paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/counterfactual-vqa-a-cause-effect-look-at
|
Counterfactual VQA: A Cause-Effect Look at Language Bias
|
2006.04315
|
https://arxiv.org/abs/2006.04315v4
|
https://arxiv.org/pdf/2006.04315v4.pdf
|
https://github.com/yuleiniu/cfvqa
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/an-invitation-to-quantum-channels
|
An Invitation to Quantum Channels
|
1902.00909
|
https://arxiv.org/abs/1902.00909v1
|
https://arxiv.org/pdf/1902.00909v1.pdf
|
https://github.com/ilsinay/CHPC-NITheP-Summer-School-2021
| false | false | true |
none
|
https://paperswithcode.com/paper/open-quantum-systems-an-introduction
|
Open Quantum Systems. An Introduction
|
1104.5242
|
https://arxiv.org/abs/1104.5242v2
|
https://arxiv.org/pdf/1104.5242v2.pdf
|
https://github.com/ilsinay/CHPC-NITheP-Summer-School-2021
| false | false | true |
none
|
https://paperswithcode.com/paper/ibm-q-experience-as-a-versatile-experimental
|
IBM Q Experience as a versatile experimental testbed for simulating open quantum systems
|
1906.07099
|
https://arxiv.org/abs/1906.07099v1
|
https://arxiv.org/pdf/1906.07099v1.pdf
|
https://github.com/ilsinay/CHPC-NITheP-Summer-School-2021
| false | false | true |
none
|
https://paperswithcode.com/paper/reducing-domain-gap-via-style-agnostic
|
Reducing Domain Gap by Reducing Style Bias
|
1910.11645
|
https://arxiv.org/abs/1910.11645v4
|
https://arxiv.org/pdf/1910.11645v4.pdf
|
https://github.com/hyeonseobnam/sagnet
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/grad-tts-a-diffusion-probabilistic-model-for
|
Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech
|
2105.06337
|
https://arxiv.org/abs/2105.06337v2
|
https://arxiv.org/pdf/2105.06337v2.pdf
|
https://github.com/keonlee9420/DiffGAN-TTS
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/singan-learning-a-generative-model-from-a
|
SinGAN: Learning a Generative Model from a Single Natural Image
|
1905.01164
|
https://arxiv.org/abs/1905.01164v2
|
https://arxiv.org/pdf/1905.01164v2.pdf
|
https://github.com/ilyak93/SinGanF2
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/knowledge-preserving-incremental-social-event
|
Knowledge-Preserving Incremental Social Event Detection via Heterogeneous GNNs
|
2101.08747
|
https://arxiv.org/abs/2101.08747v2
|
https://arxiv.org/pdf/2101.08747v2.pdf
|
https://github.com/YuweiCao-UIC/KPGNN
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/mushroom-segmentation-and-3d-pose-estimation
|
Mushroom Segmentation and 3D Pose Estimation from Point Clouds using Fully Convolutional Geometric Features and Implicit Pose Encoding
|
2404.12144
|
https://arxiv.org/abs/2404.12144v1
|
https://arxiv.org/pdf/2404.12144v1.pdf
|
https://github.com/georgeretsi/mushroom-pose
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/the-sunpy-project-an-interoperable-ecosystem
|
The SunPy Project: An Interoperable Ecosystem for Solar Data Analysis
|
2304.09794
|
https://arxiv.org/abs/2304.09794v1
|
https://arxiv.org/pdf/2304.09794v1.pdf
|
https://github.com/sunpy/sunpy-frontiers-paper
| true | true | false |
none
|
https://paperswithcode.com/paper/enabling-data-diversity-efficient-automatic
|
Enabling Data Diversity: Efficient Automatic Augmentation via Regularized Adversarial Training
|
2103.16493
|
https://arxiv.org/abs/2103.16493v1
|
https://arxiv.org/pdf/2103.16493v1.pdf
|
https://github.com/yhygao/Efficient_Data_Augmentation
| true | true | false |
none
|
https://paperswithcode.com/paper/computational-approaches-to-efficient
|
Computational approaches to efficient generation of the stationary state for incoherent light excitation
|
2011.03084
|
https://arxiv.org/abs/2011.03084v2
|
https://arxiv.org/pdf/2011.03084v2.pdf
|
https://github.com/iloaiza/Incoherent_density
| true | true | false |
none
|
https://paperswithcode.com/paper/step-on-the-gas-a-better-approach-for
|
Step on the Gas? A Better Approach for Recommending the Ethereum Gas Price
|
2003.03479
|
https://arxiv.org/abs/2003.03479v2
|
https://arxiv.org/pdf/2003.03479v2.pdf
|
https://github.com/louisoutin/eip1559_analysis
| false | false | true |
none
|
https://paperswithcode.com/paper/methods-included-standardizing-computational
|
Methods Included: Standardizing Computational Reuse and Portability with the Common Workflow Language
|
2105.07028
|
https://arxiv.org/abs/2105.07028v2
|
https://arxiv.org/pdf/2105.07028v2.pdf
|
https://github.com/common-workflow-language/common-workflow-language
| false | false | true |
none
|
https://paperswithcode.com/paper/saga-a-fast-incremental-gradient-method-with
|
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives
|
1407.0202
|
http://arxiv.org/abs/1407.0202v3
|
http://arxiv.org/pdf/1407.0202v3.pdf
|
https://github.com/scikit-learn/scikit-learn/blob/95119c13a/sklearn/linear_model/_logistic.py
| false | false | false |
none
|
https://paperswithcode.com/paper/openapepose-a-database-of-annotated-ape
|
OpenApePose: a database of annotated ape photographs for pose estimation
|
2212.00741
|
https://arxiv.org/abs/2212.00741v2
|
https://arxiv.org/pdf/2212.00741v2.pdf
|
https://github.com/desai-nisarg/openapepose
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/mesh-total-generalized-variation-for
|
Mesh Total Generalized Variation for Denoising
|
2101.02322
|
https://arxiv.org/abs/2101.02322v2
|
https://arxiv.org/pdf/2101.02322v2.pdf
|
https://github.com/LabZhengLiu/MeshTGV
| true | true | false |
none
|
https://paperswithcode.com/paper/integral-concurrent-learning-adaptive-control
|
Integral Concurrent Learning: Adaptive Control with Parameter Convergence without PE or State Derivatives
|
1512.03464
|
http://arxiv.org/abs/1512.03464v1
|
http://arxiv.org/pdf/1512.03464v1.pdf
|
https://github.com/EasonHuang-tw/ICL_matlab_simulation
| false | false | true |
none
|
https://paperswithcode.com/paper/temporal-recurrent-networks-for-online-action
|
Temporal Recurrent Networks for Online Action Detection
|
1811.07391
|
http://arxiv.org/abs/1811.07391v2
|
http://arxiv.org/pdf/1811.07391v2.pdf
|
https://github.com/xumingze0308/TRN.pytorch
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/scaling-up-hbm-efficiency-of-top-k-spmv-for
|
Scaling up HBM Efficiency of Top-K SpMV for Approximate Embedding Similarity on FPGAs
|
2103.04808
|
https://arxiv.org/abs/2103.04808v1
|
https://arxiv.org/pdf/2103.04808v1.pdf
|
https://github.com/AlbertoParravicini/approximate-spmv-topk
| true | true | false |
none
|
https://paperswithcode.com/paper/a-scavenger-hunt-for-service-robots
|
A Scavenger Hunt for Service Robots
|
2103.05225
|
https://arxiv.org/abs/2103.05225v3
|
https://arxiv.org/pdf/2103.05225v3.pdf
|
https://github.com/utexas-bwi/scavenger_hunt_api
| true | true | false |
none
|
https://paperswithcode.com/paper/an-integrated-autoencoder-based-hybrid-cnn
|
An integrated autoencoder-based hybrid CNN-LSTM model for COVID-19 severity prediction from lung ultrasound
| null |
https://www.sciencedirect.com/science/article/pii/S0010482521000901
|
https://www.sciencedirect.com/science/article/pii/S0010482521000901
|
https://github.com/ankangd/HybridCovidLUS
| false | false | false |
tf
|
https://paperswithcode.com/paper/dirichlet-pruning-for-neural-network
|
Dirichlet Pruning for Neural Network Compression
|
2011.05985
|
https://arxiv.org/abs/2011.05985v3
|
https://arxiv.org/pdf/2011.05985v3.pdf
|
https://github.com/ParkLabML/Dirichlet_Pruning
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/the-effectiveness-of-factorization-and
|
The effectiveness of factorization and similarity blending
|
2209.13011
|
https://arxiv.org/abs/2209.13011v1
|
https://arxiv.org/pdf/2209.13011v1.pdf
|
https://github.com/andreakiro/cil-lab
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/rank-flow-embedding-for-unsupervised-and-semi-1
|
Rank Flow Embedding for Unsupervised and Semi-Supervised Manifold Learning
|
2304.12448
|
https://arxiv.org/abs/2304.12448v1
|
https://arxiv.org/pdf/2304.12448v1.pdf
|
https://github.com/UDLF/UDLF
| true | false | false |
none
|
https://paperswithcode.com/paper/190500641
|
RetinaFace: Single-stage Dense Face Localisation in the Wild
|
1905.00641
|
https://arxiv.org/abs/1905.00641v2
|
https://arxiv.org/pdf/1905.00641v2.pdf
|
https://github.com/Johnny952/retinaface_mod
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/searching-for-test-case-prioritization
|
Assessing Expert System-Assisted Literature Reviews With a Case Study
|
1909.07249
|
https://arxiv.org/abs/1909.07249v4
|
https://arxiv.org/pdf/1909.07249v4.pdf
|
https://github.com/fastread/SLR_on_TCP
| true | true | false |
none
|
https://paperswithcode.com/paper/an-amharic-news-text-classification-dataset
|
An Amharic News Text classification Dataset
|
2103.05639
|
https://arxiv.org/abs/2103.05639v1
|
https://arxiv.org/pdf/2103.05639v1.pdf
|
https://github.com/IsraelAbebe/An-Amharic-News-Text-classification-Dataset
| true | true | true |
none
|
https://paperswithcode.com/paper/information-theory-measures-via
|
Information Theory Measures via Multidimensional Gaussianization
|
2010.03807
|
https://arxiv.org/abs/2010.03807v2
|
https://arxiv.org/pdf/2010.03807v2.pdf
|
https://github.com/IPL-UV/rbig
| false | false | true |
none
|
https://paperswithcode.com/paper/listing-k-cliques-in-sparse-real-world-graphs
|
Listing k-cliques in Sparse Real-World Graphs
| null |
https://dl.acm.org/doi/10.1145/3178876.3186125
|
https://papers-gamma.link/static/memory/pdfs/32-main.pdf
|
https://github.com/maxdan94/kClist
| false | true | false |
none
|
https://paperswithcode.com/paper/the-wasserstein-fourier-distance-for
|
The Wasserstein-Fourier Distance for Stationary Time Series
|
1912.05509
|
https://arxiv.org/abs/1912.05509v2
|
https://arxiv.org/pdf/1912.05509v2.pdf
|
https://github.com/GAMES-UChile/Wasserstein-Fourier
| false | false | true |
none
|
https://paperswithcode.com/paper/very-deep-convolutional-networks-for-text
|
Very Deep Convolutional Networks for Text Classification
|
1606.01781
|
http://arxiv.org/abs/1606.01781v2
|
http://arxiv.org/pdf/1606.01781v2.pdf
|
https://github.com/dongjun-Lee/text-classification-models-tf
| false | false | true |
tf
|
https://paperswithcode.com/paper/character-level-convolutional-networks-for
|
Character-level Convolutional Networks for Text Classification
|
1509.01626
|
http://arxiv.org/abs/1509.01626v3
|
http://arxiv.org/pdf/1509.01626v3.pdf
|
https://github.com/dongjun-Lee/text-classification-models-tf
| false | false | true |
tf
|
https://paperswithcode.com/paper/convolutional-neural-networks-for-sentence
|
Convolutional Neural Networks for Sentence Classification
|
1408.5882
|
http://arxiv.org/abs/1408.5882v2
|
http://arxiv.org/pdf/1408.5882v2.pdf
|
https://github.com/dongjun-Lee/text-classification-models-tf
| false | false | true |
tf
|
https://paperswithcode.com/paper/chexpert-a-large-chest-radiograph-dataset
|
CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison
|
1901.07031
|
http://arxiv.org/abs/1901.07031v1
|
http://arxiv.org/pdf/1901.07031v1.pdf
|
https://github.com/stanfordmlgroup/chexpert-labeler
| false | false | true |
none
|
https://paperswithcode.com/paper/bhaav-a-text-corpus-for-emotion-analysis-from
|
BHAAV- A Text Corpus for Emotion Analysis from Hindi Stories
|
1910.04073
|
https://arxiv.org/abs/1910.04073v1
|
https://arxiv.org/pdf/1910.04073v1.pdf
|
https://github.com/midas-research/gupshup
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/deepfacelab-a-simple-flexible-and-extensible
|
DeepFaceLab: Integrated, flexible and extensible face-swapping framework
|
2005.05535
|
https://arxiv.org/abs/2005.05535v5
|
https://arxiv.org/pdf/2005.05535v5.pdf
|
https://github.com/JanFschr/DeepFaceLabTest
| false | false | true |
tf
|
https://paperswithcode.com/paper/online-segmentation-of-lidar-sequences
|
Online Segmentation of LiDAR Sequences: Dataset and Algorithm
|
2206.08194
|
https://arxiv.org/abs/2206.08194v2
|
https://arxiv.org/pdf/2206.08194v2.pdf
|
https://github.com/romainloiseau/Helix4D
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/anigan-style-guided-generative-adversarial
|
AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation
|
2102.12593
|
https://arxiv.org/abs/2102.12593v2
|
https://arxiv.org/pdf/2102.12593v2.pdf
|
https://github.com/summerice9/AniGAN
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/foolbox-a-python-toolbox-to-benchmark-the
|
Foolbox: A Python toolbox to benchmark the robustness of machine learning models
|
1707.04131
|
http://arxiv.org/abs/1707.04131v3
|
http://arxiv.org/pdf/1707.04131v3.pdf
|
https://github.com/pralab/secml
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/smart-semantic-malware-attribute-relevance
|
Automatic Malware Description via Attribute Tagging and Similarity Embedding
|
1905.06262
|
https://arxiv.org/abs/1905.06262v3
|
https://arxiv.org/pdf/1905.06262v3.pdf
|
https://github.com/sophos-ai/SOREL-20M
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/gmair-unsupervised-object-detection-based-on
|
GMAIR: Unsupervised Object Detection Based on Spatial Attention and Gaussian Mixture
|
2106.01722
|
https://arxiv.org/abs/2106.01722v1
|
https://arxiv.org/pdf/2106.01722v1.pdf
|
https://github.com/shaohua0116/MultiDigitMNIST
| true | true | true |
none
|
https://paperswithcode.com/paper/regularizing-deep-multi-task-networks-using-1
|
Regularizing Deep Multi-Task Networks using Orthogonal Gradients
|
1912.06844
|
https://arxiv.org/abs/1912.06844v1
|
https://arxiv.org/pdf/1912.06844v1.pdf
|
https://github.com/shaohua0116/MultiDigitMNIST
| true | true | true |
none
|
https://paperswithcode.com/paper/metasdf-meta-learning-signed-distance
|
MetaSDF: Meta-learning Signed Distance Functions
|
2006.09662
|
https://arxiv.org/abs/2006.09662v1
|
https://arxiv.org/pdf/2006.09662v1.pdf
|
https://github.com/shaohua0116/MultiDigitMNIST
| true | true | true |
none
|
https://paperswithcode.com/paper/interactive-visualization-and-representation
|
Interactive Visualization and Representation Analysis Applied to Glacier Segmentation
|
2112.08184
|
https://arxiv.org/abs/2112.08184v2
|
https://arxiv.org/pdf/2112.08184v2.pdf
|
https://github.com/krisrs1128/geo_mlvis
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/to-react-or-not-to-react-end-to-end-visual
|
To React or not to React: End-to-End Visual Pose Forecasting for Personalized Avatar during Dyadic Conversations
|
1910.02181
|
https://arxiv.org/abs/1910.02181v1
|
https://arxiv.org/pdf/1910.02181v1.pdf
|
https://github.com/chahuja/mix-stage
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/cord-a-consolidated-receipt-dataset-for-post
|
CORD: A Consolidated Receipt Dataset for Post-OCR Parsing
| null |
https://openreview.net/forum?id=SJl3z659UH
|
https://openreview.net/pdf?id=SJl3z659UH
|
https://github.com/clovaai/cord
| true | true | false |
none
|
https://paperswithcode.com/paper/post-ocr-parsing-building-simple-and-robust
|
Post-OCR parsing: building simple and robust parser via BIO tagging
| null |
https://openreview.net/forum?id=SJgjf695UB
|
https://openreview.net/pdf?id=SJgjf695UB
|
https://github.com/clovaai/cord
| true | true | false |
none
|
https://paperswithcode.com/paper/textit-swap-and-predict-predicting-the
|
$\textit{Swap and Predict}$ -- Predicting the Semantic Changes in Words across Corpora by Context Swapping
|
2310.10397
|
https://arxiv.org/abs/2310.10397v1
|
https://arxiv.org/pdf/2310.10397v1.pdf
|
https://github.com/a1da4/svp-swap
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/designing-and-training-of-a-dual-cnn-for
|
Designing and Training of A Dual CNN for Image Denoising
|
2007.03951
|
https://arxiv.org/abs/2007.03951v1
|
https://arxiv.org/pdf/2007.03951v1.pdf
|
https://github.com/hellloxiaotian/DudeNet
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/gappredict-a-language-model-for-resolving
|
GapPredict: A Language Model for Resolving Gaps in Draft Genome Assemblies
|
2105.10552
|
https://arxiv.org/abs/2105.10552v2
|
https://arxiv.org/pdf/2105.10552v2.pdf
|
https://github.com/bcgsc/GapPredict
| true | true | false |
tf
|
https://paperswithcode.com/paper/exploiting-diverse-characteristics-and
|
Exploiting Diverse Characteristics and Adversarial Ambivalence for Domain Adaptive Segmentation
|
2012.05608
|
https://arxiv.org/abs/2012.05608v2
|
https://arxiv.org/pdf/2012.05608v2.pdf
|
https://github.com/BwCai/DCAA-UDA
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/empirical-study-of-multi-task-hourglass-model
|
Empirical Study of Multi-Task Hourglass Model for Semantic Segmentation Task
|
2105.13531
|
https://arxiv.org/abs/2105.13531v1
|
https://arxiv.org/pdf/2105.13531v1.pdf
|
https://gitlab.com/mipl/mtl-ss
| true | true | false |
tf
|
https://paperswithcode.com/paper/rase-a-variable-screening-framework-via
|
RaSE: A Variable Screening Framework via Random Subspace Ensembles
|
2102.03892
|
https://arxiv.org/abs/2102.03892v3
|
https://arxiv.org/pdf/2102.03892v3.pdf
|
https://github.com/ytstat/RaSE-screening-codes
| true | true | false |
none
|
https://paperswithcode.com/paper/topology-and-geometry-of-the-third-party
|
Topology and Geometry of the Third-Party Domains Ecosystem: Measurement and Applications
|
2112.04381
|
https://arxiv.org/abs/2112.04381v2
|
https://arxiv.org/pdf/2112.04381v2.pdf
|
https://github.com/cosior/tpds_ecosystem
| true | true | false |
none
|
https://paperswithcode.com/paper/riesz-quincunx-unet-variational-auto-encoder
|
Riesz-Quincunx-UNet Variational Auto-Encoder for Satellite Image Denoising
|
2208.12810
|
https://arxiv.org/abs/2208.12810v1
|
https://arxiv.org/pdf/2208.12810v1.pdf
|
https://github.com/trile83/rqunetvae
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/learning-compact-metrics-for-mt
|
Learning Compact Metrics for MT
|
2110.06341
|
https://arxiv.org/abs/2110.06341v1
|
https://arxiv.org/pdf/2110.06341v1.pdf
|
https://github.com/google-research/bleurt
| true | true | true |
tf
|
https://paperswithcode.com/paper/summvis-interactive-visual-analysis-of-models
|
SummVis: Interactive Visual Analysis of Models, Data, and Evaluation for Text Summarization
|
2104.07605
|
https://arxiv.org/abs/2104.07605v2
|
https://arxiv.org/pdf/2104.07605v2.pdf
|
https://github.com/uribo/buckyR
| false | false | true |
none
|
https://paperswithcode.com/paper/agentpoison-red-teaming-llm-agents-via
|
AgentPoison: Red-teaming LLM Agents via Poisoning Memory or Knowledge Bases
|
2407.12784
|
https://arxiv.org/abs/2407.12784v1
|
https://arxiv.org/pdf/2407.12784v1.pdf
|
https://github.com/BillChan226/AgentPoison
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/agask-an-agent-to-help-answer-farmer-s
|
AgAsk: An Agent to Help Answer Farmer's Questions From Scientific Documents
|
2212.10762
|
https://arxiv.org/abs/2212.10762v1
|
https://arxiv.org/pdf/2212.10762v1.pdf
|
https://github.com/ielab/agvaluate
| true | true | false |
none
|
https://paperswithcode.com/paper/multiscale-model-of-clogging-in-microfluidic
|
Multiscale Model of Clogging in Microfluidic Devices with Grid-Like Geometries
|
2108.01570
|
https://arxiv.org/abs/2108.01570v2
|
https://arxiv.org/pdf/2108.01570v2.pdf
|
https://github.com/gsiraji/Microfluidics-Paper-Fig-Code
| true | false | false |
none
|
https://paperswithcode.com/paper/iart-intent-aware-response-ranking-with
|
IART: Intent-aware Response Ranking with Transformers in Information-seeking Conversation Systems
|
2002.00571
|
https://arxiv.org/abs/2002.00571v1
|
https://arxiv.org/pdf/2002.00571v1.pdf
|
https://github.com/yangliuy/Intent-Aware-Ranking-Transformers
| true | true | true |
tf
|
https://paperswithcode.com/paper/show-and-tell-a-neural-image-caption
|
Show and Tell: A Neural Image Caption Generator
|
1411.4555
|
http://arxiv.org/abs/1411.4555v2
|
http://arxiv.org/pdf/1411.4555v2.pdf
|
https://github.com/Data-drone/cvnd_image_captioning
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/a-style-based-generator-architecture-for
|
A Style-Based Generator Architecture for Generative Adversarial Networks
|
1812.04948
|
http://arxiv.org/abs/1812.04948v3
|
http://arxiv.org/pdf/1812.04948v3.pdf
|
https://github.com/keras-team/keras-io/blob/master/examples/generative/stylegan.py
| false | false | false |
tf
|
https://paperswithcode.com/paper/detection-of-statistically-significant
|
Detection of statistically significant differences between process variants through declarative rules
|
2104.07926
|
https://arxiv.org/abs/2104.07926v2
|
https://arxiv.org/pdf/2104.07926v2.pdf
|
https://github.com/Oneiroe/DeclarativeRulesVariantAnalysis-static
| true | true | false |
none
|
https://paperswithcode.com/paper/learning-to-reconstruct-3d-manhattan
|
Learning to Reconstruct 3D Manhattan Wireframes from a Single Image
|
1905.07482
|
https://arxiv.org/abs/1905.07482v2
|
https://arxiv.org/pdf/1905.07482v2.pdf
|
https://github.com/zhou13/shapeunity
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/analysis-and-extensions-of-adversarial
|
Analysis and Extensions of Adversarial Training for Video Classification
|
2206.07953
|
https://arxiv.org/abs/2206.07953v1
|
https://arxiv.org/pdf/2206.07953v1.pdf
|
https://github.com/kaleab-k/VideoAT
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/user-oriented-fairness-in-recommendation
|
User-oriented Fairness in Recommendation
|
2104.10671
|
https://arxiv.org/abs/2104.10671v1
|
https://arxiv.org/pdf/2104.10671v1.pdf
|
https://github.com/rutgerswiselab/user-fairness
| true | true | false |
none
|
https://paperswithcode.com/paper/dataset-inference-ownership-resolution-in-1
|
Dataset Inference: Ownership Resolution in Machine Learning
|
2104.10706
|
https://arxiv.org/abs/2104.10706v1
|
https://arxiv.org/pdf/2104.10706v1.pdf
|
https://github.com/cleverhans-lab/dataset-inference
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/a-learning-gap-between-neuroscience-and
|
A learning gap between neuroscience and reinforcement learning
|
2104.10995
|
https://arxiv.org/abs/2104.10995v3
|
https://arxiv.org/pdf/2104.10995v3.pdf
|
https://github.com/thesmartrobot/ambigym
| true | true | false |
none
|
https://paperswithcode.com/paper/operator-as-a-service-stateful-serverless
|
Operator as a Service: Stateful Serverless Complex Event Processing
|
2012.04982
|
https://arxiv.org/abs/2012.04982v3
|
https://arxiv.org/pdf/2012.04982v3.pdf
|
https://github.com/luthramanisha/CEPless
| true | false | false |
none
|
https://paperswithcode.com/paper/maneuver-based-anchor-trajectory-hypotheses
|
Maneuver-based Anchor Trajectory Hypotheses at Roundabouts
|
2104.11180
|
https://arxiv.org/abs/2104.11180v1
|
https://arxiv.org/pdf/2104.11180v1.pdf
|
https://github.com/m-hasan-n/roundabout
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/distributed-zero-order-algorithms-for
|
Distributed Zero-Order Algorithms for Nonconvex Multi-Agent Optimization
|
1908.11444
|
http://arxiv.org/abs/1908.11444v3
|
http://arxiv.org/pdf/1908.11444v3.pdf
|
https://github.com/Libensemble/libensemble
| false | false | true |
none
|
https://paperswithcode.com/paper/physics-constrained-learning-for-pde-systems
|
Physics-Constrained Learning for PDE Systems with Uncertainty Quantified Port-Hamiltonian Models
|
2406.11809
|
https://arxiv.org/abs/2406.11809v1
|
https://arxiv.org/pdf/2406.11809v1.pdf
|
https://github.com/Tankevin998/GP_dPHS
| true | false | false |
none
|
https://paperswithcode.com/paper/black-holes-as-particle-detectors-evolution
|
Black holes as particle detectors: evolution of superradiant instabilities
|
1411.0686
|
https://arxiv.org/abs/1411.0686v1
|
https://arxiv.org/pdf/1411.0686v1.pdf
|
https://github.com/maxisi/gwaxion
| false | false | true |
none
|
https://paperswithcode.com/paper/contrastive-learning-of-medical-visual
|
Contrastive Learning of Medical Visual Representations from Paired Images and Text
|
2010.00747
|
https://arxiv.org/abs/2010.00747v2
|
https://arxiv.org/pdf/2010.00747v2.pdf
|
https://github.com/MicPie/clasp
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/scaling-up-visual-and-vision-language
|
Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision
|
2102.05918
|
https://arxiv.org/abs/2102.05918v2
|
https://arxiv.org/pdf/2102.05918v2.pdf
|
https://github.com/MicPie/clasp
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/federated-robustness-propagation-sharing
|
Federated Robustness Propagation: Sharing Robustness in Heterogeneous Federated Learning
|
2106.10196
|
https://arxiv.org/abs/2106.10196v2
|
https://arxiv.org/pdf/2106.10196v2.pdf
|
https://github.com/illidanlab/FedRBN
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/towards-scalable-verification-of-rl-driven
|
Towards Scalable Verification of Deep Reinforcement Learning
|
2105.11931
|
https://arxiv.org/abs/2105.11931v2
|
https://arxiv.org/pdf/2105.11931v2.pdf
|
https://zenodo.org/record/4769612
| true | false | false |
none
|
https://paperswithcode.com/paper/on-the-analysis-of-mud-files-interactions
|
On the Analysis of MUD-Files' Interactions, Conflicts, and Configuration Requirements Before Deployment
|
2107.06372
|
https://arxiv.org/abs/2107.06372v1
|
https://arxiv.org/pdf/2107.06372v1.pdf
|
https://github.com/iot-onboarding/mud-visualizer
| true | true | false |
none
|
https://paperswithcode.com/paper/bert-pre-training-of-deep-bidirectional
|
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
|
1810.04805
|
https://arxiv.org/abs/1810.04805v2
|
https://arxiv.org/pdf/1810.04805v2.pdf
|
https://github.com/debnsuma/Intro-Transformer-BERT
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/a-fast-and-compact-hybrid-cnn-for
|
A Fast and Compact Hybrid CNN for Hyperspectral Imaging-based Bloodstain Classification
| null |
https://ieeexplore.ieee.org/document/9870277
|
https://www.researchgate.net/profile/Muhammad-Hassaan-Farooq-Butt/publication/363331483_A_Fast_and_Compact_Hybrid_CNN_for_Hyperspectral_Imaging-based_Bloodstain_Classification/links/631c44f5873eca0c007799f9/A-Fast-and-Compact-Hybrid-CNN-for-Hyperspectral-Imaging-based-Bloodstain-Classification.pdf
|
https://github.com/MHassaanButt/FCHCNN-for-HSIC
| false | false | false |
tf
|
https://paperswithcode.com/paper/robust-inference-for-mediated-effects-in
|
Robust Inference for Mediated Effects in Partially Linear Models
|
2007.00725
|
https://arxiv.org/abs/2007.00725v3
|
https://arxiv.org/pdf/2007.00725v3.pdf
|
https://github.com/ohines/plmed
| true | true | false |
none
|
https://paperswithcode.com/paper/log-based-anomaly-detection-without-log
|
Log-based Anomaly Detection Without Log Parsing
|
2108.01955
|
https://arxiv.org/abs/2108.01955v3
|
https://arxiv.org/pdf/2108.01955v3.pdf
|
https://github.com/vanhoanglepsa/NeuralLog
| true | true | false |
tf
|
https://paperswithcode.com/paper/an-end-to-end-deep-learning-approach-for-2
|
An end-to-end deep learning approach for extracting stochastic dynamical systems with $α$-stable Lévy noise
|
2201.13114
|
https://arxiv.org/abs/2201.13114v4
|
https://arxiv.org/pdf/2201.13114v4.pdf
|
https://github.com/fangransto/learn-alpha-stable-levy
| true | true | false |
tf
|
https://paperswithcode.com/paper/intermittent-connectivity-for-exploration-in
|
Intermittent Connectivity for Exploration in Communication-Constrained Multi-Agent Systems
|
1911.08626
|
http://arxiv.org/abs/1911.08626v1
|
http://arxiv.org/pdf/1911.08626v1.pdf
|
https://github.com/FilipKlaesson/cops
| true | true | true |
none
|
https://paperswithcode.com/paper/unpaired-image-to-image-translation-using
|
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
|
1703.10593
|
https://arxiv.org/abs/1703.10593v7
|
https://arxiv.org/pdf/1703.10593v7.pdf
|
https://github.com/AquibPy/Cycle-GAN
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/novelty-detection-and-analysis-of-traffic
|
Novelty Detection and Analysis of Traffic Scenario Infrastructures in the Latent Space of a Vision Transformer-Based Triplet Autoencoder
|
2105.01924
|
https://arxiv.org/abs/2105.01924v2
|
https://arxiv.org/pdf/2105.01924v2.pdf
|
https://github.com/JWTHI/ViTAL-SCENE
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/mlp-mixer-an-all-mlp-architecture-for-vision
|
MLP-Mixer: An all-MLP Architecture for Vision
|
2105.01601
|
https://arxiv.org/abs/2105.01601v4
|
https://arxiv.org/pdf/2105.01601v4.pdf
|
https://github.com/qwopqwop200/MLP-Mixer-tf2
| false | false | false |
tf
|
https://paperswithcode.com/paper/andi-the-anomalous-diffusion-challenge
|
AnDi: The Anomalous Diffusion Challenge
|
2003.12036
|
http://arxiv.org/abs/2003.12036v1
|
http://arxiv.org/pdf/2003.12036v1.pdf
|
https://github.com/AnDiChallenge/ANDI_datasets
| true | true | false |
none
|
https://paperswithcode.com/paper/simulation-and-estimation-of-a-point-process
|
Simulation and estimation of a point-process market-model with a matching engine
|
2105.02211
|
https://arxiv.org/abs/2105.02211v2
|
https://arxiv.org/pdf/2105.02211v2.pdf
|
https://github.com/IvanJericevich/IJPCTG-HawkesCoinTossX
| true | true | false |
none
|
https://paperswithcode.com/paper/prototypical-logic-tensor-networks-proto-ltn
|
PROTOtypical Logic Tensor Networks (PROTO-LTN) for Zero Shot Learning
|
2207.00433
|
https://arxiv.org/abs/2207.00433v1
|
https://arxiv.org/pdf/2207.00433v1.pdf
|
https://github.com/francescomanigrass/proto-ltn
| true | true | false |
tf
|
https://paperswithcode.com/paper/deepscores-a-dataset-for-segmentation
|
DeepScores -- A Dataset for Segmentation, Detection and Classification of Tiny Objects
|
1804.00525
|
http://arxiv.org/abs/1804.00525v2
|
http://arxiv.org/pdf/1804.00525v2.pdf
|
https://github.com/apacha/OMR-Datasets
| false | false | true |
none
|
https://paperswithcode.com/paper/yolov3-an-incremental-improvement
|
YOLOv3: An Incremental Improvement
|
1804.02767
|
http://arxiv.org/abs/1804.02767v1
|
http://arxiv.org/pdf/1804.02767v1.pdf
|
https://github.com/thinhhoang95/helipad-yolo
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/motif-based-spectral-clustering-of-weighted
|
Motif-Based Spectral Clustering of Weighted Directed Networks
|
2004.01293
|
https://arxiv.org/abs/2004.01293v2
|
https://arxiv.org/pdf/2004.01293v2.pdf
|
https://github.com/wgunderwood/motif-based-clustering
| true | true | true |
none
|
https://paperswithcode.com/paper/stargan-v2-diverse-image-synthesis-for
|
StarGAN v2: Diverse Image Synthesis for Multiple Domains
|
1912.01865
|
https://arxiv.org/abs/1912.01865v2
|
https://arxiv.org/pdf/1912.01865v2.pdf
|
https://github.com/UdonDa/StarGAN-v2-pytorch-nonofficial
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/digital-gimbal-end-to-end-deep-image
|
Digital Gimbal: End-to-end Deep Image Stabilization with Learnable Exposure Times
|
2012.04515
|
https://arxiv.org/abs/2012.04515v4
|
https://arxiv.org/pdf/2012.04515v4.pdf
|
https://github.com/omer11a/digital-gimbal
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/weakly-supervised-source-specific-sound-level
|
Weakly Supervised Source-Specific Sound Level Estimation in Noisy Soundscapes
|
2105.02911
|
https://arxiv.org/abs/2105.02911v2
|
https://arxiv.org/pdf/2105.02911v2.pdf
|
https://github.com/sonyc-project/weakly-supervised-sssle
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/learning-latent-subspaces-in-variational
|
Learning Latent Subspaces in Variational Autoencoders
|
1812.06190
|
http://arxiv.org/abs/1812.06190v1
|
http://arxiv.org/pdf/1812.06190v1.pdf
|
https://github.com/lipikaramaswamy/am207_final_project/blob/master/notebooks/csvae_swiss_roll.ipynb
| false | false | false |
none
|
https://paperswithcode.com/paper/estimates-of-the-social-cost-of-carbon-have
|
Estimates of the social cost of carbon have increased over time
|
2105.03656
|
https://arxiv.org/abs/2105.03656v3
|
https://arxiv.org/pdf/2105.03656v3.pdf
|
https://github.com/rtol/KernelDecomposition
| true | true | false |
none
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.