PyTorch Python 3.10 Installation Guide
🚀 Quick Start
Option 1: Automated Setup (Recommended)
# 1. Create conda environment
conda create -n pytorch_env python=3.10
conda activate pytorch_env
# 2. Download repository
git clone https://huggingface.co/RDHub/pytorch_python_310
cd pytorch_python_310
# 3. Install all packages
pip install -r lib_wheel/requirements.txt --find-links lib_wheel --no-index
# 4. Set up CUDA libraries
bash setup_cuda_libs.sh
# 5. Test installation
python -c "import torch; print(f'PyTorch {torch.__version__} - CUDA: {torch.cuda.is_available()}')"
Option 2: Manual Setup
# 1. Install packages
pip install -r lib_wheel/requirements.txt --find-links lib_wheel --no-index
# 2. Create CUDA library activation script
mkdir -p $CONDA_PREFIX/etc/conda/activate.d
cat > $CONDA_PREFIX/etc/conda/activate.d/pytorch_cuda_libs.sh << 'EOF'
#!/bin/bash
NVIDIA_LIB_PATH=$(find $CONDA_PREFIX -path "*/nvidia/*/lib" -type d 2>/dev/null | tr '\n' ':')
CUSPARSELT_LIB_PATH=$(find $CONDA_PREFIX -path "*/cusparselt/lib" -type d 2>/dev/null | tr '\n' ':')
export LD_LIBRARY_PATH="${NVIDIA_LIB_PATH}${CUSPARSELT_LIB_PATH}${LD_LIBRARY_PATH}"
EOF
chmod +x $CONDA_PREFIX/etc/conda/activate.d/pytorch_cuda_libs.sh
# 3. Reactivate environment
conda deactivate && conda activate your_env_name
✅ What's Included
- PyTorch 2.7.1 with CUDA 12.6 support
- Transformers 4.52.3 for HuggingFace models
- NumPy 2.0.2 (compatible with OpenCV)
- OpenCV 4.10.0 for computer vision
- 80+ compatible packages tested together
- NVIDIA CUDA libraries (12.6.x series)
🧪 Testing Your Installation
import torch
import transformers
import numpy as np
import cv2
# Test PyTorch CUDA
print(f"PyTorch: {torch.__version__}")
print(f"CUDA Available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
print(f"GPU: {torch.cuda.get_device_name(0)}")
# Test basic operations
x = torch.randn(100, 100).cuda()
y = torch.matmul(x, x.T)
print("✅ GPU tensor operations working!")
# Test transformers
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
print("✅ Transformers working!")
print(f"NumPy: {np.__version__}")
print(f"OpenCV: {cv2.__version__}")
🔧 Troubleshooting
Issue: "libcufile.so.0: cannot open shared object file"
Solution: Run the CUDA setup script:
bash setup_cuda_libs.sh
conda deactivate && conda activate your_env_name
Issue: "libcusparseLt.so.0: cannot open shared object file"
Solution: Ensure all NVIDIA packages are installed:
pip install --force-reinstall lib_wheel/nvidia_cusparselt_cu12-*.whl
pip install --force-reinstall lib_wheel/nvidia_cufile_cu12-*.whl
Issue: OpenCV + NumPy compatibility errors
Solution: Use the exact versions provided:
pip install --force-reinstall lib_wheel/numpy-2.0.2-*.whl
pip install --force-reinstall lib_wheel/opencv_python-4.10.0.84-*.whl
📋 System Requirements
- OS: Linux x86_64 (Ubuntu 22.04+ recommended)
- Python: 3.10
- CUDA: Compatible with 12.2+ (12.6 optimal)
- Conda: Required for library path management
- Storage: ~2GB for all wheels
🎯 Verified Configurations
✅ Ubuntu 22.04 + Python 3.10 + CUDA 12.2
✅ Ubuntu 22.04 + Python 3.10 + CUDA 12.6
✅ RTX 4090 + CUDA 12.6
✅ Conda environments
🔗 Resources
- Repository: https://huggingface.co/RDHub/pytorch_python_310
- PyTorch Docs: https://pytorch.org/docs/
- CUDA Toolkit: https://developer.nvidia.com/cuda-toolkit