gromoboy commited on
Commit
43943cd
·
verified ·
1 Parent(s): e1786fb

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": true,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,453 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - dense
7
+ - generated_from_trainer
8
+ - dataset_size:8914
9
+ - loss:MultipleNegativesRankingLoss
10
+ base_model: Qwen/Qwen3-Embedding-0.6B
11
+ widget:
12
+ - source_sentence: Киноа черная Esoro
13
+ sentences:
14
+ - 'Киноа черная ESORO, Перу, дойпак, 500г*35 (Штук/ящ: [35], Вес в кг: [0.500]'
15
+ - 'Кунжут белый очищенный нежареный, HANSEY, Россия, 1кг*15 (Штук/ящ: [8], Вес в
16
+ кг: [1.000]'
17
+ - Киноа белая Esoro
18
+ - source_sentence: original чипсы нори tidori
19
+ sentences:
20
+ - 'Чипсы нори TIDORI, Корея, Original, 15г (5г х 3) * 24 (Штук/ящ: [24], Вес в кг:
21
+ [0.038]'
22
+ - Kimchi Чипсы нори Tidori
23
+ - Свитшот мужской оверсайзтолстовка
24
+ - source_sentence: Перчатки одноразовые ТПЭ
25
+ sentences:
26
+ - Салфетка настольная, ПВХ (серебро)
27
+ - 'перчатки одноразовые тпэ, размер м, китай, 200шт*10 (штук/ящ: [10], вес в кг:
28
+ [0.450]'
29
+ - Костюмженскийдомашнийсбрюками
30
+ - source_sentence: Спортивный костюм женский/с худи/утепленный из футера с начесом
31
+ и капюшоном
32
+ sentences:
33
+ - 'Соус сладкий чили Лемонграсс Suree, Таиланд, 435мл*12 (Штук/ящ: [12], Вес в кг:
34
+ [0.569]'
35
+ - Капор женский капюшон съемный шапка
36
+ - Спортвный костюмженский/схуди/утепленнй из футера с начсом и капюшоном
37
+ - source_sentence: Одежда для новорожденных мальчиков слип для малышей комбинезон
38
+ нарядный нательный для фотосессии
39
+ sentences:
40
+ - Шапка детская для мальчика и снуд
41
+ - ТелескопРефрактор/Детский игровойнабор
42
+ - Одежда для новорожденных мальчиков слипдля малышей комбинезон нарядный нательный
43
+ для фотосесии
44
+ pipeline_tag: sentence-similarity
45
+ library_name: sentence-transformers
46
+ metrics:
47
+ - cosine_accuracy
48
+ model-index:
49
+ - name: SentenceTransformer based on Qwen/Qwen3-Embedding-0.6B
50
+ results:
51
+ - task:
52
+ type: triplet
53
+ name: Triplet
54
+ dataset:
55
+ name: dev
56
+ type: dev
57
+ metrics:
58
+ - type: cosine_accuracy
59
+ value: 0.942307710647583
60
+ name: Cosine Accuracy
61
+ ---
62
+
63
+ # SentenceTransformer based on Qwen/Qwen3-Embedding-0.6B
64
+
65
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Qwen/Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B) on the data1 dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
66
+
67
+ ## Model Details
68
+
69
+ ### Model Description
70
+ - **Model Type:** Sentence Transformer
71
+ - **Base model:** [Qwen/Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B) <!-- at revision c54f2e6e80b2d7b7de06f51cec4959f6b3e03418 -->
72
+ - **Maximum Sequence Length:** 32768 tokens
73
+ - **Output Dimensionality:** 1024 dimensions
74
+ - **Similarity Function:** Cosine Similarity
75
+ - **Training Dataset:**
76
+ - data1
77
+ <!-- - **Language:** Unknown -->
78
+ <!-- - **License:** Unknown -->
79
+
80
+ ### Model Sources
81
+
82
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
83
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
84
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
85
+
86
+ ### Full Model Architecture
87
+
88
+ ```
89
+ SentenceTransformer(
90
+ (0): Transformer({'max_seq_length': 32768, 'do_lower_case': False, 'architecture': 'Qwen3Model'})
91
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True})
92
+ (2): Normalize()
93
+ )
94
+ ```
95
+
96
+ ## Usage
97
+
98
+ ### Direct Usage (Sentence Transformers)
99
+
100
+ First install the Sentence Transformers library:
101
+
102
+ ```bash
103
+ pip install -U sentence-transformers
104
+ ```
105
+
106
+ Then you can load this model and run inference.
107
+ ```python
108
+ from sentence_transformers import SentenceTransformer
109
+
110
+ # Download from the 🤗 Hub
111
+ model = SentenceTransformer("gromoboy/qwen3_06b_items_matcher")
112
+ # Run inference
113
+ queries = [
114
+ "\u041e\u0434\u0435\u0436\u0434\u0430 \u0434\u043b\u044f \u043d\u043e\u0432\u043e\u0440\u043e\u0436\u0434\u0435\u043d\u043d\u044b\u0445 \u043c\u0430\u043b\u044c\u0447\u0438\u043a\u043e\u0432 \u0441\u043b\u0438\u043f \u0434\u043b\u044f \u043c\u0430\u043b\u044b\u0448\u0435\u0439 \u043a\u043e\u043c\u0431\u0438\u043d\u0435\u0437\u043e\u043d \u043d\u0430\u0440\u044f\u0434\u043d\u044b\u0439 \u043d\u0430\u0442\u0435\u043b\u044c\u043d\u044b\u0439 \u0434\u043b\u044f \u0444\u043e\u0442\u043e\u0441\u0435\u0441\u0441\u0438\u0438",
115
+ ]
116
+ documents = [
117
+ 'Одежда для новорожденных мальчиков слипдля малышей комбинезон нарядный нательный для фотосесии',
118
+ 'Шапка детская для мальчика и снуд',
119
+ 'ТелескопРефрактор/Детский игровойнабор',
120
+ ]
121
+ query_embeddings = model.encode_query(queries)
122
+ document_embeddings = model.encode_document(documents)
123
+ print(query_embeddings.shape, document_embeddings.shape)
124
+ # [1, 1024] [3, 1024]
125
+
126
+ # Get the similarity scores for the embeddings
127
+ similarities = model.similarity(query_embeddings, document_embeddings)
128
+ print(similarities)
129
+ # tensor([[0.9531, 0.2704, 0.1847]])
130
+ ```
131
+
132
+ <!--
133
+ ### Direct Usage (Transformers)
134
+
135
+ <details><summary>Click to see the direct usage in Transformers</summary>
136
+
137
+ </details>
138
+ -->
139
+
140
+ <!--
141
+ ### Downstream Usage (Sentence Transformers)
142
+
143
+ You can finetune this model on your own dataset.
144
+
145
+ <details><summary>Click to expand</summary>
146
+
147
+ </details>
148
+ -->
149
+
150
+ <!--
151
+ ### Out-of-Scope Use
152
+
153
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
154
+ -->
155
+
156
+ ## Evaluation
157
+
158
+ ### Metrics
159
+
160
+ #### Triplet
161
+
162
+ * Dataset: `dev`
163
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) with these parameters:
164
+ ```json
165
+ {
166
+ "margin": {
167
+ "cosine": 0.3,
168
+ "dot": 0.3,
169
+ "manhattan": 0.3,
170
+ "euclidean": 0.3
171
+ }
172
+ }
173
+ ```
174
+
175
+ | Metric | Value |
176
+ |:--------------------|:-----------|
177
+ | **cosine_accuracy** | **0.9423** |
178
+
179
+ <!--
180
+ ## Bias, Risks and Limitations
181
+
182
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
183
+ -->
184
+
185
+ <!--
186
+ ### Recommendations
187
+
188
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
189
+ -->
190
+
191
+ ## Training Details
192
+
193
+ ### Training Dataset
194
+
195
+ #### data1
196
+
197
+ * Dataset: data1
198
+ * Size: 8,914 training samples
199
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
200
+ * Approximate statistics based on the first 1000 samples:
201
+ | | anchor | positive | negative |
202
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
203
+ | type | string | string | string |
204
+ | details | <ul><li>min: 6 tokens</li><li>mean: 14.74 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 36 tokens</li><li>mean: 51.42 tokens</li><li>max: 86 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.61 tokens</li><li>max: 46 tokens</li></ul> |
205
+ * Samples:
206
+ | anchor | positive | negative |
207
+ |:--------------------------------------|:---------------------------------------------------------------------------------------------------|:----------------------------------------|
208
+ | <code>Cоуc рыбный Cook&Lobster</code> | <code>Соус рыбный, Таиланд 750мл*12 ,стекло (Штук/ящ: [12], Вес в кг: [1.448]</code> | <code>Соус устричный Genso</code> |
209
+ | <code>Cоуc рыбный Cook&Lobster</code> | <code>Соус рыбный, Таиланд, 700мл*12 (Штук/ящ: [12], Вес в кг: [1.250]</code> | <code>Соус устричный Genso</code> |
210
+ | <code>Kimchi Чипсы нори Tidori</code> | <code>Чипсы нори TIDORI, Корея, Kimchi, 15г (5г х 3) * 24 (Штук/ящ: [24], Вес в кг: [0.038]</code> | <code>Original Чипсы нори Tidori</code> |
211
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
212
+ ```json
213
+ {
214
+ "scale": 25,
215
+ "similarity_fct": "cos_sim"
216
+ }
217
+ ```
218
+
219
+ ### Evaluation Dataset
220
+
221
+ #### data1
222
+
223
+ * Dataset: data1
224
+ * Size: 2,288 evaluation samples
225
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
226
+ * Approximate statistics based on the first 1000 samples:
227
+ | | anchor | positive | negative |
228
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
229
+ | type | string | string | string |
230
+ | details | <ul><li>min: 6 tokens</li><li>mean: 19.04 tokens</li><li>max: 83 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 34.31 tokens</li><li>max: 88 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 18.38 tokens</li><li>max: 100 tokens</li></ul> |
231
+ * Samples:
232
+ | anchor | positive | negative |
233
+ |:------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------|
234
+ | <code>BBQ Чипсы нори Tidori</code> | <code>Чипсы нори TIDORI, Корея, BBQ, 15г (5г х 3) * 24 (Штук/ящ: [24], Вес в кг: [0.038]</code> | <code>Kimchi Чипсы нори Tidori</code> |
235
+ | <code>Original Чипсы нори Tidori</code> | <code>Чипсы нори TIDORI, Корея, Original, 15г (5г х 3) * 24 (Штук/ящ: [24], Вес в кг: [0.038]</code> | <code>Kimchi Чипсы нори Tidori</code> |
236
+ | <code>Авокадо пюре десертное с кокосом, голубикой и сиропом агавы, быстрозамороженное, блок (57 г*4)</code> | <code>Авокадо пюре десерт. с КОКОСОМ, ГОЛУБИКОЙ и сиропом агавы, быстрозамороженный 227гр*12 блок (57гр*4) (Штук/ящ: [12], Вес в кг: [0.235]</code> | <code>Авокадо пюре с киви, мятой и сиропом агавы, быстрозамороженное, блок (57 г*4)</code> |
237
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
238
+ ```json
239
+ {
240
+ "scale": 25,
241
+ "similarity_fct": "cos_sim"
242
+ }
243
+ ```
244
+
245
+ ### Training Hyperparameters
246
+ #### Non-Default Hyperparameters
247
+
248
+ - `eval_strategy`: steps
249
+ - `per_device_train_batch_size`: 32
250
+ - `per_device_eval_batch_size`: 32
251
+ - `learning_rate`: 2e-05
252
+ - `num_train_epochs`: 5
253
+ - `warmup_ratio`: 0.1
254
+ - `fp16`: True
255
+ - `batch_sampler`: no_duplicates
256
+
257
+ #### All Hyperparameters
258
+ <details><summary>Click to expand</summary>
259
+
260
+ - `overwrite_output_dir`: False
261
+ - `do_predict`: False
262
+ - `eval_strategy`: steps
263
+ - `prediction_loss_only`: True
264
+ - `per_device_train_batch_size`: 32
265
+ - `per_device_eval_batch_size`: 32
266
+ - `per_gpu_train_batch_size`: None
267
+ - `per_gpu_eval_batch_size`: None
268
+ - `gradient_accumulation_steps`: 1
269
+ - `eval_accumulation_steps`: None
270
+ - `torch_empty_cache_steps`: None
271
+ - `learning_rate`: 2e-05
272
+ - `weight_decay`: 0.0
273
+ - `adam_beta1`: 0.9
274
+ - `adam_beta2`: 0.999
275
+ - `adam_epsilon`: 1e-08
276
+ - `max_grad_norm`: 1.0
277
+ - `num_train_epochs`: 5
278
+ - `max_steps`: -1
279
+ - `lr_scheduler_type`: linear
280
+ - `lr_scheduler_kwargs`: {}
281
+ - `warmup_ratio`: 0.1
282
+ - `warmup_steps`: 0
283
+ - `log_level`: passive
284
+ - `log_level_replica`: warning
285
+ - `log_on_each_node`: True
286
+ - `logging_nan_inf_filter`: True
287
+ - `save_safetensors`: True
288
+ - `save_on_each_node`: False
289
+ - `save_only_model`: False
290
+ - `restore_callback_states_from_checkpoint`: False
291
+ - `no_cuda`: False
292
+ - `use_cpu`: False
293
+ - `use_mps_device`: False
294
+ - `seed`: 42
295
+ - `data_seed`: None
296
+ - `jit_mode_eval`: False
297
+ - `use_ipex`: False
298
+ - `bf16`: False
299
+ - `fp16`: True
300
+ - `fp16_opt_level`: O1
301
+ - `half_precision_backend`: auto
302
+ - `bf16_full_eval`: False
303
+ - `fp16_full_eval`: False
304
+ - `tf32`: None
305
+ - `local_rank`: 0
306
+ - `ddp_backend`: None
307
+ - `tpu_num_cores`: None
308
+ - `tpu_metrics_debug`: False
309
+ - `debug`: []
310
+ - `dataloader_drop_last`: False
311
+ - `dataloader_num_workers`: 0
312
+ - `dataloader_prefetch_factor`: None
313
+ - `past_index`: -1
314
+ - `disable_tqdm`: False
315
+ - `remove_unused_columns`: True
316
+ - `label_names`: None
317
+ - `load_best_model_at_end`: False
318
+ - `ignore_data_skip`: False
319
+ - `fsdp`: []
320
+ - `fsdp_min_num_params`: 0
321
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
322
+ - `fsdp_transformer_layer_cls_to_wrap`: None
323
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
324
+ - `deepspeed`: None
325
+ - `label_smoothing_factor`: 0.0
326
+ - `optim`: adamw_torch
327
+ - `optim_args`: None
328
+ - `adafactor`: False
329
+ - `group_by_length`: False
330
+ - `length_column_name`: length
331
+ - `ddp_find_unused_parameters`: None
332
+ - `ddp_bucket_cap_mb`: None
333
+ - `ddp_broadcast_buffers`: False
334
+ - `dataloader_pin_memory`: True
335
+ - `dataloader_persistent_workers`: False
336
+ - `skip_memory_metrics`: True
337
+ - `use_legacy_prediction_loop`: False
338
+ - `push_to_hub`: False
339
+ - `resume_from_checkpoint`: None
340
+ - `hub_model_id`: None
341
+ - `hub_strategy`: every_save
342
+ - `hub_private_repo`: None
343
+ - `hub_always_push`: False
344
+ - `hub_revision`: None
345
+ - `gradient_checkpointing`: False
346
+ - `gradient_checkpointing_kwargs`: None
347
+ - `include_inputs_for_metrics`: False
348
+ - `include_for_metrics`: []
349
+ - `eval_do_concat_batches`: True
350
+ - `fp16_backend`: auto
351
+ - `push_to_hub_model_id`: None
352
+ - `push_to_hub_organization`: None
353
+ - `mp_parameters`:
354
+ - `auto_find_batch_size`: False
355
+ - `full_determinism`: False
356
+ - `torchdynamo`: None
357
+ - `ray_scope`: last
358
+ - `ddp_timeout`: 1800
359
+ - `torch_compile`: False
360
+ - `torch_compile_backend`: None
361
+ - `torch_compile_mode`: None
362
+ - `include_tokens_per_second`: False
363
+ - `include_num_input_tokens_seen`: False
364
+ - `neftune_noise_alpha`: None
365
+ - `optim_target_modules`: None
366
+ - `batch_eval_metrics`: False
367
+ - `eval_on_start`: False
368
+ - `use_liger_kernel`: False
369
+ - `liger_kernel_config`: None
370
+ - `eval_use_gather_object`: False
371
+ - `average_tokens_across_devices`: False
372
+ - `prompts`: None
373
+ - `batch_sampler`: no_duplicates
374
+ - `multi_dataset_batch_sampler`: proportional
375
+ - `router_mapping`: {}
376
+ - `learning_rate_mapping`: {}
377
+
378
+ </details>
379
+
380
+ ### Training Logs
381
+ | Epoch | Step | Training Loss | Validation Loss | dev_cosine_accuracy |
382
+ |:------:|:----:|:-------------:|:---------------:|:-------------------:|
383
+ | -1 | -1 | - | - | 0.5848 |
384
+ | 0.3584 | 100 | - | 0.0570 | 0.9030 |
385
+ | 0.7168 | 200 | 0.0638 | 0.0504 | 0.9008 |
386
+ | 1.0753 | 300 | - | 0.0431 | 0.9331 |
387
+ | 1.4337 | 400 | 0.0067 | 0.0385 | 0.9292 |
388
+ | 1.7921 | 500 | - | 0.0715 | 0.9191 |
389
+ | 2.1505 | 600 | 0.0045 | 0.0664 | 0.9309 |
390
+ | 2.5090 | 700 | - | 0.0620 | 0.9414 |
391
+ | 2.8674 | 800 | 0.0029 | 0.0532 | 0.9467 |
392
+ | 3.2258 | 900 | - | 0.0586 | 0.9432 |
393
+ | 3.5842 | 1000 | 0.0041 | 0.0431 | 0.9432 |
394
+ | 3.9427 | 1100 | - | 0.0464 | 0.9432 |
395
+ | 4.3011 | 1200 | 0.0022 | 0.0611 | 0.9406 |
396
+ | 4.6595 | 1300 | - | 0.0646 | 0.9423 |
397
+
398
+
399
+ ### Framework Versions
400
+ - Python: 3.11.10
401
+ - Sentence Transformers: 5.0.0
402
+ - Transformers: 4.54.0
403
+ - PyTorch: 2.5.1+cu124
404
+ - Accelerate: 1.9.0
405
+ - Datasets: 4.0.0
406
+ - Tokenizers: 0.21.2
407
+
408
+ ## Citation
409
+
410
+ ### BibTeX
411
+
412
+ #### Sentence Transformers
413
+ ```bibtex
414
+ @inproceedings{reimers-2019-sentence-bert,
415
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
416
+ author = "Reimers, Nils and Gurevych, Iryna",
417
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
418
+ month = "11",
419
+ year = "2019",
420
+ publisher = "Association for Computational Linguistics",
421
+ url = "https://arxiv.org/abs/1908.10084",
422
+ }
423
+ ```
424
+
425
+ #### MultipleNegativesRankingLoss
426
+ ```bibtex
427
+ @misc{henderson2017efficient,
428
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
429
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
430
+ year={2017},
431
+ eprint={1705.00652},
432
+ archivePrefix={arXiv},
433
+ primaryClass={cs.CL}
434
+ }
435
+ ```
436
+
437
+ <!--
438
+ ## Glossary
439
+
440
+ *Clearly define terms in order to be accessible across audiences.*
441
+ -->
442
+
443
+ <!--
444
+ ## Model Card Authors
445
+
446
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
447
+ -->
448
+
449
+ <!--
450
+ ## Model Card Contact
451
+
452
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
453
+ -->
added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
chat_template.jinja ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0].role == 'system' %}
4
+ {{- messages[0].content + '\n\n' }}
5
+ {%- endif %}
6
+ {{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
7
+ {%- for tool in tools %}
8
+ {{- "\n" }}
9
+ {{- tool | tojson }}
10
+ {%- endfor %}
11
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
12
+ {%- else %}
13
+ {%- if messages[0].role == 'system' %}
14
+ {{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
15
+ {%- endif %}
16
+ {%- endif %}
17
+ {%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
18
+ {%- for message in messages[::-1] %}
19
+ {%- set index = (messages|length - 1) - loop.index0 %}
20
+ {%- if ns.multi_step_tool and message.role == "user" and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}
21
+ {%- set ns.multi_step_tool = false %}
22
+ {%- set ns.last_query_index = index %}
23
+ {%- endif %}
24
+ {%- endfor %}
25
+ {%- for message in messages %}
26
+ {%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
27
+ {{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
28
+ {%- elif message.role == "assistant" %}
29
+ {%- set content = message.content %}
30
+ {%- set reasoning_content = '' %}
31
+ {%- if message.reasoning_content is defined and message.reasoning_content is not none %}
32
+ {%- set reasoning_content = message.reasoning_content %}
33
+ {%- else %}
34
+ {%- if '</think>' in message.content %}
35
+ {%- set content = message.content.split('</think>')[-1].lstrip('\n') %}
36
+ {%- set reasoning_content = message.content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
37
+ {%- endif %}
38
+ {%- endif %}
39
+ {%- if loop.index0 > ns.last_query_index %}
40
+ {%- if loop.last or (not loop.last and reasoning_content) %}
41
+ {{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
42
+ {%- else %}
43
+ {{- '<|im_start|>' + message.role + '\n' + content }}
44
+ {%- endif %}
45
+ {%- else %}
46
+ {{- '<|im_start|>' + message.role + '\n' + content }}
47
+ {%- endif %}
48
+ {%- if message.tool_calls %}
49
+ {%- for tool_call in message.tool_calls %}
50
+ {%- if (loop.first and content) or (not loop.first) %}
51
+ {{- '\n' }}
52
+ {%- endif %}
53
+ {%- if tool_call.function %}
54
+ {%- set tool_call = tool_call.function %}
55
+ {%- endif %}
56
+ {{- '<tool_call>\n{"name": "' }}
57
+ {{- tool_call.name }}
58
+ {{- '", "arguments": ' }}
59
+ {%- if tool_call.arguments is string %}
60
+ {{- tool_call.arguments }}
61
+ {%- else %}
62
+ {{- tool_call.arguments | tojson }}
63
+ {%- endif %}
64
+ {{- '}\n</tool_call>' }}
65
+ {%- endfor %}
66
+ {%- endif %}
67
+ {{- '<|im_end|>\n' }}
68
+ {%- elif message.role == "tool" %}
69
+ {%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
70
+ {{- '<|im_start|>user' }}
71
+ {%- endif %}
72
+ {{- '\n<tool_response>\n' }}
73
+ {{- message.content }}
74
+ {{- '\n</tool_response>' }}
75
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
76
+ {{- '<|im_end|>\n' }}
77
+ {%- endif %}
78
+ {%- endif %}
79
+ {%- endfor %}
80
+ {%- if add_generation_prompt %}
81
+ {{- '<|im_start|>assistant\n' }}
82
+ {%- if enable_thinking is defined and enable_thinking is false %}
83
+ {{- '<think>\n\n</think>\n\n' }}
84
+ {%- endif %}
85
+ {%- endif %}
config.json ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen3Model"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151643,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 1024,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_types": [
15
+ "full_attention",
16
+ "full_attention",
17
+ "full_attention",
18
+ "full_attention",
19
+ "full_attention",
20
+ "full_attention",
21
+ "full_attention",
22
+ "full_attention",
23
+ "full_attention",
24
+ "full_attention",
25
+ "full_attention",
26
+ "full_attention",
27
+ "full_attention",
28
+ "full_attention",
29
+ "full_attention",
30
+ "full_attention",
31
+ "full_attention",
32
+ "full_attention",
33
+ "full_attention",
34
+ "full_attention",
35
+ "full_attention",
36
+ "full_attention",
37
+ "full_attention",
38
+ "full_attention",
39
+ "full_attention",
40
+ "full_attention",
41
+ "full_attention",
42
+ "full_attention"
43
+ ],
44
+ "max_position_embeddings": 32768,
45
+ "max_window_layers": 28,
46
+ "model_type": "qwen3",
47
+ "num_attention_heads": 16,
48
+ "num_hidden_layers": 28,
49
+ "num_key_value_heads": 8,
50
+ "rms_norm_eps": 1e-06,
51
+ "rope_scaling": null,
52
+ "rope_theta": 1000000,
53
+ "sliding_window": null,
54
+ "tie_word_embeddings": true,
55
+ "torch_dtype": "float32",
56
+ "transformers_version": "4.54.0",
57
+ "use_cache": true,
58
+ "use_sliding_window": false,
59
+ "vocab_size": 151669
60
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "prompts": {
3
+ "query": "Instruct: Given a web search query, retrieve relevant passages that answer the query\nQuery:",
4
+ "document": ""
5
+ },
6
+ "default_prompt_name": null,
7
+ "similarity_fn_name": "cosine",
8
+ "model_type": "SentenceTransformer",
9
+ "__version__": {
10
+ "sentence_transformers": "5.0.0",
11
+ "transformers": "4.54.0",
12
+ "pytorch": "2.5.1+cu124"
13
+ }
14
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c00277a581809e2ea48c91fd11db1ea65645fb2e8b8ead2e6b140cdd7bdfd0b
3
+ size 2383139480
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 32768,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f45684bb3bd50e1eb753e6bc438efc14329c293af236ecd331667b46657a3cc
3
+ size 11423973
tokenizer_config.json ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<tool_response>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</tool_response>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<think>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</think>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ }
213
+ },
214
+ "additional_special_tokens": [
215
+ "<|im_start|>",
216
+ "<|im_end|>",
217
+ "<|object_ref_start|>",
218
+ "<|object_ref_end|>",
219
+ "<|box_start|>",
220
+ "<|box_end|>",
221
+ "<|quad_start|>",
222
+ "<|quad_end|>",
223
+ "<|vision_start|>",
224
+ "<|vision_end|>",
225
+ "<|vision_pad|>",
226
+ "<|image_pad|>",
227
+ "<|video_pad|>"
228
+ ],
229
+ "bos_token": null,
230
+ "clean_up_tokenization_spaces": false,
231
+ "eos_token": "<|im_end|>",
232
+ "errors": "replace",
233
+ "extra_special_tokens": {},
234
+ "model_max_length": 131072,
235
+ "pad_token": "<|endoftext|>",
236
+ "split_special_tokens": false,
237
+ "tokenizer_class": "Qwen2Tokenizer",
238
+ "unk_token": null
239
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff