PyTorch Python 3.10 Wheel Collection
Complete PyTorch ML stack with all dependencies - no conflicts, easy installation.
📋 What's Included
- Python: 3.10 compatible
- PyTorch: 2.7.1 + CUDA 12.6
- Transformers: 4.52.3
- NumPy: 2.0.2 (compatible version)
- SciPy: 1.15.2
- All Dependencies: 80+ wheels, fully tested together
🚀 Installation (Super Easy!)
One command installation from HuggingFace:
# Download and install everything
from huggingface_hub import snapshot_download
import subprocess
import os
# Download all wheels
repo_path = snapshot_download(repo_id="RDHub/pytorch_python_310")
wheel_path = os.path.join(repo_path, "lib_wheel")
# Install all wheels
subprocess.run(["pip", "install"] + [f"{wheel_path}/*.whl"], shell=True)
Or manually:
# 1. Download repository
git clone https://huggingface.co/RDHub/pytorch_python_310
# 2. Install everything with requirements file for correct versions
cd pytorch_python_310
pip install -r lib_wheel/requirements.txt --find-links lib_wheel --no-index
# 3. Set up CUDA libraries (for conda environments)
# Create activation script for automatic library path setup
mkdir -p $CONDA_PREFIX/etc/conda/activate.d
cat > $CONDA_PREFIX/etc/conda/activate.d/pytorch_cuda_libs.sh << 'EOF'
#!/bin/bash
# Set up NVIDIA CUDA library paths for PyTorch
NVIDIA_LIB_PATH=$(find $CONDA_PREFIX -path "*/nvidia/*/lib" -type d 2>/dev/null | tr '\n' ':')
CUSPARSELT_LIB_PATH=$(find $CONDA_PREFIX -path "*/cusparselt/lib" -type d 2>/dev/null | tr '\n' ':')
export LD_LIBRARY_PATH="${NVIDIA_LIB_PATH}${CUSPARSELT_LIB_PATH}${LD_LIBRARY_PATH}"
EOF
chmod +x $CONDA_PREFIX/etc/conda/activate.d/pytorch_cuda_libs.sh
# 4. Reactivate environment and test
conda deactivate && conda activate your_env_name
python -c "import torch; print(f'PyTorch {torch.__version__} - CUDA: {torch.cuda.is_available()}')"
✅ Key Versions
Package | Version | Python |
---|---|---|
PyTorch | 2.7.1 | 3.10 |
Transformers | 4.52.3 | 3.10 |
NumPy | 2.0.2 | 3.10 |
CUDA | 12.6 | - |
🎯 Use Cases
Perfect for:
- Machine Learning projects
- Large Language Model training
- Computer Vision
- Audio processing
- Research environments
📝 Notes
- No dependency conflicts - all versions tested together
- Offline ready - no internet needed after download
- CUDA included - ready for GPU training with library path setup
- Linux x86_64 compatible
- Requires conda environment - for automatic CUDA library path management
Repository Size: ~2GB
Total Packages: 80+ wheels
Tested: Ubuntu 22.04, Python 3.10
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support