_acceleration"): feature_names_arr.append(feature) elif sensor == "Gyro": for feature in feature_names: if feature.startswith("proc_gyro"): feature_names_arr.append(feature) elif sensor == "Magnet": for feature in feature_names: if feature.startswith("raw_magnet"): feature_names_arr.append(feature) elif sensor == "Compass": for feature in feature_names: if feature.startswith("watch_heading"): feature_names_arr.append(feature) elif sensor == "Loc": for feature in feature_names: if feature.startswith("location"): feature_names_arr.append(feature) elif sensor == "Aud": for feature in feature_names: if feature.startswith("audio_naive"): feature_names_arr.append(feature) elif sensor == "AP": for feature in feature_names: if feature.startswith("audio_properties"): feature_names_arr.append(feature) elif sensor == "PS": for feature in feature_names: if feature.startswith("discrete"): feature_names_arr.append(feature) elif sensor == "LF": for feature in feature_names: if feature.startswith("lf_measurements"): feature_names_arr.append(feature) return feature_names_arr def estimate_standardization_params(X): with warnings.catch_warnings(): warnings.simplefilter("ignore", category=RuntimeWarning) mean_vec = np.nanmean(X, axis=0) std_vec = np.nanstd(X, axis=0) return (mean_vec, std_vec) def standardize_features(X, mean_vec, std_vec): # Subtract the mean, to centralize all features around zero: X_centralized = X - mean_vec.reshape((1, -1)) # Divide by the standard deviation, to get unit-variance for all features: # * Avoid dividing by zero, in case some feature had estimate of zero variance normalizers = np.where(std_vec > 0.0, std_vec, 1.0).reshape((1, -1)) X_standard = X_centralized / normalizers return X_standard def get_label_names(users_df): # Search for the column of the first label: for ci, col in enumerate(users_df.columns): if col.startswith("label:"): first_label_ind = ci break pass label_names = np.array(users_df.columns[first_label_ind:-1]) for li, label in enumerate(label_names): # In the CSV the label names appear with prefix 'label:', but we don't need it after reading the data: assert label.startswith("label:") # label_names[li] = label.replace('label:',''); pass return list(label_names) def print_accuracy_repoprt(predictions, y_test): accuracy = np.mean(predictions == y_test) # Count occorrences of true-positive, true-negative, false-positive, and false-negative: tp = np.sum(np.logical_and(predictions, y_test)) tn = np.sum(np.logical_and(np.logical_not(predictions), np.logical_not(y_test))) fp = np.sum(np.logical_and(predictions, np.logical_not(y_test))) fn = np.sum(np.logical_and(np.logical_not(predictions), y_test)) # Sensitivity (=recall=true positive rate) and Specificity (=true negative rate): sensitivity = float(tp) / (tp + fn) specificity = float(tn) / (tn + fp) # Balanced accuracy is a more fair replacement for the naive accuracy: balanced_accuracy = (sensitivity + specificity) / 2.0 # Precision: # Beware from this metric, since it may be too sensitive to rare labels. # In the ExtraSensory Dataset, there is large skew among the positive and negative classes, # and for each label the pos/neg ratio is different. # This can cause undesirable and misleading results when averaging precision across different labels. precision = float(tp) / (tp + fp) accuracy_list = [accuracy, sensitivity, specificity, balanced_accuracy, precision] print("-" * 10) print("Accuracy*: %.2f" % accuracy) print("Sensitivity (TPR): %.2f" % sensitivity) print("Specificity (TNR): %.2f" % specificity) print("Balanced accuracy: %.2f" % balanced_accuracy) print("Precision**: %.2f" % precision) print("-" * 10) return accuracy_list import pandas as pd # sample_user=pd.read_csv('/kaggle/input/exrrasensory-datase/user1.features_labels.csv/user1.features_labels.csv') sample_user = pd.read_csv( "/kaggle/input/exrrasensory-dataset/1538C99F-BA1E-4EFB-A949-6C7C47701B20.features_labels.csv/1538C99F-BA1E-4EFB-A949-6C7C47701B20.features_labels.csv" ) def prepare_X_Y_for_ML(users_df): # prepare data for machine learning # 1. get all features available feature_names = get_features_from_data(users_df) # 2. get the features sensors feat from features feat_sensor_names = get_sensor_names_from_features(feature_names) # 3. select the sensors to use in the machine learning # sensors_to_use = ['Acc','WAcc']; # 4. get Data accoring to selected sensors with feaures; # feature_names_arr = [] # feature_names_arr = project_features_to_selected_sensors(feature_names, sensors_to_use) X = users_df[feature_names] # 5. stanrdize the features substracting the mean value and dividing by standard deviation # so that all their values will be roughly in the same range: (mean_vec, std_vec) = estimate_standardization_params(X) X = standardize_features(X, mean_vec, std_vec) X[np.isnan(X)] = 0.0 # 6. X is ready for training # 7. Prepare Y target lables for training label_names = get_label_names(users_df) Y = users_df[label_names] # 8. clean nan values and converted to binary labels # Read the binary label values, and the 'missing label' indicators: trinary_labels_mat = users_df[label_names] # This should have values of either 0., 1. or NaN M = np.isnan(trinary_labels_mat) # M is the missing label matrix Y = np.where(M, 0, trinary_labels_mat) > 0.0 # Y is the label matrix y_df = pd.DataFrame(Y) y_df.rename(columns=dict(enumerate(label_names, 0)), inplace=True) return (X, y_df, M, feature_names, label_names) sample_user.info() # process the data to get features data and context label data (X, Y, M, feature_names, label_names) = prepare_X_Y_for_ML(sample_user) XY = pd.concat([X, Y], axis=1, sort=False) XY.head() for column in sample_user.columns: print(column) Y Y # finding relation between labels corr = Y[label_names].corr().sort_values(by=label_names, ascending=False) corr # removing nan corr.dropna(how="all") # showing heatmap for correlation corr.dropna(how="all").style.background_gradient(cmap="coolwarm", axis=None) n_examples_per_label = np.sum(np.array(Y), axis=0) labels_and_counts = zip(label_names, n_examples_per_label) sorted_labels_and_counts = sorted( labels_and_counts, reverse=True, key=lambda pair: pair[1] ) print("number of examples for every context label:") print("-" * 20) i = 0 label_x_arr = [] label_y_arr = [] for label, count in sorted_labels_and_counts: i = i + 1 label_x_arr.append(label) label_y_arr.append(count) print(" %i : %s - %d minutes" % (i, label, count)) pass labels_df = pd.DataFrame(sorted_labels_and_counts) labels_df.rename(columns={0: "label"}, inplace=True) labels_df.rename(columns={1: "count"}, inplace=True) labels_df.plot( x="label", y="count", kind="bar", legend=False, grid=True, figsize=(20, 8) ) labels_df = pd.DataFrame(sorted_labels_and_counts) labels_df.rename(columns={0: "label"}, inplace=True) labels_df.rename(columns={1: "count"}, inplace=True) labels_df.plot( x="label", y="count", kind="bar", legend=False, grid=True, figsize=(20, 8) ) feat_sensor_names = get_sensor_names_from_features(feature_names) print(pd.unique(feat_sensor_names)) features_of_selected_sensors = project_features_to_selected_sensors( feature_names, ["Acc", "WAcc"] ) features_of_selected_sensors # We will implement two Machine learning Models: # 1.Logistic Regression # 2.KNN Model import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from io import StringIO import os import os.path import glob as glob import warnings from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import classification_report from sklearn.linear_model import LinearRegression from sklearn.pipeline import Pipeline from sklearn.metrics import accuracy_score from sklearn.multiclass import OneVsRestClassifier from skmultilearn.problem_transform import BinaryRelevance from sklearn.naive_bayes import GaussianNB from skmultilearn.problem_transform import ClassifierChain from sklearn import metrics X_train, X_test, y_train, y_test = train_test_split( X[features_of_selected_sensors], Y["label:FIX_walking"], test_size=0.30, random_state=42, ) logmodel = LogisticRegression(max_iter=200) logmodel.fit(X_train, y_train) predictions = logmodel.predict(X_test) logmodel_results = print_accuracy_repoprt(predictions, y_test) # Trying KNN MOdel from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaler.fit(XY[features_of_selected_sensors]) scaled_features = scaler.transform(XY[features_of_selected_sensors]) df_feat = pd.DataFrame(scaled_features, columns=features_of_selected_sensors) df_feat.head() X_train, X_test, y_train, y_test = train_test_split( scaled_features, XY["label:FIX_walking"], test_size=0.30, random_state=42 ) from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(n_neighbors=1) knn.fit(X_train, y_train) pred = knn.predict(X_test) from sklearn.metrics import classification_report, confusion_matrix print(confusion_matrix(y_test, pred)) print(classification_report(y_test, pred)) knn_results = print_accuracy_repoprt(pred, y_test) # Choosing a good k value using elbow method error_rate = [] # Will take some time for i in range(1, 40): knn = KNeighborsClassifier(n_neighbors=i) knn.fit(X_train, y_train) pred_i = knn.predict(X_test) error_rate.append(np.mean(pred_i != y_test)) plt.figure(figsize=(10, 6)) plt.plot( range(1, 40), error_rate, color="blue", linestyle="dashed", marker="o", markerfacecolor="red", markersize=10, ) plt.title("Error Rate vs. K Value") plt.xlabel("K") plt.ylabel("Error Rate") knn = KNeighborsClassifier(n_neighbors=17) knn.fit(X_train, y_train) pred = knn.predict(X_test) print("WITH K=17") print("\n") print(confusion_matrix(y_test, pred)) print("\n") print(classification_report(y_test, pred)) knn_results = print_accuracy_repoprt(pred, y_test) # we have shown for label Walking that KNN gives much better results for k=17 # Now we will do Multilabel Classification arr_labels = [ "label:FIX_walking", "label:LYING_DOWN", "label:LOC_home", "label:LOC_main_workplace", "label:SITTING", "label:OR_standing", "label:SLEEPING", ] mlp_logmodel_results = list() for label in arr_labels: X_train, X_test, y_train, y_test = train_test_split( X[features_of_selected_sensors], Y[label], test_size=0.30, random_state=42 ) logmodel = LogisticRegression(max_iter=200) logmodel.fit(X_train, y_train) predictions = logmodel.predict(X_test) print(classification_report(y_test, predictions)) mlp_logmodel_results.append(print_accuracy_repoprt(predictions, y_test))
# # Agenda of the meeting # * How recent developments in AI could impact us as software engineers? # * What exactly goes behind the scenes in a simple AI/ML Model? how does it work? # * Intro to Natural Language Processing, what are LLMs, How ChatGPT works? # # Recents Advancements in NLP # # * All of us have beeing seeing the staggering advancements in Natural Language Processing field recently with ChatGPT and # big LLMs(Large Language Models) that power ChatGPT and similar things. # # * Why should we as software engineers should care? # ## My Own experience With GPT # ## Writing JDBC Multithreaded code for some Mysql analysis. # ![Screenshot 2023-04-10 at 2.49.47 PM.png](attachment:1f577ad9-8f9a-4e0b-bae0-c0aa2f31c549.png) # ## Generating mock data using sample tables for the same. # ![Screenshot 2023-04-10 at 2.54.10 PM.png](attachment:b7082a8a-de89-4237-a2b9-0fef4556667a.png) # # What would have taken normally 30 - 40 mins, took me less than 5 mins. # Ofcourse I have to tweak the code to make some changes here and there. 1 bug was there. I fixed it. still a huge improvement in productivity. # ## This is just GPT-3.5. GPT-4 is much much better at coding and logical reasoning. # GPT-4 can solve full fledged problem statements. Normally what would take few days or weeks, might be possible in few hours. # ## What this means for us.(Just based on my observation) # 1. If we are already skilled at something, then tools like ChatGPT might be a big productivity boost. # 2. These tools allow us to try more things, try more projects, since time taken to implement a new project comes down. # 3. Many times it generates code with minor bugs/errors, so we have to be cautious while using it. # ### What chatGPT and code generation tools are good at, # * Generating code for simple use cases. # * Generating boiler plate code. # * Given a code snippet, explain the code in English. # * We can use it as a chatbot for any API/framework documentation. # * Generating Unit tests. # * Writing Shell scripts for trivial tasks. # ### What chatGPT and code generation tools are not good at, # * Proper designing and structuring of code. # * Deciding what to build(ultimately we have to decide and start thinking more like PMs). # # Intro to Machine Learning Basics # What do we mean by Machine Learning? AI is an umbrella term that covers a lot of topics and ML is the core part of it. so we will cover ML basics here. # > Input --> Algorithm --> output # ### Traditional Programming # > We provide - Input, algorithm # > We get - Output # ### Machine Learning # > We provide - Input, Output (As training dataset) # > We get - algorithm (i.e. the computer itself will learn what algorithm to use.) # Based on the learned algorithm, the computer will act on inputs it has not yet seen. from transformers import AutoImageProcessor, ResNetForImageClassification import torch from datasets import load_dataset from matplotlib import pyplot as plt dataset = load_dataset("huggingface/cats-image") image = dataset["test"]["image"][0] plt.imshow(image, interpolation="nearest") plt.show() processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50") model = ResNetForImageClassification.from_pretrained("microsoft/resnet-50") inputs = processor(image, return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits # model predicts one of the 1000 ImageNet classes predicted_label = logits.argmax(-1).item() print(model.config.id2label[predicted_label])
# Since it is getting harder to update this every week and also some people might need it more often than a week, I have put together everything into python code. # Please use the below code to pull the data from the websites mentioned in the data overview section. # All the data credits go to the corresponding owners. Please make sure you mention their names if you use it somewhere. # **Code to get data from coin market cap:** # Please uncomment the "get_data" function in the last line run it in local # -*- coding: utf-8 -*- import re import sys import csv import time import random import requests from datetime import date from bs4 import BeautifulSoup end_date = str(date.today()).replace("-", "") base_url = ( "https://coinmarketcap.com/currencies/{0}/historical-data/?start=20130428&end=" + end_date ) currency_name_list = [ "bitcoin", "ethereum", "ripple", "bitcoin-cash", "nem", "litecoin", "dash", "ethereum-classic", "iota", "neo", "stratis", "monero", "waves", "bitconnect", "omisego", "qtum", "numeraire", ] def get_data(currency_name): print("Currency : ", currency_name) url = base_url.format(currency_name) html_response = requests.get(url).text.encode("utf-8") soup = BeautifulSoup(html_response, "html.parser") table = soup.find_all("table")[0] elements = table.find_all("tr") with open("./{0}_price.csv".format(currency_name.replace("-", "_")), "w") as ofile: writer = csv.writer(ofile) for element in elements: writer.writerow(element.get_text().strip().split("\n")) time.sleep(1) if __name__ == "__main__": for currency_name in currency_name_list: # get_data(currency_name) pass # **Code to get bitcoin dataset:** # Code to get the features from blockchain info site. Please uncomment the function call in local to run. import time import requests import pandas as pd urls = [ "https://blockchain.info/charts/market-price", "https://blockchain.info/charts/total-bitcoins", "https://blockchain.info/charts/market-cap", "https://blockchain.info/charts/trade-volume", "https://blockchain.info/charts/blocks-size", "https://blockchain.info/charts/avg-block-size", "https://blockchain.info/charts/n-orphaned-blocks", "https://blockchain.info/charts/n-transactions-per-block", "https://blockchain.info/charts/median-confirmation-time", "https://blockchain.info/charts/hash-rate", "https://blockchain.info/charts/difficulty", "https://blockchain.info/charts/miners-revenue", "https://blockchain.info/charts/transaction-fees", "https://blockchain.info/charts/cost-per-transaction-percent", "https://blockchain.info/charts/cost-per-transaction", "https://blockchain.info/charts/n-unique-addresses", "https://blockchain.info/charts/n-transactions", "https://blockchain.info/charts/n-transactions-total", "https://blockchain.info/charts/n-transactions-excluding-popular", "https://blockchain.info/charts/n-transactions-excluding-chains-longer-than-100", "https://blockchain.info/charts/output-volume", "https://blockchain.info/charts/estimated-transaction-volume", "https://blockchain.info/charts/estimated-transaction-volume-usd", ] suffix_to_add = "?timespan=8years&format=csv" def get_btc_data(): counter = 0 for url in urls: header = ["Date", "btc_" + url.split("/")[-1].replace("-", "_")] print(header[-1]) temp_df = pd.read_csv(url + suffix_to_add, header=None, names=header) if counter == 0: df = temp_df.copy() else: df = pd.merge(df, temp_df, on="Date", how="left") print(temp_df.shape, df.shape) counter += 1 time.sleep(1) df.to_csv("../input_v9/bitcoin_dataset.csv", index=False) # get_btc_data() # **Code to get Ethereum dataset from EtherScan:** # Please find below the code to get ethereum related info from etherscan.io. Please uncomment the last line in local and run. import time import requests import pandas as pd urls = [ "https://etherscan.io/chart/etherprice", "https://etherscan.io/chart/tx", "https://etherscan.io/chart/address", "https://etherscan.io/chart/marketcap", "https://etherscan.io/chart/hashrate", "https://etherscan.io/chart/difficulty", "https://etherscan.io/chart/blocks", "https://etherscan.io/chart/uncles", "https://etherscan.io/chart/blocksize", "https://etherscan.io/chart/blocktime", "https://etherscan.io/chart/gasprice", "https://etherscan.io/chart/gaslimit", "https://etherscan.io/chart/gasused", "https://etherscan.io/chart/ethersupplygrowth", "https://etherscan.io/chart/ens-register", ] suffix_to_add = "?output=csv" def get_ether_data(): counter = 0 for url in urls: header = ["Date", "TimeStamp", "eth_" + url.split("/")[-1].replace("-", "_")] print(header[-1]) headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.190 Safari/537.36", } with open("temp.csv", "w") as ofile: response = requests.get(url + suffix_to_add, headers=headers).text ofile.write(response) temp_df = pd.read_csv("temp.csv") col_names = temp_df.columns.tolist() if col_names[-1] == "Value" or col_names[-1] == "Value (Wei)": col_names = col_names[:2] + [header[-1]] temp_df.columns = col_names else: temp_df = temp_df[["Date(UTC)", "UnixTimeStamp", "Supply", "MarketCap"]] temp_df.columns = [ "Date(UTC)", "UnixTimeStamp", "eth_supply", "eth_marketcap", ] if counter == 0: df = temp_df.copy() else: df = pd.merge(df, temp_df, on=["Date(UTC)", "UnixTimeStamp"], how="left") print(temp_df.shape, df.shape) counter += 1 time.sleep(1) df.to_csv("../input_v9/bitcoin_dataset.csv", index=False) # get_ether_data()
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import matplotlib.pyplot as plt x = [5, 7, 8, 7, 2, 17, 2, 9, 4, 11, 12, 9, 6] y = [99, 86, 87, 88, 111, 86, 103, 87, 94, 78, 77, 85, 86] plt.scatter(x, y) plt.show() import numpy import matplotlib.pyplot as plt x = numpy.random.normal(5.0, 1.0, 1000) y = numpy.random.normal(10.0, 2.0, 1000) plt.scatter(x, y) plt.show()
# # CUSTOMER BEHAVIOR ANALYSIS # Customer behavior analysis is a vital process that can provide businesses with valuable insights into their customers' behaviors and preferences. In this project, I analized the CDNOW dataset to determine customer buying patterns based on Recency, Frequency, and Monetary Value (RFM). # **-** Using Python, I performed RFM analysis to determine each customer's Recency, Frequency, and Monetary Value based on their transaction history. This analysis will help us understand how recently and how often customers make purchases, as well as the average amount they spend. # **-** Next, I used the K-Means algorithm to segment customers into groups based on their RFM scores. This segmentation will help identify distinct customer groups and tailor marketing strategies and promotions to each group's specific needs and preferences. # **-** I also developed a machine learning model to predict the probability of customer purchase and the likely purchase amount using XGBRegressor and XGBClassifier. By predicting customer behavior, businesses can better understand their customers' needs and preferences and adjust their marketing strategies accordingly. # **-** Finally, I conducted cohort analysis to determine customer lifetime value (CLV) and measure the effectiveness of our marketing strategies. By analyzing customer behavior over time, we can gain insights into how our customer base changes and adapt our strategies to meet their evolving needs. # Overall, this project will provide valuable insights into customer behavior, allowing businesses to improve customer engagement, retention, and revenue. # # import relevant packages import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px import plotly.graph_objs as go import warnings warnings.filterwarnings("ignore") from sklearn import preprocessing import joblib import plydata.cat_tools as cat import plotnine as pn from xgboost import XGBClassifier, XGBRegressor from sklearn.model_selection import GridSearchCV from sklearn.preprocessing import StandardScaler from sklearn.cluster import KMeans from sklearn.decomposition import PCA df = pd.read_csv("cdnow.csv") # ## Customer Segmentation # We segment the customers into groups of certain similarities to get a broad view of customers spread. Then we can begin to answer some business questions df = df.assign(date=lambda x: pd.to_datetime(x["date"])).dropna() df.info() df.drop("Unnamed: 0", axis=1, inplace=True) # ### RFM Analysis # RFM analysis is a marketing technique used to analyze customer behavior based on three factors: # Recency, Frequency, and Monetary value of purchases. # It helps businesses identify their most valuable customers and design targeted marketing # strategies. # make recency(OrderDate) from behind data max_date = df["date"].max() recency_features_df = ( df[["customer_id", "date"]] .groupby("customer_id") .apply(lambda x: (x["date"].max() - max_date) / pd.to_timedelta(1, "day")) .to_frame() .set_axis(["recency"], axis=1) ) # Make price (MonetaryValue) features from lower data price_feature_df = ( df[["customer_id", "date", "price"]] .groupby("customer_id") .aggregate({"price": "sum"}) .set_axis(["money_value"], axis=1) ) # Make Frequency (count) features from lower data frequency_features_df = ( df[["customer_id", "date"]] .groupby("customer_id") .count() .set_axis(["frequency"], axis=1) ) # Combine features rfm_df = pd.concat( [recency_features_df, frequency_features_df, price_feature_df], axis=1 ) rfm_df.head(3) # ### K-Means Clustering # scale the dataframe scaler = StandardScaler() scaled_df = scaler.fit_transform(rfm_df) # First, we run a range of different K-values to find the optimal K inertia = [] val_range = range(1, 11) for i in val_range: kmean = KMeans(n_clusters=i) kmean.fit(pd.DataFrame(scaled_df)) inertia.append(kmean.inertia_) inertia plt.plot(val_range, inertia, "bo-") plt.xlabel("K-Values") plt.ylabel("Inertia") plt.title("The Elbow Method") plt.show() # Initializes a KMeans object with optimum K-value (K=5) kmeans = KMeans(n_clusters=4, random_state=42) kmeans.fit_predict(scaled_df) labels = kmeans.labels_ kmeans.inertia_ # Let's plot view the clusters using PCA. # We use PCA to reduce the number of dimensions,i.e, the number of columns down to two. pca = PCA(n_components=2) principal_components = pca.fit_transform(scaled_df) pca_df = pd.DataFrame(data=principal_components, columns=["PCA1", "PCA2"]) pca_df pca_df["cluster"] = labels pca_df # plot the clusters plt.figure(figsize=(8, 4)) ax = sns.scatterplot( x="PCA1", y="PCA2", hue="cluster", data=pca_df, palette=["red", "green", "blue", "black"], s=50, ) plt.title("Clustering using K-Means Algorithm") plt.show() # add the the labels to rfm_df to see each customer and their corresponding label/group. clustered_df = rfm_df.copy() clustered_df["cluster"] = labels # check the mean of each feature for each group clustered_df.groupby("cluster").mean() def get_status(row): if row["cluster"] == 0: return "Losing" elif row["cluster"] == 1: return "average" elif row["cluster"] == 2: return "loyal" else: return "VIP" clustered_df["Cus_status"] = clustered_df.apply(get_status, axis=1) clustered_df = clustered_df.reset_index() clustered_df.head(3) clustered_df["Cus_status"].value_counts() sns.countplot(x="Cus_status", data=clustered_df) plt.show() # **Now we have identified different groups to which each customer belong and can therefore develop specific marketing strategies suitable for each group.** # **However, We can further refine our dataset to obtain specific insights such as identifying the customer with the highest spend probability, predicting a customer's potential spending amount, recognizing missed opportunities, identifying customers who have made recent purchases but are unlikely to make more. # These insights can support further investigations that generate meaningful information crucial for creating a successful and targeted marketing campaign.** # ## Machine learning # ##### -What the customers spend in the next 90 days?(regression) # ##### -What is the probability of a customer to make a purchase in the next 90 days?(classification) df.head() df.info() # visualize: individual customer purchases ids = np.random.choice(df["customer_id"], 20) # selected_ids = ids[0:12] # selected_ids ids cust_id_subset_df = ( df[df["customer_id"].isin(ids)].groupby(["customer_id", "date"]).sum().reset_index() ) # create the plot ( pn.ggplot( data=cust_id_subset_df, mapping=pn.aes(x="date", y="price", group="customer_id") ) + pn.geom_line() + pn.geom_point() + pn.facet_wrap("customer_id") + pn.scale_x_date(date_breaks="2 year", date_labels="%Y") ) n_days = 90 max_order_date = df["date"].max() cutoff = max_order_date - pd.to_timedelta(n_days, unit="d") temporal_behind_df = df[df["date"] <= cutoff] temporal_ahead_df = df[df["date"] >= cutoff] temporal_ahead_df.head() # make target from higher data targets_df = ( temporal_ahead_df.drop("quantity", axis=1) .groupby("customer_id") .sum() .rename({"price": "spend_90_total"}, axis=1) .assign(spend_90_flag=1) ) targets_df.head() # make recency(OrderDate) from behind data max_date = temporal_behind_df["date"].max() recency_features_df = ( temporal_behind_df[["customer_id", "date"]] .groupby("customer_id") .apply(lambda x: (x["date"].max() - max_date) / pd.to_timedelta(1, "day")) .to_frame() .set_axis(["recency"], axis=1) ) # recency_features_df.head() # Make Frequency (count) features from lower data frequency_features_df = ( temporal_behind_df[["customer_id", "date"]] .groupby("customer_id") .count() .set_axis(["frequency"], axis=1) ) # Make price (MonetaryValue) features from lower data price_feature_df = ( temporal_behind_df[["customer_id", "date", "price"]] .groupby("customer_id") .aggregate({"price": ["sum", "mean"]}) .set_axis(["Sales_sum", "Sales_mean"], axis=1) ) # Combine features Features_df = ( pd.concat([recency_features_df, frequency_features_df, price_feature_df], axis=1) .merge(targets_df, left_index=True, right_index=True, how="left") .fillna(0) ) Features_df.head() X = Features_df[["recency", "frequency", "Sales_sum", "Sales_mean"]] # nwxt 90-days y_spend = Features_df["spend_90_total"] xgb_reg_spec2 = XGBRegressor(objective="reg:squarederror", random_state=123) param_grid = {"learning_rate": [0.01, 0.1, 0.3, 0.5]} xgb_reg_model2 = GridSearchCV( estimator=xgb_reg_spec2, param_grid=param_grid, scoring="neg_mean_absolute_error", cv=5, n_jobs=-1, ) xgb_reg_model2.fit(X, y_spend) # Print the best parameters and best score print(f"Best parameters: {xgb_reg_model2.best_params_}") print(f"Best score: {xgb_reg_model2.best_score_}") y_pred = xgb_reg_model2.predict(X) y_pred[:10] # Next 90-days spend probability y_prob = Features_df["spend_90_flag"] # Define the XGBClassifier with some initial hyperparameters from sklearn.metrics import roc_auc_score xgb_clf = XGBClassifier( objective="binary:logistic", learning_rate=0.1, max_depth=5, subsample=0.75, colsample_bytree=0.75, gamma=0.1, reg_alpha=0.1, reg_lambda=0.1, random_state=123, ) # Fit the model on the training data xgb_clf.fit(X, y_prob) # Evaluate the model on the test data y_pred = xgb_clf.predict_proba(X)[:, 1] auc_score = roc_auc_score(y_prob, y_pred) print("ROC AUC score: {:.4f}".format(auc_score)) y_pred_prob = xgb_clf.predict_proba(X) print("ROC AUC score: {:.4f}".format(auc_score)) # ## Feature Importance # Importance | Spend Amount Model imp_spend_amount_dict = xgb_reg_model2.best_estimator_.get_booster().get_score( importance_type="gain" ) # Create a pandas DataFrame from a dictionary of important spending amounts imp_spend_amount_df = pd.DataFrame( { "features": list(imp_spend_amount_dict.keys()), "value": list(imp_spend_amount_dict.values()), } ) # Reorder the "features" column based on the corresponding "value" column imp_spend_amount_df = imp_spend_amount_df.assign( features=lambda df: cat.cat_reorder(df["features"], df["value"]) ) ( pn.ggplot(data=imp_spend_amount_df, mapping=pn.aes("features", "value")) + pn.geom_col() + pn.coord_flip() ) importance_scores = xgb_clf.feature_importances_ feature_names = X.columns # Assuming X is a pandas DataFrame sorted_idx = importance_scores.argsort() imp_spend_prob_df = pd.DataFrame( {"features": feature_names[sorted_idx], "value": importance_scores[sorted_idx]} ) # Reorder the "features" column based on the corresponding "value" column imp_spend_prob_df = imp_spend_prob_df.assign( features=lambda df: cat.cat_reorder(df["features"], df["value"]) ) imp_spend_amount_df.value_counts(normalize=True) ( pn.ggplot(data=imp_spend_prob_df, mapping=pn.aes("features", "value")) + pn.geom_col() + pn.coord_flip() ) # Save Predictions predictions_df = pd.concat( [ Features_df.reset_index(), pd.DataFrame(y_pred).set_axis(["spend_pred"], axis=1), pd.DataFrame(y_pred_prob)[[1]].set_axis(["spend_prob"], axis=1), ], axis=1, ) # add customer length of stay in the companyto the prediction_df df["Customer_Start_Date"] = df.groupby("customer_id")["date"].transform("min") df["Days_In_Company"] = ( df["date"] - df["Customer_Start_Date"] + pd.Timedelta(days=1) ).dt.days predictions_df["Days_In_Company"] = df["Days_In_Company"] # save # predictions_df.to_pickle("artifacts/predictions_df.pkl") # pd.read_pickle("folderName/predictions_df.pkl") # load model # model = joblib.load("folderName/xgb_clf_model") # model.predict(X) # **#Question 1:** # which customers have the highest spend probability in the next 90 days? # - Target for new products similar to what they have pruchased in the past. Highest_prob_df = predictions_df.sort_values("spend_prob", ascending=False) Highest_prob_df # **#Question 2: Which customers have recently purchased but are unlikely to buy?** # - Incentivize actions to increase probability # - Provide didcounts, encourage referring a friend, nuture by letting them know what's coming. predictions_df[predictions_df["recency"] > -90][predictions_df["spend_prob"] < 0.20][ predictions_df["Days_In_Company"] >= 520 ].sort_values("spend_prob", ascending=False) # **#Question 3:** Missed opportunities: We could unlock Big spenders # - Send bundle offers encouraging volume purchases # - Focus on missed opportunities predictions_df[predictions_df["spend_90_total"] == 0.0].sort_values( "spend_pred", ascending=False ) # Investigate clusters cluster_0 = clustered_df[clustered_df["cluster"] == 0]["customer_id"].unique() cluster_1 = clustered_df[clustered_df["cluster"] == 1]["customer_id"].unique() cluster_2 = clustered_df[clustered_df["cluster"] == 2]["customer_id"].unique() cluster_3 = clustered_df[clustered_df["cluster"] == 3]["customer_id"].unique() # Customers with the highest chance of buying in cluster_0 cust_id_subset_df = predictions_df[predictions_df["recency"] < -90][ predictions_df["spend_prob"] >= 0.30 ][predictions_df["customer_id"].isin(cluster_0)].sort_values( "spend_prob", ascending=False ) cust_id_subset_df # # Cohort Analysis # Define the function to extract the year and month of a date def get_year_month(date): return (date.year, date.month) # Add a 'Order_Month' column to the dataframe df["Order_Month"] = df["date"].apply(get_year_month) # convert 'Order_Month' to datetime format df["Order_Month"] = pd.to_datetime( df["Order_Month"].apply( lambda x: pd.to_datetime("-".join(map(str, x)), format="%Y-%m") ) ) # extract year-month from 'Order_Month' as 'Order_Month' df["Order_Month"] = df["Order_Month"].apply(lambda x: x.strftime("%Y-%m")) df["Customer_Start_Date"] = df.groupby("customer_id")["date"].transform("min") df["Cohort_Month"] = df["Customer_Start_Date"].apply(lambda x: x.strftime("%Y-%m")) df.head(3) cohort_data = df.groupby(["Customer_Start_Date", "Order_Month", "Cohort_Month"]).agg( {"price": "sum", "customer_id": "count"} ) cohort_data = cohort_data.rename( columns={"price": "total_revenue", "customer_id": "total_customers"} ) cohort_data = cohort_data.reset_index() cohort_data cohort_data.head() df["Order_Month"] = pd.to_datetime(df["Order_Month"]) cohort_data["Cohort_Month"] = pd.to_datetime(cohort_data["Cohort_Month"]) cohort_data["Order_Month"] = pd.to_datetime( cohort_data["Order_Month"] ) # Convert to datetime format cohort_data["Cohort_Index"] = ( (cohort_data["Order_Month"].dt.year - cohort_data["Cohort_Month"].dt.year) * 12 + (cohort_data["Order_Month"].dt.month - cohort_data["Cohort_Month"].dt.month) + 1 ) cohort_data.head() # Pivot the data to create the cohort analysis table cohort_table = pd.pivot_table( cohort_data, values="total_customers", index="Cohort_Month", columns="Cohort_Index", aggfunc=np.mean, ) # Display the cohort analysis table cohort_table # calculate the size of each cohort cohort_sizes = cohorts["Total_Customers"].groupby(level=0).first() # calculate the retention rate for each cohort cohorts["Retention_Rate"] = cohorts["Total_Customers"] / cohort_sizes # calculate the average customer lifetime value for each cohort cohorts["Customer_Lifetime_Value"] = ( cohorts["total_revenue"] / cohorts["Total_Customers"] )
t = () # intilazing a blank tuple type(t) t = ("NMT", 3.23, 20, "BAS", 0.23, 25) type(t) # **Indexing** t[1] # similar to list # **slicing** t[0:2] t[:5] # similar to list and string a = ("NMT", 3.23, 20, "BAS", 0.23, 25, ["red", "pink"], (20, 36)) a[7][0] a[6][0] = "green" a # **looping** p = ("NMT", 3.23, 20, "BAS", 0.23, 25, ["red", "pink"], (20, 36)) p for o in p: print(o) l = len(p) l o = 0 while l > 0: print(p[o]) o = o + 1 # increment the value of o to go to next element l = l - 1 # **Zip function** l1 = ["Naveen", "Basuraj", "Shivraj"] l2 = [20, 25, 30] z = zip(l1, l2) final_list = list(z) print(final_list) for i in final_list: print(i) for i, j in final_list: print(i, j) l = [["na", 25], ["ma", 26], ["pa", 58]] # assign multiple variable simulataneously l for i, j in l: print(i, j) # **Methods** t = (2, 8, 7, 6, 8, 9) len(t) # **concatenate/merge 2 tuple** t2 = (99, 100) t3 = t + t2 t3 max(t3) min(t3) t3.count(8) sum(t3) t3.index(8)
import pathlib import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.neural_network import MLPClassifier from sklearn.metrics import accuracy_score import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Flatten from tensorflow.keras.optimizers import Adam from tensorflow.keras.preprocessing import image from tensorflow.keras.preprocessing.image import ImageDataGenerator # Define the dataset path data_dir = "../input/rice-image-dataset/Rice_Image_Dataset" data_dir = pathlib.Path(data_dir) # Define the classes class_names = ["Arborio", "Basmati", "Ipsala", "Jasmine", "Karacadag"] arborio = list(data_dir.glob("Arborio/*"))[:600] basmati = list(data_dir.glob("Basmati/*"))[:600] ipsala = list(data_dir.glob("Ipsala/*"))[:600] jasmine = list(data_dir.glob("Jasmine/*"))[:600] karacadag = list(data_dir.glob("Karacadag/*"))[:600] def load_images_and_labels(image_paths, class_names): images = [] labels = [] for label, class_name in enumerate(class_names): for img_path in image_paths[class_name]: img = image.load_img( img_path, target_size=(32, 32) ) # Change the target size here img_array = image.img_to_array(img) images.append(img_array) labels.append(label) images = np.array(images) labels = np.array(labels) return images, labels def build_nn_model(input_shape, num_layers, num_neurons): model = Sequential() model.add(Flatten(input_shape=input_shape)) for _ in range(num_layers): model.add(Dense(num_neurons, activation="relu")) model.add(Dense(len(class_names), activation="softmax")) model.compile( optimizer=Adam(), loss="sparse_categorical_crossentropy", metrics=["accuracy"] ) return model def build_nn_model(input_shape, num_layers, num_neurons): model = Sequential() model.add(Flatten(input_shape=input_shape)) for _ in range(num_layers): model.add(Dense(num_neurons, activation="relu")) model.add(Dense(len(class_names), activation="softmax")) model.compile( optimizer=Adam(), loss="sparse_categorical_crossentropy", metrics=["accuracy"] ) return model def train_and_evaluate_models( X, y, num_layers_list, num_neurons_list, train_test_splits ): results = [] for num_layers in num_layers_list: for num_neurons in num_neurons_list: for split in train_test_splits: X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=split, random_state=42 ) # Preprocess the data datagen = ImageDataGenerator(rescale=1.0 / 255) train_gen = datagen.flow(X_train, y_train, batch_size=32) test_gen = datagen.flow(X_test, y_test, batch_size=32) # Train MLP Classifier mlp = MLPClassifier( hidden_layer_sizes=[num_neurons] * num_layers, max_iter=1000, random_state=42, ) mlp.fit(train_gen.x.reshape(train_gen.x.shape[0], -1), train_gen.y) mlp_train_acc = accuracy_score( train_gen.y, mlp.predict(train_gen.x.reshape(train_gen.x.shape[0], -1)), ) mlp_test_acc = accuracy_score( test_gen.y, mlp.predict(test_gen.x.reshape(test_gen.x.shape[0], -1)) ) # Train TensorFlow Neural Network nn = build_nn_model(X_train.shape[1:], num_layers, num_neurons) nn.fit(train_gen, epochs=10, verbose=0) nn_train_acc = nn.evaluate(train_gen, verbose=0)[1] nn_test_acc = nn.evaluate(test_gen, verbose=0)[1] result = { "num_layers": num_layers, "num_neurons": num_neurons, "train_test_split": split, "mlp_train_acc": mlp_train_acc, "mlp_test_acc": mlp_test_acc, "nn_train_acc": nn_train_acc, "nn_test_acc": nn_test_acc, } results.append(result) print(f"Completed training for combination: {result}") results_df = pd.DataFrame(results) return results_df # Load images and their labels image_paths = { "Arborio": list(data_dir.glob("Arborio/*"))[:600], "Basmati": list(data_dir.glob("Basmati/*"))[:600], "Ipsala": list(data_dir.glob("Ipsala/*"))[:600], "Jasmine": list(data_dir.glob("Jasmine/*"))[:600], "Karacadag": list(data_dir.glob("Karacadag/*"))[:600], } X, y = load_images_and_labels(image_paths, class_names) # Set hyperparameters num_layers_list = [1, 2, 3, 4, 5] num_neurons_list = [32, 64, 128] train_test_splits = [0.1, 0.2, 0.3, 0.4, 0.5] # Train and evaluate the models results_df = train_and_evaluate_models( X, y, num_layers_list, num_neurons_list, train_test_splits ) # Save the results to a CSV file results_df.to_csv("model_results.csv", index=False) # Display the results print(results_df) results_df
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # import os # os.environ['PYTORCH_CUDA_ALLOC_CONF'] = '0:4096' # ==================================================== # CFG # ==================================================== class CFG: wandb = True competition = "lecr" debug = False apex = True print_freq = 20 num_workers = 4 # model = "microsoft/deberta-v3-base" # model = "microsoft/mdeberta-v3-base" # model = "sentence-transformers/all-MiniLM-L6-v2" model = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2" # model = "mpnet_basev2_first_pretrain" # model = "output_simcse_model_with_pretrain_sep_epo66_945" # model = "bert-large-multilingual-cased" gradient_checkpointing = True scheduler = "cosine" # ['linear', 'cosine'] batch_scheduler = True num_cycles = 0.5 num_warmup_steps = 0 epochs = 100 encoder_lr = 2e-5 decoder_lr = 2e-5 min_lr = 1e-6 eps = 1e-6 layerwise_learning_rate_decay = 0.9 adam_epsilon = 1e-6 betas = (0.9, 0.999) batch_size = 32 max_len = 160 weight_decay = 0.01 gradient_accumulation_steps = 1 max_grad_norm = 1000 seed = 42 n_fold = 1 trn_fold = [0] train = True if CFG.debug: CFG.epochs = 2 CFG.trn_fold = [0] # ==================================================== # Library # ==================================================== import os import gc import re import ast import sys import copy import json import time import math import shutil import string import pickle import random import joblib import itertools from pathlib import Path import warnings warnings.filterwarnings("ignore") import scipy as sp import numpy as np import pandas as pd pd.set_option("display.max_rows", 500) pd.set_option("display.max_columns", 500) pd.set_option("display.width", 1000) from tqdm.auto import tqdm from sklearn.metrics import f1_score from sklearn.model_selection import StratifiedKFold, GroupKFold, KFold from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import StratifiedGroupKFold from sklearn.metrics import mean_squared_error import torch print(f"torch.__version__: {torch.__version__}") import torch.nn as nn from torch.nn import Parameter import torch.nn.functional as F from torch.optim import Adam, SGD, AdamW from torch.optim import lr_scheduler from torch.utils.data import DataLoader, Dataset # os.system('pip uninstall -y transformers') # os.system('pip uninstall -y tokenizers') # os.system('python -m pip install --no-index --find-links=../input/pppm-pip-wheels transformers') # os.system('python -m pip install --no-index --find-links=../input/pppm-pip-wheels tokenizers') import tokenizers import transformers print(f"tokenizers.__version__: {tokenizers.__version__}") print(f"transformers.__version__: {transformers.__version__}") from transformers import AutoTokenizer, AutoModel, AutoConfig from transformers import ( get_linear_schedule_with_warmup, get_cosine_schedule_with_warmup, ) from adv_utils import FGM, PGD, AWP, EMA from adv_utils import * device = ( torch.device("cuda:1") if torch.cuda.device_count() > 1 else torch.device("cuda:0") ) # device = torch.device('cpu') OUTPUT_DIR = "./output_simcse_model/" if not os.path.exists(OUTPUT_DIR): os.makedirs(OUTPUT_DIR) # ==================================================== # Utils # ==================================================== def get_score(y_trues, y_preds): mcrmse_score, scores = MCRMSE(y_trues, y_preds) return mcrmse_score, scores def get_logger(filename=OUTPUT_DIR + "train"): from logging import getLogger, INFO, StreamHandler, FileHandler, Formatter logger = getLogger(__name__) logger.setLevel(INFO) handler1 = StreamHandler() handler1.setFormatter(Formatter("%(message)s")) handler2 = FileHandler(filename=f"{filename}.log") handler2.setFormatter(Formatter("%(message)s")) logger.addHandler(handler1) logger.addHandler(handler2) return logger LOGGER = get_logger() def seed_everything(seed=42): random.seed(seed) os.environ["PYTHONHASHSEED"] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True seed_everything(seed=888) def display(tmp): print(tmp) # ==================================================== # Data Loading # ==================================================== train_df = pd.read_csv("/kaggle/input/lecr-train/train_df_sbert_first.csv") dev_df = pd.read_csv("/kaggle/input/lecr-train/dev_df_sbert_first.csv") train_df = train_df[train_df["label"] == 1].copy().reset_index(drop=True) dev_df_neg = dev_df[dev_df["label"] == 0].copy().reset_index(drop=True) all_ids_neg = dev_df_neg["topic_id"].values.tolist() samples = random.choices(all_ids_neg, k=500) dev_df_neg = dev_df_neg[dev_df_neg["topic_id"].isin(samples)].reset_index(drop=True) dev_df = dev_df[dev_df["label"] == 1].copy().reset_index(drop=True) dev_df = pd.concat([dev_df, dev_df_neg]) print(f"train.shape: {train_df.shape}") display(train_df.head()) print(f"dev.shape: {dev_df.shape}") display(dev_df.head()) # ==================================================== # tokenizer # ==================================================== # tokenizer = AutoTokenizer.from_pretrained(CFG.model+'/tokenizer/') tokenizer = AutoTokenizer.from_pretrained(CFG.model) tokenizer.save_pretrained(OUTPUT_DIR + "tokenizer/") CFG.tokenizer = tokenizer # ==================================================== # Define max_len # ==================================================== # lengths = [] # for _, row in tqdm(train_df.iterrows(), total=len(train_df)): # length = len(tokenizer(row['topic_text'], add_special_tokens=False)['input_ids']) # lengths.append(length) # length = len(tokenizer(row['content_text'], add_special_tokens=False)['input_ids']) # lengths.append(length) # # pd_tmp = pd.DataFrame() # pd_tmp['Text_len'] = lengths # print(pd_tmp['Text_len'].describe([.90, .95, .99, .995])) # LOGGER.info(f"max_len: {CFG.max_len}") # ==================================================== # Dataset # ==================================================== def prepare_input(cfg, text): # text = text.replace('[SEP]', '</s>') inputs = cfg.tokenizer.encode_plus( text, return_tensors=None, add_special_tokens=True, max_length=CFG.max_len, pad_to_max_length=True, truncation=True, ) for k, v in inputs.items(): inputs[k] = torch.tensor(v, dtype=torch.long) return inputs class TrainDataset(Dataset): def __init__(self, cfg, df): self.cfg = cfg self.text_topic = df["topic_text"].values self.text_content = df["content_text"].values self.labels = df["label"].values def __len__(self): return len(self.labels) def __getitem__(self, item): inputs = prepare_input( self.cfg, [self.text_topic[item], self.text_content[item]] ) return inputs class DevDataset(Dataset): def __init__(self, cfg, df): self.cfg = cfg self.text_topic = df["topic_text"].values self.text_content = df["content_text"].values self.labels = df["label"].values def __len__(self): return len(self.labels) def __getitem__(self, item): inputs_topic = prepare_input(self.cfg, self.text_topic[item]) inputs_content = prepare_input(self.cfg, self.text_content[item]) label = torch.tensor(self.labels[item], dtype=torch.float) return inputs_topic, inputs_content, label def collate(inputs): mask_len = int(inputs["attention_mask"].sum(axis=1).max()) for k, v in inputs.items(): inputs[k] = inputs[k][:, :mask_len] return inputs # ==================================================== # Model # ==================================================== class MeanPooling(nn.Module): def __init__(self): super(MeanPooling, self).__init__() def forward(self, last_hidden_state, attention_mask): input_mask_expanded = ( attention_mask.unsqueeze(-1).expand(last_hidden_state.size()).float() ) sum_embeddings = torch.sum(last_hidden_state * input_mask_expanded, 1) sum_mask = input_mask_expanded.sum(1) sum_mask = torch.clamp(sum_mask, min=1e-9) mean_embeddings = sum_embeddings / sum_mask return mean_embeddings class WeightedLayerPooling(nn.Module): def __init__(self, num_hidden_layers, layer_start: int = 4, layer_weights=None): super(WeightedLayerPooling, self).__init__() self.layer_start = layer_start self.num_hidden_layers = num_hidden_layers self.layer_weights = ( layer_weights if layer_weights is not None else nn.Parameter( torch.tensor( [1] * (num_hidden_layers + 1 - layer_start), dtype=torch.float ) ) ) def forward(self, all_hidden_states): all_layer_embedding = all_hidden_states[self.layer_start :, :, :, :] weight_factor = ( self.layer_weights.unsqueeze(-1) .unsqueeze(-1) .unsqueeze(-1) .expand(all_layer_embedding.size()) ) weighted_average = (weight_factor * all_layer_embedding).sum( dim=0 ) / self.layer_weights.sum() return weighted_average class CustomModel(nn.Module): def __init__(self, cfg, config_path=None, pretrained=False): super().__init__() self.cfg = cfg if config_path is None: self.config = AutoConfig.from_pretrained( cfg.model, output_hidden_states=True ) # self.config.hidden_dropout = 0. # self.config.hidden_dropout_prob = 0. # self.config.attention_dropout = 0. # self.config.attention_probs_dropout_prob = 0. LOGGER.info(self.config) else: self.config = torch.load(config_path) if pretrained: self.model = AutoModel.from_pretrained(cfg.model, config=self.config) else: self.model = AutoModel.from_config(self.config) # if self.cfg.gradient_checkpointing: # self.model.gradient_checkpointing_enable self.pool = MeanPooling() self.fc_dropout = nn.Dropout(0.1) self.fc = nn.Linear(self.config.hidden_size, 1) self._init_weights(self.fc) def _init_weights(self, module): if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def forward(self, inputs): outputs = self.model(**inputs) last_hidden_states = outputs[0] feature = self.pool(last_hidden_states, inputs["attention_mask"]) return feature # ==================================================== # Loss # ==================================================== def simcse_sup_loss(feature_topic, feature_content) -> "tensor": """ Unsupervised loss function y_pred (tensor): BERT's output, [batch_size * 2, 768] """ y_true = torch.arange(0, feature_topic.size(0), device=device) # Calculate the similarity in the batch to obtain the similarity matrix (diagonal matrix) sim = F.cosine_similarity( feature_topic.unsqueeze(1), feature_content.unsqueeze(0), dim=2 ) # # Set the diagonal of the similarity matrix to a very small value, eliminating its own influence # sim = sim - torch.eye(y_pred.shape[0], device=device) * 1e12 # The similarity matrix is divided by the temperature coefficient sim = sim / 0.05 # Calculate the cross-entropy loss of the similarity matrix with the y_true loss = F.cross_entropy(sim, y_true) loss = torch.mean(loss) return loss # ==================================================== # Helper functions # ==================================================== class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def asMinutes(s): m = math.floor(s / 60) s -= m * 60 return "%dm %ds" % (m, s) def timeSince(since, percent): now = time.time() s = now - since es = s / (percent) rs = es - s return "%s (remain %s)" % (asMinutes(s), asMinutes(rs)) def train_fn( fold, train_loader, model, criterion, optimizer, epoch, scheduler, device, valid_loader, valid_labels, best_score, fgm, awp, ema_inst, ): model.train() scaler = torch.cuda.amp.GradScaler(enabled=CFG.apex) losses = AverageMeter() start = end = time.time() global_step = 0 save_step = int(len(train_loader) / 1) for step, (inputs_topic, inputs_content, labels) in enumerate(train_loader): inputs_topic = collate(inputs_topic) for k, v in inputs_topic.items(): inputs_topic[k] = v.to(device) inputs_content = collate(inputs_content) for k, v in inputs_content.items(): inputs_content[k] = v.to(device) batch_size = labels.size(0) with torch.cuda.amp.autocast(enabled=CFG.apex): feature_topic = model(inputs_topic) feature_content = model(inputs_content) # print(feature.shape) loss = simcse_sup_loss(feature_topic, feature_content) # print(loss) if CFG.gradient_accumulation_steps > 1: loss = loss / CFG.gradient_accumulation_steps losses.update(loss.item(), batch_size) scaler.scale(loss).backward() # ---------------------fgm------------- # fgm.attack(epsilon=1.0) # Embedding was modified # with torch.cuda.amp.autocast(enabled=CFG.apex): # feature_topic = model(inputs_topic) # feature_content = model(inputs_content) # loss_avd = simcse_sup_loss(feature_topic, feature_content) # if CFG.gradient_accumulation_steps > 1: # loss_avd = loss_avd / CFG.gradient_accumulation_steps # losses.update(loss_avd.item(), batch_size) # scaler.scale(loss_avd).backward() # fgm.restore() # # Restore the parameters of Embedding # ---------------------fgm------------- grad_norm = torch.nn.utils.clip_grad_norm_( model.parameters(), CFG.max_grad_norm ) if (step + 1) % CFG.gradient_accumulation_steps == 0: scaler.step(optimizer) scaler.update() if ema_inst: ema_inst.update() optimizer.zero_grad() global_step += 1 if CFG.batch_scheduler: scheduler.step() end = time.time() if step % CFG.print_freq == 0 or step == (len(train_loader) - 1): print( "Epoch: [{0}][{1}/{2}] " "Elapsed {remain:s} " "Loss: {loss.val:.4f}({loss.avg:.4f}) " "Grad: {grad_norm:.4f} " "LR: {lr:.8f} ".format( epoch + 1, step, len(train_loader), remain=timeSince(start, float(step + 1) / len(train_loader)), loss=losses, grad_norm=grad_norm, lr=scheduler.get_lr()[0], ) ) if CFG.wandb and step % 40 == 0: print( { f"[fold{fold}] loss": losses.val, f"[fold{fold}] lr": scheduler.get_lr()[0], } ) if (step + 1) % save_step == 0 and epoch > -1: if ema_inst: ema_inst.apply_shadow() # eval score = valid_fn(valid_loader, model, criterion, device) # # scoring # score, scores = get_score(valid_labels, predictions) LOGGER.info(f"Epoch {epoch + 1} - step: {step:.4f} score: {score:.4f}") if CFG.wandb: print( { f"[fold{fold}] epoch": epoch + 1, f"[fold{fold}] score": score, f"[fold{fold}] best_score": best_score, } ) if score >= best_score: best_score = score LOGGER.info( f"Epoch {epoch + 1} - Save Best loss: {best_score:.4f} Model" ) torch.save( {"model": model.state_dict()}, #'predictions': predictions}, OUTPUT_DIR + f"{CFG.model.replace('/', '-')}_fold{fold}_best.pth", ) if ema_inst: ema_inst.restore() return losses.avg, best_score from scipy import stats def valid_fn(valid_loader, model, criterion, device): losses = AverageMeter() model.eval() sim_tensor = torch.tensor([], device=device) label_array = np.array([]) start = time.time() for step, (inputs_topic, inputs_content, labels) in enumerate(valid_loader): inputs_topic = collate(inputs_topic) for k, v in inputs_topic.items(): inputs_topic[k] = v.to(device) inputs_content = collate(inputs_content) for k, v in inputs_content.items(): inputs_content[k] = v.to(device) labels = labels.to("cpu").numpy() with torch.no_grad(): feature_topic = model(inputs_topic) feature_content = model(inputs_content) sim = F.cosine_similarity(feature_topic, feature_content, dim=-1) sim_tensor = torch.cat((sim_tensor, sim), dim=0) label_array = np.append(label_array, np.array(labels)) # sim_tmp = sim.cpu().numpy() # print(labels) # print(sim_tmp) # score_tmp = stats.spearmanr(labels, sim_tmp) end = time.time() print("Eval cost time : ", end - start) score = stats.spearmanr(label_array, sim_tensor.cpu().numpy()).correlation return score def get_optimizer_grouped_parameters( model, model_type, learning_rate, weight_decay, layerwise_learning_rate_decay ): no_decay = ["bias", "LayerNorm.weight"] # initialize lr for task specific layer optimizer_grouped_parameters = [ { "params": [ p for n, p in model.named_parameters() if "classifier" in n or "pooler" in n ], "weight_decay": 0.0, "lr": learning_rate, }, ] # initialize lrs for every layer num_layers = model.config.num_hidden_layers layers = [getattr(model, model_type).embeddings] + list( getattr(model, model_type).encoder.layer ) layers.reverse() lr = learning_rate for layer in layers: lr *= layerwise_learning_rate_decay optimizer_grouped_parameters += [ { "params": [ p for n, p in layer.named_parameters() if not any(nd in n for nd in no_decay) ], "weight_decay": weight_decay, "lr": lr, }, { "params": [ p for n, p in layer.named_parameters() if any(nd in n for nd in no_decay) ], "weight_decay": 0.0, "lr": lr, }, ] return optimizer_grouped_parameters # ==================================================== # train loop # ==================================================== def train_loop(folds, fold): LOGGER.info(f"========== fold: {fold} training ==========") # ==================================================== # loader # ==================================================== # train_folds = folds[folds['fold'] != fold].reset_index(drop=True) # valid_folds = folds[folds['fold'] == fold].reset_index(drop=True) # valid_labels = valid_folds[CFG.target_cols].values train_folds = train_df valid_folds = dev_df train_dataset = DevDataset(CFG, train_folds) valid_dataset = DevDataset(CFG, valid_folds) train_loader = DataLoader( train_dataset, batch_size=CFG.batch_size, shuffle=True, num_workers=CFG.num_workers, pin_memory=True, drop_last=True, ) valid_loader = DataLoader( valid_dataset, batch_size=CFG.batch_size * 2, shuffle=False, num_workers=CFG.num_workers, pin_memory=True, drop_last=False, ) # ==================================================== # model & optimizer # ==================================================== model = CustomModel(CFG, config_path=None, pretrained=True) # model = CustomModel(cfg=None, config_path=CFG.model + '/config.pth', pretrained=False) # state = torch.load(CFG.model + '/mpnet_basev2_first_pretrain_fold0_best.pth', # map_location=torch.device('cpu')) # model.load_state_dict(state['model']) torch.save(model.config, OUTPUT_DIR + "config.pth") model.to(device) def get_optimizer_params(model, encoder_lr, decoder_lr, weight_decay=0.0): param_optimizer = list(model.named_parameters()) no_decay = ["bias", "LayerNorm.bias", "LayerNorm.weight"] optimizer_parameters = [ { "params": [ p for n, p in model.model.named_parameters() if not any(nd in n for nd in no_decay) ], "lr": encoder_lr, "weight_decay": weight_decay, }, { "params": [ p for n, p in model.model.named_parameters() if any(nd in n for nd in no_decay) ], "lr": encoder_lr, "weight_decay": 0.0, }, { "params": [p for n, p in model.named_parameters() if "model" not in n], "lr": decoder_lr, "weight_decay": 0.0, }, ] return optimizer_parameters optimizer_parameters = get_optimizer_params( model, encoder_lr=CFG.encoder_lr, decoder_lr=CFG.decoder_lr, weight_decay=CFG.weight_decay, ) optimizer = AdamW( optimizer_parameters, lr=CFG.encoder_lr, eps=CFG.eps, betas=CFG.betas ) # ==================================================== # scheduler # ==================================================== def get_scheduler(cfg, optimizer, num_train_steps): if cfg.scheduler == "linear": scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=cfg.num_warmup_steps, num_training_steps=num_train_steps, ) elif cfg.scheduler == "cosine": cfg.num_warmup_steps = num_train_steps * 0.05 scheduler = get_cosine_schedule_with_warmup( optimizer, num_warmup_steps=cfg.num_warmup_steps, num_training_steps=num_train_steps, num_cycles=cfg.num_cycles, ) return scheduler num_train_steps = int(len(train_folds) / CFG.batch_size * CFG.epochs) scheduler = get_scheduler(CFG, optimizer, num_train_steps) # ==================================================== # loop # ==================================================== # criterion = nn.SmoothL1Loss(reduction='mean') # #criterion = RMSELoss(reduction="mean") criterion = None # loss = loss_fn(rep_a=rep_a, rep_b=rep_b, label=label) best_score = 0 fgm = FGM(model) awp = None ema_inst = EMA(model, 0.999) ema_inst.register() for epoch in range(CFG.epochs): start_time = time.time() # train valid_labels = None avg_loss, best_score = train_fn( fold, train_loader, model, criterion, optimizer, epoch, scheduler, device, valid_loader, valid_labels, best_score, fgm, awp, ema_inst, ) # predictions = torch.load(OUTPUT_DIR + f"{CFG.model.replace('/', '-')}_fold{fold}_best.pth", # map_location=torch.device('cpu'))['predictions'] # valid_folds[[f"pred_{c}" for c in CFG.target_cols]] = predictions torch.cuda.empty_cache() gc.collect() return valid_folds import torch from GPUtil import showUtilization as gpu_usage from numba import cuda def free_gpu_cache(): print("Initial GPU Usage") gpu_usage() torch.cuda.empty_cache() cuda.select_device(0) cuda.close() cuda.select_device(0) print("GPU Usage after emptying the cache") gpu_usage() free_gpu_cache() if __name__ == "__main__": def get_result(oof_df): labels = oof_df[CFG.target_cols].values preds = oof_df[[f"pred_{c}" for c in CFG.target_cols]].values score, scores = get_score(labels, preds) LOGGER.info(f"Score: {score:<.4f} Scores: {scores}") torch.cuda.empty_cache() if CFG.train: oof_df = pd.DataFrame() for fold in range(CFG.n_fold): if fold in CFG.trn_fold: _oof_df = train_loop(train_df, fold) gpu_usage() torch.cuda.memory_summary(device=None, abbreviated=False)
# # Heart Disease Prediction Using Logistic Regression # ## Table of Content # ### 1. What is Logistic Regression? # ### 2. Importing Libraries # ### 3. Uploading Dataset # ### 4. Data PreProcessing # ### 5. EDA # ### 6. Data Splitting # ### 7. Model Selection and Training # ### 8. Model Evaluation # ### 9. AUC - ROC Curve # ### 10. Conclusion # ## 1. What is Logistic Regression? # ### Logistic regression is one of the most popular Machine Learning algorithms, which comes under the Supervised Learning technique. It is used for predicting the categorical dependent variable using a given set of independent variables. # ### Logistic regression predicts the output of a categorical dependent variable. Therefore the outcome must be a categorical or discrete value. It can be either Yes or No, 0 or 1, true or False, etc. but instead of giving the exact value as 0 and 1, it gives the probabilistic values which lie between 0 and 1. # ### Logistic Regression is much similar to the Linear Regression except that how they are used. Linear Regression is used for solving Regression problems, whereas Logistic regression is used for solving the classification problems. # ### The goal of logistic regression is to estimate the probability of a binary outcome based on one or more predictor variables. Unlike linear regression, which models the relationship between a continuous dependent variable and one or more independent variables, logistic regression is used when the dependent variable is categorical and takes on only two values, such as yes/no, 0/1, true/false, etc. # ## Logistic Function (Sigmoid Function): # ### The sigmoid function is a mathematical function used to map the predicted values to probabilities. # ### It maps any real value into another value within a range of 0 and 1. # ### The value of the logistic regression must be between 0 and 1, which cannot go beyond this limit, so it forms a curve like the "S" form. The S-form curve is called the Sigmoid function or the logistic function. # ### In logistic regression, we use the concept of the threshold value, which defines the probability of either 0 or 1. Such as values above the threshold value tends to 1, and a value below the threshold values tends to 0. # ## 2. Importing Libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px # ## 3. Uploading dataset heart_disease_data = pd.read_csv("heart_disease.csv") heart_disease_data.head() heart_disease_data.info() # ## 4. Data Preprocessing heart_disease_data.isnull().sum() # remove the null or missing value in Ca feature using mean heart_disease_data["Ca"] = heart_disease_data["Ca"].fillna( heart_disease_data["Ca"].mean() ) # remove the null or missing value in Thal feature using fillna (ffill) heart_disease_data["Thal"] = heart_disease_data["Thal"].fillna("ffill") heart_disease_data.isnull().sum() heart_disease_data.duplicated().sum() heart_disease_data.describe() # rename feature (column) name heart_disease_data.rename(columns={"AHD": "Target"}, inplace=True) heart_disease_data.columns # preprocessing on Gender and Thal features from sklearn import preprocessing label_encoder = preprocessing.LabelEncoder() heart_disease_data["Gender"] = label_encoder.fit_transform(heart_disease_data["Sex"]) heart_disease_data["ChestPain"] = label_encoder.fit_transform( heart_disease_data["ChestPain"] ) heart_disease_data["Thal"] = label_encoder.fit_transform(heart_disease_data["Thal"]) heart_disease_data["Target"] = label_encoder.fit_transform(heart_disease_data["Target"]) # heart_disease_data = heart_disease_data.drop(['Taget'], axis=1) heart_disease_data.head() def correlation(dataset, threshold): col_corr = set() corr_matrix = dataset.corr() for i in range(len(corr_matrix.columns)): for j in range(i): if abs(corr_matrix.iloc[i, j]) > threshold: colname = corr_matrix.columns[i] col_corr.add(colname) return col_corr corr_features = correlation(heart_disease_data, 0.5) corr_features X = heart_disease_data.drop( ["Age", "ChestPain", "RestECG", "Gender", "Chol", "RestBP", "Target"], axis=1 ) Y = heart_disease_data["Target"] heart_disease_data.corr() data_female = [rows for _, rows in heart_disease_data.groupby("Gender")][0] data_male = [rows for _, rows in heart_disease_data.groupby("Gender")][1] data_male.head() data_female = data_female.drop(["Gender"], axis=1) data_male = data_male.drop(["Gender"], axis=1) data_male.head() # ## 5. EDA (Exploratory data analysis) a = heart_disease_data["Gender"].value_counts() labels = ["Male", "Female"] explode = [0.1, 0] colors = ["#ADD8E6", "g"] plt.pie( a, labels=labels, autopct="%1.0f%%", pctdistance=0.4, labeldistance=1.3, explode=explode, colors=colors, ) plt.legend(title="Gender") plt.show() a import matplotlib.ticker as ticker import matplotlib.cm as cm import matplotlib as mpl from matplotlib.gridspec import GridSpec plt.figure(1, figsize=(12, 10)) the_grid = GridSpec(2, 3) plt.subplot(the_grid[0, 0], aspect=1, title="Female v/s Chest Pain Type") data_female.ChestPain.groupby(data_female.ChestPain).sum().plot( kind="pie", autopct="%.2f" ) plt.subplot(the_grid[0, 1], aspect=1, title="Male v/s Chest Pain Type") data_male.ChestPain.groupby(data_male.ChestPain).sum().plot(kind="pie", autopct="%.2f") plt.subplot(the_grid[0, 2], aspect=1, title="Overall details Chest Pain Type") heart_disease_data.ChestPain.groupby(heart_disease_data.ChestPain).sum().plot( kind="pie", autopct="%.2f" ) plt.suptitle("Pie Chart for Chest Pain Type", fontsize=14) # ### There are three pie chart for chest pain type, first for female v/s chest pain, second for male v/s chest pain And third for overall analysis of chest pain for male and female. plt.figure(1, figsize=(12, 10)) plt.subplot(the_grid[0, 0], aspect=1, title="Female v/s Target") data_female.Age.groupby(data_female.Target).sum().plot( kind="pie", autopct="%.2f", textprops={"fontsize": 12} ) plt.subplot(the_grid[0, 1], aspect=1, title="Male v/s Target") data_male.Age.groupby(data_male.Target).sum().plot( kind="pie", autopct="%.2f", textprops={"fontsize": 12} ) plt.subplot(the_grid[0, 2], aspect=1, title="Overall details (Target)") heart_disease_data.Age.groupby(heart_disease_data.Target).sum().plot( kind="pie", autopct="%.2f", textprops={"fontsize": 12} ) plt.suptitle("Pie Chart for Target", fontsize=14) # ### In this Pie chart shows the Target of heart disease for male, female and Overall Analysis. sns.heatmap(heart_disease_data.corr(), annot=True) x = heart_disease_data["Age"][0:30] y = heart_disease_data["Chol"][0:30] Target = heart_disease_data["Target"][0:30] fig = px.bar(x, y, color=Target) fig.show() # ## 6. Data Spliting from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.3) print("x_train:", x_train.shape) print("x_test: ", x_test.shape) print("y_train:", y_train.shape) print("y_test: ", y_test.shape) # ## 7. Model Selection and Training from sklearn.linear_model import LogisticRegression log_reg = LogisticRegression() log_reg.fit(x_train, y_train) # ## 8. Model Evaluation log_reg.score(x_test, y_test) predict = log_reg.predict(x_test) predict # ## Confusion Matrix from sklearn.metrics import confusion_matrix cm = confusion_matrix(y_test, predict) cm ax = sns.heatmap(cm, annot=True, cmap="Blues") ax.set_title("Confusion Matrix with labels\n\n") ax.set_xlabel("\nPredicted Values") ax.set_ylabel("Actual Values ") plt.show() import numpy as np ax = sns.heatmap(cm / np.sum(cm), annot=True, fmt=".2%", cmap="Blues") ax.set_title("Confusion Matrix with labels\n\n") ax.set_xlabel("\nPredicted Values") ax.set_ylabel("Actual Values ") plt.show() # find accuracy score from sklearn.metrics import accuracy_score accuracy_score(y_test, predict) # find precision score from sklearn.metrics import precision_score precision_score(y_test, predict) # find recall score from sklearn.metrics import recall_score recall_score(y_test, predict) # find f1 score from sklearn.metrics import f1_score f1_score(y_test, predict) from sklearn.metrics import classification_report print(classification_report(y_test, predict)) # ## 9. AUC - ROC Curve # ### ROC curve (receiver operating characteristic curve) is a graph showing the performance of a classification model at all classification thresholds. This curve plots two parameters: # ### True Positive Rate # ### False Positive Rate # ### True Positive Rate (TPR) is a synonym for recall and is therefore defined as follows: # ## TPR = TP / TP + FN # ### False Positive Rate (FPR) is defined as follows: # ## FPR = FP / FP +TN # ## AUC: Area Under the ROC Curve # ### AUC stands for "Area under the ROC Curve." That is, AUC measures the entire two-dimensional area underneath the entire ROC curve (think integral calculus) from (0,0) to (1,1). # ### AUC provides an aggregate measure of performance across all possible classification thresholds. One way of interpreting AUC is as the probability that the model ranks a random positive example more highly than a random negative example. For example, given the following examples, which are arranged from left to right in ascending order of logistic regression predictions: # import metrics library from sklearn from sklearn import metrics y_pred_proba = log_reg.predict_proba(x_test)[::, 1] fpr, tpr, _ = metrics.roc_curve(y_test, y_pred_proba) # plot the ROC curve plt.plot(fpr, tpr) plt.ylabel("True Positive Rate") plt.xlabel("False Positive Rate") plt.show() y_pred_proba = log_reg.predict_proba(x_test)[::, 1] fpr, tpr, _ = metrics.roc_curve(y_test, y_pred_proba) auc = metrics.roc_auc_score(y_test, y_pred_proba) # plot the ROC curve plt.plot(fpr, tpr, label="AUC = " + str(auc)) plt.ylabel("True Positive Rate") plt.xlabel("False Positive Rate") plt.legend(loc=4) plt.show()
# https://www.youtube.com/watch?v=VC8Jc9_lNoY SEED = 1984 N_SPLITS = 10 target = "target" import numpy as np import pandas as pd pd.set_option("max_columns", 100) pd.set_option("max_rows", 200) import matplotlib.pyplot as plt import seaborn as sns from scipy.stats import spearmanr from scipy.cluster import hierarchy from scipy.spatial.distance import squareform from sklearn.model_selection import ( StratifiedKFold, RepeatedStratifiedKFold, cross_val_score, ) from sklearn.pipeline import make_pipeline, Pipeline from sklearn.metrics import roc_auc_score from sklearn.preprocessing import ( StandardScaler, PolynomialFeatures, MinMaxScaler, RobustScaler, FunctionTransformer, ) from sklearn.kernel_approximation import Nystroem from sklearn.linear_model import LogisticRegression, Ridge from sklearn.svm import SVC from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.ensemble import ( GradientBoostingClassifier, HistGradientBoostingClassifier, RandomForestClassifier, ExtraTreesClassifier, ) from sklearn.neighbors import KNeighborsClassifier from pygam import GAM, LogisticGAM, s, f, te, l from xgboost import XGBClassifier from sklearn.calibration import CalibrationDisplay, CalibratedClassifierCV # # Data & EDA train = pd.read_csv("../input/playground-series-s3e12/train.csv", index_col="id") test = pd.read_csv("../input/playground-series-s3e12/test.csv", index_col="id") print(f"Shape for Train {train.shape} and Test {test.shape}") print( f"Nan values in Train : {train[test.columns].isna().sum().sum()} | in Test : {train.isna().sum().sum()}" ) print(f"Available columns for training : \n {test.columns}") train.head() origin = pd.read_csv( "/kaggle/input/kidney-stone-prediction-based-on-urine-analysis/kindey stone urine analysis.csv" ) print(f"Shape for origin {origin.shape}") print(f"Nan values in origin : {origin[test.columns].isna().sum().sum()}") # ## Target fig, ax = plt.subplots(1, 2, figsize=(15, 2)) ax = ax.flatten() train[target].value_counts().sort_index().plot.barh(ax=ax[0], color="skyblue").set( title="Target in Train" ) ax[0].bar_label(ax[0].containers[0], fmt="%.2d", padding=2) (train[target].value_counts(normalize=True) * 100).sort_index().plot.barh( ax=ax[1], color="skyblue" ).set(title="% Class in Train") ax[1].bar_label(ax[1].containers[0], fmt="%.1f%%", padding=2) for i in range(2): ax[i].spines[["right", "bottom"]].set_visible(False) ax[i].xaxis.set_ticks_position("top") fig, ax = plt.subplots(1, 2, figsize=(15, 2)) ax = ax.flatten() origin[target].value_counts().sort_index().plot.barh(ax=ax[0], color="gold").set( title="Target in Origin" ) ax[0].bar_label(ax[0].containers[0], fmt="%.2d", padding=2) (origin[target].value_counts(normalize=True) * 100).sort_index().plot.barh( ax=ax[1], color="gold" ).set(title="% Class in Origin") ax[1].bar_label(ax[1].containers[0], fmt="%.1f%%", padding=2) for i in range(2): ax[i].spines[["right", "bottom"]].set_visible(False) ax[i].xaxis.set_ticks_position("top") # ## Other columns fig, ax = plt.subplots(1, 3, figsize=(15, 5), sharey=True) train[[f for f in test.columns]].nunique().plot.barh(ax=ax[0], color="skyblue").set( title="Unique values per column in Train" ) ax[0].bar_label(ax[0].containers[0], fmt="%.1d", padding=2) test.nunique().plot.barh(ax=ax[1], color="g").set( title="Unique values per column in Test" ) ax[1].bar_label(ax[1].containers[0], fmt="%.1d", padding=2) origin[[f for f in test.columns]].nunique().plot.barh(ax=ax[2], color="gold").set( title="Unique values per column in Origin" ) ax[2].bar_label(ax[2].containers[0], fmt="%.1d", padding=2) for i in range(3): ax[i].spines[["right", "bottom"]].set_visible(False) ax[i].xaxis.set_ticks_position("top") for df, name, color in zip( [train, test, origin], ["Train", "Test", "Origin"], ["skyblue", "green", "gold"] ): fig, ax = plt.subplots(1, 3, figsize=(15, 3), sharey=True) plt.suptitle(f"Mix/Max in {name}", y=1.2, fontsize=20) df[[f for f in test.columns]].min().plot.barh(ax=ax[0], color=color).set( title=f"Min in {name}" ) ax[0].bar_label(ax[0].containers[0], fmt="%.2f", padding=2) df[[f for f in test.columns]].median().plot.barh(ax=ax[1], color=color).set( title=f"Median in {name}" ) ax[1].bar_label(ax[1].containers[0], fmt="%.2f", padding=2) df[[f for f in test.columns]].max().plot.barh(ax=ax[2], color=color).set( title=f"Max in {name}" ) ax[2].bar_label(ax[2].containers[0], fmt="%.2f", padding=2) for i in range(3): ax[i].spines[["right", "bottom"]].set_visible(False) ax[i].xaxis.set_ticks_position("top") df_temp1 = pd.concat( [train.loc[train[target] == 1], train.loc[train[target] == 0]], axis=0 ) df_temp2 = pd.concat( [test, train[test.columns].sample(frac=test.shape[0] / train.shape[0])], axis=0 ) df_temp2["is_test"] = 0 df_temp2.loc[test.index, "is_test"] = 1 fig, ax = plt.subplots(len(test.columns), 4, figsize=(16, len(test.columns) * 3)) for i, f in enumerate(test.columns): if i == 0: legend = True else: legend = False sns.kdeplot(data=df_temp1, hue="target", x=f, legend=legend, ax=ax[i, 0]) sns.boxplot( data=train, x="target", y=f, ax=ax[i, 1], palette=["skyblue", "lightsalmon"] ) sns.boxplot( data=origin, x="target", y=f, ax=ax[i, 2], palette=["skyblue", "lightsalmon"] ) sns.kdeplot(data=df_temp2, hue="is_test", x=f, legend=legend, ax=ax[i, 3]) ax[i, 1].set_title(f"{f}", loc="right", weight="bold", fontsize=20) ax[i, 1].set_xlabel("Target in Train", fontsize=10) ax[i, 2].set_xlabel("Target in Origin", fontsize=10) for g in range(4): ax[i, g].spines[["top", "right"]].set_visible(False) # fig.legend([1, 0], loc='upper left', fontsize = 10, ncol=3, bbox_to_anchor=(0.12, 1)) # fig.legend(["train", "test"], loc='upper right', fontsize = 10, ncol=3, bbox_to_anchor=(0.9, 1)) plt.tight_layout() plt.show() # ## Prediction with calc # Due to https://www.kaggle.com/code/seascape/target-calc # AUC on public with **calc** only is 0.8573 print( "AUC with train['calc'] : {:.5f}".format( roc_auc_score(train[target], train["calc"]) ) ) # ## Correlation fig, ax = plt.subplots(1, 3, figsize=(15, 5)) for i, (df, t) in enumerate(zip([train, origin, test], ["Train", "Origin", "Test"])): matrix = df[test.columns].corr() sns.heatmap( matrix, annot=True, fmt=".1f", cmap="coolwarm", mask=np.triu(matrix), ax=ax[i] ) ax[i].set_title(f"Correlations in {t}", fontsize=15) fig, ax = plt.subplots( len(test.columns), len(test.columns) - 1, figsize=(16, (len(test.columns) - 1) * 2) ) plt.subplots_adjust(hspace=0.4, wspace=0.3) for i, c1 in enumerate(test.columns): for j, c2 in enumerate(test.columns[:-1]): if j < i: sns.scatterplot( data=train, x=c1, y=c2, hue=target, legend=False, ax=ax[i - 1, j] ) ax[i - 1, j].spines[["top", "right"]].set_visible(False) ax[i - 1, j].set(xticklabels=[], yticklabels=[]) ax[i - 1, j].set_xlabel(c1, fontsize=9) ax[i - 1, j].set_ylabel(c2, fontsize=9) else: fig.delaxes(ax[i - 1, j]) fig.legend([0, 1], loc="upper center", fontsize=10, ncol=3, bbox_to_anchor=(0.8, 1)) plt.tight_layout() plt.show() # ## PCA from sklearn.decomposition import PCA scal = StandardScaler() X = scal.fit_transform(train[test.columns]) pca = PCA() pca_samples = pca.fit_transform(X) cum_sum = pca.explained_variance_ratio_.cumsum() * 100 plt.plot(range(1, 1 + len(cum_sum)), cum_sum) plt.title( f"{100*pca.explained_variance_[:1].sum()/pca.explained_variance_.sum():.0f}% explained variance with 1 features (/{len(test.columns)})" ) # # Future engineering df = pd.concat([train[test.columns], origin[test.columns], test], axis=0) stdscal = StandardScaler() stdscal.fit(df) df[[f"{f}_stdscal" for f in test.columns]] = stdscal.transform(df) train[[f"{f}_stdscal" for f in test.columns]] = df[ [f"{f}_stdscal" for f in test.columns] ].iloc[0 : train.shape[0]] origin[[f"{f}_stdscal" for f in test.columns]] = df[ [f"{f}_stdscal" for f in test.columns] ].iloc[train.shape[0] : train.shape[0] + origin.shape[0]] test[[f"{f}_stdscal" for f in test.columns]] = df[ [f"{f}_stdscal" for f in test.columns] ].iloc[train.shape[0] + origin.shape[0] :] print(train.shape, origin.shape, test.shape) new_features = [f"calc/{c}" for c in ["gravity", "ph", "osmo", "cond", "urea"]] + [ f"cond/{c}" for c in ["gravity", "ph", "osmo", "urea"] ] for df in [train, origin, test]: for c in ["calc", "gravity", "ph", "osmo", "cond", "urea"]: df[f"log_{c}"] = np.log(df[c]) df[f"{c}_2"] = df[c] ** 2 for c in ["gravity", "ph", "osmo", "cond", "urea"]: df[f"calc/{c}"] = df["calc"] / (1 + df["calc"] + df[c]) df[f"bcalc/{c}"] = df["calc"] / (1 + df[c]) df[f"calc/{c}_stdscal"] = df["calc_stdscal"] / (1 + df[f"{c}_stdscal"]) for c in ["gravity", "ph", "osmo", "urea"]: df[f"cond/{c}"] = df["cond"] / (1 + df["cond"] + df[c]) df[f"bcond/{c}"] = df["cond"] / (1 + df[c]) df[f"cond/{c}_stdscal"] = df["cond_stdscal"] / (1 + df[f"{c}_stdscal"]) feats = [ "log_calc", "calc", "cond", "cond/gravity", "calc/cond", "calc/gravity", "gravity", "gravity_2", ] df_temp1 = pd.concat( [train.loc[train[target] == 1], train.loc[train[target] == 0]], axis=0 ) df_temp2 = pd.concat( [test, train[test.columns].sample(frac=test.shape[0] / train.shape[0])], axis=0 ) df_temp2["is_test"] = 0 df_temp2.loc[test.index, "is_test"] = 1 fig, ax = plt.subplots(len(feats), 4, figsize=(16, len(feats) * 3)) for i, f in enumerate(feats): if i == 0: legend = True else: legend = False sns.kdeplot(data=df_temp1, hue="target", x=f, legend=legend, ax=ax[i, 0]) sns.boxplot( data=train, x="target", y=f, ax=ax[i, 1], palette=["skyblue", "lightsalmon"] ) sns.boxplot( data=origin, x="target", y=f, ax=ax[i, 2], palette=["skyblue", "lightsalmon"] ) sns.kdeplot(data=df_temp2, hue="is_test", x=f, legend=legend, ax=ax[i, 3]) ax[i, 1].set_title(f"{f}", loc="right", weight="bold", fontsize=20) ax[i, 1].set_xlabel("Target in Train", fontsize=10) ax[i, 2].set_xlabel("Target in Origin", fontsize=10) for g in range(4): ax[i, g].spines[["top", "right"]].set_visible(False) # fig.legend([1, 0], loc='upper left', fontsize = 10, ncol=3, bbox_to_anchor=(0.12, 1)) # fig.legend(["train", "test"], loc='upper right', fontsize = 10, ncol=3, bbox_to_anchor=(0.9, 1)) plt.tight_layout() plt.show() def cv_score(model, features, cv, verbose=False, add_origin=False): trn_scores, val_scores = [], [] for fold, (trn_idx, val_idx) in enumerate(cv.split(train, train[target])): X_trn, X_val = train.iloc[trn_idx][features], train.iloc[val_idx][features] y_trn, y_val = train.iloc[trn_idx][target], train.iloc[val_idx][target] if add_origin: model.fit( pd.concat([X_trn, origin[features]], axis=0), pd.concat([y_trn, origin[target]], axis=0), ) else: model.fit(X_trn, y_trn) use_predict, use_predict_proba1 = False, False m = model if type(m) == Pipeline: m = m.steps[-1][1] if type(m) == CalibratedClassifierCV: m = m.calibrated_classifiers_[0].base_estimator if type(m) == LogisticGAM: use_predict_proba1 = True y_trn_pred = ( model.predict(X_trn) if use_predict else model.predict_proba(X_trn) if use_predict_proba1 else model.predict_proba(X_trn)[:, 1] ) y_val_pred = ( model.predict(X_val) if use_predict else model.predict_proba(X_val) if use_predict_proba1 else model.predict_proba(X_val)[:, 1] ) trn_scores.append(roc_auc_score(y_trn, y_trn_pred)) val_scores.append(roc_auc_score(y_val, y_val_pred)) if verbose: print( f"Fold {fold+1}: AUC = {val_scores[fold]:.5f} Overfitting : {trn_scores[fold] - val_scores[fold]:.5f}" ) return ( np.mean(val_scores), np.mean(trn_scores), np.mean(np.array(trn_scores) - np.array(val_scores)), ) results = [] def score_model(model, features, label=None, use_original=True, n_splits=N_SPLITS): """Cross-validate a model with feature selection""" trn_scores, val_scores = [], [] oof = np.zeros_like(train[target], dtype=float) kf = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=SEED) for fold, (trn_idx, val_idx) in enumerate(kf.split(train, train[target])): X_trn, X_val = train.iloc[trn_idx][features], train.iloc[val_idx][features] y_trn, y_val = train.iloc[trn_idx][target], train.iloc[val_idx][target] if use_original: X_trn = pd.concat([X_trn, origin[features]], axis=0) y_trn = pd.concat([y_trn, origin[target]], axis=0) model.fit(X_trn, y_trn) use_predict, use_predict_proba1 = False, False m = model if type(m) == Pipeline: m = m.steps[-1][1] if type(m) == CalibratedClassifierCV: m = m.calibrated_classifiers_[0].base_estimator if type(m) == LogisticGAM: use_predict_proba1 = True y_trn_pred = ( model.predict(X_trn) if use_predict else model.predict_proba(X_trn) if use_predict_proba1 else model.predict_proba(X_trn)[:, 1] ) y_val_pred = ( model.predict(X_val) if use_predict else model.predict_proba(X_val) if use_predict_proba1 else model.predict_proba(X_val)[:, 1] ) trn_scores.append(roc_auc_score(y_trn, y_trn_pred)) val_scores.append(roc_auc_score(y_val, y_val_pred)) print( f"Fold {fold+1}: AUC = {val_scores[fold]:.5f} Overfitting : {trn_scores[fold] - val_scores[fold]:.5f}" ) oof[val_idx] = y_val_pred _mean_overfit = np.mean(np.array(trn_scores) - np.array(val_scores)) print( f"Average AUC : {np.mean(val_scores):.5f} Overfitting : {_mean_overfit:.5f} Std : {np.std(val_scores):.5f}" ) if label is not None: if label in [f[0] for f in results]: del results[[f[0] for f in results].index(label)] results.append( ( label, model, np.mean(val_scores), _mean_overfit, np.std(val_scores), oof, use_original, features, ) ) display_model(label, oof) def display_model(label, oof): """Plot two diagrams with the oof values (calibration and histogram)""" fig, ax = plt.subplots(1, 2, figsize=(10, 4)) plt.suptitle(label, y=1.0, fontsize=20) ax[0].set_title("Calibration") CalibrationDisplay.from_predictions( train[target], oof, n_bins=50, strategy="quantile", ax=ax[0] ) ax[1].set_title("Histogram") ax[1].hist(oof, bins=100) for i in range(2): ax[i].spines[["top", "right"]].set_visible(False) def check_new_features(model, base_features, new_features=new_features, n_repeats=10): cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=n_repeats, random_state=SEED) cvs, cts, cofs = cv_score(model, base_features, cv) print( f"With {base_features} : Valid {cvs:.4f} Training {cts:.4f} Overfitting {cofs:.4f}" ) for f in new_features: if f not in base_features: cvs, cts, cofs = cv_score(model, base_features + [f], cv) print( f"With {f} : Valid {cvs:.4f} Training {cts:.4f} Overfitting {cofs:.4f}" ) # # XGBoost cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=20, random_state=10) cvs, cts, cofs = cv_score( SVC(C=0.01, gamma="scale", probability=True, random_state=10, kernel="rbf"), features=["log_calc"], cv=cv, add_origin=False, ) print(f"Valid {cvs:.4f} Training {cts:.4f} Overfitting {cofs:.4f}") cvs, cts, cofs = cv_score( make_pipeline( RobustScaler(), SVC(C=0.4, gamma=0.5, probability=True, random_state=SEED, kernel="rbf"), ), features=["cond/gravity", "calc", "calc/gravity"], cv=cv, add_origin=True, ) print(f"Valid {cvs:.4f} Training {cts:.4f} Overfitting {cofs:.4f}") check_new_features( make_pipeline( RobustScaler(), SVC(C=0.4, gamma=0.5, probability=True, random_state=SEED, kernel="rbf"), ), ["cond", "calc"], new_features=["calc/gravity", "calc/ph", "calc/cond"], n_repeats=10, ) check_new_features( make_pipeline( RobustScaler(), SVC(C=0.5, gamma=0.5, probability=True, random_state=SEED, kernel="rbf"), ), ["cond", "calc/gravity"], new_features=[ "calc/gravity", "calc/ph", "calc/cond", "cond/gravity", "cond/ph", "calc/osmo", "calc/urea", ], n_repeats=10, ) check_new_features( make_pipeline( RobustScaler(), SVC(C=0.5, gamma=0.5, probability=True, random_state=SEED, kernel="rbf"), ), ["calc", "cond/gravity"], new_features=["calc/gravity", "calc/ph", "calc/cond"], n_repeats=10, ) check_new_features( make_pipeline( RobustScaler(), SVC(C=0.5, gamma=0.5, probability=True, random_state=SEED, kernel="rbf"), ), ["calc", "bcond/gravity"], new_features=["bcalc/gravity", "bcalc/ph", "bcalc/cond"], n_repeats=10, ) # # KNeighborsClassifier for n in [1]: cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=20, random_state=10) cvs, cts, cofs = cv_score( make_pipeline( FunctionTransformer(lambda X: X * np.array([[0.01, 1]])), KNeighborsClassifier(64), ), features=["cond", "calc"], cv=cv, add_origin=False, ) print(f"Valid {cvs:.4f} Training {cts:.4f} Overfitting {cofs:.4f}") for n in [75]: cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=20, random_state=10) cvs, cts, cofs = cv_score( make_pipeline( FunctionTransformer(lambda X: X * np.array([[0.01, 1]])), KNeighborsClassifier(n), ), features=["cond", "calc"], cv=cv, add_origin=True, ) print(f"Valid {cvs:.4f} Training {cts:.4f} Overfitting {cofs:.4f}") for n in [61, 62, 63, 64, 65, 66, 67, 68, 69]: cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=20, random_state=10) cvs, cts, cofs = cv_score( KNeighborsClassifier(n), features=["calc"], cv=cv, add_origin=False ) print(f"Valid {cvs:.4f} Training {cts:.4f} Overfitting {cofs:.4f}") cvs, cts, cofs = cv_score( SVC(C=0.3, gamma="scale", probability=True, random_state=SEED, kernel="rbf"), features=["calc"], cv=cv, add_origin=False, ) print(f"Valid {cvs:.4f} Training {cts:.4f} Overfitting {cofs:.4f}") for c in [44]: cvs, cts, cofs = cv_score( SVC(C=0.44, gamma="scale", probability=True, random_state=SEED, kernel="rbf"), features=["calc"], cv=cv, add_origin=True, ) print(f"Valid {cvs:.4f} Training {cts:.4f} Overfitting {cofs:.4f}") cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=20, random_state=10) model = make_pipeline( FunctionTransformer(lambda X: X * np.array([[0.01, 1]])), KNeighborsClassifier(64) ) auc = cross_val_score( model, train[["cond", "calc"]], train[target], scoring="roc_auc", cv=cv ).mean() print(f"AUC = {auc:.4f}") # AUC = 0.819 cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=20, random_state=10) model = SVC(C=0.3, gamma="scale", probability=True, random_state=10, kernel="rbf") auc = cross_val_score( model, train[["calc"]], train[target], scoring="roc_auc", cv=cv ).mean() print(f"AUC = {auc:.4f}") # # SVC score_model( make_pipeline( RobustScaler(), CalibratedClassifierCV( SVC(C=0.5, gamma=0.5, probability=True, random_state=SEED, kernel="rbf"), method="isotonic", ), ), ["cond", "calc", "calc/gravity"], None, use_original=True, ) score_model( make_pipeline( RobustScaler(), CalibratedClassifierCV( SVC(C=0.5, gamma=0.5, probability=True, random_state=SEED, kernel="rbf"), method="isotonic", ), ), # ["cond", "calc", "calc/gravity", "cond/gravity"], "SVC", use_original = True) # ["cond", "calc", "gravity"], "SVC", use_original = True) ["calc", "cond/gravity", "calc/gravity"], None, use_original=True, ) # # GBM check_new_features( make_pipeline( GradientBoostingClassifier( learning_rate=0.12, n_estimators=49, max_features=1, min_samples_leaf=23, max_depth=1, random_state=SEED, ) ), ["cond", "calc", "calc/ph", "calc/gravity", "cond/ph"], n_repeats=50, ) score_model( make_pipeline( GradientBoostingClassifier( learning_rate=0.1, n_estimators=50, max_features=1, min_samples_leaf=23, max_depth=1, random_state=SEED, ) ), # ["cond", "calc"], "GBM", use_original = True) ["calc"], None, use_original=False, ) score_model( make_pipeline( CalibratedClassifierCV( GradientBoostingClassifier( learning_rate=0.12, n_estimators=49, max_features=1, min_samples_leaf=23, max_depth=1, random_state=SEED, ), method="isotonic", ) ), # ["cond", "calc"], "GBM", use_original = True) ["cond", "calc", "calc/ph", "calc/gravity", "cond/ph"], None, use_original=True, ) # # HistGradientBoostingClassifier score_model( make_pipeline( # MinMaxScaler(), CalibratedClassifierCV( HistGradientBoostingClassifier( learning_rate=0.01, max_iter=100, min_samples_leaf=30, max_leaf_nodes=3, random_state=SEED, ), method="isotonic", ) ), ["cond", "calc"], None, use_original=True, ) # # Gaussian Process Classifier from sklearn.gaussian_process.kernels import RBF kernel = 1.0 * RBF(1.0) score_model( make_pipeline( RobustScaler(), CalibratedClassifierCV( GaussianProcessClassifier(random_state=SEED), method="isotonic" ), ), ["cond", "calc", "calc/gravity"], "GaussianProcess", use_original=False, ) cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=10, random_state=SEED) cvs, cts, cofs = cv_score( make_pipeline( RobustScaler(), CalibratedClassifierCV( GaussianProcessClassifier(random_state=SEED), method="isotonic" ), ), features=["calc", "calc/gravity"], cv=cv, add_origin=True, ) print(f"Valid {cvs:.5f} Training {cts:.4f} Overfitting {cofs:.4f}") score_model( make_pipeline( RobustScaler(), CalibratedClassifierCV( GaussianProcessClassifier(random_state=SEED), method="isotonic" ), ), ["calc", "calc/gravity"], "GaussianProcess", use_original=True, ) # # Logistic cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=10, random_state=SEED) cvs, cts, cofs = cv_score( make_pipeline( StandardScaler(), Nystroem(gamma=2, n_components=120), CalibratedClassifierCV(LogisticRegression(C=0.1), method="isotonic"), ), features=["log_calc"], cv=cv, add_origin=True, ) print(f"Valid {cvs:.5f} Training {cts:.4f} Overfitting {cofs:.4f}") cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=10, random_state=SEED) cvs, cts, cofs = cv_score( make_pipeline( StandardScaler(), Nystroem(gamma=6, n_components=130), CalibratedClassifierCV(LogisticRegression(C=0.1), method="isotonic"), ), features=["calc"], cv=cv, add_origin=True, ) print(f"Valid {cvs:.5f} Training {cts:.4f} Overfitting {cofs:.4f}") score_model( make_pipeline( StandardScaler(), Nystroem(gamma=2, n_components=120), CalibratedClassifierCV(LogisticRegression(C=0.1), method="isotonic"), ), ["log_calc"], f"Logistic2", use_original=True, ) score_model( make_pipeline( StandardScaler(), Nystroem(gamma=6, n_components=130), CalibratedClassifierCV(LogisticRegression(C=0.1), method="isotonic"), ), ["calc"], f"Logistic", use_original=True, ) score_model( make_pipeline( StandardScaler(), PolynomialFeatures(5), # StandardScaler(), CalibratedClassifierCV( LogisticRegression(C=0.4, max_iter=4000), method="isotonic" ), ), ["calc"], None, use_original=False, ) # # GAM SPLINES = 15 gam_params = { "terms": s(3, n_splines=SPLINES, lam=0.25) + s(5, n_splines=SPLINES, lam=0.25) + te(0, 5, lam=0.25) + te(2, 5, lam=0.25) + te(3, 4, lam=0.25) + te(3, 5, lam=0.25) + te(4, 5, lam=0.25) # , "lam": 0.25, "fit_intercept":False}), , "fit_intercept": False, } score_model( make_pipeline( MinMaxScaler(), # CalibratedClassifierCV(LogisticGAM(**gam_params), method="isotonic")), LogisticGAM(**gam_params), ), test.columns, None, use_original=False, ) SPLINES = 15 gam_params = { "terms": s(0, n_splines=SPLINES, lam=0.25) + s(1, n_splines=SPLINES, lam=0.25) + te(0, 1, lam=0.25) # , "lam": 0.25, "fit_intercept":False}), , "fit_intercept": False, } score_model( make_pipeline( MinMaxScaler(), # CalibratedClassifierCV(LogisticGAM(**gam_params), method="isotonic")), LogisticGAM(**gam_params), ), ["cond", "calc"], None, use_original=False, ) # # RandomForest score_model( CalibratedClassifierCV( RandomForestClassifier( n_estimators=400, max_features=6, min_samples_leaf=4, random_state=SEED ), method="isotonic", ), test.columns, None, use_original=True, ) score_model( CalibratedClassifierCV( RandomForestClassifier( n_estimators=500, max_features=1, min_samples_leaf=15, random_state=SEED ), method="isotonic", ), ["cond", "calc"], None, use_original=True, ) # # ExtraTrees check_new_features( ExtraTreesClassifier( n_estimators=100, max_features=1, min_samples_leaf=14, random_state=SEED, criterion="entropy", ), ["calc"], new_features=["osmo", "cond", "ph", "urea", "gravity", "calc/gravity", "cond/osmo"], n_repeats=10, ) cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=10, random_state=SEED) cvs, cts, cofs = cv_score( ExtraTreesClassifier( n_estimators=100, max_features=1, min_samples_leaf=16, random_state=SEED, criterion="entropy", ), features=["calc"], cv=cv, add_origin=False, ) print(f"Valid {cvs:.4f} Training {cts:.4f} Overfitting {cofs:.4f}") cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=20, random_state=SEED) for f in [17, 18, 19, 20]: cvs, cts, cofs = cv_score( ExtraTreesClassifier( n_estimators=100, max_features=2, min_samples_leaf=f, random_state=SEED, criterion="entropy", ), features=["calc", "cond"], cv=cv, add_origin=True, ) print(f"Valid {cvs:.5f} Training {cts:.4f} Overfitting {cofs:.4f}") score_model( CalibratedClassifierCV( ExtraTreesClassifier( n_estimators=100, max_features=2, min_samples_leaf=18, random_state=SEED, criterion="entropy", ), method="isotonic", ), ["cond", "calc"], f"ExtraTrees", use_original=True, ) # ["cond","calc", "calc/gravity", "cond/osmo"], f'ExtraTrees', use_original=True) # ["cond","calc", "calc/gravity"], f'ExtraTrees', use_original=False) # # Ensemble oof = pd.DataFrame(index=train.index) for m in results: oof[m[0]] = m[5] ridge_params = {"alpha": 0, "fit_intercept": False, "positive": True} corr = spearmanr(oof).correlation # Ensure the correlation matrix is symmetric corr = (corr + corr.T) / 2 np.fill_diagonal(corr, 1) # We convert the correlation matrix to a distance matrix before performing # hierarchical clustering using Ward's linkage. distance_matrix = 1 - np.abs(corr) dist_linkage = hierarchy.ward(squareform(distance_matrix)) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 5)) dendro = hierarchy.dendrogram( dist_linkage, labels=oof.columns, ax=ax1, leaf_rotation=90 ) dendro_idx = np.arange(0, len(dendro["ivl"])) matrix = corr[dendro["leaves"], :][:, dendro["leaves"]] sns.heatmap( matrix, annot=True, fmt=".2f", cmap="coolwarm", mask=np.triu(matrix), ax=ax2 ) ax2.set_xticklabels(dendro["ivl"], rotation="vertical") ax2.set_yticklabels(dendro["ivl"], rotation="horizontal") fig.tight_layout() plt.show() def blend(oof, seed=SEED): score_list = [] oof_blend = pd.Series(0, index=oof.index) folds = StratifiedKFold(n_splits=N_SPLITS, shuffle=True, random_state=seed) for fold, (trn_idx, val_idx) in enumerate(folds.split(oof, train[target])): y_trn, y_val = train[target][trn_idx], train[target][val_idx] m = 0 for f in oof.columns: m = max(m, roc_auc_score(y_val, oof.iloc[val_idx][f])) blend_model = Ridge(**ridge_params) blend_model.fit(oof.iloc[trn_idx], y_trn) y_val_pred = blend_model.predict(oof.iloc[val_idx]) / np.sum(blend_model.coef_) score_list.append(roc_auc_score(y_val, y_val_pred)) oof_blend.iloc[val_idx] = y_val_pred ok = "ok" if m < score_list[fold] else "ko" coefs = [np.round(c, 2) for c in blend_model.coef_] print( f"Fold {fold+1:2}: AUC = {score_list[fold]:.5f} " f"weights = {coefs} " f"Max original AUC {m:.5f} => {ok}" ) all_aucs = [m[2] for m in results if m[0] in oof.columns] libs = [m[0] for m in results if m[0] in oof.columns] + ["blend"] all_res = {} for i, f in enumerate(libs[:-1]): all_res[f] = all_aucs[i] # all_res[f] = roc_auc_score(train[target], oof[f]) print("AUC in model {} : {:.5f}".format(f, all_res[f])) all_res["blend"] = np.mean(score_list) # roc_auc_score(train[target], oof_blend) print( f"Average AUC : {np.mean(score_list):.5f} (std : {np.std(score_list):.5f}) | OOF : {roc_auc_score(train[target], oof_blend):.5f}" ) fig, ax = plt.subplots(1, 3, figsize=(10, len(oof.columns)), sharey=True) res = pd.Series(all_res) overfits = [m[3] for m in results if m[0] in oof.columns] + [0] stds = [m[4] for m in results if m[0] in oof.columns] + [np.std(score_list)] color = ["skyblue" for i in range(len(res))] color[res.index.get_loc("blend")] = "orange" res.plot.barh(ax=ax[0], color=color).set(title="AUC") ax[0].set_xlim(0.75, 0.85) pd.Series(overfits, index=libs).plot.barh(ax=ax[1], color=color).set( title="Overfitting" ) # ax[0].set_xlim(0.75, 0.85) pd.Series(stds, index=libs).plot.barh(ax=ax[2], color=color).set(title="OOF std") for i in range(3): ax[i].bar_label(ax[i].containers[0], fmt="%.5f", padding=2) ax[i].spines[["right", "bottom"]].set_visible(False) ax[i].xaxis.set_ticks_position("top") display_model("OOF blend", oof_blend) blend(oof) blend(oof[["Logistic", "Logistic2"]]) blend(oof[["Logistic", "SVC", "ExtraTrees"]]) # # Inference final = ["Logistic", "SVC", "ExtraTrees"] opti_blend = Ridge(**ridge_params) opti_blend.fit(oof[final], train[target]) print( f"AUC (train) : {roc_auc_score(train[target], opti_blend.predict(oof[final])/np.sum(opti_blend.coef_)):.4f}" f"\n\nCoef for blend :" ) display(pd.Series(opti_blend.coef_.round(2), final, name="weight")) df_params = pd.DataFrame( [[m[1] for m in results], [m[6] for m in results], list([m[7] for m in results])], columns=[m[0] for m in results], index=["model", "use_original", "features"], ).transpose() df_params = df_params.loc[final] display(df_params) def fit_model_grouped(model, train, features): model.fit(train[features], train[target]) all_preds = pd.DataFrame(0, columns=final, index=test.index) # df_params['test_pred'] = None for i in range(len(df_params)): print( f"Retraining {df_params.index[i]} {'with original data' if df_params.iloc[i].use_original else ''}" ) if df_params.index[i] != "Keras": features = df_params.iloc[i].features if df_params.iloc[i].use_original: fit_model_grouped( df_params.iloc[i].model, pd.concat([train, origin], axis=0), features ) else: fit_model_grouped(df_params.iloc[i].model, train, features) all_preds[df_params.index[i]] = df_params.iloc[i].model.predict_proba( test[features] )[:, 1] else: all_preds[df_params.index[i]] = keras_preds all_preds[target] = opti_blend.predict(all_preds) / np.sum(opti_blend.coef_) all_preds[target].to_csv("submission.csv") # Final control sub = pd.read_csv("/kaggle/working/submission.csv") plt.figure(figsize=(5, 4)) plt.title("Preds") plt.hist(sub[target], bins=100) plt.show() sub.head(10)
# BASE import numpy as np import pandas as pd import math # VISUALS import seaborn as sns import matplotlib.pyplot as plt # From Property Services Regulatory Authority # Property price records between 19..-2022: https://www.propertypriceregister.ie/ df_all = pd.read_csv( "/kaggle/input/ireland-property-price-register/PPR-ALL.csv", encoding="ISO-8859-1" ) df_all.sample(5) print("Dataset shape:", df_all.shape) print("=============================================") print("Dataset dtypes:") print(df_all.dtypes) print("=============================================") print("Dataset describe:") df_all.describe() print("Unique County values in Dataset:", df_all["County"].unique()) print("=============================================") print("Unique ... values in Dataset:", df_all["Not Full Market Price"].unique()) print("=============================================") print("Unique ... values in Dataset:", df_all["VAT Exclusive"].unique()) print("=============================================") print("Unique ... values in Dataset:", df_all["Description of Property"].unique()) print("=============================================") print("Unique ... values in Dataset:", df_all["Property Size Description"].unique()) yearz = [] for x in df_all["Date of Sale (dd/mm/yyyy)"]: year = x.split("/")[-1] year = int(year) yearz.append(year) yearz.sort() yearz[0] df_all[df_all["Eircode"].apply(lambda eir: str(eir).startswith("D12"))]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns import time import random import collections import cv2 import tensorflow as tf from keras.applications.vgg19 import preprocess_input from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential from keras.layers import Dense, Activation, Flatten, Dropout from keras.layers import Conv2D, MaxPooling2D, BatchNormalization from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping from tensorflow.keras.applications import ( ResNet50, ResNet101, ResNet152, ResNet50V2, ResNet101V2, ResNet152V2, ) import os # for dirname, _, filenames in os.walk('/kaggle/input'): # for filename in filenames: # print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session i = 0 h = 2 v = 3 fig, axes = plt.subplots(h, v, figsize=(12, 10)) for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames[:4]: img = cv2.imread(os.path.join(dirname, filename)) if i < h * v: img = cv2.cvtColor(img, cv2.IMREAD_GRAYSCALE) img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) ax = list(axes.flatten())[i] ax.imshow(img) ax.set_title(dirname.split("/")[6]) # ax.axis("off") ax.set_xlabel("Image" + str(i + 1), size=15) i += 1 plt.show() train_dir = "/kaggle/input/face-mask-12k-images-dataset/Face Mask Dataset/Train/" test_dir = "/kaggle/input/face-mask-12k-images-dataset/Face Mask Dataset/Test/" val_dir = "/kaggle/input/face-mask-12k-images-dataset/Face Mask Dataset/Validation/" print( "num_of_classes: {} /".format(len(os.listdir(train_dir))), "name_of_classes: {}".format(os.listdir(train_dir)), ) print( "num_of_train_withoutmask {}/".format(len(os.listdir(train_dir + "WithoutMask"))), "num_of_train_withmask {}".format(len(os.listdir(train_dir + "WithMask"))), ) print( "num_of_test_withoutmask {}/".format(len(os.listdir(test_dir + "WithoutMask"))), "num_of_test_withmask {}".format(len(os.listdir(test_dir + "WithMask"))), ) print( "num_of_val_withoutmask {}/".format(len(os.listdir(val_dir + "WithoutMask"))), "num_of_val_withmask {}".format(len(os.listdir(val_dir + "WithMask"))), ) # start=time.perf_counter() img_shape = [] for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: img = cv2.imread(os.path.join(dirname, filename)) img_shape.append(img.shape) img_shape_df = pd.DataFrame(img_shape, columns=["Length", "Width", "Channel"]) img_shape_df.head() # stop=time.perf_counter() # print('{:0.4f} secs elapsed'.format(stop-start)) img_shape_df.describe() list_counts = [img_shape_df.Length.value_counts()] print(list_counts) sns.kdeplot(img_shape_df.Length, shade=True, bw_adjust=3, fill=True, color="green") plt.grid() plt.show() h = 128 w = 128 train_dir = "../input/face-mask-12k-images-dataset/Face Mask Dataset/Train" test_dir = "../input/face-mask-12k-images-dataset/Face Mask Dataset/Test" val_dir = "../input/face-mask-12k-images-dataset/Face Mask Dataset/Validation" train_datagen = ImageDataGenerator( width_shift_range=0.1, height_shift_range=0.1, rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, vertical_flip=True, fill_mode="nearest", ) test_datagen = ImageDataGenerator(rescale=1.0 / 255) val_datagen = ImageDataGenerator(rescale=1.0 / 255) train_gen = train_datagen.flow_from_directory( train_dir, target_size=(h, w), batch_size=32, color_mode="rgb", class_mode="categorical", ) test_gen = test_datagen.flow_from_directory( test_dir, target_size=(h, w), batch_size=32, color_mode="rgb", class_mode="categorical", ) val_gen = val_datagen.flow_from_directory( val_dir, target_size=(h, w), batch_size=32, color_mode="rgb", class_mode="categorical", ) input_shape = [128, 128, 3] initializer = tf.keras.initializers.GlorotNormal() def build_model(): model = Sequential() model.add( Conv2D( 32, (3, 3), padding="same", input_shape=input_shape, activation="relu", kernel_initializer=initializer, ) ) model.add( BatchNormalization(momentum=0.90) ) # axis=-1, momentum=0.99 (0.9-0.99), epsilon=0.001, center=True, scale=True, model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.3)) model.add(Conv2D(64, (3, 3), padding="same", activation="relu")) model.add(BatchNormalization(momentum=0.90)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.4)) model.add(Flatten()) model.add(Dense((128), activation="relu")) model.add(BatchNormalization(momentum=0.90)) model.add(Dense((64), activation="relu")) model.add(Dense(2, activation="sigmoid")) return model model = build_model() model.summary() start = time.perf_counter() loss_acc_values = [] model = build_model() model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"]) Checkpoints = ModelCheckpoint( "model_mask.h5", monitor="val_loss", verbose=0, save_best_only=True, mode="min", save_freq="epoch", ) Earlystop = EarlyStopping( monitor="val_loss", min_delta=0, patience=20, verbose=1, restore_best_weights=True ) callbacks = [Earlystop, Checkpoints] epochs = 10 train_numbers = 10000 valid_numbers = 800 test_numbers = 992 loss_acc_values.append( model.fit_generator( generator=train_gen, validation_data=val_gen, epochs=epochs, callbacks=callbacks, steps_per_epoch=train_numbers // 32, validation_steps=valid_numbers // 32, ) ) model.save("model_mask.h5") stop = time.perf_counter() print("{:0.4f} mins elapsed".format((stop - start) / 60)) fig, axes = plt.subplots(2, 2, figsize=(15, 10)) for i, value in enumerate(loss_acc_values[0].history): ax = axes.flatten()[i] layer_num = 0 for history in loss_acc_values: ax.plot(history.history[value], color="g") if value == "accuracy" or value == "val_accuracy": ax.axhspan(0.97, 0.99, color="skyblue", alpha=0.3) elif value == "loss" or value == "val_loss": ax.axhspan(0.1, 0.01, color="lightgreen") ax.set_title(value, size=15, color="r", loc="left") ax.set_xlabel("Number of Epocs") ax.grid() plt.show() evaluation = model.evaluate_generator(test_gen) print("Accuracy on test set:", evaluation[1]) print("Loss on test set:", evaluation[0])
# ![image.png](attachment:586ec9d8-2d39-4ae3-bd13-2006bc269416.png) # # TABLE OF CONTENT # # * [1. Introduction](#1) # # * [2. Data Importing and Checking](#2) # # * [3. Accessing The Numerical Variables](#3) # # * [4. Accessing The Categorical Variables](#4) # # * [5. Model Building](#5) # # * [6. Rescalling the features](#6) # # * [7. Prediction](#7) # # * [8. Using Random Forest](#8) # * [9. Feature Selection](#9) # * [10. Conclusion](#10) # # 1. Introduction # #### **Problem Statement** # # For this demonstration, you will use the bank marketing data set. So, let’s try and understand the problem statement to utilise the information available in the best possible way and proceed in the right direction as per the business problem at hand. # # So, a bank ran a marketing campaign in the past and has obtained data pertaining to nearly 11,000 customers, which includes variables such as their age, jobs, bank balance, education, loan status and so on. Based on this data, the bank wants to develop its future strategies based on the insights that it drew from the previous campaign and improve for the next campaign so that more customers agree to open term deposits with the bank. # # Hence, ‘deposit’ is the target variable here. A ‘Yes’ in the ‘deposit’ column indicates that the campaign was successful and the customer agreed to open a term deposit account with the bank. In contrast, a ‘No’ in the ‘deposit’ column indicates that the campaign was not very successful and the customer could not be convinced to open a term deposit account. # # Essentially, the bank wants to: # Build a model that quantitatively relates to the success of the marketing campaign with variables such as job, marital status, education, bank balance, etc. # Identify the features of the data set that affect the successful conversion of customers. # To know the accuracy of the model, i.e., how well these variables predict the success of the campaign. # # You may download the data set and the Python notebook below. We recommend that you open the file on your computer and follow along with the demonstrations in the videos; this will help you understand the model building process easily and quickly. # # 2. Data Importing and Checking import numpy as np, pandas as pd import matplotlib.pyplot as plt, seaborn as sns from IPython.core.display import display, HTML display(HTML("<style>.container {width:100% !important;}</style>")) import warnings warnings.filterwarnings("ignore") bank_data = pd.read_csv("/kaggle/input/bank-marketing-v2/bank marketing v2.csv") bank_data.head() bank_data.info() bank_data.deposit.value_counts() bank_data.deposit.value_counts(normalize=True) # * We can see that 52% of the people those who have bank account, never deposit single time in their bank account. # * Rest 47% did deposited some amount atleast. # #### **Modifying the target variable to have 0/1 values** bank_data.deposit = bank_data.deposit.map({"yes": 1, "no": 0}) bank_data.deposit.value_counts(normalize=True) # # # 3. Accessing Categorical Variables bank_data.education.value_counts(normalize=True) cat_cols = bank_data.select_dtypes("object").columns cat_cols plt.figure(figsize=[20, 7]) for ind, col in enumerate(cat_cols): plt.subplot(2, 5, ind + 1) bank_data[col].value_counts(normalize=True).plot.barh() plt.title(col) plt.show() bank_data.job.value_counts() # # # 4. Accessing Numerical Variables num_cols = bank_data.select_dtypes("number").columns num_cols # **Dropping `day` and `duration` columns** bank1 = bank_data.drop(["duration", "day"], axis=1) bank1.columns num_cols = bank1.select_dtypes("number").columns num_cols = num_cols.drop("deposit") num_cols plt.figure(figsize=[6, 4]) for ind, col in enumerate(num_cols): plt.subplot(1, 2, ind + 1) bank1[col].plot.box() plt.title(col) plt.show() # #### **Creating dummy variables for the categorical variables** # Handling `default`, `loan`, `housing` def binary_map(col): return col.map({"no": 0, "yes": 1}) binary_cols = ["default", "loan", "housing"] bank1[binary_cols] = bank1[binary_cols].apply(binary_map) bank1.housing.value_counts() bank_data.housing.value_counts() # **Creating dummy features for education, marital, p_recency, poutcome, contact, job, month** dumm_cols = ["education", "marital", "p_recency", "contact", "poutcome", "job", "month"] bank_dummies = pd.get_dummies(bank1[dumm_cols], drop_first=True) bank_dummies.head() bank_dummies.shape bank1.drop(dumm_cols, axis=1) # **Concatenating dummies back on** bank1 = pd.concat([bank1, bank_dummies], axis=1) bank1.drop(dumm_cols, axis=1, inplace=True) bank1.shape bank1.columns # # # 5. Model Building # * Dividing into train and test sets # * MinMax scaling for numeric features # * Build multiple predictive models # #### **Dividing into train and test datasets** from sklearn.model_selection import train_test_split df_train, df_test = train_test_split( bank1, test_size=0.2, random_state=42, stratify=bank1.deposit ) df_train.shape, df_test.shape df_train.deposit.value_counts(normalize=True) df_test.deposit.value_counts(normalize=True) # #### **MinMax scaling for numeric features** from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler() df_train[["age", "balance"]].describe() df_train[["age", "balance"]] = scaler.fit_transform(df_train[["age", "balance"]]) # #### **Building predictive models** X_train = df_train.drop("deposit", axis=1) y_train = df_train["deposit"] X_test = df_test.drop("deposit", axis=1) y_test = df_test["deposit"] X_train.shape y_train.shape, y_test.shape # ### **Beginning with Logistic Regression** from sklearn.linear_model import LogisticRegression logreg = LogisticRegression(random_state=42) # This code creates an instance of a logistic regression model using scikit-learn's LogisticRegression class, and sets the random seed to 42 using the random_state parameter. Logistic regression is a statistical model used to predict the probability of a binary or categorical outcome based on one or more predictor variables. # By setting the random seed, it ensures that the results of the model will be reproducible, meaning if you run the same code multiple times, you should get the same results. This can be important when working with machine learning models, as it allows for better tracking of changes in performance over time and across different experiments. logreg.fit(X_train, y_train) # This code fits the logistic regression model (logreg) to the training data, where X_train is the feature matrix (i.e., a two-dimensional array of shape [n_samples, n_features]) and y_train is the target variable (i.e., a one-dimensional array of length n_samples). # Fitting the model involves estimating the model parameters that best fit the training data, which is done using an optimization algorithm that minimizes the logistic loss function. This results in a set of weights and biases that define the decision boundary between the two classes in the feature space. # **Evaluating the model** y_train_pred = logreg.predict(X_train) from sklearn.metrics import accuracy_score, confusion_matrix, classification_report accuracy_score(y_train, y_train_pred) # It's important to note that the accuracy score alone may not always be a sufficient metric to evaluate the performance of a classification model, especially when the class distribution is imbalanced or the cost of misclassification is different for different classes. In such cases, other metrics such as **precision, recall, F1-score, and area under the ROC curve (AUC-ROC)** may provide a more comprehensive view of the model's performance. confusion_matrix(y_train, y_train_pred) print(classification_report(y_train, y_train_pred)) # The classification_report() function from scikit-learn's metrics module generates a report that includes metrics such as precision, recall, F1-score, and support for each class, as well as the macro- and micro-averaged scores across all classes. The precision, recall, and F1-score are computed for each class separately, and are weighted by the number of true instances of that class. # **Performance on test set** y_test_pred = logreg.predict(X_test) accuracy_score(y_test, y_test_pred) # ### **Using RandomForest** from sklearn.ensemble import RandomForestClassifier rf = RandomForestClassifier(random_state=42, n_estimators=50, oob_score=True) # * **random_state=42:** sets the random seed to 42, which ensures that the results of the model will be reproducible. # * **n_estimators=50:** sets the number of decision trees in the forest to 50. Increasing the number of trees can improve the performance of the model, but may also increase the computational cost and risk overfitting the data. # * **oob_score=True:** enables out-of-bag (OOB) estimation of the model's accuracy. In random forest, each tree is trained on a bootstrap sample of the training data, which means that some samples are not used in the training of each tree. These OOB samples can be used to estimate the performance of the model without the need for cross-validation or a separate validation set. rf.fit(X_train, y_train) # **Performance on the train set** y_train_pred = rf.predict(X_train) accuracy_score(y_train, y_train_pred) # **Performance on unseen data** y_test_pred = rf.predict(X_test) accuracy_score(y_test, y_test_pred) # # # 6. Model evaluation: Cross validation from sklearn.model_selection import cross_val_score cross_val_score(logreg, X_train, y_train, cv=5, n_jobs=-1) cross_val_score(rf, X_train, y_train, cv=5, n_jobs=-1) cross_val_score(rf, X_train, y_train, cv=5, n_jobs=-1).mean() # **Takeaway: Cross validation score gives a far more reliable estimate of the generalized perforance on unseen data** # **Note**: OOB Score in RandomForest is somewhat similar to cross val score rf.oob_score_ # **Scoring methods in Cross val score** import sklearn sklearn.metrics.SCORERS.keys() cross_val_score(rf, X_train, y_train, cv=5, n_jobs=-1, scoring="recall") # # # 7. Feature Selection X_train.shape # #### **Recursive Feature Elimination - RFE** from sklearn.feature_selection import RFE logreg = LogisticRegression(random_state=42) rfe = RFE(estimator=logreg, n_features_to_select=10) # This code creates an instance of scikit-learn's RFE (Recursive Feature Elimination) class, which is used for feature selection in machine learning. The RFE class requires two arguments: # * **estimator=logreg:** specifies the estimator to be used for the feature selection process. In this case, the LogisticRegression model logreg is used as the estimator. # * **n_features_to_select=10:** specifies the number of features to select in the final feature subset. In this case, 10 features will be selected. rfe.fit(X_train, y_train) rfe.ranking_ X_train.columns[rfe.support_] X_train2 = X_train.loc[:, rfe.support_] X_train2.shape X_train2.columns # **Evaluation using cross val score** cross_val_score(logreg, X_train2, y_train, n_jobs=-1) # ## **Cross validation for feature selection** num_features = X_train.shape num_features[1] cv_scores = [] logreg = LogisticRegression(random_state=42) logreg.fit(X_train, y_train) y_train_pred = logreg.predict(X_train) from sklearn.metrics import accuracy_score, confusion_matrix, classification_report accuracy_score(y_train, y_train_pred) confusion_matrix(y_train, y_train_pred) print(classification_report(y_train, y_train_pred)) # #### **Performance on test set** y_test_pred = logreg.predict(X_test) accuracy_score(y_test, y_test_pred) # # # 8. Using RandomForest from sklearn.ensemble import RandomForestClassifier rf = RandomForestClassifier(random_state=42, n_estimators=50, oob_score=True) rf.fit(X_train, y_train) # #### **Performance On train Set** y_train_pred = rf.predict(X_train) accuracy_score(y_train, y_train_pred) # Performance on unseen data y_test_pred = rf.predict(X_test) accuracy_score(y_test, y_test_pred) # ### **Model evaluation: Cross validation** from sklearn.model_selection import cross_val_score cross_val_score(logreg, X_train, y_train, cv=5, n_jobs=-1) cross_val_score(rf, X_train, y_train, cv=5, n_jobs=-1) cross_val_score(rf, X_train, y_train, cv=5, n_jobs=-1).mean() # **Takeaway:** Cross validation score gives a far more reliable estimate of the generalized perforance on unseen data. # **Note:** OOB Score in RandomForest is somewhat similar to cross val score rf.oob_score_ import sklearn sklearn.metrics.SCORERS.keys() cross_val_score(rf, X_train, y_train, cv=5, n_jobs=-1, scoring="recall") # # # 9. Feature Selection X_train.shape # **Recursive Feature Elimination - RFE:** # RFE algorithm works by first training a model on the full set of features and then ranking the features based on their importance score, which is typically obtained from the coefficients of a linear model or the feature importances of a tree-based model. The least important feature(s) are then removed from the feature set, and the process is repeated until a desired number of features is reached. The optimal number of features is often determined by cross-validation. rfe = RFE(estimator=logreg, n_features_to_select=10) # The **estimator** parameter specifies the machine learning algorithm that will be used to train the model and estimate the importance of each feature. In this case, the estimator is **logreg**, which is an instance of the logistic regression algorithm from the **sklearn.linear_model** module. rfe.fit(X_train, y_train) rfe.ranking_ X_train.columns[rfe.support_] X_train2 = X_train.loc[:, rfe.support_] X_train2.shape X_train2.columns # Evaluation using cross val score cross_val_score(logreg, X_train2, y_train, n_jobs=-1) # ### **Cross validation for feature selection** num_features = X_train.shape num_features[1] cv_scores = [] logreg = LogisticRegression(random_state=42) for features in range(1, num_features[1] + 1): rfe = RFE(logreg, n_features_to_select=features) scores = cross_val_score(rfe, X_train, y_train, cv=4) cv_scores.append(scores.mean()) plt.figure(figsize=[10, 5]) plt.plot(range(1, num_features[1] + 1), cv_scores) plt.show() # Using RFECV from sklearn.feature_selection import RFECV rfecv = RFECV(estimator=logreg, cv=4) rfecv.fit(X_train, y_train) rfecv.grid_scores_ plt.figure(figsize=[10, 5]) plt.plot(range(1, num_features[1] + 1), rfecv.grid_scores_) plt.show() rfecv.n_features_ # ### **Hyper-parameter tuning using Cross Validation** from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import GridSearchCV rf = RandomForestClassifier(random_state=42, n_jobs=-1) # **n_jobs=-1:**This sets the number of parallel jobs to run for fitting and predicting. A value of -1 means to use all available processors. hyper_params = { "max_depth": [3, 5, 10, 15, 20], "max_features": [3, 5, 7, 11, 15], "min_samples_leaf": [20, 50, 100, 200, 400], "n_estimators": [10, 25, 50, 80, 100], } # * **max_depth:** This specifies the maximum depth of each decision tree in the random forest. It takes a list of integers as values, ranging from 3 to 20. # * **max_features:** This specifies the maximum number of features to consider when splitting a node in a decision tree. It takes a list of integers as values, ranging from 3 to 15. # * **min_samples_leaf:** This specifies the minimum number of samples required to be at a leaf node in a decision tree. It takes a list of integers as values, ranging from 20 to 400. # * **n_estimators:** This specifies the number of decision trees to include in the random forest. It takes a list of integers as values, ranging from 10 to 100 model_cv = GridSearchCV( estimator=rf, param_grid=hyper_params, verbose=1, cv=5, n_jobs=-1, return_train_score=True, ) # * **estimator=rf:** This specifies the estimator or the machine learning model to be tuned, which is a RandomForestClassifier object that was previously defined. # * **param_grid=hyper_params:** This specifies the grid of hyperparameters to be searched, which is the hyper_params dictionary object that was previously defined. # * **verbose=1:** This controls the verbosity level of the output during the hyperparameter tuning process. A value of 1 means that progress messages are printed to the console. # * **cv=5:** This specifies the number of folds to be used in the cross-validation process. In this case, 5-fold cross-validation will be used. # * **n_jobs=-1:** This specifies the number of parallel jobs to run for fitting and predicting. A value of -1 means to use all available processors. # * **return_train_score=True:** This specifies whether to return the training scores in addition to the validation scores during the hyperparameter tuning process. model_cv.fit(X_train, y_train) model_cv.best_score_ model_cv.best_estimator_ cv_df = pd.DataFrame(model_cv.cv_results_) cv_df.head() cv_df.sort_values(by="rank_test_score").head() sel_cols = [ "param_max_depth", "param_max_features", "param_min_samples_leaf", "param_n_estimators", "rank_test_score", "mean_test_score", ] cv_df.sort_values(by="rank_test_score")[sel_cols].head(20) # #### **Understand better the effect of Hyper-parameter** cv_df.columns cv_df.groupby("param_max_depth")["mean_train_score", "mean_test_score"].mean().plot( figsize=[8, 5] ) plt.show() cv_df.groupby("param_max_depth")["mean_train_score", "mean_test_score"].agg( np.median ).plot(figsize=[8, 5]) plt.show() cv_df.groupby("param_n_estimators")["mean_train_score", "mean_test_score"].agg( np.mean ).plot(figsize=[8, 5]) plt.show() cv_df.groupby("param_max_features")["mean_train_score", "mean_test_score"].agg( np.median ).plot(figsize=[8, 5]) plt.show() cv_df.groupby("param_max_features")["mean_train_score", "mean_test_score"].agg( np.mean ).plot(figsize=[8, 5]) plt.show() cv_df.groupby("param_min_samples_leaf")["mean_train_score", "mean_test_score"].agg( np.median ).plot(figsize=[8, 5]) plt.show() # ### **Fine-tuning using GridSearch** hyper_parameters = { "min_samples_leaf": [5, 10, 20, 50], "n_estimators": [50, 60, 70], "max_features": [10, 12, 14, 16], } rf = RandomForestClassifier(max_depth=12, random_state=42, n_jobs=-1) model_cv2 = GridSearchCV( estimator=rf, param_grid=hyper_parameters, verbose=1, cv=5, return_train_score=True, n_jobs=-1, ) model_cv2.fit(X_train, y_train) model_cv2.best_score_ model_cv2.best_estimator_ # #### **RandomizedSearchCV** from sklearn.model_selection import RandomizedSearchCV hyper_params = { "max_depth": range(3, 20), "max_features": range(3, 17), "min_samples_leaf": range(20, 400, 50), "n_estimators": range(10, 101, 10), } model_rcv = RandomizedSearchCV( estimator=rf, param_distributions=hyper_params, verbose=1, cv=5, return_train_score=True, n_jobs=-1, n_iter=50, ) model_rcv.fit(X_train, y_train) model_rcv.best_score_ model_cv.best_score_ # #### **Extracting the best model and asessing test performance** model_cv2.best_score_ rf_best = model_cv2.best_estimator_ rf_best y_test_pred = rf_best.predict(X_test) accuracy_score(y_test, y_test_pred)
# # Transfer Learning with TPU # Import libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import tensorflow as tf from tensorflow.data.experimental import AUTOTUNE from tensorflow.keras import Model from tensorflow.keras.applications import ResNet152V2 from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Input, Dense, GlobalAveragePooling2D, MaxPooling2D from tensorflow.keras.layers import BatchNormalization, Dropout from tensorflow.keras.optimizers import Adam from kaggle_datasets import KaggleDatasets # Detect TPU, return appropriate distribution strategy try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() print("Running on TPU ", tpu.master()) except ValueError: tpu = None if tpu: tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) strategy = tf.distribute.experimental.TPUStrategy(tpu) else: strategy = tf.distribute.get_strategy() print("REPLICAS: ", strategy.num_replicas_in_sync) # Get GCS path and select the file with 224x224 images gcs_ds_path = KaggleDatasets().get_gcs_path("tpu-getting-started") gcs_path = gcs_ds_path + "/tfrecords-jpeg-224x224" # Set parameters BUFFER_SIZE = 60000 BATCH_SIZE = 16 * strategy.num_replicas_in_sync # BATCH_SIZE = 4 IMAGE_SIZE = [224, 224] HEIGHT = 224 WIDTH = 224 NUM_TRAINING_IMAGES = 12753 NUM_TEST_IMAGES = 7382 EPOCHS = 4 STEPS_PER_EPOCH = NUM_TRAINING_IMAGES // BATCH_SIZE # Get the path to all the files within the tfrecords-jpeg-224x224 folder training_filepath = tf.io.gfile.glob(gcs_path + "/train/*.tfrec") validation_filepath = tf.io.gfile.glob(gcs_path + "/val/*.tfrec") test_filepath = tf.io.gfile.glob(gcs_path + "/test/*.tfrec") # Load TFRecord file from the folder as bytes raw_training_dataset = tf.data.TFRecordDataset(training_filepath) raw_validation_dataset = tf.data.TFRecordDataset(validation_filepath) raw_test_dataset = tf.data.TFRecordDataset(test_filepath) # Create a dictionary describing the features labeled_feature_description = { "class": tf.io.FixedLenFeature([], tf.int64), "image": tf.io.FixedLenFeature([], tf.string), } unlabeled_feature_description = { "id": tf.io.FixedLenFeature([], tf.string), "image": tf.io.FixedLenFeature([], tf.string), } # Class name of flowers CLASSES = [ "pink primrose", "hard-leaved pocket orchid", "canterbury bells", "sweet pea", "wild geranium", # 00-04 "tiger lily", "moon orchid", "bird of paradise", "monkshood", "globe thistle", # 05-09 "snapdragon", "colt's foot", "king protea", "spear thistle", "yellow iris", # 10-14 "globe-flower", "purple coneflower", "peruvian lily", "balloon flower", "giant white arum lily", # 15-19 "fire lily", "pincushion flower", "fritillary", "red ginger", "grape hyacinth", # 20-24 "corn poppy", "prince of wales feathers", "stemless gentian", "artichoke", "sweet william", # 25-29 "carnation", "garden phlox", "love in the mist", "cosmos", "alpine sea holly", # 30-34 "ruby-lipped cattleya", "cape flower", "great masterwort", "siam tulip", "lenten rose", # 35-39 "barberton daisy", "daffodil", "sword lily", "poinsettia", "bolero deep blue", # 40-44 "wallflower", "marigold", "buttercup", "daisy", "common dandelion", # 45-49 "petunia", "wild pansy", "primula", "sunflower", "lilac hibiscus", # 50-54 "bishop of llandaff", "gaura", "geranium", "orange dahlia", "pink-yellow dahlia", # 55-59 "cautleya spicata", "japanese anemone", "black-eyed susan", "silverbush", "californian poppy", # 60-64 "osteospermum", "spring crocus", "iris", "windflower", "tree poppy", # 65-69 "gazania", "azalea", "water lily", "rose", "thorn apple", # 70-74 "morning glory", "passion flower", "lotus", "toad lily", "anthurium", # 75-79 "frangipani", "clematis", "hibiscus", "columbine", "desert-rose", # 80-84 "tree mallow", "magnolia", "cyclamen ", "watercress", "canna lily", # 85-89 "hippeastrum ", "bee balm", "pink quill", "foxglove", "bougainvillea", # 90-94 "camellia", "mallow", "mexican petunia", "bromelia", "blanket flower", # 95-99 "trumpet creeper", "blackberry lily", "common tulip", "wild rose", # 100-103 ] # Create a function to read and extract images from dataset def _parse_labeled_image_function(example_proto): example = tf.io.parse_single_example(example_proto, labeled_feature_description) image = tf.io.decode_jpeg(example["image"]) image = tf.cast(image, tf.float32) / 255.0 image = tf.image.resize(image, IMAGE_SIZE) label = tf.cast(example["class"], tf.int32) return image, label def _parse_unlabeled_image_function(example_proto): example = tf.io.parse_single_example(example_proto, unlabeled_feature_description) image = tf.io.decode_jpeg(example["image"]) image = tf.cast(image, tf.float32) / 255.0 image = tf.image.resize(image, IMAGE_SIZE) idnum = example["id"] return image, idnum # Parse and extract images # Parse labeled images, shuffle and batch training_dataset = ( raw_training_dataset.map(_parse_labeled_image_function) .repeat() .shuffle(BUFFER_SIZE) .batch(BATCH_SIZE) .prefetch(AUTOTUNE) ) # Parse unlabeled images and batch validation_dataset = ( raw_validation_dataset.map(_parse_labeled_image_function) .batch(BATCH_SIZE) .prefetch(AUTOTUNE) ) # Parse unlabeled images and batch test_dataset = ( raw_test_dataset.map(_parse_unlabeled_image_function) .batch(BATCH_SIZE) .prefetch(AUTOTUNE) ) # Display images in a 5x5 grid image_batch, label_batch = next(iter(training_dataset)) def display_images(image_batch, label_batch): plt.figure(figsize=[20, 12]) for i in range(25): plt.subplot(5, 5, i + 1) plt.imshow(image_batch[i]) plt.title(CLASSES[label_batch[i].numpy()]) plt.axis("off") plt.show() display_images(image_batch, label_batch) # Create a function to augment brightness, contrast, flip and crop images def augment_image(image, label): # Add 10px padding and random crop image = tf.image.resize_with_crop_or_pad(image, HEIGHT + 10, WIDTH + 10) image = tf.image.random_crop(image, size=[*IMAGE_SIZE, 3]) # Random flip image = tf.image.random_flip_left_right(image) # Random brightness image = tf.image.random_brightness(image, 0.2) # Random contrast image = tf.image.random_contrast(image, lower=0.8, upper=1.2) # Random saturation image = tf.image.random_saturation(image, lower=0.8, upper=1.2) return image, label # Parse unlabeled images, augment, shuffle and batch training_dataset_augmented = ( raw_training_dataset.map(_parse_labeled_image_function) .map(augment_image) .repeat() .shuffle(BUFFER_SIZE) .batch(BATCH_SIZE) .prefetch(AUTOTUNE) ) # Display images in a 5x5 grid image_batch_augmented, label_batch_augmented = next(iter(training_dataset_augmented)) display_images(image_batch_augmented, label_batch_augmented) # Create a function to build the model def build_model(): inputs = Input(shape=(HEIGHT, WIDTH, 3)) model = ResNet152V2(include_top=False, input_tensor=inputs, weights="imagenet") # Freeze the pretrained weights model.trainable = False # Rebuild top x = GlobalAveragePooling2D()(model.output) x = BatchNormalization()(x) # x = Dropout(0.2)(x) x = Dropout(0.3)(x) outputs = Dense(104, activation="softmax")(x) # Compile model = Model(inputs, outputs) model.compile( optimizer=Adam(learning_rate=1e-2), loss="sparse_categorical_crossentropy", metrics=["sparse_categorical_accuracy"], ) return model # Train the model with strategy.scope(): model = build_model() hist = model.fit( training_dataset_augmented, epochs=EPOCHS * 2, validation_data=validation_dataset, steps_per_epoch=STEPS_PER_EPOCH, ) # Create a function to unfreeze the model the top 20 layers # But, we'll keep BatchNormalization layers frozen def unfreeze_model(model): for layer in model.layers[-20:]: if not isinstance(layer, BatchNormalization): layer.trainable = True model.compile( optimizer=Adam(learning_rate=1e-4), loss="sparse_categorical_crossentropy", metrics=["sparse_categorical_accuracy"], ) # Unfreeze and train the model unfreeze_model(model) hist = model.fit( training_dataset_augmented, epochs=EPOCHS, validation_data=validation_dataset, steps_per_epoch=STEPS_PER_EPOCH, ) # Predict images from test set test_images = test_dataset.map(lambda image, idnum: image) prob = model.predict(test_images) pred = np.argmax(prob, axis=-1) print(pred) # Prepare file for submission test_ids_ds = test_dataset.map(lambda image, idnum: idnum).unbatch() test_ids = next(iter(test_ids_ds.batch(NUM_TEST_IMAGES))).numpy().astype("U") # np.savetxt( # '/kaggle/working/submission.csv', # np.rec.fromarrays([test_ids, pred]), # fmt=['%s', '%d'], # delimiter=',', # header='id,label', # comments='', # ) dim2list = [[test_ids[i], pred[i]] for i in range(len(test_ids))] df = pd.DataFrame(dim2list, columns=["id", "label"]) df.to_csv("submission.csv", index=False)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from sklearn.linear_model import LinearRegression import plotly.graph_objects as go from plotly.subplots import make_subplots # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # Pre-processing df = pd.read_csv("/kaggle/input/link-eth-daily-to-16-apr-2023/LINK-ETH.csv") df = df.rename(columns={"Date": "date", "Close": "price"}) df.date = pd.to_datetime(df.date) # Format date column df.sort_values(by="date", inplace=True) # Sort chronologically df.reset_index(inplace=True, drop=True) # Re-index Data column df["ind"] = [x + 1 for x in range(len(df))] # Add usable index column df = df.dropna() # Delete N/A rows print(df) # # Pre-processing (highs) # df_high = df_high.rename(columns = { # 'Date' : 'date', # 'Value' : 'price' # }) # df_high.date = pd.to_datetime(df_high.date) # Format date column # df_high.sort_values(by="date", inplace=True) # Sort chronologically # df_high.reset_index(inplace=True, drop=True) # Re-index Data column # df_high["ind"] = [x + 592 for x in range(len(df_high))] # Add usable index column # df_high = df_high.dropna() # # Pre-processing (lows) # df_low = df_low.rename(columns = { # 'Date' : 'date', # 'Value' : 'price' # }) # df_low.date = pd.to_datetime(df_low.date) # Format date column # df_low.sort_values(by="date", inplace=True) # Sort chronologically # df_low.reset_index(inplace=True, drop=True) # Re-index Data column # df_low["ind"] = [x + 592 for x in range(len(df_low))] # Add usable index column # df_low = df_low.dropna() # Delete N/A rows # # Pre-processing (under/overvalued) # df_under_over.date = pd.to_datetime(df_under_over.date) # Format date column # df_under_over.sort_values(by="date", inplace=True) # Sort chronologically # df_under_over.reset_index(inplace=True, drop=True) # Re-index Data column # df_under_over["ind"] = [x + 592 for x in range(len(df_under_over))] # Add usable index column # # Split df into undervalued and overvalued # df_under = df_under_over[["date","ind","undervalued"]].copy() # df_under = df_under.rename(columns = {'undervalued' : 'price'}) # df_under = df_under.dropna() # Delete N/A rows # df_under.reset_index(inplace=True, drop=True) # Re-index Data column # df_over = df_under_over[["date","ind","overvalued"]].copy() # df_over = df_over.rename(columns={"overvalued": "price"}) # df_over = df_over.dropna() # Delete N/A rows # df_over.reset_index(inplace=True, drop=True) # Re-index Data column # # Define array of df to be analysed # dfs = [df,df_high,df_low,df_under,df_over] # Define function for log transformation # Log-log tranform df["log_days"] = np.log10(df["ind"]) df["log_price"] = np.log10(df["price"]) # # Log-log tranform (highs) # df_high['log_days'] = np.log10(df_high['ind']) # df_high['log_price'] = np.log10(df_high['price']) # # Log-log tranform (lows) # df_low['log_days'] = np.log10(df_low['ind']) # df_low['log_price'] = np.log10(df_low['price']) # # Log-log tranform (under) # df_under['log_days'] = np.log10(df_under['ind']) # df_under['log_price'] = np.log10(df_under['price']) # # Log-log tranform (over) # df_over['log_days'] = np.log10(df_over['ind']) # df_over['log_price'] = np.log10(df_over['price']) # Linear regression model days = len(df) x = df.log_days.values[:days].reshape(-1, 1) y = df.log_price[:days] model = LinearRegression() model.fit(x, y) x_range = np.linspace(x.min(), x.max(), 100) y_range = model.predict(x_range.reshape(-1, 1)) z_range = np.power(10, model.fit(x, y).predict(x)) # # Linear regression model (highs) # x_high = df_high.log_days.values[:days].reshape(-1,1) # y_high = df_high.log_price[:days] # model.fit(x_high,y_high) # x_range_high = np.linspace(x_high.min(), x_high.max(), 100) # y_range_high = model.predict(x_range_high.reshape(-1, 1)) # z_range_high = np.power(10,model.fit(x_high,y_high).predict(x)) # # Linear regression model (lows) # x_low = df_low.log_days.values[:days].reshape(-1,1) # y_low = df_low.log_price[:days] # model.fit(x_low,y_low) # x_range_low = np.linspace(x_low.min(), x_low.max(), 100) # y_range_low = model.predict(x_range_low.reshape(-1, 1)) # z_range_low = np.power(10,model.fit(x_low,y_low).predict(x)) # # Linear regression model (under) # x_under = df_under.log_days.values[:days].reshape(-1,1) # y_under = df_under.log_price[:days] # model.fit(x_under,y_under) # x_range_under = np.linspace(x_under.min(), x_under.max(), 100) # y_range_under = model.predict(x_range_under.reshape(-1, 1)) # z_range_under = np.power(10,model.fit(x_under,y_under).predict(x)) # # Linear regression model (over) # x_over = df_over.log_days.values[:days].reshape(-1,1) # y_over = df_over.log_price[:days] # model.fit(x_over,y_over) # x_range_over = np.linspace(x_over.min(), x_over.max(), 100) # y_range_over = model.predict(x_range_over.reshape(-1, 1)) # z_range_over = np.power(10,model.fit(x_over,y_over).predict(x)) # Define fair value and over/undervaluation df["fair_value"] = z_range print(df) """Working on making this automated...""" # Create visualisation fig = make_subplots() fig.add_trace( go.Scatter( x=df["log_days"], y=df["log_price"], name="Price", opacity=1, hovertemplate="%{y:.4f}", ), ) # fig.add_trace( # go.Scatter( # x=x_range_high, # y=y_range_high, # name="Upper", # opacity=1, # hoverinfo="y", # hovertemplate="%{y:.4f}" # ), # ) # fig.add_trace( # go.Scatter( # x=x_range_over, # y=y_range_over, # name="Overvalued", # opacity=1, # hoverinfo="y", # hovertemplate="%{y:.4f}" # ), # ) fig.add_trace( go.Scatter( x=x_range, y=y_range, name="Fair Value", opacity=1, hoverinfo="y", hovertemplate="%{y:.4f}", ), ) # fig.add_trace( # go.Scatter( # x=x_range_under, # y=y_range_under, # name="Undervalued", # opacity=1, # hoverinfo="y", # hovertemplate="%{y:.4f}" # ), # ) # fig.add_trace( # go.Scatter( # x=x_range_low, # y=y_range_low, # name="Lower", # opacity=1, # hoverinfo="y", # hovertemplate="%{y:.4f}" # ), # ) fig.update_yaxes( zeroline=False, # type='log', nticks=7, minor=dict(ticks="inside", ticklen=2, showgrid=True), ) fig.update_layout( title={ "text": "Log price vs Log days", "y": 0.95, "x": 0.5, "xanchor": "center", "yanchor": "bottom", }, xaxis_title="Log days", yaxis_title="Log price ($USD)", hovermode="x unified", font_family="Arial", margin_t=40, margin_b=0, margin_l=0, margin_r=0, legend=dict( title="", orientation="h", yanchor="middle", y=0.1, xanchor="center", x=0.5 ), ) fig.show() # Create visualisation (back transformed) fig1 = make_subplots() fig1.add_trace( go.Scatter( x=df["ind"], y=df["price"], name="Price", opacity=1, hovertemplate="%{y:$.2f}" ), ) # fig1.add_trace( # go.Scatter( # x=df['ind'], # y=z_range_high, # name="Upper", # opacity=1, # hoverinfo="y", # hovertemplate="%{y:$.2f}" # ), # ) # fig1.add_trace( # go.Scatter( # x=df['ind'], # y=z_range_over, # name="Overvalued", # opacity=1, # hoverinfo="y", # hovertemplate="%{y:$.2f}" # ), # ) fig1.add_trace( go.Scatter( x=df["ind"], y=z_range, name="Fair Value", opacity=1, hoverinfo="y", hovertemplate="%{y:$.2f}", ), ) # fig1.add_trace( # go.Scatter( # x=df['ind'], # y=z_range_under, # name="Undervalued", # opacity=1, # hoverinfo="y", # hovertemplate="%{y:$.2f}" # ), # ) # fig1.add_trace( # go.Scatter( # x=df['ind'], # y=z_range_low, # name="Lower", # opacity=1, # hoverinfo="y", # hovertemplate="%{y:$.2f}" # ), # ) fig1.update_yaxes( type="log", zeroline=False, nticks=7, minor=dict(ticks="inside", ticklen=2, showgrid=True), ) fig1.update_layout( title={ "text": "LINK-ETH Regression", "y": 0.95, "x": 0.5, "xanchor": "center", "yanchor": "bottom", }, xaxis_title="Days since inception", yaxis_title="Price ($USD)", yaxis_tickformat="$", hovermode="x", font_family="Arial", margin_t=40, margin_b=0, margin_l=0, margin_r=0, legend=dict( title="", orientation="h", yanchor="middle", y=0.1, xanchor="center", x=0.5 ), ) fig1.show()
# Importing the libraries needed for the project import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import plotly.graph_objs as go import plotly.io as pio # ## 1. Loading the data # Set the path to the folder containing the CSV files folder_path = "/kaggle/input/synthea" # Create an empty dictionary to store all data frames (df) df = {} # Loop over all files in the folder with the .csv extension for filename in os.listdir(folder_path): if filename.endswith(".csv"): # Read the CSV file into a Pandas data frame and use the filename (without extension) as the key in the dictionary file_path = os.path.join(folder_path, filename) key = filename[ :-4 ] # Remove the last 4 characters (i.e. ".csv") from the filename df[key] = pd.read_csv(file_path) # ## 2.1 Explore the data df["allergies"].head(1) df["careplans"].head(1) df["conditions"].head(1) df["devices"].head(1) df["encounters"].head(1) df["imaging_studies"].head(1) df["immunizations"].head(1) df["medications"].head(1) df["observations"].head(1) df["organizations"].head(1) df["patients"].head(1) df["payer_transitions"].head(1) df["payers"].head(1) df["procedures"].head(1) df["providers"].head(1) df["supplies"] # Overall, the data frames focussed on describing the patient medical condition are: "allergies", "careplans", "conditions", "devices", "encounters", "imaging_studies", "immunizations", "medications", "observations", and "procedures. # On the contrary, the following data frames will not be considered # - "organizations": shows contact information/location data related to the medical providers (e.g. hospitals, clinics). # - "payers" : shows financial data related to the insurance company. # - "payer_transitions": shows the patient's insurance affiliation over the time. # - "supplies": does not show any data. # Finally, the data frame "patients" will be only considered to select a random Id that belongs to a female patient and perform task 2.2 # ## 2.2 Make a visualization of a single patient trajectory as she transitions through the medical care system over time # Creating a user-defined function to pick up a random Id from a female patient import random def get_random_female_id(df): # Filter the DataFrame by the "GENDER" column female_df = df[df["GENDER"] == "F"] # Select a random "Id" value from the resulting subset random_id = random.choice(female_df["Id"].tolist()) return random_id # Choose a random Id to visualize patient_id = get_random_female_id(df["patients"]) patient_id # List of all the data frames with patient medical information df_names = [ "allergies", "careplans", "conditions", "devices", "encounters", "imaging_studies", "immunizations", "medications", "observations", "procedures", ] # Create an empty list to store the events associated with the patient patient_events = [] # Loop over all the data frames and extract the events associated with the patient for df_name in df_names: df_patient = df[df_name][df[df_name]["PATIENT"] == patient_id] patient_events.append(df_patient) # Combine all the events into a single data frame patient_events = pd.concat(patient_events) # Convert the "START" column to datetime type patient_events["START"] = pd.to_datetime(patient_events["START"], errors="coerce") # Convert "DATE" column to datetime type patient_events["DATE"] = pd.to_datetime(patient_events["DATE"], errors="coerce") # Define a custom function to convert START and DATE columns to timestamp strings def to_timestamp(row): if not pd.isna(row["START"]): return row["START"].strftime("%d/%m/%Y") elif not pd.isna(row["DATE"]): return row["DATE"].strftime("%d/%m/%Y") else: return None # handle invalid values if any # Apply the custom function to create the new TIMESTAMP column patient_events["TIMESTAMP"] = patient_events.apply(to_timestamp, axis=1) # remove rows with missing values in the TIMESTAMP column patient_events.dropna(subset=["TIMESTAMP"], inplace=True) # Convert the TIMESTAMP column to datetime type patient_events["TIMESTAMP"] = pd.to_datetime( patient_events["TIMESTAMP"], format="%d/%m/%Y", errors="coerce" ) # Sort the data frame by the TIMESTAMP column patient_events_sorted = patient_events.sort_values(by="TIMESTAMP", ascending=True) # Convert DataFrame to a list of dictionaries data = patient_events_sorted.to_dict("records") # Define the layout for the table with patient_id in the title layout = go.Layout( title=f"Patient Events for Patient {patient_id}", height=500, margin=dict(l=50, r=50, t=50, b=50), ) # Create the table column_names = [ "TIMESTAMP", "ENCOUNTER", "DESCRIPTION", "REASONDESCRIPTION", "VALUE", "UNITS", ] table = go.Figure( data=[ go.Table( header=dict( values=list(patient_events_sorted[column_names].columns), fill_color="lightblue", align="left", ), cells=dict( values=[ [ val.strftime("%Y/%m/%d") if isinstance(val, pd.Timestamp) else val for val in patient_events_sorted[col] ] if col == "TIMESTAMP" else [ str(val) if val is not None and not pd.isna(val) else "" for val in patient_events_sorted[col] ] for col in column_names ], fill_color="lavender", align="left", ), ) ], layout=layout, ) # Display the table pio.show(table)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session from sqlalchemy import create_engine import pymysql import sqlalchemy import sqlite3 import json # standard Python library for handling HTTP is requests import requests api_key = "qG7e2aOMcV6QP9em5OKbpbBjVeoY1_1fzNzNh-PWjrdxg4rzUoasIuk4XeKidqP5i-joRAL-NaIOzM_pDucQCR79f6PCFedbdtr_No7RVa_gOaIgvHgT_-WiwzT9Y3Yx" headers = {"Authorization": "Bearer {}".format(api_key)} # the api endpoint url. We are working with the 'businesses' endpoint search_api_url = "https://api.yelp.com/v3/businesses/search" # inserting some parameters. Lets try and a list of 50 businesses with the term “coffee” located in ‘61820’, the main zip code for Champaign. # Review all parameters and documentation at https://www.yelp.com/developers/documentation/v3/business_search params = {"term": "coffee", "location": "61820", "limit": 50} response = requests.get(search_api_url, headers=headers, params=params, timeout=5) # extract JSON data from the response data = response.json() print(data) # Load data to a data frame df = pd.DataFrame(data["businesses"]) # display the top rows. Default value is 5. Lets view all 50. # Documentation for attributes available at https://www.yelp.com/developers/documentation/v3/business_search # Spend some time understanding all the attributes. df.head() headers = {"Authorization": "Bearer {}".format(api_key)} # the api endpoint url. We are working with the 'businesses' endpoint search_api_url = "https://api.yelp.com/v3/businesses/search" # inserting some parameters. Lets try and a list of 50 businesses with the term “coffee” located in ‘61820’, the main zip code for Champaign. # Review all parameters and documentation at https://www.yelp.com/developers/documentation/v3/business_search params1 = {"term": "restaurants", "location": "61820", "limit": 50} response = requests.get(search_api_url, headers=headers, params=params1, timeout=5) # extract JSON data from the response data1 = response.json() print(data1) # Load data to a data frame df1 = pd.DataFrame(data1["businesses"]) # display the top rows. Default value is 5. Lets view all 50. # Documentation for attributes available at https://www.yelp.com/developers/documentation/v3/business_search # Spend some time understanding all the attributes. df1.head() headers = {"Authorization": "Bearer {}".format(api_key)} # the api endpoint url. We are working with the 'businesses' endpoint search_api_url = "https://api.yelp.com/v3/businesses/search" # inserting some parameters. Lets try and a list of 50 businesses with the term “coffee” located in ‘61820’, the main zip code for Champaign. # Review all parameters and documentation at https://www.yelp.com/developers/documentation/v3/business_search params7 = {"term": "Bakeries", "location": "61820", "sort_by": "rating", "limit": 5} # we can feed these variables into the "get"function # we also set timeout = 5 to stop Requests from waiting for a response after 5 seconds. response = requests.get(search_api_url, headers=headers, params=params7, timeout=5) # extract JSON data from the response data7 = response.json() print(data7) # Load data to a data frame df7 = pd.DataFrame(data7["businesses"]) # display the top rows. Default value is 5. Lets view all 50. # Documentation for attributes available at https://www.yelp.com/developers/documentation/v3/business_search # Spend some time understanding all the attributes. df7.head() headers = {"Authorization": "Bearer {}".format(api_key)} # the api endpoint url. We are working with the 'businesses' endpoint search_api_url = "https://api.yelp.com/v3/businesses/search" # inserting some parameters. Lets try and a list of 50 businesses with the term “coffee” located in ‘61820’, the main zip code for Champaign. # Review all parameters and documentation at https://www.yelp.com/developers/documentation/v3/business_search params8 = {"term": "Restaurants", "location": "61820", "sort_by": "rating", "limit": 5} # we can feed these variables into the "get"function # we also set timeout = 5 to stop Requests from waiting for a response after 5 seconds. response = requests.get(search_api_url, headers=headers, params=params8, timeout=5) # extract JSON data from the response data8 = response.json() print(data8) # Load data to a data frame df8 = pd.DataFrame(data8["businesses"]) # display the top rows. Default value is 5. Lets view all 50. # Documentation for attributes available at https://www.yelp.com/developers/documentation/v3/business_search # Spend some time understanding all the attributes. df8.head() headers = {"Authorization": "Bearer {}".format(api_key)} # the api endpoint url. We are working with the 'businesses' endpoint search_api_url = "https://api.yelp.com/v3/businesses/search" # inserting some parameters. Lets try and a list of 50 businesses with the term “coffee” located in ‘61820’, the main zip code for Champaign. # Review all parameters and documentation at https://www.yelp.com/developers/documentation/v3/business_search params9 = {"term": "Coffee", "location": "61820", "sort_by": "rating", "limit": 5} # we can feed these variables into the "get"function # we also set timeout = 5 to stop Requests from waiting for a response after 5 seconds. response = requests.get(search_api_url, headers=headers, params=params9, timeout=5) # extract JSON data from the response data9 = response.json() print(data9) # Load data to a data frame df9 = pd.DataFrame(data9["businesses"]) # display the top rows. Default value is 5. Lets view all 50. # Documentation for attributes available at https://www.yelp.com/developers/documentation/v3/business_search # Spend some time understanding all the attributes. df9.head()
# importing necessary libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings(action="ignore") # importing application data file and seeing top 5 dataset values df1 = pd.read_csv("application_data.csv") df1.head() # find the shape of the data i.e. number of rows and number of columns df1.shape # to find the information about the data df1.info(max_cols=122, show_counts=True) # to find the percentage of null values in descending order print(round((100 * df1.isnull().mean()).sort_values(ascending=False), 2).to_string()) # deleting the null values above 40% df_app = df1.dropna(thresh=len(df1) * 0.6, axis="columns") # finding the shape of the data after dropping the null values df_app.shape # to find the percentage of null values in descending order print(round((100 * df_app.isnull().mean()).sort_values(ascending=False), 2).to_string()) # imputing the numerical value with median df_app = df_app.fillna(df_app.median()) # imputing the categorical value with mode mod = df_app["OCCUPATION_TYPE"].mode()[0] df_app["OCCUPATION_TYPE"] = df_app["OCCUPATION_TYPE"].fillna(mod) mod = df_app["NAME_TYPE_SUITE"].mode()[0] df_app["NAME_TYPE_SUITE"] = df_app["NAME_TYPE_SUITE"].fillna(mod) # to find the percentage of null values in descending order print(round((100 * df_app.isnull().mean()).sort_values(ascending=False), 2).to_string()) # Segmenting categorical columns for analysis cat_col = [ "TARGET", "NAME_CONTRACT_TYPE", "CODE_GENDER", "NAME_INCOME_TYPE", "NAME_EDUCATION_TYPE", "NAME_FAMILY_STATUS", "AMT_REQ_CREDIT_BUREAU_HOUR", "AMT_REQ_CREDIT_BUREAU_DAY", "AMT_REQ_CREDIT_BUREAU_WEEK", "AMT_REQ_CREDIT_BUREAU_QRT", "DEF_30_CNT_SOCIAL_CIRCLE", "DEF_60_CNT_SOCIAL_CIRCLE", ] # converting object datatype to category datatype for col in cat_col: df_app[col] = pd.Categorical(df_app[col]) # checking statistics for birth and employed column l = ["DAYS_BIRTH", "DAYS_EMPLOYED"] df_app[l].describe() # ### We can see negative values or data discrepency in these two columns # Converting negative values to positive values df_app[l] = abs(df_app[l]) # Converting days of birth in years and creating a column age-group df_app["AGE"] = df_app["DAYS_BIRTH"] / 365 bins = [0, 20, 30, 40, 50, 100] slots = ["18-20", "20-30", "30-40", "40-50", "50 Above"] df_app["AGE_GROUP"] = pd.cut(df_app["AGE"], bins=bins, labels=slots) # ## Outliers # Segmenting continuous variable cont_col = [ "CNT_CHILDREN", "AMT_REQ_CREDIT_BUREAU_MON", "AMT_REQ_CREDIT_BUREAU_YEAR", "AMT_INCOME_TOTAL", "AMT_CREDIT", "AMT_ANNUITY", "AMT_GOODS_PRICE", "DAYS_BIRTH", "EXT_SOURCE_2", "EXT_SOURCE_3", "OBS_30_CNT_SOCIAL_CIRCLE", "OBS_60_CNT_SOCIAL_CIRCLE", "DAYS_EMPLOYED", ] # Bar plot for checking outliers for i in cont_col: sns.boxplot(y=df_app[i]) plt.show() # ## Data Imbalance # Pie chart for loan defaulters y = df_app["TARGET"].value_counts(normalize=True).values lab = [0, 1] plt.pie(y, labels=lab, autopct="%0.0f%%") plt.legend() plt.title("Imbalance between Non-Defaulters and Defaulter") plt.show() # ## Univariate Analysis # Pie chart for loan type y = df_app["NAME_CONTRACT_TYPE"].value_counts(normalize=True).values lab = ["Cash loans", "Revolving loans"] plt.pie(y, labels=lab, autopct="%0.0f%%") plt.legend() plt.title("Imbalance between Cash loans and Revolving loans") plt.show() # Pie chart for sex ratio y = df_app["CODE_GENDER"].value_counts(normalize=True).values lab = ["F", "M", "XNA"] plt.pie(y, labels=lab, autopct="%0.0f%%") plt.title("Ratio of Females and Males taking loan") plt.legend() plt.show() # Histogram to see the distribution of age group taking loan sns.histplot(df_app["AGE_GROUP"], stat="percent") plt.show() # Barplot for Type of occupations taking loan plt.figure(figsize=[12, 7]) (df_app["OCCUPATION_TYPE"].value_counts()).plot.bar(color="orange", width=0.8) plt.title("Percentage of Type of Occupations", fontdict={"fontsize": 20}, pad=20) plt.show() plt.figure(figsize=(20, 40)) i = 1 for col in cat_col: plt.subplot(7, 2, i) sns.countplot(x=col, data=df_app) i += 1 plt.show() # ## Bivariate Analysis # Plotting pairplot between amount variable to draw reference against loan repayment status amount = df_app[ ["AMT_INCOME_TOTAL", "AMT_CREDIT", "AMT_ANNUITY", "AMT_GOODS_PRICE", "TARGET"] ] amount = amount[ (amount["AMT_GOODS_PRICE"].notnull()) & (amount["AMT_ANNUITY"].notnull()) ] ax = sns.pairplot(amount, hue="TARGET", palette=["b", "r"]) ax.fig.legend(labels=["Defaulter", "Repayer"]) plt.show() # countplot to see gender according to target variable sns.countplot(x=df_app["CODE_GENDER"], hue=df_app["TARGET"]) plt.show() # ## Multivariate Analysis # checking is there is any correlation between mobile phone, work phone etc, email, Family members,Region rating with target contact_col = [ "FLAG_MOBIL", "FLAG_EMP_PHONE", "FLAG_WORK_PHONE", "FLAG_CONT_MOBILE", "FLAG_PHONE", "FLAG_EMAIL", "TARGET", ] Contact_corr = df_app[contact_col].corr() fig = plt.figure(figsize=(10, 10)) ax = sns.heatmap( Contact_corr, xticklabels=Contact_corr.columns, yticklabels=Contact_corr.columns, annot=True, cmap="RdYlGn", linewidth=1, ) # ### We can see from above graph that contact columns have no correlation with target variable. # heat map for showing positive correlation contact_col = [ "AMT_INCOME_TOTAL", "AMT_CREDIT", "AMT_ANNUITY", "AMT_GOODS_PRICE", "EXT_SOURCE_2", "TARGET", ] sns.heatmap(df_app[contact_col].corr(), annot=True) plt.show() # # we divide out data set into two parts target 1 and target 0 # creating new datadrame for target=0 target0 = df_app[df_app["TARGET"] == 0] target0.head() # creating new datadrame for target=1 target1 = df_app[df_app["TARGET"] == 1] target1.head() # now we need to find top 10 correlations corr0 = target0.corr() corr_df0 = corr0.where(np.triu(np.ones(corr0.shape), k=1).astype(np.bool)) corr_df0 = corr_df0.unstack().reset_index().dropna(subset=[0]) corr_df0.columns = ["VAR1", "VAR2", "Correlation_Value"] corr_df0["Corr_abs"] = abs(corr_df0["Correlation_Value"]) corr_df0.sort_values(by="Corr_abs", ascending=False, inplace=True) corr_df0.head(10) # now we need to find top 10 correlations corr1 = target1.corr() corr_df1 = corr1.where(np.triu(np.ones(corr1.shape), k=1).astype(np.bool)) corr_df1 = corr_df1.unstack().reset_index().dropna(subset=[0]) corr_df1.columns = ["VAR1", "VAR2", "Correlation_Value"] corr_df1["Corr_abs"] = abs(corr_df1["Correlation_Value"]) corr_df1.sort_values(by="Corr_abs", ascending=False, inplace=True) corr_df1.head(10) # importing previous application file and seeing top 5 dataset values df = pd.read_csv("previous_application.csv") df.head() # find the shape of the data i.e. number of rows and number of columns df.shape # to find the information about the data df.info() # to find the percentage of null values in descending order print(round((100 * df.isnull().mean()).sort_values(ascending=False), 2)) # deleting the null values above 40% df_prev = df.dropna(thresh=len(df) * 0.6, axis="columns") # finding the shape of the data after dropping the null values df_prev.shape # imputing the numerical value with median df_prev = df_prev.fillna(df.median()) # imputing the categorical value with mode mod = df_prev["PRODUCT_COMBINATION"].mode()[0] df_prev["PRODUCT_COMBINATION"] = df_prev["PRODUCT_COMBINATION"].fillna(mod) # to find the percentage of null values in descending order print(round((100 * df_prev.isnull().mean()).sort_values(ascending=False), 2)) # ### We can see that now there are no missing values in the data after imputation # ## Outliers # finding outliers using box plot in segmented continuous columns cont_col = [ "AMT_ANNUITY", "AMT_APPLICATION", "AMT_CREDIT", "AMT_GOODS_PRICE", "SELLERPLACE_AREA", ] for i in cont_col: sns.boxplot(y=df_prev[i]) plt.show() # ### There are outliers present in AMT_ANNUITY, AMT_APPLICATION, AMT_CREDIT, AMT_GOODS_PRICE, SELLERPLACE_AREA . # ## Data Imbalance # finding data imbalance by plotting pie chart y = df_prev["NAME_CONTRACT_STATUS"].value_counts(normalize=True).values lab = ["Approved", "Refused", "Canceled", "Unused offer"] plt.pie(y, labels=lab, autopct="%0.0f%%") plt.legend() plt.title("Imbalance between Approved, Refused, Cancelled and Unused offer") plt.show() # ### We can see that there are 62% of applicants loan got approved with 19% loan got refused(company rejected the loan) and 17% cancelled(by client) and 2% unsed offer(cancelled by the client). # to check statistics for DAYS_DECISION column df_prev["DAYS_DECISION"].describe() # ### We can see negative values or data discrepancy in the DAYS_DECISION column. # converting days_decision vlues to positive values df_prev["DAYS_DECISION"] = abs(df_prev["DAYS_DECISION"]) plt.figure(figsize=(18, 7)) plt.rcParams["axes.labelsize"] = 20 plt.rcParams["axes.titlesize"] = 22 plt.rcParams["axes.titlepad"] = 30 plt.xticks(rotation=90) plt.yscale("log") plt.title("Distribution of purposes with contract status ") sns.countplot( data=df_prev, x=df_prev["NAME_CASH_LOAN_PURPOSE"], order=df_prev["NAME_CASH_LOAN_PURPOSE"].value_counts(normalize=True).index, hue="NAME_CONTRACT_STATUS", palette="magma", ) plt.show() # ## Merged Dataframe df = pd.merge(df_app, df_prev, on="SK_ID_CURR", how="inner") df.head() df.shape plt.figure(figsize=(18, 7)) plt.rcParams["axes.labelsize"] = 20 plt.rcParams["axes.titlesize"] = 22 plt.rcParams["axes.titlepad"] = 30 plt.xticks(rotation=90) plt.yscale("log") plt.title("Distribution of purposes with target variable") sns.countplot( data=df, x=df["NAME_CASH_LOAN_PURPOSE"], order=df["NAME_CASH_LOAN_PURPOSE"].value_counts(normalize=True).index, hue="TARGET", palette="magma", ) plt.show() # ### Loan purpose has high number of unknown values (XAP, XNA) plt.figure(figsize=(10, 7)) plt.title("Distribution of purposes with contract status ") sns.countplot( data=df, x=df["NAME_CONTRACT_STATUS"], order=df["NAME_CONTRACT_STATUS"].value_counts().index, hue="TARGET", ) plt.show()
import warnings warnings.filterwarnings("ignore") import tensorflow as tf import os import tensorflow_datasets as tfds import tensorflow_addons as tfa import tensorflow_probability as tfp # CHANGED FOR TPU 1VM: # Detect hardware, return appropriate distribution strategy try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver.connect( tpu="local" ) # "local" for 1VM TPU strategy = tf.distribute.TPUStrategy(tpu) except tf.errors.NotFoundError: strategy = tf.distribute.MirroredStrategy() print("REPLICAS: ", strategy.num_replicas_in_sync) height = 512 width = 512 font_size = 20 def apply_visual_attention(path): img = cv2.imread(path, 0) resized_img = cv2.resize(img, (height, width)) denoised_img = cv2.medianBlur(resized_img, 5) th = cv2.adaptiveThreshold( denoised_img, maxValue=255, adaptiveMethod=cv2.ADAPTIVE_THRESH_GAUSSIAN_C, thresholdType=cv2.THRESH_BINARY, blockSize=11, C=2, ) return img import os import cv2 import numpy as np # Set the path to the dataset folders train_image_path = "/kaggle/input/cod10k/COD10K-v3/Train/Image/" train_gt_path = "/kaggle/input/cod10k/COD10K-v3/Train/GT_Object/" test_image_path = "/kaggle/input/cod10k/COD10K-v3/Test/Image/" test_gt_path = "/kaggle/input/cod10k/COD10K-v3/Test/GT_Object/" img_size2 = (512, 512) # Function to load images and ground truth instances def load_data(image_path, gt_path, maxi): images = [] gt_instances = [] c = 0 for filename in sorted(os.listdir(image_path)): # Check if file is a JPG image c += 1 if c >= maxi: break if c % 50 == 0: print(c) if filename.endswith(".jpg"): img = apply_visual_attention(image_path + filename) img = cv2.resize(img, img_size2) images.append(img) # Load ground truth instance and resize to (256,256) gt = cv2.imread(gt_path + filename[:-4] + ".png") gt = cv2.resize(gt, img_size2) gt_instances.append(gt) return np.array(images), np.array(gt_instances) # Load training data train_images, train_gt_instances = load_data(train_image_path, train_gt_path, 1000) # Load testing data test_images, test_gt_instances = load_data(test_image_path, test_gt_path, 200) print("done") # train_images, train_gt_instances,test_images, test_gt_instances from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv2D, Conv2DTranspose, Dropout from tensorflow.keras.optimizers import Adam from tensorflow.keras import backend from tensorflow.keras.losses import binary_crossentropy backend.clear_session() from tensorflow.keras.models import Model from tensorflow.keras.layers import ( Input, Conv2D, MaxPooling2D, Dropout, concatenate, UpSampling2D, ) # Define the U-Net model def unet(input_shape=(512, 512, 3)): inputs = Input(input_shape) # Encoder conv1 = Conv2D(64, 3, activation="relu", padding="same")(inputs) conv1 = Conv2D(64, 3, activation="relu", padding="same")(conv1) pool1 = MaxPooling2D(pool_size=(2, 2))(conv1) conv2 = Conv2D(128, 3, activation="relu", padding="same")(pool1) conv2 = Conv2D(128, 3, activation="relu", padding="same")(conv2) pool2 = MaxPooling2D(pool_size=(2, 2))(conv2) conv3 = Conv2D(256, 3, activation="relu", padding="same")(pool2) conv3 = Conv2D(256, 3, activation="relu", padding="same")(conv3) pool3 = MaxPooling2D(pool_size=(2, 2))(conv3) # Decoder up4 = UpSampling2D(size=(2, 2))(pool3) conv4 = Conv2D(256, 2, activation="relu", padding="same")(up4) merge4 = concatenate([conv3, conv4], axis=3) conv4 = Conv2D(256, 3, activation="relu", padding="same")(merge4) conv4 = Conv2D(256, 3, activation="relu", padding="same")(conv4) up5 = UpSampling2D(size=(2, 2))(conv4) conv5 = Conv2D(128, 2, activation="relu", padding="same")(up5) merge5 = concatenate([conv2, conv5], axis=3) conv5 = Conv2D(128, 3, activation="relu", padding="same")(merge5) conv5 = Conv2D(128, 3, activation="relu", padding="same")(conv5) up6 = UpSampling2D(size=(2, 2))(conv5) conv6 = Conv2D(64, 2, activation="relu", padding="same")(up6) merge6 = concatenate([conv1, conv6], axis=3) conv6 = Conv2D(64, 3, activation="relu", padding="same")(merge6) conv6 = Conv2D(64, 3, activation="relu", padding="same")(conv6) # Output layer outputs = Conv2D(3, 1, activation="sigmoid")(conv6) # Define the model model = Model(inputs=inputs, outputs=outputs) return model with strategy.scope(): input_shape = (512, 512, 1) generator = unet(input_shape) optimizer = tf.keras.optimizers.Adam(lr=0.001) loss_fn = tf.keras.losses.CategoricalCrossentropy(from_logits=False) generator.compile( optimizer=optimizer, loss=loss_fn, metrics=["accuracy", tf.keras.metrics.Precision()], ) generator.summary() print(train_images[0].shape) print(train_gt_instances[0].shape) num_epochs = 25 batch_size = 64 # Train the model history = generator.fit( train_images, train_gt_instances, epochs=num_epochs, batch_size=batch_size, validation_data=(test_images, test_gt_instances), # reset_metrics=True ) model.save("\kaggle\working\version1_camo.h5") import matplotlib.pyplot as plt img_path = ( "/kaggle/input/cod10k/COD10K-v3/Train/Image/COD10K-CAM-1-Aquatic-1-BatFish-1.jpg" ) otimg = cv2.imread(img_path) otimg = apply_visual_attention(img_path) timg = cv2.resize(otimg, img_size2) plt.imshow(timg) timg = np.array([timg]) print(timg.shape) predictions = generator.predict(timg) plt.imshow(predictions[0]) # timg='/kaggle/input/cod10k/COD10K-v3/Test/Image/COD10K-CAM-1-Aquatic-13-Pipefish-528.jpg' timg = img_path.split("/") timgp = timg.pop().split(".") timgp = [timgp[0], "png"] timgp = ".".join(timgp) timg[6] = "GT_Object" timg = timg + [timgp] timg = "/".join(timg) print(timg) timg = cv2.resize(cv2.imread(timg), img_size2) # timg=feature(timg) plt.imshow(timg)
# ![1.png]() # **¿Sabias que es posible capturar los datos de los diferentes motores de búsqueda?** # Podemos obtener cualquier información de Google, Yahoo, Youtube... Y muchas más plataformas. Además, de una forma muy simple. # [SerpApi](https://serpapi.com/) es una API gratuita (siempre que no excedas 100 consultas mensuales) que permite a los desarrolladores obtener información de búsqueda de Google y otros motores de búsqueda importantes de una manera fácil y eficiente. # **¡Empecemos!** # En primer lugar, debes de crear una cuenta para obtener la clave secreta (API_KEY) para poder realizar las solicitudes. Para ello debes acceder a esta web: https://serpapi.com/users/sign_up. Después de registrarte (es muy sencillo), deberás ir al correo con el que te has registrado para confirmar el correo y ya estarás preparado para utilizar la API. # Además, te recomiendo explorar la documentación y familiarizarte con la API: https://serpapi.com/search-api # Una vez hayas obtenido tu API_KEY, el siguiente paso será instalar el módulo **google-search-results** para poder acceder a SerpAPI. # Instalar modulo google-search-results # ¡Perfecto! Ahora podemos empezar a jugar # Asigna tu API_KEY API_GOOGLE = "" # Vamos a realizar una búsqueda de los restaurantes más valorados en Sevilla (o de la zona que prefieras). Para ello, usaremos Google Maps y aqui puedes echar un vistazo a la documentación: https://serpapi.com/maps-local-results # Cargar las librerías necesarias import pandas as pd from serpapi import GoogleSearch # Asignamos las coordenadas de la zona en donde queramos encontrar los restaurantes. En este caso, Sevilla location = "37.3754318,-5.9962577" # Creamos una lista de tipos de restaurantes a buscar. Debes de añadir el nombre que buscarías en Google Maps. restaurant_types = [ "restaurante vegano", "restaurante asiático", "restaurante italiano", "restaurante tapas", ] # Ahora vamos a crear un dataframe (una estructura de datos en forma de tabla) para almacenar y estructurar la información. En este caso, almacenaremos: **Tipo, Nombre, Valoración y el Numero de valoraciones.** # Inicializar un DataFrame vacío columns = ["tipo", "nombre", "valoración", "num_valoraciones"] df_restaurants = pd.DataFrame(columns=columns) # Y, finalmente, hacemos la petición y obtenemos los datos de los restaurantes # Hacer la request y obtener datos for rest_type in restaurant_types: search_params = { "api_key": API_GOOGLE, "engine": "google_maps", "q": rest_type, "location": location, } search = GoogleSearch(search_params) results = search.get_dict() # Construir el DataFrame for result in results["local_results"]: name = result.get("title", "N/A") rating = result.get("rating", "N/A") num_ratings = result.get("reviews", "N/A") restaurant_data = { "tipo": rest_type, "nombre": name, "valoración": rating, "num_valoraciones": num_ratings, } df_temp = pd.DataFrame([restaurant_data]) df_restaurants = pd.concat([df_restaurants, df_temp], ignore_index=True) # Mostrar dataframe df_restaurants.head()
# Data was built using "suicide-watch" by NIKHILESWAR KOMATI under the # CC BY-SA 4.0 licence: https://creativecommons.org/licenses/by-sa/4.0/ # in this notebook, I will be building a Bayesian Model to help classify the depressed # data with levels import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # suicide data, originally without sentiment, added to improve # df_1 = pd.read_csv('/kaggle/input/processed-suicide-data/processedSuicidedata_standard.csv') df_1 = pd.read_csv( "/kaggle/input/suicide-processed-with-sentiment/processedSuicidedata_sentiment.csv" ) # read in the data with normal feautures df_2 = pd.read_csv( "/kaggle/input/depression-data-tfidf-sentiment-analysis/depression_data_TFIDF_sent.csv" ) # read in the data with extra feautures df_3 = pd.read_csv( "/kaggle/input/tfidf-sentiment-w-extra-features/depression_data_TFIDF_sent_extra_features (0).csv" ) # First, need to do sentiment analysis using Vader on the suicide data and to add that as an attribute. # install Vader #!pip install vaderSentiment # getting the senitment first, will be commented out """from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer sent_analyser = SentimentIntensityAnalyzer() sample_num = df_1.shape[0] score_vector_1 = [] for i in range(sample_num): score = sent_analyser.polarity_scores(df_1.at[i,'text']) score_vector_1.append(score['compound']) df_1.loc[:,'sentiment'] = score_vector_1 df_1 """ # Train the model using Bayeisan approach, check accuracy and F-score in 10-fold cross validation, after saving data for later use. Older code will be commented out. # df_1.to_csv('processedSuicidedata_sentiment.csv',index=False) # df_1 x_col = df_1.columns[1:286] X = df_1[x_col] y_col = df_1.columns[286] Y_true = df_1[y_col] # 10-fold cross validation for metric refining: from sklearn.model_selection import KFold # taken from documentation kf = KFold(n_splits=10, shuffle=True, random_state=1000) for train, test in kf.split(X): # print("%s %s" % (train, test)) # split X and Y into X_train, Y_train, X_test, Y_test X_train = X[:, train]
# **Our Analysis** # As the battle of the Indian eCommerce heavyweights continues to accelerate, we have witnessed three separate sale events compressed into the last four weeks of this festive season. Flipkart has come out with all guns blazing following its multi-billion-dollar funding round, leaving Amazon with little choice but to follow suit with its own aggressive promotions. At this stage of a highly competitive eCommerce cycle, market share is a prize worth its weight in gold and neither Flipkart nor Amazon are prepared to blink first. # At DataWeave, our proprietary data aggregation and analysis platform enables us to seamlessly analyze these sale events, focusing on multiple dimensions, including website, category, sub-category, brand, prices, discounts, and more. Over the past six weeks, we have been consistently monitoring the prices of the top 200 ranked products spread over sub-categories spanning electronics, fashion, and furniture. In total, we amassed data on over 65,000 products during this period. # The first of these pivotal sale events was held between the 20th and 24th September, which we earlier analyzed in detail. Another major sale soon followed, contested by Amazon, Flipkart and Myntra for varying periods between the 4th and 9th of October. Lastly, was the Diwali season sale held by Amazon, Flipkart, and Myntra between the 14th and 18th of October, joined by Jabong between the 12th and 15th of October. # In analyzing these significant sale events for all eCommerce websites, we observed an extensive range of products enjoying high absolute discounts, but with no additional discounts during the sale, i.e. prices remained unchanged between the day before the sale and the first day of the sale. The following infographic highlights some of the sub-categories and products where this phenomenon was more pronounced during the recently concluded Diwali season sale. Here, discount percentages are average absolute discounts of products with unchanged discounts during the sale. # ![image.png](attachment:a1a02de9-752c-447c-a6f9-8cf48eb82aef.png) import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # # Importing Libraries import matplotlib.pyplot as plt import seaborn as sns # # Data Processing # import csv file df = pd.read_csv( "/kaggle/input/diwali-sales-dataset/Diwali Sales Data.csv", encoding="unicode_escape", ) df.head() df.tail() df.shape df.info() # # Drop coloumns df.drop(["Status", "unnamed1"], axis=1, inplace=True) df.info() # # Drop null values df.isnull().sum() # drop null values df.dropna(inplace=True) df.isnull().sum() # change data type df["Amount"] = df["Amount"].astype("int") df["Amount"].dtypes df.columns df.describe() # use describe() for specific columns df[["Age", "Orders", "Amount"]].describe() # # Exploratory Data Analysis # # Gender # plotting a bar chart for Gender and it's count ax = sns.countplot(x="Gender", data=df) for bars in ax.containers: ax.bar_label(bars) # plotting a bar chart for gender vs total amount sales_gen = ( df.groupby(["Gender"], as_index=False)["Amount"] .sum() .sort_values(by="Amount", ascending=False) ) sns.barplot(x="Gender", y="Amount", data=sales_gen) # *From above graphs we can see that most of the buyers are females and even the purchasing power of females are greater than men* # # Age a = sns.countplot(data=df, x="Age Group", hue="Gender") for bars in a.containers: a.bar_label(bars) # Total Amount vs Age Group sales_age = ( df.groupby(["Age Group"], as_index=False)["Amount"] .sum() .sort_values(by="Amount", ascending=False) ) sns.barplot(x="Age Group", y="Amount", data=sales_age) # *From above graphs we can see that most of the buyers are of age group between 26-35 yrs female* # # State sales_state = ( df.groupby(["State"], as_index=False)["Orders"] .sum() .sort_values(by="Orders", ascending=False) .head(10) ) sns.set(rc={"figure.figsize": (15, 5)}) sns.barplot(data=sales_state, x="State", y="Orders") # From above graphs we can see that most of the orders & total sales/amount are from Uttar Pradesh, Maharashtra and Karnataka respectively # # Marital Status a = sns.countplot(data=df, x="Marital_Status") sns.set(rc={"figure.figsize": (7, 5)}) for bars in a.containers: ax.bar_label(bars) sales_state = ( df.groupby(["Marital_Status", "Gender"], as_index=False)["Amount"] .sum() .sort_values(by="Amount", ascending=False) ) sns.set(rc={"figure.figsize": (6, 5)}) sns.barplot(data=sales_state, x="Marital_Status", y="Amount", hue="Gender") # *From above graphs we can see that most of the buyers are married (women) and they have high purchasing power* # # Occupation sns.set(rc={"figure.figsize": (20, 5)}) ax = sns.countplot(data=df, x="Occupation") for bars in ax.containers: ax.bar_label(bars) sns.set(rc={"figure.figsize": (20, 5)}) ax = sns.countplot(data=df, x="Occupation") for bars in ax.containers: ax.bar_label(bars) # From above graphs we can see that most of the buyers are working in IT, Healthcare and Aviation sector # # Product Category sns.set(rc={"figure.figsize": (20, 5)}) a = sns.countplot(data=df, x="Product_Category") for bars in a.containers: ax.bar_label(bars) sales_state = ( df.groupby(["Product_Category"], as_index=False)["Amount"] .sum() .sort_values(by="Amount", ascending=False) .head(10) ) sns.set(rc={"figure.figsize": (20, 5)}) sns.barplot(data=sales_state, x="Product_Category", y="Amount") # *From above graphs we can see that most of the sold products are from Food, Clothing and Electronics category* sales_state = ( df.groupby(["Product_ID"], as_index=False)["Orders"] .sum() .sort_values(by="Orders", ascending=False) .head(10) ) sns.set(rc={"figure.figsize": (20, 5)}) sns.barplot(data=sales_state, x="Product_ID", y="Orders") # top 10 most sold products (same thing as above) fig1, ax1 = plt.subplots(figsize=(12, 7)) df.groupby("Product_ID")["Orders"].sum().nlargest(10).sort_values(ascending=False).plot( kind="bar" )
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session df = pd.read_csv( "../input/indicators-of-anxiety-or-depression/Indicators_of_Anxiety_or_Depression_Based_on_Reported_Frequency_of_Symptoms_During_Last_7_Days.csv" ) df.head(3) df.iloc[2] len(df) df.isnull().sum() df = df.dropna() len(df) df df.to_csv("cleaned_data.csv") newdf = df.reset_index(drop="True") newdf.to_csv("Data.csv") import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings("ignore") plt.figure(figsize=(8, 4)) ax1 = sns.countplot(x="Time Period Label", data=newdf, palette="Blues") legend_labels, _ = ax1.get_legend_handles_labels() plt.title("Reservation status in different hotels", size=20) plt.xlabel("hotel") plt.ylabel("number of reservations") newdf["Group"].value_counts()[:].plot(kind="bar") plt.figure(figsize=(14, 7)) sns.countplot(x=newdf["Subgroup"]["Female", "Male"]) sns.barplot(x=newdf["Group"], y=newdf["Indicator"].count)
import numpy as np import pandas as pd import time from tqdm import tqdm import os import random as rd import torch print(torch.__version__) from torch.utils.data import DataLoader, TensorDataset from torch import nn, optim from torchsummary import summary import torchvision from torchvision import transforms as T from torchvision import datasets from torchvision.io import read_image print("La version de torch est : ", torch.__version__) print("Le calcul GPU est disponible ? ", torch.cuda.is_available()) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(device) # !nvidia-smi from PIL import Image from matplotlib.colors import ListedColormap import matplotlib.pyplot as plt print(os.getcwd()) # > Ce jeu de données est composé de plus de 5000 images X-ray de poumons. Dans ce notebook, nous cherchons à différencier les poumons malades des poumons sains grâce à différents CNN. # ## Prise en main et téléchargement des données data_dir = "/kaggle/input/chest-xray-pneumonia/chest_xray/" trainset_wo_transform = datasets.ImageFolder(os.path.join(data_dir, "train")) print(type(trainset_wo_transform)) print(type(trainset_wo_transform[0])) # tuple=(image sous format PIL, label) print(type(trainset_wo_transform[0][0])) print(trainset_wo_transform[0][0].size) print(trainset_wo_transform[-1][0].size) # > Les images sont sous format PIL. Elles ne sont pas toutes de la même taille. Nous allons utiliser la fonction data_transform() pour importer les données. Ainsi, elles seront standardisées et augmentées : elles feront toutes une taille de 224x224, seront normalisées et auront subi une rotation aléatoire. # NB: mean = 0.4747 et std = 0.2253 calculés pour notre propre jeu de données (cf annexe pour le calcul) def data_transform(): data_transformed = T.Compose( [ T.ToTensor(), T.Resize((224, 224)), T.RandomRotation(degrees=20), T.Normalize(mean=0.4747, std=0.2253), ] ) return data_transformed # D'autres idées d'augmentation auraient pu être en plus : # RandomResizedCrop(size=224, scale=(0.5, 1.0), ratio=(0.5, 2.0)) # RandomRotation(degrees=30) trainset = datasets.ImageFolder( os.path.join(data_dir, "train"), transform=data_transform() ) print(type(trainset)) print(type(trainset[0])) # tuple : image sous forme de tensor + le label print(type(trainset[0][0])) print(trainset[0][0].size()) print(trainset[-1][0].size()) # --> les images sont bien sous format torch.Tensor et de même taille :) # NB : attention, test et val sont interchangés --> cf tailles respectives validationset = datasets.ImageFolder( os.path.join(data_dir, "test"), transform=data_transform() ) testset = datasets.ImageFolder( os.path.join(data_dir, "val"), transform=data_transform() ) print(len(validationset)) print(len(testset)) # ## Équilibre des classes print(trainset.classes) # normal (=negative / 0) et pneumonia (=positive / 1) print(trainset.class_to_idx) # Envisager plus tard viral et bacterien print(validationset.classes) print(trainset.class_to_idx) # Voyons si les classes sont équilibrées # TRAIN SET n_train = 0 # normal p_train = 0 # pneumonia unknown = 0 # en cas de label manquant for i, item in enumerate(trainset): # print(item[1]) if item[1] == 1: p_train += 1 elif item[1] == 0: n_train += 1 else: unknown += 1 print("Il y a {} images de poumons sains dans train".format(n_train)) print("Il y a {} images de poumons malades dans train".format(p_train)) # TEST SET n_test = 0 # normal p_test = 0 # pneumonia unknown = 0 # en cas de label manquant for item in testset: # print(item[1]) if item[1] == 1: p_test += 1 elif item[1] == 0: n_test += 1 else: unknown += 1 print("Il y a {} images de poumons sains dans test".format(n_test)) print("Il y a {} images de poumons malades dans test".format(p_test)) # VALIDATION SET n_val = 0 # normal p_val = 0 # pneumonia unknown = 0 # en cas de label manquant for item in validationset: if item[1] == 1: p_val += 1 elif item[1] == 0: n_val += 1 else: unknown += 1 print("Il y a {} images de poumons sains dans validation".format(n_val)) print("Il y a {} images de poumons malades dans validation".format(p_val)) # > Le jeu de données est désequilibré (75% pneumonie VS 25% normal). Les poumons sains sont sous-réprésentés. # --> réalisons un sur-echantillonnage des images de poumons normaux sur les données d'entrainement. # Dans un premier temps, méthode naïve : on place dans trainset 2 fois les images de poumons normaux # Pour ne charger que les images du folder train/NORMAL, nous devons créer notre propre class from torch.utils.data import Dataset from skimage import io import cv2 class MyDataset(Dataset): def __init__(self, image_paths, transform): self.image_paths = image_paths self.transform = transform def get_class_label(self): y = 0 return y def __getitem__(self, index): image_path = self.image_paths[index] # x = Image.open(image_path) x = io.imread(image_path, as_gray=True) x = cv2.cvtColor(x, cv2.COLOR_GRAY2BGR) y = 0 if self.transform is not None: x = self.transform(x) return x, y def __len__(self): return len(self.image_paths) # On charge toutes les données etiquetées 0 dans un jeu nommé trainset2 image_paths = [] for file in os.listdir(data_dir + "train/NORMAL"): image_paths.append(data_dir + "train/NORMAL/" + file) print(len(image_paths)) trainset2 = MyDataset(image_paths, transform=data_transform()) print("shape de trainset[0][0]") print(trainset[0][0].size()) print("shape de trainset2[0][0]") print(trainset2[0][0].size()) # on vérifie que trainset ainsi créé est cohérent : print(type(trainset2[0]) == type(trainset[0])) print(type(trainset2[0][0]) == type(trainset[0][0])) print(type(trainset2[0][1]) == type(trainset[0][1])) print(type(trainset2[-1])) print(type(trainset2[-1][0].shape)) print(type(trainset2[-1][1])) # On concatène les 2 trainset pour obtenir un trainset enrichi print("original", len(trainset)) l = [] l.append(trainset) l.append(trainset2) trainset = torch.utils.data.ConcatDataset(l) print(len(trainset)) # !! Ne pas éxecuter cette cellule plusieurs fois, sinon on cumule les images de poumons sains # --> risque de redondance --> surapprentissage # on fait la même chose pour trainset w/o transform lwo = [] lwo.append(trainset_wo_transform) lwo.append(MyDataset(image_paths, transform=None)) trainset_wo_transform = torch.utils.data.ConcatDataset(lwo) # ## Visualisation des images plt.figure() plt.subplot(221) plt.title("not transformed") plt.imshow(trainset_wo_transform[0][0]) plt.subplot(222) plt.title("transformed") plt.imshow(trainset[0][0].permute(1, 2, 0)) plt.subplot(223) plt.title("not transformed") plt.imshow(trainset_wo_transform[-2][0]) plt.subplot(224) plt.title("transformed") plt.imshow(trainset[-2][0].permute(1, 2, 0)) plt.tight_layout() # A près transformation, les images sont bien # sous format tensor avec une unique taille trainloader = DataLoader(trainset, batch_size=32, shuffle=True) testloader = DataLoader(testset, batch_size=32, shuffle=True) validationloader = DataLoader(validationset, batch_size=32, shuffle=True) print(type(trainloader)) print(type(iter(trainloader))) train_features = next(iter(trainloader)) val_features = iter(trainloader) print(type(train_features)) print(type(train_features[0])) print(train_features[0].size()) # train_features est une liste contenant des objet de type tensor, de dimension 32 * 3 * 300 * 300 # = batch size * channels * height * width # ## CNN faits main # > Dans cette partie, je crée un CNN "from scratch". # Dummy CNN class CNN(nn.Module): def __init__(self, num_classes): super(CNN, self).__init__() self.conv_1 = nn.Conv2d( in_channels=3, out_channels=12, kernel_size=3, padding=1 ) self.max_pool_1 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv_2 = nn.Conv2d( in_channels=12, out_channels=64, kernel_size=3, padding=1 ) self.max_pool_2 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv_3 = nn.Conv2d( in_channels=64, out_channels=64, kernel_size=3, padding=1 ) self.max_pool_3 = nn.MaxPool2d(kernel_size=2, stride=2) self.fc1 = nn.Linear(64 * 28 * 28, 128) self.relu1 = nn.ReLU() self.fc2 = nn.Linear(128, num_classes) # car 2 classes : pneumonie ou pas def forward(self, x): out = self.conv_1(x) out = self.max_pool_1(out) out = self.conv_2(out) out = self.max_pool_2(out) out = self.conv_3(out) out = self.max_pool_3(out) out = out.reshape(out.size(0), -1) out = self.fc1(out) out = self.relu1(out) out = self.fc2(out) return out summary( CNN(2).to(device), ( train_features[0].shape[1], train_features[0].shape[2], train_features[0].shape[3], ), ) # sauvegarde du modèle et de l'état de l'optimiseur dans fichier def save_state(epoch, model, optim, fichier): state = { "epoch": epoch, "model_state": model.state_dict(), "optim_state": optim.state_dict(), } torch.save(state, fichier) # pas besoin de passer par pickle # Si le fichier existe, on charge le modèle et l'optimiseur def load_state(fichier, model, optimizer): epoch = 0 if os.path.isfile(fichier): state = torch.load(fichier) model.load_state_dict(state["model_state"]) # optimizer.load_state_dict(state['optim_state']) # optimizer.load_state_dict(state['optim_state']) epoch = state["epoch"] return epoch def train(model, num_epochs, trainloader, validationloader, criterion, optimizer): print(device) start_time = time.time() model = model.to(device) # print(model.device) criterion = criterion.to(device) # writer = SummaryWriter(f"{TB_PATH}/{model.name}") train_loss = [] train_accuracy = [] train_f1 = [] val_loss = [] val_accuracy = [] val_f1 = [] # on conserve TP, TN, FP, FN uniquement pour le validation dataset print(f"running {model.name}") # Pour le checkpointing # fichier = "/kaggle/working/{}.pth".format(model.name) # start_epoch = load_state(fichier,model,optim) # print("start_epoch = ", start_epoch) start_epoch = 0 # Pour le early stopping # early_stopping_counter = 0 # best_val_loss = + 100000000 # early_stopping_patience = 1 for epoch in tqdm(range(start_epoch, num_epochs)): cumul_loss = 0 # la loss pour chq époque correct, total = 0, 0 TP, TN, FP, FN = 0, 0, 0, 0 for images, labels in trainloader: # model.train() images, labels = images.to(device), labels.to(device) # Forward pass outputs = model(images) loss = criterion(outputs, labels) # Backward and optimize optimizer.zero_grad() loss.backward() optimizer.step() _, predicted = torch.max(outputs.data, 1) TP += ((predicted == labels) & (predicted == 1)).sum().item() TN += ((predicted == labels) & (predicted == 0)).sum().item() FP += ((predicted != labels) & (predicted == 1)).sum().item() FN += ((predicted != labels) & (predicted == 0)).sum().item() total += labels.size(0) correct += (predicted == labels).sum().item() cumul_loss += loss.item() # writer.add_scalar("train_loss", cumul_loss, epoch) # cumul_loss/len(trainloader) # writer.add_scalar("train_accuracy", cumul_acc, epoch) # writer.add_scalar("train_f1", cumul_f1, epoch) # On conserve les valeurs pour l'époque i : train_loss.append(cumul_loss / len(trainloader)) train_accuracy.append(correct / total) f1 = (2 * TP) / (2 * TP + FP + FN) train_f1.append(f1) # TPs.append(TP) # on ne les conserve que pour la validation, pas d'interet en train # TNs.append(TN) # FPs.append(FP) # FNs.append(FN) print( "Epoch [{}/{}], train_loss: {:.4f}".format( epoch + 1, num_epochs, cumul_loss ) ) # CHECK POINTING # if epoch % 2 == 0: # save_state(epoch,model,optimizer,fichier) # VALIDATION if ( epoch % 1 == 0 ): # On evalue la performance en validation pour toutes les n époques # model.eval() # on spécifie qu'on est dans une démarche d'évaluation with torch.no_grad(): # car on teste la performance : on ne va pas updater les poids cumul_loss = 0 correct, total = 0, 0 TP, TN, FP, FN = 0, 0, 0, 0 for images, labels in validationloader: images, labels = images.to(device), labels.to(device) # images, labels = images.cuda(), labels.cuda() outputs = model(images) loss = criterion(outputs, labels) _, predicted = torch.max(outputs.data, 1) TP += ((predicted == labels) & (predicted == 1)).sum().item() TN += ((predicted == labels) & (predicted == 0)).sum().item() FP += ((predicted != labels) & (predicted == 1)).sum().item() FN += ((predicted != labels) & (predicted == 0)).sum().item() total += labels.size(0) correct += ( (predicted == labels).sum().item() ) # sans le item on aurait un tensor(n) au lieu de juste n cumul_loss += loss.item() # writer.add_scalar("validation_loss",cumul_loss,epoch) # writer.add_scalar("validation_accuracy", cumul_acc, epoch) # writer.add_scalar("validation_f1", cumul_f1, epoch) val_loss.append(cumul_loss / len(validationloader)) val_accuracy.append(correct / total) f1 = (2 * TP) / (2 * TP + FP + FN) val_f1.append(f1) # EARLY STOPPING # if val_loss[-1] < best_val_loss: # best_val_loss = val_loss[-1] # best_epoch = epoch # early_stopping_counter = 0 # else: # early_stopping_counter += 1 # if early_stopping_counter >= early_stopping_patience: # print('Early stopping') # print(('best epoch = ', best_epoch)) # break print( "Epoch [{}/{}], validation_loss: {:.4f}".format( epoch + 1, num_epochs, cumul_loss ) ) print("duree du train : ", (time.time() - start_time) / 60, " minutes.") return ( train_loss, train_accuracy, train_f1, val_loss, val_accuracy, val_f1, TP, TN, FP, FN, ) def plot_training_curves(result_train): x = [i for i in range(len(result_train[0]))] # on fait en sorte que x_val soit de la meme taille que x x_val = np.linspace(x[0], x[-1], len(result_train[3])) print(x) print(x_val) # print(VGG_results) # Les loss fig, ax1 = plt.subplots() # plt.subplot(231) plt.title("Losses") color1 = "tab:red" ax1.plot(x, [item for item in result_train[0]], color=color1, label="train loss") ax1.set_ylabel("TRAIN", color=color1) ax1.legend() # plt.subplot(234) ax2 = ax1.twinx() color2 = "tab:green" ax2.plot( x_val, [item for item in result_train[3]], marker=".", color=color2, label="val loss", ) ax2.set_ylabel("VALIDATION", color=color2) ax2.legend() plt.xlabel("Epochs") plt.xticks(x) fig.tight_layout() # Les accuracies fig, ax1 = plt.subplots() # plt.subplot(232) plt.title("Accuracies") color1 = "tab:red" ax1.plot(x, result_train[1], color=color1, linestyle="--", label="train accuracy") ax1.set_ylabel("TRAIN", color=color1) ax1.legend() ax2 = ax1.twinx() color2 = "tab:green" ax2.plot( x_val, result_train[4], color=color2, linestyle="--", marker=".", label="val accuracy", ) ax2.set_ylabel("VALIDATION", color=color2) ax2.legend() plt.xlabel("Epochs") plt.xticks(x) fig.tight_layout() # Les f1 fig, ax1 = plt.subplots() # plt.subplot(233) plt.title("f1 scores") color1 = "tab:red" ax1.plot(x, result_train[2], color=color1, linestyle="-.", label="train f1 score") ax1.set_ylabel("TRAIN", color=color1) ax1.legend() ax2 = ax1.twinx() # plt.subplot(236) color2 = "tab:green" ax2.plot( x_val, result_train[5], color=color2, linestyle="-.", marker=".", label="val f1 score", ) ax2.set_ylabel("VALIDATION", color=color2) ax2.legend() plt.xlabel("Epochs") plt.xticks(x) fig.tight_layout() plt.show() def plot_training_curves_2axes(result_train): x = [i for i in range(len(result_train[0]))] # on fait en sorte que x_val soit de la meme taille que x x_val = np.linspace(x[0], x[-1], len(result_train[3])) print(x) print(x_val) # print(VGG_results) # Les loss fig, ax1 = plt.subplots() # plt.subplot(231) plt.title("Losses") color1 = "tab:red" ax1.plot(x, [item for item in result_train[0]], color=color1, label="train loss") ax1.set_ylabel("TRAIN", color=color1) ax1.legend() # plt.subplot(234) # ax2 = ax1.twinx() color2 = "tab:green" ax1.plot( x_val, [item for item in result_train[3]], marker=".", color=color2, label="val loss", ) ax1.set_ylabel("VALIDATION", color=color2) ax1.legend() plt.xlabel("Epochs") plt.xticks(x) fig.tight_layout() # Les accuracies fig, ax1 = plt.subplots() # plt.subplot(232) plt.title("Accuracies") color1 = "tab:red" ax1.plot(x, result_train[1], color=color1, linestyle="--", label="train accuracy") ax1.set_ylabel("TRAIN", color=color1) ax1.legend() # ax2 = ax1.twinx() color2 = "tab:green" ax1.plot( x_val, result_train[4], color=color2, linestyle="--", marker=".", label="val accuracy", ) ax1.set_ylabel("VALIDATION", color=color2) ax1.legend() plt.xlabel("Epochs") plt.xticks(x) fig.tight_layout() # Les f1 fig, ax1 = plt.subplots() # plt.subplot(233) plt.title("f1 scores") color1 = "tab:red" ax1.plot(x, result_train[2], color=color1, linestyle="-.", label="train f1 score") ax1.set_ylabel("TRAIN", color=color1) ax1.legend() # ax2 = ax1.twinx() # plt.subplot(236) color2 = "tab:green" ax1.plot( x_val, result_train[5], color=color2, linestyle="-.", marker=".", label="val f1 score", ) ax1.set_ylabel("VALIDATION", color=color2) ax1.legend() plt.xlabel("Epochs") plt.xticks(x) fig.tight_layout() plt.show() def plot_confusion_matrix(TP, TN, FP, FN): confusion_matrix = np.array([[TP, FP], [FN, TN]]) # my_colors = [[[TP, FP], [FN, TN]], cmap = plt.cm.Blues] cmap = ListedColormap(["white", "white"], ["white", "white"]) plt.imshow(confusion_matrix, cmap=cmap) plt.title("Confusion matrix") # plt.colorbar() plt.xlabel("Predicted") plt.ylabel("Truth") plt.xticks([0, 1], ["Positive", "Negative"]) plt.yticks([0, 1], ["Positive", "Negative"]) for i in range(2): for j in range(2): plt.text(i, j, confusion_matrix[i, j], ha="center", va="center") plt.show() #!rm -rf '/kaggle/working/1st_dummy_CNN.pth' model = CNN(2) model.name = "1st_dummy_CNN" # +time.asctime() optimizer = optim.Adam(model.parameters(), lr=0.0001) # defining the optimizer criterion = nn.CrossEntropyLoss( weight=torch.Tensor([0.66, 1.5]) ) # defining the loss function num_epochs = 15 # notebook.display() my_CNN = train(model, num_epochs, trainloader, validationloader, criterion, optimizer) plot_training_curves(my_CNN) plot_confusion_matrix(my_CNN[6], my_CNN[7], my_CNN[8], my_CNN[9]) # > # Premier graphe - Loss : La courbe rouge ( la fonction de coût en train) diminue. C'est bien, c'est ce que l'on esperait. En revanche, la courbe verte est en dent de scie, et ne diminue pas : ce n'est pas ce que l'on esperait! Je n'ai pas réussi à résoudre ce problème de généralisation. # Deuxième graphe - Accuracy : L'accuracy en train augmente au cours des époques, mais pas en validation. Au moins, c'est cohérent avec le premier graphe. # Troisième graphe - F1 score : mêmes résultats que pour les graphes précédents. # # > Matrice de confusion - # On observe que le modèle prédit beaucoup plus de pneumonies que la réalité (beaucoup trop de False positives). Le modèle n'est pas assez spécifique. Pourtant, avec avec la ligne "criterion = nn.CrossEntropyLoss(weight = torch.Tensor([0.66, 1.5]) )" je fais en sorte de pénaliser plus fort la prédiction de pneumonie que celle de poumons sains, pour diminuer les faux positifs... # # ## VGG # > Dans cette partie, j'utilise le réseau VGG et je l'applique à ma tache de prediction. import torchvision.models as models base_VGG = models.vgg16(pretrained=True) # print(base_VGG) print(summary(base_VGG.to(device), input_size=(3, 224, 224))) VGG = models.vgg16(pretrained=True) VGG.name = "my_VGG" # On ne souhaite pas updater les poids des couches inferieures : for param in VGG.parameters(): param.requires_grad = False # On modifie le classifier : On garde la meme structure et on ajoute une dernière couche # de telle sorte que l'output soit de la taille de notre nombre de classe (ici, 2) VGG.classifier = nn.Sequential( nn.Linear(VGG.classifier[0].in_features, 4096), nn.ReLU(), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(), nn.Linear(4096, 1000), nn.ReLU(), nn.Dropout(), nn.Linear(1000, 2), ) # print(VGG) print(summary(VGG.to(device), input_size=(3, 224, 224))) # Les premieres couches sont figées, on ne va entrainer que le classifier optimizer = optim.Adam(VGG.parameters(), lr=0.001) weights = torch.Tensor( [0.66, 1.5] ) # comme les classes sont encore déséquilibrées (plus de 1 que de 0) # on pénalise plus la prediction de 0 que de 1 criterion = nn.CrossEntropyLoss(weight=weights) num_epochs = 15 VGG_results = train( VGG, num_epochs, trainloader, validationloader, criterion, optimizer ) plot_training_curves(VGG_results) plot_training_curves_2axes(VGG_results) plot_confusion_matrix(VGG_results[6], VGG_results[7], VGG_results[8], VGG_results[9]) # > On retrouve le meme problème que précédemment : la loss en validation ne présente pas une belle courbe de décroissance (et l'accuracy et le F1 score diminuent). # > La matrice de confusion présente également la même tendance que précédemment : il y a toujours trop de faux positifs. J'ai pénalisé plus fort la prédiction des pneumonies, et on observe qu'en effet, il y a un peu moins de faux positifs que précédemment, mais ce n'est pas suffisant pour améliorer le problème de spécificité. # ## Analyse post Hoc # ### A - Visualisation des effets des filtres # > La fonction suivante permet de visualiser les outputs de chaque couche de convolution, pour voir leur effets respectifs def visualise_layers(model, image): outputs = [] names = [] image = image.cpu() image = image.unsqueeze(0) for layer in model.features._modules.values(): layer = layer.cpu() image = layer.forward(image) if isinstance(layer, nn.Conv2d): outputs.append(image) names.append(str(layer)) processed = [] for feature_map in outputs: feature_map = feature_map.squeeze(0) gray_scale = torch.sum(feature_map, 0) gray_scale = gray_scale / feature_map.shape[0] processed.append(gray_scale.data.cpu().numpy()) fig = plt.figure(figsize=(30, 50)) for i in range(len(processed)): a = fig.add_subplot(5, 4, i + 1) imgplot = plt.imshow(processed[i]) a.axis("off") a.set_title(names[i].split("(")[0], fontsize=30) visualise_layers(VGG, trainset[0][0]) # > Sur la deuxième image, on observe que les bords ressortent assez fortement : cette couche semble faire de la detection de contours. Pour les couches suivantes, leur rôle est un peu plus flou. On peut s'interroger sur l'intensité des pixels : Pourquoi sont-ce les pixels sur les extrémités de l'image qui sont les plus intenses, alors que ce sont les régions les moins pertinentes pour notre diagnostique. # ### B - Saliency def getSaliency(model, img, label): model.zero_grad() img = img.cpu() img.requires_grad = True img.grad = None outputs = nn.Softmax(dim=1)(model(img.unsqueeze(0))) output = outputs[0, label] output.backward() sal = img.grad.abs() if sal.dim() > 2: sal = torch.max(sal, dim=0)[0] fig = plt.figure(figsize=(8, 8)) fig.add_subplot(1, 2, 1) plt.imshow(img.detach().cpu().permute(1, 2, 0), cmap="gray") fig.add_subplot(1, 2, 2) plt.imshow(sal.to("cpu"), cmap="seismic", interpolation="bilinear") plt.show() return sal getSaliency(VGG.cpu(), trainset[0][0], trainset[0][1]) getSaliency(VGG.cpu(), trainset[-1][0], trainset[-1][1]) # > Je m'attendais à ce que ce soient les pixels les plus au centre, associés à ceux des poumons qui présentent les intensités les plus fortes. Ce n'est pas le cas : Il n'y a pas de zone particulièrement intense, et les pixels les plus intenses sont en bordure d'image ... # # Annexes # #### Annexe 1 - Calcul de la moyenne et std de nos images pour la normalisation # Calculer les moyennes et écarts-types par canal de couleur meansR, meansV, meansB = [], [], [] stdsR, stdsV, stdsB = [], [], [] for image in validationset: # Pour chaque canal de couleur (rouge, vert, bleu) meanR = image[0][0, :, :].mean() meanV = image[0][1, :, :].mean() meanB = image[0][2, :, :].mean() # print(mean) meansR.append(meanR) meansV.append(meanV) meansB.append(meanB) stdR = image[0][0, :, :].std() stdV = image[0][1, :, :].std() stdB = image[0][2, :, :].std() stdsR.append(stdR) stdsV.append(stdV) stdsB.append(stdB) # Calculer la moyenne des moyennes et des écarts-types # means contient la moyenne des meanR = torch.tensor(meansR).mean() meanV = torch.tensor(meansV).mean() meanB = torch.tensor(meansB).mean() stdR = torch.tensor(stdsR).mean() stdV = torch.tensor(stdsV).mean() stdB = torch.tensor(stdsB).mean() print(f"Moyenne des moyennes R, V, B: {meanR}, {meanV}, {meanB}") print(f"Moyenne des écarts-types: {stdR}, {stdV}, {stdB}") # ## Tensor board # Ne fonctionne pas sur kaggle ?? cf : https://www.kaggle.com/product-feedback/89671 import tensorboard from torch.utils.tensorboard import SummaryWriter from tensorboard import notebook # root = '/tmp/' # if not os.path.exists(root): # os.mkdir(root) #!rm -rf tmp TB_PATH = "/kaggle/working/" # %load_ext tensorboard # notebook.display()
# This notebook reveals my solution for __RFM Analysis Task__ offered by Renat Alimbekov. # This task is part of the __Task Series__ for Data Analysts/Scientists # __Task Series__ - is a rubric where Alimbekov challenges his followers to solve tasks and share their solutions. # So here I am :) # Original solution can be found at - https://alimbekov.com/rfm-python/ # The task is to perform RFM Analysis. # * __olist_orders_dataset.csv__ and __olist_order_payments_dataset.csv__ should be used # * order_delivered_carrier_date - should be used in this task # * Since the dataset is not actual by 2021, thus we should assume that we were asked to perform RFM analysis the day after the last record # # Importing the modules import pandas as pd import numpy as np import squarify import matplotlib.pyplot as plt import seaborn as sns plt.style.use("ggplot") import warnings warnings.filterwarnings("ignore") # # Loading the data orders = pd.read_csv("../input/brazilian-ecommerce/olist_orders_dataset.csv") payments = pd.read_csv("../input/brazilian-ecommerce/olist_order_payments_dataset.csv") # # Dataframes join orders["order_delivered_carrier_date"] = pd.to_datetime( orders["order_delivered_carrier_date"] ) # datetime conversion payments = payments.set_index("order_id") # preparation before the join orders = orders.set_index("order_id") # preparation before the join joined = orders.join(payments) # join on order_id joined.isna().sum().sort_values(ascending=False) joined.nunique().sort_values(ascending=False) # It seems like we have missing values. And unfortunately order_delivered_carrier_date also has missing values. Thus, they should be dropped last_date = joined["order_delivered_carrier_date"].max() + pd.to_timedelta(1, "D") RFM = ( joined.dropna(subset=["order_delivered_carrier_date"]) .reset_index() .groupby("customer_id") .agg( Recency=("order_delivered_carrier_date", lambda x: (last_date - x.max()).days), Frequency=("order_id", "size"), Monetary=("payment_value", "sum"), ) ) # Sanity check - do we have NaN values or not? RFM.isna().sum() RFM.describe([0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99]).T # So, here we can see that we have some outliers in Freqency and Monetary groups. Thus, they should be dropped and be analyzed separately # # Recency plt.figure(figsize=(12, 6)) sns.boxplot(x="Recency", data=RFM) plt.title("Boxplot of Recency") # # Frequency RFM["Frequency"].value_counts(normalize=True) * 100 # I guess here we should select only frequency values that are greater than 5, because by doing this we only drop 0.11% of records RFM["Frequency"].apply( lambda x: "less or equal to 5" if x <= 5 else "greater than 5" ).value_counts(normalize=True) * 100 RFM = RFM[RFM["Frequency"] <= 5] # # Monetary RFM["Monetary"].describe([0.25, 0.5, 0.75, 0.9, 0.95, 0.99]) # Here, it seems like 95% percentile should be used to drop the outliers plt.figure(figsize=(12, 6)) plt.title("Distribution of Monetary < 95%") sns.distplot(RFM[RFM["Monetary"] < 447].Monetary) RFM = RFM[RFM["Monetary"] < 447] # # RFM groups # I have used quantiles for assigning scores for Recency and Monetary. # * groups are 0-33, 33-66, 66-100 quantiles # For Frequency I have decided to group them by hand # * score=1 if the frequency value is 1 # * otherwise, the score will be 2 RFM["R_score"] = pd.qcut(RFM["Recency"], 3, labels=[1, 2, 3]).astype(str) RFM["M_score"] = pd.qcut(RFM["Monetary"], 3, labels=[1, 2, 3]).astype(str) RFM["F_score"] = RFM["Frequency"].apply(lambda x: "1" if x == 1 else "2") RFM["RFM_score"] = RFM["R_score"] + RFM["F_score"] + RFM["M_score"] # 1. CORE - '123' - most recent, frequent, revenue generating # 2. GONE - '311', '312', '313' - gone, one-timers # 3. ROOKIE - '111', '112', '113' - just have joined # 4. WHALES - '323', '213', '223 - most revenue generating # 5. LOYAL - '221', '222', '321', '322' - loyal users # 6. REGULAR - '121', '122', '211', '212', - average users # RFM[RFM["R_score"] == "1"]["Recency"].mean() def segment(x): if x == "123": return "Core" elif x in ["311", "312", "313"]: return "Gone" elif x in ["111", "112", "113"]: return "Rookie" elif x in ["323", "213", "223"]: return "Whale" elif x in ["221", "222", "321", "322"]: return "Loyal" else: return "Regular" RFM["segments"] = RFM["RFM_score"].apply(segment) RFM["segments"].value_counts(normalize=True) * 100 segmentwise = RFM.groupby("segments").agg( RecencyMean=("Recency", "mean"), FrequencyMean=("Frequency", "mean"), MonetaryMean=("Monetary", "mean"), GroupSize=("Recency", "size"), ) segmentwise font = {"family": "normal", "weight": "normal", "size": 18} plt.rc("font", **font) fig = plt.gcf() ax = fig.add_subplot() fig.set_size_inches(16, 16) squarify.plot( sizes=segmentwise["GroupSize"], label=segmentwise.index, color=["gold", "teal", "steelblue", "limegreen", "darkorange", "coral"], alpha=0.8, ) plt.title("RFM Segments", fontsize=18, fontweight="bold") plt.axis("off") plt.show()
import pandas as pd from sklearn.model_selection import train_test_split # 读取CSV文件 data = pd.read_csv("/kaggle/input/nlp-train/train.csv") data.columns = ["id", "text", "label"] # 将数据集划分为训练集、验证集和测试集 train_data, val_data = train_test_split(data, test_size=0.1, random_state=42) train_data, test_data = train_test_split(train_data, test_size=0.1, random_state=42) # 将划分后的数据集保存到CSV文件中 train_data.to_csv("train.csv", index=False) val_data.to_csv("val.csv", index=False) test_data.to_csv("test.csv", index=False) def preprocess_function(examples): inputs = [prefix + doc for doc in examples["text"]] model_inputs = tokenizer( inputs, max_length=max_input_length, padding=True, truncation=True ) # Setup the tokenizer for targets with tokenizer.as_target_tokenizer(): labels = examples["label"] if isinstance(labels, list): if any(isinstance(l, list) for l in labels): raise ValueError("label should not have nested lists.") else: labels = tokenizer( labels, max_length=max_target_length, padding=True, truncation=True ) else: labels = tokenizer( [labels], max_length=max_target_length, padding=True, truncation=True ) model_inputs["labels"] = labels["input_ids"] return model_inputs TokenModel = "bert-base-chinese" from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(TokenModel) # 用不上 model_checkpoint = "facebook/bart-large-cnn" # 只有这个有用 if model_checkpoint in ["t5-small", "t5-base", "t5-larg", "t5-3b", "t5-11b"]: # 用不上 prefix = "summarize: " else: prefix = "" # BART-12-3 max_input_length = 150 # input, source text max_target_length = 80 # summary, target text def preprocess_function(examples): inputs = [prefix + doc for doc in examples["text"]] model_inputs = tokenizer( inputs, max_length=max_input_length, padding=True, truncation=True ) # Setup the tokenizer for targets with tokenizer.as_target_tokenizer(): labels = tokenizer( examples["label"], max_length=max_target_length, padding=True, truncation=True, ) model_inputs["labels"] = labels["input_ids"] return model_inputs from datasets import dataset_dict import datasets train_data = datasets.load_dataset( "csv", data_files={"train": "/kaggle/working/train.csv"} )["train"] val_data = datasets.load_dataset( "csv", data_files={"validation": "/kaggle/working/val.csv"} )["validation"] test_data = datasets.load_dataset( "csv", data_files={"test": "/kaggle/working/test.csv"} )["test"] t = datasets.load_dataset( "csv", data_files={"t": "/kaggle/input/nlp-dataset/preliminary_a_test.csv"} )["t"] dd = datasets.DatasetDict( {"train": train_data, "validation": val_data, "test": test_data} ) raw_datasets = dd # tokenized_datasets = raw_datasets.map(preprocess_function, batched=True) tokenized_datasets = raw_datasets.map( preprocess_function, batched=True, load_from_cache_file=False, remove_columns=["text", "label", "id"], ) import datasets import random import pandas as pd from IPython.display import display, HTML def show_random_elements(dataset, num_examples=5): assert num_examples <= len( dataset ), "Can't pick more elements than there are in the dataset." picks = [] for _ in range(num_examples): pick = random.randint(0, len(dataset) - 1) while pick in picks: pick = random.randint(0, len(dataset) - 1) picks.append(pick) df = pd.DataFrame(dataset[picks]) for column, typ in dataset.features.items(): if isinstance(typ, datasets.ClassLabel): df[column] = df[column].transform(lambda i: typ.names[i]) display(HTML(df.to_html())) # 预览数据集 show_random_elements(raw_datasets["train"]) from transformers import ( AutoModelForSeq2SeqLM, DataCollatorForSeq2Seq, Seq2SeqTrainingArguments, Seq2SeqTrainer, ) model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint) import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging logger = logging.get_logger(__name__) # 抽取部分模型finetune def copy_layers( src_layers: nn.ModuleList, dest_layers: nn.ModuleList, layers_to_copy: List[int] ) -> None: layers_to_copy = nn.ModuleList([src_layers[i] for i in layers_to_copy]) assert len(dest_layers) == len( layers_to_copy ), f"{len(dest_layers)} != {len(layers_to_copy)}" dest_layers.load_state_dict(layers_to_copy.state_dict()) LAYERS_TO_COPY = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [ 0 ], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], # the first, 7th and 12th decode layers 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } LAYERS_TO_SUPERVISE = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def create_student_by_copying_alternating_layers( teacher: Union[str, PreTrainedModel], save_path: Union[str, Path] = "student", e: Union[int, None] = None, d: Union[int, None] = None, copy_first_teacher_layers=False, e_layers_to_copy=None, d_layers_to_copy=None, **extra_config_kwargs, ) -> Tuple[PreTrainedModel, List[int], List[int]]: _msg = "encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher." assert (e is not None) or (d is not None), _msg if isinstance(teacher, str): AutoTokenizer.from_pretrained(teacher).save_pretrained( save_path ) # purely for convenience teacher = AutoModelForSeq2SeqLM.from_pretrained(teacher).eval() else: assert isinstance( teacher, PreTrainedModel ), f"teacher must be a model or string got type {type(teacher)}" init_kwargs = teacher.config.to_diff_dict() try: teacher_e, teacher_d = ( teacher.config.encoder_layers, teacher.config.decoder_layers, ) if e is None: e = teacher_e if d is None: d = teacher_d init_kwargs.update({"encoder_layers": e, "decoder_layers": d}) except AttributeError: # T5 teacher_e, teacher_d = ( teacher.config.num_layers, teacher.config.num_decoder_layers, ) if e is None: e = teacher_e if d is None: d = teacher_d init_kwargs.update({"num_layers": e, "num_decoder_layers": d}) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(extra_config_kwargs) # Copy weights student_cfg = teacher.config_class(**init_kwargs) student = AutoModelForSeq2SeqLM.from_config(student_cfg) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. info = student.load_state_dict(teacher.state_dict(), strict=False) assert ( info.missing_keys == [] ), info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save e_layers_to_copy, d_layers_to_copy = list(range(e)), list(range(d)) logger.info( f"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}" ) student.save_pretrained(save_path) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: e_layers_to_copy: List[int] = pick_layers_to_copy(e, teacher_e) if d_layers_to_copy is None: d_layers_to_copy: List[int] = pick_layers_to_copy(d, teacher_d) try: copy_layers( teacher.model.encoder.layers, student.model.encoder.layers, e_layers_to_copy ) copy_layers( teacher.model.decoder.layers, student.model.decoder.layers, d_layers_to_copy ) except ( AttributeError ): # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block, student.encoder.block, e_layers_to_copy) copy_layers(teacher.decoder.block, student.decoder.block, d_layers_to_copy) logger.info( f"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}" ) student.config.init_metadata = dict( teacher_type=teacher.config.model_type, copied_encoder_layers=e_layers_to_copy, copied_decoder_layers=d_layers_to_copy, ) student.save_pretrained(save_path) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy def pick_layers_to_copy(n_student, n_teacher): try: val = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( f"no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first {n_student}" ) return list(range(n_student)) model, list_en, list_de = create_student_by_copying_alternating_layers( model, "trian.pth", 12, 3 ) batch_size = 2 args = Seq2SeqTrainingArguments( output_dir="results", num_train_epochs=1, # demo do_train=True, do_eval=True, per_device_train_batch_size=batch_size, # demo per_device_eval_batch_size=batch_size, # learning_rate=3e-05, warmup_steps=500, weight_decay=0.1, label_smoothing_factor=0.1, predict_with_generate=True, logging_dir="logs", logging_steps=50, save_total_limit=3, ) data_collator = DataCollatorForSeq2Seq(tokenizer, model=model) import jieba import numpy as np def compute_metrics(eval_pred): predictions, labels = eval_pred decoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True) # Replace -100 in the labels as we can't decode them. labels = np.where(labels != -100, labels, tokenizer.pad_token_id) decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) # Rouge expects a newline after each sentence decoded_preds = ["\n".join(jieba.cut(pred.strip())) for pred in decoded_preds] decoded_labels = ["\n".join(jieba.cut(label.strip())) for label in decoded_labels] result = metric.compute( predictions=decoded_preds, references=decoded_labels, use_stemmer=True ) # Extract a few results result = {key: value.mid.fmeasure * 100 for key, value in result.items()} # Add mean generated length prediction_lens = [ np.count_nonzero(pred != tokenizer.pad_token_id) for pred in predictions ] result["gen_len"] = np.mean(prediction_lens) return {k: round(v, 4) for k, v in result.items()} trainer = Seq2SeqTrainer( model, args, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["validation"], data_collator=data_collator, tokenizer=tokenizer, compute_metrics=compute_metrics, ) trainer.train() import torch # 保存与加载模型 torch.save(model.state_dict(), "/kaggle/working/bart.pth") import torch model.load_state_dict(torch.load("/kaggle/working/bart.pth")) import torch TokenModel = "bert-base-chinese" from transformers import AutoTokenizer model_checkpoint = "fnlp/bart-base-chinese" # 只有这个有用 from transformers import ( AutoModelForSeq2SeqLM, DataCollatorForSeq2Seq, Seq2SeqTrainingArguments, Seq2SeqTrainer, ) # 指定设备为GPU,如果没有可用的GPU,则使用CPU device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint).to(device) import csv import torch from torch.nn.utils.rnn import pad_sequence # 假设你的 CSV 文件名为 input.csv,输入数据在第二列,并且每个单元格包含多个数字以空格分隔 csv_file = "/kaggle/input/nlp-dataset/preliminary_a_test.csv" # 根据实际情况填入你的文件名 input_tensors = [] # 读取 CSV 文件 with open(csv_file, "r") as file: reader = csv.reader(file) for row in reader: # 解析第二列的数据为 ID 列表 num_strings = row[1].split(" ") id_list = list(map(int, num_strings)) # 对 ID 列表进行填充或截断,使其长度固定为100 fixed_length = 100 # 设定固定长度为100 if len(id_list) < fixed_length: id_list += [0] * (fixed_length - len(id_list)) # 使用0进行填充 else: id_list = id_list[:fixed_length] # 进行截断 # 将 ID 列表转换为张量 input_tensor = torch.tensor(id_list, dtype=torch.long).to(device) input_tensors.append(input_tensor) # 添加特殊标记 # 假设 <s> 的 ID 值为 2,</s> 的 ID 值为 3 start_token = 2 end_token = 3 for i in range(len(input_tensors)): input_tensors[i] = torch.cat( [ torch.tensor([start_token], dtype=torch.long).to(device), input_tensors[i], torch.tensor([end_token], dtype=torch.long).to(device), ], dim=0, ) # 将输入张量列表转换为 BART 模型需要的格式 input_tensors_padded = pad_sequence(input_tensors, batch_first=True).to(device) input_ids = input_tensors_padded input_masks = input_ids != 0 # 生成掩码张量,标记输入中的非填充部分 def generate_summary(test_samples, model): inputs = tokenizer( test_samples, padding="max_length", truncation=True, max_length=max_input_length, return_tensors="pt", ) input_ids = inputs.input_ids.to(model.device) attention_mask = inputs.attention_mask.to(model.device) outputs = model.generate(input_ids, attention_mask=attention_mask) output_str = tokenizer.batch_decode(outputs, skip_special_tokens=True) # 过滤'[unused2]'标记 output_str_filtered = [ " ".join([token for token in summary.split() if token != "[unused2]"]) for summary in output_str ] return output_str_filtered data = pd.read_csv("/kaggle/input/nlp-dataset/preliminary_a_test.csv") data.columns = ["id", "text"] test_samples = data["text"] test_samples test_samples = test_samples.apply(lambda x: " ".join(x.split())) # 检查数据类型 print(type(test_samples[0])) # 输出 <class 'str'> import csv import tqdm fp = open("pred.csv", "w", newline="") writer = csv.writer(fp) tot = 0 for i in range(test_samples.shape[0]): pred = generate_summary(test_samples[i], model) writer.writerow([tot, pred]) tot += 1 fp.close() test_samples = "22 12 74 71 64 56 16 248 14 40 13 83 52 43 44 23 21 25 11 97 147 126 231 10 34 12 68 685 1021 52 43 44 23 21 11 97 147 126 231 11 34 12 12 14 32 93 276 309 14 47 16 90 16 39 36 87 10 24 42" print(type(test_samples)) a = generate_summary(test_samples[0], model) a from transformers import ( AutoModelForSeq2SeqLM, DataCollatorForSeq2Seq, Seq2SeqTrainingArguments, Seq2SeqTrainer, ) import torch device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 模型和标记器名称 model_checkpoint = "fnlp/bart-base-chinese" tokenizer_checkpoint = "bert-base-chinese" from transformers import AutoTokenizer # 加载模型和标记器 tokenizer = AutoTokenizer.from_pretrained(tokenizer_checkpoint) model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint).to("cuda") # 从测试集中挑选4个样本 test_examples = test_data["text"][:4] """inputs = tokenizer( test_examples, padding="max_length", truncation=True, max_length=max_input_length, return_tensors="pt", )""" input_ids = inputs.input_ids.to(model.device) attention_mask = inputs.attention_mask.to(model.device) # 生成 outputs = model.generate(input_ids, attention_mask=attention_mask, max_length=128) # 将token转换为文字 output_str = tokenizer.batch_decode(outputs, skip_special_tokens=True) output_str = [s.replace(" ", "") for s in output_str] print(output_str) # 从测试集中挑选4个样本 test_examples = test_data["text"][:5] input_ids = inputs.input_ids.to(model.device) attention_mask = inputs.attention_mask.to(model.device) # 生成 outputs = model.generate(input_ids, attention_mask=attention_mask, max_length=128) # 将token转换为文字 # output_str = tokenizer.batch_decode(outputs, skip_special_tokens=True) output_str = [s.replace(" ", "") for s in output_str] print(output_str)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session df = pd.read_csv("/kaggle/input/bitcoin-and-fear-and-greed/dataset.csv") df # # **Bitcoin Fear and greed days split overall** # Define the colors for each bar colors = ["red", "blue", "green", "purple", "orange"] bar_chart = df["Value_Classification"].hist() bar_chart.set_title("Bitcoin fear and greed index 1 Feb to 31 Mar 2023") bar_chart.set_ylabel("Number of days") print(df["Value_Classification"].value_counts()) # # **Bitcoin Fear and greed per month** df["Date"] = pd.to_datetime(df["Date"]) # Extract the short name of the month from the date column df["month"] = df["date"].dt.strftime("%b") df from matplotlib.colors import ListedColormap # Create the pivot table pivot = pd.pivot_table( df, index="month", columns="Value_Classification", values="Value", aggfunc="count" ) # Define the month order month_order = [ "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec", ] # Reorder the index pivot = pivot.reindex(month_order) # Define the column order column_order = ["Extreme Fear", "Fear", "Neutral", "Greed", "Extreme Greed"] # Reorder the columns pivot = pivot.reindex(column_order, axis=1) # Change the theme plt.style.use("ggplot") # Create a custom color map cmap = ListedColormap(["red", "#ffa500", "#ffffff", "#20d420", "#119711"]) # Create the bar chart ax = pivot.plot( kind="bar", title="Bitcoin fear and greed index per Month 1 Feb to 31 Mar 2023", xlabel="Months", ylabel="Number of days", figsize=(16, 6), colormap=cmap, legend=False, ) # Create a custom legend ax.legend(column_order) # Show the plot plt.show() # Group the data by quarters df["quarter"] = df.groupby(pd.Grouper(key="Date", freq="Q"))["Date"].transform("first") # Create the pivot table qt_pivot = pd.pivot_table( df, index="quarter", columns="Value_Classification", values="Value", aggfunc="count" ) # Define the column order column_order = ["Extreme Fear", "Fear", "Neutral", "Greed", "Extreme Greed"] # Reorder the columns qt_pivot = qt_pivot.reindex(column_order, axis=1) # Change the theme plt.style.use("ggplot") # Create a custom color map cmap = ListedColormap(["red", "#ffa500", "#ffffff", "#20d420", "#119711"]) # Create a 2x2 grid of subplots fig, axs = plt.subplots(2, 2, figsize=(14, 10), sharex=True, sharey=True) # Plot each quarter's data on a separate subplot for i, (quarter, data) in enumerate(pivot.iterrows()): ax = axs[i // 2][i % 2] data.plot( kind="bar", title=quarter.strftime("%b-%Y"), xlabel="", ylabel="", ax=ax, colormap=cmap, legend=False, ) # Create a custom legend axs[0][0].legend(column_order) # Show the plot plt.show() # Group the data by quarters df["quarter"] = df.groupby(pd.Grouper(key="Date", freq="Q"))["Date"].transform("first") # Create the pivot table pivot = pd.pivot_table( df, index="quarter", columns="Value_Classification", values="Value", aggfunc="count" ) # Define the column order column_order = ["Extreme Fear", "Fear", "Neutral", "Greed", "Extreme Greed"] # Reorder the columns pivot = pivot.reindex(column_order, axis=1) # Change the theme plt.style.use("ggplot") # Create a custom color map cmap = ListedColormap(["red", "#ffa500", "#ffffff", "#00ff00"]) # Create a 2x2 grid of subplots fig, axs = plt.subplots(2, 2, figsize=(14, 10), sharex=True, sharey=True) # Plot each quarter's data on a separate subplot for i, (quarter, data) in enumerate(pivot.iterrows()): ax = axs[i // 2][i % 2] data.plot( kind="bar", title=quarter.strftime("%b-%Y"), xlabel="", ylabel="", ax=ax, colormap=cmap, legend=False, ) # Create a custom legend axs[0][0].legend(column_order) # Show the plot plt.show()
# # Concepts and ideas # This notebook attempts at creating a model to predict/estimate a given neutrino direction, from a set of coordinates measured by several sensors in one event. # A RNN with LSTM neural network was defined to solve this problem: # - 5 linear layers # - RELU as activation function # - L1Loss as model metric # - ADAM as optimizer # # Merge Data def get_train_df_from_a_batch(train_batch_df, sensors_df, train_meta_df, batch_number): """ Converts train_batch, train_meta and sensor_geometry into a 'train_df' dataframe containing features and targets It filters 'auxiliary' field to only 'False' values (reduces db in 27%), due to challenge explanation: ' If True, the pulse was not fully digitized, is of lower quality, and was more likely to originate from noise.' It uses polars dataframes only. """ train_batch_df = train_batch_df.filter(pl.col("auxiliary") == False) sensors_df = sensors_df.with_columns( pl.col("sensor_id").cast(pl.Int16, strict=False) ) train_df = train_batch_df.join(sensors_df, how="left", on="sensor_id") train_meta_batch_df = train_meta_df.filter(pl.col("batch_id") == batch_number) train_df = train_df.join(train_meta_batch_df, how="left", on="event_id") train_df = train_df.drop( columns=["batch_id", "auxiliary"] ) # train_df is filtered for 1 batch_id and auxiliary = False, these columns are useless train_df = train_df.drop(columns=["first_pulse_index"]) # train_df = train_df.with_columns(xy = pl.col('x') * pl.col('y')) del train_meta_batch_df # memory del train_batch_df # memory print(f"Train dataframe:\n") print(train_df) return train_df # # 3D Plotting def plot_3D(trn_df, event_num): """ Plots x, y, and z from sensors vs azimuth and zenith calculated, per 1 event """ # Get x, y, z, azimuth and zenith values from sensors train_df = trn_df.filter(pl.col("event_id") == event_num) m = 0 M = len(train_df.collect()) xs = train_df.collect()[m:M, "x"] ys = train_df.collect()[m:M, "y"] zs = train_df.collect()[m:M, "z"] azim = train_df.collect()[m:M, "azimuth"] zen = train_df.collect()[m:M, "zenith"] # Calculate the Cartesian coordinates of the vector xp = np.sin(zen) * np.cos(azim) yp = np.sin(zen) * np.sin(azim) zp = np.cos(zen) # Set figure fig = plt.figure(figsize=(12, 20)) ax = fig.add_subplot(111, projection="3d") # Plot the vector as a line from (0,0,0) to (x,y,z) ax.scatter(xp, yp, zp, color="g") ax.scatter(xs, ys, zs, color="b") ax.view_init(-160, 30) # Add labels for the x, y, and z axes ax.set_xlabel("X") ax.set_ylabel("Y") ax.set_zlabel("Z") plt.title(f"Event {event_num}") # Show the plot plt.show() # # EDA def EDA_report(data): """ Generates an EDA report using sweetviz package. Use "data" as your dataset """ import datetime import sweetviz as sw from IPython.display import FileLink, display now = datetime.datetime.now() report_filename = f"EDA_report{now}.html" analyze_report = sw.analyze(data) analyze_report.show_html(report_filename, open_browser=True) link = FileLink(report_filename) print("\nClick here to open report:") display(link) return None # ## Correlations # Utility functions from Tutorial def make_mi_scores(X, y): from sklearn.feature_selection import mutual_info_regression for colname in ["object", "category"]: if colname in X.dtypes: X[colname], _ = X[colname].factorize() # All discrete features should now have integer dtypes discrete_features = [pd.api.types.is_integer_dtype(t) for t in X.dtypes] mi_scores = mutual_info_regression( X, y, discrete_features=discrete_features, random_state=0 ) mi_scores = pd.Series(mi_scores, name="MI Scores", index=X.columns) mi_scores = mi_scores.sort_values(ascending=False) return mi_scores # X = train_analysis.to_pandas() # y_az = X['azimuth'] # X = X.drop (columns = ['azimuth']) # mi_scores = make_mi_scores(X, y_az) # del train_analysis #memory # mi_scores # # Score Function def angular_dist_score(az_true, zen_true, az_pred, zen_pred, batch_size=1): """ calculate the MAE of the angular distance between two directions. The two vectors are first converted to cartesian unit vectors, and then their scalar product is computed, which is equal to the cosine of the angle between the two vectors. The inverse cosine (arccos) thereof is then the angle between the two input vectors Parameters: ----------- az_true : float (or array thereof) true azimuth value(s) in radian zen_true : float (or array thereof) true zenith value(s) in radian az_pred : float (or array thereof) predicted azimuth value(s) in radian zen_pred : float (or array thereof) predicted zenith value(s) in radian Returns: -------- dist : float mean over the angular distance(s) in radian """ if not ( np.all(np.isfinite(az_true)) and np.all(np.isfinite(zen_true)) and np.all(np.isfinite(az_pred)) and np.all(np.isfinite(zen_pred)) ): raise ValueError("All arguments must be finite") import numexpr as ne n = len(az_true) angle_sum = 0.0 for i in range(0, n, batch_size): end = min(i + batch_size, n) sa1 = np.sin(az_true[i:end]).astype(np.float32) ca1 = np.cos(az_true[i:end]).astype(np.float32) sz1 = np.sin(zen_true[i:end]).astype(np.float32) cz1 = np.cos(zen_true[i:end]).astype(np.float32) sa2 = np.sin(az_pred[i:end]).astype(np.float32) ca2 = np.cos(az_pred[i:end]).astype(np.float32) sz2 = np.sin(zen_pred[i:end]).astype(np.float32) cz2 = np.cos(zen_pred[i:end]).astype(np.float32) scalar_prod = ne.evaluate("sz1*sz2*(ca1*ca2 + sa1*sa2) + cz1*cz2") scalar_prod = np.clip(scalar_prod, -1, 1) angle_sum += np.sum(np.arccos(scalar_prod)) return angle_sum / (n * batch_size) # # Train and score a RNN LSTM neural network import torch from torch.utils.data import Dataset, DataLoader class CustomRNN(torch.nn.Module): def __init__(self, input_size, hidden_size, num_layers, output_size): super(CustomRNN, self).__init__() self.hidden_size = hidden_size self.num_layers = num_layers self.lstm = torch.nn.LSTM(input_size, hidden_size, num_layers, batch_first=True) self.fc = torch.nn.Linear(hidden_size, output_size) def forward(self, x): h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device) c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device) out, _ = self.lstm(x, (h0, c0)) out = self.fc(out[:, -1, :]) return out def train_model( train_dataset, batch_size, num_epochs, learning_rate, device, model_path=None ): scores = [] train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) model = CustomRNN( input_size=train_dataset.features.shape[1], hidden_size=64, num_layers=2, output_size=2, ) optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) criterion = torch.nn.mean_absolute_error() if os.path.exists(model_path): model.load_state_dict(torch.load(model_path)) model.to(device) for epoch in tqdm(range(num_epochs)): running_loss = 0.0 for i, (inputs, labels) in enumerate(train_loader): inputs, labels = inputs.to(device), labels.to(device) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() scores.append(running_loss / len(train_loader)) if model_path is not None: torch.save(model.state_dict(), model_path) score = np.mean(scores) return model, score def predict_model(test_dataset, batch_size, device, model_path): test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False) model = CustomRNN( input_size=test_dataset.features.shape[1], hidden_size=64, num_layers=2, output_size=2, ) model.load_state_dict(torch.load(model_path)) model.to(device) predictions = [] with torch.no_grad(): for inputs, labels in test_loader: inputs = inputs.to(device) outputs = model(inputs) predictions.extend(outputs.cpu().numpy()) return np.array(predictions) # # Model train # ## Imports import matplotlib.pyplot as plt import polars as pl import numpy as np import pandas as pd import os, gc from sklearn.model_selection import train_test_split from sklearn.metrics import SCORERS, mean_absolute_error from tqdm import tqdm from torch import cuda print("\nFinished loading imports.\n") if cuda.is_available(): device_lgbm = "gpu" device_nn = "cuda" else: device_lgbm = "cpu" device_nn = "cpu" print(f"Device for training is {device_lgbm}.\n") input_path = "/kaggle/input/" work_path = "/kaggle/working/" scores_nn_path = f"{work_path}scores_nn.csv" scores_nn_df = pd.DataFrame([]) model_path = f"{work_path}model.pt" saved_scores_nn_path = f"{input_path}scores_nn.csv" saved_model_path = f"{input_path}model.pt" for dirname, _, filenames in os.walk(input_path): for filename in filenames: filepath = os.path.join(dirname, filename) if "sensor" in filepath: sensors_df = pl.read_csv(filepath).lazy() print("'sensor_geometry' file loaded.") elif "score" in filepath: scores_nn_df = pd.read_csv(filepath) elif "train_meta" in filepath: train_meta_filepath = filepath print("'train_meta' file path found and loaded.") print("\nAll paths are set.\n") # ## 3D Plotting and EDA # train_analysis = train_df.collect().sample(frac=0.001) # EDA_report (train_analysis.to_pandas()) # ![image.png](attachment:e8bcbf4e-1cd9-4e23-b81e-1e0b2da1136f.png) # ![image.png](attachment:f5995779-2345-4b3b-94ab-7be47a3e768a.png) # %matplotlib inline # 3D plotting of batch 1 batch_1_path = "/kaggle/input/icecube-neutrinos-in-deep-ice/train/batch_1.parquet" train_meta_df = pl.read_parquet(train_meta_filepath).lazy() train_batch_df = pl.read_parquet(batch_1_path).lazy() train_df = get_train_df_from_a_batch( train_batch_df.collect(), sensors_df.collect(), train_meta_df.collect(), 1 ).lazy() del train_batch_df # memory del train_meta_df # memory plot_3D(train_df, 3266196) # event_id = 3266196 plot_3D(train_df, 3266196) # event_id = 3266196 # ![image.png](attachment:8ecd989f-dc58-4ed2-94ba-39c7901eb412.png) # ## Train model y_preds = [] submission_df = pl.DataFrame([]).lazy() counts = 1 max = 30 for dirname, _, filenames in os.walk(input_path): for filename in filenames: filepath = os.path.join(dirname, filename) if ("batch" in filepath) and ("train" in dirname): batch_number = int(filename.split("_")[1].split(".")[0]) print( f"TRAINING BATCH ID {batch_number} - {counts} BATCHES OF {max}\n\ntrain_batch_{batch_number}' file loaded.\n\n" ) if len(scores_nn_df) != 0 and ( batch_number in scores_nn_df.batch_id.values ): print("\nBatch already trained. Skipping to next batch.\n") continue train_meta_df = pl.read_parquet(train_meta_filepath).lazy() print("'train_meta' file loaded.") train_batch_df = pl.read_parquet(filepath).lazy() print(f"\nLoading 'train_batch' file.\n") print(train_batch_df.collect()) train_df = get_train_df_from_a_batch( train_batch_df.collect(), sensors_df.collect(), train_meta_df.collect(), batch_number, ) del train_meta_df # memory del train_batch_df gc.collect() train_df = train_df.sample(frac=0.05) trn_df, tst_df = train_test_split(train_df, test_size=0.2, random_state=42) print("\nTraining model...\n") print(trn_df) train_dataset = CustomDataset(trn_df) if os.path.exists(saved_model_path): model_filepath = saved_model_path else: model_filepath = model_path model, m_score = train_model( train_dataset, batch_size=128, num_epochs=10, learning_rate=1e-3, device=device_nn, model_path=model_filepath, ) del train_df # memory del trn_df del train_dataset # memory gc.collect() print("\nModel score:", m_score) print("\nPredicting values for model score...\n") print(tst_df) test_dataset = CustomDataset(tst_df) y_preds.append( predict_model( test_dataset, batch_size=128, device=device_nn, model_path=model_filepath, ) ) y_pred = np.array(y_preds).reshape(-1, 2) y_preds = [] torch.cuda.empty_cache() az_pred = y_pred[:, 0] print("\nAzimuth preds:\n", az_pred) ze_pred = y_pred[:, 1] print("\nZenith preds:\n", ze_pred) i = np.random.choice( list(range(0, len(az_pred))), int(len(az_pred) * 1), replace=False ) score = angular_dist_score( tst_df["azimuth"].to_numpy()[i], tst_df["zenith"].to_numpy()[i], az_pred[i], ze_pred[i], ) print("\nScore:", score) print("\nCache cleaned.\n") if len(scores_nn_df) != 0: scores_nn_df = scores_nn_df.append( pd.DataFrame([{"batch_id": batch_number, "score": score}]) ) else: scores_nn_df = pd.DataFrame( [{"batch_id": batch_number, "score": score}] ) scores_nn_df.to_csv(scores_nn_path, index=False) print(scores_nn_df) batch_results = { "event_id": tst_df["event_id"], "azimuth_pred": az_pred, "zenith_pred": ze_pred, "azimuth_true": tst_df["azimuth"], "zenith_true": tst_df["zenith"], } del test_dataset # memory del tst_df gc.collect() batch_results_df = pl.DataFrame(batch_results).lazy() if submission_df.select(pl.count()).collect()[0, 0] == 0: submission_df = batch_results_df else: submission_df = pl.concat([submission_df, batch_results_df]) if counts == max: break counts += 1 # | Batch | Score | What changed | # | :- | :- | :- | # | 240 | 1.330 | Initial | # | 240 | 1.233 | epochs: 5 to 10 | # | 240 | 1.249 | LR: 1e-3 to 1e-2 (changed back to 1e-3)| # | 240 | 1.219 | Model: added one more layer (32 to 16)| # | 240 | 1.290 | Model: added one more layer (16 to 8), remove layer | # | Batch | Score (SGD) | Score (Adam) | Score (delete: first_pulse_index) | # | :- | :- | :- | :- | # | 240 | 1.41547 | 1.266042 | 1.24487 | # | 295 | 1.36850 | 1.198497 | 1.18006 | # | 158 | 1.41533 | 1.243094 | 1.22356 | # | 35 | 1.40576 | 1.232627 | 1.22108 | # | 145 | 1.39520 | 1.201339 | 1.17850 | print(submission_df.collect().sort("event_id")) submission_df.groupby("event_id").mean().collect()
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings("ignore") import plotly.express as px import pycomp from pycomp.viz.insights import * # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session train = pd.read_csv("/kaggle/input/widsdatathon2021/TrainingWiDS2021.csv", index_col=0) test = pd.read_csv("/kaggle/input/widsdatathon2021/UnlabeledWiDS2021.csv", index_col=0) data_dictionary_df = pd.read_csv( "/kaggle/input/widsdatathon2021/DataDictionaryWiDS2021.csv" ) pd.set_option("display.max_rows", train.shape[0] + 1) # all rows pd.set_option("display.max_columns", 500) # all columns pd.set_option("max_colwidth", 400) # display of complete text in a row data_dictionary_df = data_dictionary_df[ ["Category", "Variable Name", "Data Type", "Description"] ] data_dictionary_df train = train.drop( ["encounter_id", "hospital_id", "icu_id", "pre_icu_los_days", "readmission_status"], axis=1, ) train.head() train.tail() train.describe() test.head() test.tail() train.shape, test.shape train.dtypes.value_counts() test.dtypes.value_counts() columns_info = pd.DataFrame() columns_info["unique values"] = train.nunique() columns_info["type"] = train.dtypes columns_info null_columns = train.columns[train.isnull().any()] train[null_columns].isnull().sum() labels = [] values = [] for col in null_columns: labels.append(col) values.append(train[col].isnull().sum()) ind = np.arange(len(labels)) width = 0.9 fig, ax = plt.subplots(figsize=(12, 50)) rects = ax.barh(ind, np.array(values), color="violet") ax.set_yticks(ind + ((width) / 2.0)) ax.set_yticklabels(labels, rotation="horizontal") ax.set_xlabel("Count of missing values") ax.set_ylabel("Column Names") ax.set_title("Variables with missing values") null_columns = test.columns[test.isnull().any()] test[null_columns].isnull().sum() labels = [] values = [] for col in null_columns: labels.append(col) values.append(test[col].isnull().sum()) ind = np.arange(len(labels)) width = 0.9 fig, ax = plt.subplots(figsize=(12, 50)) rects = ax.barh(ind, np.array(values), color="violet") ax.set_yticks(ind + ((width) / 2.0)) ax.set_yticklabels(labels, rotation="horizontal") ax.set_xlabel("Count of missing values") ax.set_ylabel("Column Names") ax.set_title("Variables with missing values") target = train["diabetes_mellitus"] diab_positive = len(target[target == 1]) diab_negative = len(target[target == 0]) total_records = len(target) print( "Number of records positive (1):", diab_positive, "(", round(diab_positive / total_records, 3) * 100, "%)", ) print( "Number of records negative (0):", diab_negative, "(", round(diab_negative / total_records, 3) * 100, "%)", ) fig = px.histogram( train[["age", "gender", "ethnicity", "diabetes_mellitus", "bmi"]].dropna(), x="age", y="diabetes_mellitus", color="gender", marginal="box", # or violin, rug hover_data=train[ ["age", "gender", "ethnicity", "diabetes_mellitus", "bmi"] ].columns, ) fig.show() def count_plot(col_name, fig_size=(30, 30)): "Defining function to make all count plot graphs for train and test data together and hence comparable" fig = plt.figure(figsize=fig_size) fig.add_subplot(2, 1, 1) ax1 = sns.countplot( x=col_name, data=train, order=train[col_name].value_counts().index, palette="Set3", ) for p in ax1.patches: ax.annotate( "{:.1f}".format(p.get_height()), (p.get_x() + 0.4, p.get_height() + 100) ) ax1.set_title("Train data distribution", fontsize="large") ax1.set_ylabel(col_name) fig.add_subplot(2, 1, 2) ax2 = sns.countplot( x=col_name, data=test, order=train[col_name].value_counts().index, palette="Set3", ) for p in ax2.patches: ax.annotate( "{:.1f}".format(p.get_height()), (p.get_x() + 0.4, p.get_height() + 100) ) ax2.set_title("Test data distribution", fontsize="large") ax2.set_ylabel(col_name) plt.show() sns.catplot(x="diabetes_mellitus", kind="count", data=train) # Cut the window in 2 parts f, (ax_box, ax_hist) = plt.subplots( 2, sharex=True, gridspec_kw={"height_ratios": (0.15, 0.85)} ) # Add a graph in each part plt.figure(figsize=(30, 30)) sns.boxplot(train["age"], ax=ax_box) sns.distplot(train["age"], ax=ax_hist) # Remove x axis name for the boxplot ax_box.set(xlabel="") # Cut the window in 2 parts f, (ax_box, ax_hist) = plt.subplots( 2, sharex=True, gridspec_kw={"height_ratios": (0.15, 0.85)} ) # Add a graph in each part plt.figure(figsize=(30, 30)) sns.boxplot(test["age"], ax=ax_box) sns.distplot(test["age"], ax=ax_hist) # Remove x axis name for the boxplot ax_box.set(xlabel="") plt.hist(test["age"], bins=8) # Here you can play with number of bins plt.title("Age distribution") plt.xlabel("Age") plt.ylabel("Patient") plt.show() plt.hist(test["age"], bins=8) # Here you can play with number of bins plt.title("Age distribution") plt.xlabel("Age") plt.ylabel("Patient") plt.show() fig, ax = plt.subplots(figsize=(10, 10)) sns.distplot(train["height"], color="y") fig, ax = plt.subplots(figsize=(10, 10)) sns.distplot(train["weight"], color="r") plot = sns.catplot( "diabetes_mellitus", col="elective_surgery", data=train, kind="count", height=6, aspect=0.7, ) plot.fig.suptitle("Elective surgery and Diabetes Mellitus", size=20, y=1.05) plt.figure(figsize=(30, 30)) sns.catplot(y="bilirubin_apache", x="diabetes_mellitus", data=train) count_plot("icu_admit_source", fig_size=(30, 30)) count_plot("hospital_admit_source", fig_size=(30, 30)) count_plot("icu_stay_type", fig_size=(30, 30)) count_plot("icu_type", fig_size=(30, 30)) count_plot("hospital_admit_source", fig_size=(30, 30)) count_plot("gender", fig_size=(30, 30)) fig = plt.figure(figsize=(10, 10)) sns.set(font_scale=1) plt.title("Pie-chart for Ethnicity") train["ethnicity"].value_counts().plot.pie(autopct="%1.1f%%") fig, ax = plt.subplots(figsize=(16, 8)) fig.suptitle("Ethnicity Distribution", size=20) explode = (0.05, 0.05, 0.05, 0.05, 0.3, 0.5) labels = [ "Caucasian", "African American", "Other/Unknown", "Hispanic", "Asian", "Native American", ] sizes = train["ethnicity"].value_counts() ax.pie( sizes, explode=explode, startangle=60, labels=labels, autopct="%1.0f%%", pctdistance=0.9, ) ax.add_artist(plt.Circle((0, 0), 0.4, fc="white")) plt.show() fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 8)) fig.suptitle( "ICU Type and Stay Type Distribution", size=20, ) axs = [ax1, ax2] explode = (0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05) labels = [ "Med-Surg ICU", "CCU-CTICU", "MICU", "Neuro ICU", "Cardiac ICU", "SICU", "CSICU", "CTICU", ] sizes = train["icu_type"].value_counts() ax1.pie( sizes, explode=explode, startangle=60, labels=labels, autopct="%1.0f%%", pctdistance=0.6, ) ax1.add_artist(plt.Circle((0, 0), 0.4, fc="white")) explode = (0.05, 0.05, 0.3) labels = ["admit", "transfer", "readmit"] sizes = train["icu_stay_type"].value_counts() ax2.pie( sizes, explode=explode, startangle=60, labels=labels, autopct="%1.1f%%", pctdistance=0.9, ) ax2.add_artist(plt.Circle((0, 0), 0.4, fc="white")) plt.show() plot_countplot( df=train, col="intubated_apache", hue="diabetes_mellitus", palette="Pastel1", title="intubated_apache and diabetes mellitus", ) d_map = {1: "Diabetic", 0: "Not Diabetic"} plot_double_donut_chart( df=train, col1="ventilated_apache", col2="diabetes_mellitus", label_names_col1=d_map, colors1=["pink", "hotpink"], colors2=["lightskyblue", "dodgerblue"], title="ventilated_apache and diabetes mellitus", ) corr_Matrix = train.select_dtypes(exclude=object).corr().abs() corr_Matrix corr_triangle = corr_Matrix.where( np.triu(np.ones(corr_Matrix.shape), k=1).astype(np.bool) ) corr_triangle
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # Load dataset using NetCDF4 import netCDF4 as nc fh = nc.Dataset( "/kaggle/input/geoscience/sst.mon.mean.nc", mode="r" ) # file handle, open in read only mode fh # Separate lon,lat,sst and time in different variables import pandas as pd lon = fh.variables["lon"][:] lat = fh.variables["lat"][:] sst = fh.variables["sst"][:] time = fh.variables["time"][:] # Plot data on Basemap taking the Nino 3.4 region ([170:290] for longitude and [84:96] for latitude) import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap import numpy as np def plot_map(lon, lat, data): m = Basemap( projection="cyl", resolution="l", llcrnrlat=np.min(fh.variables["lat"][:]), urcrnrlat=np.max(fh.variables["lat"][:]), llcrnrlon=np.min(fh.variables["lon"][:]), urcrnrlon=np.max(fh.variables["lon"][:]), ) m.drawcoastlines() # plt.show() lons, lats = np.meshgrid(lon, lat) x, y = m(lons, lats) m.drawcoastlines() levels = np.linspace(min(np.unique(data)), max(np.unique(data)), 21) # levels=[-30,-20,-12,-9,-6,-2,-1,+1,+2,+6,+9,+12,+20,+30] temp = m.contourf(x, y, data, levels=levels, cmap="seismic") cb = m.colorbar(temp, "bottom", size="15%", pad="10%") # m.drawcoastlines() plt.title("sst") cb.set_label("sst") plt.show() plt.clf() # Plot the mean data over the years for the selected region on Basemap plot_map(lon[170:290], lat[84:96], sst[:, 84:96, 170:290].mean(axis=0)) # Prepare sst anomaly (sst value - mean sst value) for the whole dataset as model input X = sst[:, :, :].reshape(sst.shape[0], -1) X = X - X.mean(axis=0) print(X.shape) df = pd.DataFrame(X) df.head() print(X) # Calculate sst anomaly for the nino 3.4 region nino_3_4_sst_anomaly = sst[:, 84:96, 170:290].reshape( sst.shape[0], (96 - 84) * (290 - 170) ) # calculate spatial mean nino 3.4 sst anomaly for each year mean_nino_3_4_sst_anomaly = nino_3_4_sst_anomaly.mean(axis=1) # Detrend mean nino 3.4 sst anomaly mean_nino_3_4_sst_anomaly = mean_nino_3_4_sst_anomaly - mean_nino_3_4_sst_anomaly.mean( axis=0 ) # Plot detrended mean_nino_3_4_sst_anomaly plt.plot(mean_nino_3_4_sst_anomaly) plt.show() # Prepare labels such that, if mean nino 3.4 sst anomaly value >.5 then 'El-nino' , mean nino 3.4 sst anomaly value <.5 then 'La-nina' and the other values will be discarded. Prepare the corresponding input values also. # 1- El-nino, 0- La-nina def prepare_model_input(mean_nino_3_4_sst_anomaly, X): index = [] ENSO_label = [] for i in range(len(mean_nino_3_4_sst_anomaly)): if mean_nino_3_4_sst_anomaly[i] > 0.5: index.append(i) ENSO_label.append(1) elif mean_nino_3_4_sst_anomaly[i] < 0.5: index.append(i) ENSO_label.append(0) X = X[index] y = ENSO_label return (X, y) X, y = prepare_model_input(mean_nino_3_4_sst_anomaly, X) import math math.isnan(X[2038, 64400]) # Transform masked array into numpy array by replacing nan values by 0. import math def transform_masked_array(X): for i in range(X.shape[0]): for j in range(X.shape[1]): if math.isnan(X[i, j]): X[i, j] = 0 X = transform_masked_array(X) df2 = pd.DataFrame(X) df2 # Split into training and testing set with test set fraction as .33 from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.33, random_state=42 ) # Plot mean training and testing set on map plot_map(lon[170:290], lat[84:96], X_train.mean(axis=0).reshape(96 - 84, 290 - 170)) plot_map(lon[170:290], lat[84:96], X_test.mean(axis=0).reshape(96 - 84, 290 - 170)) # Define and fit PCA from sklearn.decomposition import PCA n_components = 150 pca = PCA(n_components=n_components, svd_solver="randomized", whiten=True).fit(X_train) X_train.shape # Transform training and testing set using PCA X_train_pca = pca.transform(X_train) X_test_pca = pca.transform(X_test) X_train_pca.shape # Plot mean PCA map plot_map(lon[170:290], lat[84:96], pca.mean_.reshape(96 - 84, 290 - 170)) # Plot explained variance and variance ratio on graph plt.plot(pca.explained_variance_ratio_) plt.show() from tqdm.notebook import tqdm import torch # Create a device variable which will be used to shift model and data to GPU if available device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Define pytorch NN classifier which reflects highest testing accuracy(around .99) with minimum number of layers. class FFN(torch.nn.Module): def __init__(self, input_dim, hidden_dim, output_dim): super(FFN, self).__init__() self.fc1 = torch.nn.Linear(input_dim, hidden_dim) self.relu = torch.nn.ReLU() self.fc2 = torch.nn.Linear(hidden_dim, hidden_dim) self.fc3 = torch.nn.Linear(hidden_dim, output_dim) self.sigmoid = torch.nn.Sigmoid() def forward(self, x): out = self.fc1(x) out = self.relu(out) out = self.fc2(out) out = self.relu(out) out = self.fc3(out) out = self.sigmoid(out) return out # Define training function def train(model, train_loader, optimizer, criterion, device): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() # Define testing function def test(model, test_loader, criterion, device): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += criterion(output, target).item() # sum up batch loss pred = output.argmax( dim=1, keepdim=True ) # get the index of the max log-probability correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) test_accuracy = 100.0 * correct / len(test_loader.dataset) return test_loss, test_accuracy # First create a pytorch dataset from the numpy train data dataset_train = torch.utils.data.TensorDataset( torch.from_numpy(X_train_pca).float(), torch.from_numpy(np.array(y_train)).float() ) # Create a dataloader object which will create batches of data dataloader_train = torch.utils.data.DataLoader( dataset_train, batch_size=64, shuffle=True ) # Train the classifier model = FFN(n_components, 100, 2).to(device) optimizer = torch.optim.Adam(model.parameters(), lr=0.001) criterion = torch.nn.CrossEntropyLoss() for epoch in tqdm(range(100)): train(model, dataloader_train, optimizer, criterion, device) test_loss, test_accuracy = test(model, dataloader_train, criterion, device) print( "Epoch: {}, Test Loss: {}, Test Accuracy: {}".format( epoch, test_loss, test_accuracy ) ) # Report prediction accuracy and confusion matrix from sklearn.metrics import confusion_matrix import seaborn as sns import pandas as pd y_pred = ( model(torch.from_numpy(X_test_pca).float().to(device)).argmax(dim=1).cpu().numpy() ) print("Test Accuracy: {}".format(np.mean(y_pred == y_test))) cm = confusion_matrix(y_test, y_pred) df_cm = pd.DataFrame( cm, index=[i for i in ["El Nino", "La Nina"]], columns=[i for i in ["El Nino", "La Nina"]], ) # randomly select 5 maps from testing set, plot them on map, predict classes using their PCA data and report them along with their true label. import random for i in range(5): index = random.randint(0, len(X_test_pca)) plot_map(lon[170:290], lat[84:96], X_test[index].reshape(96 - 84, 290 - 170)) print("True label: ", y_test[index]) print( "Predicted label: ", model(torch.from_numpy(X_test_pca[index].reshape(1, -1)).float().to(device)) .argmax(dim=1) .cpu() .numpy()[0], ) # Plot confusion matrix plt.figure(figsize=(10, 7)) sns.heatmap(df_cm, annot=True)
import pandas as pd import rasterio import os import numpy as np import matplotlib.pyplot as plt import torch from torch.utils.data import Dataset, DataLoader import flax import jax import jax.numpy as jnp from flax import linen as nn from flax.training import train_state from flax import struct, jax_utils from flax.training.common_utils import shard import optax from sklearn.model_selection import train_test_split from tqdm import tqdm import functools from typing import Any, List, Type, Union, Optional, Dict import albumentations as albu import random import shutil # gpu and tpu saving didn't work in same way try: from flax.training import orbax_utils from orbax.checkpoint import PyTreeCheckpointer USE_ORBAX_WITH_FLAX = True except: from orbax.checkpoint import ( Checkpointer, PyTreeCheckpointHandler, JsonCheckpointHandler, PyTreeCheckpointer, ) import nest_asyncio nest_asyncio.apply() USE_ORBAX_WITH_FLAX = False class CFG: # if you want to train model you must set inference = False # if you want to test model you must set inference = True and set pretrained to actual folder # other CFG parameters won't be used if you set inference = True (except seed, test_size and channels) inference = True pretrained = "/kaggle/input/deeplabv3-resnet-101/ckpt" # you can change these parameters, but you don't have to seed = 42 # specify correct optimizer name for optax (getattr(optax, optimizer_name: str)) # https://optax.readthedocs.io/en/latest/api.html - list of optimizers optimizer = "adam" # specify correct parameters dict, you can find them here - https://optax.readthedocs.io/en/latest/api.html optimizer_params = {"b1": 0.95, "b2": 0.98, "eps": 1e-8} # scheduler_params with such keys will be set to ttl_iters after calculating of total steps (ttl_iters) ttl_iters_keys = ["transition_steps", "decay_steps"] # specify correct scheduler name for optax (getattr(optax, scheduler_name: str)) # https://optax.readthedocs.io/en/latest/api.html#schedules - list of schedulers scheduler = "cosine_onecycle_schedule" # specify correct parameters dict, you can find them here - https://optax.readthedocs.io/en/latest/api.html#schedules scheduler_params = { "transition_steps": None, "peak_value": 1e-2, "pct_start": 0.25, "div_factor": 25, "final_div_factor": 100, } # hyperparameters epochs = 50 test_size = 0.1 batch_size = 32 # input image shape, currently using 10 of 11 Landsat-8 channels, excluding channel number 8 # list of Landsat-8 channels - http://magnetometry.ru/study/tables/landsat8.pdf shape = (1, 256, 256, 10) # if you want to use specific channels to train the model, specify them in Tuple[int] format and change the shape tuple to the correct format channels = None # number of workers for torch DataLoader, don't set too high, I prefer to use 4 workers num_workers = 4 # path to save checkpoint ckpt_path = "./ckpt" # metadata keys metadata = ["config", "model", "loss"] # which architecture to use, only when inference = False model = "PAN_ResNet101" class DEEPLABV3_RESNET18: block = "BasicBlock" layers = [2, 2, 2, 2] replace_stride_with_dilation = [False, False, False] strides = [2, 2, 2] upsampling = 32 decoder_channels = 256 atrous_rates = (6, 12, 24) classes = 1 activation = "" class DEEPLABV3_RESNET34: block = "BasicBlock" layers = [3, 4, 6, 3] replace_stride_with_dilation = [False, False, False] strides = [2, 2, 2] upsampling = 32 decoder_channels = 256 atrous_rates = (6, 12, 24) classes = 1 activation = "" class DEEPLABV3_RESNET50: block = "Bottleneck" layers = [3, 4, 6, 3] replace_stride_with_dilation = [False, True, True] strides = [2, 2, 4] upsampling = 8 decoder_channels = 512 atrous_rates = (6, 12, 24) classes = 1 activation = "" class DEEPLABV3_RESNET101: block = "Bottleneck" layers = [3, 4, 23, 3] replace_stride_with_dilation = [False, True, True] strides = [2, 2, 4] upsampling = 8 decoder_channels = 512 atrous_rates = (6, 12, 24) classes = 1 activation = "" class DEEPLABV3_RESNET152: block = "Bottleneck" layers = [3, 8, 36, 3] replace_stride_with_dilation = [False, True, True] strides = [2, 2, 4] upsampling = 8 decoder_channels = 512 atrous_rates = (6, 12, 24) classes = 1 activation = "" class PAN_RESNET18: block = "BasicBlock" layers = [2, 2, 2, 2] replace_stride_with_dilation = [False, False, False] strides = [2, 2, 2] upsampling = 4 decoder_channels = 32 classes = 1 activation = "" class PAN_RESNET34: block = "BasicBlock" layers = [3, 4, 6, 3] replace_stride_with_dilation = [False, False, False] strides = [2, 2, 2] upsampling = 4 decoder_channels = 32 classes = 1 activation = "" class PAN_RESNET50: block = "Bottleneck" layers = [3, 4, 6, 3] replace_stride_with_dilation = [False, False, True] strides = [2, 2, 2] upsampling = 4 decoder_channels = 32 classes = 1 activation = "" class PAN_RESNET101: block = "Bottleneck" layers = [3, 4, 23, 3] replace_stride_with_dilation = [False, False, True] strides = [2, 2, 2] upsampling = 4 decoder_channels = 32 classes = 1 activation = "" class PAN_RESNET152: block = "Bottleneck" layers = [3, 8, 36, 3] replace_stride_with_dilation = [False, False, True] strides = [2, 2, 2] upsampling = 4 decoder_channels = 32 classes = 1 activation = "" class LOSS: alpha = 0.3 beta = 0.7 gamma = 1.0 delta = 0.2 theta = 0.8 mu = 0.5 smooth = 1e-8 rng = jax.random.PRNGKey(CFG.seed) def seed_everything(seed: int): random.seed(seed) os.environ["PYTHONHASHSEED"] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = True seed_everything(CFG.seed) print(flax.__version__) print(jax.devices()) # read image into np.ndarray def read_img(path: str, channels: List[int] = None): if channels is None: img = rasterio.open(path).read().transpose((1, 2, 0)) else: img = rasterio.open(path).read(channels).transpose((1, 2, 0)) img = np.float32(img) / 65535 return img # read mask into np.ndarray def read_mask(path: str): mask = rasterio.open(path).read().transpose((1, 2, 0)) mask = np.int32(mask) return mask # full dataset # df = pd.read_csv('/kaggle/input/fire-segmentation-db/fire-segmentation-db.csv') # cleaned dataset df = pd.read_csv("/kaggle/input/fire-segmentation-clean-db/fire-segmentation-db.csv") # read single sample iloc = 3402 img = read_img(df.iloc[iloc]["image"], channels=(7, 6, 2)) mask = read_mask(df.iloc[iloc]["mask"]) # print sample shape print(img.shape) print(mask.shape) # vizualize image sample _ = plt.imshow(img) # vizualize mask sample _ = plt.imshow(mask) class FireDataset(Dataset): def __init__( self, df: Any, transform: Any = None, inference: bool = False, channels: List[int] = None, ): self.df = df self.transform = transform self.inference = inference self.channels = channels def __len__(self): return len(self.df) def _read_img(self, path: str, channels: List[int]): if channels: img = rasterio.open(path).read(channels).transpose((1, 2, 0)) else: img = rasterio.open(path).read().transpose((1, 2, 0)) img = np.float32(img) / 65535 return img def _read_mask(self, path: str): mask = rasterio.open(path).read().transpose((1, 2, 0)) mask = np.int32(mask) return mask def __getitem__(self, idx: int): row = self.df.iloc[idx] image = self._read_img(row["image"], self.channels) if self.inference: return image mask = self._read_mask(row["mask"]) if self.transform: sample = self.transform(image=image, mask=mask) image, mask = sample["image"], sample["mask"] return image, mask def conv3x3(out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1): """3x3 convolution with padding""" return nn.Conv( features=out_planes, kernel_size=(3, 3), strides=stride, padding=dilation, feature_group_count=groups, use_bias=False, kernel_dilation=dilation, ) def conv1x1(out_planes: int, stride: int = 1): """1x1 convolution""" return nn.Conv( features=out_planes, kernel_size=(1, 1), strides=stride, padding=0, use_bias=False, ) class BasicBlock(nn.Module): planes: int stride: int = 1 downsample: Any = None groups: int = 1 base_width: int = 64 dilation: int = 1 expansion: int = 1 train: bool = True def setup(self): if self.groups != 1 or self.base_width != 64: raise ValueError("BasicBlock only supports groups=1 and base_width=64") if self.dilation > 1: raise NotImplementedError("Dilation > 1 not supported in BasicBlock") self.conv1 = conv3x3(self.planes, self.stride) self.conv2 = conv3x3(self.planes) self.bn1 = nn.BatchNorm(use_running_average=not self.train) self.bn2 = nn.BatchNorm(use_running_average=not self.train) self.bn3 = nn.BatchNorm(use_running_average=not self.train) @nn.compact def __call__(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = nn.activation.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) identity = self.bn3(identity) out += identity out = nn.activation.relu(out) return out class Bottleneck(nn.Module): planes: int stride: int = 1 downsample: Any = None groups: int = 1 base_width: int = 64 dilation: int = 1 expansion: int = 4 train: bool = True def setup(self): width = int(self.planes * (self.base_width / 64.0)) * self.groups self.conv1 = conv1x1(width) self.conv2 = conv3x3(width, self.stride, self.groups, self.dilation) self.conv3 = conv1x1(self.planes * self.expansion) self.bn1 = nn.BatchNorm(use_running_average=not self.train) self.bn2 = nn.BatchNorm(use_running_average=not self.train) self.bn3 = nn.BatchNorm(use_running_average=not self.train) self.bn4 = nn.BatchNorm(use_running_average=not self.train) def __call__(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = nn.activation.relu(out) out = self.conv2(out) out = self.bn2(out) out = nn.activation.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) identity = self.bn4(identity) out += identity out = nn.activation.relu(out) return out class ResNetModule(nn.Module): block: Type[Union[BasicBlock, Bottleneck]] layers: List[int] groups: int = 1 width_per_group: int = 64 strides: Optional[List[int]] = (2, 2, 2) replace_stride_with_dilation: Optional[List[bool]] = None train: bool = True def setup(self): self.repl = self.replace_stride_with_dilation if self.repl is None: self.repl = [False, False, False] if len(self.repl) != 3: raise ValueError( "replace_stride_with_dilation should be None " f"or a 3-element tuple, got {self.repl}" ) self.inplanes = 64 self.dilation = 1 self.base_width = self.width_per_group self.conv1 = nn.Conv( self.inplanes, kernel_size=(7, 7), strides=2, padding=3, use_bias=False ) self.norm = nn.BatchNorm(use_running_average=not self.train) self.layer1 = self._make_layer(self.block, 64, self.layers[0]) self.layer2 = self._make_layer( self.block, 128, self.layers[1], stride=self.strides[0], dilate=self.repl[0] ) self.layer3 = self._make_layer( self.block, 256, self.layers[2], stride=self.strides[1], dilate=self.repl[1] ) self.layer4 = self._make_layer( self.block, 512, self.layers[3], stride=self.strides[2], dilate=self.repl[2] ) def _make_layer( self, block: Type[Union[BasicBlock, Bottleneck]], planes: int, blocks: int, stride: int = 1, dilate: bool = False, ): downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = conv1x1(planes * block.expansion, stride) layers = [] layers.append( block( planes, stride, downsample, self.groups, self.base_width, previous_dilation, train=self.train, ) ) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append( block( planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, train=self.train, ) ) return layers def __call__(self, x): x = self.conv1(x) x = self.norm(x) x = nn.activation.relu(x) x = nn.max_pool( x, window_shape=(3, 3), strides=(2, 2), padding=((0, 1), (0, 1)) ) for blocks in self.layer1: x = blocks(x) f1 = x for blocks in self.layer2: x = blocks(x) f2 = x for blocks in self.layer3: x = blocks(x) f3 = x for blocks in self.layer4: x = blocks(x) f4 = x return [f1, f2, f3, f4] class ResNet(nn.Module): block: Type[Union[BasicBlock, Bottleneck]] layers: List[int] groups: int = 1 width_per_group: int = 64 strides: Optional[List[int]] = (2, 2, 2) replace_stride_with_dilation: Optional[List[bool]] = None @nn.compact def __call__(self, x, train: bool): x = ResNetModule( block=self.block, layers=self.layers, groups=self.groups, width_per_group=self.width_per_group, strides=self.strides, replace_stride_with_dilation=self.replace_stride_with_dilation, train=train, )(x) return x class ASPPConv(nn.Module): out_channels: int dilation: int train: bool = True @nn.compact def __call__(self, x): x = nn.Conv( self.out_channels, kernel_size=(3, 3), strides=(1, 1), padding=self.dilation, kernel_dilation=self.dilation, use_bias=False, )(x) x = nn.BatchNorm(use_running_average=not self.train)(x) x = nn.activation.relu(x) return x class ASPPPooling(nn.Module): out_channels: int train: bool = True @nn.compact def __call__(self, x): shape = x.shape size = x.shape[1], x.shape[2] x = nn.avg_pool(x, window_shape=size, strides=size, padding=((0, 0), (0, 0))) x = nn.Conv( self.out_channels, kernel_size=(1, 1), strides=(1, 1), padding=0, use_bias=False, )(x) x = nn.BatchNorm(use_running_average=not self.train)(x) x = nn.activation.relu(x) x = jax.image.resize( x, shape=(shape[0], shape[1], shape[2], x.shape[3]), method="bilinear" ) return x class ASPP(nn.Module): out_channels: int = 256 atrous_rates: List[int] = (12, 24, 36) separable: bool = False train: bool = True def setup(self): self.mod1 = nn.Sequential( [ conv1x1(self.out_channels), nn.BatchNorm(use_running_average=not self.train), ] ) rate1, rate2, rate3 = self.atrous_rates self.aspp1 = ASPPConv( out_channels=self.out_channels, dilation=rate1, train=self.train ) self.aspp2 = ASPPConv( out_channels=self.out_channels, dilation=rate2, train=self.train ) self.aspp3 = ASPPConv( out_channels=self.out_channels, dilation=rate3, train=self.train ) self.aspp_pool = ASPPPooling(out_channels=self.out_channels, train=self.train) self.project = nn.Sequential( [ conv1x1(self.out_channels), nn.BatchNorm(use_running_average=not self.train), ] ) self.modules = [self.aspp1, self.aspp2, self.aspp3, self.aspp_pool] def __call__(self, x): res = [nn.activation.relu(self.mod1(x))] for mod in self.modules: res.append(mod(x)) out = jnp.concatenate(res, axis=3) prj = nn.activation.relu(self.project(out)) return prj class DeepLabV3Decoder(nn.Module): out_channels: int = 256 atrous_rates: List[int] = (12, 24, 36) @nn.compact def __call__(self, features, train: bool): x = features[-1] x = ASPP( out_channels=self.out_channels, atrous_rates=self.atrous_rates, train=train )(x) x = nn.Conv( self.out_channels, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), use_bias=False, )(x) x = nn.BatchNorm(use_running_average=not train)(x) x = nn.activation.relu(x) return x class DeepLabV3(nn.Module): block: str layers: List[int] decoder_channels: int = 256 atrous_rates: List[int] = (12, 24, 36) classes: int = 1 upsampling: int = 8 activation: str = "" strides: Optional[List[int]] = (2, 2, 2) replace_stride_with_dilation: Optional[List[bool]] = None def setup(self): block = BasicBlock if self.block == "BasicBlock" else Bottleneck self.encoder = ResNet( block=block, layers=self.layers, strides=self.strides, replace_stride_with_dilation=self.replace_stride_with_dilation, ) self.decoder = DeepLabV3Decoder( out_channels=self.decoder_channels, atrous_rates=self.atrous_rates ) self.segmentation_head = SegmentationHead( out_channels=self.classes, activation=self.activation, upsampling=self.upsampling, ) def __call__(self, x, train: bool): features = self.encoder(x, train) decoder_output = self.decoder(features, train) masks = self.segmentation_head(decoder_output) return masks class ConvBnRelu(nn.Module): out_channels: int kernel_size: List[int] stride: int = 1 padding: int = 0 dilation: int = 1 groups: int = 1 bias: bool = True add_relu: bool = True interpolate: bool = False train: bool = True @nn.compact def __call__(self, x): x = nn.Conv( features=self.out_channels, kernel_size=self.kernel_size, strides=self.stride, padding=self.padding, kernel_dilation=self.dilation, feature_group_count=self.groups, use_bias=self.bias, )(x) x = nn.BatchNorm(use_running_average=not self.train)(x) if self.add_relu: x = nn.activation.relu(x) if self.interpolate: b, h, w, c = x.shape x = jax.image.resize(x, shape=(b, h * 2, w * 2, c), method="bilinear") return x class FPABlock(nn.Module): out_channels: int train: bool = True def setup(self): # global pooling branch self.branch1 = ConvBnRelu( out_channels=self.out_channels, kernel_size=(1, 1), stride=1, padding=0, train=self.train, ) # middle branch self.mid = ConvBnRelu( out_channels=self.out_channels, kernel_size=(1, 1), stride=1, padding=0, train=self.train, ) self.down1 = ConvBnRelu( out_channels=1, kernel_size=(7, 7), stride=1, padding=3, train=self.train ) self.down2 = ConvBnRelu( out_channels=1, kernel_size=(5, 5), stride=1, padding=2, train=self.train ) self.down3 = nn.Sequential( [ ConvBnRelu( out_channels=1, kernel_size=(3, 3), stride=1, padding=1, train=self.train, ), ConvBnRelu( out_channels=1, kernel_size=(3, 3), stride=1, padding=1, train=self.train, ), ] ) self.conv2 = ConvBnRelu( out_channels=1, kernel_size=(5, 5), stride=1, padding=2, train=self.train ) self.conv1 = ConvBnRelu( out_channels=1, kernel_size=(7, 7), stride=1, padding=3, train=self.train ) def __call__(self, x): size = x.shape[1], x.shape[2] b, h, w, c = x.shape b1 = nn.avg_pool(x, window_shape=size, strides=size, padding=((0, 0), (0, 0))) b1 = self.branch1(b1) b1 = jax.image.resize(b1, shape=(b, h, w, b1.shape[3]), method="bilinear") mid = self.mid(x) x1 = nn.max_pool( x, window_shape=(2, 2), strides=(2, 2), padding=((0, 0), (0, 0)) ) x1 = self.down1(x1) x2 = nn.max_pool( x1, window_shape=(2, 2), strides=(2, 2), padding=((0, 0), (0, 0)) ) x2 = self.down2(x2) x3 = nn.max_pool( x2, window_shape=(2, 2), strides=(2, 2), padding=((0, 0), (0, 0)) ) x3 = self.down3(x3) x3 = jax.image.resize( x3, shape=(b, h // 4, w // 4, x3.shape[3]), method="bilinear" ) x2 = self.conv2(x2) x = x2 + x3 x = jax.image.resize( x, shape=(b, h // 2, w // 2, x.shape[3]), method="bilinear" ) x1 = self.conv1(x1) x = x + x1 x = jax.image.resize(x, shape=(b, h, w, x.shape[3]), method="bilinear") x = jax.lax.mul(x, mid) x = x + b1 return x class GAUBlock(nn.Module): out_channels: int train: bool = True @nn.compact def __call__(self, x, y): """ Args: x: low level feature y: high level feature """ xsize = x.shape[1], x.shape[2] bx, hx, wx, cx = x.shape ysize = y.shape[1], y.shape[2] by, hy, wy, cy = y.shape y_up = jax.image.resize(y, shape=(bx, hx, wx, y.shape[3]), method="bilinear") x = ConvBnRelu( out_channels=self.out_channels, kernel_size=(3, 3), padding=1, train=self.train, )(x) y = nn.avg_pool(y, window_shape=ysize, strides=ysize, padding=((0, 0), (0, 0))) y = ConvBnRelu( out_channels=self.out_channels, kernel_size=(1, 1), add_relu=False, train=self.train, )(y) y = nn.activation.sigmoid(y) z = jax.lax.mul(x, y) return y_up + z class PANDecoder(nn.Module): decoder_channels: int @nn.compact def __call__(self, features, train: bool): x5 = FPABlock(out_channels=self.decoder_channels, train=train)( features[-1] ) # 1/32 x4 = GAUBlock(out_channels=self.decoder_channels, train=train)( features[-2], x5 ) # 1/16 x3 = GAUBlock(out_channels=self.decoder_channels, train=train)( features[-3], x4 ) # 1/8 x2 = GAUBlock(out_channels=self.decoder_channels, train=train)( features[-4], x3 ) # 1/4 return x2 class PAN(nn.Module): block: str layers: List[int] decoder_channels: int = 32 classes: int = 1 upsampling: int = 4 activation: str = "" strides: Optional[List[int]] = (2, 2, 2) replace_stride_with_dilation: Optional[List[bool]] = None def setup(self): block = BasicBlock if self.block == "BasicBlock" else Bottleneck self.encoder = ResNet( block=block, layers=self.layers, strides=self.strides, replace_stride_with_dilation=self.replace_stride_with_dilation, ) self.decoder = PANDecoder(decoder_channels=self.decoder_channels) self.segmentation_head = SegmentationHead( out_channels=self.classes, activation=self.activation, upsampling=self.upsampling, ) def __call__(self, x, train: bool): features = self.encoder(x, train) decoder_output = self.decoder(features, train) masks = self.segmentation_head(decoder_output) return masks class SegmentationHead(nn.Module): out_channels: int activation: str = "" upsampling: int = 8 @nn.compact def __call__(self, x): ks = 3 x = nn.Conv( self.out_channels, kernel_size=(ks, ks), strides=(1, 1), padding=ks // 2 )(x) if self.upsampling > 1: b, h, w, c = x.shape x = jax.image.resize( x, shape=(b, h * self.upsampling, w * self.upsampling, c), method="bilinear", ) if len(self.activation) > 0: x = getattr(nn.activation, self.activation)(x) return x def get_model(name: str, only_dct: bool = False, dct: Dict[str, Any] = None): res = [None, None] if name == "DeepLabV3_ResNet18": res[0] = class_to_dct(DEEPLABV3_RESNET18) if not dct else dct if not only_dct: res[1] = DeepLabV3(**res[0]) return res elif name == "DeepLabV3_ResNet34": res[0] = class_to_dct(DEEPLABV3_RESNET34) if not dct else dct if not only_dct: res[1] = DeepLabV3(**res[0]) return res elif name == "DeepLabV3_ResNet50": res[0] = class_to_dct(DEEPLABV3_RESNET50) if not dct else dct if not only_dct: res[1] = DeepLabV3(**res[0]) return res elif name == "DeepLabV3_ResNet101": res[0] = class_to_dct(DEEPLABV3_RESNET101) if not dct else dct if not only_dct: res[1] = DeepLabV3(**res[0]) return res elif name == "DeepLabV3_ResNet152": res[0] = class_to_dct(DEEPLABV3_RESNET152) if not dct else dct if not only_dct: res[1] = DeepLabV3(**res[0]) return res elif name == "PAN_ResNet18": res[0] = class_to_dct(PAN_RESNET18) if not dct else dct if not only_dct: res[1] = PAN(**res[0]) return res elif name == "PAN_ResNet34": res[0] = class_to_dct(PAN_RESNET34) if not dct else dct if not only_dct: res[1] = PAN(**res[0]) return res elif name == "PAN_ResNet50": res[0] = class_to_dct(PAN_RESNET50) if not dct else dct if not only_dct: res[1] = PAN(**res[0]) return res elif name == "PAN_ResNet101": res[0] = class_to_dct(PAN_RESNET101) if not dct else dct if not only_dct: res[1] = PAN(**res[0]) return res elif name == "PAN_ResNet152": res[0] = class_to_dct(PAN_RESNET152) if not dct else dct if not only_dct: res[1] = PAN(**res[0]) return res return None class TrainState(train_state.TrainState): batch_stats: Any @functools.partial(jax.pmap, static_broadcasted_argnums=(1, 2)) def create_train_state(rng: Any, lr_function: Any, shape: List[int]): _, model = get_model(CFG.model) variables = model.init(rng, jnp.ones(shape), train=True) params = variables["params"] batch_stats = variables["batch_stats"] tx = getattr(optax, CFG.optimizer)(lr_function, **CFG.optimizer_params) return TrainState.create( apply_fn=model.apply, params=params, batch_stats=batch_stats, tx=tx ) def create_learning_rate_fn(ttl_iters: int): scheduler = getattr(optax, CFG.scheduler) for key in CFG.ttl_iters_keys: if key in CFG.scheduler_params.keys(): CFG.scheduler_params[key] = ttl_iters return scheduler(**CFG.scheduler_params) @functools.partial(jax.pmap, axis_name="batch") def train_step(state: Any, image: Any, mask: Any): def loss_fn(params: Any): logits, updates = state.apply_fn( {"params": params, "batch_stats": state.batch_stats}, image, train=True, mutable=["batch_stats"], ) labels = mask alpha = LOSS.alpha beta = LOSS.beta gamma = LOSS.gamma delta = LOSS.delta theta = LOSS.theta mu = LOSS.mu smooth = LOSS.smooth preds = nn.activation.sigmoid(logits) flat_logits = jnp.ravel(preds) flat_labels = jnp.ravel(labels) tp = jnp.sum(flat_logits * flat_labels) fp = jnp.sum(flat_logits * (1 - flat_labels)) fn = jnp.sum((1 - flat_logits) * flat_labels) union0 = jnp.clip((1 - preds) + (1 - labels), a_min=0, a_max=1) intersection0 = (1 - preds) * (1 - labels) iou0 = jnp.sum(intersection0) / (jnp.sum(union0) + smooth) union1 = jnp.clip(preds + labels, a_min=0, a_max=1) intersection1 = preds * labels iou1 = jnp.sum(intersection1) / (jnp.sum(union1) + smooth) tversky_loss = 1 - (tp + smooth) / (tp + alpha * fp + beta * fn + smooth) tversky_focal_loss = tversky_loss**gamma miou_loss = (1 - iou0) * delta + (1 - iou1) * theta loss = mu * tversky_focal_loss + (1 - mu) * miou_loss return loss, (logits, updates) grad_fn = jax.value_and_grad(loss_fn, has_aux=True) (loss, (logits, updates)), grads = grad_fn(state.params) state = state.apply_gradients(grads=grads) state = state.replace(batch_stats=updates["batch_stats"]) return state, loss @functools.partial(jax.pmap, axis_name="batch") def eval_step(state: Any, image: Any, mask: Any): def loss_fn(params: Any): logits = state.apply_fn( {"params": params, "batch_stats": state.batch_stats}, image, train=False ) labels = mask alpha = LOSS.alpha beta = LOSS.beta gamma = LOSS.gamma delta = LOSS.delta theta = LOSS.theta mu = LOSS.mu smooth = LOSS.smooth preds = nn.activation.sigmoid(logits) flat_logits = jnp.ravel(preds) flat_labels = jnp.ravel(labels) tp = jnp.sum(flat_logits * flat_labels) fp = jnp.sum(flat_logits * (1 - flat_labels)) fn = jnp.sum((1 - flat_logits) * flat_labels) union0 = jnp.clip((1 - preds) + (1 - labels), a_min=0, a_max=1) intersection0 = (1 - preds) * (1 - labels) iou0 = jnp.sum(intersection0) / (jnp.sum(union0) + smooth) union1 = jnp.clip(preds + labels, a_min=0, a_max=1) intersection1 = preds * labels iou1 = jnp.sum(intersection1) / (jnp.sum(union1) + smooth) tversky_loss = 1 - (tp + smooth) / (tp + alpha * fp + beta * fn + smooth) tversky_focal_loss = tversky_loss**gamma miou_loss = (1 - iou0) * delta + (1 - iou1) * theta loss = mu * tversky_focal_loss + (1 - mu) * miou_loss return loss loss = loss_fn(state.params) return loss @functools.partial(jax.pmap, axis_name="batch") def compute_metrics(state: Any, image: Any, mask: Any): logits = state.apply_fn( {"params": state.params, "batch_stats": state.batch_stats}, image, train=False ) preds = nn.activation.sigmoid(logits) > 0.5 labels = mask smooth = LOSS.smooth tp = jnp.sum((preds == 1) * (labels == 1)) fp = jnp.sum((preds == 1) * (labels == 0)) tn = jnp.sum((preds == 0) * (labels == 0)) fn = jnp.sum((preds == 0) * (labels == 1)) precision = tp / (tp + fp + smooth) recall = tp / (tp + fn + smooth) union0 = jnp.clip((1 - preds) + (1 - labels), a_min=0, a_max=1) intersection0 = (1 - preds) * (1 - labels) iou0 = jnp.sum(intersection0) / (jnp.sum(union0) + smooth) union1 = jnp.clip(preds + labels, a_min=0, a_max=1) intersection1 = preds * labels iou1 = jnp.sum(intersection1) / (jnp.sum(union1) + smooth) miou = (iou0 + iou1) / 2 return precision, recall, iou0, iou1, miou def train_epoch(state: Any, train_loader: Any, epoch: int, lr_fn: Any): pbar = tqdm(train_loader) pbar.set_description(f"train epoch: {epoch + 1}") epoch_loss = 0.0 for step, batch in enumerate(pbar): image, mask = batch image = shard(jnp.array(image, dtype=jnp.float32)) mask = shard(jnp.array(mask, dtype=jnp.int32)) state, loss = train_step(state, image, mask) if USE_ORBAX_WITH_FLAX: lr = lr_fn(jax_utils.unreplicate(state).step) else: lr = lr_fn(state.step)[0] epoch_loss += jax_utils.unreplicate(loss) pbar.set_description( f"train epoch: {epoch + 1} loss: {(epoch_loss / (step + 1)):.3f} lr: {lr:.6f}" ) return state def test_epoch(state: Any, test_loader: Any, epoch: int): pbar = tqdm(test_loader) pbar.set_description(f"test epoch: {epoch + 1}") num = len(test_loader) epoch_loss = 0.0 epoch_precision = 0.0 epoch_recall = 0.0 epoch_iou0 = 0.0 epoch_iou1 = 0.0 epoch_miou = 0.0 for step, batch in enumerate(pbar): image, mask = batch image = shard(jnp.array(image, dtype=jnp.float32)) mask = shard(jnp.array(mask, dtype=jnp.int32)) loss = eval_step(state, image, mask) precision, recall, iou0, iou1, miou = compute_metrics(state, image, mask) epoch_loss += jax_utils.unreplicate(loss) epoch_precision += jax_utils.unreplicate(precision) epoch_recall += jax_utils.unreplicate(recall) epoch_iou0 += jax_utils.unreplicate(iou0) epoch_iou1 += jax_utils.unreplicate(iou1) epoch_miou += jax_utils.unreplicate(miou) pbar_str = f"test epoch: {epoch + 1} " pbar_str += f"loss: {(epoch_loss / (step + 1)):.3f} " pbar_str += f"precision: {(epoch_precision / (step + 1)):.3f} " pbar_str += f"recall: {(epoch_recall / (step + 1)):.3f} " pbar_str += f"iou0: {(epoch_iou0 / (step + 1)):.3f} " pbar_str += f"iou1: {(epoch_iou1 / (step + 1)):.3f} " pbar_str += f"miou: {(epoch_miou / (step + 1)):.3f}" pbar.set_description(pbar_str) epoch_loss /= num epoch_precision /= num epoch_recall /= num epoch_iou0 /= num epoch_iou1 /= num epoch_miou /= num metrics = { "loss": epoch_loss, "precision": epoch_precision, "recall": epoch_recall, "iou0": epoch_iou0, "iou1": epoch_iou1, "miou": epoch_miou, } return metrics def class_to_dct(cls: Any): dct = {} for attr in dir(cls): if attr[:2] != "__" and attr[-2:] != "__": dct[attr] = getattr(cls, attr) return dct def best_fn(metrics: Dict[str, float]): return metrics["precision"] + metrics["recall"] + metrics["iou1"] + metrics["miou"] def main(rng: Any, train_df: Any, test_df: Any): # hyperparameters epochs = CFG.epochs test_size = CFG.test_size batch_size = CFG.batch_size shape = CFG.shape channels = CFG.channels num_workers = CFG.num_workers # define transformations transform = albu.Compose( [ albu.Rotate((-45, 45)), albu.HorizontalFlip(p=0.5), albu.VerticalFlip(p=0.5), albu.RandomBrightnessContrast(0.1, 0.1), ] ) # create datasets train_dataset = FireDataset(train_df, channels=channels, transform=transform) test_dataset = FireDataset(test_df, channels=channels) # create dataloaders train_loader = DataLoader( train_dataset, batch_size=batch_size, drop_last=True, shuffle=True, pin_memory=False, num_workers=num_workers, ) test_loader = DataLoader( test_dataset, batch_size=batch_size, drop_last=True, shuffle=False, pin_memory=False, num_workers=num_workers, ) # total steps ttl_iters = epochs * len(train_loader) # create lr_function lr_fn = create_learning_rate_fn(ttl_iters) # init PRNG and state rng, init_rng = jax.random.split(rng) state = create_train_state( jax.random.split(init_rng, jax.device_count()), lr_fn, shape ) if os.path.exists(CFG.ckpt_path): print("ckpt cleaned") shutil.rmtree(CFG.ckpt_path) if not USE_ORBAX_WITH_FLAX: print("metadata cleaned") for metadata in CFG.metadata: if os.path.exists(CFG.ckpt_path + "/" + metadata): shutil.rmtree(CFG.ckpt_path + "/" + metadata) model_dct, _ = get_model(CFG.model, only_dct=True) metadata_dct = [class_to_dct(CFG), model_dct, class_to_dct(LOSS)] if USE_ORBAX_WITH_FLAX: orbax_checkpointer = PyTreeCheckpointer() ckpt = {"state": jax_utils.unreplicate(state)} for metadata_idx, metadata in enumerate(CFG.metadata): ckpt[metadata] = metadata_dct[metadata_idx] save_args = orbax_utils.save_args_from_target(ckpt) save_dct = {"state": None} for metadata_idx, metadata in enumerate(CFG.metadata): save_dct[metadata] = metadata_dct[metadata_idx] else: metadata_ckptr = Checkpointer(JsonCheckpointHandler()) for metadata_idx, metadata in enumerate(CFG.metadata): metadata_ckptr.save( CFG.ckpt_path + "/" + metadata, metadata_dct[metadata_idx], force=True ) ckptr = Checkpointer(PyTreeCheckpointHandler()) # train cycle best_metrics = 0.0 for epoch in range(epochs): state = train_epoch(state, train_loader, epoch, lr_fn) metrics = test_epoch(state, test_loader, epoch) save_state = jax_utils.unreplicate(state) comb_metrics = best_fn(metrics) if USE_ORBAX_WITH_FLAX: if comb_metrics > best_metrics: if os.path.exists(CFG.ckpt_path): shutil.rmtree(CFG.ckpt_path) best_metrics = comb_metrics ckpt["state"] = save_state save_args = orbax_utils.save_args_from_target(ckpt) orbax_checkpointer.save(CFG.ckpt_path, ckpt, save_args=save_args) else: if comb_metrics > best_metrics: best_metrics = comb_metrics ckptr.save(CFG.ckpt_path, save_state, force=True) return state def inference(path: str, local: bool = False): metadata_dct = [] if USE_ORBAX_WITH_FLAX: orbax_checkpointer = PyTreeCheckpointer() raw_restored = orbax_checkpointer.restore(path) restored_state = raw_restored["state"] for metadata in CFG.metadata: restored_dct = raw_restored[metadata] metadata_dct.append(restored_dct) else: if len(os.listdir(path)) > 1: ckptr = Checkpointer(PyTreeCheckpointHandler()) restored_state = ckptr.restore(path) metadata_ckptr = Checkpointer(JsonCheckpointHandler()) metadata_path = CFG.pretrained if local else CFG.ckpt_path for metadata in CFG.metadata: restored_dct = metadata_ckptr.restore(metadata_path + "/" + metadata) metadata_dct.append(restored_dct) else: orbax_checkpointer = PyTreeCheckpointer() raw_restored = orbax_checkpointer.restore(path) restored_state = raw_restored["state"] for metadata in CFG.metadata: restored_dct = raw_restored[metadata] metadata_dct.append(restored_dct) config_dct = metadata_dct[0] model_dct = metadata_dct[1] _, model = get_model(config_dct["model"], dct=model_dct) return model, restored_state, metadata_dct def predict(model: Any, state: Any, img: Any): jnp_img = jnp.array(img, dtype=jnp.float32)[jnp.newaxis, :, :, :] logits = model.apply( {"params": state["params"], "batch_stats": state["batch_stats"]}, jnp_img, train=False, ) preds = nn.activation.sigmoid(logits) > 0.5 return preds def vizualize(model: Any, state: Any, img: Any, mask: Any): # img - array from read_img function preds = predict(model, state, img) _, axs = plt.subplots(1, 2) _ = axs[0].imshow(preds[0]) _ = axs[1].imshow(mask) # split pandas dataframe train_df, test_df = train_test_split(df, test_size=CFG.test_size, random_state=CFG.seed) if not CFG.inference: state = main(rng, train_df, test_df) model, state, metadata = inference(CFG.ckpt_path, local=CFG.inference) else: model, state, metadata = inference(CFG.pretrained, local=CFG.inference) # vizualization images n = 50 rows = np.random.choice([i for i in range(len(test_df))], size=n) for row in rows: img = read_img(test_df.iloc[row]["image"], channels=CFG.channels) mask = read_mask(test_df.iloc[row]["mask"]) vizualize(model, state, img, mask)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from datetime import datetime pd.options.display.float_format = "{:.2f}".format from tqdm import tqdm import warnings warnings.filterwarnings("ignore") import pickle from itertools import combinations from statsmodels.tsa.stattools import adfuller from statsmodels.tsa.stattools import acf, pacf from statsmodels.tsa.arima.model import ARIMA as ARIMA import statsmodels.api as sm import statsmodels.tsa.api as smt for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session X_full = pd.read_csv( "/kaggle/input/godaddy-microbusiness-density-forecasting/train.csv", na_values=True ) X_test_full = pd.read_csv( "/kaggle/input/godaddy-microbusiness-density-forecasting/test.csv", na_values=True ) sample_df = pd.read_csv( "/kaggle/input/godaddy-microbusiness-density-forecasting/sample_submission.csv" ) census_df = pd.read_csv( "/kaggle/input/godaddy-microbusiness-density-forecasting/census_starter.csv" ) census_df.info() X_full.info() X_test_full.info() X_test_full = X_test_full.convert_dtypes() X_full = X_full.convert_dtypes() print(X_test_full.dtypes, "\n", X_full.dtypes) X_full.isna().sum() X_full[["microbusiness_density", "active"]] = X_full[ ["microbusiness_density", "active"] ].fillna(X_full[["microbusiness_density", "active"]].median()) X_test_full.isna().sum() X_full["first_day_of_month"] = pd.to_datetime(X_full["first_day_of_month"]) X_test_full["first_day_of_month"] = pd.to_datetime(X_test_full["first_day_of_month"]) df = X_full.copy() def make_feature(df): feature = pd.DataFrame() feature["row_id"] = df["row_id"] feature["microbusiness_density"] = df["microbusiness_density"] feature["contry_code"] = df["cfips"] // 100 feature["state_code"] = df["cfips"] % 100 feature["first_day_of_month"] = df["first_day_of_month"] feature["year"] = df["first_day_of_month"].dt.year feature["month"] = df["first_day_of_month"].dt.month feature["week"] = df["first_day_of_month"].dt.dayofweek return feature train_feature = make_feature(X_full) train_feature data = train_feature[["first_day_of_month", "microbusiness_density"]].copy() data["Date"] = pd.to_datetime(data["first_day_of_month"]) data = data.drop(columns="first_day_of_month") data = data.set_index("Date") data data = data.groupby(data.index).mean() data.head() portion_df = data.microbusiness_density["2019-08-01":"2022-10-01"] portion_df # Save test predictions to file output = pd.DataFrame({"Date": portion_df.index, "microbusiness_density": portion_df}) output.to_csv("submission.csv", index=False) plt.figure(figsize=(15, 5)) data["microbusiness_density"].plot() dec = sm.tsa.seasonal_decompose(data["microbusiness_density"], period=12).plot() plt.show() def test_stationarity(timeseries): # Determing rolling statistics MA = timeseries.rolling(window=12).mean() MSTD = timeseries.rolling(window=12).std() # Plot rolling statistics: plt.figure(figsize=(15, 5)) orig = plt.plot(timeseries, color="blue", label="Original") mean = plt.plot(MA, color="red", label="Rolling Mean") std = plt.plot(MSTD, color="black", label="Rolling Std") plt.legend(loc="best") plt.title("Rolling Mean & Standard Deviation") plt.show(block=False) # Perform Dickey-Fuller test: print("Results of Dickey-Fuller Test:") dftest = adfuller(timeseries, autolag="AIC") dfoutput = pd.Series( dftest[0:4], index=[ "Test Statistic", "p-value", "#Lags Used", "Number of Observations Used", ], ) for key, value in dftest[4].items(): dfoutput["Critical Value (%s)" % key] = value print(dfoutput) test_stationarity(data["microbusiness_density"]) data_diff = data.diff() data_diff = data_diff.dropna() dec = sm.tsa.seasonal_decompose(data_diff, period=12).plot() plt.show() test_stationarity(data_diff) def tsplot(y, lags=None, figsize=(15, 7), style="bmh"): if not isinstance(y, pd.Series): y = pd.Series(y) with plt.style.context(style): fig = plt.figure(figsize=figsize) layout = (2, 2) ts_ax = plt.subplot2grid(layout, (0, 0), colspan=2) acf_ax = plt.subplot2grid(layout, (1, 0)) pacf_ax = plt.subplot2grid(layout, (1, 1)) y.plot(ax=ts_ax) p_value = sm.tsa.stattools.adfuller(y)[1] ts_ax.set_title( "Time Series Analysis Plots\n Dickey-Fuller: p={0:.5f}".format(p_value) ) smt.graphics.plot_acf(y, lags=lags, ax=acf_ax) smt.graphics.plot_pacf(y, lags=lags, ax=pacf_ax) plt.tight_layout() tsplot(data_diff["microbusiness_density"]) data["microbusiness_density"] data = data.convert_dtypes() data.dtypes np.asarray(data) import pandas as pd import numpy as np from statsmodels.tsa.arima_model import ARIMA # Convert Pandas data to NumPy data numpy_data = data["microbusiness_density"].to_numpy(dtype=float) # Fit ARIMA model to NumPy data model = sm.tsa.arima.ARIMA(numpy_data, order=(0, 1, 0)) model_fit = model.fit() # Print model summary print(model_fit.summary()) # AIC -149.986 # BIC -148.348 p = 0 d = 1 q = 0 # ARIMA auto autoregressive integrated moving average model = sm.tsa.arima.ARIMA(numpy_data, order=(p, d, q)) results_ARIMA = model.fit() plt.figure(figsize=(30, 6)) plt.plot(numpy_data) plt.plot(results_ARIMA.fittedvalues, color="red") # The residual sum of squares (RSS) is the absolute amount of explained variation, # whereas # R-squared is the absolute amount of variation as a proportion of total variation plt.title("RSS: %.4f" % sum((results_ARIMA.fittedvalues) ** 2)) plt.show() # **ARIMA model is a combination of 3 models : # ** # AR (p) : Auto Regressive # I (d) : Integrated # MA (q) : Moving Average # (p,d,q) is known as the order of the ARIMA model. Values of these parameters are based on the above mentioned models. # ** # **p : Number of auto regressive terms. # d : Number of differencing orders required to make the time series stationary. # q : Number of lagged forecast errors in the prediction equation. # Selection criteria for the order of ARIMA model : # ** # **p : Lag value where the Partial Autocorrelation (PACF) graph cuts off or drops to 0 for the 1st instance. # d : Number of times differencing is carried out to make the time series stationary. # q : Lag value where the Autocorrelation (ACF) graph crosses the upper confidence interval for the 1st instance.**** # split_date = '2021-02-01' # ts_test = data.loc[data.index < split_date].copy() # ts_test # ## test the ARIMA model on test dataset # ## test the ARIMA model on test dataset # # define function to get perdiction for forecasting # def StartARIMAForecasting(Actual, p, d, q): # model = sm.tsa.arima.ARIMA(Actual, order=(p, d, q)) # model_fit = model.fit(disp=0) # prediction = model_fit.forecast()[0] # return prediction # ts_test.iloc[0] # ts_test = ts_test.reset_index(drop=True) # for I in range(len(ts_test)): # try: # ActualValue = ts_test[I] # except KeyError: # # handle the KeyError exception # print(f"KeyError: index {I} does not exist") # continue # #forecast value # ForecastedValue = model_fit.forecast()[0] # #calculate error # Error = ActualValue - ForecastedValue # #update the model with the actual value # model_fit.update(ActualValue) # output.head() # # Save test predictions to file # output = pd.DataFrame({'row_id': ts_test, # 'microbusiness_density': ts_test}) # output.to_csv('submission.csv', index=False)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns import warnings # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session vehicleData = pd.read_csv("/kaggle/input/vehicle-dataset-from-cardekho/car data.csv") vehicleData.head(25) vehicleData.info() vehicleData.describe() # Select the categorical variables to be encoded encodingVars = ["Car_Name", "Year", "Fuel_Type", "Seller_Type", "Transmission"] # Convert the categorical variables to one-hot encoding vehicleData_encoded = pd.get_dummies(vehicleData, columns=encodingVars) vehicleData_encoded # from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor # Split the data into training and testing sets X_train, X_test, y_train, y_test = train_test_split( vehicleData_encoded.drop("Selling_Price", axis=1), vehicleData_encoded["Selling_Price"], test_size=0.05, random_state=42, ) # Initialize the random forest regressor with 100 estimators forestRegressor = RandomForestRegressor(n_estimators=10, random_state=42) # Fit the model on the training data forestRegressor.fit(X_train, y_train) # Predict on the test data predictions = forestRegressor.predict(X_test) # Calculate the mean squared error on the test data mse = mean_squared_error(y_test, predictions) # Print the mean squared error print("Mean Squared Error:", mse)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import torch from tqdm import tqdm from torch import nn, optim from string import punctuation from collections import Counter from sklearn.model_selection import train_test_split from torch.nn.utils.rnn import pad_sequence, pack_padded_sequence, pad_packed_sequence from torch.utils.data import TensorDataset, DataLoader from sklearn.metrics import confusion_matrix, accuracy_score class Config: train_data_path = "../input/sentiment-analysis-on-movie-reviews/train.tsv.zip" test_data_path = "../input/sentiment-analysis-on-movie-reviews/test.tsv.zip" batch_size = 50 learning_rate = 0.01 num_epochs = 10 clip_value = 1 device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") output_size = 1 embedding_dim = 400 hidden_dim = 256 n_layers = 2 n_classes = 5 dropout = 0.3 eval_every = 1 pad_inputs = 0 model_path = "/kaggle/working/SentimentRNN.pt" test_batch_size = 4 train_data = pd.read_csv(Config.train_data_path, sep="\t") test_data = pd.read_csv(Config.test_data_path, sep="\t") test_data.head(30) def pre_process(df): reviews = [] for p in tqdm(df["Phrase"]): p = p.lower() p = "".join([c for c in p if c not in punctuation]) reviews_split = p.split() p = " ".join(reviews_split) reviews.append(p) return reviews train_data_pp = pre_process(train_data) test_data_pp = pre_process(test_data) print(train_data["Phrase"][0]) print(train_data_pp[:3]) def encode_words(words): counts = Counter(words) vocab = sorted(counts, key=counts.get, reverse=True) vocab_to_int = {word: ii for ii, word in enumerate(vocab, 1)} reviews_ints = [] for review in reviews_split: reviews_ints.append([vocab_to_int[word] for word in review.split()]) return reviews_ints def encode_words(data_pp): words = [] for p in data_pp: words.extend(p.split()) counts = Counter(words) vocab = sorted(counts, key=counts.get, reverse=True) vocab_to_int = {word: ii for ii, word in enumerate(vocab, 1)} return vocab_to_int encoded_voc = encode_words(train_data_pp + test_data_pp) def encode_data(data): reviews_ints = [] for ph in data: reviews_ints.append([encoded_voc[word] for word in ph.split()]) return reviews_ints train_reviews_ints = encode_data(train_data_pp) test_reviews_ints = encode_data(test_data_pp) print(train_reviews_ints[0]) print(test_reviews_ints[0]) def to_categorical(y, num_classes): """1-hot encodes a tensor""" return np.eye(num_classes, dtype="uint8")[y] y_target = to_categorical(train_data["Sentiment"], 5) print(y_target[0]) train_review_lens = Counter([len(x) for x in train_reviews_ints]) print("Zero-length train reviews: {}".format(train_review_lens[0])) print("Maximum train review length: {}".format(max(train_review_lens))) test_review_lens = Counter([len(x) for x in test_reviews_ints]) print("Zero-length test reviews: {}".format(test_review_lens[0])) print("Maximum train test length: {}".format(max(test_review_lens))) test_zero_idx = [ test_data.iloc[ii]["PhraseId"] for ii, review in enumerate(test_reviews_ints) if len(review) == 0 ] print(test_zero_idx) # TODO update submit csv by this index with sentiment 2 # remove reviews with 0 length non_zero_idx = [ii for ii, review in enumerate(train_reviews_ints) if len(review) != 0] train_reviews_ints = [train_reviews_ints[ii] for ii in non_zero_idx] y_target = np.array([y_target[ii] for ii in non_zero_idx]) print("Number of reviews after removing outliers: ", len(train_reviews_ints)) def pad_features(reviews, seq_length): features = np.zeros((len(reviews), seq_length), dtype=int) for i, row in enumerate(reviews): try: features[i, -len(row) :] = np.array(row)[:seq_length] except ValueError: continue return features train_features = pad_features(train_reviews_ints, max(test_review_lens)) X_test = pad_features(test_reviews_ints, max(test_review_lens)) X_train, X_val, y_train, y_val = train_test_split( train_features, y_target, test_size=0.2 ) print(X_train[0]) print(y_train[0]) X_train = X_train[:124800] X_val = X_val[:31200] y_train = y_train[:124800] y_val = y_val[:31200] print("X_training shape", X_train.shape) print("X_validation shape", X_val.shape) print("X_testing shape", X_test.shape) ids_test = np.array([t["PhraseId"] for ii, t in test_data.iterrows()]) train_data = TensorDataset(torch.from_numpy(X_train), torch.from_numpy(y_train)) valid_data = TensorDataset(torch.from_numpy(X_val), torch.from_numpy(y_val)) test_data = TensorDataset(torch.from_numpy(X_test), torch.from_numpy(ids_test)) train_loader = DataLoader(train_data, shuffle=True, batch_size=Config.batch_size) valid_loader = DataLoader(valid_data, shuffle=True, batch_size=Config.batch_size) test_loader = DataLoader(test_data, batch_size=Config.test_batch_size) class SentimentRNN(nn.Module): """ The RNN model that will be used to perform Sentiment analysis. """ def __init__( self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, drop_prob ): """ Initialize the model by setting up the layers. """ super(SentimentRNN, self).__init__() self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # embedding and LSTM layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM( embedding_dim, hidden_dim, n_layers, dropout=drop_prob, batch_first=True ) # dropout layer self.dropout = nn.Dropout(p=drop_prob) # linear and sigmoid layers self.fc = nn.Linear(hidden_dim, output_size) self.sig = nn.Sigmoid() def forward(self, x, hidden): """ Perform a forward pass of our model on some input and hidden state. """ batch_size = x.size(0) # embeddings and lstm_out embeds = self.embedding(x) lstm_out, hidden = self.lstm(embeds, hidden) lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) out = self.dropout(lstm_out) out = self.fc(out) out = self.sig(out) out = out.view(batch_size, -1) out = out[:, -5:] return out, hidden # return last sigmoid output and hidden state return out, hidden def init_hidden(self, batch_size, device): """Initializes hidden state""" # Create two new tensors with sizes n_layers x batch_size x hidden_dim, # initialized to zero, for hidden state and cell state of LSTM weight = next(self.parameters()).data hidden = ( weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().to(device), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().to(device), ) return hidden def train_loop( model, optimizer, criterion, train_loader, clip_value, device, batch_size=Config.batch_size, ): running_loss = 0 model.train() h = model.init_hidden(batch_size, device) for seq, targets in train_loader: seq = seq.to(device) targets = targets.to(device) h = tuple([each.data for each in h]) out, h = model.forward(seq, h) loss = criterion(out, targets.float()) running_loss += loss.item() * seq.shape[0] optimizer.zero_grad() loss.backward() if clip_value: nn.utils.clip_grad_norm_(model.parameters(), clip_value) optimizer.step() running_loss /= len(train_loader.sampler) return running_loss def get_prediction(t): max_indices = torch.argmax(t, dim=1) new = torch.zeros_like(t) new[torch.arange(t.shape[0]), max_indices] = 1 return new def eval_loop( model, criterion, eval_loader, device, batch_size=Config.batch_size, ignore_index=None, ): val_h = model.init_hidden(batch_size, device) val_loss = 0 model.eval() accuracy = [] for seq, targets in eval_loader: val_h = tuple([each.data for each in val_h]) seq = seq.to(device) targets = targets.to(device) out, val_h = model(seq, val_h) loss = criterion(out, targets.float()) val_loss += loss.item() * seq.shape[0] predicted = get_prediction(out).flatten().cpu().numpy() labels = targets.view(-1).cpu().numpy() accuracy.append(accuracy_score(labels, predicted)) acc = sum(accuracy) / len(accuracy) val_loss /= len(eval_loader.sampler) return {"accuracy": acc, "loss": val_loss} def train( model, optimizer, criterion, train_loader, valid_loader, eval_every, num_epochs, clip_value, ignore_index=None, device=Config.device, valid_loss_min=np.inf, ): for e in range(num_epochs): # train for epoch train_loss = train_loop( model, optimizer, criterion, train_loader, clip_value, device ) if (e + 1) % eval_every == 0: # evaluate on validation set metrics = eval_loop(model, criterion, valid_loader, device) # show progress print_string = f"Epoch: {e+1} " print_string += f"TrainLoss: {train_loss:.5f} " print_string += f'ValidLoss: {metrics["loss"]:.5f} ' print_string += f'ACC: {metrics["accuracy"]:.5f} ' print(print_string) # save the model if metrics["loss"] <= valid_loss_min: torch.save(model.state_dict(), Config.model_path) valid_loss_min = metrics["loss"] vocab_size = len(encoded_voc) + 1 # +1 for the 0 padding + our word tokens model = SentimentRNN( vocab_size, Config.output_size, Config.embedding_dim, Config.hidden_dim, Config.n_layers, Config.dropout, ) model = model.to(Config.device) optimizer = optim.SGD(model.parameters(), lr=Config.learning_rate) criterion = nn.BCELoss() train( model, optimizer, criterion, train_loader, valid_loader, Config.eval_every, Config.num_epochs, Config.clip_value, ) model = SentimentRNN( vocab_size, Config.output_size, Config.embedding_dim, Config.hidden_dim, Config.n_layers, Config.dropout, ) model.load_state_dict(torch.load(Config.model_path)) model = model.to(Config.device) @torch.no_grad() def prediction( model, test_loader, device=Config.device, batch_size=Config.test_batch_size ): df = pd.DataFrame( {"PhraseId": pd.Series(dtype="int"), "Sentiment": pd.Series(dtype="int")} ) test_h = model.init_hidden(batch_size, device) model.eval() for seq, id_ in test_loader: test_h = tuple([each.data for each in test_h]) seq = seq.to(device) out, test_h = model(seq, test_h) out = get_prediction(out) for ii, row in zip(id_, out): if ii in test_zero_idx: predicted = 2 else: predicted = int(torch.argmax(row) + 1) subm = {"PhraseId": int(ii), "Sentiment": predicted} df = df.append(subm, ignore_index=True) return df submission = prediction(model, test_loader) submission.to_csv("submission.csv", index=False) d = pd.read_csv("submission.csv") print(d)
import numpy as np # linear algebra # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: os.path.join(dirname, filename) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import sys package_paths = [ "/kaggle/input/fractal/", ] for pth in package_paths: sys.path.append(pth) print(sys.path) import json import matplotlib.pyplot as plt import mxnet as mx from mxnet import gluon, nd from mxnet.gluon.model_zoo import vision from mxnet.gluon.data.vision import transforms import numpy as np from decode.FracTAL_ResUNet.models.semanticsegmentation.FracTAL_ResUNet import * ctx = mx.gpu() if mx.context.num_gpus() else mx.cpu() print(ctx.device_type) depth = 6 norm_type = "GroupNorm" norm_groups = 32 ftdepth = 5 NClasses = 2 nfilters_init = 32 psp_depth = 4 nheads_start = 4 net = FracTAL_ResUNet_cmtsk( depth=depth, nfilters_init=nfilters_init, NClasses=NClasses, norm_groups=norm_groups, norm_type=norm_type, psp_depth=psp_depth, ) net.initialize(mx.initializer.Xavier()) import xarray from skimage import exposure import rasterio from rasterio.plot import show def getImage(filePath, i): xds = xarray.open_dataset(filePath) red_time = xds["B4"][i] green_time = xds["B3"][i] blue_time = xds["B2"][i] merged_array = np.stack([red_time, green_time, blue_time], axis=-1) merged_array_norm = exposure.rescale_intensity(merged_array, out_range=(0, 1)) return merged_array_norm def getMask(filePath): img = rasterio.open(filePath) return img.read(2) from mxnet.gluon.data import Dataset class CustomImageDataset(Dataset): def __init__(self, data_dir): self.data_dir = data_dir self.mask_dir = data_dir.replace("images", "masks") self.samples = self._make_dataset() def _make_dataset(self): samples = [] for filename in os.listdir(self.data_dir): if filename.endswith(".nc"): path = os.path.join(self.data_dir, filename) mask_filename = filename.replace("S2_10m_256.nc", "S2label_10m_256.tif") mask_path = os.path.join(self.mask_dir, mask_filename) for i in range(0, 5): item = (path, mask_path, i) samples.append(item) return samples def __len__(self): return len(self.samples) def __getitem__(self, idx): path, mask_path, i = self.samples[idx] img = getImage(path, i) mask = getMask(mask_path) return img, mask
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Importo import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from sklearn.metrics import RocCurveDisplay, roc_curve, auc # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # # APPUNTI # * La metrica di valutazione per questo hackathon è il punteggio ROC_AUC. # * LINK: https://www.kaggle.com/datasets/anmolkumar/health-insurance-cross-sell-prediction # Il cliente è una compagnia di assicurazioni che ha fornito un'assicurazione sanitaria ai suoi clienti, adesso hanno bisogno del tuo aiuto per costruire un modello predittivo in grado di prevedere se gli assicurati dell'anno passato potrebbero essere interessati ad acquistare anche un'assicurazione per il proprio veicolo. # Il dataset è composto dalle seguenti proprietà: # * id: id univoco dell'acquirente. # * Gender: sesso dell'acquirente. # * Age: età dell'acquirente. # * Driving_License: 1 se l'utente ha la patente di guida, 0 altrimenti. # * Region_Code: codice univoco della regione dell'acquirente. # * Previously_Insured: 1 se l'utente ha già un veicolo assicurato, 0 altrimenti. # * Vehicle_Age: età del veicolo # * Vehicle_Damage: 1 se l'utente ha danneggiato il veicolo in passato, 0 altrimenti. # * Annual_Premium: la cifra che l'utente deve pagare come premio durante l'anno. # * Policy_Sales_Channel: codice anonimizzato del canale utilizzato per la proposta (es. per email, per telefono, di persona, ecc...) # * Vintage: numero di giorni dalla quale l'utente è cliente dell'azienda. # * Response: 1 se l'acquirente ha risposto positivamente alla proposta di vendita, 0 altrimenti. # L'obiettivo del modello è prevedere il valore di Response. # Tip Fai attenzione alla distribuzione delle classi, dai uno sguardo a questo approfondimento. In caso di classi sbilanciate puoi provare a: # https://machinelearningmastery.com/tactics-to-combat-imbalanced-classes-in-your-machine-learning-dataset/ # Penalizzare la classe più frequente (ricorda l'argomento class_weight) # Utilizzare l'oversampling o l'undersampling. # https://machinelearningmastery.com/random-oversampling-and-undersampling-for-imbalanced-classification/ # # IMPORTING DATA # DATA CLEANING LINK: https://www.kaggle.com/datasets/anmolkumar/health-insurance-cross-sell-prediction BASE_URL = "/kaggle/input/health-insurance-cross-sell-prediction" FILE_PATH = BASE_URL + "/train.csv" df = pd.read_csv(FILE_PATH, index_col="id") df.head(10) # # LABEL ENCODING df["Region_Code"] = df["Region_Code"].astype("str") df.info() # LabelEncoding from sklearn.preprocessing import LabelEncoder LabEnc = LabelEncoder() df["Gender"] = LabEnc.fit_transform(df["Gender"]) df["Vehicle_Age"] = LabEnc.fit_transform(df["Vehicle_Age"]) df["Vehicle_Damage"] = LabEnc.fit_transform(df["Vehicle_Damage"]) df["Region_Code"] = LabEnc.fit_transform(df["Region_Code"]) df.head() # Creo una funzione per confrontare le distribuzioni def dashboard(dataframe): num_colonne = len(dataframe.columns) fig, axs = plt.subplots(nrows=1, ncols=num_colonne, figsize=(15, 5)) for i, nome_colonna in enumerate(dataframe.columns): axs[i].hist(dataframe[nome_colonna], color="blue"), axs[i].set_title(nome_colonna) plt.show() dashboard(df) # # BALANCING [RESPONSE] features df["Response"].hist() plt.show() print(df["Response"].value_counts()) # raggruppa il dataframe in base alla colonna 'Region_Code' groups = df.groupby("Response") # calcola il numero minimo di righe in un sottogruppo min_rows = groups.size().min() # campiona ogni sottogruppo con lo stesso numero di righe df_balanced = pd.DataFrame() for name, g in groups: df_balanced = pd.concat([df_balanced, g.sample(n=min_rows)]) # reset l'indice del dataframe risultante df_balanced = df_balanced.reset_index(drop=True) df_balanced.head() # Verifico che siano bilanciate df_balanced["Response"].hist() plt.show() dashboard(df_balanced) # # Data analyses df_balanced.describe() # # MODEL LOGISTIC REGRESSION X = df_balanced.drop("Response", axis=1) y = df_balanced["Response"] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) # SCALING DATI CON SCIKITLEARN ss = StandardScaler() X_train = ss.fit_transform(X_train) X_test = ss.transform(X_test) # LOGISTIC REGRESSION lr = LogisticRegression() lr.fit(X_train, y_train) print(classification_report(y_train, y_pred_train)) print(classification_report(y_test, y_pred_test)) # Ottieni le predizioni del modello y_pred = lr.predict_proba(X_test)[:, 1] # Calcola la curva ROC fpr, tpr, _ = roc_curve(y_test, y_pred) roc_auc = auc(fpr, tpr) # Crea l'oggetto RocCurveDisplay e visualizza la curva ROC roc_display = RocCurveDisplay.from_predictions(y_test, y_pred) roc_display.plot()
import numpy as np from dataclasses import dataclass from time import time # Conveniency functions. def arr_to_str(a): return ";".join([str(x) for x in a.reshape(-1)]) # Evaluation metric. @dataclass class Camera: rotmat: np.array tvec: np.array def quaternion_from_matrix(matrix): M = np.array(matrix, dtype=np.float64, copy=False)[:4, :4] m00 = M[0, 0] m01 = M[0, 1] m02 = M[0, 2] m10 = M[1, 0] m11 = M[1, 1] m12 = M[1, 2] m20 = M[2, 0] m21 = M[2, 1] m22 = M[2, 2] # Symmetric matrix K. K = np.array( [ [m00 - m11 - m22, 0.0, 0.0, 0.0], [m01 + m10, m11 - m00 - m22, 0.0, 0.0], [m02 + m20, m12 + m21, m22 - m00 - m11, 0.0], [m21 - m12, m02 - m20, m10 - m01, m00 + m11 + m22], ] ) K /= 3.0 # Quaternion is eigenvector of K that corresponds to largest eigenvalue. w, V = np.linalg.eigh(K) q = V[[3, 0, 1, 2], np.argmax(w)] if q[0] < 0.0: np.negative(q, q) return q def evaluate_R_t(R_gt, t_gt, R, t, eps=1e-15): t = t.flatten() t_gt = t_gt.flatten() q_gt = quaternion_from_matrix(R_gt) q = quaternion_from_matrix(R) q = q / (np.linalg.norm(q) + eps) q_gt = q_gt / (np.linalg.norm(q_gt) + eps) loss_q = np.maximum(eps, (1.0 - np.sum(q * q_gt) ** 2)) err_q = np.arccos(1 - 2 * loss_q) GT_SCALE = np.linalg.norm(t_gt) t = GT_SCALE * (t / (np.linalg.norm(t) + eps)) err_t = min(np.linalg.norm(t_gt - t), np.linalg.norm(t_gt + t)) return np.degrees(err_q), err_t def compute_dR_dT(R1, T1, R2, T2): """Given absolute (R, T) pairs for two cameras, compute the relative pose difference, from the first.""" dR = np.dot(R2, R1.T) dT = T2 - np.dot(dR, T1) return dR, dT def compute_mAA(err_q, err_t, ths_q, ths_t): """Compute the mean average accuracy over a set of thresholds. Additionally returns the metric only over rotation and translation.""" acc, acc_q, acc_t = [], [], [] for th_q, th_t in zip(ths_q, ths_t): cur_acc_q = err_q <= th_q cur_acc_t = err_t <= th_t cur_acc = cur_acc_q & cur_acc_t acc.append(cur_acc.astype(np.float32).mean()) acc_q.append(cur_acc_q.astype(np.float32).mean()) acc_t.append(cur_acc_t.astype(np.float32).mean()) return np.array(acc), np.array(acc_q), np.array(acc_t) def dict_from_csv(csv_path, has_header): csv_dict = {} with open(csv_path, "r") as f: for i, l in enumerate(f): if has_header and i == 0: continue if l: image, dataset, scene, R_str, T_str = l.strip().split(",") R = np.fromstring(R_str.strip(), sep=";").reshape(3, 3) T = np.fromstring(T_str.strip(), sep=";") if dataset not in csv_dict: csv_dict[dataset] = {} if scene not in csv_dict[dataset]: csv_dict[dataset][scene] = {} csv_dict[dataset][scene][image] = Camera(rotmat=R, tvec=T) return csv_dict def eval_submission( submission_csv_path, ground_truth_csv_path, rotation_thresholds_degrees_dict, translation_thresholds_meters_dict, verbose=False, ): """Compute final metric given submission and ground truth files. Thresholds are specified per dataset.""" submission_dict = dict_from_csv(submission_csv_path, has_header=True) gt_dict = dict_from_csv(ground_truth_csv_path, has_header=True) # Check that all necessary keys exist in the submission file for dataset in gt_dict: assert dataset in submission_dict, f"Unknown dataset: {dataset}" for scene in gt_dict[dataset]: assert ( scene in submission_dict[dataset] ), f"Unknown scene: {dataset}->{scene}" for image in gt_dict[dataset][scene]: assert ( image in submission_dict[dataset][scene] ), f"Unknown image: {dataset}->{scene}->{image}" # Iterate over all the scenes if verbose: t = time() print("*** METRICS ***") metrics_per_dataset = [] for dataset in gt_dict: metrics_per_scene = [] for scene in gt_dict[dataset]: err_q_all = [] err_t_all = [] images = [camera for camera in gt_dict[dataset][scene]] # Process all pairs in a scene for i in range(len(images)): for j in range(i + 1, len(images)): gt_i = gt_dict[dataset][scene][images[i]] gt_j = gt_dict[dataset][scene][images[j]] dR_gt, dT_gt = compute_dR_dT( gt_i.rotmat, gt_i.tvec, gt_j.rotmat, gt_j.tvec ) pred_i = submission_dict[dataset][scene][images[i]] pred_j = submission_dict[dataset][scene][images[j]] dR_pred, dT_pred = compute_dR_dT( pred_i.rotmat, pred_i.tvec, pred_j.rotmat, pred_j.tvec ) err_q, err_t = evaluate_R_t(dR_gt, dT_gt, dR_pred, dT_pred) err_q_all.append(err_q) err_t_all.append(err_t) mAA, mAA_q, mAA_t = compute_mAA( err_q=err_q_all, err_t=err_t_all, ths_q=rotation_thresholds_degrees_dict[(dataset, scene)], ths_t=translation_thresholds_meters_dict[(dataset, scene)], ) if verbose: print( f"{dataset} / {scene} ({len(images)} images, {len(err_q_all)} pairs) -> mAA={np.mean(mAA):.06f}, mAA_q={np.mean(mAA_q):.06f}, mAA_t={np.mean(mAA_t):.06f}" ) metrics_per_scene.append(np.mean(mAA)) metrics_per_dataset.append(np.mean(metrics_per_scene)) if verbose: print(f"{dataset} -> mAA={np.mean(metrics_per_scene):.06f}") print() if verbose: print( f"Final metric -> mAA={np.mean(metrics_per_dataset):.06f} (t: {time() - t} sec.)" ) print() return np.mean(metrics_per_dataset) # Set rotation thresholds per scene. # TODO update the thresholds. rotation_thresholds_degrees_dict = { **{ ("haiper", scene): np.linspace(1, 10, 10) for scene in ["bike", "chairs", "fountain"] }, **{("heritage", scene): np.linspace(1, 10, 10) for scene in ["cyprus", "dioscuri"]}, **{("heritage", "wall"): np.linspace(0.2, 10, 10)}, **{("urban", "kyiv-puppet-theater"): np.linspace(1, 10, 10)}, } translation_thresholds_meters_dict = { **{ ("haiper", scene): np.geomspace(0.05, 0.5, 10) for scene in ["bike", "chairs", "fountain"] }, **{ ("heritage", scene): np.geomspace(0.1, 2, 10) for scene in ["cyprus", "dioscuri"] }, **{("heritage", "wall"): np.geomspace(0.05, 1, 10)}, **{("urban", "kyiv-puppet-theater"): np.geomspace(0.5, 5, 10)}, } # Generate and evaluate a random submission. src = "/kaggle/input/image-matching-challenge-2023" # TODO check the final order of the csv file. with open(f"{src}/train/train_labels.csv", "r") as fr, open( "submission.csv", "w" ) as fw: for i, l in enumerate(fr): if i == 0: fw.write("image_path,dataset,scene,rotation_matrix,translation_vector\n") else: dataset, scene, image, _, _ = l.strip().split(",") R = np.random.rand(9) T = np.random.rand(3) fw.write(f"{image},{dataset},{scene},{arr_to_str(R)},{arr_to_str(T)}\n") # Note that the fields were reordered. Here we regenerate the ground truth file. with open(f"{src}/train/train_labels.csv", "r") as fr, open( "ground_truth.csv", "w" ) as fw: for i, l in enumerate(fr): if i == 0: fw.write("image_path,dataset,scene,rotation_matrix,translation_vector\n") else: dataset, scene, image, R, T = l.strip().split(",") fw.write(f"{image},{dataset},{scene},{R},{T}\n") eval_submission( submission_csv_path="submission.csv", ground_truth_csv_path="ground_truth.csv", rotation_thresholds_degrees_dict=rotation_thresholds_degrees_dict, translation_thresholds_meters_dict=translation_thresholds_meters_dict, verbose=True, ) # Now evaluate a perfect submission. eval_submission( submission_csv_path="ground_truth.csv", ground_truth_csv_path="ground_truth.csv", rotation_thresholds_degrees_dict=rotation_thresholds_degrees_dict, translation_thresholds_meters_dict=translation_thresholds_meters_dict, verbose=True, )
# # **Approach** # * Load the dataset and perform exploratory data analysis (EDA) to understand the features and their distributions, check for missing values, and correlations between features. # * Prepare the data for machine learning by encoding categorical features and splitting the data into training and validation sets. # * Train different machine learning models like Decision Trees, Random Forest, XGBoost, and SVM to predict the star type from the given features. # * Evaluate the models using appropriate evaluation metrics like accuracy, precision, recall, and F1-score. # * Select the best performing model and fine-tune its hyperparameters using techniques like grid search and cross-validation. # * Use the tuned model to predict the star type from the test dataset and create a submission file. import os import matplotlib.colors as colors import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler, LabelEncoder from sklearn.model_selection import ( train_test_split, KFold, cross_val_score, GridSearchCV, ) from sklearn.metrics import ( accuracy_score, roc_auc_score, roc_curve, precision_recall_fscore_support as score, precision_score, recall_score, f1_score, ) from sklearn import metrics from sklearn.feature_selection import RFECV from sklearn.model_selection import GridSearchCV, RandomizedSearchCV from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from xgboost import XGBClassifier import pickle import keras from keras.utils.np_utils import ( to_categorical, ) # used for converting labels to one-hot-encoding from keras.models import Sequential, Model, load_model from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D from keras import backend as K from tensorflow.keras.layers import BatchNormalization from keras.utils.np_utils import to_categorical # convert to one-hot-encoding from tensorflow.keras.optimizers import Adam, RMSprop from tensorflow.keras.models import Model, Sequential from tensorflow.keras.layers import ( Input, Dense, Flatten, GlobalAveragePooling2D, concatenate, ) from tensorflow.keras.layers import ( Conv2D, MaxPool2D, Activation, Dropout, BatchNormalization, LeakyReLU, ) from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, CSVLogger from tensorflow.keras.optimizers import SGD, Adamax from tensorflow.keras.wrappers.scikit_learn import KerasClassifier from tensorflow.keras import regularizers import tensorflow as tf # CatBoost model from catboost import CatBoostClassifier, Pool # To ignore warinings import warnings warnings.filterwarnings("ignore") # # **Data** # Load the training and testing datasets into pandas dataframe df_train = pd.read_csv("/kaggle/input/nebulanet/train.csv") # Rename columns for ease of use df_train.columns = [ "Temperature", "Luminosity", "Radius", "Absolute Magnitude", "Star Type", "Star Color", "Spectral Class", ] df_train.head() # # **Exploratory Data Analysis** df_train.info() df_train.shape print(df_train["Star Type"].unique()) print(df_train["Star Type"].value_counts()) print(df_train["Star Color"].unique()) print(df_train["Star Color"].value_counts()) print(df_train["Spectral Class"].unique()) print(df_train["Spectral Class"].value_counts()) le = LabelEncoder() df_train["Star Color"] = le.fit_transform(df_train["Star Color"]) df_train["Spectral Class"] = le.fit_transform(df_train["Spectral Class"]) df_train["Star Type"] = le.fit_transform(df_train["Star Type"]) df_train.head() print(df_train["Star Type"].unique()) print(df_train["Star Type"].value_counts()) print(df_train["Spectral Class"].unique()) print(df_train["Spectral Class"].value_counts()) scaler = MinMaxScaler() df_train[ [ "Temperature", "Luminosity", "Radius", "Absolute Magnitude", "Star Color", "Spectral Class", ] ] = scaler.fit_transform( df_train[ [ "Temperature", "Luminosity", "Radius", "Absolute Magnitude", "Star Color", "Spectral Class", ] ] ) # Remove rows with missing values df_train.dropna(inplace=True) df_train.head() print(df_train["Spectral Class"].unique()) print(df_train["Spectral Class"].value_counts()) print(df_train["Star Color"].unique()) print(df_train["Star Color"].value_counts()) df_train.describe() columns = list(df_train.columns) columns # # **Data Visualization** # Visualize the distribution of RH_type classes sns.countplot(data=df_train, x="Star Type") plt.title("Distribution of Star Types") plt.show() # Use heatmap to see corelation between variables sns.heatmap(df_train.corr(), annot=True) plt.title("Heatmap of co-relation between variables", fontsize=16) plt.show() # # **Feature Selection** X_train = df_train[ [ "Temperature", "Luminosity", "Radius", "Absolute Magnitude", "Star Color", "Spectral Class", ] ] # X-input features y_train = df_train["Star Type"] X_train.head() print(y_train.unique()) print(y_train.value_counts()) # Train test split # split the data into train and test with test size and 20% and train size as 80% X_train_ex, X_test_ex, y_train_ex, y_test_ex = train_test_split( X_train, y_train, test_size=0.2, random_state=42 ) # Define estimator for feature selection estimator = RandomForestClassifier(n_estimators=100, random_state=42) # Define recursive feature elimination with cross-validation rfecv = RFECV(estimator=estimator, step=1, cv=5, scoring="accuracy") # Fit RFECV to training data rfecv.fit(X_train, y_train) # Print selected features print("Selected Features: ", X_train.columns[rfecv.support_]) X_train_mod = df_train[["Radius", "Absolute Magnitude"]] # X-input features y_train_mod = df_train["Star Type"] # Train test split # split the data into train and test with test size and 20% and train size as 80% X_train_mod_ex, X_test__mod_ex, y_train_mod_ex, y_test_mod_ex = train_test_split( X_train_mod, y_train_mod, test_size=0.2, random_state=42 ) """ # Define the models to evaluate models = { 'Logistic Regression': LogisticRegression(random_state=42), 'Random Forest': RandomForestClassifier(random_state=42), 'Gradient Boosting': GradientBoostingClassifier(random_state=42), 'Support Vector Machines': SVC(random_state=42), 'K-Nearest': KNeighborsClassifier(), 'XGB': XGBClassifier(random_state=42), 'Cat': CatBoostClassifier(random_state=42), 'Decision Tree': DecisionTreeClassifier(random_state=42) } # Define the hyperparameters to tune for each model params = { 'Logistic Regression': {'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000], 'solver': ['newton-cg', 'lbfgs', 'liblinear']}, 'Random Forest': {'n_estimators': [10, 50, 100, 250, 500], 'max_depth': [5, 10, 20]}, 'Gradient Boosting': {'n_estimators': [10, 50, 100, 250, 500], 'learning_rate': [0.001, 0.005, 0.0001, 0.0005]}, 'Support Vector Machines': {'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000], 'kernel': ['linear', 'rbf']}, 'K-Nearest': { 'n_neighbors': [3, 5, 7, 11, 21], 'weights': ['uniform', 'distance'], 'metric': ['euclidean', 'manhattan']}, 'XGB': {'max_depth': [5, 10, 20], 'n_estimators': [10, 50, 100, 250, 500], 'learning_rate': [ 0.001, 0.005, 0.0001, 0.0005]}, 'Cat': {'iterations': [50,500,5000], 'max_depth': [5, 10, 20], 'loss_function': ['Logloss', 'CrossEntropy', 'MultiClass'], 'learning_rate': [ 0.001, 0.005, 0.0001, 0.0005], 'eval_metric': ['MultiClass']}, 'Decision Tree': {'max_features': ['auto', 'sqrt', 'log2'],'ccp_alpha': [0.1, .01, .001],'max_depth' : [5, 10, 20],'criterion' :['gini', 'entropy']} } # Create a list to store the results of each model results = [] # Loop through each model and perform GridSearchCV for name, model in models.items(): clf = RandomizedSearchCV(model, params[name], cv=5, n_jobs=-1, scoring='accuracy') clf.fit(X_train, y_train) #clf.fit(X_train_ex, y_train_ex) #clf.fit(X_train_mod, y_train_mod) #clf.fit(X_train_mod_ex, y_train_mod_ex) # Add the model name and best accuracy score to the results list results.append({'model': name, 'best_score': clf.best_score_, 'best_params': clf.best_params_}) # Print the results for each model for result in results: print(f"{result['model']}: Best score = {result['best_score']:.4f}, Best params = {result['best_params']}") """ # ## **X_train** # * Logistic Regression: Best score = 0.9582, Best params = {'solver': 'newton-cg', 'C': 100} # * Random Forest: Best score = 0.9860, Best params = {'n_estimators': 100, 'max_depth': 20} # * Gradient Boosting: Best score = 0.9681, Best params = {'n_estimators': 250, 'learning_rate': 0.0005} # * Support Vector Machines: Best score = 0.9767, Best params = {'kernel': 'rbf', 'C': 1000} # * K-Nearest: Best score = 0.9674, Best params = {'weights': 'distance', 'n_neighbors': 3, 'metric': 'euclidean'} # * XGB: Best score = 0.9771, Best params = {'n_estimators': 500, 'max_depth': 5, 'learning_rate': 0.005} # * Cat: Best score = 0.9168, Best params = {'max_depth': 5, 'loss_function': 'MultiClass', 'learning_rate': 0.001, 'iterations': 50, 'eval_metric': 'MultiClass'} # * Decision Tree: Best score = 0.9674, Best params = {'max_features': 'log2', 'max_depth': 20, 'criterion': 'gini', 'ccp_alpha': 0.01} # **Best Score:** # * Random Forest (0.9860): 'n_estimators': 100, 'max_depth': 20 # ## **X_train_ex** # * Logistic Regression: Best score = 0.9941, Best params = {'solver': 'lbfgs', 'C': 1000} # * Random Forest: Best score = 1.0000, Best params = {'n_estimators': 50, 'max_depth': 20} # * Gradient Boosting: Best score = 0.9647, Best params = {'n_estimators': 250, 'learning_rate': 0.001} # * Support Vector Machines: Best score = 0.9941, Best params = {'kernel': 'linear', 'C': 100} # * K-Nearest: Best score = 0.9824, Best params = {'weights': 'distance', 'n_neighbors': 5, 'metric': 'euclidean'} # * XGB: Best score = 0.9708, Best params = {'n_estimators': 500, 'max_depth': 20, 'learning_rate': 0.005} # * Cat: Best score = 0.9943, Best params = {'max_depth': 5, 'loss_function': 'MultiClass', 'learning_rate': 0.005, 'iterations': 5000, 'eval_metric': 'MultiClass'} # * Decision Tree: Best score = 0.9882, Best params = {'max_features': 'sqrt', 'max_depth': 10, 'criterion': 'gini', 'ccp_alpha': 0.01} # **Best Score:** # * Random Forest (1.0000): 'n_estimators': 50, 'max_depth': 20 # ## **X_train_mod** # * Logistic Regression: Best score = 0.8054, Best params = {'solver': 'liblinear', 'C': 100} # * Random Forest: Best score = 1.0000, Best params = {'n_estimators': 250, 'max_depth': 10} # * Gradient Boosting: Best score = 0.9907, Best params = {'n_estimators': 100, 'learning_rate': 0.005} # * Support Vector Machines: Best score = 0.8007, Best params = {'kernel': 'rbf', 'C': 10} # * K-Nearest: Best score = 0.8517, Best params = {'weights': 'uniform', 'n_neighbors': 3, 'metric': 'euclidean'} # * XGB: Best score = 0.9860, Best params = {'n_estimators': 500, 'max_depth': 20, 'learning_rate': 0.005} # * Cat: Best score = 1.0000, Best params = {'max_depth': 10, 'loss_function': 'MultiClass', 'learning_rate': 0.0001, 'iterations': 500, 'eval_metric': 'MultiClass'} # * Decision Tree: Best score = 0.9953, Best params = {'max_features': 'sqrt', 'max_depth': 20, 'criterion': 'entropy', 'ccp_alpha': 0.001} # **Best Score:** # * Random Forest (1.0000): 'n_estimators': 250, 'max_depth': 10 # * Cat (1.0000): 'max_depth': 10, 'loss_function': 'MultiClass', 'learning_rate': 0.0001, 'iterations': 500, 'eval_metric': 'MultiClass' # ## **X_train_mod_ex** # * Logistic Regression: Best score = 0.8657, Best params = {'solver': 'liblinear', 'C': 1000} # * Random Forest: Best score = 1.0000, Best params = {'n_estimators': 100, 'max_depth': 10} # * Gradient Boosting: Best score = 0.9941, Best params = {'n_estimators': 500, 'learning_rate': 0.001} # * Support Vector Machines: Best score = 0.8716, Best params = {'kernel': 'rbf', 'C': 100} # * K-Nearest: Best score = 0.8724, Best params = {'weights': 'distance', 'n_neighbors': 3, 'metric': 'manhattan'} # * XGB: Best score = 0.9884, Best params = {'n_estimators': 10, 'max_depth': 5, 'learning_rate': 0.001} # * Cat: Best score = 1.0000, Best params = {'max_depth': 5, 'loss_function': 'MultiClass', 'learning_rate': 0.0005, 'iterations': 500, 'eval_metric': 'MultiClass'} # * Decision Tree: Best score = 1.0000, Best params = {'max_features': 'auto', 'max_depth': 10, 'criterion': 'entropy', 'ccp_alpha': 0.001} # **Best Score:** # * Random Forest (1.0000): 'n_estimators': 100, 'max_depth': 10 # * Cat (1.0000): 'max_depth': 5, 'loss_function': 'MultiClass', 'learning_rate': 0.0005, 'iterations': 500, 'eval_metric': 'MultiClass' # * Decision Tree (1.0000): 'max_features': 'auto', 'max_depth': 10, 'criterion': 'entropy', 'ccp_alpha': 0.001 # As evident Feature Selection using RFECV has been quite successful (approximately 2% inclrease in accuracy score). # ## **The top 4 Unsupervised models are:** # * Random Forest Classifier (100%) # * Cat Boost Classifier (100%) # * Decision Tree Classifier (99.53%) # * Gradient Boosting (99.07) random_forest = RandomForestClassifier(n_estimators=100, max_depth=10, random_state=42) cat_boost = CatBoostClassifier( iterations=500, max_depth=5, learning_rate=0.0005, loss_function="MultiClass", eval_metric="MultiClass", random_state=42, ) decision_tree = DecisionTreeClassifier( max_features="auto", max_depth=10, criterion="entropy", ccp_alpha=0.001, random_state=42, ) gradient_boost = GradientBoostingClassifier( n_estimators=100, learning_rate=0.005, random_state=42 ) random_forest.fit(X_train_mod, y_train_mod) cat_boost.fit(X_train_mod, y_train_mod) decision_tree.fit(X_train_mod, y_train_mod) gradient_boost.fit(X_train_mod, y_train_mod) # # **RNN** X_train_mod.shape y_train_mod.shape """ # Define the model architecture def create_model(neurons, dropout_rate, kernel_regularizer, learning_rate): input_shape = (2,) model = Sequential() model.add(Dense(neurons, activation='relu', input_shape=input_shape)) model.add(Dropout(dropout_rate)) model.add(Dense(neurons//2, activation='relu')) model.add(Dropout(dropout_rate)) model.add(Dense(neurons//4, activation='relu', kernel_regularizer=regularizers.l2(kernel_regularizer))) model.add(Dropout(dropout_rate)) model.add(Dense(6, activation='softmax')) # also try adam optimizer #adamax = Adamax(learning_rate=learning_rate) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) return model # Create the KerasClassifier wrapper for scikit-learn model = KerasClassifier(build_fn=create_model, verbose=0) # Define the hyperparameters search space neurons = [64, 128, 256, 512] dropout_rate = [0, 0.25, 0.5, 0.75] kernel_regularizer = [0.01, 0.001, 0.0001] learning_rate = [0.01, 0.05, 0.001, 0.005, 0.0001, 0.0005] batch_size = [16, 32, 64] epochs = [50, 100, 150, 300, 500, 1000] param_grid = dict(neurons=neurons, dropout_rate=dropout_rate, kernel_regularizer=kernel_regularizer, learning_rate=learning_rate, batch_size=batch_size, epochs=epochs) # Perform the randomized search with cross-validation n_iter_search = 50 random_search = RandomizedSearchCV(model, param_distributions=param_grid, n_iter=n_iter_search, cv=5, n_jobs=-1, scoring='accuracy') random_search.fit(X_train, y_train) # Print the best parameters and score print("Best parameters: ", random_search.best_params_) print("Best score: ", random_search.best_score_) """ # ## **X_train, y_train** # * Parameters: {'neurons': 512, 'learning_rate': 0.005, 'kernel_regularizer': 0.0001, 'epochs': 300, 'dropout_rate': 0, 'batch_size': 64} # * Best Score: 0.9953488372093023 # ## **X_train_mod, y_train_mod** # # * Parameters: {'neurons': 128, 'learning_rate': 0.005, 'kernel_regularizer': 0.01, 'epochs': 150, 'dropout_rate': 0.25, 'batch_size': 16} # * Best Score: 0.8149048625792812 y_train.shape from keras.utils import to_categorical y_train_encoded = to_categorical(y_train, num_classes=6) y_train_encoded model = Sequential() model.add(Dense(512, activation="relu", input_shape=(6,))) model.add(Dense(256, activation="relu")) model.add(Dense(128, activation="relu", kernel_regularizer=regularizers.l2(0.0001))) model.add(Dense(6, activation="softmax")) opt = keras.optimizers.Adam(learning_rate=0.005) model.compile(loss="categorical_crossentropy", optimizer=opt, metrics=["accuracy"]) history = model.fit(X_train, y_train_encoded, epochs=300, batch_size=64) # plot loss during training plt.figure(figsize=(10, 10)) plt.subplot(211) plt.title("Loss") plt.plot(history.history["loss"], label="training loss") plt.plot(history.history["accuracy"], label="training accuracy") plt.legend() # # **Pedictions** df_test = pd.read_csv("/kaggle/input/nebulanet/test.csv") df_test.head() # Rename columns for ease of use df_test.columns = [ "Temperature", "Luminosity", "Radius", "Absolute Magnitude", "Star Color", "Spectral Class", ] le = LabelEncoder() df_test["Star Color"] = le.fit_transform(df_test["Star Color"]) df_test["Spectral Class"] = le.fit_transform(df_test["Spectral Class"]) scaler = MinMaxScaler() df_test[ [ "Temperature", "Luminosity", "Radius", "Absolute Magnitude", "Star Color", "Spectral Class", ] ] = scaler.fit_transform( df_test[ [ "Temperature", "Luminosity", "Radius", "Absolute Magnitude", "Star Color", "Spectral Class", ] ] ) # Remove rows with missing values df_test.dropna(inplace=True) df_test.head() print(df_test["Star Color"].unique()) print(df_test["Star Color"].value_counts()) print(df_test["Spectral Class"].unique()) print(df_test["Spectral Class"].value_counts()) X_test = df_test[ [ "Temperature", "Luminosity", "Radius", "Absolute Magnitude", "Star Color", "Spectral Class", ] ] # X-input features X_test_mod = df_test[["Radius", "Absolute Magnitude"]] # X-input features X_test.shape y_pred_proba_CNN = model.predict(X_test) y_pred_proba_DT = random_forest.predict(X_test_mod) y_pred_proba_CAT = cat_boost.predict(X_test_mod) y_pred_proba_RF = decision_tree.predict(X_test_mod) y_pred_proba_GB = gradient_boost.predict(X_test_mod) data = { "Decision Tree": list(y_pred_proba_DT), "Cat boost": list(y_pred_proba_CAT), "Random Forest": list(y_pred_proba_RF), "Gradient Boosting": list(y_pred_proba_GB), } df_pred_data = pd.DataFrame(data) df_pred_data = df_pred_data.replace(3, "Crimson Dwarfs") df_pred_data = df_pred_data.replace(0, "Aurelian Mainstays") df_pred_data = df_pred_data.replace(4, "Pearl Dwarfs") df_pred_data = df_pred_data.replace(1, "Celestial Sovereigns") df_pred_data = df_pred_data.replace(5, "Umber Dwarfs") df_pred_data = df_pred_data.replace(2, "Cosmic Behemoths") a = list() y_pred_proba_CNN = list(y_pred_proba_CNN) for i in range(len(y_pred_proba_CNN)): maxpos = pd.Series(y_pred_proba_CNN[i]).idxmax() if maxpos == 0: a.append("Aurelian Mainstays") elif maxpos == 1: a.append("Celestial Sovereigns") elif maxpos == 2: a.append("Cosmic Behemoths") elif maxpos == 3: a.append("Crimson Dwarfs") elif maxpos == 4: a.append("Pearl Dwarfs") elif maxpos == 5: a.append("Umber Dwarfs") df_pred_data["RNN"] = a df_pred_data """ df_pred_data['RNN'].to_csv('NebuleNet_predictions.csv') df = pd.read_csv('/kaggle/working/NebuleNet_predictions.csv') df.columns = ['ID','Star Type'] df.head() df.to_csv('NebulaNet_submission.csv', index=False) """
import pandas as pd pd.DataFrame( {" ": ["17", "19", "12"]}, index=["Punkte Kandidat 1", "Punkte Kandidat 2", "Punkte Kandidat 3"], ) pd.DataFrame( { "KanzlerIn": [ "Konrad Adenauer", "Ludwig Erhard", "Willy Brandt", "Angela Merkel", ], "Dauer in Jahren": ["14", "3", "5", "16"], }, index=["1949-1963", "1963-1966", "1969-1974", "2005-2021"], ) df = pd.read_csv("Gender_Inequality_Index.csv") df.head() df.groupby("F_secondary_educ").min() df.groupby("F_secondary_educ").max() df.groupby("M_secondary_educ").min() df.groupby("M_secondary_educ").max()
# ![](https://www.custorino.it/content/files/2020/07/Newsletter-Cus-mese-di-Luglio-2020_page-0002.jpg)custorino.it import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import torch import fastai from fastai.tabular.all import * from fastai.text.all import * from fastai.vision.all import * from fastai.medical.imaging import * from fastai import * import time from datetime import datetime print( f'Notebook last run on {datetime.fromtimestamp(time.time()).strftime("%Y-%m-%d, %H:%M:%S UTC")}' ) print("Using fastai version ", fastai.__version__) print("And torch version ", torch.__version__) from PIL import Image img = Image.open("../input/prova/Prova_Scalata.png") img TensorTypes = (TensorImage, TensorMask, TensorPoint, TensorBBox) def _add1(x): return x + 1 dumb_tfm = RandTransform(enc=_add1, p=0.5) start, d1, d2 = 2, False, False for _ in range(40): t = dumb_tfm(start, split_idx=0) if dumb_tfm.do: test_eq(t, start + 1) d1 = True else: test_eq(t, start) d2 = True assert d1 and d2 dumb_tfm # #Image.Flip _, axs = subplots(1, 2) show_image(img, ctx=axs[0], title="original") show_image(img.flip_lr(), ctx=axs[1], title="flipped") _, axs = plt.subplots(1, 3, figsize=(12, 4)) for ax, sz in zip(axs.flatten(), [300, 500, 700]): show_image(img.crop_pad(sz), ctx=ax, title=f"Size {sz}") _, axs = plt.subplots(1, 3, figsize=(12, 4)) for ax, mode in zip(axs.flatten(), [PadMode.Zeros, PadMode.Border, PadMode.Reflection]): show_image(img.crop_pad((600, 700), pad_mode=mode), ctx=ax, title=mode) import cv2 as cv import matplotlib.pyplot as plt IMG_PATH = "../input/prova/Prova_Scalata.png" imgArray = cv.imread(IMG_PATH) convertedArray = cv.cvtColor(imgArray, cv.COLOR_BGR2RGB) plt.subplots(figsize=(15, 10)) plt.imshow(convertedArray) plt.show() fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(14, 10)) ax1.imshow(convertedArray[:, :, 0], cmap="Reds_r") ax1.set_title("R", size=20) ax2.imshow(convertedArray[:, :, 1], cmap="Greens_r") ax2.set_title("G", size=20) ax3.imshow(convertedArray[:, :, 2], cmap="Blues_r") ax3.set_title("B", size=20) ax4.axis("off") plt.tight_layout() plt.show() # #Histograms - Use lower case in "r", "g", "b". fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(15, 4)) ax1.hist(convertedArray[:, :, 0].flatten(), color="r", bins=200) ax1.set_title("r", size=20) ax2.hist(convertedArray[:, :, 1].flatten(), color="g", bins=200) ax1.set_title("g", size=20) ax3.hist(convertedArray[:, :, 2].flatten(), color="b", bins=200) ax1.set_title("b", size=20) plt.tight_layout() plt.show() type(convertedArray) # numpy.ndarray convertedArray.dtype # dtype('uint8') convertedArray.min() # 0 convertedArray.max() # 255 convertedArray.shape # (256, 196, 3) # Above, the tuple tells us that the image has 256 rows, 196 columns and 3 channels (RGB). To crop the image we can simply use numpy indexing methods. # So, in the next snippets choose numbers below 256 and 196. # Take the first 200 rows and the first 190 columns (of all channels) and write like this below: # #Crop crop1 = convertedArray[:200, :190, :] crop1.shape # (200,190, 3) plt.imshow(crop1) plt.show() # In case you want to select from row 230 to 250, column 190 to 195 and all channels: crop2 = convertedArray[230:250, 190:195, :] plt.figure(figsize=(15, 8)) plt.imshow(crop2) plt.show() # If you want to crop only one channel (the first one). Just write: plt.figure(figsize=(15, 8)) plt.imshow(convertedArray[230:250, 190:195, 0], cmap="rainbow") plt.show() convertedArray.shape # (256,196,3) convertedArray.shape[0] * convertedArray.shape[1] # 50176 # #Dissecting an image # Suppose you want to extract a vertical and a horizontal section from the image. plt.subplots(figsize=(15, 10)) plt.imshow(convertedArray) plt.axvline(190, color="yellow") plt.axhline(250, color="orange") plt.show() # #To avoid IndexError: index 600 is out of bounds for axis 0 with size 256. Change to the right number of Pixels max 256 # If you want to extract these two profiles. Proceed this way for the horizontal section at row 200 horSection = convertedArray[200, :, :] plt.figure(figsize=(16, 5)) plt.plot(horSection[:, 0], label="r", color="#e74c3c") plt.plot(horSection[:, 1], label="g", color="#16a085") plt.plot(horSection[:, 2], label="b", color="#3498db") plt.xlabel("X") plt.legend() plt.show() # Code by Olga Belitskaya https://www.kaggle.com/olgabelitskaya/sequential-data/comments from IPython.display import display, HTML c1, c2, f1, f2, fs1, fs2 = "#eb3434", "#eb3446", "Akronim", "Smokum", 30, 15 def dhtml(string, fontcolor=c1, font=f1, fontsize=fs1): display( HTML( """<style> @import 'https://fonts.googleapis.com/css?family=""" + font + """&effect=3d-float';</style> <h1 class='font-effect-3d-float' style='font-family:""" + font + """; color:""" + fontcolor + """; font-size:""" + str(fontsize) + """px;'>%s</h1>""" % string ) ) dhtml("Sì, l ho fatto, @mpwolke sono stata qui.")
# Importing the packages import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns # Loading the dataset df = pd.read_csv("Customer_Subscription_And_Transaction_Details.csv") df.head(5) df.info() # Making sure that there is no more null values in the dataset df.isnull().sum() # Checking that all the errors that were in the previous dataset are now rectified columns = [ "transaction_type", "subscription_type", "customer_gender", "age_group", "customer_country", "referral_type", ] for col in columns: unique_values = df[col].unique() print(f"Unique values in the column {col} are \n {unique_values} ") # Replacing "initial" with "INITIAL" in the dataset df.transaction_type.replace("initial", "INITIAL", inplace=True) # ###### The primary objective of this analysis is to enhance company performance through a comprehensive examination of the provided dataset. To achieve this, we will prioritize the evaluation of three crucial aspects during our analysis. # Evaluate the current performance of the company # Conduct a thorough analysis of the customer base # Identify potential strategies to improve the overall performance # ### An assessment of the current performance of the company # ###### Financial performance of the company over the last three years # Converting the column “transactio_date” to a datetime object df["transaction_date"] = pd.to_datetime(df["transaction_date"]) # Checking the time perid of the data we are having strat_date = min(df["transaction_date"]).strftime("%Y-%m-%d") end_date = max(df["transaction_date"]).strftime("%Y-%m-%d") print(f"We have the data from {strat_date} to {end_date}") # Here, I am going to analyze the financial performance of the company over the past three years, using data from 2020-01-01 to 2022-12-01. The analysis will be conducted on a quarterly basis, focusing on three key areas. Firstly, an assessment will be made of the revenue generated from new customer acquisitions and upgrades of existing plans. Secondly, a review of quarterly losses will be conducted, analyzing the impact of customer cancellations and downgrades. Finally, the net profit of the company in each quarter will be computed to evaluate the overall financial performance of the company over the last three years. # group data by year and quarter grouped = df.groupby([pd.Grouper(key="transaction_date", freq="Q")]) # calculate the total subscription price per quarter and subscription type mrr_income = grouped.apply( lambda x: x.loc[ x["transaction_type"].isin(["INITIAL", "UPGRADE"]), "subscription_price" ].sum() ) # Making a list of each quarter quarter_list = [ "2020-01-01 - 2020-03-31", "2020-04-01 - 2020-06-31", "2020-07-01 - 2020-09-31", "2020-10-01 - 2020-12-31", "2021-01-01 - 2021-03-31", "2021-04-01 - 2020-06-31", "2021-07-01 - 2020-09-31", "2021-10-01 - 2021-12-31", "2022-01-01 - 2021-03-31", "2022-04-01 - 2020-06-31", "2022-07-01 - 2020-09-31", "2022-10-01 - 2022-12-31", ] # Revenue generated in each quarter quarter_incomes = mrr_income.values # create the bar plot for revenue # setting the figure size fig, ax = plt.subplots(figsize=(10, 6)) # ploting the data points ax.bar(quarter_list, quarter_incomes, color="blue") # setting the x-axis and y-axis labels and title ax.set_title("2020-2022 Quarterly Revenue") ax.set_ylabel("Revenue") ax.set_xlabel("Quarter") # rotating the x-axis labels to avoid overlapping plt.xticks(rotation=90) # show the plot plt.show() # The company's revenue increased consistently from Q1 2020 to Q2 2022. However, the revenue declined in Q3 2022 and continued to decline until Q4 2022. Despite this decline, the company still generated an overall revenue increase of 123.5% over the three-year period. Further analysis would be needed to understand the reasons behind the decline in revenue in the latter part of the period and to identify potential areas for improvement. # calculating the total loss in each quarter mrr_loss = grouped.apply( lambda x: x.loc[ x["transaction_type"].isin(["REDUCTION", "CHURN"]), "subscription_price" ].sum() ) quarterly_loss = mrr_loss.values # creating the plot for quarterly loss # setting the figure size fig, ax = plt.subplots(figsize=(10, 6)) # plotting the data points ax.bar(quarter_list, quarterly_loss, color="blue") # setting the x-axis and y-axis labels and title ax.set_title("2020-2022 Quarterly Loss") ax.set_ylabel("Loss") ax.set_xlabel("Quarter") # rotating the x-axis labels to avoid overlapping plt.xticks(rotation=90) # show the plot plt.show() # The company experienced varying levels of losses over the 12 quarters represented in the data. The main aim of this analysis is to identify potential solutions to minimize this loss. # Calculating the net profit net_profit = mrr_income.values - mrr_loss.values # creating a the plot for showing the profit # setting the figure size fig, ax = plt.subplots(figsize=(10, 6)) # plotting the data points ax.bar(quarter_list, net_profit, color="blue") # setting the x-axis and y-axis labels and title ax.set_title("2020-2022 Quarterly Profit") ax.set_ylabel("Net profit") ax.set_xlabel("Quater") # rotating the x-axis labels to avoid overlapping plt.xticks(rotation=90) # show the plot plt.show() # The company's profit fluctuated throughout the 12 quarters, ranging from a low of 48,745 in Q4 2020 to a high of 76,453 in Q3 2022. Overall, the company experienced a positive trend in profit, with an average quarterly profit of approximately 61,041. The strongest quarters were Q3 and Q4 of 2021 and Q3 of 2022, which had profits above 62,000. However, the company saw a dip in profit in Q4 of 2020 and Q1 of 2021, with profits falling below 51,000. # ### Calculating the Revenue and Loss from each country # ###### Revenue by Country and Year # Making a copy of the original dataframe df1 = df # Setting the index of the copied dataframe to "transaction_type" df1 = df1.set_index("transaction_type") # Select rows from the dataframe where "transaction_type" is either "INITIAL" or "UPGRADE", # select only the columns "subscription_price", "customer_country", and "transaction_date" df1_income = df1.loc[ ["INITIAL", "UPGRADE"], ["subscription_price", "customer_country", "transaction_date"], ] # Resetting the index of the selected rows to default and drop the "transaction_type" column df1_income = df1_income.reset_index(drop=True) # Group the selected rows by year and customer_country, and calculate the sum of subscription_price for each group grouped_income = df1_income.groupby( [pd.Grouper(key="transaction_date", freq="Y"), "customer_country"] ) cou_grouped_income = grouped_income["subscription_price"].sum() # output cou_grouped_income # From the data, we can see that Sweden consistently generates the highest revenue, followed by Norway, Finland, and Denmark. # ###### Loss by Country and Year # Select rows from the dataframe where "transaction_type" is either 'REDUCTION','CHURN' # select only the columns "subscription_price", "customer_country", and "transaction_date" df1_loss = df1.loc[ ["REDUCTION", "CHURN"], ["subscription_price", "customer_country", "transaction_date"], ] # Resetting the index of the selected rows to default and drop the "transaction_type" column df1_loss = df1_loss.reset_index(drop=True) # Group the selected rows by year and customer_country, and calculate the sum of subscription_price for each group grouped_loss = df1_loss.groupby( [pd.Grouper(key="transaction_date", freq="Y"), "customer_country"] ) cou_grouped_loss = grouped_loss["subscription_price"].sum() cou_grouped_loss # The report also shows that Sweden generated the highest total loss over the three years, followed by Finland, Denmark, and Norway. # ###### Number of new customers subscribed each year # Select rows from the original dataframe where "transaction_type" is "INITIAL" # and only keep the columns "customer_country" and "transaction_date" df1_initial = df1.loc[["INITIAL"], ["customer_country", "transaction_date"]] # Reset the index of the selected rows to default and drop the "transaction_type" column df1_initial = df1_initial.reset_index(drop=True) # Group the selected rows by year, based on the "transaction_date" column df1_initial = df1_initial.groupby([pd.Grouper(key="transaction_date", freq="Y")]) # Calculate the number of new customers in each year df1_initial_data = df1_initial["customer_country"].count() # Return the resulting data as output df1_initial_data # ###### The annual number of Upgredation # Select rows from the original dataframe where "transaction_type" is 'UPGRADE' # and only keep the columns "customer_country" and "transaction_date" df1_upgrade = df1.loc[["UPGRADE"], ["customer_country", "transaction_date"]] # Reset the index of the selected rows to default and drop the "transaction_type" column df1_upgrade = df1_upgrade.reset_index(drop=True) # Group the selected rows by year, based on the "transaction_date" column df1_upgrade = df1_upgrade.groupby([pd.Grouper(key="transaction_date", freq="Y")]) # Calculate the number of upgraded customer df1_upgrade_data = df1_upgrade["customer_country"].count() df1_upgrade_data # ###### The annual number of Reduction # Select rows from the original dataframe where "transaction_type" is 'REDUCTION' # and only keep the columns "customer_country" and "transaction_date" df1_reduced = df1.loc[["REDUCTION"], ["customer_country", "transaction_date"]] # Reset the index of the selected rows to default and drop the "transaction_type" column df1_reduced = df1_reduced.reset_index(drop=True) # Group the selected rows by year, based on the "transaction_date" column df1_reduced = df1_reduced.groupby([pd.Grouper(key="transaction_date", freq="Y")]) # Calculate the number of reduced customer df1_reduced_data = df1_reduced["customer_country"].count() df1_reduced_data # ###### The annual number of cancellations # Select rows from the original dataframe where "transaction_type" is 'CHURN' # and only keep the columns "customer_country" and "transaction_date" df1_cancelled = df1.loc[["CHURN"], ["customer_country", "transaction_date"]] # Reset the index of the selected rows to default and drop the "transaction_type" column df1_cancelled = df1_cancelled.reset_index(drop=True) # Group the selected rows by year, based on the "transaction_date" column df1_cancelled = df1_cancelled.groupby([pd.Grouper(key="transaction_date", freq="Y")]) # Calculate the number of reduced customer df1_cancelled_data = df1_cancelled["customer_country"].count() df1_cancelled_data # From this report, we can see that the number of new customers added each year remained relatively stable, with approximately 3,400-3,500 new customers per year. However, we can also see that the number of upgrades, reduction and cancellation increased significantly from 2020 to 2022, # Here, I conducted a preliminary analysis of the company's performance based on the available data. The analysis focused on the financial performance of the company, with a particular emphasis on customer acquisition and retention. Specifically, I examined the company's ability to attract new customers and encourage existing customers to upgrade to higher plans. Based on my analysis, I identified two main challenges facing the company: customers downgrading to lower plans and customers canceling their subscriptions. While the available data provides some insights into these issues, a more detailed analysis will be carried out in the third section to fully understand the underlying trends and factors driving these changes. # ### Customer Analysis and Marketing Strategy Evaluation for Improved Company Performance # As a professional data analyst, the second part of the analysis would involve delving deeper into the company's customer base and the effectiveness of its current marketing strategies. This phase of the analysis is crucial because a comprehensive understanding of the customer base can help identify potential customers and enhance the company's performance. # To begin with,I would first examine the customer demographics, such as age, gender, location, and other relevant characteristics. This information would help identify the target market and enable the company to tailor its marketing strategies to meet their specific needs and preferences.The next step is to assess the effectiveness of the company's marketing strategies. This would include reviewing advertising campaigns. # Copying the original dataframe into a new dataframe named df3 df3 = df # Counting the number of customers in each country and store the result in the variable country_counts country_counts = df3.customer_country.value_counts() # Creating a color palette with pastel colors for the pie chart colors = sns.color_palette("pastel")[0:5] # Setting the figure size fig = plt.figure(figsize=(8, 8)) # Creating a pie chart with the customer counts for each country as the values plt.pie( country_counts.values, labels=country_counts.index, colors=colors, autopct="%.0f%%" ) plt.show() # From the above data, it is evident that Sweden has the highest number of customers, followed by Denmark, Finland, and Norway. # This information is crucial for the company's marketing team to plan their marketing strategies and target potential customers. # The marketing team can use this data to tailor their promotions and marketing strategies specific to each country. # Furthermore, this data can also help the company identify any trends or patterns in customer behavior across different countries. For example, if the company notices a significant increase in sales from a particular country, they can investigate why this is happening and try to replicate this success in other countries. Therefore here the company can investigate the reason why the company is performing well in Sweden and can use this strategy to improve its performance in other countries also. # ### Sweden # Setting the index of the dataframe to 'customer_country' to make it easier to select data by country df3 = df3.set_index("customer_country") # Selectting a subset of data from the dataframe that corresponds to customers from Sweden and includes specific columns df_sweden = df3.loc[ ["Sweden"], [ "transaction_type", "subscription_type", "customer_gender", "age_group", "referral_type", ], ] # Creating a bar plot for the "subscription_type" column subscription_type_counts = df_sweden.subscription_type.value_counts() plt.bar(subscription_type_counts.index, subscription_type_counts.values) plt.title("Preferable subscription type in Sweden") plt.xlabel("Subscription type") plt.ylabel("Number of customers") plt.show() subscription_type_counts # Creating a bar plot for the "customer_gender" column customer_gender_counts = df_sweden.customer_gender.value_counts() plt.bar(customer_gender_counts.index, customer_gender_counts.values) plt.title("Amount of each gender in the dataset") plt.xlabel("Gender") plt.ylabel("Count") plt.show() customer_gender_counts # group the data by age group and gender, and count the number of customers in each group grouped = ( df_sweden.groupby(["age_group", "customer_gender"]).size().reset_index(name="count") ) # pivot the data to create a matrix with age group as rows, gender as columns, and count as values matrix = grouped.pivot(index="age_group", columns="customer_gender", values="count") # create a stacked bar plot of the data ax = matrix.plot(kind="bar", stacked=True, figsize=(10, 6)) # set the axis labels and title ax.set_xlabel("Age Group") ax.set_ylabel("Count") ax.set_title("Customer Age Group and Gender") # show the plot plt.show() # creating a bar chart to reprasent the participation of customers in different referral program referral_data_counts = df_sweden.referral_type.value_counts() plt.bar(referral_data_counts.index, referral_data_counts.values) plt.title("Perfomance of different referral program in Sweden") plt.xlabel("Referral Program") plt.ylabel("Count") plt.xticks(rotation=90) plt.show() referral_data_counts tranaction_type_count = df_sweden.transaction_type.value_counts() tranaction_type_count # filter the dataframe to include only the desired transaction types df_filtered = df_sweden[df_sweden["transaction_type"].isin(["INITIAL", "UPGRADE"])] # group the data by transaction type and referral type, and count the number of customers in each group grouped_type = ( df_filtered.groupby(["transaction_type", "referral_type"]) .size() .reset_index(name="count") ) # pivot the data to create a matrix with transaction type as rows, referral type as columns, and count as values matrix_type = grouped_type.pivot( index="transaction_type", columns="referral_type", values="count" ) # create a stacked bar plot of the data ax = matrix_type.plot(kind="bar", stacked=True, figsize=(10, 6)) # set the axis labels and title ax.set_xlabel("Transaction Type") ax.set_ylabel("Count") ax.set_title("Transaction type and Referral Program") # show the plot plt.show() # group the data by transaction type and referral type, and count the number of customers in each group grouped_type = ( df_sweden.groupby(["transaction_type", "subscription_type"]) .size() .reset_index(name="count") ) # pivot the data to create a matrix with transaction type as rows, referral type as columns, and count as values matrix_type = grouped_type.pivot( index="transaction_type", columns="subscription_type", values="count" ) # create a stacked bar plot of the data ax = matrix_type.plot(kind="bar", stacked=True, figsize=(10, 6)) # set the axis labels and title ax.set_xlabel("Transaction Type") ax.set_ylabel("Count") ax.set_title("Transaction type and subscription_type") # show the plot plt.show() # Overall, all the above the data shows that female customers are more prevalent than male customers in Sweden. The Basic subscription type has the highest number of customers, and Google Ads and Facebook are the most effective referral types. Companies can leverage this information to make informed decisions on marketing campaigns and product offerings to better target the customers in Sweden. # ### Denmark # Selectting a subset of data from the dataframe that corresponds to customers from Denmark and includes specific columns df_denmark = df3.loc[ ["Denmark"], [ "transaction_type", "subscription_type", "customer_gender", "age_group", "referral_type", ], ] # Creating a bar plot for the "subscription_type" column # Identifying the best performing subscription type in Denmark subscription_type_counts = df_denmark.subscription_type.value_counts() plt.bar(subscription_type_counts.index, subscription_type_counts.values) plt.title("Preferable subscription type in Denmark") plt.xlabel("Subscription type") plt.ylabel("Number of customers") plt.show() subscription_type_counts # Creating a bar plot for the "customer_gender" column customer_gender_counts = df_denmark.customer_gender.value_counts() plt.bar(customer_gender_counts.index, customer_gender_counts.values) plt.title("Amount of each gender in the dataset") plt.xlabel("Gender") plt.ylabel("Count") plt.show() customer_gender_counts # group the data by age group and gender, and count the number of customers in each group grouped = ( df_denmark.groupby(["age_group", "customer_gender"]) .size() .reset_index(name="count") ) # pivot the data to create a matrix with age group as rows, gender as columns, and count as values matrix = grouped.pivot(index="age_group", columns="customer_gender", values="count") # create a stacked bar plot of the data ax = matrix.plot(kind="bar", stacked=True, figsize=(10, 6)) # set the axis labels and title ax.set_xlabel("Age Group") ax.set_ylabel("Count") ax.set_title("Customer Age Group and Gender") # show the plot plt.show() # creating a bar chart to reprasent the participation of customers in different referral program referral_data_counts = df_denmark.referral_type.value_counts() plt.bar(referral_data_counts.index, referral_data_counts.values) plt.title("Perfomance of different referral program in Denmark") plt.xlabel("Referral Program") plt.ylabel("Count") plt.xticks(rotation=90) plt.show() referral_data_counts # filter the dataframe to include only the desired transaction types df_filtered = df_denmark[df_denmark["transaction_type"].isin(["INITIAL", "UPGRADE"])] # group the data by transaction type and referral type, and count the number of customers in each group grouped_type = ( df_filtered.groupby(["transaction_type", "referral_type"]) .size() .reset_index(name="count") ) # pivot the data to create a matrix with transaction type as rows, referral type as columns, and count as values matrix_type = grouped_type.pivot( index="transaction_type", columns="referral_type", values="count" ) # create a stacked bar plot of the data ax = matrix_type.plot(kind="bar", stacked=True, figsize=(10, 6)) ax.set_xlabel("Transaction Type") ax.set_ylabel("Count") ax.set_title("Transaction type and Referral Program") plt.show() # group the data by transaction type and referral type, and count the number of customers in each group grouped_type = ( df_denmark.groupby(["transaction_type", "subscription_type"]) .size() .reset_index(name="count") ) # pivot the data to create a matrix with transaction type as rows, referral type as columns, and count as values matrix_type = grouped_type.pivot( index="transaction_type", columns="subscription_type", values="count" ) # create a stacked bar plot of the data ax = matrix_type.plot(kind="bar", stacked=True, figsize=(10, 6)) ax.set_xlabel("Transaction Type") ax.set_ylabel("Count") ax.set_title("Transaction type and subscription_type") plt.show() # The analysis of the data shows in Denmark also that the company's Basic subscription plan is more popular among customers, and the Pro plan is also doing well. The company has a larger female customer base, and the majority of customers were acquired through Google Ads and Facebook. # ### Norway # Selectting a subset of data from the dataframe that corresponds to customers from Norway and includes specific columns df_norway = df3.loc[ ["Norway"], [ "transaction_type", "subscription_type", "customer_gender", "age_group", "referral_type", ], ] # Creating a bar plot for the "subscription_type" column subscription_type_counts = df_norway.subscription_type.value_counts() plt.bar(subscription_type_counts.index, subscription_type_counts.values) plt.title("Preferable subscription type in Norway") plt.xlabel("Subscription type") plt.ylabel("Number of customers") plt.show() subscription_type_counts # Creating a bar plot for the "customer_gender" column customer_gender_counts = df_norway.customer_gender.value_counts() plt.bar(customer_gender_counts.index, customer_gender_counts.values) plt.title("Amount of each gender in the dataset") plt.xlabel("Gender") plt.ylabel("Count") plt.show() customer_gender_counts # group the data by age group and gender, and count the number of customers in each group grouped = ( df_norway.groupby(["age_group", "customer_gender"]).size().reset_index(name="count") ) # pivot the data to create a matrix with age group as rows, gender as columns, and count as values matrix = grouped.pivot(index="age_group", columns="customer_gender", values="count") ax = matrix.plot(kind="bar", stacked=True, figsize=(10, 6)) ax.set_xlabel("Age Group") ax.set_ylabel("Count") ax.set_title("Customer Age Group and Gender") plt.show() # creating a bar chart to reprasent the participation of customers in different referral program referral_data_counts = df_norway.referral_type.value_counts() plt.bar(referral_data_counts.index, referral_data_counts.values) plt.title("Perfomance of different referral program in Norway") plt.xlabel("Referral Program") plt.ylabel("Count") plt.xticks(rotation=90) plt.show() referral_data_counts # filter the dataframe to include only the desired transaction types df_filtered = df_norway[df_norway["transaction_type"].isin(["INITIAL", "UPGRADE"])] # group the data by transaction type and referral type, and count the number of customers in each group grouped_type = ( df_filtered.groupby(["transaction_type", "referral_type"]) .size() .reset_index(name="count") ) # pivot the data to create a matrix with transaction type as rows, referral type as columns, and count as values matrix_type = grouped_type.pivot( index="transaction_type", columns="referral_type", values="count" ) ax = matrix_type.plot(kind="bar", stacked=True, figsize=(10, 6)) ax.set_xlabel("Transaction Type") ax.set_ylabel("Count") ax.set_title("Transaction type and Referral Program") plt.show() # group the data by transaction type and referral type, and count the number of customers in each group grouped_type = ( df_norway.groupby(["transaction_type", "subscription_type"]) .size() .reset_index(name="count") ) # pivot the data to create a matrix with transaction type as rows, referral type as columns, and count as values matrix_type = grouped_type.pivot( index="transaction_type", columns="subscription_type", values="count" ) # create a stacked bar plot of the data ax = matrix_type.plot(kind="bar", stacked=True, figsize=(10, 6)) ax.set_xlabel("Transaction Type") ax.set_ylabel("Count") ax.set_title("Transaction type and subscription_type") plt.show() # ### Finland # Selectting a subset of data from the dataframe that corresponds to customers from Finland and includes specific columns df_finland = df3.loc[ ["Finland"], [ "transaction_type", "subscription_type", "customer_gender", "age_group", "referral_type", ], ] # Creating a bar plot for the "subscription_type" column subscription_type_counts = df_finland.subscription_type.value_counts() plt.bar(subscription_type_counts.index, subscription_type_counts.values) plt.title("Preferable subscription type in Finland") plt.xlabel("Subscription type") plt.ylabel("Number of customers") plt.show() subscription_type_counts # Creating a bar plot for the "customer_gender" column customer_gender_counts = df_finland.customer_gender.value_counts() plt.bar(customer_gender_counts.index, customer_gender_counts.values) plt.title("Amount of each gender in the dataset") plt.xlabel("Gender") plt.ylabel("Count") plt.show() customer_gender_counts # group the data by age group and gender, and count the number of customers in each group grouped = ( df_finland.groupby(["age_group", "customer_gender"]) .size() .reset_index(name="count") ) # pivot the data to create a matrix with age group as rows, gender as columns, and count as values matrix = grouped.pivot(index="age_group", columns="customer_gender", values="count") # create a stacked bar plot of the data ax = matrix.plot(kind="bar", stacked=True, figsize=(10, 6)) ax.set_xlabel("Age Group") ax.set_ylabel("Count") ax.set_title("Customer Age Group and Gender") plt.show() # creating a bar chart to reprasent the participation of customers in different referral program referral_data_counts = df_finland.referral_type.value_counts() plt.bar(referral_data_counts.index, referral_data_counts.values) plt.title("Perfomance of different referral program in Finland") plt.xlabel("Referral Program") plt.ylabel("Count") plt.xticks(rotation=90) plt.show() # filter the dataframe to include only the desired transaction types df_filtered = df_finland[df_finland["transaction_type"].isin(["INITIAL", "UPGRADE"])] # group the data by transaction type and referral type, and count the number of customers in each group grouped_type = ( df_filtered.groupby(["transaction_type", "referral_type"]) .size() .reset_index(name="count") ) # pivot the data to create a matrix with transaction type as rows, referral type as columns, and count as values matrix_type = grouped_type.pivot( index="transaction_type", columns="referral_type", values="count" ) ax = matrix_type.plot(kind="bar", stacked=True, figsize=(10, 6)) ax.set_xlabel("Transaction Type") ax.set_ylabel("Count") ax.set_title("Transaction type and Referral Program") # show the plot plt.show() # group the data by transaction type and referral type, and count the number of customers in each group grouped_type = ( df_finland.groupby(["transaction_type", "subscription_type"]) .size() .reset_index(name="count") ) # pivot the data to create a matrix with transaction type as rows, referral type as columns, and count as values matrix_type = grouped_type.pivot( index="transaction_type", columns="subscription_type", values="count" ) # create a stacked bar plot of the data ax = matrix_type.plot(kind="bar", stacked=True, figsize=(10, 6)) ax.set_xlabel("Transaction Type") ax.set_ylabel("Count") ax.set_title("Transaction type and subscription_type") plt.show() # Based on the analysis of the customer data across the four countries, it is evident that there is a clear preference for the basic subscription plan. This indicates that customers in all four countries are looking for a more cost-effective option that meets their basic needs. Additionally, the data also shows that the majority of customers in all four countries are females, which provides a clear target audience for the company's marketing efforts. # However, it is also important to note that the gap between the number of female and male customers is not very high. This suggests that the company should not solely focus on female customers, but also consider targeting males to attract a more diverse customer base. By targeting both categories, the company can maximize its potential customer base and increase its overall revenue. # ### what strategies can be implemented to enhance the company's performance? # The performance of the company can be improved mainly by 3 methods # Reducing the unnecessary operational cost # Retaining current customers by improving churn rate/reducing churn # Increasing the customer base # ###### How to reduce unnecessary costs? # By analyzing the data, we can identify the marketing channels that are generating the most value for your company. By reallocating company's budget to these high-performing channels, we can ensure that you are getting the best possible return on investment. Additionally, it is important to identify the channels that are not producing any value to your company and stop using them altogether. This way, you can eliminate unnecessary costs and focus your efforts on the channels that are most effective in driving business growth. # ### Performance of different marketting channels over the 3 years df_per = df1 # Select rows with INITIAL and UPGRADE values in 'Transaction Type' df_per = df_per.loc[ ["INITIAL", "UPGRADE"], ["transaction_date", "cust_id", "referral_type"] ] # Group the selected data by year and referral type and count the number of customer IDs for each group df_per = ( df_per.groupby([pd.Grouper(key="transaction_date", freq="Y"), "referral_type"]) .count()["cust_id"] .unstack() ) ax = df_per.plot(kind="line") ax.legend(bbox_to_anchor=(1.1, 1.05)) plt.show() # ### Finding the best referral program for particular age group # filter the dataframe to include only the desired transaction types df_filtered = df[df["transaction_type"].isin(["INITIAL", "UPGRADE"])] # group the data by transaction type and referral type, and count the number of customers in each group grouped_type = ( df_filtered.groupby(["age_group", "referral_type"]).size().reset_index(name="count") ) # pivot the data to create a matrix with transaction type as rows, referral type as columns, and count as values matrix_type = grouped_type.pivot( index="age_group", columns="referral_type", values="count" ) # create a stacked bar plot of the data ax = matrix_type.plot(kind="bar", stacked=True, figsize=(10, 6)) ax.set_xlabel("Age group") ax.set_ylabel("Count") ax.set_title("Transaction type and age group") ax.legend(bbox_to_anchor=(1.1, 1.05)) plt.show() # ### Subscription cancellations over the last 3-year period df5 = df1 df5_yearly = ( df5.loc[["CHURN"]].groupby([pd.Grouper(key="transaction_date", freq="Y")]).count() ) # create the plot df5_yearly.plot( kind="line", y="subscription_type", figsize=(10, 6), marker="o", legend=False ) # set the axis labels and title plt.xlabel("Year") plt.ylabel("Number of Cancelled Subscriptions") plt.title("Cancelled Subscriptions by Year") # show the plot plt.show() # ### Over the last 3 years, the number of cancellations by country df5 = df5.loc[["CHURN"], ["customer_country", "transaction_date"]] # group the data by country and year, and count the number of cancelled customers in each group grouped_churn = ( df5.groupby(["customer_country", pd.Grouper(key="transaction_date", freq="Y")]) .size() .reset_index(name="count") ) # create a bar plot for country column, with year as hue ax = sns.barplot( x="customer_country", y="count", hue="transaction_date", data=grouped_churn ) # set the axis labels and title ax.set_ylabel("Number of Cancelled Customers") ax.set_xlabel("Customer Country") ax.set_title("Cancelled Customers by Country and Year") ax.legend(bbox_to_anchor=(1.1, 1.05)) # show the plot plt.show()
# # The Best Cities for a workation # Looking for a change of scenery while you work? A "workation" might be just what you need! In this analysis, we have gathered data on various factors such as remote connection speed, co-working spaces, cost of living, and tourist attractions to identify the best cities for a workation. Whether you're looking for a cozy, productive, relaxed, or adventurous workation, we've got you covered. Let's dive into the data and find your perfect workation destination! # # Import Libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns # # Import Data df = pd.read_csv( "/kaggle/input/the-best-cities-for-a-workation/best cities for a workation.csv" ) df.head() # # Data Screening df.info() df.columns # Create Lists cols = [ "Remote connection: Average WiFi speed (Mbps per second)", "Co-working spaces: Number of co-working spaces", "Caffeine: Average price of buying a coffee", "Travel: Average price of taxi (per km)", "After-work drinks: Average price for 2 beers in a bar", "Accommodation: Average price of 1 bedroom apartment per month", "Food: Average cost of a meal at a local, mid-level restaurant", "Climate: Average number of sunshine hours", "Tourist attractions: Number of ‘Things to do’ on Tripadvisor", "Instagramability: Number of photos with #", ] sns.pairplot(df, vars=cols, plot_kws={"alpha": 0.4}) # ## Scikit-learn: KMeans Clustering from sklearn import preprocessing from sklearn.cluster import KMeans # ### Z-Score scaler = preprocessing.StandardScaler() z = scaler.fit_transform(df[cols]) z[:5].round(4) df[cols].hist(layout=(1, len(cols)), figsize=(3 * len(cols), 3.5)) # Based on the histogram of the transformed data, it appears that the distribution is not normal. Therefore, it may be necessary to consider alternative methods for data transformation instead of using the Yeo-Johnson method. The Yeo-Johnson transformation assumes a normal distribution, so it may not be appropriate for non-normal data. It is important to choose a transformation method that is appropriate for the data and the analysis being conducted. # ### yeo-johnson pt = preprocessing.PowerTransformer( method="yeo-johnson", standardize=True ) # support only positive value mat = pt.fit_transform(df[cols]) mat[:5].round(4) dfmat = pd.DataFrame(mat, columns=cols) dfmat.head() dfmat.hist(layout=(1, len(cols)), figsize=(3 * len(cols), 3.5)) # When we switched to using yeo-johnson, the histogram showed a normal distribution. This means it ok to use this dataset. # # Scikit-learn: KMeans Clustering X = pd.DataFrame(mat, columns=cols) X.head() # ## Optimal Number of Clusters ssd = [] for k in range(2, 8): model = KMeans(n_clusters=k) model.fit(X) ssd.append((k, model.inertia_)) ssd dfssd = pd.DataFrame(ssd, columns=["k", "ssd"]) dfssd dfssd["pct_chg"] = dfssd["ssd"].pct_change() * 100 dfssd plt.plot(dfssd["k"], dfssd["ssd"], linestyle="--", marker="o") for index, row in dfssd.iterrows(): plt.text(row["k"] + 0.02, row["ssd"] + 0.02, f'{row["pct_chg"]:.2f}', fontsize=10) kmodel = KMeans(n_clusters=4) kmodel # As we can see from the plot, there is an elbow point at around 4 clusters, where the percentage change in variance explained starts to level off. Therefore, the optimal number of clusters for this dataset would be 4. # ## fit the model kmodel.fit(X) kmodel.labels_ # ## Sense Making About Each Cluster df["cluster"] = kmodel.labels_ df.head() df.groupby("cluster").describe().T sns.countplot(x="cluster", data=df) fig, ax = plt.subplots(nrows=5, ncols=2, figsize=(20, 9)) ax = ax.ravel() for i, col in enumerate(cols): sns.violinplot(x="cluster", y=col, data=df, ax=ax[i]) dx = X dx["cluster"] = kmodel.labels_ dx.head() df.groupby("cluster").head(3).sort_values("cluster") sns.heatmap( dx.groupby("cluster").median(), cmap="Blues", linewidths=1, square=True, annot=True, fmt=".2f", annot_kws={"fontsize": 6}, ) sns.pairplot( df, vars=[ "Remote connection: Average WiFi speed (Mbps per second)", "Co-working spaces: Number of co-working spaces", "Caffeine: Average price of buying a coffee", "Travel: Average price of taxi (per km)", "After-work drinks: Average price for 2 beers in a bar", "Accommodation: Average price of 1 bedroom apartment per month", "Food: Average cost of a meal at a local, mid-level restaurant", "Climate: Average number of sunshine hours", "Tourist attractions: Number of ‘Things to do’ on Tripadvisor", "Instagramability: Number of photos with #", ], hue="cluster", ) plt.show() # # Summary # Based on the cluster analysis, I will categorize the data into four distinct clusters, each representing a dominant type of workation from heatmap plot. # #### Cluster 0: The Productive Workation # This cluster excels in the number of co-working spaces, tourist attractions, and Instagramability, making it an ideal choice for individuals seeking a balance between work and leisure. Furthermore, cities in this cluster have high average cost for after-work drinks, accommodation, and food, implying that these cities have a high cost of living, making them suitable for those who have the financial means to support their workation lifestyle. # #### Cluster 1: The Serene Workation # An ideal choice for individuals seeking a tranquil workation experience. The cluster shows low scores across various factors, including remote connectivity and availability of co-working spaces, suggesting that the location may be suitable for individuals who do not require high internet speeds or prefer to work in their accommodation. Furthermore, the limited number of tourist attractions and entertainment options in this cluster may indicate a quieter and more relaxed environment, making it perfect for those seeking a peaceful workation. The sunny climate in this cluster can also be a desirable feature for individuals looking to escape colder weather. # #### Cluster 2: The Relaxing Workation # This cluster has lower cost of living but has a lot of co-working spaces. This cluster would be ideal for someone who desires a comfortable working environment and ample opportunities for leisure and entertainment. However, it's worth noting that this cluster also has low average number of sunshine hours and tourist attractions. These cities may not be the best choice for those who want to travel and work in a city with sunny and warm weather, or for those who want to travelling a variety of tourist attractions during their free time. # #### Cluster 3: The Vibrant Workation # It is characterized by high costs of living, shorter daylight hours, and fewer tourist attractions. The cities in this cluster offer some co-working spaces, but are more suitable for individuals looking for a lively and bustling atmosphere with plenty of options for food, drinks, and accommodation. This workation type is perfect for those who enjoy the energy of a vibrant city and want to balance work with exploring and experiencing the local culture. pd.options.display.max_rows = None df[["City", "Country", "cluster"]].sort_values("cluster")
import numpy as np import pandas as pd import sklearn as sk import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import LabelEncoder, OneHotEncoder from pickle import dump, load import seaborn as sns from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import ( accuracy_score, f1_score, precision_score, recall_score, classification_report, confusion_matrix, ) from sklearn.decomposition import PCA, IncrementalPCA from sklearn.svm import SVC import pickle # ## EDA & Pre-processing data = pd.read_csv( "/kaggle/input/lead-scoring-model-0417/Data_Science_Internship.csv" ).drop(columns="Unnamed: 0") print(f"Data Shape: {data.shape}") data.head() data.describe( include="all", ).T # Droping the rows other than "WON", "LOST" df_mod = data.copy() df_mod.drop( df_mod[(df_mod["status"] != "WON") & (df_mod["status"] != "LOST")].index, inplace=True, ) df_mod["status"] = df_mod["status"].map({"WON": 1, "LOST": 0}) df_mod.replace( "9b2d5b4678781e53038e91ea5324530a03f27dc1d0e5f6c9bc9d493a23be9de0", np.NAN, inplace=True, ) df_mod.head(5) # Checking for duplicate entries dups = df_mod[df_mod.duplicated()] print(f"Duplicate Entries: {len(dups)}") df_mod = df_mod.drop_duplicates(keep="first") # ### Data cleaning # Checking for missing values print("Columns : % of missing vals") print(np.round(df_mod.isna().sum() / len(df_mod.index) * 100, 2)) print("Rows : % of missing vals") print(np.round(df_mod.isnull().sum(axis=1) / len(df_mod.columns) * 100)) print( f"""" Max missing features across rows: {max(np.round(df_mod.isnull().sum(axis=1)/len(df_mod.columns)*100))}\n Average missing features across rows: {np.round(np.mean(df_mod.isnull().sum(axis=1)/len(df_mod.columns)*100))}""" ) # Drop the columns with % of missing vals >30% dct_c = np.round(df_mod.isna().sum() / len(df_mod.index) * 100, 2).to_dict() for key in dct_c.keys(): if dct_c[key] > 30: print("Column dropeed-", key) df_mod.drop(key, axis=1) # Drop the rows with % of missing vals >=60% thresh = 60.0 min_ = int(((100 - thresh) / 100) * df_mod.shape[1] + 1) df_mod = df_mod.dropna(axis=0, thresh=min_) print(df_mod.shape) df_mod.head(5) # Here we're not modifying unique categories in the feature columns # Instead we'll develop several models to evaluate the performance even in minority category class columns = [ "Agent_id", "lost_reason", "budget", "lease", "movein", "source", "source_city", "source_country", "utm_source", "utm_medium", "des_city", "des_country", "room_type", "lead_id", ] feat_vec = [] for col in columns: encoder = LabelEncoder() vals = df_mod[col].to_numpy() encoder.fit(vals) categorical_values = encoder.transform(vals) feat_vec.append(categorical_values) # save the encoder to reuse in future dump(encoder, open(f"/kaggle/working/{col}.pkl", "wb")) feat_vec = np.array(feat_vec) # Checking number of features and number of categories in each feature for i in range(len(feat_vec)): print(i, ":", len(np.unique(feat_vec[i, ...]))) # ## Model 1: Random Forest Classifier # The RandomForestClassifier an ensemble machine learning model for handling class imabalance. In addition, class_weight='balanced' to handle the imbalanced data by assigning higher weights to minority class samples during training. X = feat_vec.T print(f"Input Feature Dimension: {X.shape[0]} X {X.shape[1]}") # Select categorical features categorical_features = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13] # Create one-hot encoder enc = OneHotEncoder() # Fit encoder on categorical data enc.fit(X) # Transform categorical data X_encoded = enc.transform(X).toarray() y = df_mod["status"].to_numpy() # Split data into training and testing sets X_train, X_test, y_train, y_test = train_test_split( X_encoded, y, test_size=0.3, random_state=42 ) print(f"X train dimension: {X_train.shape[0]} X {X_train.shape[1]}") print(f"X train dimension: {X_test.shape[0]} X {X_test.shape[1]}") # Create and train Random Forest classifier clf = RandomForestClassifier(n_estimators=100, random_state=42, class_weight="balanced") clf.fit(X_train, y_train) # Predict on test set y_pred = clf.predict(X_test) # Calculate evaluation metrics accuracy = accuracy_score(y_test, y_pred) f1 = f1_score(y_test, y_pred) precision = precision_score(y_test, y_pred) recall = recall_score(y_test, y_pred) report = classification_report(y_test, y_pred) cm = confusion_matrix(y_test, y_pred) clf_performance = { "accuracy": accuracy, "F1_score": f1, "Precision": precision, "Recall": recall, } # Print evaluation metrics print("Accuracy:", accuracy) print("F1-score:", f1) print("Precision:", precision) print("Recall:", recall) print("Classification Report: \n", report) sns.heatmap(cm, annot=True, fmt="d", cmap="Reds") # Add labels and title plt.xlabel("Predicted Label") plt.ylabel("True Label") plt.title("Confusion Matrix") # Show plot plt.show() # Saving RF Model filename = "/kaggle/working/random_forest.pickle" # save model pickle.dump(clf, open(filename, "wb")) # ## Model 2: PCA+SVM # Here we've used Principal Component Analysis to reduce the dimensionality of the input data. In combination with SVM (Support vector machine) classifier, separates two classes in a way that maximizes the margin between the hyperplane and the nearest data points of each class. # # Create Increamental PCA object with 50 components for solving exceeding memory issues n_batches = 100 n_components = 50 # pca = PCA(n_components=50, copy=False) ipca = IncrementalPCA( copy=False, n_components=n_components, batch_size=(X_train.shape[0] // n_batches) ) # Fit the PCA object to the training data and transform both training and testing data X_train_pca = ipca.fit_transform(X_train) X_test_pca = ipca.transform(X_test) print(f"Transformed X train dimension: {X_train_pca.shape[0]} X {X_train_pca.shape[1]}") print(f"Transformed X train dimension: {X_test_pca.shape[0]} X {X_test_pca.shape[1]}") # Create SVM object with radial basis function kernel and class_weight='balanced' to handle imbalanced data svm = SVC(kernel="rbf", class_weight="balanced") # Fit the SVM object to the training data svm.fit(X_train_pca, y_train) # Predict the labels of the testing data y_pred = svm.predict(X_test_pca) # Calculate evaluation metrics accuracy = accuracy_score(y_test, y_pred) f1 = f1_score(y_test, y_pred) precision = precision_score(y_test, y_pred) recall = recall_score(y_test, y_pred) report = classification_report(y_test, y_pred) cm = confusion_matrix(y_test, y_pred) svm_performance = { "accuracy": accuracy, "F1_score": f1, "Precision": precision, "Recall": recall, } # Print evaluation metrics print("Accuracy:", accuracy) print("F1-score:", f1) print("Precision:", precision) print("Recall:", recall) print("Classification Report: \n", report) sns.heatmap(cm, annot=True, fmt="d", cmap="Blues") # Add labels and title plt.xlabel("Predicted Label") plt.ylabel("True Label") plt.title("Confusion Matrix") # Show plot plt.show() # Saving SVM Model filename = "/kaggle/working/pcaSVM.pickle" # save model pickle.dump(svm, open(filename, "wb")) # ### Comparing performance of two classifiers df1 = pd.DataFrame.from_dict(clf_performance, orient="index", columns=["RF Classifier"]) df2 = pd.DataFrame.from_dict( svm_performance, orient="index", columns=["SVM Classifier"] ) metrics = list(clf_performance.keys()) values1 = [clf_performance[m] for m in metrics] values2 = [svm_performance[m] for m in metrics] df = pd.DataFrame( { "metrics": metrics + metrics, "values": values1 + values2, "classifier": ["Classifier 1"] * len(metrics) + ["Classifier 2"] * len(metrics), } ) # Create a bar plot of the performance of both classifiers sns.set_style("whitegrid") sns.barplot(x="metrics", y="values", hue="classifier", data=df) plt.xlabel("Evaluation Metrics") plt.ylabel("Performance") plt.title("Performance Comparison of Two Classifiers") plt.show()
# Python Booleans - Mantıksal Operatörler # Mantıksal operatörler iki değerden oluşur. True - False True: doğru False: Yanlış # Boolean Values # Programlamada genellikle bir ifadenin Doğru mu yoksa Yanlış mı olduğunu bilmek gerekir. # Python'da herhangi bir ifadeyi değerlendirebilir ve True veya False olmak üzere iki yanıttan biri alınabilir. # İki değeri karşılaştırdığınızda, ifade değerlendirilir ve Python, Boole yanıtını döndürür: print(7 > 1) print(8 == 3) print(15 < 3) # if ifadesinde bir koşul çalıştırıldığında, Python True veya False değerini döndürür: # x = 420 y = 56 if y > x: print("y daha büyük x") else: print("y daha büyük değildir x") # Değerleri ve Değişkenleri Değerlendirme # bool() işlevi, herhangi bir değeri değerlendirmeye ve karşılığında True veya False vermeye izin verir. print(bool("kırmızı")) print(bool(25)) a = "mavi" b = 34 print(bool(a)) print(bool(b)) # Çoğu Değer Doğrudur # Bir tür içeriğe sahipse, hemen hemen her değer True olarak değerlendirilir. # Boş diziler dışında tüm diziler True'dur. # 0 dışında herhangi bir sayı True'dur. # Boş olanlar dışında tüm liste, demet, küme ve sözlük True'dur. # bool("asdf") bool(9876) bool(["eşek", "köpek", "balık"]) # Bazı Değerler Yanlış # (), [], {}, "", 0 sayısı ve Yok değeri gibi boş değerler dışında False olarak değerlendirilen çok fazla değer yoktur.False değeri False olarak değerlendirilir. # bool(False) bool(None) bool(0) bool("") bool(()) bool([]) bool({}) # Fonksiyonlar bir Boole Döndürebilir # Bir Boole Değeri döndüren fonksiyonlar oluşturulabilir. def myFunction(): return True print(myFunction()) # Bir işlevin Boole yanıtına göre kod çalıştırılabilir. def myFunction(): return True if myFunction(): print("doğru") else: print("yanlış") # Python ayrıca, bir nesnenin belirli bir veri türünde olup olmadığını belirlemek için kullanılabilen isinstance() fonksiyonu gibi bir boolean değeri döndüren birçok yerleşik işleve sahiptir: # a = 250 print(isinstance(a, int)) a = "en güzel mevsim yazdır" print(isinstance(a, str)) print(29 > 9) print(33 == 5) print(21 < 3) print(bool("asdfg")) print(bool(3)) # Python Operatörleri # Operatörler, değişkenler ve değerler üzerinde işlem yapmak için kullanılır. print(90 + 34) # Python, operatörleri aşağıdaki gruplara ayırır: # Arithmetic operators Assignment operators Comparison operators Logical operators Identity operators Membership operators Bitwise operators # Python Arithmetic Operators # Aritmetik opetaörler, yaygın matematiksel işlemleri gerçekleştirmek için sayısal değerlerle birlikte kullanılır # Name Example Try it # + Addition x + y # - Subtraction x - y # * Multiplication x * y # / Division x / y # % Modulus x % y # ** Exponentiation x ** y # // Floor division x // y a = 11 b = 5 print(a + b) m = 6 n = 2 print(m - n) e = 6 f = 5 print(e * f) x = 80 y = 8 print(x / y) x = 10 y = 2 print(x % y) x = 3 y = 6 print(x**y) x = 18 y = 4 print(x // y) # Python Atama Operatörleri # Atama işleçleri, değişkenlere değer atamak için kullanılır s = 10 s a = 8 a += 2 print(a) x = 7 x -= 2 print(x) y = 9 y /= 5 print(y) x = 9 x %= 4 print(x) r = 15 r //= 7 print(r) x = 66 x **= 8 print(x) # Python Karşılaştırma Operatörleri # Karşılaştırma işleçleri iki değeri karşılaştırmak için kullanılır x = 22 y = 3 print(x == y) p = 6 r = 2 print(p != r) a = 11 b = 3 print(a > b) x = 6 y = 1 print(x < y) x = 4 y = 2 print(x >= y) a = 4 b = 3 print(a <= b) # Python Mantıksal Operatörler # Mantıksal işleçler, koşullu ifadeleri birleştirmek için kullanılır: "and, or, not" a = 3 print(a > 3 and a < 10) x = 2 print(x > 5 or x < 4) a = 6 print(not (a > 4 and a < 10)) # Python Kimlik Operatörleri # Kimlik fonksiyonları, nesneleri eşit olup olmadıklarını değil, aslında aynı nesne olup olmadıklarını ve aynı bellek konumuna sahip olup olmadıklarını karşılaştırmak için kullanılır a = ["kahve", "çay"] b = ["kahve", "çay"] c = a print(a is c) print(a is b) print(a == b) x = ["kivi", "çilek"] y = ["kivi", "çilek"] z = x print(x is not z) print(x is not y) print(x != y)
# ## Keşifçi Veri Analizi | Becerileri Pekiştirme # ![Iris-Dataset-Classification.png](attachment:dd860990-3e52-4faf-ac7d-664e107e0146.png) # **Kullanacağımız veri seti, her biri bir tür iris bitkisi olan 50 örnekten 3 sınıf içerir.** # Aşağıda ihtiyacımız doğrultusunda kullanacağımız kütüphaneleri yükleyelim. import numpy as np import seaborn as sns import pandas as pd # numpy kütüphanesi, bilimsel hesaplama ve veri analizi için kullanılan bir Python kütüphanesidir. # seaborn kütüphanesi, veri görselleştirme ve keşif amacıyla kullanılan bir Python kütüphanesidir. # pandas kütüphanesi, veri analizi ve manipülasyonu için kullanılan bir Python kütüphanesidir. # Veri çerçevemizi bulunduğumuz dizinden yükleyelim ve bir veri çerçevesi haline getirerek df değişkenine atayalım. (pd.read_csv(...csv)) df = pd.read_csv("/kaggle/input/iris-flower-dataset/IRIS.csv") # Dosya yolunu read_csv() fonksiyonu içine yazıyoruz. # Veri çerçevesinin ilk 5 gözlemini görüntüleyelim. df.head() # head() fonksiyonu, bir veri çerçevesinin veya bir Seri nesnesinin ilk birkaç satırını (varsayılan olarak 5 satır) görüntülemek için kullanılır. # Bu fonksiyon, bir veri kümesini hızlıca gözden geçirmek ve verilerin yapısını anlamak için kullanışlı bir araçtır. # Veri çerçevesinin kaç öznitelik ve kaç gözlemden oluştuğunu görüntüleyelim. df.shape # Veri çerçevesinin boyutunu (yani, kaç satır ve sütun olduğunu) anlamak için kullanılır. # Veri çerçevesindeki değişkenlerin hangi tipte olduğunu ve bellek kullanımını görüntüleyelim. df.info() # info() fonksiyonu bir pandas veri çerçevesinin veya bir pandas serisinin hakkında bilgi sağlar. # Bu fonksiyon, veri çerçevesindeki her sütunun ismini, her sütunda bulunan toplam veri sayısını, # veri tiplerini ve her sütunda eksik veri olup olmadığını verir. # Veri çerçevesindeki sayısal değişkenler için temel istatistik değerlerini görüntüleyelim. # Standart sapma ve ortalama değerlerden çıkarımda bulunarak hangi değişkenlerin ne kadar varyansa sahip olduğu hakkında fikir yürütelim. df.describe().T # describe() fonksiyonu, bir pandas veri çerçevesinin veya bir pandas serisinin istatistiksel özetini sağlar. # Bu fonksiyon, veri kümesindeki her sütunun sayısal özelliklerini, yani ortalama, standart sapma, minimum, maksimum, çeyreklikler, gibi istatistiksel bilgileri döndürür. # **Varyans, standart sapmanın karesine eşittir buna göre en büyük varyans petal_length'e, en küçük varyans ise sepal_width'e aittir.** # Veri çerçevesinde hangi öznitelikte kaç adet eksik değer olduğunu gözlemleyelim. df.isnull().sum() # df.isnull().sum() ifadesi, bir pandas veri çerçevesindeki her sütunda kaç tane eksik (NaN) değer olduğunu sayar. # df.isna().sum() kod bloğu da kullanılabilir. # Sayısal değişkenler arasında korelasyon olup olmadığını göstermek için korelasyon matrisi çizdirelim. Korelasyon katsayıları hakkında fikir yürütelim. # En güçlü pozitif ilişki hangi iki değişken arasındadır? df.corr() # df.corr() ifadesi, bir pandas veri çerçevesinin sütunları arasındaki korelasyon matrisini hesaplar. # Korelasyon matrisi, iki değişken arasındaki doğrusal ilişkinin şiddetini ve yönünü ölçer. # Bu matris, her sütunun diğer sütunlarla olan ilişkisini gösterir ve her bir eleman, iki sütun arasındaki korelasyon katsayısını ifade eder. # 1'e yakın bir korelasyon katsayısı, güçlü bir pozitif ilişkiyi gösterir. # -1'e yakın bir korelasyon katsayısı, güçlü bir negatif ilişkiyi gösterir. # 0'a yakın bir korelasyon katsayısı, iki değişken arasında bir ilişki olmadığını veya çok zayıf bir ilişki olduğunu gösterir. # **Pozitif korelasyon, iki değişken arasında doğrusal bir ilişkinin olduğunu ve bir değişkenin artışının diğer değişkenin artışı ile ilişkili olduğunu gösterir. Negatif korelasyon ise iki değişken arasında ters orantılı bir ilişki olduğunu ve bir değişkenin artışının diğer değişkenin azalışı ile ilişkili olduğunu gösterir.** # **Tablodaki verilere göre 1'e en yakın ilişki yani en güçlü pozitif ilişki "petal_length" ile "petal_width" arasındadır.** # Korelasyon katsayılarını daha iyi okuyabilmek için ısı haritası çizdirelim. corr = df.corr() sns.heatmap( corr, annot=True, xticklabels=corr.columns.values, yticklabels=corr.columns.values ) # Veri çerçevemizin hedef değişkeninin "variety" benzersiz değerlerini görüntüleyelim. df["species"].unique() # unique() fonksiyonu, bir veri setindeki benzersiz (tekrar etmeyen) değerleri bulmak için kullanılır. # Bu fonksiyon, bir pandas Serisi veya NumPy dizisi üzerinde çağrılabilir ve benzersiz değerlerin bir listesini döndürür. # Veri çerçevemizin hedef değişkeninin "variety" benzersiz kaç adet değer içerdiğini görüntüleyelim. df["species"].nunique() # nunique() fonksiyonu, bir pandas DataFrame veya Serisi üzerindeki benzersiz (tekrar etmeyen) değerlerin sayısını hesaplamak için kullanılır. # Bu fonksiyon, bir pandas DataFrame veya Serisi üzerinde çağrılabilir ve benzersiz değerlerin sayısını (tekrar etmeyen değerlerin toplam sayısı) döndürür. # len(df["species"].unique()) alternatif kod bloğu olabilir. # Veri çerçevesindeki sepal.width ve sepal.length değişkenlerinin sürekli olduğunu görüyoruz. Bu iki sürekli veriyi görselleştirmek için önce scatterplot kullanalım. sns.scatterplot(x="sepal_length", y="sepal_width", data=df, color="green") # scatterplot() iki değişken arasındaki ilişkiyi görselleştirmek için kullanılan bir grafik türüdür. # Aynı iki veriyi daha farklı bir açıdan frekanslarıyla incelemek için jointplot kullanarak görselleştirelim. sns.jointplot(x="sepal_length", y="sepal_width", data=df, color="green") # jointplot() fonksiyonu, iki değişken arasındaki ilişkiyi görselleştirmek için kullanılan bir seaborn kütüphanesi fonksiyonudur. # Aynı iki veriyi scatterplot ile tekrardan görselleştirelim fakat bu sefer "variety" parametresi ile hedef değişkenine göre kırdıralım. # 3 farklı renk arasında sepal değişkenleriyle bir kümeleme yapılabilir mi? Ne kadar ayırt edilebilir bunun üzerine düşünelim. sns.scatterplot(x="sepal_length", y="sepal_width", hue="species", data=df) # **Bu şekilde çizilen grafikte, "setosa" çeşidi genellikle diğer çeşitlerden daha ayırt edilebilirken, "versicolor" ve "virginica" çeşitleri arasındaki fark daha az belirgindir. Bu nedenle birbirine yakın veriler olduğundan kümeleme işlemi çok uygun olmaz.** # value_counts() fonksiyonu ile veri çerçevemizin ne kadar dengeli dağıldığını sorgulayalım. df.value_counts() # value_counts() fonksiyonu, pandas kütüphanesinde bir pandas Serisi'nin tekil (unique) değerlerini ve her bir değerin kaç kez tekrarlandığını saymak için kullanılır. # **Genel olarak, her sınıf kabaca aynı sayıda gözleme sahipse, bir veri kümesinin dengeli olduğu kabul edilir. Verilen tabloda dengeli dağılıma sahip diyebiliriz.** # Keman grafiği çizdirerek sepal.width değişkeninin dağılımını inceleyin. # Söz konusu dağılım bizim için ne ifade ediyor, normal bir dağılım olduğunu söyleyebilir miyiz? sns.violinplot(y="sepal_width", data=df, color="green") # violinplot() fonksiyonu, seaborn kütüphanesi ile çizdirilen bir grafik türüdür ve bir veri setinin dağılımını gösterir. # Eğrinin maksimum noktası aritmetik ortalamadır ve eğri aritmetik ortalamaya göre simetriktir. # **Grafiği incelediğimizde, sepal.width değişkeninin normal bir dağılıma sahip olduğu söylenebilir.Normal dağılıma sahip veri setleri, bir "çan şekli" oluşturacak şekilde simetrik olarak dağılırlar. Görüldüğü gibi bu dosyadaki veriler çan şeklinde simetrik olarak dağılmışlardır.** # Daha iyi anlayabilmek için sepal.width üzerine bir distplot çizdirelim. sns.distplot(df["sepal_width"], bins=13, color="green") # Seaborn kütüphanesindeki distplot() fonksiyonu, bir veri setinin dağılımını görselleştirmek için kullanılır. Bu fonksiyon, bir histogram ile birlikte yoğunluk grafiğini (kernel density plot) gösterir. # Ayrıca fonksiyon veri setindeki aykırı değerleri ve verilerin simetrik olup olmadığını da görselleştirerek analiz etmenizi sağlar. # Üç çiçek türü için üç farklı keman grafiğini sepal.length değişkeninin dağılımı üzerine tek bir satır ile görselleştirelim. sns.violinplot(y="sepal_length", x="species", data=df) # Hangi çiçek türünden kaçar adet gözlem barındırıyor veri çerçevemiz? # 50 x 3 olduğunu ve dengeli olduğunu value_counts ile zaten görmüştük, ancak bunu görsel olarak ifade etmek için sns.countplot() fonksiyonuna variety parametresini vereilm. sns.countplot(x="species", data=df) # Seaborn kütüphanesindeki countplot() fonksiyonu, kategorik verilerin sıklığını görselleştirmek için kullanılır. # Bu fonksiyon, her bir kategori için kaç tane veri noktası olduğunu sayar ve bu sayıları bir çubuk grafiği şeklinde gösterir. # sepal.length ve sepal.width değişkenlerini sns.jointplot ile görselleştirelim, dağılımı ve dağılımın frekansı yüksek olduğu bölgelerini inceleyelim. sns.jointplot(x="sepal_length", y="sepal_width", data=df, color="green") # Seaborn kütüphanesindeki jointplot() fonksiyonu, iki farklı sayısal değişken arasındaki ilişkiyi görselleştirmek için kullanılır. Bu fonksiyon, iki değişkenin dağılımını gösteren histogramlarla birlikte, iki değişken arasındaki ilişkiyi gösteren bir scatter plot veya bir hex plot şeklinde birleştirir. # Mod bir veride en çok tekrar eden değerdir. Tekrar eden sayısı da frekansı verir. # **Tablodaki verilere göre dağılımın yoğun olduğu yerlerde frekansda yüksektir.** # Bir önceki hücrede yapmış olduğumuz görselleştirmeye kind = "kde" parametresini ekleyelim. Böylelikle dağılımın noktalı gösterimden çıkıp yoğunluk odaklı bir görselleştirmeye dönüştüğünü görmüş olacağız. sns.jointplot(x="sepal_length", y="sepal_width", data=df, kind="kde", color="green") # kind="kde" parametresi, Seaborn kütüphanesindeki jointplot() fonksiyonunda kullanılan bir parametredir. # Bu parametre, iki değişken arasındaki ilişkiyi göstermek için kullanılan grafik türünü belirler ve kernel yoğunluk tahminini (KDE) kullanarak bir yoğunluk çizgisi çizer. # scatterplot ile petal.length ve petal.width değişkenlerinin dağılımlarını çizdirelim. sns.scatterplot(x="petal_length", y="petal_width", data=df, color="green") # Aynı görselleştirmeye hue = "variety" parametresini ekleyerek 3. bir boyut verelim. sns.scatterplot(x="petal_length", y="petal_width", hue="species", data=df) # sns.lmplot() görselleştirmesini petal.length ve petal.width değişkenleriyle implemente edelim. Petal length ile petal width arasında ne tür bir ilişki var ve bu ilişki güçlü müdür? sorusunu yanıtlayalım. sns.lmplot(x="petal_length", y="petal_width", data=df) # lmplot() fonksiyonu, seaborn kütüphanesinin bir parçasıdır ve veri setindeki iki değişken arasındaki ilişkiyi görselleştirmek için kullanılır. # Fonksiyon, veri noktalarını bir scatter plot olarak çizer ve ayrıca bu noktalar arasındaki doğrusal regresyon çizgisini hesaplar ve görselleştirir. # **Bu görselleştirme, petal length ile petal width arasında pozitif ve güçlü bir ilişki olduğunu göstermektedir. Yani, bir çiçeğin petal length'i arttıkça petal width'i de artmaktadır. Bu ilişki, genellikle Pearson korelasyon katsayısı ile ölçülen korelasyonun yüksek olduğu bir ilişkidir.** # Bu sorunun yanıtını pekiştirmek için iki değişken arasında korelasyon katsayısını yazdıralım. df.corr()["petal_length"]["petal_width"] # Petal Length ile Sepal Length değerlerini toplayarak yeni bir total length özniteliği oluşturalım. df["total_length"] = df["petal_length"] + df["sepal_length"] # total.length'in ortalama değerini yazdıralım. df["total_length"].mean() # mean() bir sayı dizisindeki sayıların aritmetik ortalamasını hesaplar. # Aritmetik ortalama, bir sayı dizisindeki tüm sayıların toplamının sayı dizisinin uzunluğuna bölünmesiyle elde edilir. # total.length'in standart sapma değerini yazdıralım. df["total_length"].std() # std() (standart sapma), bir sayı dizisinin yayılımını ölçmek için kullanılan bir istatistiksel fonksiyondur. # Standart sapma, bir sayı dizisindeki değerlerin ortalama etrafındaki dağılımının ölçüsüdür. # sepal.length'in maksimum değerini yazdıralım. df["sepal_length"].max() # max() bir veri kümesindeki en büyük değeri döndüren bir fonksiyondur. # sepal.length'i 5.5'den büyük ve türü setosa olan gözlemleri yazdıralım. df[(df["species"] == "Iris-setosa") & (df["sepal_length"] > 5.5)] # petal.length'i 5'den küçük ve türü virginica olan gözlemlerin sadece sepal.length ve sepal.width değişkenlerini ve değerlerini yazdıralım. df[(df["petal_length"] < 5) & (df["species"] == "Iris-virginica")].filter( ["sepal_length", "sepal_width"] ) # Pandas kütüphanesi içinde yer alan filter() fonksiyonu, belirtilen koşullara göre veri çerçevesinin sütunlarını filtrelemeye yarayan bir fonksiyondur. # Özellikle büyük veri setlerinde sadece belirli sütunlarla çalışmak istendiğinde veya bazı sütunlar gereksiz olduğunda kullanışlıdır. # Hedef değişkenimiz variety'e göre bir gruplama işlemi yapalım değişken değerlerimizin ortalamasını görüntüleyelim. df.groupby("species").mean() # Pandas kütüphanesi içinde yer alan groupby() fonksiyonu, belirli bir sütuna veya sütunlara göre verileri gruplamak ve bu gruplar üzerinde işlemler yapmak için kullanılır. # Hedef değişkenimiz variety'e göre gruplama işlemi yaparak sadece petal.length değişkenimizin standart sapma değerlerini yazdıralım. df.groupby(["species"]).describe()["petal_length"] # Transpoz yapılarakta --> "df.groupby(["species"]).describe()["petal_length"].T "görüntülenebilir.
import cv2 import shutil import os import time import argparse import glob import unicodedata import os import subprocess import pandas as pd # def is_english_only(string): # for s in string: # cat = unicodedata.category(s) # if not cat in ['Ll', 'Lu', 'Nd', 'Po', 'Pd', 'Zs']: # return False # return True # df = pd.read_parquet('/kaggle/input/diffusiondb-metadata/metadata-large.parquet') # print(df.shape) # df['prompt'] = df['prompt'].str.strip() # df.drop_duplicates(subset='prompt', inplace=True) # print(df.shape) # # df = df[(df['width'] == 512) & (df['height'] == 512)] # # print(df.shape) # df['prompt'] = df['prompt'].str.strip() # print(df.shape) # df = df[df['prompt'].map(lambda x: len(x.split())) >= 5] # print(df.shape) # df = df[~df['prompt'].str.contains('^(?:\s*|NULL|null|NaN)$', na=True)] # print(df.shape) # df = df[df['prompt'].apply(is_english_only)] # print(df.shape) # df['head'] = df['prompt'].str[:15] # df['tail'] = df['prompt'].str[-15:] # print(df.shape) # df.drop_duplicates(subset='head', inplace=True) # print(df.shape) # df.drop_duplicates(subset='prompt', inplace=True) # print(df.shape) # df.reset_index(drop=True, inplace=True) # print(df.shape) # new_df = pd.DataFrame(columns=df.columns) # all_img_num = 0 # for idx in range(1, 401): # print(idx,'.....................................................') # subprocess.check_output("wget -q https://huggingface.co/datasets/poloclub/diffusiondb/resolve/main/diffusiondb-large-part-1/part-{0}.zip -O part-{0}.zip > /dev/null".format(str(idx).zfill(6)), shell=True) # subprocess.check_output('unzip part-{0}.zip -d /kaggle/working/{0}/ > /dev/null'.format(str(idx).zfill(6)), shell=True) # subprocess.check_output('rm part-{0}.zip'.format(str(idx).zfill(6)), shell=True) # for path in glob.glob('./{0}/*.webp'.format(str(idx).zfill(6))): # file_name = path.split('/')[-1] # if file_name in df['image_name'].values: # # 从原始DataFrame中提取与文件名匹配的行 # matching_row = df[df['image_name'] == file_name] # matching_row['image_name'] = path.split('/')[-2]+'/'+file_name # # 将提取的行添加到新的DataFrame中 # new_df = new_df.append(matching_row, ignore_index=True) # else: # os.unlink(path) # all_img_num += len(glob.glob('/kaggle/working/{0}/*.webp'.format(str(idx).zfill(6)))) # print(all_img_num) # subprocess.check_output('zip -r {0}.zip {0} > /dev/null'.format(str(idx).zfill(6)), shell=True) # subprocess.check_output('rm -rf {0}'.format(str(idx).zfill(6)), shell=True) # new_df = new_df[['image_name', 'prompt']] # new_df # new_df.to_csv('large_data_52W.csv')
# Project 3 - Isaak Cesar Bocanegra-Estrada import numpy as np # linear algebra import matplotlib.pyplot as plt # plotting import seaborn as sns import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session dataset = pd.read_csv("/kaggle/input/dataset-kidney-stone/dataset-kidney-stone.csv") # Identify the numerical features num_features = dataset.select_dtypes(include=[np.number]).columns.tolist() # Loop through each numerical feature and create a distribution plot for feature in num_features: sns.displot(dataset[feature], kde=False) # Add vertical lines for mean and median mean = np.mean(dataset[feature]) median = np.median(dataset[feature]) plt.axvline(mean, color="r", linestyle="dashed", linewidth=2) plt.axvline(median, color="g", linestyle="dashed", linewidth=2) # Set the plot labels plt.xlabel(feature) plt.ylabel("Frequency") plt.title("Distribution of " + feature) if "Unnamed" in feature: dataset = dataset.drop(feature, axis=1) # Display the plot plt.show() from scipy import stats # Identify the numerical features num_features = dataset.select_dtypes(include=[np.number]).columns.tolist() # Loop through each numerical feature and remove outliers using z-score method for feature in num_features: z = np.abs(stats.zscore(dataset[feature])) threshold = 3 dataset = dataset[(z < threshold)] # Display the updated dataset without outliers print(dataset.head()) from sklearn.preprocessing import StandardScaler from sklearn import preprocessing # Prepare the data X = dataset.iloc[:, :-1] y = dataset.iloc[:, -1] le = preprocessing.LabelEncoder() y = le.fit_transform(y) # Display the updated standardized dataset print(dataset.head()) from sklearn.model_selection import train_test_split, RandomizedSearchCV from sklearn.metrics import ( accuracy_score, mean_squared_error, r2_score, mean_absolute_error, ) import xgboost as xgb # Split the dataset into training and testing sets using an 80:20 ratio train_data, test_data, train_target, test_target = train_test_split( X, y, test_size=0.2, random_state=42 ) # Train an XGBoost model on the training data params = {"objective": "binary:logistic", "eval_metric": "logloss"} dtrain = xgb.DMatrix(train_data, label=train_target) bst = xgb.train(params, dtrain) # Use the XGBoost model to make predictions on the testing data dtest = xgb.DMatrix(test_data) y_pred = bst.predict(dtest) # Evaluate the performance of the XGBoost model on the testing data accuracy = accuracy_score(test_target, y_pred.round()) mse = mean_squared_error(test_target, y_pred) r2 = r2_score(test_target, y_pred) mae = mean_absolute_error(test_target, y_pred) print("Accuracy: {:.2f}%".format(accuracy * 100)) print("Mean Squared Error: {:.4f}".format(mse)) print("R-Squared Score: {:.4f}".format(r2)) print("Mean Absolute Error: {:.4f}".format(mae)) from sklearn.metrics import roc_curve, roc_auc_score from sklearn.linear_model import LogisticRegression # Train a logistic regression model lr_model = LogisticRegression(random_state=42) lr_model.fit(train_data, train_target) # Generate predicted probabilities for the testing data test_pred_prob = lr_model.predict_proba(test_data)[:, 1] # Calculate ROC curve and AUC score fpr, tpr, thresholds = roc_curve(test_target, test_pred_prob) auc_score = roc_auc_score(test_target, test_pred_prob) # Plot ROC curve plt.plot(fpr, tpr, label="ROC curve (area = %0.2f)" % auc_score) plt.plot([0, 1], [0, 1], "k--") plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") plt.title("Receiver Operating Characteristic (ROC) Curve") plt.legend(loc="lower right") plt.show() from sklearn.model_selection import RandomizedSearchCV # Define the hyperparameter grid to search over hyperparameters = { "max_depth": range(1, 10), "min_child_weight": [1, 3, 5], "subsample": [0.6, 0.8, 1.0], "colsample_bytree": [0.6, 0.8, 1.0], "gamma": [0, 0.1, 0.2, 0.3], "learning_rate": np.linspace(0.01, 0.5, 100), "n_estimators": range(50, 200, 10), } xgb_model = xgb.XGBRegressor(objective="reg:squarederror") # Create a random search object random_cv = RandomizedSearchCV( estimator=xgb_model, param_distributions=hyperparameters, cv=5, n_iter=50, n_jobs=-1, ) # Fit the random search object to the training data random_cv.fit(train_data, train_target) # Print the best hyperparameters found print(random_cv.best_params_) best_model = xgb.XGBClassifier(**random_cv.best_params_) best_model.fit(X, y) # Make predictions on the entire dataset y_pred = best_model.predict(X) # Evaluate the performance of the XGBoost model on the testing data accuracy = accuracy_score(y, y_pred.round()) mse = mean_squared_error(y, y_pred) r2 = r2_score(y, y_pred) mae = mean_absolute_error(y, y_pred) print("\n") print("Accuracy: {:.2f}%".format(accuracy * 100)) print("Mean Squared Error: {:.4f}".format(mse)) print("R-Squared Score: {:.4f}".format(r2)) print("Mean Absolute Error: {:.4f}".format(mae)) print("\nAnother ROC Curve\n") y_pred_proba = best_model.predict_proba(test_data)[:, 1] # predicted probabilities roc_auc = roc_auc_score(test_target, y_pred_proba) fpr, tpr, thresholds = roc_curve(test_target, y_pred_proba) plt.figure() plt.plot(fpr, tpr, label="XGBoost (area = %0.2f)" % roc_auc) plt.plot([0, 2], [0, 2], "r--") plt.xlim([0, 2]) plt.ylim([0, 2]) plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") plt.title("Receiver Operating Characteristic") plt.legend(loc="lower right") plt.show() # The conclusions drawn here, as shown by accuracy of the data after # going the XGBoost method, is that we can boost accuracy, by up to 20% in this case # and get even more accurate data when using optimal hyperparameters # Essentially, the hyperparameters can make all the difference when predicting # data, as using the optimal ones can significantly improve the model's accuracy. # The random search CV's usage to find optimal parameters was incredibly helpful, # and should be used in future analysis, as it can create a much more accurate model
import os os.listdir("../input/handwritten-digits") loc0 = "../input/handwritten-digits/digit_0" loc1 = "../input/handwritten-digits/digit_1" loc2 = "../input/handwritten-digits/digit_2" loc3 = "../input/handwritten-digits/digit_3" loc4 = "../input/handwritten-digits/digit_4" loc5 = "../input/handwritten-digits/digit_5" loc6 = "../input/handwritten-digits/digit_6" loc7 = "../input/handwritten-digits/digit_7" loc8 = "../input/handwritten-digits/digit_8" loc9 = "../input/handwritten-digits/digit_9" from tqdm import tqdm import cv2 features = [] for i in tqdm(os.listdir(loc0)): f = cv2.imread(os.path.join(loc0, i), 0) fr = cv2.resize(f, (50, 50)) features.append(fr) for i in tqdm(os.listdir(loc1)): f = cv2.imread(os.path.join(loc1, i), 0) fr = cv2.resize(f, (50, 50)) features.append(fr) for i in tqdm(os.listdir(loc2)): f = cv2.imread(os.path.join(loc2, i), 0) fr = cv2.resize(f, (50, 50)) features.append(fr) for i in tqdm(os.listdir(loc3)): f = cv2.imread(os.path.join(loc3, i), 0) fr = cv2.resize(f, (50, 50)) features.append(fr) for i in tqdm(os.listdir(loc4)): f = cv2.imread(os.path.join(loc4, i), 0) fr = cv2.resize(f, (50, 50)) features.append(fr) for i in tqdm(os.listdir(loc5)): f = cv2.imread(os.path.join(loc5, i), 0) fr = cv2.resize(f, (50, 50)) features.append(fr) for i in tqdm(os.listdir(loc6)): f = cv2.imread(os.path.join(loc6, i), 0) fr = cv2.resize(f, (50, 50)) features.append(fr) for i in tqdm(os.listdir(loc7)): f = cv2.imread(os.path.join(loc7, i), 0) fr = cv2.resize(f, (50, 50)) features.append(fr) for i in tqdm(os.listdir(loc8)): f = cv2.imread(os.path.join(loc8, i), 0) fr = cv2.resize(f, (50, 50)) features.append(fr) for i in tqdm(os.listdir(loc9)): f = cv2.imread(os.path.join(loc9, i), 0) fr = cv2.resize(f, (50, 50)) features.append(fr) import numpy as np X = np.array(features) X.shape labels = [] for i in tqdm(os.listdir(loc0)): labels.append(0) for i in tqdm(os.listdir(loc1)): labels.append(1) for i in tqdm(os.listdir(loc2)): labels.append(2) for i in tqdm(os.listdir(loc3)): labels.append(3) for i in tqdm(os.listdir(loc4)): labels.append(4) for i in tqdm(os.listdir(loc5)): labels.append(5) for i in tqdm(os.listdir(loc6)): labels.append(6) for i in tqdm(os.listdir(loc7)): labels.append(7) for i in tqdm(os.listdir(loc8)): labels.append(8) for i in tqdm(os.listdir(loc9)): labels.append(9) Y = np.array(labels) Y.shape import pandas as pd ft = pd.DataFrame(X.reshape(6837, 2500)) lt = pd.DataFrame(Y.reshape(6837, 1), columns=["Labels"]) digits = pd.concat((ft, lt), axis="columns") digits.to_csv("digits.csv") import matplotlib.pyplot as plt plt.imshow(X[6]) plt.show() X = ft.values Y = lt.values from sklearn.model_selection import train_test_split xtrain, xtest, ytrain, ytest = train_test_split(X, Y) from sklearn.ensemble import RandomForestClassifier rmodel = RandomForestClassifier(max_depth=22) rmodel.fit(xtrain, ytrain) print(rmodel.score(xtrain, ytrain)) print(rmodel.score(xtest, ytest))
import torch import matplotlib.pyplot as plt import numpy as np # Add path to load context import sys sys.path.insert(1, "/kaggle/input/data-wp5-cifar10-context") # Load data GROUPS = torch.load("/kaggle/input/data-wp5-cifar10-context/groups.pt") CONTEXT = torch.load("/kaggle/input/data-wp5-cifar10-context/context.pt") # Map data, keep training GROUPS = np.array(GROUPS) CLASS = np.zeros((4, len(CONTEXT.train_dataset))).astype(bool) for index, (_, _, id) in enumerate(CONTEXT.train_dataset): CLASS[:, index] = GROUPS[:, id] # Display for i in range(4): plt.scatter(np.arange(len(CLASS[i])), CLASS[i] * 0.2 + i * 0.5, s=0.0002) plt.yticks( [*[i * 0.5 + 0.2 for i in range(4)], *[i * 0.5 for i in range(4)]], [ *[f"Group{i} \n count: {np.sum(CLASS[i])}" for i in range(4)], *["not in this group" for i in range(4)], ], ) plt.show() scoresList = [(0, 0), (1, 2), (3, 5), (6, 20)] plt.pie( np.sum(CLASS, axis=1), labels=[ f"Group {i}\n count: {np.sum(CLASS[i])}\n prop: {round(np.sum(CLASS[i])/400,2)}%\n forgetscore range: {scoresList[i]}" for i in range(4) ], labeldistance=1.4, ) plt.show()
# By Astitva Prakash (20301432) # B. Tech CSE-G import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC from sklearn.metrics import ( accuracy_score, classification_report, roc_curve, confusion_matrix, ) import warnings warnings.filterwarnings("ignore") # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session data = "/kaggle/input/pulsar-star/pulsar_star.csv" df = pd.read_csv(data) # ## 1. Exploratory Data Analysis df.shape col_names = df.columns df.columns = df.columns.str.strip() df.columns = [ "IP Mean", "IP SD", "IP Kurtosis", "IP Skewness", "DM-SNR Mean", "DM-SNR SD", "DM-SNR Kurtosis", "DM-SNR Skewness", "target", ] df["target"].value_counts() / np.float64(len(df)) df.info() df.isnull().sum() # **Data Summary** # * 8 continuous variables, 1 discrete variable # * Discrete value is `target` # * There are no missing values # ### Outliers among numerical values round(df.describe(), 2) plt.figure(figsize=(24, 20)) plt.subplot(4, 2, 1) fig = df.boxplot(column="IP Mean") fig.set_title("") fig.set_ylabel("IP Mean") plt.subplot(4, 2, 2) fig = df.boxplot(column="IP SD") fig.set_title("") fig.set_ylabel("IP SD") plt.subplot(4, 2, 3) fig = df.boxplot(column="IP Kurtosis") fig.set_title("") fig.set_ylabel("IP Kurtosis") plt.subplot(4, 2, 4) fig = df.boxplot(column="IP Skewness") fig.set_title("") fig.set_ylabel("IP Skewness") plt.subplot(4, 2, 5) fig = df.boxplot(column="DM-SNR Mean") fig.set_title("") fig.set_ylabel("DM-SNR Mean") plt.subplot(4, 2, 6) fig = df.boxplot(column="DM-SNR SD") fig.set_title("") fig.set_ylabel("DM-SNR SD") plt.subplot(4, 2, 7) fig = df.boxplot(column="DM-SNR Kurtosis") fig.set_title("") fig.set_ylabel("DM-SNR Kurtosis") plt.subplot(4, 2, 8) fig = df.boxplot(column="DM-SNR Skewness") fig.set_title("") fig.set_ylabel("DM-SNR Skewness") # **Distribution of Variables** # We check if the distribution is normal or skewed plt.figure(figsize=(24, 20)) plt.subplot(4, 2, 1) fig = df["IP Mean"].hist(bins=20) fig.set_xlabel("IP Mean") fig.set_ylabel("Number of pulsar stars") plt.subplot(4, 2, 2) fig = df["IP SD"].hist(bins=20) fig.set_xlabel("IP SD") fig.set_ylabel("Number of pulsar stars") plt.subplot(4, 2, 3) fig = df["IP Kurtosis"].hist(bins=20) fig.set_xlabel("IP Kurtosis") fig.set_ylabel("Number of pulsar stars") plt.subplot(4, 2, 4) fig = df["IP Skewness"].hist(bins=20) fig.set_xlabel("IP Skewness") fig.set_ylabel("Number of pulsar stars") plt.subplot(4, 2, 5) fig = df["DM-SNR Mean"].hist(bins=20) fig.set_xlabel("DM-SNR Mean") fig.set_ylabel("Number of pulsar stars") plt.subplot(4, 2, 6) fig = df["DM-SNR SD"].hist(bins=20) fig.set_xlabel("DM-SNR SD") fig.set_ylabel("Number of pulsar stars") plt.subplot(4, 2, 7) fig = df["DM-SNR Kurtosis"].hist(bins=20) fig.set_xlabel("DM-SNR Kurtosis") fig.set_ylabel("Number of pulsar stars") plt.subplot(4, 2, 8) fig = df["DM-SNR Skewness"].hist(bins=20) fig.set_xlabel("DM-SNR Skewness") fig.set_ylabel("Number of pulsar stars") # All continuous variables seem skewed. # ## Declaring vectors and targets for training and testing X = df.drop("target", axis=1) y = df["target"] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) X_train.shape, X_test.shape cols = X_train.columns scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) X_train = pd.DataFrame(X_train, columns=[cols]) X_test = pd.DataFrame(X_test, columns=[cols]) X_train.describe() # ## Running classification with SVM svc = SVC() svc.fit(X_train, y_train) y_pred = svc.predict(X_test) print( "Model Accuracy score with default parameters: {0:0.4f}".format( accuracy_score(y_test, y_pred) ) ) # We should attempt to modify hyperparameters svc = SVC(C=10.0) svc.fit(X_train, y_train) y_pred = svc.predict(X_test) print("Model accuracy score with C=10: {0:0.4f}".format(accuracy_score(y_test, y_pred))) # ## Confusion Matrix and Classification Metrics cm = confusion_matrix(y_test, y_pred) cmat = pd.DataFrame( data=cm, columns=["True Positive", "True Negative"], index=["Predicted Positive", "Predicted Negative"], ) sns.heatmap(cmat, annot=True, fmt="d", cmap="YlGnBu") print(classification_report(y_test, y_pred)) TP = cm[0, 0] TN = cm[1, 1] FP = cm[0, 1] FN = cm[1, 0] classification_accuracy = (TP + TN) / float(TP + TN + FP + FN) classification_error = (FP + FN) / float(TP + TN + FP + FN) print("Classification accuracy: {0:0.4f}".format(classification_accuracy)) print("Classification error: {0:0.4f}".format(classification_error)) precision = TP / float(TP + FP) recall = TP / float(TP + FN) true_positive_rate = TP / float(TP + FN) false_positive_rate = FP / float(FP + TN) specificity = TN / (TN + FP) f1 = 2 * (precision * recall) / (precision + recall) mcc = ((TP * TN) - (FP * FN)) / np.sqrt((TP + FP) * (TP + FN) * (TN + FP) * (TN + FN)) print("Precision: {0:0.4f}".format(precision)) print("Recall: {0:0.4f}".format(recall)) print("TRP: {0:0.4f}".format(true_positive_rate)) print("FPR: {0:0.4f}".format(false_positive_rate)) print("Specificity: {0:0.4f}".format(specificity)) print("F1-Score: {0:0.4f}".format(f1)) print("MCC: {0:0.4f}".format(mcc)) fpr, tpr, thresholds = roc_curve(y_test, y_pred) plt.figure(figsize=(6, 4)) plt.plot(fpr, tpr, linewidth=2) plt.plot([0, 1], [0, 1], "k--") plt.rcParams["font.size"] = 12 plt.title("ROC curve for Predicting a Pulsar Star classifier") plt.xlabel("False Positive Rate (1 - Specificity)") plt.ylabel("True Positive Rate (Sensitivity)") plt.show()
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import copy from shapely.geometry import shape, GeometryCollection, Polygon, MultiPolygon from shapely.affinity import affine_transform from PIL import Image, ImageOps import nudged import numpy as np from skimage.morphology import convex_hull_image import matplotlib.pyplot as plt import json import plotly.graph_objs as go # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os paths = [] for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: paths.append(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session site = "5cd56b6ae2acfd2d33b59ccb" floor = "F4" geojson_file = ( "/kaggle/input/indoor-location-navigation/metadata/%s/%s/geojson_map.json" % (site, floor) ) infos_file = ( "/kaggle/input/indoor-location-navigation/metadata/%s/%s/floor_info.json" % (site, floor) ) image_file = ( "/kaggle/input/indoor-location-navigation/metadata/%s/%s/floor_image.png" % (site, floor) ) image = Image.open(image_file) with open(infos_file, "rb") as f: infos = json.load(f) with open(geojson_file, "rb") as f: geojson = json.load(f) image def extract_coords_from_polygon(polygon): coords = [] if type(polygon) == MultiPolygon: polygons = polygon.geoms else: polygons = [polygon] for polygon in polygons: x, y = polygon.exterior.xy coords.append((np.array(x), np.array(y))) for interior in polygon.interiors: x, y = interior.xy coords.append((np.array(x), np.array(y))) return coords def get_bounding_box(x, y): x_min = min(x) y_min = min(y) x_max = max(x) y_max = max(y) return np.array([[x_min, y_min], [x_min, y_max], [x_max, y_min], [x_max, y_max]]) def plot_shape(shapes): if type(shapes) == Polygon: shapes = [shapes] for shape in shapes: for interior in shape.interiors: plt.plot(*interior.xy) plt.plot(*shape.exterior.xy) def extract_geometries(geojson): # Extract floor plan geometry (First geometry) floor = copy.deepcopy(geojson) floor["features"] = [floor["features"][0]] floor_layout = GeometryCollection( [shape(feature["geometry"]).buffer(0) for feature in floor["features"]] )[0] # Extract shops geometry (remaining ones) shops = copy.deepcopy(geojson) shops["features"] = shops["features"][1:] shops_geometry = GeometryCollection( [shape(feature["geometry"]).buffer(0.1) for feature in shops["features"]] ) shops_geometry # Geometry differences to get corridor (floor layout - shops) corridor = copy.deepcopy(floor_layout) for shop in shops_geometry: corridor = corridor.difference(shop) return floor_layout, corridor def extract_image_bouding_box(image): # Flip and convert to black and white gray_image = ImageOps.flip(image).convert("LA") bw_image = np.array(gray_image.point(lambda p: p > 251 and 255)) > 0 bw_image = Image.fromarray(bw_image.any(axis=2) == True) # Get convex hull ch_image = convex_hull_image(np.array(bw_image)) # Transform to coordinates image_y, image_x = np.where(ch_image == True) bounding_box = get_bounding_box(image_x, image_y) return bounding_box def extrat_geojson_bounding_box(floor_layout): # Get convex hull ch_geojson = floor_layout.convex_hull coords = [coord for coord in ch_geojson.exterior.coords] geojson_x = [coord[0] for coord in coords] geojson_y = [coord[1] for coord in coords] bounding_box = get_bounding_box(geojson_x, geojson_y) return bounding_box def find_translation(points_a, points_b): """ Find best translation between 2 sets of points Map right coefficients for: https://shapely.readthedocs.io/en/stable/manual.html#shapely.affinity.affine_transform """ trans = nudged.estimate(points_a, points_b) matrix_cooefs = np.ravel(trans.get_matrix()) trans_coeffs = [ matrix_cooefs[0], matrix_cooefs[1], matrix_cooefs[3], matrix_cooefs[4], matrix_cooefs[2], matrix_cooefs[5], ] return trans_coeffs def georeferencing(image, geojson, infos): """ :param image: raw PIL image object :param geojson: dict, geojson format :param infos: dict, plan infos """ # Extract floor layout and corridor geometries from geojson (shapely Polygon/MultiPolygon) floor_layout, corridor = extract_geometries(geojson) # Extract bounding boxes both from image and geojson (Using convexhull) image_bounding_box = extract_image_bouding_box(image) geojson_bounding_box = extrat_geojson_bounding_box(floor_layout) # Find best translation from geojson to image referential translation_coeffs = find_translation(geojson_bounding_box, image_bounding_box) # Convert to image size scale translated_corridor = affine_transform(corridor, translation_coeffs) # Convert to waypoints scale (using ratio between waypoint scale and image scale) x_ratio = infos["map_info"]["width"] / image.size[0] y_ratio = infos["map_info"]["height"] / image.size[1] waypoint_translation_coeffs = [x_ratio, 0, 0, y_ratio, 0, 0] translated_corridor = affine_transform( translated_corridor, waypoint_translation_coeffs ) return translated_corridor geometry = georeferencing(image, geojson, infos) plot_shape(geometry) coords = extract_coords_from_polygon(geometry) fig = go.Figure() fig.update_layout( images=[ go.layout.Image( source=image, xref="x", yref="y", x=0, y=infos["map_info"]["height"], sizex=infos["map_info"]["width"], sizey=infos["map_info"]["height"], sizing="contain", opacity=1, layer="below", ) ] ) for coord in coords: x, y = coord fig.add_trace( go.Scattergl( x=x, y=y, ) ) # configure fig.update_xaxes(autorange=False, range=[0, infos["map_info"]["width"]]) fig.update_yaxes( autorange=False, range=[0, infos["map_info"]["height"]], scaleanchor="x", scaleratio=1, ) fig.update_layout( title=go.layout.Title( text="No title.", xref="paper", x=0, ), autosize=True, width=900, height=200 + 900 * infos["map_info"]["height"] / infos["map_info"]["width"], template="plotly_white", ) fig.show()
import pandas as pd df = pd.read_csv("/kaggle/input/digit-recognizer/train.csv") df import numpy as np import matplotlib.pyplot as plt # Get the pixel values of the first image pixels = df.iloc[3, 1:].values.reshape(28, 28) # Display the image using matplotlib plt.imshow(pixels, cmap="gray") plt.show() import tensorflow as tf from tensorflow import keras from sklearn.model_selection import train_test_split # Split the data into features and target X = df.drop("label", axis=1) # Features y = df["label"] # Target X = X / 255.0 X = X.values.reshape(-1, 28, 28, 1) y = keras.utils.to_categorical(y, 10) # Split the data into training and validation sets X_train, X_val, y_train, y_val = train_test_split( X, y, test_size=0.2, random_state=42, shuffle=True ) from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D num_classes = 10 input_shape = (28, 28, 1) model = Sequential() model.add( Conv2D( 32, kernel_size=(3, 3), activation="relu", kernel_initializer="he_normal", input_shape=input_shape, ) ) model.add( Conv2D(32, kernel_size=(3, 3), activation="relu", kernel_initializer="he_normal") ) model.add(MaxPool2D((2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(filters=64, kernel_size=(3, 3), padding="Same", activation="relu")) model.add(Conv2D(filters=64, kernel_size=(3, 3), padding="Same", activation="relu")) model.add(MaxPool2D(pool_size=(2, 2), strides=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(256, activation="relu")) model.add(Dropout(0.5)) model.add(Dense(10, activation="softmax")) model.compile( loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.RMSprop(), metrics=["accuracy"], ) # Train the model history = model.fit( X_train, y_train, epochs=30, batch_size=32, validation_data=(X_val, y_val) ) test_df = pd.read_csv("/kaggle/input/digit-recognizer/test.csv") test_df import matplotlib.pyplot as plt import numpy as np # Get the first image as a numpy array first_image = test_df.iloc[0].to_numpy() # Reshape the array to a 2D matrix reshaped_image = np.reshape(first_image, (28, 28)) # Plot the image using matplotlib plt.imshow(reshaped_image, cmap="gray") plt.show() test_df = test_df / 255.0 test_images = test_df.values.reshape(-1, 28, 28, 1) # Make predictions predictions = model.predict(test_images) predicted_labels = np.argmax(predictions, axis=1) predicted_labels[0] # Save the predictions to a CSV file results_df = pd.DataFrame( {"ImageId": range(1, len(predicted_labels) + 1), "Label": predicted_labels} ) results_df.to_csv("predictions.csv", index=False)
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn import metrics from sklearn.model_selection import train_test_split from sklearn.metrics import recall_score from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.tree import DecisionTreeClassifier from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.naive_bayes import GaussianNB from xgboost import XGBClassifier from sklearn.model_selection import cross_val_score from sklearn.metrics import confusion_matrix, accuracy_score from sklearn.model_selection import GridSearchCV from sklearn.ensemble import RandomForestClassifier from sklearn.naive_bayes import GaussianNB import warnings warnings.filterwarnings("ignore") # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session df_train = pd.read_csv("/kaggle/input/playground-series-s3e12/train.csv") df_train.head() df_train.info() # # EDA corr = df_train.corr() sns.heatmap(corr, annot=True) cols = ["gravity", "ph", "osmo", "cond", "urea", "calc"] fig, axes = plt.subplots(nrows=3, ncols=2, figsize=(15, 15)) for i, ax in enumerate(axes.flat): if i < len(cols): sns.kdeplot( df_train[cols[i]][df_train["target"] == 0], label="kidneystone - No", fill=True, ax=ax, ) sns.kdeplot( df_train[cols[i]][df_train["target"] == 1], label="kidneystone - Yes", fill=True, ax=ax, ) plt.legend(["No kidneystone", "kidneystone"], loc="upper right") plt.xlabel(cols[i]) plt.title(f"{cols[i]} distribution by kidneystone outcome") plt.show() # # ML target = ["target"] features = df_train.columns.difference(["target", "id"]) X = df_train[features] y = df_train[target] X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.20, random_state=0 ) # ## XGBOOST param_grid = { "learning_rate": [0.1, 0.2, 0, 5], "max_depth": [3, 5, 7], "min_child_weight": [1, 3, 5], "gamma": [0.0, 0.1, 0.2], "subsample": [0.8, 1.0], "colsample_bytree": [0.8, 1.0], } xgb = XGBClassifier(objective="binary:logistic") grid_search = GridSearchCV( estimator=xgb, param_grid=param_grid, scoring="roc_auc", cv=5 ) # fit the GridSearchCV object to the data grid_search.fit(X_train, y_train) print("Best parameters: ", grid_search.best_params_) print("Best AUC score: ", grid_search.best_score_) # implement the best parameters best_params = grid_search.best_params_ xgb_best = XGBClassifier(objective="binary:logistic", **best_params) xgb_best.fit(X_train, y_train) y_pred = xgb_best.predict(X_test) cm_xgb = confusion_matrix(y_test, y_pred) sns.heatmap(cm_xgb, annot=True, cmap="Blues", fmt="g") plt.xlabel("Predicted labels") plt.ylabel("True labels") plt.title("Confusion Matrix") plt.show() acc_xgb = accuracy_score(y_test, y_pred) print(acc_xgb) print(metrics.classification_report(y_test, y_pred)) # ## Decision Tree param_grid = { "max_depth": [3, 5, 7], "min_samples_split": [2, 5, 10], "min_samples_leaf": [1, 2, 4], "max_features": [None, "sqrt", "log2"], } dtree = DecisionTreeClassifier() grid_search = GridSearchCV( estimator=dtree, param_grid=param_grid, scoring="roc_auc", cv=3 ) # fit the GridSearchCV object to the data grid_search.fit(X_train, y_train) print("Best parameters: ", grid_search.best_params_) print("Best AUC score: ", grid_search.best_score_) # implement the best parameters best_params = grid_search.best_params_ dtree_best = DecisionTreeClassifier(**best_params) dtree_best.fit(X_train, y_train) y_pred = dtree_best.predict(X_test) cm_dt = confusion_matrix(y_test, y_pred) sns.heatmap(cm_dt, annot=True, cmap="Blues", fmt="g") plt.xlabel("Predicted labels") plt.ylabel("True labels") plt.title("Confusion Matrix") plt.show() acc_dt = accuracy_score(y_test, y_pred) print(acc_dt) print(metrics.classification_report(y_test, y_pred)) # ## Random Forest param_grid = { "n_estimators": [50, 100, 200], "max_depth": [3, 5, 7], "min_samples_split": [2, 5, 10], "min_samples_leaf": [1, 2, 4], "max_features": [None, "sqrt", "log2"], } rf = RandomForestClassifier() grid_search = GridSearchCV(estimator=rf, param_grid=param_grid, scoring="roc_auc", cv=3) # fit the GridSearchCV object to the data grid_search.fit(X_train, y_train) print("Best parameters: ", grid_search.best_params_) print("Best AUC score: ", grid_search.best_score_) # implement the best parameters best_params = grid_search.best_params_ rf_best = RandomForestClassifier(**best_params) rf_best.fit(X_train, y_train) y_pred = rf_best.predict(X_test) cm_rf = confusion_matrix(y_test, y_pred) sns.heatmap(cm_rf, annot=True, cmap="Blues", fmt="g") plt.xlabel("Predicted labels") plt.ylabel("True labels") plt.title("Confusion Matrix") plt.show() acc_rf = accuracy_score(y_test, y_pred) print(acc_rf) print(metrics.classification_report(y_test, y_pred)) # ## Naive Bayes param_grid = {"var_smoothing": np.logspace(0, -9, num=100)} nb = GaussianNB() grid_search = GridSearchCV( estimator=nb, param_grid=param_grid, scoring="roc_auc", cv=3, n_jobs=-1 ) # fit the GridSearchCV object to the data grid_search.fit(X_train, y_train) print("Best parameters: ", grid_search.best_params_) print("Best AUC score: ", grid_search.best_score_) # implement the best parameters best_params = grid_search.best_params_ nb_best = GaussianNB(**best_params) nb_best.fit(X_train, y_train) y_pred = nb_best.predict(X_test) cm_nb = confusion_matrix(y_test, y_pred) sns.heatmap(cm_nb, annot=True, cmap="Blues", fmt="g") plt.xlabel("Predicted labels") plt.ylabel("True labels") plt.title("Confusion Matrix") plt.show() acc_nb = accuracy_score(y_test, y_pred) print(acc_nb) print(metrics.classification_report(y_test, y_pred)) # ## Model comparasion models = pd.DataFrame( { "Model": ["Decision Tree", "Random Forest", "Naive Bayes", "XGBoost"], "Score": [acc_dt, acc_rf, acc_nb, acc_xgb], } ) models.sort_values(by="Score", ascending=False, ignore_index=True) # ## Cross validation classifiers = [] classifiers.append(xgb_best) classifiers.append(dtree_best) classifiers.append(rf_best) classifiers.append(nb_best) len(classifiers) cv_results = [] for classifier in classifiers: cv_results.append( cross_val_score(classifier, X_train, y_train, scoring="accuracy", cv=10) ) cv_mean = [] cv_std = [] for cv_result in cv_results: cv_mean.append(cv_result.mean()) cv_std.append(cv_result.std()) cv_res = pd.DataFrame( { "Cross Validation Mean": cv_mean, "Cross Validation Std": cv_std, "Algorithm": ["XGBoost", "Decision Tree", "Random Forest", "Naive Bayes"], } ) cv_res.sort_values(by="Cross Validation Mean", ascending=False) sns.barplot( x="Cross Validation Mean", y="Algorithm", data=cv_res, order=cv_res.sort_values(by="Cross Validation Mean", ascending=False)["Algorithm"], palette="Set2", **{"xerr": cv_std}, ) plt.title("Cross Validation Scores") # ## Output on df_test df_test = pd.read_csv("/kaggle/input/playground-series-s3e12/test.csv") df_test_new = df_test[["calc", "cond", "gravity", "osmo", "ph", "urea"]] y_pred_final = xgb_best.predict_proba(df_test_new)[:, 1] y_pred_final data = {"id": df_test["id"], "target": y_pred_final} df_submission = pd.DataFrame(data) df_submission df_submission.to_excel("submission_playgrounds3e12.xlsx", index=False)
# # Handwritten digits classification using neural network # NIST is a dataset of 60.000 examples of handwritten digits. It is a good database to check models of machine learning. # All images are a greyscale of 28x28 pixels. # In this notebook we will classify handwritten digits using a simple neural network which has only input and output layers. We will than add a hidden layer and see how the performance of the model improves from IPython.display import Image Image(filename="/kaggle/input/digiii/digi.jpg") # ## Importing libraries import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt import numpy as np # ## Loading data (X_train, y_train), (X_test, y_test) = keras.datasets.mnist.load_data() X_train.shape plt.matshow(X_train[6]) y_train[6] # Normalizing pixels by dividing by 255 is a common preprocessing step for image data in neural networks. This is done to scale the pixel values to a range between 0 and 1, which can help the neural network converge faster during training. # In digital images, each pixel is represented by a numeric value that corresponds to its intensity or color. These values typically range from 0 to 255, with 0 being black and 255 being white (for grayscale images), or various combinations of red, green, and blue values (for color images). However, these pixel values are typically too large for neural networks to handle effectively, which is why normalization is required. # By dividing each pixel value by 255, we can rescale the values to a range between 0 and 1. This has the effect of making the data more consistent and easier to work with, since all the pixel values will now fall within a narrow range of values. # Normalization can also help to improve the accuracy of the neural network by making the data less sensitive to variations in lighting conditions or color intensity. This is especially important in image classification tasks, where small variations in pixel values can have a significant impact on the performance of the model. # In summary, normalizing pixels by dividing by 255 is a common preprocessing step in neural networks for image data. It helps to rescale the pixel values to a consistent range, making the data easier to work with and less sensitive to variations in lighting and color intensity. # -- # Normalize data X_train = X_train / 255 X_test = X_test / 255 X_train[0] # ## Model from IPython.display import Image Image(filename="/kaggle/input/digiii/dogi.jpg") # Flattening data in a neural network refers to the process of transforming multi-dimensional arrays or tensors into one-dimensional arrays. This is typically done before passing the data into a fully connected layer or a neural network model. # The reason for flattening the data is to convert the input data into a format that can be processed by the neural network's dense layers, which require a one-dimensional array as input. By flattening the data, we can also reduce the size of the input data and make it easier for the model to process. # Flattening the data is a common pre-processing step for many types of neural network models, such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs). It allows these models to handle inputs of varying sizes and dimensions, while also making the training process more efficient by reducing the number of parameters that need to be learned. X_train_flattened = X_train.reshape(len(X_train), 28 * 28) X_test_flattened = X_test.reshape(len(X_test), 28 * 28) X_train_flattened.shape # X_train_flattened[0] # An activation function is a non-linear mathematical function that is applied to the output of a neural network layer. It introduces non-linearity into the network, enabling it to learn more complex relationships between inputs and outputs. Without activation functions, neural networks would simply be a linear regression model, which is limited in its ability to model complex patterns in data. # There are several types of activation functions used in neural networks, including: # Sigmoid function: The sigmoid function is a commonly used activation function in neural networks. It maps any real-valued number to a value between 0 and 1, making it useful for tasks such as binary classification. # ReLU function: The ReLU (rectified linear unit) function is another commonly used activation function. It maps any negative input value to 0, and any positive input value to the same value. ReLU is often used in deep neural networks due to its simplicity and effectiveness. # Tanh function: The tanh (hyperbolic tangent) function is similar to the sigmoid function, but it maps any real-valued number to a value between -1 and 1. It is useful for tasks such as regression and binary classification. # Softmax function: The softmax function is used in the output layer of a neural network for multi-class classification tasks. It maps the output of the network to a probability distribution over the possible classes, enabling the network to make predictions for each class. # The choice of activation function depends on the specific task and the architecture of the neural network. Choosing an appropriate activation function is important for achieving good performance in the network, and is an active area of research in the field of deep learning. # Here are some general guidelines for choosing activation functions: # For binary classification tasks, sigmoid activation function is commonly used in the output layer. For multi-class classification tasks, the softmax activation function is often used in the output layer. # For hidden layers, the ReLU activation function is often a good choice, since it is simple, efficient, and effective. However, it may not be appropriate for all cases, as it can suffer from the "dying ReLU" problem, where some neurons may stop learning due to being stuck in the zero region of the function. # For recurrent neural networks (RNNs) or Long Short-Term Memory (LSTM) networks, the hyperbolic tangent (tanh) activation function is often used, as it can better capture the long-term dependencies in sequential data. # If the data being used for training and testing has a large dynamic range or a skewed distribution, it may be useful to consider using activation functions that are more robust to such distributions, such as the LeakyReLU activation function. # Finally, the choice of activation function can also depend on the specific architecture of the network and the performance metrics being optimized. In some cases, empirical testing of different activation functions may be required to determine the best choice. # Overall, choosing the right activation function for a neural network is an important step in the model building process, and requires careful consideration of the factors described above. from IPython.display import Image Image(filename="/kaggle/input/actiiii/activation.jpg") # The loss function in a neural network is a measure of the difference between the predicted output of the network and the actual output. It is used to evaluate how well the model is performing during training, and to adjust the weights and biases of the network to improve its performance. # The choice of loss function depends on the specific task and the type of data being used. Here are some common loss functions used in neural networks: # Mean Squared Error (MSE): This is a common loss function for regression tasks, where the goal is to predict a continuous output. It measures the average squared difference between the predicted output and the actual output. # Binary Cross-Entropy: This is a common loss function for binary classification tasks, where the output is either 0 or 1. It measures the difference between the predicted output and the actual output, using the logarithmic loss function. # Categorical Cross-Entropy: This is a common loss function for multi-class classification tasks, where the output can belong to multiple classes. It measures the difference between the predicted output and the actual output, using the logarithmic loss function. # Hinge loss: This is a loss function that is commonly used for training support vector machines (SVMs) and other models that require margin maximization. It measures the difference between the predicted output and the actual output, using the hinge loss function. # Kullback-Leibler divergence: This is a loss function that measures the difference between two probability distributions. It is commonly used in generative models such as variational autoencoders. # The choice of loss function depends on the specific task and the type of data being used. Choosing the appropriate loss function is important for achieving good performance in the network, and is an active area of research in the field of deep learning. # ## Very simple neural network with no hidden layers # It's important to note that the number of units in the output layer of a neural network model depends on the specific task you are trying to solve. For example, in a classification task with 10 classes, you would typically set the number of units in the output layer to be equal to the number of classes, which would be 10 in this case. Similarly, for regression tasks, the number of units in the output layer would depend on the desired output dimensionality. # The sigmoid activation function you have chosen is commonly used for binary classification tasks, where the goal is to classify an input into one of two classes. If you are working on a multi-class classification task with more than two classes, you may want to consider using a different activation function such as softmax. The choice of activation function depends on the specific problem you are trying to solve and the desired properties of the output. # from IPython.display import Image Image(filename="/kaggle/input/multiii/multi.jpg") # The given code appears to be using the Keras API to compile a neural network model with the Adam optimizer, sparse categorical cross-entropy loss function, and accuracy metric for evaluation during training. Let's break it down: # optimizer='adam': Adam is a popular optimization algorithm used for training neural networks. It is an adaptive learning rate optimization algorithm that combines techniques from both AdaGrad and RMSprop. It is known for its ability to handle sparse gradients and perform well on a wide range of deep learning tasks. # loss='sparse_categorical_crossentropy': Sparse categorical cross-entropy is a loss function commonly used for multi-class classification problems when the target labels are integers. It computes the cross-entropy loss between the predicted probabilities and the true target labels. The "sparse" part indicates that the target labels are represented as integers, rather than one-hot encoded vectors. # metrics=['accuracy']: During training, the accuracy metric will be used to evaluate the performance of the model. Accuracy is a common metric used in classification tasks that measures the percentage of correctly classified samples out of the total samples. # The model.compile() function in Keras is used to configure the training process of the neural network model. It takes in various parameters, including the optimizer, loss function, and evaluation metrics, to set up the model for training. After compiling, the model is ready to be trained using the model.fit() function with appropriate training data. model = keras.Sequential( [keras.layers.Dense(10, input_shape=(784,), activation="softmax")] ) model.compile( optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"] ) model.fit(X_train_flattened, y_train, epochs=5) model.evaluate(X_test_flattened, y_test) y_predicted = model.predict(X_test_flattened) y_predicted[0] plt.matshow(X_test[0]) # y_predicted_labels = [np.argmax(i) for i in y_predicted]In neural networks, np.argmax (short for NumPy argmax) is often used to find the index of the maximum value in an array or tensor along a specific axis. # This function is commonly used in neural networks for tasks such as prediction and classification. For example, when making predictions on a dataset using a neural network, the output of the last layer is often a probability distribution over the possible classes. The index of the highest probability value in this distribution can be found using np.argmax, which gives the predicted class for a given input. # Similarly, in the process of training a neural network, np.argmax can be used to calculate the accuracy of the model by comparing the predicted class with the true class label of the input. This allows the model to optimize its parameters to minimize the difference between the predicted and true labels. # Overall, np.argmax is a useful function in neural networks for tasks such as prediction, classification, and evaluation. It helps to extract meaningful information from the output of a neural network and can aid in the optimization of the model's parameters. y_predicted_labels = [np.argmax(i) for i in y_predicted] cm = tf.math.confusion_matrix(labels=y_test, predictions=y_predicted_labels) import seaborn as sn plt.figure(figsize=(10, 7)) sn.heatmap(cm, annot=True, fmt="d") plt.xlabel("Predicted") plt.ylabel("Truth") # ## ANN Final model with hidden layers model = keras.Sequential( [ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(100, activation="relu"), keras.layers.Dense(10, activation="sigmoid"), ] ) model.compile( optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"] ) tb_callback = tf.keras.callbacks.TensorBoard(log_dir="logs/", histogram_freq=1) model.fit(X_train, y_train, epochs=5, callbacks=[tb_callback]) model.evaluate(X_test, y_test) y_predicted = model.predict(X_test) y_predicted[0] y_predicted_labels2 = [np.argmax(i) for i in y_predicted] cm2 = tf.math.confusion_matrix(labels=y_test, predictions=y_predicted_labels2) plt.figure(figsize=(10, 7)) sn.heatmap(cm2, annot=True, fmt="d") plt.xlabel("Predicted") plt.ylabel("Truth") # %load_ext tensorboard # %tensorboard --logdir logs/fit
# # Installing packages, Loading and inspecting dataset to have a sneak peek import numpy as np import pandas as pd # For visualizations import matplotlib.pyplot as plt import seaborn as sns # To avoid encoding error (ENC), using "unicode_escape" df = pd.read_csv( "//kaggle/input/diwali-sales-dataset/Diwali Sales Data.csv", encoding="unicode_escape", ) # Checking the shape and size of the dataframe df.shape # Checking the first 10 rows of the dataframe contents df.head(10) # # Data cleaning and preparing for analysis # Checking the data to analyze the need for cleaning areas df.info() # dropping the balnk and/or unrelated columns and saving the dataframe df.drop(["Status", "unnamed1"], axis=1, inplace=True) # Rechecking the data shape after dropping the unrelated columns df.info() # Checking nullvalues in the dataframe pd.isnull(df).sum() # Dropping null values form the dataframe and saving it for further analysis df.dropna(inplace=True) # Rechecking the shape of dataframe to see the changes in dataframe after dropping the nulls pd.isnull(df).sum() # Changing the data type from float to integer df["Amount"] = df["Amount"].astype("int") # Checking data type after the conversion df["Amount"].dtypes # Checking the column names to determine the need for further conversion or changes df.columns # Renaming column for more clarity df.rename( columns={"Cust_name": "Customer_name", "Marital_Status": "Relationship_Status"}, inplace=True, ) # Rechecking column names after renaming df.columns # Using describe() to check the descripton of "Orders" and "Amount" column df[["Orders", "Amount"]].describe() # # Exploratory Data Analysis (EDA) # ## Based on Gender # Checking order placement data for potential patterns or trends in purchasing behavior across genders ax = sns.countplot(x="Gender", data=df) for bars in ax.containers: ax.bar_label(bars) # Checking order placement data for potential patterns or trends in purchasing power across genders sales_gen = ( df.groupby(["Gender"], as_index=False)["Amount"] .sum() .sort_values(by="Amount", ascending=False) ) ax = sns.barplot(x="Gender", y="Amount", data=sales_gen) for index, row in sales_gen.iterrows(): ax.text(index, row["Amount"], row["Amount"], ha="center") # Based on the above-mentioned graphs, it is evident that the majority of the purchasers are female and that the purchasing power of females surpasses that of males. # # Based on Age # Checking order placement data for potential patterns or trends in purchasing behavior based on "Age Groups" ax = sns.countplot(x="Age Group", data=df, hue="Gender") for bars in ax.containers: ax.bar_label(bars) # Checking order placement data for potential patterns or trends in purchasing power across "Age Groups" sales_age = ( df.groupby(["Age Group"], as_index=False)["Amount"] .sum() .sort_values(by="Amount", ascending=False) ) ax = sns.barplot(x="Age Group", y="Amount", data=sales_age) for index, row in sales_age.iterrows(): ax.text(index, row["Amount"], row["Amount"], ha="center") # The chart presented above indicates that the age group of 26-35 made the highest number of purchases, while the age group of 55+ made the least number of purchases. Moreover, the data shows that females are the primary purchasers across all age groups, regardless of age range. # ## Based on States # Checking total number of orders from top 10 states sales_state = ( df.groupby(["State"], as_index=False)["Orders"] .sum() .sort_values(by="Orders", ascending=False) .head(10) ) sns.set(rc={"figure.figsize": (18, 5)}) ax = sns.barplot(x="State", y="Orders", data=sales_state) # Checking top 10 states based on Amount spent sales_state = ( df.groupby(["State"], as_index=False)["Amount"] .sum() .sort_values(by="Amount", ascending=False) .head(10) ) sns.set(rc={"figure.figsize": (18, 5)}) ax = sns.barplot(x="State", y="Amount", data=sales_state) # Based on the above graphs, it is evident that the states of Uttar Pradesh, Maharashtra, and Karnataka contribute significantly to the majority of the orders and total sales/amount. # ## Based on Relationship Statsu # Checking the order pattern based on relationship status ax = sns.countplot(x="Relationship_Status", data=df) sns.set(rc={"figure.figsize": (8, 5)}) for bars in ax.containers: ax.bar_label(bars) # Checking the pattern of Amount spent based on relationship status and gender sales_state = ( df.groupby(["Relationship_Status", "Gender"], as_index=False)["Amount"] .sum() .sort_values(by="Amount", ascending=False) ) sns.set(rc={"figure.figsize": (8, 5)}) ax = sns.barplot(x="Relationship_Status", y="Amount", data=sales_state, hue="Gender") # Based on the above graphs, it is evident that the majority of the buyers are married women, and they possess a high purchasing power. # ## Based on Occupation # Checking the order pattern based on Occupation ax = sns.countplot(x="Occupation", data=df) sns.set(rc={"figure.figsize": (18, 5)}) for bars in ax.containers: ax.bar_label(bars) # Checking the pattern of Amount spent based on Occupation sales_state = ( df.groupby(["Occupation"], as_index=False)["Amount"] .sum() .sort_values(by="Amount", ascending=False) ) sns.set(rc={"figure.figsize": (18, 5)}) ax = sns.barplot(x="Occupation", y="Amount", data=sales_state) # Based on the graphical data presented, it is evident that a significant proportion of buyers operate within the Information Technology, Healthcare, and Aviation industries. # ## Based on Product Category # Checking the order pattern based on Product_Category ax = sns.countplot(x="Product_Category", data=df) sns.set(rc={"figure.figsize": (20, 5)}) for bars in ax.containers: ax.bar_label(bars) # Checking the pattern of Amount spent based on Product_Category sales_state = ( df.groupby(["Product_Category"], as_index=False)["Amount"] .sum() .sort_values(by="Amount", ascending=False) .head(10) ) sns.set(rc={"figure.figsize": (22, 5)}) ax = sns.barplot(x="Product_Category", y="Amount", data=sales_state) # The aforementioned graphs indicate that the majority of products sold fall under the categories of Food, Clothing, and Electronics. # Checking the top 10 soled products based on Product_ID sales_state = ( df.groupby(["Product_ID"], as_index=False)["Orders"] .sum() .sort_values(by="Orders", ascending=False) .head(10) ) sns.set(rc={"figure.figsize": (22, 5)}) ax = sns.barplot(x="Product_ID", y="Orders", data=sales_state)
from duckduckgo_search import ddg_images from fastcore.all import * def search_images(search_term, max_results=200): return L(ddg_images(search_term, max_results=max_results)).itemgot("image") from fastdownload import download_url cat_location = "cat.jpg" download_url(search_images("cat", max_results=1)[0], dest=cat_location) from fastai.vision.all import * Image.open(cat_location).to_thumb(256, 256) dog_location = "dog.jpg" download_url(search_images("dog", max_results=1)[0], dest=dog_location) Image.open(dog_location).to_thumb(256, 256) from time import sleep searches = ["cat", "dog", "bird", "worm"] path = Path("task1data") for search_term in searches: dest = path / search_term dest.mkdir(exist_ok=True, parents=True) download_images(dest, urls=search_images(f"{search_term} photo")) sleep(10) download_images(dest, urls=search_images(f"{search_term} sun photo")) sleep(10) download_images(dest, urls=search_images(f"{search_term} body photo")) sleep(10) resize_images(dest, max_size=400, desst=dest) failed = verify_images(get_image_files(path)) failed.map(Path.unlink) len(failed) dls = DataBlock( blocks=( ImageBlock, CategoryBlock, ), get_items=get_image_files, splitter=RandomSplitter(valid_pct=0.2, seed=42), get_y=parent_label, item_tfms=[Resize(192, method="squish")], ).dataloaders(path) dls.show_batch(max_n=12) classifier = vision_learner(dls, resnet18, metrics=error_rate) classifier.fine_tune(5) download_url( "https://ukmadcat.com/wp-content/uploads/2019/04/sleepy-cat.jpg", dest="test.jpg", show_progress=False, ) result = classifier.predict(PILImage.create("test.jpg")) print(result)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import os import cv2 import pickle import numpy as np import matplotlib.pyplot as plt import seaborn as sns import tensorflow as tf from tqdm import tqdm from sklearn.preprocessing import OneHotEncoder from sklearn.metrics import confusion_matrix from keras.models import Model, load_model # from keras.layers import Dense, Input, Conv2D, MaxPool2D, Flatten, from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.models import Sequential from tensorflow.keras import layers from tensorflow.keras import activations from tensorflow.keras.layers import ( Dense, Input, Conv2D, MaxPool2D, Flatten, Activation, Dropout, ) def load_image(norm_path, label): norm_files = np.array(os.listdir(norm_path)) norm_labels = np.array([label] * len(norm_files)) norm_images = [] for image in tqdm(norm_files): image = cv2.imread(norm_path + image) image = cv2.resize(image, dsize=(200, 200)) image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) norm_images.append(image) norm_images = np.array(norm_images) return norm_images, norm_labels def load_image_test(norm_path): norm_files = np.array(os.listdir(norm_path)) # norm_labels = np.array([label]*len(norm_files)) norm_images = [] for image in tqdm(norm_files): image = cv2.imread(norm_path + image) image = cv2.resize(image, dsize=(200, 200)) image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) norm_images.append(image) norm_images = np.array(norm_images) return norm_images norm_images, norm_labels = load_image( "/kaggle/input/shai-level-2-training-2023/train/normal/", 0 ) covid_images, covid_labels = load_image( "/kaggle/input/shai-level-2-training-2023/train/covid/", 1 ) virus_images, virus_labels = load_image( "/kaggle/input/shai-level-2-training-2023/train/virus/", 2 ) X_test = load_image_test("/kaggle/input/shai-level-2-training-2023/test/") virus_images.shape X_train = [] X_train.append(norm_images[:]) X_train.append(covid_images[:]) X_train.append(virus_images[:]) y_train = [] y_train.append(norm_labels) y_train.append(covid_labels) y_train.append(virus_labels) len(X_train) print(y_train) train_dir = "/kaggle/input/shai-level-2-training-2023/train" test_dir = "/kaggle/input/shai-level-2-training-2023/test" train = pd.read_csv("/kaggle/input/shai-level-2-training-2023/train.csv") train.head() from sklearn.preprocessing import LabelEncoder Ln = LabelEncoder().fit(train["Label"]) cases_count = train["Label"].value_counts() print(cases_count) # Plot the results plt.figure(figsize=(6, 4)) sns.barplot(x=cases_count.index, y=cases_count.values) plt.title("Number of cases", fontsize=14) plt.xlabel("Case type", fontsize=12) plt.ylabel("Count", fontsize=12) plt.xticks(range(len(cases_count.index)), ["Covid(0)", "Normal(1)", "Virus(2)"]) plt.show() covid_samples = (train[train["Label"] == 0]["Image"].iloc[:10]).tolist() normal_samples = (train[train["Label"] == 1]["Image"].iloc[:10]).tolist() virus_samples = (train[train["Label"] == 2]["Image"].iloc[:10]).tolist() image_size = 224 BATCH_SIZE = 64 train_datagen = ImageDataGenerator( rescale=1.0 / 255, validation_split=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, rotation_range=15, fill_mode="nearest", ) training_set = train_datagen.flow_from_directory( train_dir, subset="training", target_size=(image_size, image_size), batch_size=BATCH_SIZE, class_mode="categorical", seed=42, shuffle=True, ) validation_set = train_datagen.flow_from_directory( train_dir, subset="validation", target_size=(image_size, image_size), batch_size=BATCH_SIZE, class_mode="categorical", seed=42, shuffle=True, ) y_train = training_set.classes y_val = validation_set.classes print(training_set.class_indices) labels = ["COVID", "NORMAL", "VIRUS"] sample_data = training_set.__getitem__(0)[0] sample_label = training_set.__getitem__(0)[1] plt.figure(figsize=(10, 8)) for i in range(12): plt.subplot(3, 4, i + 1) plt.axis("off") plt.imshow(sample_data[i]) plt.title(labels[np.argmax(sample_label[i])]) from keras.backend import clear_session clear_session() model = Sequential() model.add(Conv2D(32, (3, 3), input_shape=(224, 224, 3))) model.add(layers.Activation(activations.relu)) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Conv2D(32, (3, 3))) model.add(layers.Activation(activations.relu)) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Conv2D(64, (3, 3))) model.add(layers.Activation(activations.relu)) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(64, activation="relu")) model.add(Dropout(0.4)) model.add(Dense(3, activation="softmax")) model.summary() model.compile( loss="categorical_crossentropy", metrics=["accuracy"], optimizer=tf.keras.optimizers.Adam(), ) early_stop = tf.keras.callbacks.EarlyStopping( monitor="val_loss", patience=2, restore_best_weights=True ) history = model.fit_generator(training_set, epochs=7, validation_data=validation_set) plt.plot(history.history["accuracy"]) plt.plot(history.history["val_accuracy"]) plt.title("model accuracy") plt.ylabel("accuracy") plt.xlabel("epoch") plt.legend(["train", "Valid"], loc="upper left") plt.show() plt.plot(history.history["loss"]) plt.plot(history.history["val_loss"]) plt.title("model loss") plt.ylabel("loss") plt.xlabel("epoch") plt.legend(["train", "valid"], loc="upper left") plt.show()
# NB: Kaggle requires phone verification to use the internet or a GPU. If you haven't done that yet, the cell below will fail # This code is only here to check that your internet is enabled. It doesn't do anything else. # Here's a help thread on getting your phone number verified: https://www.kaggle.com/product-feedback/135367 import socket, warnings try: socket.setdefaulttimeout(1) socket.socket(socket.AF_INET, socket.SOCK_STREAM).connect(("1.1.1.1", 53)) except socket.error as ex: raise Exception( "STOP: No internet. Click '>|' in top right and set 'Internet' switch to on" ) from duckduckgo_search import ddg_images from fastcore.all import * def search_images(term, max_images=30): print(f"Searching for '{term}'") return L(ddg_images(term, max_results=max_images)).itemgot("image") # NB: `search_images` depends on duckduckgo.com, which doesn't always return correct responses. # If you get a JSON error, just try running it again (it may take a couple of tries). urls = search_images("bird photos", max_images=1) urls[0] from fastdownload import download_url dest = "bird.jpg" download_url(urls[0], dest, show_progress=False) from fastai.vision.all import * im = Image.open(dest) im.to_thumb(256, 256) download_url( search_images("forest photos", max_images=1)[0], "forest.jpg", show_progress=False ) Image.open("forest.jpg").to_thumb(256, 256) searches = "forest", "bird" path = Path("bird_or_not") from time import sleep for o in searches: dest = path / o dest.mkdir(exist_ok=True, parents=True) download_images(dest, urls=search_images(f"{o} photo")) sleep(10) # Pause between searches to avoid over-loading server download_images(dest, urls=search_images(f"{o} sun photo")) sleep(10) download_images(dest, urls=search_images(f"{o} shade photo")) sleep(10) resize_images(path / o, max_size=400, dest=path / o) failed = verify_images(get_image_files(path)) failed.map(Path.unlink) len(failed) dls = DataBlock( blocks=(ImageBlock, CategoryBlock), get_items=get_image_files, splitter=RandomSplitter(valid_pct=0.2, seed=42), get_y=parent_label, item_tfms=[Resize(192, method="squish")], ).dataloaders(path, bs=32) dls.show_batch(max_n=6) learn = vision_learner(dls, resnet18, metrics=error_rate) learn.fine_tune(3) is_bird, _, probs = learn.predict(PILImage.create("bird.jpg")) print(f"This is a: {is_bird}.") print(f"Probability it's a bird: {probs[0]:.4f}")
# ![image.png](attachment:51050832-00c7-4524-a31a-8c2e054c974b.png) # # **Businesss Problem** # In the telecom industry, customers are able to choose from multiple service providers and actively switch from one operator to another. In this highly competitive market, the telecommunications industry experiences an average of 15-25% annual churn rate. Given the fact that it costs 5-10 times more to acquire a new customer than to retain an existing one, customer retention has now become even more important than customer acquisition. # For many incumbent operators, retaining high profitable customers is the number one business goal. # # To reduce customer churn, telecom companies need to predict which customers are at high risk of churn. # In this project, you will analyse customer-level data of a leading telecom firm, build predictive models to identify customers at high risk of churn and identify the main indicators of churn. # ## **Understanding the Business Objective and the Data** # The dataset contains customer-level information for a span of four consecutive months - June, July, August and September. The months are encoded as 6, 7, 8 and 9, respectively. # The business objective is to predict the churn in the last (i.e. the ninth) month using the data (features) from the first three months. To do this task well, understanding the typical customer behaviour during churn will be helpful. # # TABLE OF CONTENT # # * [1. Reading & Understanding Data](#1) # # * [2. EDA & Visualizations](#2) # # * [3. Preparing The Data For Modelling](#3) # # * [4. Evaluate The Model](#4) # import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings("ignore") pd.set_option("display.max_columns", 500) # # # 1. Reading & Understanding Data tel_data = pd.read_csv("/kaggle/input/telecomm-churn-data/telecom_churn_data.csv") tel_data.head() tel_data.shape tel_data.info() tel_data.describe() # No of missing values in each column tel_data.isnull().sum() # computes the fraction of missing values in each column by dividing the number of missing values by the total number of rows in the dataset. tel_data.isnull().sum() / len(tel_data.index) # ## **Handling missing values** tel_miss_cols = ( round(((tel_data.isnull().sum() / len(tel_data.index)) * 100), 2).to_frame("null") ).sort_values("null", ascending=False) tel_miss_cols # **.to_frame('null'):** Converts the resulting pandas Series into a DataFrame with a single column named "null". # **.sort_values('null', ascending=False):** sorts the DataFrame in descending order based on the values in the "null" column # **Let's Delete those columns which are having more than 30% of the missing value in this dataset.** # First Find out those columns and total in numbers cols_with_30_percent_missing_value = list( tel_miss_cols.index[tel_miss_cols["null"] > 30] ) print(cols_with_30_percent_missing_value, "\n") len(cols_with_30_percent_missing_value) # **Total 40 columns which are having more than 30% columns which are having Null values.** # Delete those list of Columns now tel_data = tel_data.drop(cols_with_30_percent_missing_value, axis=1) tel_data.head() tel_data.shape # **The total numbers of columns now reduced from 226 to 186 after dropping 40 columns.** # Deleting the date columns as the date columns are not required in our analysis date_cols = [] for col in tel_data.columns: if "date" in col: date_cols.append(col) print(date_cols, "\n") print(len(date_cols)) # **Now let's drop these 8 date columns and reduce the no of columsn again** tel_data = tel_data.drop(date_cols, axis=1) tel_data.shape tel_data.circle_id.value_counts() # **circle_id is having only one ID. Hence there will no impact of this column for our Data analysis.** tel_data = tel_data.drop("circle_id", axis=1) tel_data.shape
import pandas as pd import numpy as np import seaborn as sns import copy import matplotlib.pyplot as plt from sklearn import tree from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn import preprocessing from sklearn.model_selection import train_test_split from sklearn.metrics import ( confusion_matrix, plot_confusion_matrix, f1_score, ConfusionMatrixDisplay, accuracy_score, precision_score, recall_score, roc_auc_score, ) from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OneHotEncoder from warnings import simplefilter from sklearn.model_selection import cross_val_score simplefilter(action="ignore", category=FutureWarning) # Смотрим на датасет. Df = pd.read_csv("/kaggle/input/titaniccsv/titanic.csv") Df.head() # Проверка баланса классов Survived. print( "Баланс классов Survived: ", len(Df[Df["Survived"] == 1]) / len(Df[Df["Survived"] == 0]), ) # Проверка содержимого. Df.info() # Класс Ticket не берем в обучение, категоризовать нельзя, что скрыто за шифром билета не ясно. # Класс Cabin не берем в обучение, слишком много не заполненных ячеек. # Класс Fare не понятно из чего складывается, но лмишним не будет. # Требуется кодировка классов sex и emvarked. Класс sex можно кодировать c помощью LabelEncoder. # В классе Age присутсвует NaN, заполним медианым значением. # Скопируем дата сет. Df_copy = copy.deepcopy(Df) # Рассмторим класс Embarked. print("Все порты: ", Df["Embarked"].unique()) print("Порт S: ", len(Df[Df["Embarked"] == "S"])) print("Порт C: ", len(Df[Df["Embarked"] == "C"])) print("Порт Q: ", len(Df[Df["Embarked"] == "Q"])) # Для использования в обучении требуется заолнить NaN. Заполняем наиболее часто встречаемым портом, то есть портом S. Df_copy["Embarked"].fillna("S", inplace=True) # Так же заполним Age для дальнейшего обучения медианными значениями. Df_copy["Age"].fillna(Df["Age"].median(), inplace=True) # Кодировка Sex по LabelEncoder и Embarked по One-Hot-Encoder. # le,ohe,scaker для эргономичности. le = LabelEncoder() ohe = OneHotEncoder() scaler = MinMaxScaler() # Нормализация данных. for i in ["Pclass", "Age", "SibSp", "Parch", "Fare"]: Df_copy[i] = scaler.fit_transform(Df_copy[[i]]) # Кодировка Sex. Df_copy["Sex"] = le.fit_transform(Df_copy["Sex"].values.ravel()) # Кодировка Embarked. Df_copy = pd.concat( [ Df_copy, pd.DataFrame( ohe.fit_transform(Df_copy[["Embarked"]]).toarray(), columns=np.ravel(ohe.categories_), ), ], axis=1, ) Df_copy = Df_copy.drop(["Embarked", "Cabin", "Ticket", "Name", "PassengerId"], axis=1) print(Df_copy) # Обучение. X = Df_copy[["Pclass", "Sex", "Age", "SibSp", "Parch", "Fare", "C", "Q", "S"]] y = Df_copy["Survived"] # Tree. error_accuracy_tree = {} error_precision_tree = {} error_recall_tree = {} error_roc_auc_tree = {} for i in range(10): accuracy_tree = [] precision_tree = [] recall_tree = [] roc_auc_tree = [] for j in range(150): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) clf = DecisionTreeClassifier( criterion="entropy", min_samples_leaf=5, max_depth=i + 1 ) clf.fit(X=X_train, y=y_train) y_pred_tree = clf.predict(X_test) accuracy_tree.append(accuracy_score(y_test, y_pred_tree)) precision_tree.append(precision_score(y_test, y_pred_tree)) recall_tree.append(recall_score(y_test, y_pred_tree)) roc_auc_tree.append(roc_auc_score(y_test, y_pred_tree)) error_accuracy_tree[f"i_{i}"] = accuracy_tree error_precision_tree[f"i_{i}"] = precision_tree error_recall_tree[f"i_{i}"] = recall_tree error_roc_auc_tree[f"i_{i}"] = roc_auc_tree # KNN. error_accuracy_knn = {} error_precision_knn = {} error_recall_knn = {} error_roc_auc_knn = {} for g in np.arange(1, 11): error_rates = [] accuracy_knn = [] precision_knn = [] recall_knn = [] roc_auc_knn = [] for k in np.arange(1, 101): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) knn = KNeighborsClassifier(n_neighbors=k, p=g) knn.fit(X=X_train, y=y_train) y_pred_knn = knn.predict(X_test) error_rates.append(np.mean(y_pred_knn != y_test)) accuracy_knn.append(accuracy_score(y_test, y_pred_knn)) precision_knn.append(precision_score(y_test, y_pred_knn)) recall_knn.append(recall_score(y_test, y_pred_knn)) roc_auc_knn.append(roc_auc_score(y_test, y_pred_knn)) error_accuracy_knn[f"g_{g}"] = accuracy_knn error_precision_knn[f"g_{g}"] = precision_knn error_recall_knn[f"g_{g}"] = recall_knn error_roc_auc_knn[f"g_{g}"] = roc_auc_knn # Confusion Matrix. fig, axs = plt.subplots(1, 2, figsize=(8, 4)) # Tree. cm_tree = confusion_matrix(y_test, y_pred_tree, labels=clf.classes_) disp_tree = ConfusionMatrixDisplay( confusion_matrix=cm_tree, display_labels=clf.classes_ ) disp_tree.plot(ax=axs[0], cmap=plt.cm.Blues) axs[0].set_title("Tree") # KNN. cm_knn = confusion_matrix(y_test, y_pred_knn, labels=clf.classes_) disp_knn = ConfusionMatrixDisplay(confusion_matrix=cm_knn, display_labels=clf.classes_) disp_knn.plot(ax=axs[1], cmap=plt.cm.Blues) axs[1].set_title("KNN") plt.show() # Boxplot. # Tree and KNN. for metric_type in ["accuracy", "precision", "recall", "roc_auc"]: fig, axs = plt.subplots(1, 2, figsize=(10, 5)) # Tree. for i in range(10): axs[0].boxplot( globals()[f"error_{metric_type}_tree"]["i_" + str(i)], positions=[i] ) axs[0].set_title(f"{metric_type}_tree") # KNN. for g in np.arange(1, 11): axs[1].boxplot( globals()[f"error_{metric_type}_knn"]["g_" + str(g)], positions=[g] ) axs[1].set_title(f"{metric_type}_knn") plt.show() # DecisionTreeClassifier. fn = ["Pclass", "Sex", "Age", "SibSp", "Parch", "Fare", "C", "Q", "S"] cn = ["0", "1"] fig, axes = plt.subplots(nrows=1, ncols=1, figsize=(50, 50), dpi=300) tree.plot_tree(clf, feature_names=fn, class_names=cn, filled=True) fig.savefig("/kaggle/working/DT.png") pred_tree = clf.predict(X) pred_knn = knn.predict(X) output_tree = pd.DataFrame({"PassengerId": Df_copy.PassengerId, "Survived": pred_tree}) output_knn = pd.DataFrame({"PassengerId": Df_copy.PassengerId, "Survived": pred_knn}) output_tree.to_csv("/kaggle/working/submission_tree.csv", index=False) output_knn.to_csv("/kaggle/working/submission_knn.csv", index=False) print("Результаты сохранены!")
# # IMPORTING LIBRARIES import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import plotly.express as px import plotly.graph_objects as go from pandas.api.types import is_numeric_dtype from plotly.subplots import make_subplots # # IMPORTING THE DATA # ### Importing the train and test data train_df = pd.read_csv("/kaggle/input/telecom-churn-case-study-hackathon-c46/train.csv") test_df = pd.read_csv("/kaggle/input/telecom-churn-case-study-hackathon-c46/test.csv") train_df.head() test_df.head() # ### Importing the data dictionary dictionary_df = pd.read_csv( "/kaggle/input/telecom-churn-case-study-hackathon-c46/data_dictionary.csv" ) dictionary_df # # ANALYZING THE DATA # ### Printing the columns in the data list(train_df.columns) # ## Printing the shape of the dataframe train_df.shape test_df.shape # ### Printing the number of nulls in the column train_df.isnull().sum() test_df.isnull().sum() def percentage(x, size): """ Function to calculate the percentage of null in the dataframe """ null_count = (x.isnull().sum() / size) * 100 return null_count def create_null_dataframe(df): """ creating dataframe with percentage of null values in each column """ null_df = pd.DataFrame() size = df.shape[0] column = list() percent = list() for col in df.columns: column.append(col) percent.append(percentage(df[col], size)) null_df = pd.DataFrame({"Column": column, "Percentage": percent}) return null_df train_null_df = create_null_dataframe(train_df) test_null_df = create_null_dataframe(test_df) # Observing the distribution of the null percentage in the data # Create histogram using Plotly fig = px.histogram( train_null_df, x="Percentage", title="Distribution of null values in the train dataframe", ) # Show the plot fig.show() # Create histogram using Plotly fig = px.histogram( test_null_df, x="Percentage", title="Distribution of null values in the test dataframe", ) # Show the plot fig.show() # Dropping all the which have more than 50% null columns # ### Printing the schema of the data train_df.dtypes train_df.describe() test_df.describe() # # DATA PREPARATION - NULL HANDLING # ## Dropping the columns that have more than 50% null values train_df.drop( train_null_df[train_null_df["Percentage"] > 50]["Column"].values, axis=1, inplace=True, ) test_df.drop( test_null_df[test_null_df["Percentage"] > 50]["Column"].values, axis=1, inplace=True ) # Checking the shape of the dataframe print("Shape of the train dataset {}".format(train_df.shape)) print("Shape of the test dataset {}".format(test_df.shape)) # ### Applying imputation methods to handle rest of the null values def find_mode(col): """ Returning mode of the column passed """ return col.mode()[0] def find_mean(col): """ Returning mean of the column passed """ return col.mean() # ### Understanding each of the columns and imputing them def unique_count_and_null(col, name): """ Finding the number of unique values in the dataframe column and returning False if there are not. Finding the number of null columns in the data """ null_flag = False unique_flag = False print( "Number of null values in the column {} : {}".format(name, col.isnull().sum()) ) print("Does the column {} have unique values: {}".format(name, col.nunique() > 1)) if col.isnull().sum() > 0: null_flag = True if col.nunique() > 1: unique_flag = True return null_flag, unique_flag col_to_drop = list() for col in train_df.drop("churn_probability", axis=1).columns: null_flag, unique_flag = unique_count_and_null(train_df[col], col) if null_flag: if is_numeric_dtype(train_df[col]): mean = find_mean(train_df[col]) train_df[col].fillna(mean, inplace=True) else: mode = find_mode(train_df[col]) train_df[col].fillna(mode, inplace=True) if not unique_flag: col_to_drop.append(col) # ### Dropping the columns that have only one unique value train_df.drop(col_to_drop, axis=1, inplace=True) # ### Handling imputation for Target variable train_df["churn_probability"].isnull().sum() # There are no null values in the target value column # ### For test dataset col_to_drop = list() for col in test_df.columns: null_flag, unique_flag = unique_count_and_null(test_df[col], col) if null_flag: if is_numeric_dtype(test_df[col]): mean = find_mean(test_df[col]) test_df[col].fillna(mean, inplace=True) else: mode = find_mode(test_df[col]) test_df[col].fillna(mode, inplace=True) if not unique_flag: col_to_drop.append(col) test_df.drop(col_to_drop, axis=1, inplace=True) # ### Checking the shape of the dataframes test_df.shape train_df.shape # ### Confirmation if all the columns are the same import collections if collections.Counter( train_df.drop("churn_probability", axis=1).columns ) == collections.Counter(test_df.columns): print("All Columns are same") # # DATA PREPARATION - DERIVING NEW VARIABLES # To understand the object features # * date_of_last_rech_6 # * date_of_last_rech_7 # * date_of_last_rech_8 # train_df["date_of_last_rech_6"] = pd.to_datetime(train_df["date_of_last_rech_6"]) train_df["date_of_last_rech_7"] = pd.to_datetime(train_df["date_of_last_rech_7"]) train_df["date_of_last_rech_8"] = pd.to_datetime(train_df["date_of_last_rech_8"]) # **Retrieving the date out of the entire mm/dd/yyy hence the column mentions the month and the date is same for all the records** # train_df["date_of_last_rech_6"] = train_df["date_of_last_rech_6"].dt.day train_df["date_of_last_rech_7"] = train_df["date_of_last_rech_7"].dt.day train_df["date_of_last_rech_8"] = train_df["date_of_last_rech_8"].dt.day # Carrying out the same procedure for test dataframe test_df["date_of_last_rech_6"] = pd.to_datetime(test_df["date_of_last_rech_6"]) test_df["date_of_last_rech_7"] = pd.to_datetime(test_df["date_of_last_rech_7"]) test_df["date_of_last_rech_8"] = pd.to_datetime(test_df["date_of_last_rech_8"]) test_df["date_of_last_rech_6"] = test_df["date_of_last_rech_6"].dt.day test_df["date_of_last_rech_7"] = test_df["date_of_last_rech_7"].dt.day test_df["date_of_last_rech_8"] = test_df["date_of_last_rech_8"].dt.day # # EXPLORATORY DATA ANALYSIS # writing a util function since there are a lot of columns in format feature_6 , feature_7 and feature_8 def violin_plot(col_june, col_july, col_aug, metric): # create a trace for each column trace1 = go.Violin( y=train_df[col_june], name="{} in month of June".format(metric), opacity=0.5 ) trace2 = go.Violin( y=train_df[col_july], name="{} in month of July".format(metric), opacity=0.5 ) trace3 = go.Violin( y=train_df[col_aug], name="{} in month of August".format(metric), opacity=0.5 ) data = [trace1, trace2, trace3] # create the layout layout = go.Layout( title="Violin plot of {} in June, July, August".format(metric), yaxis=dict(title="Value"), ) # create the figure fig = go.Figure(data=data, layout=layout) return fig # ## Analyzing average revenue per user in the month of June, July and August fig = violin_plot("arpu_6", "arpu_7", "arpu_8", "Average revenue per user") # show the figure fig.show() # **Average revenue per user is :** # * June: With minimum of -2258 and maximum of 27.73k # * July: With minimum of -1289 and 35.1k # * August: With minimum of -945 and 33.5k # **We can see that June has the least turn over whereas August has a better turn over.**** # ## Analyzing minutes used by all kinds of calls within the same operator network (ONNET_MOU) fig = violin_plot( "onnet_mou_6", "onnet_mou_7", "onnet_mou_8", "Minutes used by all kinds of calls with same network", ) # show the figure fig.show() # **Minutes used by all kinds of calls with same network :** # * June: With minimum of 0 and max of 7,376 minutes # * July: With minimum of 0 and max of 8157 minutes # * August: With minimum of 0 and max of 10.752k minutes # **As we see that user utilizes the most minutes in August with June hitting minimum and slight improvement in July.**** # ## Analyzing minutes utilized by all kinds of calls outside the operator - OFFNET_MOU fig = violin_plot( "offnet_mou_6", "offnet_mou_7", "offnet_mou_8", "Minutes used by all kinds of calls outside the network", ) # show the figure fig.show() # **Minutes used by all kinds of calls with same network :** # * June: With minimum of 0 and max of 8362 minutes # * July: With minimum of 0 and max of 7043 minutes # * August: With minimum of 0 and max of 14.007k minutes # **As we see that user utilizes the most minutes in August with util taking a dip in July.** # ## Analyzing minutes utilized by the customer during an incoming call while being in the roaming zone - ROAM_IC_MOU fig = violin_plot( "roam_ic_mou_6", "roam_ic_mou_7", "roam_ic_mou_8", "Minutes used by the customer while receving incoming call-roaming", ) # show the figure fig.show() # **Minutes used by the customer while receiving incoming call in roaming zone :** # * June: With minimum of 0 and max of 2850 minutes # * July: With minimum of 0 and max of 4155 minutes # * August: With minimum of 0 and max of 4169 minutes # **As we see that user utilizes the most minutes in August which is comparable with util in July and takes a huge dip in June.** # ## Analyzing minutes utilized by the customer during an outgoing call while being in the roaming zone - ROAM_OG_MOU fig = violin_plot( "roam_og_mou_6", "roam_og_mou_7", "roam_og_mou_8", "Minutes used by the customer while receving outgoing call-roaming", ) # show the figure fig.show() # **Minutes used by the customer while receiving outgoing call in roaming zone :** # * June: With minimum of 0 and max of 3775 minutes # * July: With minimum of 0 and max of 2812 minutes # * August: With minimum of 0 and max of 5337 minutes # **As we see that user utilizes the most minutes in August following July and then June.** # ## Analyzing minutes utilized by the user during local calls within same telecom circle and within same operator (mobile to mobile) fig = violin_plot( "loc_og_t2t_mou_6", "loc_og_t2t_mou_7", "loc_og_t2t_mou_8", "Minutes used by the customer during local calls with same operator", ) # show the figure fig.show() # **Minutes used by the customer while making a local call in same operator within same telecom :** # * June: With minimum of 0 and max of 6431 minutes # * July: With minimum of 0 and max of 7400 minutes # * August: With minimum of 0 and max of 10.752k minutes # **As we see that user utilizes the most minutes in August following July and then June.** # ## Analyzing minutes utilized by the user during local calls within same telecom circle within operator to different mobile operator fig = violin_plot( "loc_og_t2m_mou_6", "loc_og_t2m_mou_7", "loc_og_t2m_mou_8", "Minutes used by the customer during local calls with different operator", ) # show the figure fig.show() # **Minutes used by the customer while making a local call with different operator within same telecom :** # * June: With minimum of 0 and max of 4696 minutes # * July: With minimum of 0 and max of 4557 minutes # * August: With minimum of 0 and max of 4961 minutes # **As we see that user utilizes the most minutes in August followed by June and July.** # ## From the graphs we see above we can say that utilization has been higher in the month of August in most of the cases # ## EXPLORATORY DATA ANALYSIS - BIVARIATE ANALYSIS # ## Understanding the age on network in number of days using the operator with Churn probability fig = px.box(train_df, x="churn_probability", y="aon") fig.show() # **People who do not churn have been using the network more than those who churn the network** # ### Grouping the features of same type with different months def plot_comparision(feature_1, feature_2, feature_3, train_df, metric): fig = go.Figure() fig.add_trace( go.Box( # defining y axis in corresponding # to x-axis y=list(train_df[train_df["churn_probability"] == 0][feature_1]) + list(train_df[train_df["churn_probability"] == 0][feature_2]) + list(train_df[train_df["churn_probability"] == 0][feature_3]), x=[feature_1] * len(train_df[train_df["churn_probability"] == 0]) + [feature_2] * len(train_df[train_df["churn_probability"] == 0]) + [feature_3] * len(train_df[train_df["churn_probability"] == 0]), name="Not Churned", marker_color="blue", ) ) fig.add_trace( go.Box( # defining y axis in corresponding # to x-axis y=list(train_df[train_df["churn_probability"] == 1][feature_1]) + list(train_df[train_df["churn_probability"] == 1][feature_2]) + list(train_df[train_df["churn_probability"] == 1][feature_3]), x=[feature_1] * len(train_df[train_df["churn_probability"] == 1]) + [feature_2] * len(train_df[train_df["churn_probability"] == 1]) + [feature_3] * len(train_df[train_df["churn_probability"] == 1]), name="Churned", marker_color="green", ) ) fig.update_layout( # group together boxes of the different # traces for each value of x boxmode="group", title="Metric {}".format(metric), ) fig.show() features_grouped = [ ["arpu_6", "arpu_7", "arpu_8"], ["onnet_mou_6", "onnet_mou_7", "onnet_mou_8"], ["offnet_mou_6", "offnet_mou_7", "offnet_mou_8"], ["roam_ic_mou_6", "roam_ic_mou_7", "roam_ic_mou_8"], ["roam_og_mou_6", "roam_og_mou_7", "roam_og_mou_8"], ["loc_og_t2t_mou_6", "loc_og_t2t_mou_7", "loc_og_t2t_mou_8"], ["loc_og_t2m_mou_6", "loc_og_t2m_mou_7", "loc_og_t2m_mou_8"], ["loc_og_t2f_mou_6", "loc_og_t2f_mou_7", "loc_og_t2f_mou_8"], ["loc_og_t2c_mou_6", "loc_og_t2c_mou_7", "loc_og_t2c_mou_8"], ["loc_og_mou_6", "loc_og_mou_7", "loc_og_mou_8"], ["std_og_t2t_mou_6", "std_og_t2t_mou_7", "std_og_t2t_mou_8"], ["std_og_t2m_mou_6", "std_og_t2m_mou_7", "std_og_t2m_mou_8"], ["std_og_t2f_mou_6", "std_og_t2f_mou_7", "std_og_t2f_mou_8"], ["std_og_mou_6", "std_og_mou_7", "std_og_mou_8"], ["isd_og_mou_6", "isd_og_mou_7", "isd_og_mou_8"], ["spl_og_mou_6", "spl_og_mou_7", "spl_og_mou_8"], ["og_others_6", "og_others_7", "og_others_8"], ["total_og_mou_6", "total_og_mou_7", "total_og_mou_8"], ["loc_ic_t2t_mou_6", "loc_ic_t2t_mou_7", "loc_ic_t2t_mou_8"], ["loc_ic_t2m_mou_6", "loc_ic_t2m_mou_7", "loc_ic_t2m_mou_8"], ["loc_ic_t2f_mou_6", "loc_ic_t2f_mou_7", "loc_ic_t2f_mou_8"], ["loc_ic_mou_6", "loc_ic_mou_7", "loc_ic_mou_8"], ["std_ic_t2t_mou_6", "std_ic_t2t_mou_7", "std_ic_t2t_mou_8"], ["std_ic_t2m_mou_6", "std_ic_t2m_mou_7", "std_ic_t2m_mou_8"], ["std_ic_t2f_mou_6", "std_ic_t2f_mou_7", "std_ic_t2f_mou_8"], ["std_ic_mou_6", "std_ic_mou_7", "std_ic_mou_8"], ["total_ic_mou_6", "total_ic_mou_7", "total_ic_mou_8"], ["spl_ic_mou_6", "spl_ic_mou_7", "spl_ic_mou_8"], ["isd_ic_mou_6", "isd_ic_mou_7", "isd_ic_mou_8"], ["ic_others_6", "ic_others_7", "ic_others_8"], ["total_rech_num_6", "total_rech_num_7", "total_rech_num_8"], ["total_rech_amt_6", "total_rech_amt_7", "total_rech_amt_8"], ["max_rech_amt_6", "max_rech_amt_7", "max_rech_amt_8"], ["date_of_last_rech_6", "date_of_last_rech_7", "date_of_last_rech_8"], ["last_day_rch_amt_6", "last_day_rch_amt_7", "last_day_rch_amt_8"], ["vol_2g_mb_6", "vol_2g_mb_7", "vol_2g_mb_8"], ["vol_3g_mb_6", "vol_3g_mb_7", "vol_3g_mb_8"], ["monthly_2g_6", "monthly_2g_7", "monthly_2g_8"], ["sachet_2g_6", "sachet_2g_7", "sachet_2g_8"], ["monthly_3g_6", "monthly_3g_7", "monthly_3g_8"], ["sachet_3g_6", "sachet_3g_7", "sachet_3g_8"], ["aug_vbc_3g", "jul_vbc_3g", "jun_vbc_3g"], ] for i in range(3): feature = features_grouped[i] plot_comparision( feature[0], feature[1], feature[2], train_df, feature[0].split("_")[0] ) # **The metric average revenue per user is higher for people who do not churn** # **The metric onnet is comparable for both churned and non churned customers in the month of june and july and increases in august** # **Metric offnet is also comparable june and july,there are a couple of outliers in all these graphs** # ### The above code can be used to print box plots and analyse them # ### The notebook crashes when all the analysis is shown Hence limiting the number of features analyzed # ### Correlation Heatmap corr = train_df.corr() # Create a heatmap using seaborn library plt.figure(figsize=(300, 300)) sns.heatmap(corr, annot=True, cmap="coolwarm") # Add title and show the plot plt.title("Correlation Heatmap") plt.show() corr # As we can see from the dataframe # * the correlation between arpu_6 and arpu_7 is strong and so is the case arpu_6 and arpu_8 # * The correlation between arpu_6 and onnet_6/7/8 is low but the correlation between them is high # * The correlation between aon and arpu 6/7/8 is very low # # TRAIN TEST SPLIT train_df.drop("id", axis=1, inplace=True) y_train = train_df["churn_probability"] X_train = train_df.drop("churn_probability") # # REMOVING OUTLIERS # From EDA, we saw that there are columns which have outliers in them. # Hence writing code to remove outliers def remove_outliers(data, threshold=1.5): """ Remove outliers from a numpy array using the Interquartile Range (IQR) method. Parameters: data (np.ndarray): Input data array. threshold (float): IQR threshold value. Default is 1.5. Returns: np.ndarray: Output data array without outliers. """ q1, q3 = np.percentile(data, [25, 75]) iqr = q3 - q1 lower_bound = q1 - (iqr * threshold) upper_bound = q3 + (iqr * threshold) mask = (data >= lower_bound) & (data <= upper_bound) return mask train_df.columns.remove("churn_probability")
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # variables # paths for files app_path_str = "../input/credit-card-approval-prediction/application_record.csv" credit_path_str = "../input/credit-card-approval-prediction/credit_record.csv" # For random forest, a number of trees must be selected. # The higher number, the more thorough the calculation, but it takes longer to run. number_of_trees = 200 # Target column for random forest prediction target_column_name = "high_risk" # Usually, decision trees can be large. Setting this variable to 3 or 4 makes the result tree easier to see and interpret. tree_depth = 3 # Load data # create dataframe from data df_app = pd.read_csv(app_path_str) df_app.head() # Load data # create dataframe from data df_credit = pd.read_csv(credit_path_str) df_credit.shape # Replace C and X with 0, expanding the 0 group to 0-29 days past due, so that we have all numeric categories for delinquency status. df_credit["STATUS"] = df_credit["STATUS"].replace(["X"], 0) df_credit["STATUS"] = df_credit["STATUS"].replace(["C"], 0) # check rows,cols df_app.shape # Convert status to numeric and group-max by status for each unique id. # This will be a proxy for whether an applicant will be approved, since there is no yes/no flag for approved in the data set. df_credit["STATUS"] = df_credit["STATUS"].apply(pd.to_numeric) # Select highest status, i.e. the highest level of delinquency for each customer id df_credit = df_credit.groupby("ID")["STATUS"].max().reset_index() # export data to csv file df_credit.to_csv("df_credit.csv", index=False) df_credit.groupby("ID")["STATUS"].count().reset_index() # Join grouped status table to df_app by ID df_consol = pd.merge(df_app, df_credit, left_on="ID", right_on="ID") df_consol.shape # convert status to binary. If < 1, then df_consol["high_risk"] = np.where(df_consol["STATUS"] < 1, 0, 1) # convert days old to years df_consol["age_years"] = round(df_consol["DAYS_BIRTH"] / -365, 0).astype(int) df_consol["years_employed"] = round(df_consol["DAYS_EMPLOYED"] / -365, 0).astype(int) df_consol.head() # Encode categorical columns df_formatted = pd.get_dummies( df_consol, columns=[ "CODE_GENDER", "FLAG_OWN_CAR", "FLAG_OWN_REALTY", "NAME_INCOME_TYPE", "NAME_EDUCATION_TYPE", "NAME_FAMILY_STATUS", "NAME_HOUSING_TYPE", "OCCUPATION_TYPE", ], prefix=[ "gender", "own_car", "own_property", "income_type", "education", "family_status", "housing_type", "occupation_type", ], ) # check length-rows and width-columns of data df_formatted.shape # drop columns not needed df_formatted.drop(["ID"], axis=1, inplace=True) df_formatted.drop(["STATUS"], axis=1, inplace=True) df_formatted.drop(["DAYS_BIRTH"], axis=1, inplace=True) df_formatted.drop(["DAYS_EMPLOYED"], axis=1, inplace=True) df_formatted.drop(["own_car_N"], axis=1, inplace=True) df_formatted.drop(["own_property_N"], axis=1, inplace=True) df_formatted.to_csv("df_formatted.csv", index=False) # Use numpy to convert to arrays. # NumPy is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, # along with a large collection of high-level mathematical functions to operate on these arrays. import numpy as np # Assign target variable to separate array target = np.array(df_formatted[target_column_name]) # Remove target column from features features = df_formatted.drop(target_column_name, axis=1) # Saving feature names for later use feature_list = list(features.columns) # convert features dataframe to array features = np.array(features) # Using Skicit-learn to split data into training and testing sets. # Scikit-learn (formerly scikits.learn and also known as sklearn) is a free software machine learning library for the Python programming language. # It features various classification, # regression and clustering algorithms including support vector machines, random forests, # gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific libraries NumPy and SciPy. from sklearn.model_selection import train_test_split # Split the data into training and testing sets. test_size is n% of the rows. The other % will train the model. train_features, test_features, train_target, test_target = train_test_split( features, target, test_size=0.25, random_state=42 ) # Check to see that training features and labels have the same rows, and testing features and labels have the same rows print("Training Features Shape:", train_features.shape) print("Training target Shape:", train_target.shape) print("Testing Features Shape:", test_features.shape) print("Testing target Shape:", test_target.shape) # Import the model we are using from sklearn.ensemble import RandomForestRegressor # Instantiate model. n_estimators is the number of decision trees you want to use rf = RandomForestRegressor(n_estimators=number_of_trees, random_state=42) # Train the model on training data rf.fit(train_features, train_target) # Import tools needed for visualization from sklearn.tree import export_graphviz from IPython.display import Image # pydot may need to be installed. try: import pydot except ImportError as e: import pydot # Limit depth of tree to n levels rf_small = RandomForestRegressor(n_estimators=10, max_depth=tree_depth) rf_small.fit(train_features, train_target) # Extract the small tree tree_small = rf_small.estimators_[5] # Save the tree as a png image export_graphviz( tree_small, out_file="small_tree.dot", feature_names=feature_list, rounded=True, precision=1, ) (graph,) = pydot.graph_from_dot_file("small_tree.dot") graph.write_png("small_tree.png") # show png file Image(graph.create_png()) # Get numerical feature importances importances = list(rf.feature_importances_) # List of tuples with variable and importance feature_importances = [ (feature, round(importance, 2)) for feature, importance in zip(feature_list, importances) ] # Sort the feature importances by most important first feature_importances = sorted(feature_importances, key=lambda x: x[1], reverse=True) # Print out the feature and importances [print("Variable: {:20} Importance: {}".format(*pair)) for pair in feature_importances] dfcorr = df_formatted[["AMT_INCOME_TOTAL", "age_years", "years_employed", "high_risk"]] # import packages import seaborn as sn import matplotlib.pyplot as plt # set width and height f = plt.figure() f.set_figwidth(15) f.set_figheight(12) # create matrix sn.heatmap( dfcorr.corr(), annot=True, vmin=-1, vmax=1, center=0, cmap="Blues", linewidths=1, linecolor="black", ) # Make x and y descriptions larger so they are easier to read plt.xticks(fontsize=14) plt.yticks(fontsize=14) plt.show()
import os import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) pd.set_option("max_columns", None) import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier import xgboost as xgb from sklearn import svm from sklearn.naive_bayes import GaussianNB from sklearn.model_selection import GridSearchCV from sklearn.metrics import classification_report import warnings for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) data_2019 = pd.read_csv("/kaggle/input/flight-delay-prediction/Jan_2019_ontime.csv") data_2020 = pd.read_csv("/kaggle/input/flight-delay-prediction/Jan_2020_ontime.csv") print(data_2019.info(), data_2020.info()) # Join both datasets 2019 and 2020 data = pd.concat([data_2019, data_2020]) data.head() data.shape # rename the categories in categorical columns data["DEP_DEL15"] = np.where(data["DEP_DEL15"] == 0.0, "NO", "YES") data["CANCELLED"] = np.where(data["CANCELLED"] == 0.0, "NO", "YES") data["DIVERTED"] = np.where(data["DIVERTED"] == 0.0, "NO", "YES") data["ARR_DEL15"] = np.where(data["ARR_DEL15"] == 0.0, "NO", "YES") # Since there is many categories in the ORIGIN and DEST column, I combined them to a single column and extracted the 50 most used routes. # Combine ORIGIN and DEST into a single column data["ORIGIN-DEST"] = data["ORIGIN"] + "-" + data["DEST"] # get the count of each combination into a dataframe org_dest = data["ORIGIN-DEST"].value_counts().to_frame() # check the number of observation in the most frequent 50 to check whether the sample size is enough for the analysis org_dest[:50]["ORIGIN-DEST"].sum() # extract the data from original dataframe org_dest_list = org_dest[:50].index.tolist() data = data[data["ORIGIN-DEST"].isin(org_dest_list)] # Distance variable is categorized into three to simplify the analysis. print( "max distance: ", data["DISTANCE"].max(), "\n", "min distance: ", data["DISTANCE"].min(), ) data["DIST_GROUP"] = "SHORT" data.loc[ (data["DISTANCE"] > 928.0) & (data["DISTANCE"] <= 1757.0), "DIST_GROUP" ] = "MEDIUM" data.loc[(data["DISTANCE"] > 1757.0), "DIST_GROUP"] = "LONG" # extract the necessary columns data = data[ [ "DAY_OF_MONTH", "DAY_OF_WEEK", "OP_UNIQUE_CARRIER", "ORIGIN-DEST", "DEP_DEL15", "CANCELLED", "DIVERTED", "DIST_GROUP", "ARR_DEL15", ] ] data = data.reset_index().drop("index", axis=1) data.shape # check for missing values data.isnull().sum() data.head() # # Exploratory Analysis var = ["DEP_DEL15", "CANCELLED", "DIVERTED"] fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(20, 10)) for k, ax in zip(range(3), axes.flatten()): sns.countplot(data=data, x=f"{var[k]}", hue="ARR_DEL15", ax=ax) ax.set_title(f"Arrival delay vs {var[k]}") for container in ax.containers: ax.bar_label(container) DEP_DEL_YES = data.loc[data["DEP_DEL15"] == "YES"] DEP_DEL_NO = data.loc[data["DEP_DEL15"] == "NO"] fig, ax = plt.subplots(figsize=(20, 5)) sns.countplot( data=data, x="ORIGIN-DEST", hue="ARR_DEL15", ) plt.title("Arrival delay with ORIGIN-DESTINATION") plt.xticks(rotation=45, ha="right") var = ["YES", "NO"] fig, axes = plt.subplots(nrows=2, ncols=1, figsize=(20, 10)) for k, ax in zip(range(2), axes.flatten()): sns.countplot( data=data.loc[data["DEP_DEL15"] == var[k]], x="ORIGIN-DEST", hue="ARR_DEL15", ax=ax, palette=["#98F5FF", "#BF3EFF"], ) ax.set_title(f"Arrival delay vs ORIGIN-DEST with DEP_DEL_{var[k]}") ax.set_xticklabels(ax.get_xticklabels(), rotation=45, ha="right") fig, ax = plt.subplots(figsize=(20, 5)) sns.countplot( data=data, x="OP_UNIQUE_CARRIER", hue="ARR_DEL15", ) plt.title("Arrival delay with OP_UNIQUE_CARRIER") var = ["YES", "NO"] fig, axes = plt.subplots(nrows=2, ncols=1, figsize=(20, 10)) for k, ax in zip(range(2), axes.flatten()): sns.countplot( data=data.loc[data["DEP_DEL15"] == var[k]], x="OP_UNIQUE_CARRIER", hue="ARR_DEL15", ax=ax, palette=["#98F5FF", "#BF3EFF"], ) ax.set_title(f"Arrival delay vs CARRIER CODE with DEP_DEL_{var[k]}") fig, ax = plt.subplots(figsize=(20, 10)) sns.countplot( data=data, x="DIST_GROUP", hue="ARR_DEL15", ) plt.title("Arrival delay with DISTANCE GROUP") for container in ax.containers: ax.bar_label(container) var = ["YES", "NO"] fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(20, 10)) for k, ax in zip(range(2), axes.flatten()): sns.countplot( data=data.loc[data["DEP_DEL15"] == var[k]], x="DIST_GROUP", hue="ARR_DEL15", ax=ax, palette=["#98F5FF", "#BF3EFF"], ) ax.set_title(f"Arrival delay vs Distance with DEP_DEL_{var[k]}") sns.histplot(data=data, x="DAY_OF_WEEK", hue="ARR_DEL15", multiple="dodge", shrink=6) sns.histplot(data=data, x="DAY_OF_MONTH", hue="ARR_DEL15", multiple="dodge", shrink=0.8) sns.set(rc={"figure.figsize": (5, 5)}) sns.set_style(rc={"axes.facecolor": "#FFFFFF"}) # **Summary of Exploratory Analysis** # 1. Being delayed on departure has an effect on arrival delay. # 2. All the flight routes have high probability of not gettinng delayed. But from all the routes most of the delays are from route ORD-LDA. # 3. Carrier doesn't seem to have an impact on arrival delay. # 4. Most of the flights have traveled short distance. In every distance group most of the flights have arrived on time. # 5. Day of the week and day of the month seems to have no impact on the arrival delay. # 6. In each category, **having a departure delay** has the **highest probability in havin an arrival delay.** # # Data Pre-processing data.head() data["ARR_DEL15"] = np.where(data["ARR_DEL15"] == "NO", 0, 1) y = data["ARR_DEL15"] x = data.drop("ARR_DEL15", axis=1) x = pd.get_dummies(x, drop_first=True) x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=0) # # Logistic Model accuracy_table = pd.DataFrame( columns=[ "model", "feature selection", "precision", "recall", "f1 score", "accuracy", ] ) model_lr = LogisticRegression(random_state=0) model_lr.fit(x_train, y_train) y_pred_lr = model_lr.predict(x_test) cr_lr = classification_report(y_pred_lr, y_test) print(cr_lr) row1 = pd.Series( ["Logistic", "no", 0.96, 0.95, 0.95, 0.93], index=accuracy_table.columns ) # # KNN knn = KNeighborsClassifier() param_grid = {"n_neighbors": range(1, 20)} grid = GridSearchCV(knn, param_grid, cv=5) grid.fit(x_train, y_train) print("Best n_neighbors:", grid.best_params_["n_neighbors"]) knn = KNeighborsClassifier(n_neighbors=13) model_knn = knn.fit(x_train, y_train) y_pred_knn = model_knn.predict(x_test) cr_knn = classification_report(y_pred_knn, y_test) print(cr_knn) row2 = pd.Series(["KNN", "no", 0.98, 0.88, 0.93, 0.88], index=accuracy_table.columns) # # Random Forest rf = RandomForestClassifier() param_grid = { "n_estimators": [100, 200, 300], "max_depth": [10, 20, 30], "min_samples_split": [2, 4, 6], "min_samples_leaf": [1, 2, 3], "bootstrap": [True, False], } grid_search = GridSearchCV( estimator=rf, param_grid=param_grid, cv=5, n_jobs=-1, verbose=False ) grid_search.fit(x_train, y_train) print("Best parameters:", grid_search.best_params_) rf = RandomForestClassifier( n_estimators=200, bootstrap=True, max_depth=10, min_samples_leaf=1, min_samples_split=6, ) model_rf = rf.fit(x_train, y_train) y_pred_rf = model_rf.predict(x_test) cr_rf = classification_report(y_pred_rf, y_test) print(cr_rf) row3 = pd.Series( ["Random Forest", "no", 0.96, 0.95, 0.95, 0.93], index=accuracy_table.columns ) # # XgBoost xb = xgb.XGBClassifier() param_grid = { "learning_rate": [0.01, 0.1, 0.5], "max_depth": [3, 5, 7], "n_estimators": [100, 500, 1000], "subsample": [0.5, 1], "colsample_bytree": [0.5, 1], } grid_search = GridSearchCV(estimator=xb, param_grid=param_grid, cv=5, verbose=False) grid_search.fit(x_train, y_train) print("Best parameters: ", grid_search.best_params_) xg = xgb.XGBClassifier( learning_rate=0.01, max_depth=7, n_estimators=1000, subsample=0.5, colsample_bytree=1, ) model_xg = xg.fit(x_train, y_train) y_pred_xg = model_xg.predict(x_test) cr_xg = classification_report(y_pred_xg, y_test) print(cr_xg) row4 = pd.Series( ["XgBoost", "no", 0.96, 0.94, 0.95, 0.93], index=accuracy_table.columns ) # # SVM clf = svm.SVC(kernel="linear") model_svm = clf.fit(x_train, y_train) y_pred_svm = model_svm.predict(x_test) cr_svm = classification_report(y_pred_svm, y_test) print(cr_svm) row5 = pd.Series(["SVM", "no", 0.96, 0.95, 0.95, 0.93], index=accuracy_table.columns) # # Naive Bayes Model nb = GaussianNB() model_nb = nb.fit(x_train, y_train) y_pred_nb = model_nb.predict(x_test) cr_nb = classification_report(y_pred_nb, y_test) print(cr_nb) # From the initial models the best models are Logistiv model, Random Forest, XgBoost and SVM algorithm. To improve the accuracy further we can try to implement feature selection. row6 = pd.Series( ["Naive Bayes", "no", 0.95, 0.90, 0.93, 0.88], index=accuracy_table.columns ) # # Lasso model model_ls = LogisticRegression(penalty="l1", solver="liblinear") model_ls.fit(x_train, y_train) y_pred_ls = model_ls.predict(x_test) cr_ls = classification_report(y_pred_ls, y_test) print(cr_ls) row7 = pd.Series(["Lasso", "yes", 0.96, 0.95, 0.95, 0.93], index=accuracy_table.columns) # # Random Forest with Feature Selection fig, axes = plt.subplots(figsize=(30, 5)) feature_importances = rf.feature_importances_ indices = feature_importances.argsort()[::-1] feature_names = x.columns[indices] plt.bar(range(x_train.shape[1]), feature_importances[indices]) plt.xticks(range(x_train.shape[1]), feature_names, rotation=90) plt.xlabel("Features") plt.ylabel("Importance") plt.show() y_rf = data["ARR_DEL15"] x_rf = x[ [ "DEP_DEL15_YES", "CANCELLED_YES", "DAY_OF_MONTH", "DAY_OF_WEEK", "DIVERTED_YES", "ORIGIN-DEST_ORD-LGA", "OP_UNIQUE_CARRIER_HA", "OP_UNIQUE_CARRIER_AS", "ORIGIN-DEST_LGA-ORD", "OP_UNIQUE_CARRIER_OO", ] ] x_train_rf, x_test_rf, y_train_rf, y_test_rf = train_test_split( x_rf, y_rf, test_size=0.3, random_state=0 ) rf = RandomForestClassifier() param_grid = { "n_estimators": [100, 200, 300], "max_depth": [10, 20, 30], "min_samples_split": [2, 4, 6], "min_samples_leaf": [1, 2, 3], "bootstrap": [True, False], } grid_search = GridSearchCV( estimator=rf, param_grid=param_grid, cv=5, n_jobs=-1, verbose=False ) grid_search.fit(x_train_rf, y_train_rf) print("Best parameters:", grid_search.best_params_) rf_fs = RandomForestClassifier( n_estimators=200, bootstrap=True, max_depth=10, min_samples_leaf=3, min_samples_split=2, ) model_rf_fs = rf.fit(x_train_rf, y_train_rf) y_pred_rf_fs = model_rf_fs.predict(x_test_rf) cr_rf_fs = classification_report(y_pred_rf_fs, y_test_rf) print(cr_rf_fs) row8 = pd.Series( ["Random Forest", "yes", 0.96, 0.94, 0.95, 0.92], index=accuracy_table.columns ) # # XgBoost with Feature Selection fig, axes = plt.subplots(figsize=(30, 5)) feature_importances = xg.feature_importances_ indices = feature_importances.argsort()[::-1] feature_names = x.columns[indices] plt.bar(range(x_train.shape[1]), feature_importances[indices]) plt.xticks(range(x_train.shape[1]), feature_names, rotation=90) plt.xlabel("Features") plt.ylabel("Importance") plt.show() y_xg = data["ARR_DEL15"] x_xg = x[ [ "DEP_DEL15_YES", "CANCELLED_YES", "DIVERTED_YES", "OP_UNIQUE_CARRIER_HA", "ORIGIN-DEST_ORD-LGA", "OP_UNIQUE_CARRIER_AS", "ORIGIN-DEST_MSP-ORD", "ORIGIN-DEST_ORD-ATL", "ORIGIN-DEST_TPA-ATL", "ORIGIN-DEST_ORD-DCA", ] ] x_train_xg, x_test_xg, y_train_xg, y_test_xg = train_test_split( x_xg, y_xg, test_size=0.3, random_state=0 ) xb = xgb.XGBClassifier() param_grid = { "learning_rate": [0.01, 0.1, 0.5], "max_depth": [3, 5, 7], "n_estimators": [100, 500, 1000], "subsample": [0.5, 1], "colsample_bytree": [0.5, 1], } grid_search = GridSearchCV(estimator=xb, param_grid=param_grid, cv=5, verbose=False) grid_search.fit(x_train_xg, y_train_xg) print("Best parameters: ", grid_search.best_params_) xg = xgb.XGBClassifier( learning_rate=0.01, max_depth=3, n_estimators=500, subsample=0.5, colsample_bytree=0.5, ) model_xg_fs = xg.fit(x_train_xg, y_train_xg) y_pred_xg_fs = model_xg_fs.predict(x_test_xg) cr_xg_fs = classification_report(y_pred_xg_fs, y_test_xg) print(cr_xg_fs) row9 = pd.Series( ["XgBoost", "yes", 0.96, 0.95, 0.95, 0.93], index=accuracy_table.columns ) accuracy_table = accuracy_table.append( [row1, row2, row3, row4, row5, row6, row7, row8, row9], ignore_index=True ) accuracy_table
# ## 1. Introduction # Name: Alec Daalman # Username: AlecDaalman # Leaderboard rank: # ## 2. Data # ### 2.1 Dataset # In this section, we load and explore the dataset. import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import os print(os.listdir("../input")) train = pd.read_csv( "../input/LANL-Earthquake-Prediction/train.csv", dtype={"acoustic_data": np.int16, "time_to_failure": np.float64}, ) # ### 2.2 Data Exploration # Explore the features and target variables of the dataset. Think about making some scatter plots, box plots, histograms or printing the data, but feel free to choose any method that suits you. # What do you think is the right performance # metric to use for this dataset? Clearly explain which performance metric you # choose and why. # Algorithmic bias can be a real problem in Machine Learning. So based on this, # should we use the Race and the Sex features in our machine learning algorithm? Explain what you believe. import matplotlib.pyplot as plt fig, ax = plt.subplots(2, 1, figsize=(20, 12)) ax[0].scatter(train.index[:1000000], train.acoustic_data[:1000000], c="darkred") ax[0].set_title("Acoustic data of 10 Mio rows") ax[0].set_xlabel("Index") ax[0].set_ylabel("Quaketime in ms") ax[1].scatter(train.index[:1000000], train.time_to_failure[:1000000], c="darkred") ax[1].set_title("Quaketime of 10 Mio rows") ax[1].set_xlabel("Index") ax[1].set_ylabel("Acoustic signal") # split_size = 150_000 # box_acoustic = [[] for i in range(int(np.floor(train.shape[0] / split_size)))] # for i in range(int(np.floor(train.shape[0] / split_size))): # box_acoustic[i] = train.acoustic_data[i*split_size:(i+1)*split_size] # ax[2].boxplot(np.asarray(box_acoustic)[:int(np.floor(len(box_acoustic)/1000)),:]); # ### 2.3 Data Preparation # This dataset hasn’t been cleaned yet. Meaning that some attributes (features) are in numerical format and some are in categorial format. Moreover, there are missing values as well. However, all Scikit-learn’s implementations of these algorithms expect numerical features. Check for all features if they are in categorial and use a method to transform them to numerical values. For the numerical data, handle the missing data and normalize the data. # Note that you are only allowed to use training data for preprocessing but you then need to perform similar changes on test data too. # You can use [pipelining](https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html) to help with the preprocessing. # ##### 2.3.1 Feature extraction from sklearn.model_selection import train_test_split rows = 150_000 segments = int(np.floor(train.shape[0] / rows)) x = pd.DataFrame( index=range(segments), dtype=np.float64, columns=["ave", "std", "max", "min"] ) y = pd.DataFrame(index=range(segments), dtype=np.float64, columns=["time_to_failure"]) # Time features for segment in range(segments): samples = train.acoustic_data[segment * rows : (segment + 1) * rows] samples_fft = np.fft.fft(samples) # plt.hist(samples_fft, bins=int(30e5), alpha=0.5, stacked=True) x.loc[segment, "average"] = np.mean(samples) x.loc[segment, "std"] = np.std(samples) x.loc[segment, "maximum"] = np.max(samples) x.loc[segment, "minimum"] = np.min(samples) y.loc[segment, "time_to_failure"] = train.time_to_failure[(segment + 1) * rows] del samples del samples_fft # del train import matplotlib.pyplot as plt import numpy as np # Generating some random data data_list = [np.random.randn(1000) for i in range(5)] # Creating a histogram without storing the data in a variable plt.hist(data_list, bins=30, alpha=0.5, stacked=True) plt.show() plt.hist(data_list, bins=30, alpha=0.5, stacked=False) plt.show()
import warnings warnings.filterwarnings("ignore") # loading packages import numpy as np import pandas as pd from pandas import datetime as dt from pandas import Series, DataFrame # data visualization import matplotlib.pyplot as plt import seaborn as sns # advanced vizs from sklearn.model_selection import train_test_split # machine learning from sklearn.linear_model import LinearRegression from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC, LinearSVC from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB import xgboost as xgb # 결과 살펴보기 from sklearn.metrics import r2_score as r2, mean_squared_error as mse import math # importing train data files store = pd.read_csv("../input/rossmann-store-sales/store.csv") train = pd.read_csv("../input/rossmann-store-sales/train.csv") test = pd.read_csv("../input/rossmann-store-sales/test.csv") state = pd.read_csv("../input/rossmann-store-extra/store_states.csv") state_name = pd.read_csv("../input/rossmann-store-extra/state_names.csv") weathers = pd.read_csv("../input/rossmann-store-extra/weather.csv") store = store.merge(state, on=["Store"], how="inner") store store.CompetitionDistance.fillna(store.CompetitionDistance.median(), inplace=True) store.CompetitionOpenSinceMonth.fillna( store.CompetitionOpenSinceMonth.median(), inplace=True ) store.CompetitionOpenSinceYear.fillna( store.CompetitionOpenSinceYear.median(), inplace=True ) store.Promo2SinceWeek.fillna(0, inplace=True) store.Promo2SinceYear.fillna(0, inplace=True) store.PromoInterval.fillna(0, inplace=True) df = store.merge(train, on=["Store"], how="inner") df.head() df["Date"] = pd.to_datetime(df["Date"]) df["Year"] = df["Date"].dt.year df["Month"] = df["Date"].dt.month df["Day"] = df["Date"].dt.day df["Week"] = df["Date"].dt.week % 4 df["WeekOfYear"] = df["Date"].dt.week df["StateHoliday"] = df["StateHoliday"].map({0: 0, "0": 0, "a": 1, "b": 1, "c": 1}) df = df[(df["Open"] != 0) & (df["Sales"] != 0)] df df["Assortment"] = [1 if i == "a" else 2 if i == "b" else 3 for i in df["Assortment"]] df["CompetitionOpen"] = 0 df["CompetitionOpen"] = df["CompetitionOpen"].where( df["CompetitionOpenSinceYear"] == 0, other=12 * (df["Year"] - df["CompetitionOpenSinceYear"]) + (df["Month"] - df["CompetitionOpenSinceMonth"]), ) df["PromoOpen"] = 0 df["PromoOpen"] = df["PromoOpen"].where( df["Promo2SinceYear"] == 0, other=12 * (df["Year"] - df["Promo2SinceYear"]) + (df["WeekOfYear"] - df["Promo2SinceWeek"]) / 4, ) df["PromoOpen"] = df["PromoOpen"].where(df["PromoOpen"] > 0, 0) df.info() df.drop( columns=[ "Store", "CompetitionOpenSinceMonth", "CompetitionOpenSinceYear", "Promo2SinceWeek", "Promo2SinceYear", "WeekOfYear", "Date", ], inplace=True, ) df2 = pd.get_dummies( df, columns=["StoreType", "PromoInterval", "State"], drop_first=True ) df2 df2["ln_Sales"] = df2["Sales"].map(lambda x: np.log(x) if x != 0 else 0) df2["ln_Customers"] = df2["Customers"].map(lambda x: np.log(x) if x != 0 else 0) df2["ln_CompetitionDistance"] = df2["CompetitionDistance"].map( lambda x: np.log(x) if x != 0 else 0 ) from sklearn.preprocessing import RobustScaler roscaler = RobustScaler() data = df2[["PromoOpen", "CompetitionOpen"]] data_scaled = roscaler.fit_transform(data) data_final = pd.DataFrame( data_scaled, columns=["scaled_PromoOpen", "scaled_CompetitionOpen"] ) data_final df3 = pd.concat([df2, data_final], ignore_index=True, axis=1) df3 df3.isna().sum() df3.drop( columns=[ "PromoOpen", "CompetitionOpen", "CompetitionDistance", "Sales", "Customers", ], inplace=True, ) df3.isna().sum() from sklearn.preprocessing import StandardScaler std = StandardScaler() data = df3[["ln_CompetitionDistance", "ln_Customers", "ln_Sales"]] std_data = std.fit_transform(data) std_data = pd.DataFrame(std_data, columns="scaled_" + data.columns) std_data.head() df4 = pd.concat([df3, std_data], axis=1) df4.drop( columns=[ "ln_Customers", "ln_CompetitionDistance", "ln_Sales", "scaled_ln_Customers", ], inplace=True, ) df4.tail() df4.isna().sum() x = df4.drop(["scaled_ln_Sales"], axis=1) y = df4["scaled_ln_Sales"] x.isna().sum() x_train, x_test, y_train, y_test = train_test_split( x, y, test_size=0.2, random_state=42 ) # Multiple Linear Regression # 모델 정의하기 = 인스턴스화= 객체화 m_lr = LinearRegression() # 학습하기 m_lr.fit(x_train, y_train) # 결과 예측하기 y_pred = m_lr.predict(x_test) # 설명력 print("R^2: ", r2(y_test, y_pred)) # RMSE 예측력 : 해석을 위해서 print("RSME: ", math.sqrt(mse(y_test, y_pred)))
import pandas as pd import polars as pl from itertools import product data_path = "/kaggle/input/m5-sales-ts/project_2_data/sales_data.parquet" # # Feature list # 1. Lags for 1, 2, 3 days # 2. Seasonal lags for 1, 2, 3 days (weekday, week of the year, month) # 3. Rolling mean and std with 7- and 30-day windows # 4. Seasonal mean and std with 7- and 30-day windows (weekday, week of the year, month) # # Pandas def add_date_features(df, date_features): for feature in date_features: if feature == "weekday": df[feature] = df.index.weekday if feature == "week": df[feature] = pd.Int64Index(df.index.isocalendar().week) if feature == "month": df[feature] = df.index.month return df def add_lag_features(df, target, horizon, lags, level): for lag in lags: feature_name = f"lag_{lag}_{horizon}" df[feature_name] = ( df.groupby(level)[target].shift(horizon + lag).rename(feature_name) ) return df def add_seasonal_lag_features(df, target, horizon, lags, level, seasons): for season in seasons: for lag in lags: feature_name = f"seasonal_lag_{lag}_{horizon}_by_{season}" df[feature_name] = ( df.groupby([level, season])[target] .shift(horizon + lag) .rename(feature_name) ) return df def add_rolling_features(df, target, horizon, windows, agg_funcs, level): grouped_target_df = df.groupby(level, group_keys=False)[target] for agg_func in agg_funcs: for window in windows: feature_name = f"rolling_{agg_func}_{window}_{horizon}" rolling_feature_df = ( grouped_target_df.rolling(window, closed="right", min_periods=1) .agg({target: agg_func}) .reset_index() .assign(date=lambda x: x.date + pd.Timedelta(days=horizon)) .rename(columns={"sales": feature_name}) ) df = ( df.reset_index() .merge(rolling_feature_df, on=["date", "id"], how="left") .set_index("date") ) return df def add_seasonal_rolling_features( df, target, horizon, windows, agg_funcs, level, seasons ): for season in seasons: grouped_target_df = df.groupby([level, season], group_keys=False)[target] for agg_func in agg_funcs: for window in windows: feature_name = ( f"seasonal_rolling_{agg_func}_{window}_{horizon}_by_{season}" ) rolling_feature_df = ( grouped_target_df.rolling(window, closed="right", min_periods=1) .agg({target: agg_func}) .reset_index() .assign(date=lambda x: x.date + pd.Timedelta(days=horizon)) .rename(columns={"sales": feature_name}) .drop(columns=season) ) df = ( df.reset_index() .merge(rolling_feature_df, on=["date", "id"], how="left") .set_index("date") ) return df data = ( pd.read_parquet(data_path) .assign(cum_sales=lambda x: x.groupby("id")["sales"].cumsum()) .query("cum_sales > 0") .drop(columns="cum_sales") .reset_index("id") ) add_date_features(data, ["weekday", "week", "month"]) add_lag_features(data, horizon=28, lags=[1, 2, 3], target="sales", level="id") add_seasonal_lag_features( data, horizon=28, lags=[1, 2, 3], target="sales", level="id", seasons=["weekday", "week", "month"], ) data = add_rolling_features( data, target="sales", horizon=28, windows=[7, 30], agg_funcs=["mean", "std"], level="id", ) pd_data = add_seasonal_rolling_features( data, target="sales", horizon=28, windows=[7, 30], agg_funcs=["mean", "std"], level="id", seasons=["weekday", "week", "month"], ) pd_data.head() # # Polars pl.Config.set_fmt_str_lengths(100) def lag_by_id( col: str, n: int, horizon: int, season: str = None, ): if season: grouper = ["id", season] feature_name = f"seasonal_lag_{n}_{horizon}_by_{season}" else: grouper = "id" feature_name = f"lag_{n}_{horizon}" return pl.col(col).shift(n + horizon).over(grouper).alias(feature_name) def rolling_mean_by_id( col: str, window: int, horizon: int, season: str = None, ): if season: grouper = ["id", season] feature_name = f"seasonal_rolling_mean_{window}_{horizon}_by_{season}" else: grouper = "id" feature_name = f"rolling_mean_{window}_{horizon}" func = ( pl.col(col) .rolling_mean(window, min_periods=1, closed="right") .over(grouper) .alias(feature_name) ) shift_func = pl.col(feature_name).shift(window + horizon).over(grouper) return func, shift_func def rolling_std_by_id( col: str, window: int, horizon: int, season: str = None, ): if season: grouper = ["id", season] feature_name = f"seasonal_rolling_std_{window}_{horizon}_by_{season}" else: grouper = "id" feature_name = f"rolling_std_{window}_{horizon}" func = ( pl.col(col) .rolling_std(window, min_periods=1, closed="right") .over(grouper) .alias(feature_name) ) shift_func = pl.col(feature_name).shift(window + horizon).over(grouper) return func, shift_func lags = [1, 2, 3] windows = [7, 30] seasons = ["weekday", "week", "month"] rolling_features_calculations = ( [rolling_mean_by_id("sales", w, 28)[0] for w in windows] + [rolling_mean_by_id("sales", w, 28, s)[0] for w, s in product(windows, seasons)] + [rolling_std_by_id("sales", w, 28)[0] for w in windows] + [rolling_std_by_id("sales", w, 28, s)[0] for w, s in product(windows, seasons)] ) rolling_features_shifts = ( [rolling_mean_by_id("sales", w, 28)[1] for w in windows] + [rolling_mean_by_id("sales", w, 28, s)[1] for w, s in product(windows, seasons)] + [rolling_std_by_id("sales", w, 28)[1] for w in windows] + [rolling_std_by_id("sales", w, 28, s)[1] for w, s in product(windows, seasons)] ) data = ( pl.read_parquet(data_path) # remove dates before first sale .with_columns(pl.col("sales").cumsum().over("id").alias("cum_sales")) .filter(pl.col("cum_sales") > 0) .drop("cum_sales") # add date features .with_columns( pl.col("date").dt.weekday().alias("weekday"), pl.col("date").dt.week().alias("week"), pl.col("date").dt.month().alias("month"), ) # add lag features .with_columns( [lag_by_id("sales", l, 28) for l in lags] + [lag_by_id("sales", l, 28, s) for l, s in product(lags, seasons)] ) # add rolling features .with_columns(rolling_features_calculations) .with_columns(rolling_features_shifts) ).lazy() pl_data = data.collect() pl_data.head() # # Compare execution time # A pretty drastic difference tbh pandas_time() polars_time()