# PyTorch Python 3.10 Installation Guide ## ๐Ÿš€ Quick Start ### Option 1: Automated Setup (Recommended) ```bash # 1. Create conda environment conda create -n pytorch_env python=3.10 conda activate pytorch_env # 2. Download repository git clone https://huggingface.co/RDHub/pytorch_python_310 cd pytorch_python_310 # 3. Install all packages pip install -r lib_wheel/requirements.txt --find-links lib_wheel --no-index # 4. Set up CUDA libraries bash setup_cuda_libs.sh # 5. Test installation python -c "import torch; print(f'PyTorch {torch.__version__} - CUDA: {torch.cuda.is_available()}')" ``` ### Option 2: Manual Setup ```bash # 1. Install packages pip install -r lib_wheel/requirements.txt --find-links lib_wheel --no-index # 2. Create CUDA library activation script mkdir -p $CONDA_PREFIX/etc/conda/activate.d cat > $CONDA_PREFIX/etc/conda/activate.d/pytorch_cuda_libs.sh << 'EOF' #!/bin/bash NVIDIA_LIB_PATH=$(find $CONDA_PREFIX -path "*/nvidia/*/lib" -type d 2>/dev/null | tr '\n' ':') CUSPARSELT_LIB_PATH=$(find $CONDA_PREFIX -path "*/cusparselt/lib" -type d 2>/dev/null | tr '\n' ':') export LD_LIBRARY_PATH="${NVIDIA_LIB_PATH}${CUSPARSELT_LIB_PATH}${LD_LIBRARY_PATH}" EOF chmod +x $CONDA_PREFIX/etc/conda/activate.d/pytorch_cuda_libs.sh # 3. Reactivate environment conda deactivate && conda activate your_env_name ``` ## โœ… What's Included - **PyTorch 2.7.1** with CUDA 12.6 support - **Transformers 4.52.3** for HuggingFace models - **NumPy 2.0.2** (compatible with OpenCV) - **OpenCV 4.10.0** for computer vision - **80+ compatible packages** tested together - **NVIDIA CUDA libraries** (12.6.x series) ## ๐Ÿงช Testing Your Installation ```python import torch import transformers import numpy as np import cv2 # Test PyTorch CUDA print(f"PyTorch: {torch.__version__}") print(f"CUDA Available: {torch.cuda.is_available()}") if torch.cuda.is_available(): print(f"GPU: {torch.cuda.get_device_name(0)}") # Test basic operations x = torch.randn(100, 100).cuda() y = torch.matmul(x, x.T) print("โœ… GPU tensor operations working!") # Test transformers from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") print("โœ… Transformers working!") print(f"NumPy: {np.__version__}") print(f"OpenCV: {cv2.__version__}") ``` ## ๐Ÿ”ง Troubleshooting ### Issue: "libcufile.so.0: cannot open shared object file" **Solution:** Run the CUDA setup script: ```bash bash setup_cuda_libs.sh conda deactivate && conda activate your_env_name ``` ### Issue: "libcusparseLt.so.0: cannot open shared object file" **Solution:** Ensure all NVIDIA packages are installed: ```bash pip install --force-reinstall lib_wheel/nvidia_cusparselt_cu12-*.whl pip install --force-reinstall lib_wheel/nvidia_cufile_cu12-*.whl ``` ### Issue: OpenCV + NumPy compatibility errors **Solution:** Use the exact versions provided: ```bash pip install --force-reinstall lib_wheel/numpy-2.0.2-*.whl pip install --force-reinstall lib_wheel/opencv_python-4.10.0.84-*.whl ``` ## ๐Ÿ“‹ System Requirements - **OS:** Linux x86_64 (Ubuntu 22.04+ recommended) - **Python:** 3.10 - **CUDA:** Compatible with 12.2+ (12.6 optimal) - **Conda:** Required for library path management - **Storage:** ~2GB for all wheels ## ๐ŸŽฏ Verified Configurations โœ… **Ubuntu 22.04** + Python 3.10 + CUDA 12.2 โœ… **Ubuntu 22.04** + Python 3.10 + CUDA 12.6 โœ… **RTX 4090** + CUDA 12.6 โœ… **Conda environments** ## ๐Ÿ”— Resources - **Repository:** https://huggingface.co/RDHub/pytorch_python_310 - **PyTorch Docs:** https://pytorch.org/docs/ - **CUDA Toolkit:** https://developer.nvidia.com/cuda-toolkit