Model save
Browse files- README.md +99 -1
- config.json +0 -0
- eval_loss_plot.png +0 -0
- eval_precision_at_15_plot.png +0 -0
- model.safetensors +2 -2
- train_loss_plot.png +0 -0
- training_args.bin +3 -0
README.md
CHANGED
@@ -1 +1,99 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: mistralai/Mistral-7B-Instruct-v0.3
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: mistral-7b-instruct-v0.3-mimic4-adapt-multilabel-classify
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# mistral-7b-instruct-v0.3-mimic4-adapt-multilabel-classify
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- F1 Micro: 0.0
|
20 |
+
- F1 Macro: 0.0
|
21 |
+
- Precision At 5: 0.2765
|
22 |
+
- Recall At 5: 0.1167
|
23 |
+
- Precision At 8: 0.2353
|
24 |
+
- Recall At 8: 0.1441
|
25 |
+
- Precision At 15: 0.1627
|
26 |
+
- Recall At 15: 0.1927
|
27 |
+
- Rare F1 Micro: 0.0
|
28 |
+
- Rare F1 Macro: 0.0
|
29 |
+
- Rare Precision: 0.0
|
30 |
+
- Rare Recall: 0.0
|
31 |
+
- Rare Precision At 5: 0.2397
|
32 |
+
- Rare Recall At 5: 0.1023
|
33 |
+
- Rare Precision At 8: 0.1967
|
34 |
+
- Rare Recall At 8: 0.1289
|
35 |
+
- Rare Precision At 15: 0.1397
|
36 |
+
- Rare Recall At 15: 0.1722
|
37 |
+
- Not Rare F1 Micro: 0.5956
|
38 |
+
- Not Rare F1 Macro: 0.3733
|
39 |
+
- Not Rare Precision: 0.5956
|
40 |
+
- Not Rare Recall: 0.5956
|
41 |
+
- Not Rare Precision At 5: 0.0809
|
42 |
+
- Not Rare Recall At 5: 0.4044
|
43 |
+
- Not Rare Precision At 8: 0.0506
|
44 |
+
- Not Rare Recall At 8: 0.4044
|
45 |
+
- Not Rare Precision At 15: 0.0270
|
46 |
+
- Not Rare Recall At 15: 0.4044
|
47 |
+
- Loss: 0.1031
|
48 |
+
|
49 |
+
## Model description
|
50 |
+
|
51 |
+
More information needed
|
52 |
+
|
53 |
+
## Intended uses & limitations
|
54 |
+
|
55 |
+
More information needed
|
56 |
+
|
57 |
+
## Training and evaluation data
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
## Training procedure
|
62 |
+
|
63 |
+
### Training hyperparameters
|
64 |
+
|
65 |
+
The following hyperparameters were used during training:
|
66 |
+
- learning_rate: 0.0001
|
67 |
+
- train_batch_size: 8
|
68 |
+
- eval_batch_size: 8
|
69 |
+
- seed: 42
|
70 |
+
- gradient_accumulation_steps: 4
|
71 |
+
- total_train_batch_size: 32
|
72 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
73 |
+
- lr_scheduler_type: linear
|
74 |
+
- lr_scheduler_warmup_steps: 500
|
75 |
+
- num_epochs: 10
|
76 |
+
- mixed_precision_training: Native AMP
|
77 |
+
|
78 |
+
### Training results
|
79 |
+
|
80 |
+
| Training Loss | Epoch | Step | F1 Micro | F1 Macro | Precision At 5 | Recall At 5 | Precision At 8 | Recall At 8 | Precision At 15 | Recall At 15 | Rare F1 Micro | Rare F1 Macro | Rare Precision | Rare Recall | Rare Precision At 5 | Rare Recall At 5 | Rare Precision At 8 | Rare Recall At 8 | Rare Precision At 15 | Rare Recall At 15 | Not Rare F1 Micro | Not Rare F1 Macro | Not Rare Precision | Not Rare Recall | Not Rare Precision At 5 | Not Rare Recall At 5 | Not Rare Precision At 8 | Not Rare Recall At 8 | Not Rare Precision At 15 | Not Rare Recall At 15 | Validation Loss |
|
81 |
+
|:-------------:|:------:|:----:|:--------:|:--------:|:--------------:|:-----------:|:--------------:|:-----------:|:---------------:|:------------:|:-------------:|:-------------:|:--------------:|:-----------:|:-------------------:|:----------------:|:-------------------:|:----------------:|:--------------------:|:-----------------:|:-----------------:|:-----------------:|:------------------:|:---------------:|:-----------------------:|:--------------------:|:-----------------------:|:--------------------:|:------------------------:|:---------------------:|:---------------:|
|
82 |
+
| 0.699 | 1.0 | 18 | 0.0 | 0.0 | 0.0588 | 0.0135 | 0.0506 | 0.0182 | 0.0441 | 0.0300 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0559 | 0.0128 | 0.0506 | 0.0183 | 0.0426 | 0.0294 | 0.5956 | 0.3733 | 0.5956 | 0.5956 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.2374 |
|
83 |
+
| 0.1279 | 2.0 | 36 | 0.0 | 0.0 | 0.0529 | 0.0128 | 0.0432 | 0.0164 | 0.0436 | 0.0315 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0515 | 0.0120 | 0.0487 | 0.0188 | 0.0446 | 0.0320 | 0.5956 | 0.3733 | 0.5956 | 0.5956 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.1224 |
|
84 |
+
| 0.1087 | 3.0 | 54 | 0.0 | 0.0 | 0.0588 | 0.0136 | 0.0551 | 0.0206 | 0.0525 | 0.0404 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0632 | 0.0152 | 0.0551 | 0.0210 | 0.0466 | 0.0325 | 0.5956 | 0.3733 | 0.5956 | 0.5956 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.1073 |
|
85 |
+
| 0.1027 | 4.0 | 72 | 0.0 | 0.0 | 0.1485 | 0.0500 | 0.1278 | 0.0666 | 0.1025 | 0.0982 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1162 | 0.0336 | 0.0938 | 0.0423 | 0.0789 | 0.0657 | 0.5956 | 0.3733 | 0.5956 | 0.5956 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.1043 |
|
86 |
+
| 0.0973 | 5.0 | 90 | 0.0 | 0.0 | 0.25 | 0.0952 | 0.2105 | 0.1256 | 0.1505 | 0.1609 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2044 | 0.0795 | 0.1682 | 0.1019 | 0.1299 | 0.1405 | 0.5956 | 0.3733 | 0.5956 | 0.5956 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.1041 |
|
87 |
+
| 0.1023 | 6.0 | 108 | 0.0 | 0.0 | 0.2735 | 0.1098 | 0.2206 | 0.1379 | 0.1637 | 0.1803 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2279 | 0.0975 | 0.1811 | 0.1157 | 0.1417 | 0.1629 | 0.5956 | 0.3733 | 0.5956 | 0.5956 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.1036 |
|
88 |
+
| 0.1027 | 7.0 | 126 | 0.0 | 0.0 | 0.2838 | 0.1165 | 0.2325 | 0.1423 | 0.1588 | 0.1861 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2353 | 0.0997 | 0.1893 | 0.1234 | 0.1387 | 0.1698 | 0.5956 | 0.3733 | 0.5956 | 0.5956 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.1038 |
|
89 |
+
| 0.0994 | 8.0 | 144 | 0.0 | 0.0 | 0.2809 | 0.1176 | 0.2353 | 0.1441 | 0.1583 | 0.1850 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2426 | 0.1042 | 0.1930 | 0.1245 | 0.1382 | 0.1696 | 0.5956 | 0.3733 | 0.5956 | 0.5956 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.1033 |
|
90 |
+
| 0.1019 | 9.0 | 162 | 0.0 | 0.0 | 0.2809 | 0.1179 | 0.2353 | 0.1441 | 0.1618 | 0.1915 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2412 | 0.1026 | 0.1912 | 0.1240 | 0.1412 | 0.1725 | 0.5956 | 0.3733 | 0.5956 | 0.5956 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.1035 |
|
91 |
+
| 0.0961 | 9.4507 | 170 | 0.0 | 0.0 | 0.2765 | 0.1167 | 0.2353 | 0.1441 | 0.1627 | 0.1927 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2397 | 0.1023 | 0.1967 | 0.1289 | 0.1397 | 0.1722 | 0.5956 | 0.3733 | 0.5956 | 0.5956 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.1031 |
|
92 |
+
|
93 |
+
|
94 |
+
### Framework versions
|
95 |
+
|
96 |
+
- Transformers 4.49.0
|
97 |
+
- Pytorch 2.6.0
|
98 |
+
- Datasets 3.6.0
|
99 |
+
- Tokenizers 0.21.1
|
config.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
eval_loss_plot.png
ADDED
![]() |
eval_precision_at_15_plot.png
ADDED
![]() |
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c174ed12a05a294f428c0a7ae5ce1c2f2871358269f5779e8ea7934d146f8f25
|
3 |
+
size 4475046623
|
train_loss_plot.png
ADDED
![]() |
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6efd72ce287b1ee5f5915a0296922089cd681a7c640f376dfd9732ee4ab00781
|
3 |
+
size 5496
|