Datasets:

Modalities:
Image
ArXiv:
License:

Add a bit more info to the dataset README

#1
by davanstrien HF Staff - opened
Files changed (1) hide show
  1. README.md +54 -5
README.md CHANGED
@@ -1,8 +1,57 @@
1
  ---
2
  license: cc-by-nc-sa-4.0
 
 
 
 
 
 
 
 
 
 
3
  ---
4
- We present the Oxford Spires Dataset, captured in and around well-known landmarks in Oxford using a custom-built multi-sensor perception unit as well as a millimetre-accurate map from a terrestrial LiDAR scanner (TLS). The perception unit includes three global shutter colour cameras, an automotive 3D LiDAR scanner, and an inertial sensor — all precisely calibrated.
5
- - [project page](https://dynamic.robots.ox.ac.uk/datasets/oxford-spires/)
6
- - [Arxiv](https://arxiv.org/abs/2411.10546)
7
- - [video](https://youtu.be/AKZ-YrOob_4?si=rY94Gn96V2zfQBNH)
8
- - [code](https://github.com/ori-drs/oxford_spires_dataset)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-nc-sa-4.0
3
+ tags:
4
+ - robotics
5
+ - computer-vision
6
+ - lidar
7
+ - slam
8
+ - 3d-reconstruction
9
+ - novel-view-synthesis
10
+ size_categories:
11
+ - 10GB<n<100GB
12
+ pretty_name: Oxford Spires Dataset
13
  ---
14
+
15
+ # Oxford Spires Dataset
16
+
17
+ A large-scale multi-modal dataset for benchmarking LiDAR-Visual localisation, reconstruction and radiance field methods, captured at historic landmarks in Oxford.
18
+
19
+ ## Dataset Description
20
+
21
+ The Oxford Spires Dataset provides high-quality sensor data with millimetre-accurate ground truth for evaluating SLAM, Structure-from-Motion, Multi-view Stereo, and radiance field methods (NeRF, 3D Gaussian Splatting).
22
+
23
+ ### Sensors
24
+ - **3 RGB Cameras**: Global shutter, 1.6MP (1440×1080), 20Hz, 126°×92.4° FoV
25
+ - **LiDAR**: Hesai QT64, 64 channels, 10Hz, 104° FoV, 60m range
26
+ - **IMU**: 400Hz
27
+ - **Ground Truth**: Millimetre-accurate 3D models from Leica RTC360 terrestrial scanner
28
+
29
+ ### Coverage
30
+ - **6 Historic Sites**: Bodleian Library, Blenheim Palace, Christ Church College, Keble College, Radcliffe Observatory Quarter, New College
31
+ - **24 Sequences**: ~400m average distance per sequence
32
+ - **Scale**: ~1 hectare average area per site
33
+
34
+ ### Benchmarks
35
+ - Localisation evaluation
36
+ - 3D reconstruction quality assessment
37
+ - Novel-view synthesis (including challenging out-of-sequence poses)
38
+
39
+ ## Links
40
+ - [Project Page](https://dynamic.robots.ox.ac.uk/datasets/oxford-spires/)
41
+ - [Paper (arXiv)](https://arxiv.org/abs/2411.10546)
42
+ - [Video](https://youtu.be/AKZ-YrOob_4?si=rY94Gn96V2zfQBNH)
43
+ - [Code & Tools](https://github.com/ori-drs/oxford_spires_dataset)
44
+
45
+ ## Citation
46
+
47
+ ```bibtex
48
+ @misc{tao2024oxfordspiresdatasetbenchmarking,
49
+ title={The Oxford Spires Dataset: Benchmarking Large-Scale LiDAR-Visual Localisation, Reconstruction and Radiance Field Methods},
50
+ author={Yifu Tao and Miguel Ángel Muñoz-Bañón and Lintong Zhang and Jiahao Wang and Lanke Frank Tarimo Fu and Maurice Fallon},
51
+ year={2024},
52
+ eprint={2411.10546},
53
+ archivePrefix={arXiv},
54
+ primaryClass={cs.CV},
55
+ url={https://arxiv.org/abs/2411.10546},
56
+ }
57
+ ```