|
|
|
|
|
|
|
|
|
|
|
""" |
|
Script to convert HDF5 demonstration files to MP4 videos. |
|
|
|
This script converts camera frames stored in HDF5 demonstration files to MP4 videos. |
|
It supports multiple camera modalities including RGB, segmentation, and normal maps. |
|
The output videos are saved in the specified directory with appropriate naming. |
|
|
|
required arguments: |
|
--input_file Path to the input HDF5 file. |
|
--output_dir Directory to save the output MP4 files. |
|
|
|
optional arguments: |
|
--input_keys List of input keys to process from the HDF5 file. (default: ["table_cam", "wrist_cam", "table_cam_segmentation", "table_cam_normals", "table_cam_shaded_segmentation"]) |
|
--video_height Height of the output video in pixels. (default: 704) |
|
--video_width Width of the output video in pixels. (default: 1280) |
|
--framerate Frames per second for the output video. (default: 30) |
|
""" |
|
|
|
|
|
import argparse |
|
import h5py |
|
import numpy as np |
|
|
|
|
|
import os |
|
|
|
import cv2 |
|
|
|
|
|
DEFAULT_VIDEO_HEIGHT = 704 |
|
DEFAULT_VIDEO_WIDTH = 1280 |
|
DEFAULT_INPUT_KEYS = [ |
|
"table_cam", |
|
"wrist_cam", |
|
"table_cam_segmentation", |
|
"table_cam_normals", |
|
"table_cam_shaded_segmentation", |
|
"table_cam_depth", |
|
] |
|
DEFAULT_FRAMERATE = 30 |
|
LIGHT_SOURCE = np.array([0.0, 0.0, 1.0]) |
|
MIN_DEPTH = 0.0 |
|
MAX_DEPTH = 1.5 |
|
|
|
|
|
def parse_args(): |
|
"""Parse command line arguments.""" |
|
parser = argparse.ArgumentParser(description="Convert HDF5 demonstration files to MP4 videos.") |
|
parser.add_argument( |
|
"--input_file", |
|
type=str, |
|
required=True, |
|
help="Path to the input HDF5 file containing demonstration data.", |
|
) |
|
parser.add_argument( |
|
"--output_dir", |
|
type=str, |
|
required=True, |
|
help="Directory path where the output MP4 files will be saved.", |
|
) |
|
|
|
parser.add_argument( |
|
"--input_keys", |
|
type=str, |
|
nargs="+", |
|
default=DEFAULT_INPUT_KEYS, |
|
help="List of input keys to process.", |
|
) |
|
parser.add_argument( |
|
"--video_height", |
|
type=int, |
|
default=DEFAULT_VIDEO_HEIGHT, |
|
help="Height of the output video in pixels.", |
|
) |
|
parser.add_argument( |
|
"--video_width", |
|
type=int, |
|
default=DEFAULT_VIDEO_WIDTH, |
|
help="Width of the output video in pixels.", |
|
) |
|
parser.add_argument( |
|
"--framerate", |
|
type=int, |
|
default=DEFAULT_FRAMERATE, |
|
help="Frames per second for the output video.", |
|
) |
|
|
|
args = parser.parse_args() |
|
|
|
return args |
|
|
|
|
|
def write_demo_to_mp4( |
|
hdf5_file, |
|
demo_id, |
|
frames_path, |
|
input_key, |
|
output_dir, |
|
video_height, |
|
video_width, |
|
framerate=DEFAULT_FRAMERATE, |
|
): |
|
"""Convert frames from an HDF5 file to an MP4 video. |
|
|
|
Args: |
|
hdf5_file (str): Path to the HDF5 file containing the frames. |
|
demo_id (int): ID of the demonstration to convert. |
|
frames_path (str): Path to the frames data in the HDF5 file. |
|
input_key (str): Name of the input key to convert. |
|
output_dir (str): Directory to save the output MP4 file. |
|
video_height (int): Height of the output video in pixels. |
|
video_width (int): Width of the output video in pixels. |
|
framerate (int, optional): Frames per second for the output video. Defaults to 30. |
|
""" |
|
with h5py.File(hdf5_file, "r") as f: |
|
|
|
if "shaded_segmentation" in input_key: |
|
temp_key = input_key.replace("shaded_segmentation", "segmentation") |
|
frames = f[f"data/demo_{demo_id}/obs/{temp_key}"] |
|
else: |
|
frames = f[frames_path + "/" + input_key] |
|
|
|
|
|
output_path = os.path.join(output_dir, f"demo_{demo_id}_{input_key}.mp4") |
|
fourcc = cv2.VideoWriter_fourcc(*"mp4v") |
|
if "depth" in input_key: |
|
video = cv2.VideoWriter(output_path, fourcc, framerate, (video_width, video_height), isColor=False) |
|
else: |
|
video = cv2.VideoWriter(output_path, fourcc, framerate, (video_width, video_height)) |
|
|
|
|
|
for ix, frame in enumerate(frames): |
|
|
|
if "normals" in input_key: |
|
frame = (frame * 255.0).astype(np.uint8) |
|
|
|
|
|
elif "shaded_segmentation" in input_key: |
|
seg = frame[..., :-1] |
|
normals_key = input_key.replace("shaded_segmentation", "normals") |
|
normals = f[f"data/demo_{demo_id}/obs/{normals_key}"][ix] |
|
shade = 0.5 + (normals * LIGHT_SOURCE[None, None, :]).sum(axis=-1) * 0.5 |
|
shaded_seg = (shade[..., None] * seg).astype(np.uint8) |
|
frame = np.concatenate((shaded_seg, frame[..., -1:]), axis=-1) |
|
|
|
|
|
if "depth" not in input_key: |
|
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) |
|
else: |
|
frame = (frame[..., 0] - MIN_DEPTH) / (MAX_DEPTH - MIN_DEPTH) |
|
frame = np.where(frame < 0.01, 1.0, frame) |
|
frame = 1.0 - frame |
|
frame = (frame * 255.0).astype(np.uint8) |
|
|
|
|
|
frame = cv2.resize(frame, (video_width, video_height), interpolation=cv2.INTER_CUBIC) |
|
video.write(frame) |
|
|
|
video.release() |
|
|
|
|
|
def get_num_demos(hdf5_file): |
|
"""Get the number of demonstrations in the HDF5 file. |
|
|
|
Args: |
|
hdf5_file (str): Path to the HDF5 file. |
|
|
|
Returns: |
|
int: Number of demonstrations found in the file. |
|
""" |
|
with h5py.File(hdf5_file, "r") as f: |
|
return len(f["data"].keys()) |
|
|
|
|
|
def main(): |
|
"""Main function to convert all demonstrations to MP4 videos.""" |
|
|
|
args = parse_args() |
|
|
|
|
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
|
|
num_demos = get_num_demos(args.input_file) |
|
print(f"Found {num_demos} demonstrations in {args.input_file}") |
|
|
|
|
|
for i in range(num_demos): |
|
frames_path = f"data/demo_{str(i)}/obs" |
|
for input_key in args.input_keys: |
|
write_demo_to_mp4( |
|
args.input_file, |
|
i, |
|
frames_path, |
|
input_key, |
|
args.output_dir, |
|
args.video_height, |
|
args.video_width, |
|
args.framerate, |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|