Model save
Browse files- README.md +35 -34
- eval_loss_plot.png +0 -0
- eval_precision_at_15_plot.png +0 -0
- model.safetensors +1 -1
- train_loss_plot.png +0 -0
- training_args.bin +1 -1
README.md
CHANGED
@@ -16,35 +16,35 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
|
17 |
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) on the None dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
-
- F1 Micro: 0.
|
20 |
-
- F1 Macro: 0.
|
21 |
-
- Precision At 5: 0.
|
22 |
-
- Recall At 5: 0.
|
23 |
-
- Precision At 8: 0.
|
24 |
-
- Recall At 8: 0.
|
25 |
-
- Precision At 15: 0.
|
26 |
-
- Recall At 15: 0.
|
27 |
-
- Rare F1 Micro: 0.
|
28 |
-
- Rare F1 Macro: 0.
|
29 |
-
- Rare Precision: 0.
|
30 |
-
- Rare Recall: 0.
|
31 |
-
- Rare Precision At 5: 0.
|
32 |
-
- Rare Recall At 5: 0.
|
33 |
-
- Rare Precision At 8: 0.
|
34 |
-
- Rare Recall At 8: 0.
|
35 |
-
- Rare Precision At 15: 0.
|
36 |
-
- Rare Recall At 15: 0.
|
37 |
-
- Not Rare F1 Micro: 0.
|
38 |
-
- Not Rare F1 Macro: 0.
|
39 |
-
- Not Rare Precision: 0.
|
40 |
-
- Not Rare Recall: 0.
|
41 |
-
- Not Rare Precision At 5: 0.
|
42 |
-
- Not Rare Recall At 5: 0.
|
43 |
-
- Not Rare Precision At 8: 0.
|
44 |
-
- Not Rare Recall At 8: 0.
|
45 |
-
- Not Rare Precision At 15: 0.
|
46 |
-
- Not Rare Recall At 15: 0.
|
47 |
-
- Loss:
|
48 |
|
49 |
## Model description
|
50 |
|
@@ -72,17 +72,18 @@ The following hyperparameters were used during training:
|
|
72 |
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
73 |
- lr_scheduler_type: linear
|
74 |
- lr_scheduler_warmup_steps: 500
|
75 |
-
- num_epochs:
|
76 |
- mixed_precision_training: Native AMP
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
| Training Loss | Epoch | Step | F1 Micro | F1 Macro | Precision At 5 | Recall At 5 | Precision At 8 | Recall At 8 | Precision At 15 | Recall At 15 | Rare F1 Micro | Rare F1 Macro | Rare Precision | Rare Recall | Rare Precision At 5 | Rare Recall At 5 | Rare Precision At 8 | Rare Recall At 8 | Rare Precision At 15 | Rare Recall At 15 | Not Rare F1 Micro | Not Rare F1 Macro | Not Rare Precision | Not Rare Recall | Not Rare Precision At 5 | Not Rare Recall At 5 | Not Rare Precision At 8 | Not Rare Recall At 8 | Not Rare Precision At 15 | Not Rare Recall At 15 | Validation Loss |
|
81 |
|:-------------:|:------:|:----:|:--------:|:--------:|:--------------:|:-----------:|:--------------:|:-----------:|:---------------:|:------------:|:-------------:|:-------------:|:--------------:|:-----------:|:-------------------:|:----------------:|:-------------------:|:----------------:|:--------------------:|:-----------------:|:-----------------:|:-----------------:|:------------------:|:---------------:|:-----------------------:|:--------------------:|:-----------------------:|:--------------------:|:------------------------:|:---------------------:|:---------------:|
|
82 |
-
|
|
83 |
-
|
|
84 |
-
|
|
85 |
-
|
|
|
|
86 |
|
87 |
|
88 |
### Framework versions
|
|
|
16 |
|
17 |
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) on the None dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- F1 Micro: 0.0062
|
20 |
+
- F1 Macro: 0.0059
|
21 |
+
- Precision At 5: 0.0131
|
22 |
+
- Recall At 5: 0.0040
|
23 |
+
- Precision At 8: 0.0108
|
24 |
+
- Recall At 8: 0.0056
|
25 |
+
- Precision At 15: 0.0124
|
26 |
+
- Recall At 15: 0.0101
|
27 |
+
- Rare F1 Micro: 0.0040
|
28 |
+
- Rare F1 Macro: 0.0040
|
29 |
+
- Rare Precision: 0.0020
|
30 |
+
- Rare Recall: 0.9992
|
31 |
+
- Rare Precision At 5: 0.0055
|
32 |
+
- Rare Recall At 5: 0.0025
|
33 |
+
- Rare Precision At 8: 0.0041
|
34 |
+
- Rare Recall At 8: 0.0029
|
35 |
+
- Rare Precision At 15: 0.0032
|
36 |
+
- Rare Recall At 15: 0.0044
|
37 |
+
- Not Rare F1 Micro: 0.1354
|
38 |
+
- Not Rare F1 Macro: 0.1308
|
39 |
+
- Not Rare Precision: 0.0726
|
40 |
+
- Not Rare Recall: 0.9998
|
41 |
+
- Not Rare Precision At 5: 0.1391
|
42 |
+
- Not Rare Recall At 5: 0.0842
|
43 |
+
- Not Rare Precision At 8: 0.1066
|
44 |
+
- Not Rare Recall At 8: 0.1005
|
45 |
+
- Not Rare Precision At 15: 0.0989
|
46 |
+
- Not Rare Recall At 15: 0.1650
|
47 |
+
- Loss: -2.3104
|
48 |
|
49 |
## Model description
|
50 |
|
|
|
72 |
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
73 |
- lr_scheduler_type: linear
|
74 |
- lr_scheduler_warmup_steps: 500
|
75 |
+
- num_epochs: 5
|
76 |
- mixed_precision_training: Native AMP
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
| Training Loss | Epoch | Step | F1 Micro | F1 Macro | Precision At 5 | Recall At 5 | Precision At 8 | Recall At 8 | Precision At 15 | Recall At 15 | Rare F1 Micro | Rare F1 Macro | Rare Precision | Rare Recall | Rare Precision At 5 | Rare Recall At 5 | Rare Precision At 8 | Rare Recall At 8 | Rare Precision At 15 | Rare Recall At 15 | Not Rare F1 Micro | Not Rare F1 Macro | Not Rare Precision | Not Rare Recall | Not Rare Precision At 5 | Not Rare Recall At 5 | Not Rare Precision At 8 | Not Rare Recall At 8 | Not Rare Precision At 15 | Not Rare Recall At 15 | Validation Loss |
|
81 |
|:-------------:|:------:|:----:|:--------:|:--------:|:--------------:|:-----------:|:--------------:|:-----------:|:---------------:|:------------:|:-------------:|:-------------:|:--------------:|:-----------:|:-------------------:|:----------------:|:-------------------:|:----------------:|:--------------------:|:-----------------:|:-----------------:|:-----------------:|:------------------:|:---------------:|:-----------------------:|:--------------------:|:-----------------------:|:--------------------:|:------------------------:|:---------------------:|:---------------:|
|
82 |
+
| -2.5733 | 0.9981 | 262 | 0.0086 | 0.0060 | 0.2032 | 0.0452 | 0.1975 | 0.0694 | 0.1826 | 0.1185 | 0.0051 | 0.0040 | 0.0026 | 0.7894 | 0.0369 | 0.0112 | 0.0329 | 0.0162 | 0.0290 | 0.0270 | 0.1354 | 0.1308 | 0.0726 | 1.0 | 0.2012 | 0.1187 | 0.1963 | 0.1842 | 0.1802 | 0.3115 | -2.1808 |
|
83 |
+
| -2.8745 | 1.9981 | 524 | 0.0070 | 0.0062 | 0.1153 | 0.0311 | 0.1079 | 0.0456 | 0.0933 | 0.0723 | 0.0044 | 0.0041 | 0.0022 | 0.8685 | 0.0391 | 0.0155 | 0.0333 | 0.0210 | 0.0281 | 0.0323 | 0.1399 | 0.1337 | 0.0754 | 0.9720 | 0.1735 | 0.1110 | 0.1544 | 0.1553 | 0.1400 | 0.2550 | -2.2971 |
|
84 |
+
| -3.0665 | 2.9981 | 786 | 0.0064 | 0.0060 | 0.0525 | 0.0148 | 0.0450 | 0.0203 | 0.0392 | 0.0309 | 0.0041 | 0.0040 | 0.0020 | 0.9688 | 0.0150 | 0.0061 | 0.0134 | 0.0086 | 0.0107 | 0.0129 | 0.1376 | 0.1323 | 0.0739 | 0.9840 | 0.1498 | 0.0950 | 0.1236 | 0.1245 | 0.1147 | 0.2041 | -2.3224 |
|
85 |
+
| -3.5627 | 3.9981 | 1048 | 0.0062 | 0.0060 | 0.0182 | 0.0059 | 0.0152 | 0.0075 | 0.0163 | 0.0135 | 0.0040 | 0.0040 | 0.0020 | 0.9920 | 0.0069 | 0.0031 | 0.0052 | 0.0039 | 0.0044 | 0.0062 | 0.1361 | 0.1313 | 0.0730 | 0.9973 | 0.1394 | 0.0855 | 0.1093 | 0.1055 | 0.1022 | 0.1756 | -2.3239 |
|
86 |
+
| -4.0526 | 4.9981 | 1310 | 0.0062 | 0.0059 | 0.0131 | 0.0040 | 0.0108 | 0.0056 | 0.0124 | 0.0101 | 0.0040 | 0.0040 | 0.0020 | 0.9992 | 0.0055 | 0.0025 | 0.0041 | 0.0029 | 0.0032 | 0.0044 | 0.1354 | 0.1308 | 0.0726 | 0.9998 | 0.1391 | 0.0842 | 0.1066 | 0.1005 | 0.0989 | 0.1650 | -2.3104 |
|
87 |
|
88 |
|
89 |
### Framework versions
|
eval_loss_plot.png
CHANGED
![]() |
![]() |
eval_precision_at_15_plot.png
CHANGED
![]() |
![]() |
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4824468367
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:478dba6504c6c8c148cec4e26c700ce185e6dabb18d109211530a429080ef95b
|
3 |
size 4824468367
|
train_loss_plot.png
CHANGED
![]() |
![]() |
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 5496
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:20399e0a716a9d18996b1a1352467fbea950665a69d598ea5aef75f443edda72
|
3 |
size 5496
|