|
# PyTorch Python 3.10 Installation Guide |
|
|
|
## 🚀 Quick Start |
|
|
|
### Option 1: Automated Setup (Recommended) |
|
|
|
```bash |
|
# 1. Create conda environment |
|
conda create -n pytorch_env python=3.10 |
|
conda activate pytorch_env |
|
|
|
# 2. Download repository |
|
git clone https://huggingface.co/RDHub/pytorch_python_310 |
|
cd pytorch_python_310 |
|
|
|
# 3. Install all packages |
|
pip install -r lib_wheel/requirements.txt --find-links lib_wheel --no-index |
|
|
|
# 4. Set up CUDA libraries |
|
bash setup_cuda_libs.sh |
|
|
|
# 5. Test installation |
|
python -c "import torch; print(f'PyTorch {torch.__version__} - CUDA: {torch.cuda.is_available()}')" |
|
``` |
|
|
|
### Option 2: Manual Setup |
|
|
|
```bash |
|
# 1. Install packages |
|
pip install -r lib_wheel/requirements.txt --find-links lib_wheel --no-index |
|
|
|
# 2. Create CUDA library activation script |
|
mkdir -p $CONDA_PREFIX/etc/conda/activate.d |
|
cat > $CONDA_PREFIX/etc/conda/activate.d/pytorch_cuda_libs.sh << 'EOF' |
|
#!/bin/bash |
|
NVIDIA_LIB_PATH=$(find $CONDA_PREFIX -path "*/nvidia/*/lib" -type d 2>/dev/null | tr '\n' ':') |
|
CUSPARSELT_LIB_PATH=$(find $CONDA_PREFIX -path "*/cusparselt/lib" -type d 2>/dev/null | tr '\n' ':') |
|
export LD_LIBRARY_PATH="${NVIDIA_LIB_PATH}${CUSPARSELT_LIB_PATH}${LD_LIBRARY_PATH}" |
|
EOF |
|
chmod +x $CONDA_PREFIX/etc/conda/activate.d/pytorch_cuda_libs.sh |
|
|
|
# 3. Reactivate environment |
|
conda deactivate && conda activate your_env_name |
|
``` |
|
|
|
## ✅ What's Included |
|
|
|
- **PyTorch 2.7.1** with CUDA 12.6 support |
|
- **Transformers 4.52.3** for HuggingFace models |
|
- **NumPy 2.0.2** (compatible with OpenCV) |
|
- **OpenCV 4.10.0** for computer vision |
|
- **80+ compatible packages** tested together |
|
- **NVIDIA CUDA libraries** (12.6.x series) |
|
|
|
## 🧪 Testing Your Installation |
|
|
|
```python |
|
import torch |
|
import transformers |
|
import numpy as np |
|
import cv2 |
|
|
|
# Test PyTorch CUDA |
|
print(f"PyTorch: {torch.__version__}") |
|
print(f"CUDA Available: {torch.cuda.is_available()}") |
|
if torch.cuda.is_available(): |
|
print(f"GPU: {torch.cuda.get_device_name(0)}") |
|
|
|
# Test basic operations |
|
x = torch.randn(100, 100).cuda() |
|
y = torch.matmul(x, x.T) |
|
print("✅ GPU tensor operations working!") |
|
|
|
# Test transformers |
|
from transformers import AutoTokenizer |
|
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") |
|
print("✅ Transformers working!") |
|
|
|
print(f"NumPy: {np.__version__}") |
|
print(f"OpenCV: {cv2.__version__}") |
|
``` |
|
|
|
## 🔧 Troubleshooting |
|
|
|
### Issue: "libcufile.so.0: cannot open shared object file" |
|
|
|
**Solution:** Run the CUDA setup script: |
|
```bash |
|
bash setup_cuda_libs.sh |
|
conda deactivate && conda activate your_env_name |
|
``` |
|
|
|
### Issue: "libcusparseLt.so.0: cannot open shared object file" |
|
|
|
**Solution:** Ensure all NVIDIA packages are installed: |
|
```bash |
|
pip install --force-reinstall lib_wheel/nvidia_cusparselt_cu12-*.whl |
|
pip install --force-reinstall lib_wheel/nvidia_cufile_cu12-*.whl |
|
``` |
|
|
|
### Issue: OpenCV + NumPy compatibility errors |
|
|
|
**Solution:** Use the exact versions provided: |
|
```bash |
|
pip install --force-reinstall lib_wheel/numpy-2.0.2-*.whl |
|
pip install --force-reinstall lib_wheel/opencv_python-4.10.0.84-*.whl |
|
``` |
|
|
|
## 📋 System Requirements |
|
|
|
- **OS:** Linux x86_64 (Ubuntu 22.04+ recommended) |
|
- **Python:** 3.10 |
|
- **CUDA:** Compatible with 12.2+ (12.6 optimal) |
|
- **Conda:** Required for library path management |
|
- **Storage:** ~2GB for all wheels |
|
|
|
## 🎯 Verified Configurations |
|
|
|
✅ **Ubuntu 22.04** + Python 3.10 + CUDA 12.2 |
|
✅ **Ubuntu 22.04** + Python 3.10 + CUDA 12.6 |
|
✅ **RTX 4090** + CUDA 12.6 |
|
✅ **Conda environments** |
|
|
|
## 🔗 Resources |
|
|
|
- **Repository:** https://huggingface.co/RDHub/pytorch_python_310 |
|
- **PyTorch Docs:** https://pytorch.org/docs/ |
|
- **CUDA Toolkit:** https://developer.nvidia.com/cuda-toolkit |