Model save
Browse files- README.md +32 -38
- config.json +1 -1
- eval_loss_plot.png +0 -0
- eval_precision_at_15_plot.png +0 -0
- model.safetensors +2 -2
- train_loss_plot.png +0 -0
- training_args.bin +1 -1
README.md
CHANGED
@@ -16,35 +16,35 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
|
17 |
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) on the None dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
-
- F1 Micro: 0.
|
20 |
-
- F1 Macro: 0.
|
21 |
-
- Precision At 5: 0.
|
22 |
-
- Recall At 5: 0.
|
23 |
-
- Precision At 8: 0.
|
24 |
-
- Recall At 8: 0.
|
25 |
-
- Precision At 15: 0.
|
26 |
-
- Recall At 15: 0.
|
27 |
-
- Rare F1 Micro: 0.
|
28 |
-
- Rare F1 Macro: 0.
|
29 |
-
- Rare Precision: 0.
|
30 |
-
- Rare Recall: 0.
|
31 |
-
- Rare Precision At 5: 0.
|
32 |
-
- Rare Recall At 5: 0.
|
33 |
-
- Rare Precision At 8: 0.
|
34 |
-
- Rare Recall At 8: 0.
|
35 |
-
- Rare Precision At 15: 0.
|
36 |
-
- Rare Recall At 15: 0.
|
37 |
-
- Not Rare F1 Micro: 0.
|
38 |
-
- Not Rare F1 Macro: 0.
|
39 |
-
- Not Rare Precision: 0.
|
40 |
-
- Not Rare Recall: 0.
|
41 |
-
- Not Rare Precision At 5: 0.
|
42 |
-
- Not Rare Recall At 5: 0.
|
43 |
-
- Not Rare Precision At 8: 0.
|
44 |
-
- Not Rare Recall At 8: 0.
|
45 |
-
- Not Rare Precision At 15: 0.
|
46 |
-
- Not Rare Recall At 15: 0.
|
47 |
-
- Loss: 0.
|
48 |
|
49 |
## Model description
|
50 |
|
@@ -71,21 +71,15 @@ The following hyperparameters were used during training:
|
|
71 |
- total_train_batch_size: 32
|
72 |
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
73 |
- lr_scheduler_type: linear
|
74 |
-
- lr_scheduler_warmup_steps:
|
75 |
-
- num_epochs:
|
76 |
- mixed_precision_training: Native AMP
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
| Training Loss | Epoch | Step | F1 Micro | F1 Macro | Precision At 5 | Recall At 5 | Precision At 8 | Recall At 8 | Precision At 15 | Recall At 15 | Rare F1 Micro | Rare F1 Macro | Rare Precision | Rare Recall | Rare Precision At 5 | Rare Recall At 5 | Rare Precision At 8 | Rare Recall At 8 | Rare Precision At 15 | Rare Recall At 15 | Not Rare F1 Micro | Not Rare F1 Macro | Not Rare Precision | Not Rare Recall | Not Rare Precision At 5 | Not Rare Recall At 5 | Not Rare Precision At 8 | Not Rare Recall At 8 | Not Rare Precision At 15 | Not Rare Recall At 15 | Validation Loss |
|
81 |
|:-------------:|:------:|:----:|:--------:|:--------:|:--------------:|:-----------:|:--------------:|:-----------:|:---------------:|:------------:|:-------------:|:-------------:|:--------------:|:-----------:|:-------------------:|:----------------:|:-------------------:|:----------------:|:--------------------:|:-----------------:|:-----------------:|:-----------------:|:------------------:|:---------------:|:-----------------------:|:--------------------:|:-----------------------:|:--------------------:|:------------------------:|:---------------------:|:---------------:|
|
82 |
-
| 0.
|
83 |
-
| 0.1013 | 2.0 | 36 | 0.0 | 0.0 | 0.2706 | 0.1117 | 0.2307 | 0.1530 | 0.1485 | 0.1725 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2279 | 0.0919 | 0.1912 | 0.1342 | 0.1270 | 0.1506 | 0.5956 | 0.3733 | 0.5956 | 0.5956 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.1054 |
|
84 |
-
| 0.1012 | 3.0 | 54 | 0.0 | 0.0 | 0.2765 | 0.1116 | 0.2371 | 0.1512 | 0.1480 | 0.1715 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2471 | 0.1051 | 0.1930 | 0.1354 | 0.125 | 0.1493 | 0.5956 | 0.3733 | 0.5956 | 0.5956 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.1033 |
|
85 |
-
| 0.1003 | 4.0 | 72 | 0.0 | 0.0 | 0.2765 | 0.1166 | 0.2353 | 0.1441 | 0.1495 | 0.1722 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2456 | 0.1075 | 0.1939 | 0.1366 | 0.125 | 0.1491 | 0.5956 | 0.3733 | 0.5956 | 0.5956 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.1017 |
|
86 |
-
| 0.0872 | 5.0 | 90 | 0.0238 | 0.0010 | 0.2765 | 0.1166 | 0.2353 | 0.1441 | 0.1534 | 0.1748 | 0.0033 | 0.0005 | 0.4 | 0.0017 | 0.2456 | 0.1075 | 0.2004 | 0.1223 | 0.1265 | 0.1500 | 0.5074 | 0.4995 | 0.5074 | 0.5074 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.1042 |
|
87 |
-
| 0.0891 | 6.0 | 108 | 0.0417 | 0.0013 | 0.2765 | 0.1166 | 0.2353 | 0.1441 | 0.1534 | 0.1748 | 0.0131 | 0.0006 | 0.3077 | 0.0067 | 0.2368 | 0.1012 | 0.2004 | 0.1223 | 0.1265 | 0.1500 | 0.5074 | 0.5060 | 0.5074 | 0.5074 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.1016 |
|
88 |
-
| 0.0844 | 6.6197 | 119 | 0.0374 | 0.0013 | 0.2765 | 0.1166 | 0.2353 | 0.1441 | 0.1534 | 0.1748 | 0.0115 | 0.0007 | 0.3415 | 0.0059 | 0.2324 | 0.0985 | 0.2004 | 0.1223 | 0.1265 | 0.1500 | 0.5 | 0.5 | 0.5 | 0.5 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.1015 |
|
89 |
|
90 |
|
91 |
### Framework versions
|
|
|
16 |
|
17 |
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) on the None dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- F1 Micro: 0.0
|
20 |
+
- F1 Macro: 0.0
|
21 |
+
- Precision At 5: 0.2749
|
22 |
+
- Recall At 5: 0.0637
|
23 |
+
- Precision At 8: 0.2540
|
24 |
+
- Recall At 8: 0.0909
|
25 |
+
- Precision At 15: 0.1905
|
26 |
+
- Recall At 15: 0.1224
|
27 |
+
- Rare F1 Micro: 0.0
|
28 |
+
- Rare F1 Macro: 0.0
|
29 |
+
- Rare Precision: 0.0
|
30 |
+
- Rare Recall: 0.0
|
31 |
+
- Rare Precision At 5: 0.0037
|
32 |
+
- Rare Recall At 5: 0.0013
|
33 |
+
- Rare Precision At 8: 0.0043
|
34 |
+
- Rare Recall At 8: 0.0023
|
35 |
+
- Rare Precision At 15: 0.0049
|
36 |
+
- Rare Recall At 15: 0.0048
|
37 |
+
- Not Rare F1 Micro: 0.0
|
38 |
+
- Not Rare F1 Macro: 0.0
|
39 |
+
- Not Rare Precision: 0.0
|
40 |
+
- Not Rare Recall: 0.0
|
41 |
+
- Not Rare Precision At 5: 0.2742
|
42 |
+
- Not Rare Recall At 5: 0.1680
|
43 |
+
- Not Rare Precision At 8: 0.2540
|
44 |
+
- Not Rare Recall At 8: 0.2396
|
45 |
+
- Not Rare Precision At 15: 0.1906
|
46 |
+
- Not Rare Recall At 15: 0.3248
|
47 |
+
- Loss: 0.0209
|
48 |
|
49 |
## Model description
|
50 |
|
|
|
71 |
- total_train_batch_size: 32
|
72 |
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
73 |
- lr_scheduler_type: linear
|
74 |
+
- lr_scheduler_warmup_steps: 500
|
75 |
+
- num_epochs: 1
|
76 |
- mixed_precision_training: Native AMP
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
| Training Loss | Epoch | Step | F1 Micro | F1 Macro | Precision At 5 | Recall At 5 | Precision At 8 | Recall At 8 | Precision At 15 | Recall At 15 | Rare F1 Micro | Rare F1 Macro | Rare Precision | Rare Recall | Rare Precision At 5 | Rare Recall At 5 | Rare Precision At 8 | Rare Recall At 8 | Rare Precision At 15 | Rare Recall At 15 | Not Rare F1 Micro | Not Rare F1 Macro | Not Rare Precision | Not Rare Recall | Not Rare Precision At 5 | Not Rare Recall At 5 | Not Rare Precision At 8 | Not Rare Recall At 8 | Not Rare Precision At 15 | Not Rare Recall At 15 | Validation Loss |
|
81 |
|:-------------:|:------:|:----:|:--------:|:--------:|:--------------:|:-----------:|:--------------:|:-----------:|:---------------:|:------------:|:-------------:|:-------------:|:--------------:|:-----------:|:-------------------:|:----------------:|:-------------------:|:----------------:|:--------------------:|:-----------------:|:-----------------:|:-----------------:|:------------------:|:---------------:|:-----------------------:|:--------------------:|:-----------------------:|:--------------------:|:------------------------:|:---------------------:|:---------------:|
|
82 |
+
| 0.023 | 0.9981 | 262 | 0.0 | 0.0 | 0.2749 | 0.0637 | 0.2540 | 0.0909 | 0.1905 | 0.1224 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0037 | 0.0013 | 0.0043 | 0.0023 | 0.0049 | 0.0048 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2742 | 0.1680 | 0.2540 | 0.2396 | 0.1906 | 0.3248 | 0.0209 |
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
|
85 |
### Framework versions
|
config.json
CHANGED
@@ -22,7 +22,7 @@
|
|
22 |
"num_attention_heads": 32,
|
23 |
"num_hidden_layers": 32,
|
24 |
"num_key_value_heads": 8,
|
25 |
-
"num_labels":
|
26 |
"num_layers_to_unfreeze": 0,
|
27 |
"pooling_output_size": 128,
|
28 |
"pooling_type": "adaptive_avg_pool1d",
|
|
|
22 |
"num_attention_heads": 32,
|
23 |
"num_hidden_layers": 32,
|
24 |
"num_key_value_heads": 8,
|
25 |
+
"num_labels": 7942,
|
26 |
"num_layers_to_unfreeze": 0,
|
27 |
"pooling_output_size": 128,
|
28 |
"pooling_type": "adaptive_avg_pool1d",
|
eval_loss_plot.png
CHANGED
![]() |
![]() |
eval_precision_at_15_plot.png
CHANGED
![]() |
![]() |
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:80d1e9d271f98d5c0a9fe96f241ea75ca08e4da791ce23029772df4e845c4be8
|
3 |
+
size 4824468367
|
train_loss_plot.png
CHANGED
![]() |
![]() |
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 5496
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2dd9c1f6ab1ba09652359171d70300a5e24b37eaed13268307c961fe7ff4b071
|
3 |
size 5496
|