gromoboy's picture
Add new SentenceTransformer model
43943cd verified
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:8914
- loss:MultipleNegativesRankingLoss
base_model: Qwen/Qwen3-Embedding-0.6B
widget:
- source_sentence: Киноа черная Esoro
sentences:
- 'Киноа черная ESORO, Перу, дойпак, 500г*35 (Штук/ящ: [35], Вес в кг: [0.500]'
- 'Кунжут белый очищенный нежареный, HANSEY, Россия, 1кг*15 (Штук/ящ: [8], Вес в
кг: [1.000]'
- Киноа белая Esoro
- source_sentence: original чипсы нори tidori
sentences:
- 'Чипсы нори TIDORI, Корея, Original, 15г (5г х 3) * 24 (Штук/ящ: [24], Вес в кг:
[0.038]'
- Kimchi Чипсы нори Tidori
- Свитшот мужской оверсайзтолстовка
- source_sentence: Перчатки одноразовые ТПЭ
sentences:
- Салфетка настольная, ПВХ (серебро)
- 'перчатки одноразовые тпэ, размер м, китай, 200шт*10 (штук/ящ: [10], вес в кг:
[0.450]'
- Костюмженскийдомашнийсбрюками
- source_sentence: Спортивный костюм женский/с худи/утепленный из футера с начесом
и капюшоном
sentences:
- 'Соус сладкий чили Лемонграсс Suree, Таиланд, 435мл*12 (Штук/ящ: [12], Вес в кг:
[0.569]'
- Капор женский капюшон съемный шапка
- Спортвный костюмженский/схуди/утепленнй из футера с начсом и капюшоном
- source_sentence: Одежда для новорожденных мальчиков слип для малышей комбинезон
нарядный нательный для фотосессии
sentences:
- Шапка детская для мальчика и снуд
- ТелескопРефрактор/Детский игровойнабор
- Одежда для новорожденных мальчиков слипдля малышей комбинезон нарядный нательный
для фотосесии
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
model-index:
- name: SentenceTransformer based on Qwen/Qwen3-Embedding-0.6B
results:
- task:
type: triplet
name: Triplet
dataset:
name: dev
type: dev
metrics:
- type: cosine_accuracy
value: 0.942307710647583
name: Cosine Accuracy
---
# SentenceTransformer based on Qwen/Qwen3-Embedding-0.6B
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Qwen/Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B) on the data1 dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Qwen/Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B) <!-- at revision c54f2e6e80b2d7b7de06f51cec4959f6b3e03418 -->
- **Maximum Sequence Length:** 32768 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- data1
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 32768, 'do_lower_case': False, 'architecture': 'Qwen3Model'})
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("gromoboy/qwen3_06b_items_matcher")
# Run inference
queries = [
"\u041e\u0434\u0435\u0436\u0434\u0430 \u0434\u043b\u044f \u043d\u043e\u0432\u043e\u0440\u043e\u0436\u0434\u0435\u043d\u043d\u044b\u0445 \u043c\u0430\u043b\u044c\u0447\u0438\u043a\u043e\u0432 \u0441\u043b\u0438\u043f \u0434\u043b\u044f \u043c\u0430\u043b\u044b\u0448\u0435\u0439 \u043a\u043e\u043c\u0431\u0438\u043d\u0435\u0437\u043e\u043d \u043d\u0430\u0440\u044f\u0434\u043d\u044b\u0439 \u043d\u0430\u0442\u0435\u043b\u044c\u043d\u044b\u0439 \u0434\u043b\u044f \u0444\u043e\u0442\u043e\u0441\u0435\u0441\u0441\u0438\u0438",
]
documents = [
'Одежда для новорожденных мальчиков слипдля малышей комбинезон нарядный нательный для фотосесии',
'Шапка детская для мальчика и снуд',
'ТелескопРефрактор/Детский игровойнабор',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 1024] [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[0.9531, 0.2704, 0.1847]])
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Triplet
* Dataset: `dev`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) with these parameters:
```json
{
"margin": {
"cosine": 0.3,
"dot": 0.3,
"manhattan": 0.3,
"euclidean": 0.3
}
}
```
| Metric | Value |
|:--------------------|:-----------|
| **cosine_accuracy** | **0.9423** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### data1
* Dataset: data1
* Size: 8,914 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 14.74 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 36 tokens</li><li>mean: 51.42 tokens</li><li>max: 86 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.61 tokens</li><li>max: 46 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:--------------------------------------|:---------------------------------------------------------------------------------------------------|:----------------------------------------|
| <code>Cоуc рыбный Cook&Lobster</code> | <code>Соус рыбный, Таиланд 750мл*12 ,стекло (Штук/ящ: [12], Вес в кг: [1.448]</code> | <code>Соус устричный Genso</code> |
| <code>Cоуc рыбный Cook&Lobster</code> | <code>Соус рыбный, Таиланд, 700мл*12 (Штук/ящ: [12], Вес в кг: [1.250]</code> | <code>Соус устричный Genso</code> |
| <code>Kimchi Чипсы нори Tidori</code> | <code>Чипсы нори TIDORI, Корея, Kimchi, 15г (5г х 3) * 24 (Штук/ящ: [24], Вес в кг: [0.038]</code> | <code>Original Чипсы нори Tidori</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 25,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### data1
* Dataset: data1
* Size: 2,288 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 19.04 tokens</li><li>max: 83 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 34.31 tokens</li><li>max: 88 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 18.38 tokens</li><li>max: 100 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------|
| <code>BBQ Чипсы нори Tidori</code> | <code>Чипсы нори TIDORI, Корея, BBQ, 15г (5г х 3) * 24 (Штук/ящ: [24], Вес в кг: [0.038]</code> | <code>Kimchi Чипсы нори Tidori</code> |
| <code>Original Чипсы нори Tidori</code> | <code>Чипсы нори TIDORI, Корея, Original, 15г (5г х 3) * 24 (Штук/ящ: [24], Вес в кг: [0.038]</code> | <code>Kimchi Чипсы нори Tidori</code> |
| <code>Авокадо пюре десертное с кокосом, голубикой и сиропом агавы, быстрозамороженное, блок (57 г*4)</code> | <code>Авокадо пюре десерт. с КОКОСОМ, ГОЛУБИКОЙ и сиропом агавы, быстрозамороженный 227гр*12 блок (57гр*4) (Штук/ящ: [12], Вес в кг: [0.235]</code> | <code>Авокадо пюре с киви, мятой и сиропом агавы, быстрозамороженное, блок (57 г*4)</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 25,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `learning_rate`: 2e-05
- `num_train_epochs`: 5
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | dev_cosine_accuracy |
|:------:|:----:|:-------------:|:---------------:|:-------------------:|
| -1 | -1 | - | - | 0.5848 |
| 0.3584 | 100 | - | 0.0570 | 0.9030 |
| 0.7168 | 200 | 0.0638 | 0.0504 | 0.9008 |
| 1.0753 | 300 | - | 0.0431 | 0.9331 |
| 1.4337 | 400 | 0.0067 | 0.0385 | 0.9292 |
| 1.7921 | 500 | - | 0.0715 | 0.9191 |
| 2.1505 | 600 | 0.0045 | 0.0664 | 0.9309 |
| 2.5090 | 700 | - | 0.0620 | 0.9414 |
| 2.8674 | 800 | 0.0029 | 0.0532 | 0.9467 |
| 3.2258 | 900 | - | 0.0586 | 0.9432 |
| 3.5842 | 1000 | 0.0041 | 0.0431 | 0.9432 |
| 3.9427 | 1100 | - | 0.0464 | 0.9432 |
| 4.3011 | 1200 | 0.0022 | 0.0611 | 0.9406 |
| 4.6595 | 1300 | - | 0.0646 | 0.9423 |
### Framework Versions
- Python: 3.11.10
- Sentence Transformers: 5.0.0
- Transformers: 4.54.0
- PyTorch: 2.5.1+cu124
- Accelerate: 1.9.0
- Datasets: 4.0.0
- Tokenizers: 0.21.2
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->