paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/numerical-modeling-of-specimen-geometry-for
|
Numerical modeling of specimen geometry for quantitative energy dispersive X-ray spectroscopy
|
1708.04565
|
http://arxiv.org/abs/1708.04565v1
|
http://arxiv.org/pdf/1708.04565v1.pdf
|
https://github.com/subangstrom/superAngle
| true | true | false |
none
|
https://paperswithcode.com/paper/semi-global-weighted-least-squares-in-image-1
|
Semi-Global Weighted Least Squares in Image Filtering
|
1705.01674
|
http://arxiv.org/abs/1705.01674v4
|
http://arxiv.org/pdf/1705.01674v4.pdf
|
https://github.com/wliusjtu/Semi-Global-Weighted-Least-Squares-in-Image-Filtering
| true | true | false |
none
|
https://paperswithcode.com/paper/bottom-up-and-top-down-attention-for-image
|
Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
|
1707.07998
|
http://arxiv.org/abs/1707.07998v3
|
http://arxiv.org/pdf/1707.07998v3.pdf
|
https://github.com/FJSam/SelfCritical_ImageCaptioning
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/diagnosing-error-in-temporal-action-detectors
|
Diagnosing Error in Temporal Action Detectors
|
1807.10706
|
http://arxiv.org/abs/1807.10706v1
|
http://arxiv.org/pdf/1807.10706v1.pdf
|
https://github.com/HumamAlwassel/DETAD
| true | false | false |
none
|
https://paperswithcode.com/paper/hierarchical-interpolative-factorization-for-1
|
Hierarchical interpolative factorization for elliptic operators: differential equations
|
1307.2895
|
http://arxiv.org/abs/1307.2895v3
|
http://arxiv.org/pdf/1307.2895v3.pdf
|
https://github.com/klho/FLAM
| true | true | false |
none
|
https://paperswithcode.com/paper/will-this-paper-increase-your-h-index
|
Will This Paper Increase Your h-index? Scientific Impact Prediction
|
1412.4754
|
https://arxiv.org/abs/1412.4754v1
|
https://arxiv.org/pdf/1412.4754v1.pdf
|
https://github.com/nmhaddad/youtube-machine-learning-experiments
| false | false | true |
none
|
https://paperswithcode.com/paper/past-present-and-future-of-simultaneous
|
Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age
|
1606.05830
|
http://arxiv.org/abs/1606.05830v4
|
http://arxiv.org/pdf/1606.05830v4.pdf
|
https://github.com/dannofield/Particle-Filter-Kidnapped-Vehicle
| false | false | true |
none
|
https://paperswithcode.com/paper/ngraph-he-a-graph-compiler-for-deep-learning
|
nGraph-HE: A Graph Compiler for Deep Learning on Homomorphically Encrypted Data
|
1810.10121
|
http://arxiv.org/abs/1810.10121v1
|
http://arxiv.org/pdf/1810.10121v1.pdf
|
https://github.com/NervanaSystems/he-transformer
| true | false | true |
tf
|
https://paperswithcode.com/paper/blockclique-scaling-blockchains-through
|
Blockclique: scaling blockchains through transaction sharding in a multithreaded block graph
|
1803.09029
|
http://arxiv.org/abs/1803.09029v4
|
http://arxiv.org/pdf/1803.09029v4.pdf
|
https://gitlab.com/blockclique/blockclique
| true | false | true |
none
|
https://paperswithcode.com/paper/a-supervised-neural-network-for-drag
|
A supervised neural network for drag prediction of arbitrary 2D shapes in low Reynolds number flows
|
1907.05090
|
https://arxiv.org/abs/1907.05090v4
|
https://arxiv.org/pdf/1907.05090v4.pdf
|
https://github.com/jviquerat/cnn_drag_prediction
| true | true | true |
tf
|
https://paperswithcode.com/paper/optimisation-of-wastewater-treatment
|
Optimisation of Wastewater Treatment Strategies in Eco-Industrial Parks: Technology, Location and Transport
|
2005.09987
|
https://arxiv.org/abs/2005.09987v1
|
https://arxiv.org/pdf/2005.09987v1.pdf
|
https://github.com/ckjzsa/opt_wastewater_treatment_strategies
| false | false | true |
none
|
https://paperswithcode.com/paper/improving-direct-physical-properties
|
Improving Direct Physical Properties Prediction of Heterogeneous Materials from Imaging Data via Convolutional Neural Network and a Morphology-Aware Generative Model
|
1712.03811
|
https://arxiv.org/abs/1712.03811v1
|
https://arxiv.org/pdf/1712.03811v1.pdf
|
https://github.com/DesignInformaticsLab/Morphology-Aware-Network
| false | false | true |
tf
|
https://paperswithcode.com/paper/characterizing-and-detecting-hateful-users-on
|
Characterizing and Detecting Hateful Users on Twitter
|
1803.08977
|
https://arxiv.org/abs/1803.08977v1
|
https://arxiv.org/pdf/1803.08977v1.pdf
|
https://github.com/PhilippeCodes/Twitter-Pronoun-Retweet-Graph-Analysis
| false | false | true |
none
|
https://paperswithcode.com/paper/pcpnet-learning-local-shape-properties-from
|
PCPNET: Learning Local Shape Properties from Raw Point Clouds
|
1710.04954
|
http://arxiv.org/abs/1710.04954v4
|
http://arxiv.org/pdf/1710.04954v4.pdf
|
https://github.com/ModelBunker/PointNet-TensorFlow
| false | false | true |
tf
|
https://paperswithcode.com/paper/combinatorial-superstatistics-for-soft-qcd
|
Combinatorial Superstatistics for Soft QCD
|
1910.06279
|
https://arxiv.org/abs/1910.06279v2
|
https://arxiv.org/pdf/1910.06279v2.pdf
|
https://github.com/mieskolainen/Diffractive-Combinatorics
| false | false | true |
none
|
https://paperswithcode.com/paper/effective-mass-of-quasiparticles-from
|
Effective mass of quasiparticles from thermodynamics
|
1704.04076
|
http://arxiv.org/abs/1704.04076v2
|
http://arxiv.org/pdf/1704.04076v2.pdf
|
https://github.com/fgeich/pyFTEGhf
| true | true | false |
none
|
https://paperswithcode.com/paper/federated-semi-supervised-learning-with-inter
|
Federated Semi-Supervised Learning with Inter-Client Consistency & Disjoint Learning
|
2006.12097
|
https://arxiv.org/abs/2006.12097v3
|
https://arxiv.org/pdf/2006.12097v3.pdf
|
https://github.com/wyjeong/FedMatch
| true | true | false |
tf
|
https://paperswithcode.com/paper/parallel-decompression-of-gzip-compressed
|
Parallel decompression of gzip-compressed files and random access to DNA sequences
|
1905.07224
|
http://arxiv.org/abs/1905.07224v1
|
http://arxiv.org/pdf/1905.07224v1.pdf
|
https://github.com/Piezoid/pugz
| true | true | false |
none
|
https://paperswithcode.com/paper/coreneuron-an-optimized-compute-engine-for
|
CoreNEURON : An Optimized Compute Engine for the NEURON Simulator
|
1901.10975
|
http://arxiv.org/abs/1901.10975v1
|
http://arxiv.org/pdf/1901.10975v1.pdf
|
https://github.com/bluebrain/CoreNeuron
| true | true | false |
none
|
https://paperswithcode.com/paper/engineering-resilient-collective-adaptive
|
Engineering Resilient Collective Adaptive Systems by Self-Stabilisation
|
1711.08297
|
http://arxiv.org/abs/1711.08297v1
|
http://arxiv.org/pdf/1711.08297v1.pdf
|
https://bitbucket.org/danysk/experiment-2017-tomacs
| true | true | false |
none
|
https://paperswithcode.com/paper/emufog-extensible-and-scalable-emulation-of
|
EmuFog: Extensible and Scalable Emulation of Large-Scale Fog Computing Infrastructures
|
1709.07563
|
http://arxiv.org/abs/1709.07563v1
|
http://arxiv.org/pdf/1709.07563v1.pdf
|
https://github.com/emufog/emufog
| true | true | false |
none
|
https://paperswithcode.com/paper/energy-based-comparison-between-the-fourier
|
Energy-based comparison between the Fourier--Galerkin method and the finite element method
|
1709.08477
|
http://arxiv.org/abs/1709.08477v2
|
http://arxiv.org/pdf/1709.08477v2.pdf
|
https://github.com/vondrejc/FFTHomPy
| true | true | false |
none
|
https://paperswithcode.com/paper/tikz-network-manual
|
TikZ-network manual
|
1709.06005
|
https://arxiv.org/abs/1709.06005v2
|
https://arxiv.org/pdf/1709.06005v2.pdf
|
https://github.com/hackl/network2tikz
| true | true | false |
none
|
https://paperswithcode.com/paper/algebra-based-loop-synthesis
|
Algebra-based Loop Synthesis
|
2004.11787
|
http://arxiv.org/abs/2004.11787v2
|
http://arxiv.org/pdf/2004.11787v2.pdf
|
https://github.com/ahumenberger/Absynth.jl
| true | true | false |
none
|
https://paperswithcode.com/paper/geobroker-leveraging-geo-contexts-for-iot
|
GeoBroker: Leveraging Geo-Contexts for IoT Data Distribution
|
2001.01603
|
http://arxiv.org/abs/2001.01603v3
|
http://arxiv.org/pdf/2001.01603v3.pdf
|
https://github.com/MoeweX/GeoBroker
| true | true | false |
none
|
https://paperswithcode.com/paper/a-geometric-based-preprocessing-for-weighted
|
A geometric based preprocessing for weighted ray transforms with applications in SPECT
|
1911.05470
|
http://arxiv.org/abs/1911.05470v3
|
http://arxiv.org/pdf/1911.05470v3.pdf
|
https://github.com/fedor-goncharov/wrt-project
| true | true | false |
none
|
https://paperswithcode.com/paper/a-flexible-machine-learning-aware
|
A Flexible Machine Learning-Aware Architecture for Future WLANs
|
1910.03510
|
http://arxiv.org/abs/1910.03510v3
|
http://arxiv.org/pdf/1910.03510v3.pdf
|
https://github.com/fwilhelmi/machine_learning_aware_architecture_wlans
| true | true | false |
none
|
https://paperswithcode.com/paper/equations-in-three-singular-moduli-the-equal
|
Equations in three singular moduli: the equal exponent case
|
2105.12696
|
https://arxiv.org/abs/2105.12696v2
|
https://arxiv.org/pdf/2105.12696v2.pdf
|
https://github.com/guyfowler/three_singular_moduli
| true | true | false |
none
|
https://paperswithcode.com/paper/bridging-semantic-gaps-between-natural
|
Bridging Semantic Gaps between Natural Languages and APIs with Word Embedding
|
1810.09723
|
http://arxiv.org/abs/1810.09723v1
|
http://arxiv.org/pdf/1810.09723v1.pdf
|
https://github.com/softw-lab/word2api
| true | true | false |
none
|
https://paperswithcode.com/paper/large-scale-cover-song-detection-in-digital
|
Large-Scale Cover Song Detection in Digital Music Libraries Using Metadata, Lyrics and Audio Features
|
1808.10351
|
http://arxiv.org/abs/1808.10351v1
|
http://arxiv.org/pdf/1808.10351v1.pdf
|
https://github.com/deezer/cover_song_detection
| true | true | false |
none
|
https://paperswithcode.com/paper/information-estimation-using-nonparametric
|
Information estimation using nonparametric copulas
|
1807.08018
|
http://arxiv.org/abs/1807.08018v2
|
http://arxiv.org/pdf/1807.08018v2.pdf
|
https://github.com/houman1359/NPC_Info
| true | true | false |
none
|
https://paperswithcode.com/paper/semi-analytic-galaxy-evolution-sage-model
|
Semi-Analytic Galaxy Evolution (SAGE): Model Calibration and Basic Results
|
1601.04709
|
http://arxiv.org/abs/1601.04709v3
|
http://arxiv.org/pdf/1601.04709v3.pdf
|
https://github.com/jacobseiler/rsage
| false | false | true |
none
|
https://paperswithcode.com/paper/the-accuracy-of-semi-numerical-reionization
|
The accuracy of semi-numerical reionization models in comparison with radiative transfer simulations
|
1803.00088
|
http://arxiv.org/abs/1803.00088v1
|
http://arxiv.org/pdf/1803.00088v1.pdf
|
https://github.com/jacobseiler/rsage
| false | false | true |
none
|
https://paperswithcode.com/paper/disco-physics-based-unsupervised-discovery-of
|
DisCo: Physics-Based Unsupervised Discovery of Coherent Structures in Spatiotemporal Systems
|
1909.11822
|
https://arxiv.org/abs/1909.11822v1
|
https://arxiv.org/pdf/1909.11822v1.pdf
|
https://github.com/intel/daal
| false | false | true |
none
|
https://paperswithcode.com/paper/global-and-optimal-probes-for-the-top-quark
|
Global and optimal probes for the top-quark effective field theory at future lepton colliders
|
1807.02121
|
https://arxiv.org/abs/1807.02121v1
|
https://arxiv.org/pdf/1807.02121v1.pdf
|
https://github.com/gdurieux/optimal_observables_ee2tt2bwbw
| true | true | true |
none
|
https://paperswithcode.com/paper/an-abstract-machine-for-strong-call-by-value
|
An Abstract Machine for Strong Call by Value
|
2009.06984
|
http://arxiv.org/abs/2009.06984v1
|
http://arxiv.org/pdf/2009.06984v1.pdf
|
https://bitbucket.org/pl-uwr/scbv-machine
| true | true | false |
none
|
https://paperswithcode.com/paper/batching-and-matching-for-food-delivery-in
|
Batching and Matching for Food Delivery in Dynamic Road Networks
|
2008.12905
|
http://arxiv.org/abs/2008.12905v1
|
http://arxiv.org/pdf/2008.12905v1.pdf
|
https://github.com/idea-iitd/FoodMatch
| true | true | false |
none
|
https://paperswithcode.com/paper/strongly-coupled-heavy-and-light-quark
|
Strongly Coupled Heavy and Light Quark Thermal Motion from AdS/CFT
|
2008.09196
|
https://arxiv.org/abs/2008.09196v3
|
https://arxiv.org/pdf/2008.09196v3.pdf
|
https://github.com/AlexesMes/brownian-motion-of-quarks
| true | true | false |
none
|
https://paperswithcode.com/paper/stellar-streams-in-chameleon-gravity
|
Stellar Streams in Chameleon Gravity
|
2002.05738
|
http://arxiv.org/abs/2002.05738v1
|
http://arxiv.org/pdf/2002.05738v1.pdf
|
https://github.com/aneeshnaik/smoggy
| true | true | false |
none
|
https://paperswithcode.com/paper/cohomology-fractals
|
Cohomology fractals
|
2002.00239
|
http://arxiv.org/abs/2002.00239v2
|
http://arxiv.org/pdf/2002.00239v2.pdf
|
https://github.com/henryseg/cohomology_fractals
| true | true | false |
none
|
https://paperswithcode.com/paper/neural-embeddings-of-scholarly-periodicals
|
Neural Embeddings of Scholarly Periodicals Reveal Complex Disciplinary Organizations
|
2001.08199
|
https://arxiv.org/abs/2001.08199v2
|
https://arxiv.org/pdf/2001.08199v2.pdf
|
https://github.com/haoopeng/periodicals
| true | true | false |
none
|
https://paperswithcode.com/paper/looking-for-machos-in-the-spectra-of-fast
|
Looking for MACHOs in the Spectra of Fast Radio Bursts
|
1912.07620
|
http://arxiv.org/abs/1912.07620v1
|
http://arxiv.org/pdf/1912.07620v1.pdf
|
https://github.com/andrey-katz/FRB_lensing
| true | true | false |
none
|
https://paperswithcode.com/paper/rtj-a-java-framework-for-detecting-and
|
RTj: a Java framework for detecting and refactoring rotten green test cases
|
1912.07322
|
http://arxiv.org/abs/1912.07322v1
|
http://arxiv.org/pdf/1912.07322v1.pdf
|
https://github.com/UPHF/RTj
| true | true | false |
none
|
https://paperswithcode.com/paper/gpcal-a-generalized-calibration-pipeline-for
|
GPCAL: a generalized calibration pipeline for instrumental polarization in VLBI data
|
2011.09713
|
http://arxiv.org/abs/2011.09713v1
|
http://arxiv.org/pdf/2011.09713v1.pdf
|
https://github.com/jhparkastro/gpcal
| true | true | false |
none
|
https://paperswithcode.com/paper/bayesian-matrix-completion-for-hypothesis
|
Bayesian Matrix Completion for Hypothesis Testing
|
2009.08405
|
https://arxiv.org/abs/2009.08405v6
|
https://arxiv.org/pdf/2009.08405v6.pdf
|
https://github.com/jinbora0720/BMC
| true | true | false |
none
|
https://paperswithcode.com/paper/elastica-a-compliant-mechanics-environment
|
Elastica: A compliant mechanics environment for soft robotic control
|
2009.08422
|
http://arxiv.org/abs/2009.08422v1
|
http://arxiv.org/pdf/2009.08422v1.pdf
|
https://github.com/GazzolaLab/PyElastica
| true | true | false |
none
|
https://paperswithcode.com/paper/predicting-cell-phone-adoption-metrics-using
|
Predicting cell phone adoption metrics using satellite imagery
|
2006.07311
|
https://arxiv.org/abs/2006.07311v5
|
https://arxiv.org/pdf/2006.07311v5.pdf
|
https://github.com/edwardoughton/taddle
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/dgm-a-deep-learning-algorithm-for-solving
|
DGM: A deep learning algorithm for solving partial differential equations
|
1708.07469
|
http://arxiv.org/abs/1708.07469v5
|
http://arxiv.org/pdf/1708.07469v5.pdf
|
https://github.com/atapritchard/DPDEs
| false | false | true |
tf
|
https://paperswithcode.com/paper/qopt-an-experiment-oriented-qubit-simulation
|
qopt: An experiment-oriented Qubit Simulation and Quantum Optimal Control Package
|
2110.05873
|
https://arxiv.org/abs/2110.05873v1
|
https://arxiv.org/pdf/2110.05873v1.pdf
|
https://github.com/qutech/qopt-applications
| true | true | true |
none
|
https://paperswithcode.com/paper/mdp-homomorphic-networks-group-symmetries-in
|
MDP Homomorphic Networks: Group Symmetries in Reinforcement Learning
|
2006.16908
|
https://arxiv.org/abs/2006.16908v2
|
https://arxiv.org/pdf/2006.16908v2.pdf
|
https://github.com/ElisevanderPol/symmetrizer
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/learning-pose-invariant-3d-object
|
Learning Pose-invariant 3D Object Reconstruction from Single-view Images
|
2004.01347
|
https://arxiv.org/abs/2004.01347v2
|
https://arxiv.org/pdf/2004.01347v2.pdf
|
https://github.com/bomb2peng/learn3D
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/aide-annotation-efficient-deep-learning-for
|
Annotation-efficient deep learning for automatic medical image segmentation
|
2012.04885
|
https://arxiv.org/abs/2012.04885v3
|
https://arxiv.org/pdf/2012.04885v3.pdf
|
https://github.com/lich0031/AIDE
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/simple-is-not-easy-a-simple-strong-baseline
|
Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps
|
2012.05153
|
https://arxiv.org/abs/2012.05153v1
|
https://arxiv.org/pdf/2012.05153v1.pdf
|
https://github.com/ZephyrZhuQi/ssbaseline
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/perspectives-and-solutions-towards
|
Perspectives and solutions towards intelligent ambient assisted living systems
|
2102.13173
|
https://arxiv.org/abs/2102.13173v2
|
https://arxiv.org/pdf/2102.13173v2.pdf
|
https://github.com/hongsun502/AALDemo
| true | true | false |
none
|
https://paperswithcode.com/paper/active-sampling-a-machine-learning-assisted
|
Active sampling: A machine-learning-assisted framework for finite population inference with optimal subsamples
|
2212.10024
|
https://arxiv.org/abs/2212.10024v3
|
https://arxiv.org/pdf/2212.10024v3.pdf
|
https://github.com/imbhe/activesampling
| true | true | false |
none
|
https://paperswithcode.com/paper/a-neural-rendering-framework-for-free
|
A Neural Rendering Framework for Free-Viewpoint Relighting
|
1911.11530
|
https://arxiv.org/abs/1911.11530v2
|
https://arxiv.org/pdf/1911.11530v2.pdf
|
https://github.com/apchenstu/mvsnerf
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/the-galah-survey-a-catalogue-of-carbon
|
The GALAH survey: a catalogue of carbon-enhanced stars and CEMP candidates
|
1807.07977
|
http://arxiv.org/abs/1807.07977v2
|
http://arxiv.org/pdf/1807.07977v2.pdf
|
https://github.com/kcotar/GALAH-survey-Carbon-enhanced-stars
| true | false | false |
none
|
https://paperswithcode.com/paper/clustering-ensemble-meets-low-rank-tensor
|
Clustering Ensemble Meets Low-rank Tensor Approximation
|
2012.08916
|
https://arxiv.org/abs/2012.08916v1
|
https://arxiv.org/pdf/2012.08916v1.pdf
|
https://github.com/jyh-learning/TensorClusteringEnsemble
| true | false | true |
none
|
https://paperswithcode.com/paper/electra-pre-training-text-encoders-as-1
|
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators
|
2003.10555
|
https://arxiv.org/abs/2003.10555v1
|
https://arxiv.org/pdf/2003.10555v1.pdf
|
https://github.com/MalteHB/-l-ctra
| false | false | true |
tf
|
https://paperswithcode.com/paper/rexnet-diminishing-representational
|
Rethinking Channel Dimensions for Efficient Model Design
|
2007.00992
|
https://arxiv.org/abs/2007.00992v3
|
https://arxiv.org/pdf/2007.00992v3.pdf
|
https://github.com/ysbsb/ReXNet-PyTorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/pannuke-dataset-extension-insights-and
|
PanNuke Dataset Extension, Insights and Baselines
|
2003.10778
|
https://arxiv.org/abs/2003.10778v7
|
https://arxiv.org/pdf/2003.10778v7.pdf
|
https://github.com/vqdang/hover_net
| false | false | true |
tf
|
https://paperswithcode.com/paper/earthnet2021-a-novel-large-scale-dataset-and
|
EarthNet2021: A novel large-scale dataset and challenge for forecasting localized climate impacts
|
2012.06246
|
https://arxiv.org/abs/2012.06246v1
|
https://arxiv.org/pdf/2012.06246v1.pdf
|
https://github.com/earthnet2021/earthnet-model-intercomparison-suite
| false | false | true |
none
|
https://paperswithcode.com/paper/opera-harmonizing-task-oriented-dialogs-and
|
OPERA: Harmonizing Task-Oriented Dialogs and Information Seeking Experience
|
2206.12449
|
https://arxiv.org/abs/2206.12449v1
|
https://arxiv.org/pdf/2206.12449v1.pdf
|
https://github.com/Miaoranmmm/OPERA
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/two-pass-discourse-segmentation-with-pairing
|
Two-pass Discourse Segmentation with Pairing and Global Features
|
1407.8215
|
http://arxiv.org/abs/1407.8215v1
|
http://arxiv.org/pdf/1407.8215v1.pdf
|
https://github.com/Akanni96/feng-hirst-rst-parser
| false | false | true |
none
|
https://paperswithcode.com/paper/flow-architecture-and-benchmarking-for
|
Flow: A Modular Learning Framework for Mixed Autonomy Traffic
|
1710.05465
|
https://arxiv.org/abs/1710.05465v4
|
https://arxiv.org/pdf/1710.05465v4.pdf
|
https://github.com/pengyuan-zhou/Multi-agent-RL-traffic-light-control
| false | false | true |
none
|
https://paperswithcode.com/paper/ef-net-a-novel-enhancement-and-fusion-network
|
EF-Net: A novel enhancement and fusion network for RGB-D saliency detection
| null |
https://www.sciencedirect.com/science/article/abs/pii/S0031320320305434
|
https://www.sciencedirect.com/science/article/abs/pii/S0031320320305434
|
https://github.com/PPOLYpubki/EF-Net
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/distilling-knowledge-from-reader-to-retriever-1
|
Distilling Knowledge from Reader to Retriever for Question Answering
|
2012.04584
|
https://arxiv.org/abs/2012.04584v2
|
https://arxiv.org/pdf/2012.04584v2.pdf
|
https://github.com/lucidrains/marge-pytorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/categorization-of-two-loop-feynman-diagrams
|
Categorization of two-loop Feynman diagrams in the $\mathcal O(α^2)$ correction to $e^+e^- \rightarrow ZH$
|
2012.12513
|
https://arxiv.org/abs/2012.12513v2
|
https://arxiv.org/pdf/2012.12513v2.pdf
|
https://github.com/zhaoli-IHEP/eeHZ_nnloEW_diagrams
| true | true | false |
none
|
https://paperswithcode.com/paper/dynamic-object-removal-and-spatio-temporal
|
Dynamic Object Removal and Spatio-Temporal RGB-D Inpainting via Geometry-Aware Adversarial Learning
|
2008.05058
|
https://arxiv.org/abs/2008.05058v4
|
https://arxiv.org/pdf/2008.05058v4.pdf
|
https://github.com/robot-learning-freiburg/DynaFill
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/automated-customized-bug-benchmark-generation
|
Automated Customized Bug-Benchmark Generation
|
1901.02819
|
https://arxiv.org/abs/1901.02819v2
|
https://arxiv.org/pdf/1901.02819v2.pdf
|
https://github.com/grammatech/sel
| false | false | true |
none
|
https://paperswithcode.com/paper/software-mutational-robustness
|
Software Mutational Robustness
|
1204.4224
|
https://arxiv.org/abs/1204.4224v3
|
https://arxiv.org/pdf/1204.4224v3.pdf
|
https://github.com/grammatech/sel
| false | false | true |
none
|
https://paperswithcode.com/paper/fairness-without-demographics-through
|
Fairness without Demographics through Adversarially Reweighted Learning
|
2006.13114
|
https://arxiv.org/abs/2006.13114v3
|
https://arxiv.org/pdf/2006.13114v3.pdf
|
https://github.com/lucweytingh/ARL-UvA
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/variance-change-point-detection-with-credible
|
Bayesian variance change point detection with credible sets
|
2211.14097
|
https://arxiv.org/abs/2211.14097v3
|
https://arxiv.org/pdf/2211.14097v3.pdf
|
https://github.com/lorenzocapp/prisca
| true | true | false |
none
|
https://paperswithcode.com/paper/exploring-adversarial-robustness-of-deep
|
Exploring Adversarial Robustness of Deep Metric Learning
|
2102.07265
|
https://arxiv.org/abs/2102.07265v1
|
https://arxiv.org/pdf/2102.07265v1.pdf
|
https://github.com/anonymous-koala-supporter/adversarial-deep-metric-learning
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/tag-assisted-neural-machine-translation-of
|
Tag Assisted Neural Machine Translation of Film Subtitles
| null |
https://aclanthology.org/2021.iwslt-1.30
|
https://aclanthology.org/2021.iwslt-1.30.pdf
|
https://github.com/compwiztobe/tagged-seq2seq
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/keyphrase-generation-for-scientific-document-1
|
Keyphrase Generation for Scientific Document Retrieval
|
2106.14726
|
https://arxiv.org/abs/2106.14726v1
|
https://arxiv.org/pdf/2106.14726v1.pdf
|
https://github.com/boudinfl/ir-using-kg
| true | true | false |
none
|
https://paperswithcode.com/paper/directed-searches-for-gravitational-waves
|
Directed searches for gravitational waves from ultralight bosons
|
1810.03812
|
https://arxiv.org/abs/1810.03812v3
|
https://arxiv.org/pdf/1810.03812v3.pdf
|
https://github.com/maxisi/gwaxion
| false | false | true |
none
|
https://paperswithcode.com/paper/190503375
|
Embarrassingly Shallow Autoencoders for Sparse Data
|
1905.03375
|
https://arxiv.org/abs/1905.03375v1
|
https://arxiv.org/pdf/1905.03375v1.pdf
|
https://github.com/franckjay/TorchEASE
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/pytorrent-a-python-library-corpus-for-large
|
PyTorrent: A Python Library Corpus for Large-scale Language Models
|
2110.01710
|
https://arxiv.org/abs/2110.01710v1
|
https://arxiv.org/pdf/2110.01710v1.pdf
|
https://github.com/fla-sil/PyTorrent
| true | true | true |
none
|
https://paperswithcode.com/paper/gravitational-wave-searches-for-ultralight
|
Gravitational wave searches for ultralight bosons with LIGO and LISA
|
1706.06311
|
https://arxiv.org/abs/1706.06311v2
|
https://arxiv.org/pdf/1706.06311v2.pdf
|
https://github.com/maxisi/gwaxion
| false | false | true |
none
|
https://paperswithcode.com/paper/theoretically-principled-trade-off-between
|
Theoretically Principled Trade-off between Robustness and Accuracy
|
1901.08573
|
https://arxiv.org/abs/1901.08573v3
|
https://arxiv.org/pdf/1901.08573v3.pdf
|
https://github.com/arobey1/advbench
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/point2mesh-a-self-prior-for-deformable-meshes
|
Point2Mesh: A Self-Prior for Deformable Meshes
|
2005.11084
|
https://arxiv.org/abs/2005.11084v1
|
https://arxiv.org/pdf/2005.11084v1.pdf
|
https://github.com/dcharatan/point2mesh-reimplementation
| false | false | false |
tf
|
https://paperswithcode.com/paper/hyperspherical-variational-auto-encoders
|
Hyperspherical Variational Auto-Encoders
|
1804.00891
|
https://arxiv.org/abs/1804.00891v3
|
https://arxiv.org/pdf/1804.00891v3.pdf
|
https://github.com/nicola-decao/s-vae-tf
| true | true | true |
tf
|
https://paperswithcode.com/paper/probabilistic-safety-constraints-for-learned
|
Probabilistic Safety Constraints for Learned High Relative Degree System Dynamics
|
1912.10116
|
https://arxiv.org/abs/1912.10116v3
|
https://arxiv.org/pdf/1912.10116v3.pdf
|
https://github.com/wecacuee/Bayesian_CBF
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/accuracy-vs-complexity-for-mmwave-ray-tracing
|
Accuracy vs. Complexity for mmWave Ray-Tracing: A Full Stack Perspective
|
2007.07125
|
https://arxiv.org/abs/2007.07125v1
|
https://arxiv.org/pdf/2007.07125v1.pdf
|
https://github.com/signetlabdei/qd-realization
| true | false | false |
none
|
https://paperswithcode.com/paper/control-barriers-in-bayesian-learning-of
|
Control Barriers in Bayesian Learning of System Dynamics
|
2012.14964
|
https://arxiv.org/abs/2012.14964v2
|
https://arxiv.org/pdf/2012.14964v2.pdf
|
https://github.com/wecacuee/Bayesian_CBF
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/dsxplore-optimizing-convolutional-neural
|
DSXplore: Optimizing Convolutional Neural Networks via Sliding-Channel Convolutions
|
2101.00745
|
https://arxiv.org/abs/2101.00745v1
|
https://arxiv.org/pdf/2101.00745v1.pdf
|
https://github.com/YukeWang96/DSXplore
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/case-studies-in-network-community-detection
|
Case studies in network community detection
|
1705.02305
|
https://arxiv.org/abs/1705.02305v1
|
https://arxiv.org/pdf/1705.02305v1.pdf
|
https://github.com/taylordr/supracentrality
| false | false | true |
none
|
https://paperswithcode.com/paper/underwater-image-enhancement-based-on-deep
|
Underwater Image Enhancement based on Deep Learning and Image Formation Model
|
2101.00991
|
https://arxiv.org/abs/2101.00991v2
|
https://arxiv.org/pdf/2101.00991v2.pdf
|
https://github.com/xueleichen/PyTorch-Underwater-Image-Enhancement
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/particle-swarm-based-hyper-parameter
|
Particle Swarm Based Hyper-Parameter Optimization for Machine Learned Interatomic Potentials
|
2101.00049
|
https://arxiv.org/abs/2101.00049v1
|
https://arxiv.org/pdf/2101.00049v1.pdf
|
https://github.com/suresh0807/PPSO
| true | true | false |
none
|
https://paperswithcode.com/paper/bayesian-image-reconstruction-using-deep
|
Bayesian Image Reconstruction using Deep Generative Models
|
2012.04567
|
https://arxiv.org/abs/2012.04567v5
|
https://arxiv.org/pdf/2012.04567v5.pdf
|
https://github.com/razvanmarinescu/brgm
| true | false | true |
tf
|
https://paperswithcode.com/paper/preconditioned-training-of-normalizing-flows
|
Preconditioned training of normalizing flows for variational inference in inverse problems
|
2101.03709
|
https://arxiv.org/abs/2101.03709v1
|
https://arxiv.org/pdf/2101.03709v1.pdf
|
https://github.com/slimgroup/Software.siahkoohi2021AABIpto
| true | true | false |
none
|
https://paperswithcode.com/paper/rezero-is-all-you-need-fast-convergence-at
|
ReZero is All You Need: Fast Convergence at Large Depth
|
2003.04887
|
https://arxiv.org/abs/2003.04887v2
|
https://arxiv.org/pdf/2003.04887v2.pdf
|
https://github.com/EugenHotaj/pytorch-generative/blob/master/pytorch_generative/nn/utils.py
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/few-shot-dialogue-state-tracking-using-meta
|
Few Shot Dialogue State Tracking using Meta-learning
|
2101.06779
|
https://arxiv.org/abs/2101.06779v3
|
https://arxiv.org/pdf/2101.06779v3.pdf
|
https://github.com/saketdingliwal/Few-Shot-DST
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/an-smt-based-approach-for-verifying-binarized
|
An SMT-Based Approach for Verifying Binarized Neural Networks
|
2011.02948
|
https://arxiv.org/abs/2011.02948v2
|
https://arxiv.org/pdf/2011.02948v2.pdf
|
https://github.com/guyam2/BNN_Verification_Artifact
| true | true | false |
none
|
https://paperswithcode.com/paper/exploring-the-structure-of-a-real-time
|
Exploring the structure of a real-time, arbitrary neural artistic stylization network
|
1705.06830
|
http://arxiv.org/abs/1705.06830v2
|
http://arxiv.org/pdf/1705.06830v2.pdf
|
https://github.com/jiean001/models_m/tree/main/ArbitraryStyleTransfer
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/investigation-of-a-data-split-strategy
|
Investigation of a Data Split Strategy Involving the Time Axis in Adverse Event Prediction Using Machine Learning
|
2204.08682
|
https://arxiv.org/abs/2204.08682v2
|
https://arxiv.org/pdf/2204.08682v2.pdf
|
https://github.com/mizuno-group/ae_prediction
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/sequence-generation-using-deep-recurrent
|
Sequence Generation using Deep Recurrent Networks and Embeddings: A study case in music
|
2012.01231
|
https://arxiv.org/abs/2012.01231v1
|
https://arxiv.org/pdf/2012.01231v1.pdf
|
https://github.com/sebasgverde/mono-midi-transposition-dataset
| false | false | true |
none
|
https://paperswithcode.com/paper/a-framework-to-compare-music-generative
|
A framework to compare music generative models using automatic evaluation metrics extended to rhythm
|
2101.07669
|
https://arxiv.org/abs/2101.07669v1
|
https://arxiv.org/pdf/2101.07669v1.pdf
|
https://github.com/sebasgverde/mono-midi-transposition-dataset
| false | false | true |
none
|
https://paperswithcode.com/paper/190503302
|
PerceptNet: Learning Perceptual Similarity of Haptic Textures in Presence of Unorderable Triplets
|
1905.03302
|
https://arxiv.org/abs/1905.03302v2
|
https://arxiv.org/pdf/1905.03302v2.pdf
|
https://github.com/kpriyadarshini/perceptNet
| false | false | true |
pytorch
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.