PyTorch Python 3.10 Wheel Collection

Complete PyTorch ML stack with all dependencies - no conflicts, easy installation.

📋 What's Included

  • Python: 3.10 compatible
  • PyTorch: 2.7.1 + CUDA 12.6
  • Transformers: 4.52.3
  • NumPy: 2.0.2 (compatible version)
  • SciPy: 1.15.2
  • All Dependencies: 80+ wheels, fully tested together

🚀 Installation (Super Easy!)

One command installation from HuggingFace:

# Download and install everything
from huggingface_hub import snapshot_download
import subprocess
import os

# Download all wheels
repo_path = snapshot_download(repo_id="RDHub/pytorch_python_310")
wheel_path = os.path.join(repo_path, "lib_wheel")

# Install all wheels
subprocess.run(["pip", "install"] + [f"{wheel_path}/*.whl"], shell=True)

Or manually:

# 1. Download repository
git clone https://huggingface.co/RDHub/pytorch_python_310

# 2. Install everything with requirements file for correct versions
cd pytorch_python_310
pip install -r lib_wheel/requirements.txt --find-links lib_wheel --no-index

# 3. Set up CUDA libraries (for conda environments)
# Create activation script for automatic library path setup
mkdir -p $CONDA_PREFIX/etc/conda/activate.d
cat > $CONDA_PREFIX/etc/conda/activate.d/pytorch_cuda_libs.sh << 'EOF'
#!/bin/bash
# Set up NVIDIA CUDA library paths for PyTorch
NVIDIA_LIB_PATH=$(find $CONDA_PREFIX -path "*/nvidia/*/lib" -type d 2>/dev/null | tr '\n' ':')
CUSPARSELT_LIB_PATH=$(find $CONDA_PREFIX -path "*/cusparselt/lib" -type d 2>/dev/null | tr '\n' ':')
export LD_LIBRARY_PATH="${NVIDIA_LIB_PATH}${CUSPARSELT_LIB_PATH}${LD_LIBRARY_PATH}"
EOF
chmod +x $CONDA_PREFIX/etc/conda/activate.d/pytorch_cuda_libs.sh

# 4. Reactivate environment and test
conda deactivate && conda activate your_env_name
python -c "import torch; print(f'PyTorch {torch.__version__} - CUDA: {torch.cuda.is_available()}')"

✅ Key Versions

Package Version Python
PyTorch 2.7.1 3.10
Transformers 4.52.3 3.10
NumPy 2.0.2 3.10
CUDA 12.6 -

🎯 Use Cases

Perfect for:

  • Machine Learning projects
  • Large Language Model training
  • Computer Vision
  • Audio processing
  • Research environments

📝 Notes

  • No dependency conflicts - all versions tested together
  • Offline ready - no internet needed after download
  • CUDA included - ready for GPU training with library path setup
  • Linux x86_64 compatible
  • Requires conda environment - for automatic CUDA library path management

Repository Size: ~2GB
Total Packages: 80+ wheels
Tested: Ubuntu 22.04, Python 3.10

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support