metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:8914
- loss:MultipleNegativesRankingLoss
base_model: Qwen/Qwen3-Embedding-0.6B
widget:
- source_sentence: Киноа черная Esoro
sentences:
- >-
Киноа черная ESORO, Перу, дойпак, 500г*35 (Штук/ящ: [35], Вес в кг:
[0.500]
- >-
Кунжут белый очищенный нежареный, HANSEY, Россия, 1кг*15 (Штук/ящ: [8],
Вес в кг: [1.000]
- Киноа белая Esoro
- source_sentence: original чипсы нори tidori
sentences:
- >-
Чипсы нори TIDORI, Корея, Original, 15г (5г х 3) * 24 (Штук/ящ: [24],
Вес в кг: [0.038]
- Kimchi Чипсы нори Tidori
- Свитшот мужской оверсайзтолстовка
- source_sentence: Перчатки одноразовые ТПЭ
sentences:
- Салфетка настольная, ПВХ (серебро)
- >-
перчатки одноразовые тпэ, размер м, китай, 200шт*10 (штук/ящ: [10], вес
в кг: [0.450]
- Костюмженскийдомашнийсбрюками
- source_sentence: >-
Спортивный костюм женский/с худи/утепленный из футера с начесом и
капюшоном
sentences:
- >-
Соус сладкий чили Лемонграсс Suree, Таиланд, 435мл*12 (Штук/ящ: [12],
Вес в кг: [0.569]
- Капор женский капюшон съемный шапка
- Спортвный костюмженский/схуди/утепленнй из футера с начсом и капюшоном
- source_sentence: >-
Одежда для новорожденных мальчиков слип для малышей комбинезон нарядный
нательный для фотосессии
sentences:
- Шапка детская для мальчика и снуд
- ТелескопРефрактор/Детский игровойнабор
- >-
Одежда для новорожденных мальчиков слипдля малышей комбинезон нарядный
нательный для фотосесии
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
model-index:
- name: SentenceTransformer based on Qwen/Qwen3-Embedding-0.6B
results:
- task:
type: triplet
name: Triplet
dataset:
name: dev
type: dev
metrics:
- type: cosine_accuracy
value: 0.942307710647583
name: Cosine Accuracy
SentenceTransformer based on Qwen/Qwen3-Embedding-0.6B
This is a sentence-transformers model finetuned from Qwen/Qwen3-Embedding-0.6B on the data1 dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Qwen/Qwen3-Embedding-0.6B
- Maximum Sequence Length: 32768 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- data1
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 32768, 'do_lower_case': False, 'architecture': 'Qwen3Model'})
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("gromoboy/qwen3_06b_items_matcher")
# Run inference
queries = [
"\u041e\u0434\u0435\u0436\u0434\u0430 \u0434\u043b\u044f \u043d\u043e\u0432\u043e\u0440\u043e\u0436\u0434\u0435\u043d\u043d\u044b\u0445 \u043c\u0430\u043b\u044c\u0447\u0438\u043a\u043e\u0432 \u0441\u043b\u0438\u043f \u0434\u043b\u044f \u043c\u0430\u043b\u044b\u0448\u0435\u0439 \u043a\u043e\u043c\u0431\u0438\u043d\u0435\u0437\u043e\u043d \u043d\u0430\u0440\u044f\u0434\u043d\u044b\u0439 \u043d\u0430\u0442\u0435\u043b\u044c\u043d\u044b\u0439 \u0434\u043b\u044f \u0444\u043e\u0442\u043e\u0441\u0435\u0441\u0441\u0438\u0438",
]
documents = [
'Одежда для новорожденных мальчиков слипдля малышей комбинезон нарядный нательный для фотосесии',
'Шапка детская для мальчика и снуд',
'ТелескопРефрактор/Детский игровойнабор',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 1024] [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[0.9531, 0.2704, 0.1847]])
Evaluation
Metrics
Triplet
- Dataset:
dev
- Evaluated with
TripletEvaluator
with these parameters:{ "margin": { "cosine": 0.3, "dot": 0.3, "manhattan": 0.3, "euclidean": 0.3 } }
Metric | Value |
---|---|
cosine_accuracy | 0.9423 |
Training Details
Training Dataset
data1
- Dataset: data1
- Size: 8,914 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 14.74 tokens
- max: 46 tokens
- min: 36 tokens
- mean: 51.42 tokens
- max: 86 tokens
- min: 6 tokens
- mean: 14.61 tokens
- max: 46 tokens
- Samples:
anchor positive negative Cоуc рыбный Cook&Lobster
Соус рыбный, Таиланд 750мл*12 ,стекло (Штук/ящ: [12], Вес в кг: [1.448]
Соус устричный Genso
Cоуc рыбный Cook&Lobster
Соус рыбный, Таиланд, 700мл*12 (Штук/ящ: [12], Вес в кг: [1.250]
Соус устричный Genso
Kimchi Чипсы нори Tidori
Чипсы нори TIDORI, Корея, Kimchi, 15г (5г х 3) * 24 (Штук/ящ: [24], Вес в кг: [0.038]
Original Чипсы нори Tidori
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 25, "similarity_fct": "cos_sim" }
Evaluation Dataset
data1
- Dataset: data1
- Size: 2,288 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 19.04 tokens
- max: 83 tokens
- min: 6 tokens
- mean: 34.31 tokens
- max: 88 tokens
- min: 6 tokens
- mean: 18.38 tokens
- max: 100 tokens
- Samples:
anchor positive negative BBQ Чипсы нори Tidori
Чипсы нори TIDORI, Корея, BBQ, 15г (5г х 3) * 24 (Штук/ящ: [24], Вес в кг: [0.038]
Kimchi Чипсы нори Tidori
Original Чипсы нори Tidori
Чипсы нори TIDORI, Корея, Original, 15г (5г х 3) * 24 (Штук/ящ: [24], Вес в кг: [0.038]
Kimchi Чипсы нори Tidori
Авокадо пюре десертное с кокосом, голубикой и сиропом агавы, быстрозамороженное, блок (57 г*4)
Авокадо пюре десерт. с КОКОСОМ, ГОЛУБИКОЙ и сиропом агавы, быстрозамороженный 227гр12 блок (57гр4) (Штук/ящ: [12], Вес в кг: [0.235]
Авокадо пюре с киви, мятой и сиропом агавы, быстрозамороженное, блок (57 г*4)
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 25, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32learning_rate
: 2e-05num_train_epochs
: 5warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportionalrouter_mapping
: {}learning_rate_mapping
: {}
Training Logs
Epoch | Step | Training Loss | Validation Loss | dev_cosine_accuracy |
---|---|---|---|---|
-1 | -1 | - | - | 0.5848 |
0.3584 | 100 | - | 0.0570 | 0.9030 |
0.7168 | 200 | 0.0638 | 0.0504 | 0.9008 |
1.0753 | 300 | - | 0.0431 | 0.9331 |
1.4337 | 400 | 0.0067 | 0.0385 | 0.9292 |
1.7921 | 500 | - | 0.0715 | 0.9191 |
2.1505 | 600 | 0.0045 | 0.0664 | 0.9309 |
2.5090 | 700 | - | 0.0620 | 0.9414 |
2.8674 | 800 | 0.0029 | 0.0532 | 0.9467 |
3.2258 | 900 | - | 0.0586 | 0.9432 |
3.5842 | 1000 | 0.0041 | 0.0431 | 0.9432 |
3.9427 | 1100 | - | 0.0464 | 0.9432 |
4.3011 | 1200 | 0.0022 | 0.0611 | 0.9406 |
4.6595 | 1300 | - | 0.0646 | 0.9423 |
Framework Versions
- Python: 3.11.10
- Sentence Transformers: 5.0.0
- Transformers: 4.54.0
- PyTorch: 2.5.1+cu124
- Accelerate: 1.9.0
- Datasets: 4.0.0
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}