deb101 commited on
Commit
64f479e
·
verified ·
1 Parent(s): 3b15bee

Model save

Browse files
README.md CHANGED
@@ -1 +1,99 @@
1
- Load Mistral-7B from mistralai/Mistral-7B-Instruct-v0.3 and combine with these custom weights.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
5
+ tags:
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: mistral-7b-instruct-v0.3-mimic4-adapt-multilabel-classify
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # mistral-7b-instruct-v0.3-mimic4-adapt-multilabel-classify
16
+
17
+ This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - F1 Micro: 0.0
20
+ - F1 Macro: 0.0
21
+ - Precision At 5: 0.2765
22
+ - Recall At 5: 0.1167
23
+ - Precision At 8: 0.2353
24
+ - Recall At 8: 0.1441
25
+ - Precision At 15: 0.1627
26
+ - Recall At 15: 0.1927
27
+ - Rare F1 Micro: 0.0
28
+ - Rare F1 Macro: 0.0
29
+ - Rare Precision: 0.0
30
+ - Rare Recall: 0.0
31
+ - Rare Precision At 5: 0.2397
32
+ - Rare Recall At 5: 0.1023
33
+ - Rare Precision At 8: 0.1967
34
+ - Rare Recall At 8: 0.1289
35
+ - Rare Precision At 15: 0.1397
36
+ - Rare Recall At 15: 0.1722
37
+ - Not Rare F1 Micro: 0.5956
38
+ - Not Rare F1 Macro: 0.3733
39
+ - Not Rare Precision: 0.5956
40
+ - Not Rare Recall: 0.5956
41
+ - Not Rare Precision At 5: 0.0809
42
+ - Not Rare Recall At 5: 0.4044
43
+ - Not Rare Precision At 8: 0.0506
44
+ - Not Rare Recall At 8: 0.4044
45
+ - Not Rare Precision At 15: 0.0270
46
+ - Not Rare Recall At 15: 0.4044
47
+ - Loss: 0.1031
48
+
49
+ ## Model description
50
+
51
+ More information needed
52
+
53
+ ## Intended uses & limitations
54
+
55
+ More information needed
56
+
57
+ ## Training and evaluation data
58
+
59
+ More information needed
60
+
61
+ ## Training procedure
62
+
63
+ ### Training hyperparameters
64
+
65
+ The following hyperparameters were used during training:
66
+ - learning_rate: 0.0001
67
+ - train_batch_size: 8
68
+ - eval_batch_size: 8
69
+ - seed: 42
70
+ - gradient_accumulation_steps: 4
71
+ - total_train_batch_size: 32
72
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
73
+ - lr_scheduler_type: linear
74
+ - lr_scheduler_warmup_steps: 500
75
+ - num_epochs: 10
76
+ - mixed_precision_training: Native AMP
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | F1 Micro | F1 Macro | Precision At 5 | Recall At 5 | Precision At 8 | Recall At 8 | Precision At 15 | Recall At 15 | Rare F1 Micro | Rare F1 Macro | Rare Precision | Rare Recall | Rare Precision At 5 | Rare Recall At 5 | Rare Precision At 8 | Rare Recall At 8 | Rare Precision At 15 | Rare Recall At 15 | Not Rare F1 Micro | Not Rare F1 Macro | Not Rare Precision | Not Rare Recall | Not Rare Precision At 5 | Not Rare Recall At 5 | Not Rare Precision At 8 | Not Rare Recall At 8 | Not Rare Precision At 15 | Not Rare Recall At 15 | Validation Loss |
81
+ |:-------------:|:------:|:----:|:--------:|:--------:|:--------------:|:-----------:|:--------------:|:-----------:|:---------------:|:------------:|:-------------:|:-------------:|:--------------:|:-----------:|:-------------------:|:----------------:|:-------------------:|:----------------:|:--------------------:|:-----------------:|:-----------------:|:-----------------:|:------------------:|:---------------:|:-----------------------:|:--------------------:|:-----------------------:|:--------------------:|:------------------------:|:---------------------:|:---------------:|
82
+ | 0.699 | 1.0 | 18 | 0.0 | 0.0 | 0.0588 | 0.0135 | 0.0506 | 0.0182 | 0.0441 | 0.0300 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0559 | 0.0128 | 0.0506 | 0.0183 | 0.0426 | 0.0294 | 0.5956 | 0.3733 | 0.5956 | 0.5956 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.2374 |
83
+ | 0.1279 | 2.0 | 36 | 0.0 | 0.0 | 0.0529 | 0.0128 | 0.0432 | 0.0164 | 0.0436 | 0.0315 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0515 | 0.0120 | 0.0487 | 0.0188 | 0.0446 | 0.0320 | 0.5956 | 0.3733 | 0.5956 | 0.5956 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.1224 |
84
+ | 0.1087 | 3.0 | 54 | 0.0 | 0.0 | 0.0588 | 0.0136 | 0.0551 | 0.0206 | 0.0525 | 0.0404 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0632 | 0.0152 | 0.0551 | 0.0210 | 0.0466 | 0.0325 | 0.5956 | 0.3733 | 0.5956 | 0.5956 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.1073 |
85
+ | 0.1027 | 4.0 | 72 | 0.0 | 0.0 | 0.1485 | 0.0500 | 0.1278 | 0.0666 | 0.1025 | 0.0982 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1162 | 0.0336 | 0.0938 | 0.0423 | 0.0789 | 0.0657 | 0.5956 | 0.3733 | 0.5956 | 0.5956 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.1043 |
86
+ | 0.0973 | 5.0 | 90 | 0.0 | 0.0 | 0.25 | 0.0952 | 0.2105 | 0.1256 | 0.1505 | 0.1609 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2044 | 0.0795 | 0.1682 | 0.1019 | 0.1299 | 0.1405 | 0.5956 | 0.3733 | 0.5956 | 0.5956 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.1041 |
87
+ | 0.1023 | 6.0 | 108 | 0.0 | 0.0 | 0.2735 | 0.1098 | 0.2206 | 0.1379 | 0.1637 | 0.1803 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2279 | 0.0975 | 0.1811 | 0.1157 | 0.1417 | 0.1629 | 0.5956 | 0.3733 | 0.5956 | 0.5956 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.1036 |
88
+ | 0.1027 | 7.0 | 126 | 0.0 | 0.0 | 0.2838 | 0.1165 | 0.2325 | 0.1423 | 0.1588 | 0.1861 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2353 | 0.0997 | 0.1893 | 0.1234 | 0.1387 | 0.1698 | 0.5956 | 0.3733 | 0.5956 | 0.5956 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.1038 |
89
+ | 0.0994 | 8.0 | 144 | 0.0 | 0.0 | 0.2809 | 0.1176 | 0.2353 | 0.1441 | 0.1583 | 0.1850 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2426 | 0.1042 | 0.1930 | 0.1245 | 0.1382 | 0.1696 | 0.5956 | 0.3733 | 0.5956 | 0.5956 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.1033 |
90
+ | 0.1019 | 9.0 | 162 | 0.0 | 0.0 | 0.2809 | 0.1179 | 0.2353 | 0.1441 | 0.1618 | 0.1915 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2412 | 0.1026 | 0.1912 | 0.1240 | 0.1412 | 0.1725 | 0.5956 | 0.3733 | 0.5956 | 0.5956 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.1035 |
91
+ | 0.0961 | 9.4507 | 170 | 0.0 | 0.0 | 0.2765 | 0.1167 | 0.2353 | 0.1441 | 0.1627 | 0.1927 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2397 | 0.1023 | 0.1967 | 0.1289 | 0.1397 | 0.1722 | 0.5956 | 0.3733 | 0.5956 | 0.5956 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.1031 |
92
+
93
+
94
+ ### Framework versions
95
+
96
+ - Transformers 4.49.0
97
+ - Pytorch 2.6.0
98
+ - Datasets 3.6.0
99
+ - Tokenizers 0.21.1
config.json CHANGED
The diff for this file is too large to render. See raw diff
 
eval_loss_plot.png ADDED
eval_precision_at_15_plot.png ADDED
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:86ea27c6b8acad4a3c8c7bd41e420498c3016503bbfcf4897fbc0c1d546305c7
3
- size 29678287884
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c174ed12a05a294f428c0a7ae5ce1c2f2871358269f5779e8ea7934d146f8f25
3
+ size 4475046623
train_loss_plot.png ADDED
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6efd72ce287b1ee5f5915a0296922089cd681a7c640f376dfd9732ee4ab00781
3
+ size 5496