File size: 6,332 Bytes
64f479e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76b57ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64f479e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
844befc
76b57ac
64f479e
 
 
 
 
 
76b57ac
 
 
 
 
64f479e
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---
library_name: transformers
license: apache-2.0
base_model: mistralai/Mistral-7B-Instruct-v0.3
tags:
- generated_from_trainer
model-index:
- name: mistral-7b-instruct-v0.3-mimic4-adapt-multilabel-classify
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mistral-7b-instruct-v0.3-mimic4-adapt-multilabel-classify

This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) on the None dataset.
It achieves the following results on the evaluation set:
- F1 Micro: 0.0062
- F1 Macro: 0.0059
- Precision At 5: 0.0131
- Recall At 5: 0.0040
- Precision At 8: 0.0108
- Recall At 8: 0.0056
- Precision At 15: 0.0124
- Recall At 15: 0.0101
- Rare F1 Micro: 0.0040
- Rare F1 Macro: 0.0040
- Rare Precision: 0.0020
- Rare Recall: 0.9992
- Rare Precision At 5: 0.0055
- Rare Recall At 5: 0.0025
- Rare Precision At 8: 0.0041
- Rare Recall At 8: 0.0029
- Rare Precision At 15: 0.0032
- Rare Recall At 15: 0.0044
- Not Rare F1 Micro: 0.1354
- Not Rare F1 Macro: 0.1308
- Not Rare Precision: 0.0726
- Not Rare Recall: 0.9998
- Not Rare Precision At 5: 0.1391
- Not Rare Recall At 5: 0.0842
- Not Rare Precision At 8: 0.1066
- Not Rare Recall At 8: 0.1005
- Not Rare Precision At 15: 0.0989
- Not Rare Recall At 15: 0.1650
- Loss: -2.3104

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | F1 Micro | F1 Macro | Precision At 5 | Recall At 5 | Precision At 8 | Recall At 8 | Precision At 15 | Recall At 15 | Rare F1 Micro | Rare F1 Macro | Rare Precision | Rare Recall | Rare Precision At 5 | Rare Recall At 5 | Rare Precision At 8 | Rare Recall At 8 | Rare Precision At 15 | Rare Recall At 15 | Not Rare F1 Micro | Not Rare F1 Macro | Not Rare Precision | Not Rare Recall | Not Rare Precision At 5 | Not Rare Recall At 5 | Not Rare Precision At 8 | Not Rare Recall At 8 | Not Rare Precision At 15 | Not Rare Recall At 15 | Validation Loss |
|:-------------:|:------:|:----:|:--------:|:--------:|:--------------:|:-----------:|:--------------:|:-----------:|:---------------:|:------------:|:-------------:|:-------------:|:--------------:|:-----------:|:-------------------:|:----------------:|:-------------------:|:----------------:|:--------------------:|:-----------------:|:-----------------:|:-----------------:|:------------------:|:---------------:|:-----------------------:|:--------------------:|:-----------------------:|:--------------------:|:------------------------:|:---------------------:|:---------------:|
| -2.5733       | 0.9981 | 262  | 0.0086   | 0.0060   | 0.2032         | 0.0452      | 0.1975         | 0.0694      | 0.1826          | 0.1185       | 0.0051        | 0.0040        | 0.0026         | 0.7894      | 0.0369              | 0.0112           | 0.0329              | 0.0162           | 0.0290               | 0.0270            | 0.1354            | 0.1308            | 0.0726             | 1.0             | 0.2012                  | 0.1187               | 0.1963                  | 0.1842               | 0.1802                   | 0.3115                | -2.1808         |
| -2.8745       | 1.9981 | 524  | 0.0070   | 0.0062   | 0.1153         | 0.0311      | 0.1079         | 0.0456      | 0.0933          | 0.0723       | 0.0044        | 0.0041        | 0.0022         | 0.8685      | 0.0391              | 0.0155           | 0.0333              | 0.0210           | 0.0281               | 0.0323            | 0.1399            | 0.1337            | 0.0754             | 0.9720          | 0.1735                  | 0.1110               | 0.1544                  | 0.1553               | 0.1400                   | 0.2550                | -2.2971         |
| -3.0665       | 2.9981 | 786  | 0.0064   | 0.0060   | 0.0525         | 0.0148      | 0.0450         | 0.0203      | 0.0392          | 0.0309       | 0.0041        | 0.0040        | 0.0020         | 0.9688      | 0.0150              | 0.0061           | 0.0134              | 0.0086           | 0.0107               | 0.0129            | 0.1376            | 0.1323            | 0.0739             | 0.9840          | 0.1498                  | 0.0950               | 0.1236                  | 0.1245               | 0.1147                   | 0.2041                | -2.3224         |
| -3.5627       | 3.9981 | 1048 | 0.0062   | 0.0060   | 0.0182         | 0.0059      | 0.0152         | 0.0075      | 0.0163          | 0.0135       | 0.0040        | 0.0040        | 0.0020         | 0.9920      | 0.0069              | 0.0031           | 0.0052              | 0.0039           | 0.0044               | 0.0062            | 0.1361            | 0.1313            | 0.0730             | 0.9973          | 0.1394                  | 0.0855               | 0.1093                  | 0.1055               | 0.1022                   | 0.1756                | -2.3239         |
| -4.0526       | 4.9981 | 1310 | 0.0062   | 0.0059   | 0.0131         | 0.0040      | 0.0108         | 0.0056      | 0.0124          | 0.0101       | 0.0040        | 0.0040        | 0.0020         | 0.9992      | 0.0055              | 0.0025           | 0.0041              | 0.0029           | 0.0032               | 0.0044            | 0.1354            | 0.1308            | 0.0726             | 0.9998          | 0.1391                  | 0.0842               | 0.1066                  | 0.1005               | 0.0989                   | 0.1650                | -2.3104         |


### Framework versions

- Transformers 4.49.0
- Pytorch 2.6.0
- Datasets 3.6.0
- Tokenizers 0.21.1