paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/x-modaler-a-versatile-and-high-performance
|
X-modaler: A Versatile and High-performance Codebase for Cross-modal Analytics
|
2108.08217
|
https://arxiv.org/abs/2108.08217v1
|
https://arxiv.org/pdf/2108.08217v1.pdf
|
https://github.com/yehli/xmodaler
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/enhancing-cryptoguards-deployability-for
|
Enhancing CryptoGuards Deployability for Continuous Software Security Scanning
|
2201.07651
|
https://arxiv.org/abs/2201.07651v1
|
https://arxiv.org/pdf/2201.07651v1.pdf
|
https://github.com/CryptoGuardOSS/cryptoguard
| true | true | false |
none
|
https://paperswithcode.com/paper/pixelsnail-an-improved-autoregressive
|
PixelSNAIL: An Improved Autoregressive Generative Model
|
1712.09763
|
http://arxiv.org/abs/1712.09763v1
|
http://arxiv.org/pdf/1712.09763v1.pdf
|
https://github.com/neocxi/pixelsnail-public
| true | true | false |
tf
|
https://paperswithcode.com/paper/weakly-supervised-fingerspelling-recognition
|
Weakly-supervised Fingerspelling Recognition in British Sign Language Videos
|
2211.08954
|
https://arxiv.org/abs/2211.08954v1
|
https://arxiv.org/pdf/2211.08954v1.pdf
|
https://github.com/prajwalkr/transpeller
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/a-neural-conversation-generation-model-via
|
A Neural Conversation Generation Model via Equivalent Shared Memory Investigation
|
2108.09164
|
https://arxiv.org/abs/2108.09164v1
|
https://arxiv.org/pdf/2108.09164v1.pdf
|
https://github.com/jichangzhen/drmn
| true | true | false |
tf
|
https://paperswithcode.com/paper/machine-learning-based-multiscale
|
Machine learning-based multiscale constitutive modelling: Development and application to dual-porosity mass transfer
|
2108.08847
|
https://arxiv.org/abs/2108.08847v1
|
https://arxiv.org/pdf/2108.08847v1.pdf
|
https://github.com/mashworth11/ml-mm
| true | true | false |
none
|
https://paperswithcode.com/paper/rethinking-coarse-to-fine-approach-in-single
|
Rethinking Coarse-to-Fine Approach in Single Image Deblurring
|
2108.05054
|
https://arxiv.org/abs/2108.05054v2
|
https://arxiv.org/pdf/2108.05054v2.pdf
|
https://github.com/chosj95/mimo-unet
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/robust-scene-text-recognition-with-automatic
|
Robust Scene Text Recognition with Automatic Rectification
|
1603.03915
|
http://arxiv.org/abs/1603.03915v2
|
http://arxiv.org/pdf/1603.03915v2.pdf
|
https://github.com/Media-Smart/vedastr
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/an-efficient-2d-method-for-training-super
|
An Efficient 2D Method for Training Super-Large Deep Learning Models
|
2104.05343
|
https://arxiv.org/abs/2104.05343v1
|
https://arxiv.org/pdf/2104.05343v1.pdf
|
https://github.com/xuqifan897/Optimus
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/a-remote-sensing-image-dataset-for-cloud
|
A Remote Sensing Image Dataset for Cloud Removal
|
1901.00600
|
http://arxiv.org/abs/1901.00600v1
|
http://arxiv.org/pdf/1901.00600v1.pdf
|
https://github.com/BUPTLdy/RICE_DATASET
| true | true | false |
none
|
https://paperswithcode.com/paper/fitsmap-a-simple-lightweight-tool-for
|
FitsMap: A Simple, Lightweight Tool For Displaying Interactive Astronomical Image and Catalog Data
|
2201.12308
|
https://arxiv.org/abs/2201.12308v1
|
https://arxiv.org/pdf/2201.12308v1.pdf
|
https://github.com/ryanhausen/fitsmap
| true | true | false |
none
|
https://paperswithcode.com/paper/dynamic-slate-recommendation-with-gated
|
Dynamic Slate Recommendation with Gated Recurrent Units and Thompson Sampling
|
2104.15046
|
https://arxiv.org/abs/2104.15046v1
|
https://arxiv.org/pdf/2104.15046v1.pdf
|
https://github.com/finn-no/recsys_slates_dataset
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/models-of-rotating-coronae
|
Models of rotating coronae
|
1809.03437
|
http://arxiv.org/abs/1809.03437v1
|
http://arxiv.org/pdf/1809.03437v1.pdf
|
https://github.com/sormani/coropy
| true | true | true |
none
|
https://paperswithcode.com/paper/an-artificial-immune-system-for-adaptive-test
|
An Artificial Immune System for Adaptive Test Selection
| null |
https://ieeexplore.ieee.org/document/9308528
|
https://ieeexplore.ieee.org/document/9308528
|
https://github.com/LagLukas/adaptiveTestSelection
| false | false | false |
none
|
https://paperswithcode.com/paper/ensemble-of-heterogeneous-flexible-neural
|
Ensemble of heterogeneous flexible neural trees using multiobjective genetic programming
|
1705.05592
|
http://arxiv.org/abs/1705.05592v1
|
http://arxiv.org/pdf/1705.05592v1.pdf
|
https://github.com/vojha-code/Neural-Tree-Software
| true | false | false |
none
|
https://paperswithcode.com/paper/deep-anomaly-detection-on-attributed-networks
|
Deep Anomaly Detection on Attributed Networks
| null |
https://epubs.siam.org/doi/abs/10.1137/1.9781611975673.67
|
https://www.public.asu.edu/~kding9/pdf/SDM2019_Deep.pdf
|
https://github.com/pygod-team/pygod
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/anomalydae-dual-autoencoder-for-anomaly
|
AnomalyDAE: Dual autoencoder for anomaly detection on attributed networks
|
2002.03665
|
https://arxiv.org/abs/2002.03665v2
|
https://arxiv.org/pdf/2002.03665v2.pdf
|
https://github.com/pygod-team/pygod
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/on-modality-bias-recognition-and-reduction
|
On Modality Bias Recognition and Reduction
|
2202.12690
|
https://arxiv.org/abs/2202.12690v2
|
https://arxiv.org/pdf/2202.12690v2.pdf
|
https://github.com/guoyang9/AdaVQA
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/comparing-classes-of-estimators-when-does
|
Comparing Classes of Estimators: When does Gradient Descent Beat Ridge Regression in Linear Models?
|
2108.11872
|
https://arxiv.org/abs/2108.11872v2
|
https://arxiv.org/pdf/2108.11872v2.pdf
|
https://github.com/dominicrichards/comparinggradientdescentridge
| true | true | false |
none
|
https://paperswithcode.com/paper/interpretable-click-through-rate-prediction
|
Interpretable Click-Through Rate Prediction through Hierarchical Attention
| null |
https://dl.acm.org/doi/10.1145/3336191.3371785
|
https://dl.acm.org/doi/pdf/10.1145/3336191.3371785
|
https://github.com/zyli93/InterHAt
| false | false | false |
tf
|
https://paperswithcode.com/paper/photospheric-prompt-emission-from-long-gamma-1
|
Photospheric Prompt Emission From Long Gamma Ray Burst Simulations -- II. Spectropolarimetry
|
2108.11412
|
https://arxiv.org/abs/2108.11412v2
|
https://arxiv.org/pdf/2108.11412v2.pdf
|
https://github.com/lazzati-astro/MCRaT
| true | true | false |
none
|
https://paperswithcode.com/paper/photospheric-prompt-emission-from-long-gamma-1
|
Photospheric Prompt Emission From Long Gamma Ray Burst Simulations -- II. Spectropolarimetry
|
2108.11412
|
https://arxiv.org/abs/2108.11412v2
|
https://arxiv.org/pdf/2108.11412v2.pdf
|
https://github.com/parsotat/ProcessMCRaT
| true | true | false |
none
|
https://paperswithcode.com/paper/electra-pre-training-text-encoders-as-1
|
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators
|
2003.10555
|
https://arxiv.org/abs/2003.10555v1
|
https://arxiv.org/pdf/2003.10555v1.pdf
|
https://github.com/PaddlePaddle/PaddleNLP/tree/develop/model_zoo/electra
| false | false | false |
paddle
|
https://paperswithcode.com/paper/nonlinear-state-space-identification-using
|
Nonlinear state-space identification using deep encoder networks
|
2012.07697
|
https://arxiv.org/abs/2012.07697v2
|
https://arxiv.org/pdf/2012.07697v2.pdf
|
https://github.com/GerbenBeintema/SS-encoder-WH-Silver
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/hierarchical-inference-with-bayesian-neural
|
Hierarchical Inference With Bayesian Neural Networks: An Application to Strong Gravitational Lensing
|
2010.13787
|
https://arxiv.org/abs/2010.13787v3
|
https://arxiv.org/pdf/2010.13787v3.pdf
|
https://github.com/swagnercarena/ovejero
| true | true | true |
tf
|
https://paperswithcode.com/paper/180309746
|
Lenstronomy: multi-purpose gravitational lens modelling software package
|
1803.09746
|
http://arxiv.org/abs/1803.09746v2
|
http://arxiv.org/pdf/1803.09746v2.pdf
|
https://github.com/swagnercarena/ovejero
| false | false | true |
tf
|
https://paperswithcode.com/paper/structure-aware-hierarchical-graph-pooling
|
Structure-Aware Hierarchical Graph Pooling using Information Bottleneck
|
2104.13012
|
https://arxiv.org/abs/2104.13012v1
|
https://arxiv.org/pdf/2104.13012v1.pdf
|
https://github.com/forkkr/HIBPool
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/a-functional-skeleton-transfer
|
A functional skeleton transfer
|
2108.12041
|
https://arxiv.org/abs/2108.12041v1
|
https://arxiv.org/pdf/2108.12041v1.pdf
|
https://github.com/pietromsn/functional-skeleton-transfer
| true | true | false |
none
|
https://paperswithcode.com/paper/baryon-acoustic-oscillations-in-thin-redshift
|
Baryon acoustic oscillations in thin redshift shells from BOSS DR12 and eBOSS DR16 galaxies
|
2112.10000
|
https://arxiv.org/abs/2112.10000v2
|
https://arxiv.org/pdf/2112.10000v2.pdf
|
https://github.com/ranier137/angularbao
| true | true | false |
none
|
https://paperswithcode.com/paper/metadata-shaping-natural-language-annotations
|
Metadata Shaping: Natural Language Annotations for the Tail
|
2110.08430
|
https://arxiv.org/abs/2110.08430v1
|
https://arxiv.org/pdf/2110.08430v1.pdf
|
https://github.com/simran-arora/metadatashaping
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/self-distilled-self-supervised-representation
|
Self-Distilled Self-Supervised Representation Learning
|
2111.12958
|
https://arxiv.org/abs/2111.12958v3
|
https://arxiv.org/pdf/2111.12958v3.pdf
|
https://github.com/hagiss/sdssl
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/an-unsupervised-method-for-building-sentence
|
An Unsupervised Method for Building Sentence Simplification Corpora in Multiple Languages
|
2109.00165
|
https://arxiv.org/abs/2109.00165v1
|
https://arxiv.org/pdf/2109.00165v1.pdf
|
https://github.com/luxinyu1/trans-ss
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/pits-variational-pitch-inference-without
|
PITS: Variational Pitch Inference without Fundamental Frequency for End-to-End Pitch-controllable TTS
|
2302.12391
|
https://arxiv.org/abs/2302.12391v3
|
https://arxiv.org/pdf/2302.12391v3.pdf
|
https://github.com/anonymous-pits/pits
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/modeling-state-transition-dynamics-in-brain
|
Modeling state-transition dynamics in resting-state brain signals by the hidden Markov and Gaussian mixture models
|
2001.08369
|
https://arxiv.org/abs/2001.08369v3
|
https://arxiv.org/pdf/2001.08369v3.pdf
|
https://github.com/tkEzaki/gmm_hmm_comparison
| true | true | false |
none
|
https://paperswithcode.com/paper/simplot-a-python-application-for-representing
|
SimPlot++: a Python application for representing sequence similarity and detecting recombination
|
2112.09755
|
https://arxiv.org/abs/2112.09755v2
|
https://arxiv.org/pdf/2112.09755v2.pdf
|
https://github.com/stephane-s/simplot_plusplus
| true | true | true |
none
|
https://paperswithcode.com/paper/arpist-provably-accurate-and-stable-numerical
|
ARPIST: Provably Accurate and Stable Numerical Integration over Spherical Triangles
|
2201.00261
|
https://arxiv.org/abs/2201.00261v2
|
https://arxiv.org/pdf/2201.00261v2.pdf
|
https://github.com/numgeom/arpist
| true | true | false |
none
|
https://paperswithcode.com/paper/modality-aware-mutual-learning-for-multi
|
Modality-aware Mutual Learning for Multi-modal Medical Image Segmentation
|
2107.09842
|
https://arxiv.org/abs/2107.09842v1
|
https://arxiv.org/pdf/2107.09842v1.pdf
|
https://github.com/YaoZhang93/MAML
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/mask-r-cnn
|
Mask R-CNN
|
1703.06870
|
http://arxiv.org/abs/1703.06870v3
|
http://arxiv.org/pdf/1703.06870v3.pdf
|
https://github.com/George-Ogden/Mask-RCNN
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/symmetrygan-symmetry-discovery-with-deep
|
SymmetryGAN: Symmetry Discovery with Deep Learning
|
2112.05722
|
https://arxiv.org/abs/2112.05722v2
|
https://arxiv.org/pdf/2112.05722v2.pdf
|
https://github.com/hep-lbdl/symmetrydiscovery
| true | true | false |
tf
|
https://paperswithcode.com/paper/emerging-jets-displaced-into-the-future
|
Emerging Jets Displaced into the Future
|
2112.05690
|
https://arxiv.org/abs/2112.05690v1
|
https://arxiv.org/pdf/2112.05690v1.pdf
|
https://github.com/DLinthorne/LLP-Experiments
| true | true | false |
none
|
https://paperswithcode.com/paper/multi-objective-loss-balancing-for-physics
|
Multi-Objective Loss Balancing for Physics-Informed Deep Learning
|
2110.09813
|
https://arxiv.org/abs/2110.09813v2
|
https://arxiv.org/pdf/2110.09813v2.pdf
|
https://github.com/rbischof/relative_balancing
| true | true | false |
tf
|
https://paperswithcode.com/paper/mask-r-cnn
|
Mask R-CNN
|
1703.06870
|
http://arxiv.org/abs/1703.06870v3
|
http://arxiv.org/pdf/1703.06870v3.pdf
|
https://github.com/jasjeetIM/Mask-RCNN
| false | false | true |
none
|
https://paperswithcode.com/paper/gtg-shapley-efficient-and-accurate
|
GTG-Shapley: Efficient and Accurate Participant Contribution Evaluation in Federated Learning
|
2109.02053
|
https://arxiv.org/abs/2109.02053v1
|
https://arxiv.org/pdf/2109.02053v1.pdf
|
https://github.com/liuzelei13/gtg-shapley
| true | true | false |
none
|
https://paperswithcode.com/paper/improving-joint-learning-of-chest-x-ray-and
|
Improving Joint Learning of Chest X-Ray and Radiology Report by Word Region Alignment
|
2109.01949
|
https://arxiv.org/abs/2109.01949v1
|
https://arxiv.org/pdf/2109.01949v1.pdf
|
https://github.com/mshaikh2/joimter_mlmi_2021
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/pu-flow-a-point-cloud-upsampling-networkwith
|
PU-Flow: a Point Cloud Upsampling Network with Normalizing Flows
|
2107.05893
|
https://arxiv.org/abs/2107.05893v4
|
https://arxiv.org/pdf/2107.05893v4.pdf
|
https://github.com/unknownue/pu-flow
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/data-augmentation-for-cross-domain-named
|
Data Augmentation for Cross-Domain Named Entity Recognition
|
2109.01758
|
https://arxiv.org/abs/2109.01758v1
|
https://arxiv.org/pdf/2109.01758v1.pdf
|
https://github.com/ritual-uh/style_ner
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/recurrent-back-projection-network-for-video
|
Recurrent Back-Projection Network for Video Super-Resolution
|
1903.10128
|
http://arxiv.org/abs/1903.10128v1
|
http://arxiv.org/pdf/1903.10128v1.pdf
|
https://github.com/xiuyu0000/new_papers_codes/tree/main/rbpn
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/learning-from-the-memory-of-atari-2600
|
Learning from the memory of Atari 2600
|
1605.01335
|
http://arxiv.org/abs/1605.01335v1
|
http://arxiv.org/pdf/1605.01335v1.pdf
|
https://github.com/ulstu/ml
| false | false | true |
none
|
https://paperswithcode.com/paper/deepdiva-a-highly-functional-python-framework
|
DeepDIVA: A Highly-Functional Python Framework for Reproducible Experiments
|
1805.00329
|
http://arxiv.org/abs/1805.00329v1
|
http://arxiv.org/pdf/1805.00329v1.pdf
|
https://github.com/ajoino/ADL-Jacob-Pedro-Tosin
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/federated-learning-with-randomized-douglas
|
FedDR -- Randomized Douglas-Rachford Splitting Algorithms for Nonconvex Federated Composite Optimization
|
2103.03452
|
https://arxiv.org/abs/2103.03452v3
|
https://arxiv.org/pdf/2103.03452v3.pdf
|
https://github.com/unc-optimization/FedDR
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/analysis-of-language-change-in-collaborative
|
Analysis of Language Change in Collaborative Instruction Following
|
2109.04452
|
https://arxiv.org/abs/2109.04452v1
|
https://arxiv.org/pdf/2109.04452v1.pdf
|
https://github.com/lil-lab/cb-analysis
| true | true | false |
none
|
https://paperswithcode.com/paper/preservational-learning-improves-self
|
Preservational Learning Improves Self-supervised Medical Image Models by Reconstructing Diverse Contexts
|
2109.04379
|
https://arxiv.org/abs/2109.04379v2
|
https://arxiv.org/pdf/2109.04379v2.pdf
|
https://github.com/luchixiang/pcrl
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/translating-visual-art-into-music
|
Translating Visual Art into Music
|
1909.01218
|
https://arxiv.org/abs/1909.01218v1
|
https://arxiv.org/pdf/1909.01218v1.pdf
|
https://github.com/personads/synvae
| true | false | false |
tf
|
https://paperswithcode.com/paper/mine-mutual-information-neural-estimation
|
MINE: Mutual Information Neural Estimation
|
1801.04062
|
https://arxiv.org/abs/1801.04062v5
|
https://arxiv.org/pdf/1801.04062v5.pdf
|
https://github.com/personads/synvae
| false | false | true |
tf
|
https://paperswithcode.com/paper/distributional-reinforcement-learning-with-1
|
Distributional Reinforcement Learning with Quantile Regression
|
1710.10044
|
http://arxiv.org/abs/1710.10044v1
|
http://arxiv.org/pdf/1710.10044v1.pdf
|
https://github.com/DLR-RM/stable-baselines3
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/how-powerful-are-graph-neural-networks
|
How Powerful are Graph Neural Networks?
|
1810.00826
|
http://arxiv.org/abs/1810.00826v3
|
http://arxiv.org/pdf/1810.00826v3.pdf
|
https://github.com/karolismart/dropgnn
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/simple-random-search-provides-a-competitive
|
Simple random search provides a competitive approach to reinforcement learning
|
1803.07055
|
http://arxiv.org/abs/1803.07055v1
|
http://arxiv.org/pdf/1803.07055v1.pdf
|
https://github.com/DLR-RM/stable-baselines3
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/labeling-free-comparison-testing-of-deep
|
LaF: Labeling-Free Model Selection for Automated Deep Neural Network Reusing
|
2204.03994
|
https://arxiv.org/abs/2204.03994v2
|
https://arxiv.org/pdf/2204.03994v2.pdf
|
https://github.com/testing-cs/laf-model-selection
| true | true | true |
tf
|
https://paperswithcode.com/paper/personalisation-in-cyber-physical-social
|
Personalisation in Cyber-Physical-Social Systems: A Multi-stakeholder aware Recommendation and Guidance
| null |
https://dl.acm.org/doi/abs/10.1145/3450613.3456847
|
https://dl.acm.org/doi/pdf/10.1145/3450613.3456847
|
https://github.com/Bekyilma/Multi-Stakeholder_Recommendation
| true | false | false |
none
|
https://paperswithcode.com/paper/conditional-deformable-image-registration
|
Conditional Deformable Image Registration with Convolutional Neural Network
|
2106.12673
|
https://arxiv.org/abs/2106.12673v2
|
https://arxiv.org/pdf/2106.12673v2.pdf
|
https://github.com/cwmok/LapIRN
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/predictable-universally-unique-identification
|
Predictable universally unique identification of sequential events on complex objects
|
2109.06028
|
https://arxiv.org/abs/2109.06028v1
|
https://arxiv.org/pdf/2109.06028v1.pdf
|
https://github.com/davips/garoupa
| true | true | true |
none
|
https://paperswithcode.com/paper/latent-hatred-a-benchmark-for-understanding
|
Latent Hatred: A Benchmark for Understanding Implicit Hate Speech
|
2109.05322
|
https://arxiv.org/abs/2109.05322v1
|
https://arxiv.org/pdf/2109.05322v1.pdf
|
https://github.com/gt-salt/implicit-hate
| true | true | false |
none
|
https://paperswithcode.com/paper/automatic-instrument-recognition-in
|
Automatic Instrument Recognition in Polyphonic Music Using Convolutional Neural Networks
|
1511.05520
|
http://arxiv.org/abs/1511.05520v1
|
http://arxiv.org/pdf/1511.05520v1.pdf
|
https://github.com/glennq/instrument-recognition
| true | true | false |
none
|
https://paperswithcode.com/paper/generative-adversarial-nets-for-multiple-text
|
Generative Adversarial Nets for Multiple Text Corpora
|
1712.09127
|
http://arxiv.org/abs/1712.09127v1
|
http://arxiv.org/pdf/1712.09127v1.pdf
|
https://github.com/baiyangwang/emgan
| true | true | false |
none
|
https://paperswithcode.com/paper/learning-to-play-othello-with-deep-neural
|
Learning to Play Othello with Deep Neural Networks
|
1711.06583
|
http://arxiv.org/abs/1711.06583v1
|
http://arxiv.org/pdf/1711.06583v1.pdf
|
https://github.com/wjaskowski/dnnothello
| true | false | true |
none
|
https://paperswithcode.com/paper/deep-mimo-detection
|
Deep MIMO Detection
|
1706.01151
|
http://arxiv.org/abs/1706.01151v1
|
http://arxiv.org/pdf/1706.01151v1.pdf
|
https://github.com/Deeksha96/Deep-MIMO-Detection
| false | false | true |
tf
|
https://paperswithcode.com/paper/deep-learning-for-optimal-energy-efficient
|
A Globally Optimal Energy-Efficient Power Control Framework and its Efficient Implementation in Wireless Interference Networks
|
1812.06920
|
https://arxiv.org/abs/1812.06920v2
|
https://arxiv.org/pdf/1812.06920v2.pdf
|
https://github.com/bmatthiesen/deep-EE-opt
| true | true | true |
tf
|
https://paperswithcode.com/paper/the-case-for-learned-index-structures
|
The Case for Learned Index Structures
|
1712.01208
|
http://arxiv.org/abs/1712.01208v3
|
http://arxiv.org/pdf/1712.01208v3.pdf
|
https://github.com/ArnabRaxit/learned_indexes
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/spanning-tree-auxiliary-graphs
|
Spanning Tree Auxiliary Graphs
|
1705.00119
|
http://arxiv.org/abs/1705.00119v1
|
http://arxiv.org/pdf/1705.00119v1.pdf
|
https://github.com/abhishekgarg2009/Spanning-Tree-Auxiliary-Graphs
| false | false | true |
none
|
https://paperswithcode.com/paper/infinite-size-density-matrix-renormalization
|
Infinite size density matrix renormalization group, revisited
|
0804.2509
|
http://arxiv.org/abs/0804.2509v1
|
http://arxiv.org/pdf/0804.2509v1.pdf
|
https://github.com/empter/DMRGwithMPSandMPO
| false | false | true |
none
|
https://paperswithcode.com/paper/multi-modal-factorized-bilinear-pooling-with
|
Multi-modal Factorized Bilinear Pooling with Co-Attention Learning for Visual Question Answering
|
1708.01471
|
http://arxiv.org/abs/1708.01471v1
|
http://arxiv.org/pdf/1708.01471v1.pdf
|
https://github.com/yuzcccc/mfb
| true | true | true |
caffe2
|
https://paperswithcode.com/paper/beyond-bilinear-generalized-multi-modal
|
Beyond Bilinear: Generalized Multimodal Factorized High-order Pooling for Visual Question Answering
|
1708.03619
|
https://arxiv.org/abs/1708.03619v2
|
https://arxiv.org/pdf/1708.03619v2.pdf
|
https://github.com/yuzcccc/mfb
| true | true | true |
caffe2
|
https://paperswithcode.com/paper/self-diagnosing-gan-diagnosing
|
Self-Diagnosing GAN: Diagnosing Underrepresented Samples in Generative Adversarial Networks
|
2102.12033
|
https://arxiv.org/abs/2102.12033v3
|
https://arxiv.org/pdf/2102.12033v3.pdf
|
https://github.com/grayhong/self-diagnosing-gan
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/explaining-and-harnessing-adversarial
|
Explaining and Harnessing Adversarial Examples
|
1412.6572
|
http://arxiv.org/abs/1412.6572v3
|
http://arxiv.org/pdf/1412.6572v3.pdf
|
https://github.com/henry8527/GCE
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/provable-defenses-against-adversarial
|
Provable defenses against adversarial examples via the convex outer adversarial polytope
|
1711.00851
|
http://arxiv.org/abs/1711.00851v3
|
http://arxiv.org/pdf/1711.00851v3.pdf
|
https://github.com/huanzhang12/CROWN-Robustness-Certification
| false | false | true |
tf
|
https://paperswithcode.com/paper/post-data-augmentation-to-improve-deep-pose
|
Post-Data Augmentation to Improve Deep Pose Estimation of Extreme and Wild Motions
|
1902.04250
|
http://arxiv.org/abs/1902.04250v1
|
http://arxiv.org/pdf/1902.04250v1.pdf
|
https://github.com/ktoyod/rotatedpose
| false | false | true |
none
|
https://paperswithcode.com/paper/a-survey-of-motion-planning-and-control
|
A Survey of Motion Planning and Control Techniques for Self-driving Urban Vehicles
|
1604.07446
|
http://arxiv.org/abs/1604.07446v1
|
http://arxiv.org/pdf/1604.07446v1.pdf
|
https://github.com/gtg162y/Resources
| false | false | true |
none
|
https://paperswithcode.com/paper/deepwarp-dnn-based-nonlinear-deformation
|
DeepWarp: DNN-based Nonlinear Deformation
|
1803.09109
|
http://arxiv.org/abs/1803.09109v1
|
http://arxiv.org/pdf/1803.09109v1.pdf
|
https://github.com/kidyan0000/cloth_simulation
| false | false | true |
none
|
https://paperswithcode.com/paper/estimating-sample-specific-regulatory
|
Estimating sample-specific regulatory networks
|
1505.06440
|
http://arxiv.org/abs/1505.06440v2
|
http://arxiv.org/pdf/1505.06440v2.pdf
|
https://github.com/twangxxx/netZooR
| false | false | true |
none
|
https://paperswithcode.com/paper/propagate-selector-detecting-supporting
|
Propagate-Selector: Detecting Supporting Sentences for Question Answering via Graph Neural Networks
|
1908.09137
|
https://arxiv.org/abs/1908.09137v2
|
https://arxiv.org/pdf/1908.09137v2.pdf
|
https://github.com/david-yoon/propagate-selector
| true | true | true |
tf
|
https://paperswithcode.com/paper/oifits-2-the-2nd-version-of-the-data-exchange
|
OIFITS 2: the 2nd version of the Data Exchange Standard for Optical (Visible/IR) Interferometry
|
1510.04556
|
http://arxiv.org/abs/1510.04556v4
|
http://arxiv.org/pdf/1510.04556v4.pdf
|
https://github.com/UnofficialJuliaMirrorSnapshots/OIFITS.jl-53eb397e-dec1-5dcf-8dc9-2db916067267
| false | false | true |
none
|
https://paperswithcode.com/paper/enhancing-the-lexvec-distributed-word
|
Enhancing the LexVec Distributed Word Representation Model Using Positional Contexts and External Memory
|
1606.01283
|
http://arxiv.org/abs/1606.01283v1
|
http://arxiv.org/pdf/1606.01283v1.pdf
|
https://github.com/alexandres/lexvec
| true | false | true |
none
|
https://paperswithcode.com/paper/cost-effective-on-device-continual-learning
|
Cost-effective On-device Continual Learning over Memory Hierarchy with Miro
|
2308.06053
|
https://arxiv.org/abs/2308.06053v4
|
https://arxiv.org/pdf/2308.06053v4.pdf
|
https://github.com/omnia-unist/Miro
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/bert-pre-training-of-deep-bidirectional
|
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
|
1810.04805
|
https://arxiv.org/abs/1810.04805v2
|
https://arxiv.org/pdf/1810.04805v2.pdf
|
https://github.com/nicholasbao/nlp_job
| false | false | true |
tf
|
https://paperswithcode.com/paper/product-based-neural-networks-for-user-1
|
Product-based Neural Networks for User Response Prediction over Multi-field Categorical Data
|
1807.00311
|
http://arxiv.org/abs/1807.00311v1
|
http://arxiv.org/pdf/1807.00311v1.pdf
|
https://github.com/Atomu2014/product-nets-distributed
| true | true | true |
tf
|
https://paperswithcode.com/paper/unpaired-image-to-image-translation-using
|
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
|
1703.10593
|
https://arxiv.org/abs/1703.10593v7
|
https://arxiv.org/pdf/1703.10593v7.pdf
|
https://github.com/ZC119/Handwritten-CycleGAN
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/testing-the-number-of-components-in-finite
|
Testing the Number of Components in Finite Mixture Normal Regression Model with Panel Data
|
2210.02824
|
https://arxiv.org/abs/2210.02824v2
|
https://arxiv.org/pdf/2210.02824v2.pdf
|
https://github.com/JasmineHao/NormalRegPanelMixture
| true | false | false |
none
|
https://paperswithcode.com/paper/bottom-up-and-top-down-attention-for-image
|
Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
|
1707.07998
|
http://arxiv.org/abs/1707.07998v3
|
http://arxiv.org/pdf/1707.07998v3.pdf
|
https://github.com/Wentong-DST/up-down-captioner
| false | false | true |
caffe2
|
https://paperswithcode.com/paper/actor-critic-versus-direct-policy-search-a
|
Actor-critic versus direct policy search: a comparison based on sample complexity
|
1606.09152
|
http://arxiv.org/abs/1606.09152v2
|
http://arxiv.org/pdf/1606.09152v2.pdf
|
https://github.com/MOCR/DDPG
| true | true | true |
tf
|
https://paperswithcode.com/paper/generating-focussed-molecule-libraries-for
|
Generating Focussed Molecule Libraries for Drug Discovery with Recurrent Neural Networks
|
1701.01329
|
http://arxiv.org/abs/1701.01329v1
|
http://arxiv.org/pdf/1701.01329v1.pdf
|
https://github.com/jaechanglim/molecule-generator
| false | false | true |
tf
|
https://paperswithcode.com/paper/deterministic-memory-abstraction-and
|
Deterministic Memory Abstraction and Supporting Multicore System Architecture
|
1707.05260
|
https://arxiv.org/abs/1707.05260v4
|
https://arxiv.org/pdf/1707.05260v4.pdf
|
https://github.com/farzadfch/gem5-cache-partitioning
| true | true | true |
none
|
https://paperswithcode.com/paper/dynamic-coattention-networks-for-question
|
Dynamic Coattention Networks For Question Answering
|
1611.01604
|
http://arxiv.org/abs/1611.01604v4
|
http://arxiv.org/pdf/1611.01604v4.pdf
|
https://github.com/Lou1sM/AML-Project
| false | false | true |
tf
|
https://paperswithcode.com/paper/mask-r-cnn
|
Mask R-CNN
|
1703.06870
|
http://arxiv.org/abs/1703.06870v3
|
http://arxiv.org/pdf/1703.06870v3.pdf
|
https://github.com/sbetageri/MaskRCNN
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/introducing-astrocytes-on-a-neuromorphic
|
Introducing Astrocytes on a Neuromorphic Processor: Synchronization, Local Plasticity and Edge of Chaos
|
1907.01620
|
https://arxiv.org/abs/1907.01620v2
|
https://arxiv.org/pdf/1907.01620v2.pdf
|
https://github.com/combra-lab/combra_loihi
| true | true | true |
none
|
https://paperswithcode.com/paper/unsupervised-representation-learning-with-1
|
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
|
1511.06434
|
http://arxiv.org/abs/1511.06434v2
|
http://arxiv.org/pdf/1511.06434v2.pdf
|
https://github.com/Ksuryateja/DCGAN-CIFAR10-pytorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/towards-sparse-hierarchical-graph-classifiers
|
Towards Sparse Hierarchical Graph Classifiers
|
1811.01287
|
http://arxiv.org/abs/1811.01287v1
|
http://arxiv.org/pdf/1811.01287v1.pdf
|
https://github.com/HeapHop30/hierarchical-pooling
| false | false | true |
tf
|
https://paperswithcode.com/paper/a-quantum-approximate-optimization-algorithm-1
|
A Quantum Approximate Optimization Algorithm
|
1411.4028
|
http://arxiv.org/abs/1411.4028v1
|
http://arxiv.org/pdf/1411.4028v1.pdf
|
https://github.com/kdalkafoukis/quantum_computing
| false | false | true |
none
|
https://paperswithcode.com/paper/swin-transformer-hierarchical-vision
|
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
|
2103.14030
|
https://arxiv.org/abs/2103.14030v2
|
https://arxiv.org/pdf/2103.14030v2.pdf
|
https://github.com/mindspore-courses/External-Attention-MindSpore/blob/main/model/backbone/swin_transformer.py
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/scalable-string-reconciliation-by-recursive
|
Scalable String Reconciliation by Recursive Content-Dependent Shingling
|
1910.00536
|
https://arxiv.org/abs/1910.00536v1
|
https://arxiv.org/pdf/1910.00536v1.pdf
|
https://github.com/String-Reconciliation-Ditributed-System/RCDS_GO
| false | false | true |
none
|
https://paperswithcode.com/paper/forward-modeling-of-large-scale-structure-an
|
Forward Modeling of Large-Scale Structure: An open-source approach with Halotools
|
1606.04106
|
http://arxiv.org/abs/1606.04106v2
|
http://arxiv.org/pdf/1606.04106v2.pdf
|
https://github.com/mclaughlin6464/halotools_old
| false | false | true |
none
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.