paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/ranking-aggregation-with-interactive-feedback
|
Ranking Aggregation with Interactive Feedback for Collaborative Person Re-identification
| null |
https://bmvc2022.mpi-inf.mpg.de/386/
|
https://bmvc2022.mpi-inf.mpg.de/0386.pdf
|
https://github.com/2023-MindSpore-1/ms-code-137
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/on-recognizing-texts-of-arbitrary-shapes-with
|
On Recognizing Texts of Arbitrary Shapes with 2D Self-Attention
|
1910.04396
|
https://arxiv.org/abs/1910.04396v1
|
https://arxiv.org/pdf/1910.04396v1.pdf
|
https://github.com/Media-Smart/vedastr
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/on-the-robustness-of-interpretability-methods
|
On the Robustness of Interpretability Methods
|
1806.08049
|
http://arxiv.org/abs/1806.08049v1
|
http://arxiv.org/pdf/1806.08049v1.pdf
|
https://github.com/pytorch/captum
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/efficient-robust-optimal-transport
|
Efficient Robust Optimal Transport with Application to Multi-Label Classification
|
2010.11852
|
https://arxiv.org/abs/2010.11852v2
|
https://arxiv.org/pdf/2010.11852v2.pdf
|
https://github.com/SatyadevNtv/ROT4C
| true | true | true |
tf
|
https://paperswithcode.com/paper/comprehensive-view-of-microscopic
|
Comprehensive view of microscopic interactions between DNA-coated colloids
|
2111.06468
|
https://arxiv.org/abs/2111.06468v1
|
https://arxiv.org/pdf/2111.06468v1.pdf
|
https://github.com/smarbach/dnacoatedcolloidsinteractions
| true | true | false |
none
|
https://paperswithcode.com/paper/interpretation-of-neural-networks-is-fragile
|
Interpretation of Neural Networks is Fragile
|
1710.10547
|
http://arxiv.org/abs/1710.10547v2
|
http://arxiv.org/pdf/1710.10547v2.pdf
|
https://github.com/pytorch/captum
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/deep-residual-inception-encoder-decoder-1
|
Deep residual inception encoder-decoder network for amyloid PET harmonization
| null |
https://alz-journals.onlinelibrary.wiley.com/doi/full/10.1002/alz.12564
|
https://alz-journals.onlinelibrary.wiley.com/doi/epdf/10.1002/alz.12564
|
https://github.com/jaygshah/RIED-Net
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/adposition-and-case-supersenses-v2-guidelines
|
Adposition and Case Supersenses v2.6: Guidelines for English
|
1704.02134
|
https://arxiv.org/abs/1704.02134v8
|
https://arxiv.org/pdf/1704.02134v8.pdf
|
https://github.com/nert-gu/streusle
| true | true | true |
none
|
https://paperswithcode.com/paper/bisect-learning-to-split-and-rephrase
|
BiSECT: Learning to Split and Rephrase Sentences with Bitexts
|
2109.05006
|
https://arxiv.org/abs/2109.05006v1
|
https://arxiv.org/pdf/2109.05006v1.pdf
|
https://github.com/mounicam/bisect
| true | true | true |
none
|
https://paperswithcode.com/paper/stiff-neural-ordinary-differential-equations
|
Stiff Neural Ordinary Differential Equations
|
2103.15341
|
https://arxiv.org/abs/2103.15341v3
|
https://arxiv.org/pdf/2103.15341v3.pdf
|
https://github.com/DENG-MIT/StiffNeuralODE
| true | true | true |
none
|
https://paperswithcode.com/paper/dimension-reduction-of-dynamical-systems-on
|
Dimension reduction of dynamical systems on networks with leading and non-leading eigenvectors of adjacency matrices
|
2203.13872
|
https://arxiv.org/abs/2203.13872v2
|
https://arxiv.org/pdf/2203.13872v2.pdf
|
https://github.com/naokimas/nonleading-spectral
| true | true | false |
none
|
https://paperswithcode.com/paper/the-built-in-selection-bias-of-hazard-ratios
|
The built-in selection bias of hazard ratios formalized
|
2210.16550
|
https://arxiv.org/abs/2210.16550v1
|
https://arxiv.org/pdf/2210.16550v1.pdf
|
https://github.com/rajp93/chr
| true | true | false |
none
|
https://paperswithcode.com/paper/informer-beyond-efficient-transformer-for
|
Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting
|
2012.07436
|
https://arxiv.org/abs/2012.07436v3
|
https://arxiv.org/pdf/2012.07436v3.pdf
|
https://github.com/larsbentsen/fftransformer
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/detecting-out-of-distribution-examples-with
|
Detecting Out-of-Distribution Examples with In-distribution Examples and Gram Matrices
|
1912.12510
|
https://arxiv.org/abs/1912.12510v2
|
https://arxiv.org/pdf/1912.12510v2.pdf
|
https://github.com/kobybibas/pnml_ood_detection
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/enhancing-the-reliability-of-out-of
|
Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks
|
1706.02690
|
https://arxiv.org/abs/1706.02690v5
|
https://arxiv.org/pdf/1706.02690v5.pdf
|
https://github.com/kobybibas/pnml_ood_detection
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/a-baseline-for-detecting-misclassified-and
|
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
|
1610.02136
|
http://arxiv.org/abs/1610.02136v3
|
http://arxiv.org/pdf/1610.02136v3.pdf
|
https://github.com/kobybibas/pnml_ood_detection
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/parlai-a-dialog-research-software-platform
|
ParlAI: A Dialog Research Software Platform
|
1705.06476
|
http://arxiv.org/abs/1705.06476v4
|
http://arxiv.org/pdf/1705.06476v4.pdf
|
https://github.com/min942773/parlai_wandb
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/cxr-clip-toward-large-scale-chest-x-ray
|
CXR-CLIP: Toward Large Scale Chest X-ray Language-Image Pre-training
|
2310.13292
|
https://arxiv.org/abs/2310.13292v1
|
https://arxiv.org/pdf/2310.13292v1.pdf
|
https://github.com/kakaobrain/cxr-clip
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/rethinking-the-ill-posedness-of-the-spectral
|
Rethinking the ill-posedness of the spectral function reconstruction -- why is it fundamentally hard and how Artificial Neural Networks can help
|
2201.02564
|
https://arxiv.org/abs/2201.02564v2
|
https://arxiv.org/pdf/2201.02564v2.pdf
|
https://github.com/shuzheshi/spectralfunction
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/towards-consensus-reducing-polarization-by
|
Towards Consensus: Reducing Polarization by Perturbing Social Networks
|
2206.08996
|
https://arxiv.org/abs/2206.08996v2
|
https://arxiv.org/pdf/2206.08996v2.pdf
|
https://github.com/drigobon/minimizing-polarization
| true | true | false |
none
|
https://paperswithcode.com/paper/efficiently-predicting-high-resolution-mass
|
Efficiently predicting high resolution mass spectra with graph neural networks
|
2301.11419
|
https://arxiv.org/abs/2301.11419v1
|
https://arxiv.org/pdf/2301.11419v1.pdf
|
https://github.com/samgoldman97/ms-pred
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/generation-of-microbial-colonies-dataset-with
|
Generation of microbial colonies dataset with deep learning style transfer
|
2111.03789
|
https://arxiv.org/abs/2111.03789v2
|
https://arxiv.org/pdf/2111.03789v2.pdf
|
https://github.com/jarek-pawlowski/microbial-dataset-generation
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/a-principle-solution-for-enroll-test-mismatch
|
A Principle Solution for Enroll-Test Mismatch in Speaker Recognition
|
2012.12471
|
https://arxiv.org/abs/2012.12471v2
|
https://arxiv.org/pdf/2012.12471v2.pdf
|
https://gitlab.com/csltstu/enroll-test-mismatch
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/data-augmentation-through-monte-carlo
|
Data Augmentation Through Monte Carlo Arithmetic Leads to More Generalizable Classification in Connectomics
|
2109.09649
|
https://arxiv.org/abs/2109.09649v1
|
https://arxiv.org/pdf/2109.09649v1.pdf
|
https://github.com/gkpapers/2021aggregatemca
| true | true | false |
none
|
https://paperswithcode.com/paper/automatic-lane-change-scenario-extraction-and
|
Automatic lane change scenario extraction and generation of scenarios in OpenX format from real-world data
|
2203.07521
|
https://arxiv.org/abs/2203.07521v1
|
https://arxiv.org/pdf/2203.07521v1.pdf
|
https://github.com/dkarunakaran/scenario_extraction_framework
| true | true | false |
none
|
https://paperswithcode.com/paper/magnitude-corrected-and-time-aligned
|
Magnitude-Corrected and Time-Aligned Interpolation of Head-Related Transfer Functions
|
2303.09966
|
https://arxiv.org/abs/2303.09966v1
|
https://arxiv.org/pdf/2303.09966v1.pdf
|
https://github.com/audiogroupcologne/supdeq
| true | true | false |
none
|
https://paperswithcode.com/paper/building-a-heterogeneous-large-scale
|
A Sparse and Locally Coherent Morphable Face Model for Dense Semantic Correspondence Across Heterogeneous 3D Faces
|
2006.03840
|
https://arxiv.org/abs/2006.03840v3
|
https://arxiv.org/pdf/2006.03840v3.pdf
|
https://github.com/clferrari/SLC-3DMM
| true | true | true |
none
|
https://paperswithcode.com/paper/workspace-aware-online-grasp-planning
|
Workspace Aware Online Grasp Planning
|
1806.11402
|
http://arxiv.org/abs/1806.11402v1
|
http://arxiv.org/pdf/1806.11402v1.pdf
|
https://github.com/scikit-fmm/scikit-fmm
| true | true | true |
none
|
https://paperswithcode.com/paper/challenges-in-representation-learning-a
|
Challenges in Representation Learning: A report on three machine learning contests
|
1307.0414
|
http://arxiv.org/abs/1307.0414v1
|
http://arxiv.org/pdf/1307.0414v1.pdf
|
https://github.com/justinshenk/fer
| false | false | true |
tf
|
https://paperswithcode.com/paper/pc2-pu-patch-correlation-and-position
|
PC$^2$-PU: Patch Correlation and Point Correlation for Effective Point Cloud Upsampling
|
2109.09337
|
https://arxiv.org/abs/2109.09337v3
|
https://arxiv.org/pdf/2109.09337v3.pdf
|
https://github.com/chenlongwhu/pc2-pu
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/roughness-index-and-roughness-distance-for
|
Roughness Index and Roughness Distance for Benchmarking Medical Segmentation
|
2103.12350
|
https://arxiv.org/abs/2103.12350v1
|
https://arxiv.org/pdf/2103.12350v1.pdf
|
https://github.com/Vidhiwar/roughness-index
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/beyond-part-models-person-retrieval-with
|
Beyond Part Models: Person Retrieval with Refined Part Pooling (and a Strong Convolutional Baseline)
|
1711.09349
|
http://arxiv.org/abs/1711.09349v3
|
http://arxiv.org/pdf/1711.09349v3.pdf
|
https://github.com/MindSpore-paper-code-2/code2/tree/main/pcb_rpp
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/the-second-conversational-intelligence
|
The Second Conversational Intelligence Challenge (ConvAI2)
|
1902.00098
|
http://arxiv.org/abs/1902.00098v1
|
http://arxiv.org/pdf/1902.00098v1.pdf
|
https://github.com/af1tang/personaGPT
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/towards-robust-monocular-depth-estimation
|
Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer
|
1907.01341
|
https://arxiv.org/abs/1907.01341v3
|
https://arxiv.org/pdf/1907.01341v3.pdf
|
https://github.com/mindspore-ai/models/tree/master/research/cv/midas
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/the-pragmatics-behind-politics-modelling
|
The Pragmatics behind Politics: Modelling Metaphor, Framing and Emotion in Political Discourse
| null |
https://aclanthology.org/2020.findings-emnlp.402
|
https://aclanthology.org/2020.findings-emnlp.402.pdf
|
https://github.com/littlepea13/mtl_political_discourse
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/insight-into-cloud-processes-from
|
Insight into cloud processes from unsupervised classification with a rotationally invariant autoencoder
|
2211.00860
|
https://arxiv.org/abs/2211.00860v2
|
https://arxiv.org/pdf/2211.00860v2.pdf
|
https://github.com/rdcep/clouds
| true | true | false |
tf
|
https://paperswithcode.com/paper/when-is-wall-a-pared-and-when-a-muro
|
When is Wall a Pared and when a Muro? -- Extracting Rules Governing Lexical Selection
|
2109.06014
|
https://arxiv.org/abs/2109.06014v1
|
https://arxiv.org/pdf/2109.06014v1.pdf
|
https://github.com/Aditi138/LexSelection
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/stc-antispoofing-systems-for-the-asvspoof2019
|
STC Antispoofing Systems for the ASVspoof2019 Challenge
|
1904.05576
|
http://arxiv.org/abs/1904.05576v1
|
http://arxiv.org/pdf/1904.05576v1.pdf
|
https://github.com/ozora-ogino/LCNN
| false | false | true |
tf
|
https://paperswithcode.com/paper/repvgg-making-vgg-style-convnets-great-again
|
RepVGG: Making VGG-style ConvNets Great Again
|
2101.03697
|
https://arxiv.org/abs/2101.03697v3
|
https://arxiv.org/pdf/2101.03697v3.pdf
|
https://github.com/MindSpore-paper-code-2/code2/tree/main/repvgg
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/noisy-networks-for-exploration
|
Noisy Networks for Exploration
|
1706.10295
|
https://arxiv.org/abs/1706.10295v3
|
https://arxiv.org/pdf/1706.10295v3.pdf
|
https://github.com/MOVzeroOne/DQN
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/vortex-clustering-polarisation-and
|
Vortex clustering, polarisation and circulation intermittency in classical and quantum turbulence
|
2107.03335
|
https://arxiv.org/abs/2107.03335v2
|
https://arxiv.org/pdf/2107.03335v2.pdf
|
https://github.com/jipolanco/Circulation.jl
| true | true | true |
none
|
https://paperswithcode.com/paper/a-linear-adjustment-based-approach-to
|
A linear adjustment based approach to posterior drift in transfer learning
|
2111.10841
|
https://arxiv.org/abs/2111.10841v2
|
https://arxiv.org/pdf/2111.10841v2.pdf
|
https://github.com/smaityumich/linearly-shifted-transfer
| true | true | false |
none
|
https://paperswithcode.com/paper/towards-prediction-explainability-through
|
The Explanation Game: Towards Prediction Explainability through Sparse Communication
|
2004.13876
|
https://arxiv.org/abs/2004.13876v2
|
https://arxiv.org/pdf/2004.13876v2.pdf
|
https://github.com/deep-spin/spec
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/playing-atari-with-deep-reinforcement
|
Playing Atari with Deep Reinforcement Learning
|
1312.5602
|
http://arxiv.org/abs/1312.5602v1
|
http://arxiv.org/pdf/1312.5602v1.pdf
|
https://github.com/MOVzeroOne/DQN
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/dueling-network-architectures-for-deep
|
Dueling Network Architectures for Deep Reinforcement Learning
|
1511.06581
|
http://arxiv.org/abs/1511.06581v3
|
http://arxiv.org/pdf/1511.06581v3.pdf
|
https://github.com/MOVzeroOne/DQN
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/deep-reinforcement-learning-with-double-q
|
Deep Reinforcement Learning with Double Q-learning
|
1509.06461
|
http://arxiv.org/abs/1509.06461v3
|
http://arxiv.org/pdf/1509.06461v3.pdf
|
https://github.com/MOVzeroOne/DQN
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/gaze-estimation-with-an-ensemble-of-four
|
Gaze Estimation with an Ensemble of Four Architectures
|
2107.01980
|
https://arxiv.org/abs/2107.01980v1
|
https://arxiv.org/pdf/2107.01980v1.pdf
|
https://github.com/VIPL-TAL-GAZE/GAZE2021
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/a-coherent-unsupervised-model-for-toponym
|
A Coherent Unsupervised Model for Toponym Resolution
|
1805.01952
|
https://arxiv.org/abs/1805.01952v2
|
https://arxiv.org/pdf/1805.01952v2.pdf
|
https://github.com/ehsk/CHF-TopoResolver
| true | true | false |
none
|
https://paperswithcode.com/paper/meta-learning-on-a-sequence-of-imbalanced
|
Meta Learning on a Sequence of Imbalanced Domains with Difficulty Awareness
|
2109.14120
|
https://arxiv.org/abs/2109.14120v1
|
https://arxiv.org/pdf/2109.14120v1.pdf
|
https://github.com/joey-wang123/imbalancemeta
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/transfer-learning-improving-neural-network
|
Transfer learning: Improving neural network based prediction of earthquake ground shaking for an area with insufficient training data
|
2105.05075
|
https://arxiv.org/abs/2105.05075v1
|
https://arxiv.org/pdf/2105.05075v1.pdf
|
https://github.com/djozinovi/TLpredIM
| true | true | true |
none
|
https://paperswithcode.com/paper/snips-voice-platform-an-embedded-spoken
|
Snips Voice Platform: an embedded Spoken Language Understanding system for private-by-design voice interfaces
|
1805.10190
|
http://arxiv.org/abs/1805.10190v3
|
http://arxiv.org/pdf/1805.10190v3.pdf
|
https://github.com/Priyanshiguptaaa/Intent_Recognition_BERT
| false | false | true |
tf
|
https://paperswithcode.com/paper/advhat-real-world-adversarial-attack-on
|
AdvHat: Real-world adversarial attack on ArcFace Face ID system
|
1908.08705
|
https://arxiv.org/abs/1908.08705v1
|
https://arxiv.org/pdf/1908.08705v1.pdf
|
https://github.com/MindSpore-paper-code-2/code400/tree/main/Arcface
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/optimizing-memory-efficiency-of-graph
|
Optimizing Memory Efficiency of Graph Neural Networks on Edge Computing Platforms
|
2104.03058
|
https://arxiv.org/abs/2104.03058v2
|
https://arxiv.org/pdf/2104.03058v2.pdf
|
https://github.com/BUAA-CI-Lab/GNN-Feature-Decomposition
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/predictive-world-models-from-real-world
|
Predictive World Models from Real-World Partial Observations
|
2301.04783
|
https://arxiv.org/abs/2301.04783v3
|
https://arxiv.org/pdf/2301.04783v3.pdf
|
https://github.com/robin-karlsson0/predictive-world-models
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/effectiveness-of-optimization-algorithms-in
|
Effectiveness of Optimization Algorithms in Deep Image Classification
|
2110.01598
|
https://arxiv.org/abs/2110.01598v1
|
https://arxiv.org/pdf/2110.01598v1.pdf
|
https://github.com/chuiyunjun/projectCSC413
| true | true | false |
none
|
https://paperswithcode.com/paper/ranking-policy-decisions
|
Ranking Policy Decisions
|
2008.13607
|
https://arxiv.org/abs/2008.13607v3
|
https://arxiv.org/pdf/2008.13607v3.pdf
|
https://github.com/anonuser-532438/policyrankinganon
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/190501999
|
A Benchmark API Call Dataset for Windows PE Malware Classification
|
1905.01999
|
http://arxiv.org/abs/1905.01999v1
|
http://arxiv.org/pdf/1905.01999v1.pdf
|
https://github.com/6700github/awesome-reverse-engineering
| false | false | true |
paddle
|
https://paperswithcode.com/paper/deep-adaptive-input-normalization-for-price
|
Deep Adaptive Input Normalization for Time Series Forecasting
|
1902.07892
|
https://arxiv.org/abs/1902.07892v2
|
https://arxiv.org/pdf/1902.07892v2.pdf
|
https://github.com/vladserkoff/DAIN-pytorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/dpc-unsupervised-deep-point-correspondence
|
DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction
|
2110.08636
|
https://arxiv.org/abs/2110.08636v1
|
https://arxiv.org/pdf/2110.08636v1.pdf
|
https://github.com/dvirginz/dpc
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/lossless-compression-with-probabilistic-1
|
Lossless Compression with Probabilistic Circuits
|
2111.11632
|
https://arxiv.org/abs/2111.11632v2
|
https://arxiv.org/pdf/2111.11632v2.pdf
|
https://github.com/juice-jl/pressedjuice.jl
| true | true | false |
none
|
https://paperswithcode.com/paper/putting-nerf-on-a-diet-semantically
|
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis
|
2104.00677
|
https://arxiv.org/abs/2104.00677v1
|
https://arxiv.org/pdf/2104.00677v1.pdf
|
https://github.com/ajayjain/DietNeRF
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/reduce-reformulation-of-mixed-integer
|
ReDUCE: Reformulation of Mixed Integer Programs using Data from Unsupervised Clusters for Learning Efficient Strategies
|
2110.00666
|
https://arxiv.org/abs/2110.00666v1
|
https://arxiv.org/pdf/2110.00666v1.pdf
|
https://github.com/romelaucla/reduce
| true | true | true |
none
|
https://paperswithcode.com/paper/step-by-step-a-hierarchical-framework-for
|
Step by step: a hierarchical framework for multi-hop knowledge graph reasoning with reinforcement learning
| null |
https://doi.org/10.1016/j.knosys.2022.108843
|
https://doi.org/10.1016/j.knosys.2022.108843
|
https://github.com/2023-MindSpore-1/ms-code-4
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/memebusters-at-semeval-2020-task-8-feature
|
Memebusters at SemEval-2020 Task 8: Feature Fusion Model for Sentiment Analysis on Memes Using Transfer Learning
| null |
https://aclanthology.org/2020.semeval-1.154
|
https://aclanthology.org/2020.semeval-1.154.pdf
|
https://github.com/04mayukh/memebusters-at-semeval-2020-task-8-memotion-analysis
| false | true | false |
none
|
https://paperswithcode.com/paper/v2e-from-video-frames-to-realistic-dvs-event
|
v2e: From Video Frames to Realistic DVS Events
|
2006.07722
|
https://arxiv.org/abs/2006.07722v2
|
https://arxiv.org/pdf/2006.07722v2.pdf
|
https://github.com/SensorsINI/v2e_exps_public
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/suod-toward-scalable-unsupervised-outlier
|
SUOD: Toward Scalable Unsupervised Outlier Detection
|
2002.03222
|
https://arxiv.org/abs/2002.03222v1
|
https://arxiv.org/pdf/2002.03222v1.pdf
|
https://github.com/yzhao062/SUOD
| true | true | false |
none
|
https://paperswithcode.com/paper/tackling-multi-answer-open-domain-questions
|
Answering Open-Domain Multi-Answer Questions via a Recall-then-Verify Framework
|
2110.08544
|
https://arxiv.org/abs/2110.08544v2
|
https://arxiv.org/pdf/2110.08544v2.pdf
|
https://github.com/zhihongshao/rectify
| true | true | true |
none
|
https://paperswithcode.com/paper/optimizing-readability-using-genetic
|
Optimizing Readability Using Genetic Algorithms
|
2301.00374
|
https://arxiv.org/abs/2301.00374v1
|
https://arxiv.org/pdf/2301.00374v1.pdf
|
https://github.com/jorge-martinez-gil/oruga
| true | true | true |
none
|
https://paperswithcode.com/paper/regularizing-variational-autoencoder-with
|
Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness
|
2110.12381
|
https://arxiv.org/abs/2110.12381v1
|
https://arxiv.org/pdf/2110.12381v1.pdf
|
https://github.com/smilesdzgk/du-vae
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/conjugate-priors-for-count-and-rounded-data
|
Semiparametric discrete data regression with Monte Carlo inference and prediction
|
2110.12316
|
https://arxiv.org/abs/2110.12316v6
|
https://arxiv.org/pdf/2110.12316v6.pdf
|
https://github.com/drkowal/rSTAR
| true | true | false |
none
|
https://paperswithcode.com/paper/probabilistic-mixture-of-experts-for-1
|
Probabilistic Mixture-of-Experts for Efficient Deep Reinforcement Learning
|
2104.09122
|
https://arxiv.org/abs/2104.09122v1
|
https://arxiv.org/pdf/2104.09122v1.pdf
|
https://github.com/JieRen98/rlkit-pmoe
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/uncertainty-quantification-and-deep-ensembles
|
Uncertainty Quantification and Deep Ensembles
|
2007.08792
|
https://arxiv.org/abs/2007.08792v4
|
https://arxiv.org/pdf/2007.08792v4.pdf
|
https://github.com/rahulrahaman/Uncertainty-Quantification-and-Deep-Ensemble
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/locally-differentially-private-contextual
|
Locally Differentially Private (Contextual) Bandits Learning
|
2006.00701
|
https://arxiv.org/abs/2006.00701v4
|
https://arxiv.org/pdf/2006.00701v4.pdf
|
https://github.com/mindspore-ai/models/tree/master/research/rl/ldp_linucb
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/sample-size-estimation-using-a-latent
|
Sample Size Estimation using a Latent Variable Model for Mixed Outcome Co-Primary, Multiple Primary and Composite Endpoints
|
1912.05258
|
https://arxiv.org/abs/1912.05258v1
|
https://arxiv.org/pdf/1912.05258v1.pdf
|
https://github.com/martinamcm/mult_sampsize
| false | false | true |
none
|
https://paperswithcode.com/paper/layout-and-task-aware-instruction-prompt-for
|
Layout and Task Aware Instruction Prompt for Zero-shot Document Image Question Answering
|
2306.00526
|
https://arxiv.org/abs/2306.00526v4
|
https://arxiv.org/pdf/2306.00526v4.pdf
|
https://github.com/deepopinion/anls_star_metric
| false | false | true |
none
|
https://paperswithcode.com/paper/deeper-depth-prediction-with-fully
|
Deeper Depth Prediction with Fully Convolutional Residual Networks
|
1606.00373
|
http://arxiv.org/abs/1606.00373v2
|
http://arxiv.org/pdf/1606.00373v2.pdf
|
https://github.com/danielzgsilva/MonoDepthAttacks
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/lindblad-tomography-of-a-superconducting
|
Lindblad Tomography of a Superconducting Quantum Processor
|
2105.02338
|
https://arxiv.org/abs/2105.02338v5
|
https://arxiv.org/pdf/2105.02338v5.pdf
|
https://github.com/jborregaard/Lindblad_tomography
| true | true | false |
none
|
https://paperswithcode.com/paper/new-roads-to-the-small-scale-universe
|
New Roads to the Small-Scale Universe: Measurements of the Clustering of Matter with the High-Redshift UV Galaxy Luminosity Function
|
2110.13161
|
https://arxiv.org/abs/2110.13161v2
|
https://arxiv.org/pdf/2110.13161v2.pdf
|
https://github.com/nnssa/gallumi_public
| true | true | true |
none
|
https://paperswithcode.com/paper/the-jsonlite-package-a-practical-and
|
The jsonlite Package: A Practical and Consistent Mapping Between JSON Data and R Objects
|
1403.2805
|
http://arxiv.org/abs/1403.2805v1
|
http://arxiv.org/pdf/1403.2805v1.pdf
|
https://github.com/behrica/opencpu-clj
| false | false | true |
none
|
https://paperswithcode.com/paper/robust-control-of-partially-specified-boolean
|
Robust Control of Partially Specified Boolean Networks
|
2202.13440
|
https://arxiv.org/abs/2202.13440v1
|
https://arxiv.org/pdf/2202.13440v1.pdf
|
https://github.com/sybila/biodivine-pbn-control
| true | true | false |
none
|
https://paperswithcode.com/paper/gallumi-a-galaxy-luminosity-function-pipeline
|
GALLUMI: A Galaxy Luminosity Function Pipeline for Cosmology and Astrophysics
|
2110.13168
|
https://arxiv.org/abs/2110.13168v3
|
https://arxiv.org/pdf/2110.13168v3.pdf
|
https://github.com/nnssa/gallumi_public
| true | true | true |
none
|
https://paperswithcode.com/paper/time-series-graphical-lasso-and-sparse-var
|
Time Series Graphical Lasso and Sparse VAR Estimation
|
2107.01659
|
https://arxiv.org/abs/2107.01659v1
|
https://arxiv.org/pdf/2107.01659v1.pdf
|
https://github.com/adallak/TSGlasso/blob/main/README.md
| false | false | false |
none
|
https://paperswithcode.com/paper/wiener-filtering-and-pure-e-b-decomposition
|
Wiener filtering and pure E/B decomposition of CMB maps with anisotropic correlated noise
|
1906.10704
|
http://arxiv.org/abs/1906.10704v2
|
http://arxiv.org/pdf/1906.10704v2.pdf
|
https://github.com/doogesh/dante
| false | false | true |
none
|
https://paperswithcode.com/paper/post-hoc-domain-adaptation-via-guided-data
|
Post-Hoc Domain Adaptation via Guided Data Homogenization
|
2104.03624
|
https://arxiv.org/abs/2104.03624v1
|
https://arxiv.org/pdf/2104.03624v1.pdf
|
https://github.com/willisk/GDH
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/mosaicking-to-distill-knowledge-distillation
|
Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data
|
2110.15094
|
https://arxiv.org/abs/2110.15094v1
|
https://arxiv.org/pdf/2110.15094v1.pdf
|
https://github.com/zju-vipa/mosaickd
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/lf-yolo-a-lighter-and-faster-yolo-for-weld
|
LF-YOLO: A Lighter and Faster YOLO for Weld Defect Detection of X-ray Image
|
2110.15045
|
https://arxiv.org/abs/2110.15045v2
|
https://arxiv.org/pdf/2110.15045v2.pdf
|
https://github.com/lmomoy/lf-yolo
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/data-free-network-quantization-with
|
Data-Free Network Quantization With Adversarial Knowledge Distillation
|
2005.04136
|
https://arxiv.org/abs/2005.04136v1
|
https://arxiv.org/pdf/2005.04136v1.pdf
|
https://github.com/zju-vipa/mosaickd
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/learning-from-a-teacher-using-unlabeled-data
|
Learning from a Teacher using Unlabeled Data
|
1911.05275
|
https://arxiv.org/abs/1911.05275v1
|
https://arxiv.org/pdf/1911.05275v1.pdf
|
https://github.com/zju-vipa/mosaickd
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/cross-domain-object-detection-by-target
|
Cross Domain Object Detection by Target-Perceived Dual Branch Distillation
|
2205.01291
|
https://arxiv.org/abs/2205.01291v1
|
https://arxiv.org/pdf/2205.01291v1.pdf
|
https://github.com/feobi1999/tdd
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/opt-open-pre-trained-transformer-language
|
OPT: Open Pre-trained Transformer Language Models
|
2205.01068
|
https://arxiv.org/abs/2205.01068v4
|
https://arxiv.org/pdf/2205.01068v4.pdf
|
https://github.com/MindCode-4/code-2/tree/main/opt
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/adapttext-a-novel-framework-for-domain
|
AdaptText: A Novel Framework for Domain-Independent Automated Sinhala Text Classification
| null |
https://ieeexplore.ieee.org/document/9605861
|
https://ieeexplore.ieee.org/document/9605861
|
https://github.com/yathindrakodithuwakku/AdaptText
| false | false | false |
none
|
https://paperswithcode.com/paper/towards-unifying-feature-attribution-and
|
Towards Unifying Feature Attribution and Counterfactual Explanations: Different Means to the Same End
|
2011.04917
|
https://arxiv.org/abs/2011.04917v3
|
https://arxiv.org/pdf/2011.04917v3.pdf
|
https://github.com/interpretml/DiCE
| false | false | true |
tf
|
https://paperswithcode.com/paper/web-based-elicitation-of-human-perception-on
|
Human-in-the-Loop Mixup
|
2211.01202
|
https://arxiv.org/abs/2211.01202v3
|
https://arxiv.org/pdf/2211.01202v3.pdf
|
https://github.com/cambridge-mlg/hill-mixup
| true | true | false |
none
|
https://paperswithcode.com/paper/augmenting-english-adjective-senses-with
|
Augmenting English Adjective Senses with Supersenses
| null |
https://aclanthology.org/L14-1073
|
https://aclanthology.org/L14-1073.pdf
|
https://github.com/ytsvetko/adjective_supersense_classifier
| true | true | false |
none
|
https://paperswithcode.com/paper/ugc-vqa-benchmarking-blind-video-quality
|
UGC-VQA: Benchmarking Blind Video Quality Assessment for User Generated Content
|
2005.14354
|
https://arxiv.org/abs/2005.14354v2
|
https://arxiv.org/pdf/2005.14354v2.pdf
|
https://github.com/tu184044109/VIDEVAL_release
| true | true | true |
none
|
https://paperswithcode.com/paper/last-iterate-convergence-of-optimistic
|
Last-Iterate Convergence of Optimistic Gradient Method for Monotone Variational Inequalities
|
2205.08446
|
https://arxiv.org/abs/2205.08446v2
|
https://arxiv.org/pdf/2205.08446v2.pdf
|
https://github.com/eduardgorbunov/potentials_and_last_iter_convergence_for_vips
| true | true | false |
none
|
https://paperswithcode.com/paper/random-search-and-reproducibility-for-neural
|
Random Search and Reproducibility for Neural Architecture Search
|
1902.07638
|
https://arxiv.org/abs/1902.07638v3
|
https://arxiv.org/pdf/1902.07638v3.pdf
|
https://github.com/microsoft/nn-meter
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/cross-modal-contrastive-learning-for-1
|
Cross-modal Contrastive Learning for Multimodal Fake News Detection
|
2302.14057
|
https://arxiv.org/abs/2302.14057v2
|
https://arxiv.org/pdf/2302.14057v2.pdf
|
https://github.com/wishever/coolant
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/it-doesnt-look-good-for-a-date-transforming
|
“It doesn’t look good for a date”: Transforming Critiques into Preferences for Conversational Recommendation Systems
| null |
https://aclanthology.org/2021.emnlp-main.145
|
https://aclanthology.org/2021.emnlp-main.145.pdf
|
https://github.com/vbursztyn/critique-to-preference-emnlp2021
| true | true | false |
tf
|
https://paperswithcode.com/paper/contrastive-aligned-joint-learning-for
|
Contrastive Aligned Joint Learning for Multilingual Summarization
| null |
https://aclanthology.org/2021.findings-acl.242
|
https://aclanthology.org/2021.findings-acl.242.pdf
|
https://github.com/brxx122/calms
| true | true | false |
pytorch
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.