text
stringlengths 31
243k
| type
stringclasses 1
value | start
int64 36
275k
| end
int64 286
280k
| depth
int64 0
1
| filepath
stringlengths 85
188
| parent_class
stringclasses 3
values | class_index
int64 0
10.8k
|
---|---|---|---|---|---|---|---|
class ViTHybridForImageClassification(ViTHybridPreTrainedModel):
def __init__(self, config: ViTHybridConfig) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.vit = ViTHybridModel(config, add_pooling_layer=False)
# Classifier head
self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=ImageClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, ImageClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.vit(
pixel_values,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output[:, 0, :])
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 28,858 | 32,562 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/vit_hybrid/modeling_vit_hybrid.py
| null | 10,400 |
class MultiScaleDeformableAttentionFunction(Function):
@staticmethod
def forward(
context,
value,
value_spatial_shapes,
value_level_start_index,
sampling_locations,
attention_weights,
im2col_step,
):
context.im2col_step = im2col_step
output = MultiScaleDeformableAttention.ms_deform_attn_forward(
value,
value_spatial_shapes,
value_level_start_index,
sampling_locations,
attention_weights,
context.im2col_step,
)
context.save_for_backward(
value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights
)
return output
@staticmethod
@once_differentiable
def backward(context, grad_output):
(
value,
value_spatial_shapes,
value_level_start_index,
sampling_locations,
attention_weights,
) = context.saved_tensors
grad_value, grad_sampling_loc, grad_attn_weight = MultiScaleDeformableAttention.ms_deform_attn_backward(
value,
value_spatial_shapes,
value_level_start_index,
sampling_locations,
attention_weights,
grad_output,
context.im2col_step,
)
return grad_value, None, None, grad_sampling_loc, grad_attn_weight, None
|
class_definition
| 2,569 | 4,013 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/deta/modeling_deta.py
| null | 10,401 |
class DetaDecoderOutput(ModelOutput):
"""
Base class for outputs of the DetaDecoder. This class adds two attributes to
BaseModelOutputWithCrossAttentions, namely:
- a stacked tensor of intermediate decoder hidden states (i.e. the output of each decoder layer)
- a stacked tensor of intermediate reference points.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`):
Stacked intermediate hidden states (output of each layer of the decoder).
intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, sequence_length, hidden_size)`):
Stacked intermediate reference points (reference points of each layer of the decoder).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
used to compute the weighted average in the cross-attention heads.
"""
last_hidden_state: torch.FloatTensor = None
intermediate_hidden_states: torch.FloatTensor = None
intermediate_reference_points: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
|
class_definition
| 4,524 | 7,237 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/deta/modeling_deta.py
| null | 10,402 |
class DetaModelOutput(ModelOutput):
"""
Base class for outputs of the Deformable DETR encoder-decoder model.
Args:
init_reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
Initial reference points sent through the Transformer decoder.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the decoder of the model.
intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`):
Stacked intermediate hidden states (output of each layer of the decoder).
intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`):
Stacked intermediate reference points (reference points of each layer of the decoder).
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, num_queries, hidden_size)`. Hidden-states of the decoder at the output of each layer
plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, num_queries,
num_queries)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted
average in the self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_queries, num_heads, 4, 4)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each
layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_queries, num_heads, 4, 4)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
enc_outputs_class (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
Predicted bounding boxes scores where the top `config.two_stage_num_proposals` scoring bounding boxes are
picked as region proposals in the first stage. Output of bounding box binary classification (i.e.
foreground and background).
enc_outputs_coord_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, 4)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
Logits of predicted bounding boxes coordinates in the first stage.
output_proposals (`torch.FloatTensor` of shape `(batch_size, sequence_length, 4)`, *optional*, returned when `config.two_stage=True`):
Logits of proposal bounding boxes coordinates in the gen_encoder_output_proposals.
"""
init_reference_points: torch.FloatTensor = None
last_hidden_state: torch.FloatTensor = None
intermediate_hidden_states: torch.FloatTensor = None
intermediate_reference_points: torch.FloatTensor = None
decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
enc_outputs_class: Optional[torch.FloatTensor] = None
enc_outputs_coord_logits: Optional[torch.FloatTensor] = None
output_proposals: Optional[torch.FloatTensor] = None
|
class_definition
| 7,251 | 12,403 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/deta/modeling_deta.py
| null | 10,403 |
class DetaObjectDetectionOutput(ModelOutput):
"""
Output type of [`DetaForObjectDetection`].
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)):
Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a
bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized
scale-invariant IoU loss.
loss_dict (`Dict`, *optional*):
A dictionary containing the individual losses. Useful for logging.
logits (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes + 1)`):
Classification logits (including no-object) for all queries.
pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These
values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding
possible padding). You can use [`~DetaProcessor.post_process_object_detection`] to retrieve the
unnormalized bounding boxes.
auxiliary_outputs (`list[Dict]`, *optional*):
Optional, only returned when auxilary losses are activated (i.e. `config.auxiliary_loss` is set to `True`)
and labels are provided. It is a list of dictionaries containing the two above keys (`logits` and
`pred_boxes`) for each decoder layer.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the decoder of the model.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, num_queries, hidden_size)`. Hidden-states of the decoder at the output of each layer
plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, num_queries,
num_queries)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted
average in the self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_queries, num_heads, 4, 4)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each
layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, sequence_length, num_heads, 4,
4)`. Attentions weights of the encoder, after the attention softmax, used to compute the weighted average
in the self-attention heads.
intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`):
Stacked intermediate hidden states (output of each layer of the decoder).
intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`):
Stacked intermediate reference points (reference points of each layer of the decoder).
init_reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
Initial reference points sent through the Transformer decoder.
enc_outputs_class (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
Predicted bounding boxes scores where the top `config.two_stage_num_proposals` scoring bounding boxes are
picked as region proposals in the first stage. Output of bounding box binary classification (i.e.
foreground and background).
enc_outputs_coord_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, 4)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
Logits of predicted bounding boxes coordinates in the first stage.
output_proposals (`torch.FloatTensor` of shape `(batch_size, sequence_length, 4)`, *optional*, returned when `config.two_stage=True`):
Logits of proposal bounding boxes coordinates in the gen_encoder_output_proposals.
"""
loss: Optional[torch.FloatTensor] = None
loss_dict: Optional[Dict] = None
logits: torch.FloatTensor = None
pred_boxes: torch.FloatTensor = None
auxiliary_outputs: Optional[List[Dict]] = None
init_reference_points: Optional[torch.FloatTensor] = None
last_hidden_state: Optional[torch.FloatTensor] = None
intermediate_hidden_states: Optional[torch.FloatTensor] = None
intermediate_reference_points: Optional[torch.FloatTensor] = None
decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
enc_outputs_class: Optional = None
enc_outputs_coord_logits: Optional = None
output_proposals: Optional[torch.FloatTensor] = None
|
class_definition
| 12,417 | 19,233 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/deta/modeling_deta.py
| null | 10,404 |
class DetaFrozenBatchNorm2d(nn.Module):
"""
BatchNorm2d where the batch statistics and the affine parameters are fixed.
Copy-paste from torchvision.misc.ops with added eps before rqsrt, without which any other models than
torchvision.models.resnet[18,34,50,101] produce nans.
"""
def __init__(self, n):
super().__init__()
self.register_buffer("weight", torch.ones(n))
self.register_buffer("bias", torch.zeros(n))
self.register_buffer("running_mean", torch.zeros(n))
self.register_buffer("running_var", torch.ones(n))
def _load_from_state_dict(
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
):
num_batches_tracked_key = prefix + "num_batches_tracked"
if num_batches_tracked_key in state_dict:
del state_dict[num_batches_tracked_key]
super()._load_from_state_dict(
state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
)
def forward(self, x):
# move reshapes to the beginning
# to make it user-friendly
weight = self.weight.reshape(1, -1, 1, 1)
bias = self.bias.reshape(1, -1, 1, 1)
running_var = self.running_var.reshape(1, -1, 1, 1)
running_mean = self.running_mean.reshape(1, -1, 1, 1)
epsilon = 1e-5
scale = weight * (running_var + epsilon).rsqrt()
bias = bias - running_mean * scale
return x * scale + bias
|
class_definition
| 19,488 | 21,000 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/deta/modeling_deta.py
| null | 10,405 |
class DetaBackboneWithPositionalEncodings(nn.Module):
"""
Backbone model with positional embeddings.
nn.BatchNorm2d layers are replaced by DetaFrozenBatchNorm2d as defined above.
"""
def __init__(self, config):
super().__init__()
backbone = load_backbone(config)
with torch.no_grad():
replace_batch_norm(backbone)
self.model = backbone
self.intermediate_channel_sizes = self.model.channels
# TODO fix this
if config.backbone_config.model_type == "resnet":
for name, parameter in self.model.named_parameters():
if "stages.1" not in name and "stages.2" not in name and "stages.3" not in name:
parameter.requires_grad_(False)
self.position_embedding = build_position_encoding(config)
def forward(self, pixel_values: torch.Tensor, pixel_mask: torch.Tensor):
"""
Outputs feature maps of latter stages C_3 through C_5 in ResNet if `config.num_feature_levels > 1`, otherwise
outputs feature maps of C_5.
"""
# first, send pixel_values through the backbone to get list of feature maps
features = self.model(pixel_values).feature_maps
# next, create position embeddings
out = []
pos = []
for feature_map in features:
# downsample pixel_mask to match shape of corresponding feature_map
mask = nn.functional.interpolate(pixel_mask[None].float(), size=feature_map.shape[-2:]).to(torch.bool)[0]
position_embeddings = self.position_embedding(feature_map, mask).to(feature_map.dtype)
out.append((feature_map, mask))
pos.append(position_embeddings)
return out, pos
|
class_definition
| 21,821 | 23,573 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/deta/modeling_deta.py
| null | 10,406 |
class DetaSinePositionEmbedding(nn.Module):
"""
This is a more standard version of the position embedding, very similar to the one used by the Attention is all you
need paper, generalized to work on images.
"""
def __init__(self, embedding_dim=64, temperature=10000, normalize=False, scale=None):
super().__init__()
self.embedding_dim = embedding_dim
self.temperature = temperature
self.normalize = normalize
if scale is not None and normalize is False:
raise ValueError("normalize should be True if scale is passed")
if scale is None:
scale = 2 * math.pi
self.scale = scale
def forward(self, pixel_values, pixel_mask):
if pixel_mask is None:
raise ValueError("No pixel mask provided")
y_embed = pixel_mask.cumsum(1, dtype=torch.float32)
x_embed = pixel_mask.cumsum(2, dtype=torch.float32)
if self.normalize:
eps = 1e-6
y_embed = (y_embed - 0.5) / (y_embed[:, -1:, :] + eps) * self.scale
x_embed = (x_embed - 0.5) / (x_embed[:, :, -1:] + eps) * self.scale
dim_t = torch.arange(self.embedding_dim, dtype=torch.int64, device=pixel_values.device).float()
dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / self.embedding_dim)
pos_x = x_embed[:, :, :, None] / dim_t
pos_y = y_embed[:, :, :, None] / dim_t
pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
return pos
|
class_definition
| 23,576 | 25,317 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/deta/modeling_deta.py
| null | 10,407 |
class DetaLearnedPositionEmbedding(nn.Module):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, embedding_dim=256):
super().__init__()
self.row_embeddings = nn.Embedding(50, embedding_dim)
self.column_embeddings = nn.Embedding(50, embedding_dim)
def forward(self, pixel_values, pixel_mask=None):
height, width = pixel_values.shape[-2:]
width_values = torch.arange(width, device=pixel_values.device)
height_values = torch.arange(height, device=pixel_values.device)
x_emb = self.column_embeddings(width_values)
y_emb = self.row_embeddings(height_values)
pos = torch.cat([x_emb.unsqueeze(0).repeat(height, 1, 1), y_emb.unsqueeze(1).repeat(1, width, 1)], dim=-1)
pos = pos.permute(2, 0, 1)
pos = pos.unsqueeze(0)
pos = pos.repeat(pixel_values.shape[0], 1, 1, 1)
return pos
|
class_definition
| 25,320 | 26,261 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/deta/modeling_deta.py
| null | 10,408 |
class DetaMultiscaleDeformableAttention(nn.Module):
"""
Multiscale deformable attention as proposed in Deformable DETR.
"""
def __init__(self, config: DetaConfig, num_heads: int, n_points: int):
super().__init__()
kernel_loaded = MultiScaleDeformableAttention is not None
if is_torch_cuda_available() and is_ninja_available() and not kernel_loaded:
try:
load_cuda_kernels()
except Exception as e:
logger.warning(f"Could not load the custom kernel for multi-scale deformable attention: {e}")
if config.d_model % num_heads != 0:
raise ValueError(
f"embed_dim (d_model) must be divisible by num_heads, but got {config.d_model} and {num_heads}"
)
dim_per_head = config.d_model // num_heads
# check if dim_per_head is power of 2
if not ((dim_per_head & (dim_per_head - 1) == 0) and dim_per_head != 0):
warnings.warn(
"You'd better set embed_dim (d_model) in DetaMultiscaleDeformableAttention to make the"
" dimension of each attention head a power of 2 which is more efficient in the authors' CUDA"
" implementation."
)
self.im2col_step = 64
self.d_model = config.d_model
self.n_levels = config.num_feature_levels
self.n_heads = num_heads
self.n_points = n_points
self.sampling_offsets = nn.Linear(config.d_model, num_heads * self.n_levels * n_points * 2)
self.attention_weights = nn.Linear(config.d_model, num_heads * self.n_levels * n_points)
self.value_proj = nn.Linear(config.d_model, config.d_model)
self.output_proj = nn.Linear(config.d_model, config.d_model)
self.disable_custom_kernels = config.disable_custom_kernels
self._reset_parameters()
def _reset_parameters(self):
nn.init.constant_(self.sampling_offsets.weight.data, 0.0)
default_dtype = torch.get_default_dtype()
thetas = torch.arange(self.n_heads, dtype=torch.int64).to(default_dtype) * (2.0 * math.pi / self.n_heads)
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
grid_init = (
(grid_init / grid_init.abs().max(-1, keepdim=True)[0])
.view(self.n_heads, 1, 1, 2)
.repeat(1, self.n_levels, self.n_points, 1)
)
for i in range(self.n_points):
grid_init[:, :, i, :] *= i + 1
with torch.no_grad():
self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
nn.init.constant_(self.attention_weights.weight.data, 0.0)
nn.init.constant_(self.attention_weights.bias.data, 0.0)
nn.init.xavier_uniform_(self.value_proj.weight.data)
nn.init.constant_(self.value_proj.bias.data, 0.0)
nn.init.xavier_uniform_(self.output_proj.weight.data)
nn.init.constant_(self.output_proj.bias.data, 0.0)
def with_pos_embed(self, tensor: torch.Tensor, position_embeddings: Optional[Tensor]):
return tensor if position_embeddings is None else tensor + position_embeddings
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states=None,
encoder_attention_mask=None,
position_embeddings: Optional[torch.Tensor] = None,
reference_points=None,
spatial_shapes=None,
level_start_index=None,
output_attentions: bool = False,
):
# add position embeddings to the hidden states before projecting to queries and keys
if position_embeddings is not None:
hidden_states = self.with_pos_embed(hidden_states, position_embeddings)
batch_size, num_queries, _ = hidden_states.shape
batch_size, sequence_length, _ = encoder_hidden_states.shape
if (spatial_shapes[:, 0] * spatial_shapes[:, 1]).sum() != sequence_length:
raise ValueError(
"Make sure to align the spatial shapes with the sequence length of the encoder hidden states"
)
value = self.value_proj(encoder_hidden_states)
if attention_mask is not None:
# we invert the attention_mask
value = value.masked_fill(~attention_mask[..., None], float(0))
value = value.view(batch_size, sequence_length, self.n_heads, self.d_model // self.n_heads)
sampling_offsets = self.sampling_offsets(hidden_states).view(
batch_size, num_queries, self.n_heads, self.n_levels, self.n_points, 2
)
attention_weights = self.attention_weights(hidden_states).view(
batch_size, num_queries, self.n_heads, self.n_levels * self.n_points
)
attention_weights = F.softmax(attention_weights, -1).view(
batch_size, num_queries, self.n_heads, self.n_levels, self.n_points
)
# batch_size, num_queries, n_heads, n_levels, n_points, 2
num_coordinates = reference_points.shape[-1]
if num_coordinates == 2:
offset_normalizer = torch.stack([spatial_shapes[..., 1], spatial_shapes[..., 0]], -1)
sampling_locations = (
reference_points[:, :, None, :, None, :]
+ sampling_offsets / offset_normalizer[None, None, None, :, None, :]
)
elif num_coordinates == 4:
sampling_locations = (
reference_points[:, :, None, :, None, :2]
+ sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5
)
else:
raise ValueError(f"Last dim of reference_points must be 2 or 4, but got {reference_points.shape[-1]}")
if self.disable_custom_kernels:
# PyTorch implementation
output = multi_scale_deformable_attention(value, spatial_shapes, sampling_locations, attention_weights)
else:
try:
# custom kernel
output = MultiScaleDeformableAttentionFunction.apply(
value,
spatial_shapes,
level_start_index,
sampling_locations,
attention_weights,
self.im2col_step,
)
except Exception:
# PyTorch implementation
output = multi_scale_deformable_attention(value, spatial_shapes, sampling_locations, attention_weights)
output = self.output_proj(output)
return output, attention_weights
|
class_definition
| 28,853 | 35,428 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/deta/modeling_deta.py
| null | 10,409 |
class DetaMultiheadAttention(nn.Module):
"""
Multi-headed attention from 'Attention Is All You Need' paper.
Here, we add position embeddings to the queries and keys (as explained in the Deformable DETR paper).
"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
bias: bool = True,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
if self.head_dim * num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int):
return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def with_pos_embed(self, tensor: torch.Tensor, position_embeddings: Optional[Tensor]):
return tensor if position_embeddings is None else tensor + position_embeddings
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_embeddings: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
batch_size, target_len, embed_dim = hidden_states.size()
# add position embeddings to the hidden states before projecting to queries and keys
if position_embeddings is not None:
hidden_states_original = hidden_states
hidden_states = self.with_pos_embed(hidden_states, position_embeddings)
# get queries, keys and values
query_states = self.q_proj(hidden_states) * self.scaling
key_states = self._shape(self.k_proj(hidden_states), -1, batch_size)
value_states = self._shape(self.v_proj(hidden_states_original), -1, batch_size)
proj_shape = (batch_size * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, target_len, batch_size).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
source_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (batch_size * self.num_heads, target_len, source_len):
raise ValueError(
f"Attention weights should be of size {(batch_size * self.num_heads, target_len, source_len)}, but is"
f" {attn_weights.size()}"
)
# expand attention_mask
if attention_mask is not None:
# [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
if attention_mask is not None:
if attention_mask.size() != (batch_size, 1, target_len, source_len):
raise ValueError(
f"Attention mask should be of size {(batch_size, 1, target_len, source_len)}, but is"
f" {attention_mask.size()}"
)
attn_weights = attn_weights.view(batch_size, self.num_heads, target_len, source_len) + attention_mask
attn_weights = attn_weights.view(batch_size * self.num_heads, target_len, source_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(batch_size, self.num_heads, target_len, source_len)
attn_weights = attn_weights_reshaped.view(batch_size * self.num_heads, target_len, source_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (batch_size * self.num_heads, target_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(batch_size, self.num_heads, target_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(batch_size, self.num_heads, target_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(batch_size, target_len, embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped
|
class_definition
| 35,431 | 40,726 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/deta/modeling_deta.py
| null | 10,410 |
class DetaEncoderLayer(nn.Module):
def __init__(self, config: DetaConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = DetaMultiscaleDeformableAttention(
config,
num_heads=config.encoder_attention_heads,
n_points=config.encoder_n_points,
)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
position_embeddings: torch.Tensor = None,
reference_points=None,
spatial_shapes=None,
level_start_index=None,
output_attentions: bool = False,
):
"""
Args:
hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Input to the layer.
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Attention mask.
position_embeddings (`torch.FloatTensor`, *optional*):
Position embeddings, to be added to `hidden_states`.
reference_points (`torch.FloatTensor`, *optional*):
Reference points.
spatial_shapes (`torch.LongTensor`, *optional*):
Spatial shapes of the backbone feature maps.
level_start_index (`torch.LongTensor`, *optional*):
Level start index.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
# Apply Multi-scale Deformable Attention Module on the multi-scale feature maps.
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
position_embeddings=position_embeddings,
reference_points=reference_points,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
if self.training:
if torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any():
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
|
class_definition
| 40,729 | 44,469 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/deta/modeling_deta.py
| null | 10,411 |
class DetaDecoderLayer(nn.Module):
def __init__(self, config: DetaConfig):
super().__init__()
self.embed_dim = config.d_model
# self-attention
self.self_attn = DetaMultiheadAttention(
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
# cross-attention
self.encoder_attn = DetaMultiscaleDeformableAttention(
config,
num_heads=config.decoder_attention_heads,
n_points=config.decoder_n_points,
)
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
# feedforward neural networks
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Optional[torch.Tensor] = None,
reference_points=None,
spatial_shapes=None,
level_start_index=None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
):
"""
Args:
hidden_states (`torch.FloatTensor`):
Input to the layer of shape `(batch, seq_len, embed_dim)`.
position_embeddings (`torch.FloatTensor`, *optional*):
Position embeddings that are added to the queries and keys in the self-attention layer.
reference_points (`torch.FloatTensor`, *optional*):
Reference points.
spatial_shapes (`torch.LongTensor`, *optional*):
Spatial shapes.
level_start_index (`torch.LongTensor`, *optional*):
Level start index.
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
`(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
values.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
position_embeddings=position_embeddings,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
second_residual = hidden_states
# Cross-Attention
cross_attn_weights = None
hidden_states, cross_attn_weights = self.encoder_attn(
hidden_states=hidden_states,
attention_mask=encoder_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
position_embeddings=position_embeddings,
reference_points=reference_points,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = second_residual + hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# Fully Connected
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
return outputs
|
class_definition
| 44,472 | 49,197 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/deta/modeling_deta.py
| null | 10,412 |
class DetaPreTrainedModel(PreTrainedModel):
config_class = DetaConfig
base_model_prefix = "model"
main_input_name = "pixel_values"
_no_split_modules = [r"DetaBackboneWithPositionalEncodings", r"DetaEncoderLayer", r"DetaDecoderLayer"]
supports_gradient_checkpointing = True
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, DetaLearnedPositionEmbedding):
nn.init.uniform_(module.row_embeddings.weight)
nn.init.uniform_(module.column_embeddings.weight)
elif isinstance(module, DetaMultiscaleDeformableAttention):
module._reset_parameters()
elif isinstance(module, (nn.Linear, nn.Conv2d, nn.BatchNorm2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if hasattr(module, "reference_points") and not self.config.two_stage:
nn.init.xavier_uniform_(module.reference_points.weight.data, gain=1.0)
nn.init.constant_(module.reference_points.bias.data, 0.0)
if hasattr(module, "level_embed"):
nn.init.normal_(module.level_embed)
|
class_definition
| 49,200 | 50,766 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/deta/modeling_deta.py
| null | 10,413 |
class DetaEncoder(DetaPreTrainedModel):
"""
Transformer encoder consisting of *config.encoder_layers* deformable attention layers. Each layer is a
[`DetaEncoderLayer`].
The encoder updates the flattened multi-scale feature maps through multiple deformable attention layers.
Args:
config: DetaConfig
"""
def __init__(self, config: DetaConfig):
super().__init__(config)
self.dropout = config.dropout
self.layers = nn.ModuleList([DetaEncoderLayer(config) for _ in range(config.encoder_layers)])
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
@staticmethod
def get_reference_points(spatial_shapes, valid_ratios, device):
"""
Get reference points for each feature map. Used in decoder.
Args:
spatial_shapes (`torch.LongTensor` of shape `(num_feature_levels, 2)`):
Spatial shapes of each feature map.
valid_ratios (`torch.FloatTensor` of shape `(batch_size, num_feature_levels, 2)`):
Valid ratios of each feature map.
device (`torch.device`):
Device on which to create the tensors.
Returns:
`torch.FloatTensor` of shape `(batch_size, num_queries, num_feature_levels, 2)`
"""
reference_points_list = []
for level, (height, width) in enumerate(spatial_shapes):
ref_y, ref_x = meshgrid(
torch.linspace(0.5, height - 0.5, height, dtype=torch.float32, device=device),
torch.linspace(0.5, width - 0.5, width, dtype=torch.float32, device=device),
indexing="ij",
)
# TODO: valid_ratios could be useless here. check https://github.com/fundamentalvision/Deformable-DETR/issues/36
ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, level, 1] * height)
ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, level, 0] * width)
ref = torch.stack((ref_x, ref_y), -1)
reference_points_list.append(ref)
reference_points = torch.cat(reference_points_list, 1)
reference_points = reference_points[:, :, None] * valid_ratios[:, None]
return reference_points
def forward(
self,
inputs_embeds=None,
attention_mask=None,
position_embeddings=None,
spatial_shapes=None,
level_start_index=None,
valid_ratios=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Flattened feature map (output of the backbone + projection layer) that is passed to the encoder.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding pixel features. Mask values selected in `[0, 1]`:
- 1 for pixel features that are real (i.e. **not masked**),
- 0 for pixel features that are padding (i.e. **masked**).
[What are attention masks?](../glossary#attention-mask)
position_embeddings (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Position embeddings that are added to the queries and keys in each self-attention layer.
spatial_shapes (`torch.LongTensor` of shape `(num_feature_levels, 2)`):
Spatial shapes of each feature map.
level_start_index (`torch.LongTensor` of shape `(num_feature_levels)`):
Starting index of each feature map.
valid_ratios (`torch.FloatTensor` of shape `(batch_size, num_feature_levels, 2)`):
Ratio of valid area in each feature level.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
hidden_states = inputs_embeds
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
reference_points = self.get_reference_points(spatial_shapes, valid_ratios, device=inputs_embeds.device)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
for i, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
position_embeddings=position_embeddings,
reference_points=reference_points,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
|
class_definition
| 54,081 | 60,378 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/deta/modeling_deta.py
| null | 10,414 |
class DetaDecoder(DetaPreTrainedModel):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`DetaDecoderLayer`].
The decoder updates the query embeddings through multiple self-attention and cross-attention layers.
Some tweaks for Deformable DETR:
- `position_embeddings`, `reference_points`, `spatial_shapes` and `valid_ratios` are added to the forward pass.
- it also returns a stack of intermediate outputs and reference points from all decoding layers.
Args:
config: DetaConfig
"""
def __init__(self, config: DetaConfig):
super().__init__(config)
self.dropout = config.dropout
self.layers = nn.ModuleList([DetaDecoderLayer(config) for _ in range(config.decoder_layers)])
self.gradient_checkpointing = False
# hack implementation for iterative bounding box refinement and two-stage Deformable DETR
self.bbox_embed = None
self.class_embed = None
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
position_embeddings=None,
reference_points=None,
spatial_shapes=None,
level_start_index=None,
valid_ratios=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`):
The query embeddings that are passed into the decoder.
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding pixel_values of the encoder. Mask values selected
in `[0, 1]`:
- 1 for pixels that are real (i.e. **not masked**),
- 0 for pixels that are padding (i.e. **masked**).
position_embeddings (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*):
Position embeddings that are added to the queries and keys in each self-attention layer.
reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)` is `as_two_stage` else `(batch_size, num_queries, 2)` or , *optional*):
Reference point in range `[0, 1]`, top-left (0,0), bottom-right (1, 1), including padding area.
spatial_shapes (`torch.FloatTensor` of shape `(num_feature_levels, 2)`):
Spatial shapes of the feature maps.
level_start_index (`torch.LongTensor` of shape `(num_feature_levels)`, *optional*):
Indexes for the start of each feature level. In range `[0, sequence_length]`.
valid_ratios (`torch.FloatTensor` of shape `(batch_size, num_feature_levels, 2)`, *optional*):
Ratio of valid area in each feature level.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if inputs_embeds is not None:
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
intermediate = ()
intermediate_reference_points = ()
for idx, decoder_layer in enumerate(self.layers):
if reference_points.shape[-1] == 4:
reference_points_input = (
reference_points[:, :, None] * torch.cat([valid_ratios, valid_ratios], -1)[:, None]
)
else:
if reference_points.shape[-1] != 2:
raise ValueError("Reference points' last dimension must be of size 2")
reference_points_input = reference_points[:, :, None] * valid_ratios[:, None]
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
position_embeddings,
reference_points_input,
spatial_shapes,
level_start_index,
encoder_hidden_states,
encoder_attention_mask,
output_attentions,
)
else:
layer_outputs = decoder_layer(
hidden_states,
position_embeddings=position_embeddings,
encoder_hidden_states=encoder_hidden_states,
reference_points=reference_points_input,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
# hack implementation for iterative bounding box refinement
if self.bbox_embed is not None:
tmp = self.bbox_embed[idx](hidden_states)
if reference_points.shape[-1] == 4:
new_reference_points = tmp + inverse_sigmoid(reference_points)
new_reference_points = new_reference_points.sigmoid()
else:
if reference_points.shape[-1] != 2:
raise ValueError(
f"Reference points' last dimension must be of size 2, but is {reference_points.shape[-1]}"
)
new_reference_points = tmp
new_reference_points[..., :2] = tmp[..., :2] + inverse_sigmoid(reference_points)
new_reference_points = new_reference_points.sigmoid()
reference_points = new_reference_points.detach()
intermediate += (hidden_states,)
intermediate_reference_points += (reference_points,)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
# Keep batch_size as first dimension
intermediate = torch.stack(intermediate, dim=1)
intermediate_reference_points = torch.stack(intermediate_reference_points, dim=1)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
intermediate,
intermediate_reference_points,
all_hidden_states,
all_self_attns,
all_cross_attentions,
]
if v is not None
)
return DetaDecoderOutput(
last_hidden_state=hidden_states,
intermediate_hidden_states=intermediate,
intermediate_reference_points=intermediate_reference_points,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
|
class_definition
| 60,381 | 69,080 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/deta/modeling_deta.py
| null | 10,415 |
class DetaModel(DetaPreTrainedModel):
def __init__(self, config: DetaConfig):
super().__init__(config)
if config.two_stage:
requires_backends(self, ["torchvision"])
# Create backbone with positional encoding
self.backbone = DetaBackboneWithPositionalEncodings(config)
intermediate_channel_sizes = self.backbone.intermediate_channel_sizes
# Create input projection layers
if config.num_feature_levels > 1:
num_backbone_outs = len(intermediate_channel_sizes)
input_proj_list = []
for _ in range(num_backbone_outs):
in_channels = intermediate_channel_sizes[_]
input_proj_list.append(
nn.Sequential(
nn.Conv2d(in_channels, config.d_model, kernel_size=1),
nn.GroupNorm(32, config.d_model),
)
)
for _ in range(config.num_feature_levels - num_backbone_outs):
input_proj_list.append(
nn.Sequential(
nn.Conv2d(in_channels, config.d_model, kernel_size=3, stride=2, padding=1),
nn.GroupNorm(32, config.d_model),
)
)
in_channels = config.d_model
self.input_proj = nn.ModuleList(input_proj_list)
else:
self.input_proj = nn.ModuleList(
[
nn.Sequential(
nn.Conv2d(intermediate_channel_sizes[-1], config.d_model, kernel_size=1),
nn.GroupNorm(32, config.d_model),
)
]
)
if not config.two_stage:
self.query_position_embeddings = nn.Embedding(config.num_queries, config.d_model * 2)
self.encoder = DetaEncoder(config)
self.decoder = DetaDecoder(config)
self.level_embed = nn.Parameter(torch.Tensor(config.num_feature_levels, config.d_model))
if config.two_stage:
self.enc_output = nn.Linear(config.d_model, config.d_model)
self.enc_output_norm = nn.LayerNorm(config.d_model)
self.pos_trans = nn.Linear(config.d_model * 2, config.d_model * 2)
self.pos_trans_norm = nn.LayerNorm(config.d_model * 2)
self.pix_trans = nn.Linear(config.d_model, config.d_model)
self.pix_trans_norm = nn.LayerNorm(config.d_model)
else:
self.reference_points = nn.Linear(config.d_model, 2)
self.assign_first_stage = config.assign_first_stage
self.two_stage_num_proposals = config.two_stage_num_proposals
self.post_init()
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def freeze_backbone(self):
for name, param in self.backbone.model.named_parameters():
param.requires_grad_(False)
def unfreeze_backbone(self):
for name, param in self.backbone.model.named_parameters():
param.requires_grad_(True)
def get_valid_ratio(self, mask, dtype=torch.float32):
"""Get the valid ratio of all feature maps."""
_, height, width = mask.shape
valid_height = torch.sum(mask[:, :, 0], 1)
valid_width = torch.sum(mask[:, 0, :], 1)
valid_ratio_height = valid_height.to(dtype) / height
valid_ratio_width = valid_width.to(dtype) / width
valid_ratio = torch.stack([valid_ratio_width, valid_ratio_height], -1)
return valid_ratio
def get_proposal_pos_embed(self, proposals):
"""Get the position embedding of the proposals."""
num_pos_feats = self.config.d_model // 2
temperature = 10000
scale = 2 * math.pi
dim_t = torch.arange(num_pos_feats, dtype=torch.int64, device=proposals.device).float()
dim_t = temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / num_pos_feats)
# batch_size, num_queries, 4
proposals = proposals.sigmoid() * scale
# batch_size, num_queries, 4, 128
pos = proposals[:, :, :, None] / dim_t
# batch_size, num_queries, 4, 64, 2 -> batch_size, num_queries, 512
pos = torch.stack((pos[:, :, :, 0::2].sin(), pos[:, :, :, 1::2].cos()), dim=4).flatten(2)
return pos
def gen_encoder_output_proposals(self, enc_output, padding_mask, spatial_shapes):
"""Generate the encoder output proposals from encoded enc_output.
Args:
enc_output (Tensor[batch_size, sequence_length, hidden_size]): Output of the encoder.
padding_mask (Tensor[batch_size, sequence_length]): Padding mask for `enc_output`.
spatial_shapes (Tensor[num_feature_levels, 2]): Spatial shapes of the feature maps.
Returns:
`tuple(torch.FloatTensor)`: A tuple of feature map and bbox prediction.
- object_query (Tensor[batch_size, sequence_length, hidden_size]): Object query features. Later used to
directly predict a bounding box. (without the need of a decoder)
- output_proposals (Tensor[batch_size, sequence_length, 4]): Normalized proposals, after an inverse
sigmoid.
"""
batch_size = enc_output.shape[0]
proposals = []
_cur = 0
level_ids = []
for level, (height, width) in enumerate(spatial_shapes):
mask_flatten_ = padding_mask[:, _cur : (_cur + height * width)].view(batch_size, height, width, 1)
valid_height = torch.sum(~mask_flatten_[:, :, 0, 0], 1)
valid_width = torch.sum(~mask_flatten_[:, 0, :, 0], 1)
grid_y, grid_x = meshgrid(
torch.linspace(0, height - 1, height, dtype=torch.float32, device=enc_output.device),
torch.linspace(0, width - 1, width, dtype=torch.float32, device=enc_output.device),
indexing="ij",
)
grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1)
scale = torch.cat([valid_width.unsqueeze(-1), valid_height.unsqueeze(-1)], 1).view(batch_size, 1, 1, 2)
grid = (grid.unsqueeze(0).expand(batch_size, -1, -1, -1) + 0.5) / scale
width_heigth = torch.ones_like(grid) * 0.05 * (2.0**level)
proposal = torch.cat((grid, width_heigth), -1).view(batch_size, -1, 4)
proposals.append(proposal)
_cur += height * width
level_ids.append(grid.new_ones(height * width, dtype=torch.long) * level)
output_proposals = torch.cat(proposals, 1)
output_proposals_valid = ((output_proposals > 0.01) & (output_proposals < 0.99)).all(-1, keepdim=True)
output_proposals = torch.log(output_proposals / (1 - output_proposals)) # inverse sigmoid
output_proposals = output_proposals.masked_fill(padding_mask.unsqueeze(-1), float("inf"))
output_proposals = output_proposals.masked_fill(~output_proposals_valid, float("inf"))
# assign each pixel as an object query
object_query = enc_output
object_query = object_query.masked_fill(padding_mask.unsqueeze(-1), float(0))
object_query = object_query.masked_fill(~output_proposals_valid, float(0))
object_query = self.enc_output_norm(self.enc_output(object_query))
level_ids = torch.cat(level_ids)
return object_query, output_proposals, level_ids
@add_start_docstrings_to_model_forward(DETA_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=DetaModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.FloatTensor,
pixel_mask: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.FloatTensor] = None,
encoder_outputs: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], DetaModelOutput]:
r"""
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, DetaModel
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("jozhang97/deta-swin-large-o365")
>>> model = DetaModel.from_pretrained("jozhang97/deta-swin-large-o365", two_stage=False)
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 900, 256]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, num_channels, height, width = pixel_values.shape
device = pixel_values.device
if pixel_mask is None:
pixel_mask = torch.ones(((batch_size, height, width)), dtype=torch.long, device=device)
# Extract multi-scale feature maps of same resolution `config.d_model` (cf Figure 4 in paper)
# First, sent pixel_values + pixel_mask through Backbone to obtain the features
# which is a list of tuples
features, position_embeddings_list = self.backbone(pixel_values, pixel_mask)
# Then, apply 1x1 convolution to reduce the channel dimension to d_model (256 by default)
sources = []
masks = []
for level, (source, mask) in enumerate(features):
sources.append(self.input_proj[level](source))
masks.append(mask)
if mask is None:
raise ValueError("No attention mask was provided")
# Lowest resolution feature maps are obtained via 3x3 stride 2 convolutions on the final stage
if self.config.num_feature_levels > len(sources):
_len_sources = len(sources)
for level in range(_len_sources, self.config.num_feature_levels):
if level == _len_sources:
source = self.input_proj[level](features[-1][0])
else:
source = self.input_proj[level](sources[-1])
mask = nn.functional.interpolate(pixel_mask[None].float(), size=source.shape[-2:]).to(torch.bool)[0]
pos_l = self.backbone.position_embedding(source, mask).to(source.dtype)
sources.append(source)
masks.append(mask)
position_embeddings_list.append(pos_l)
# Create queries
query_embeds = None
if not self.config.two_stage:
query_embeds = self.query_position_embeddings.weight
# Prepare encoder inputs (by flattening)
spatial_shapes = [(source.shape[2:]) for source in sources]
source_flatten = [source.flatten(2).transpose(1, 2) for source in sources]
mask_flatten = [mask.flatten(1) for mask in masks]
lvl_pos_embed_flatten = []
for level, pos_embed in enumerate(position_embeddings_list):
pos_embed = pos_embed.flatten(2).transpose(1, 2)
lvl_pos_embed = pos_embed + self.level_embed[level].view(1, 1, -1)
lvl_pos_embed_flatten.append(lvl_pos_embed)
source_flatten = torch.cat(source_flatten, 1)
mask_flatten = torch.cat(mask_flatten, 1)
lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1)
spatial_shapes = torch.as_tensor(spatial_shapes, dtype=torch.long, device=source_flatten.device)
level_start_index = torch.cat((spatial_shapes.new_zeros((1,)), spatial_shapes.prod(1).cumsum(0)[:-1]))
valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1)
valid_ratios = valid_ratios.float()
# Fourth, sent source_flatten + mask_flatten + lvl_pos_embed_flatten (backbone + proj layer output) through encoder
# Also provide spatial_shapes, level_start_index and valid_ratios
if encoder_outputs is None:
encoder_outputs = self.encoder(
inputs_embeds=source_flatten,
attention_mask=mask_flatten,
position_embeddings=lvl_pos_embed_flatten,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
valid_ratios=valid_ratios,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# Fifth, prepare decoder inputs
batch_size, _, num_channels = encoder_outputs[0].shape
enc_outputs_class = None
enc_outputs_coord_logits = None
output_proposals = None
if self.config.two_stage:
object_query_embedding, output_proposals, level_ids = self.gen_encoder_output_proposals(
encoder_outputs[0], ~mask_flatten, spatial_shapes
)
# hack implementation for two-stage DETA
# apply a detection head to each pixel (A.4 in paper)
# linear projection for bounding box binary classification (i.e. foreground and background)
enc_outputs_class = self.decoder.class_embed[-1](object_query_embedding)
# 3-layer FFN to predict bounding boxes coordinates (bbox regression branch)
delta_bbox = self.decoder.bbox_embed[-1](object_query_embedding)
enc_outputs_coord_logits = delta_bbox + output_proposals
# only keep top scoring `config.two_stage_num_proposals` proposals
topk = self.two_stage_num_proposals
proposal_logit = enc_outputs_class[..., 0]
if self.assign_first_stage:
proposal_boxes = center_to_corners_format(enc_outputs_coord_logits.sigmoid().float()).clamp(0, 1)
topk_proposals = []
for b in range(batch_size):
prop_boxes_b = proposal_boxes[b]
prop_logits_b = proposal_logit[b]
# pre-nms per-level topk
pre_nms_topk = 1000
pre_nms_inds = []
for lvl in range(len(spatial_shapes)):
lvl_mask = level_ids == lvl
pre_nms_inds.append(torch.topk(prop_logits_b.sigmoid() * lvl_mask, pre_nms_topk)[1])
pre_nms_inds = torch.cat(pre_nms_inds)
# nms on topk indices
post_nms_inds = batched_nms(
prop_boxes_b[pre_nms_inds], prop_logits_b[pre_nms_inds], level_ids[pre_nms_inds], 0.9
)
keep_inds = pre_nms_inds[post_nms_inds]
if len(keep_inds) < self.two_stage_num_proposals:
print(
f"[WARNING] nms proposals ({len(keep_inds)}) < {self.two_stage_num_proposals}, running"
" naive topk"
)
keep_inds = torch.topk(proposal_logit[b], topk)[1]
# keep top Q/L indices for L levels
q_per_l = topk // len(spatial_shapes)
is_level_ordered = (
level_ids[keep_inds][None]
== torch.arange(len(spatial_shapes), device=level_ids.device)[:, None]
)
keep_inds_mask = is_level_ordered & (is_level_ordered.cumsum(1) <= q_per_l) # LS
keep_inds_mask = keep_inds_mask.any(0) # S
# pad to Q indices (might let ones filtered from pre-nms sneak by... unlikely because we pick high conf anyways)
if keep_inds_mask.sum() < topk:
num_to_add = topk - keep_inds_mask.sum()
pad_inds = (~keep_inds_mask).nonzero()[:num_to_add]
keep_inds_mask[pad_inds] = True
keep_inds_topk = keep_inds[keep_inds_mask]
topk_proposals.append(keep_inds_topk)
topk_proposals = torch.stack(topk_proposals)
else:
topk_proposals = torch.topk(enc_outputs_class[..., 0], topk, dim=1)[1]
topk_coords_logits = torch.gather(
enc_outputs_coord_logits, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4)
)
topk_coords_logits = topk_coords_logits.detach()
reference_points = topk_coords_logits.sigmoid()
init_reference_points = reference_points
pos_trans_out = self.pos_trans_norm(self.pos_trans(self.get_proposal_pos_embed(topk_coords_logits)))
query_embed, target = torch.split(pos_trans_out, num_channels, dim=2)
topk_feats = torch.stack(
[object_query_embedding[b][topk_proposals[b]] for b in range(batch_size)]
).detach()
target = target + self.pix_trans_norm(self.pix_trans(topk_feats))
else:
query_embed, target = torch.split(query_embeds, num_channels, dim=1)
query_embed = query_embed.unsqueeze(0).expand(batch_size, -1, -1)
target = target.unsqueeze(0).expand(batch_size, -1, -1)
reference_points = self.reference_points(query_embed).sigmoid()
init_reference_points = reference_points
decoder_outputs = self.decoder(
inputs_embeds=target,
position_embeddings=query_embed,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=mask_flatten,
reference_points=reference_points,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
valid_ratios=valid_ratios,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
enc_outputs = tuple(value for value in [enc_outputs_class, enc_outputs_coord_logits] if value is not None)
tuple_outputs = (init_reference_points,) + decoder_outputs + encoder_outputs + enc_outputs
return tuple_outputs
return DetaModelOutput(
init_reference_points=init_reference_points,
last_hidden_state=decoder_outputs.last_hidden_state,
intermediate_hidden_states=decoder_outputs.intermediate_hidden_states,
intermediate_reference_points=decoder_outputs.intermediate_reference_points,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
enc_outputs_class=enc_outputs_class,
enc_outputs_coord_logits=enc_outputs_coord_logits,
output_proposals=output_proposals,
)
|
class_definition
| 69,301 | 89,382 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/deta/modeling_deta.py
| null | 10,416 |
class DetaForObjectDetection(DetaPreTrainedModel):
# When using clones, all layers > 0 will be clones, but layer 0 *is* required
_tied_weights_keys = [r"bbox_embed\.\d+", r"class_embed\.\d+"]
# We can't initialize the model on meta device as some weights are modified during the initialization
_no_split_modules = None
def __init__(self, config: DetaConfig):
super().__init__(config)
# Deformable DETR encoder-decoder model
self.model = DetaModel(config)
# Detection heads on top
self.class_embed = nn.Linear(config.d_model, config.num_labels)
self.bbox_embed = DetaMLPPredictionHead(
input_dim=config.d_model, hidden_dim=config.d_model, output_dim=4, num_layers=3
)
prior_prob = 0.01
bias_value = -math.log((1 - prior_prob) / prior_prob)
self.class_embed.bias.data = torch.ones(config.num_labels) * bias_value
nn.init.constant_(self.bbox_embed.layers[-1].weight.data, 0)
nn.init.constant_(self.bbox_embed.layers[-1].bias.data, 0)
# if two-stage, the last class_embed and bbox_embed is for region proposal generation
num_pred = (config.decoder_layers + 1) if config.two_stage else config.decoder_layers
if config.with_box_refine:
self.class_embed = _get_clones(self.class_embed, num_pred)
self.bbox_embed = _get_clones(self.bbox_embed, num_pred)
nn.init.constant_(self.bbox_embed[0].layers[-1].bias.data[2:], -2.0)
# hack implementation for iterative bounding box refinement
self.model.decoder.bbox_embed = self.bbox_embed
else:
nn.init.constant_(self.bbox_embed.layers[-1].bias.data[2:], -2.0)
self.class_embed = nn.ModuleList([self.class_embed for _ in range(num_pred)])
self.bbox_embed = nn.ModuleList([self.bbox_embed for _ in range(num_pred)])
self.model.decoder.bbox_embed = None
if config.two_stage:
# hack implementation for two-stage
self.model.decoder.class_embed = self.class_embed
for box_embed in self.bbox_embed:
nn.init.constant_(box_embed.layers[-1].bias.data[2:], 0.0)
# Initialize weights and apply final processing
self.post_init()
@torch.jit.unused
def _set_aux_loss(self, outputs_class, outputs_coord):
# this is a workaround to make torchscript happy, as torchscript
# doesn't support dictionary with non-homogeneous values, such
# as a dict having both a Tensor and a list.
aux_loss = [
{"logits": logits, "pred_boxes": pred_boxes}
for logits, pred_boxes in zip(outputs_class.transpose(0, 1)[:-1], outputs_coord.transpose(0, 1)[:-1])
]
return aux_loss
@add_start_docstrings_to_model_forward(DETA_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=DetaObjectDetectionOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.FloatTensor,
pixel_mask: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.FloatTensor] = None,
encoder_outputs: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[List[dict]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], DetaObjectDetectionOutput]:
r"""
labels (`List[Dict]` of len `(batch_size,)`, *optional*):
Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the
following 2 keys: 'class_labels' and 'boxes' (the class labels and bounding boxes of an image in the batch
respectively). The class labels themselves should be a `torch.LongTensor` of len `(number of bounding boxes
in the image,)` and the boxes a `torch.FloatTensor` of shape `(number of bounding boxes in the image, 4)`.
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, DetaForObjectDetection
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("jozhang97/deta-swin-large")
>>> model = DetaForObjectDetection.from_pretrained("jozhang97/deta-swin-large")
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> # convert outputs (bounding boxes and class logits) to Pascal VOC format (xmin, ymin, xmax, ymax)
>>> target_sizes = torch.tensor([image.size[::-1]])
>>> results = image_processor.post_process_object_detection(outputs, threshold=0.5, target_sizes=target_sizes)[
... 0
... ]
>>> for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
... box = [round(i, 2) for i in box.tolist()]
... print(
... f"Detected {model.config.id2label[label.item()]} with confidence "
... f"{round(score.item(), 3)} at location {box}"
... )
Detected cat with confidence 0.802 at location [9.87, 54.36, 316.93, 473.44]
Detected cat with confidence 0.795 at location [346.62, 24.35, 639.62, 373.2]
Detected remote with confidence 0.725 at location [40.41, 73.36, 175.77, 117.29]
Detected remote with confidence 0.638 at location [333.34, 76.81, 370.22, 187.94]
Detected couch with confidence 0.584 at location [0.03, 0.99, 640.02, 474.93]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# First, sent images through DETR base model to obtain encoder + decoder outputs
outputs = self.model(
pixel_values,
pixel_mask=pixel_mask,
decoder_attention_mask=decoder_attention_mask,
encoder_outputs=encoder_outputs,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs.intermediate_hidden_states if return_dict else outputs[2]
init_reference = outputs.init_reference_points if return_dict else outputs[0]
inter_references = outputs.intermediate_reference_points if return_dict else outputs[3]
# class logits + predicted bounding boxes
outputs_classes = []
outputs_coords = []
for level in range(hidden_states.shape[1]):
if level == 0:
reference = init_reference
else:
reference = inter_references[:, level - 1]
reference = inverse_sigmoid(reference)
outputs_class = self.class_embed[level](hidden_states[:, level])
delta_bbox = self.bbox_embed[level](hidden_states[:, level])
if reference.shape[-1] == 4:
outputs_coord_logits = delta_bbox + reference
elif reference.shape[-1] == 2:
delta_bbox[..., :2] += reference
outputs_coord_logits = delta_bbox
else:
raise ValueError(f"reference.shape[-1] should be 4 or 2, but got {reference.shape[-1]}")
outputs_coord = outputs_coord_logits.sigmoid()
outputs_classes.append(outputs_class)
outputs_coords.append(outputs_coord)
# Keep batch_size as first dimension
outputs_class = torch.stack(outputs_classes, dim=1)
outputs_coord = torch.stack(outputs_coords, dim=1)
logits = outputs_class[:, -1]
pred_boxes = outputs_coord[:, -1]
loss, loss_dict, auxiliary_outputs = None, None, None
if labels is not None:
# First: create the matcher
matcher = DetaHungarianMatcher(
class_cost=self.config.class_cost, bbox_cost=self.config.bbox_cost, giou_cost=self.config.giou_cost
)
# Second: create the criterion
losses = ["labels", "boxes", "cardinality"]
criterion = DetaLoss(
matcher=matcher,
num_classes=self.config.num_labels,
focal_alpha=self.config.focal_alpha,
losses=losses,
num_queries=self.config.num_queries,
assign_first_stage=self.config.assign_first_stage,
assign_second_stage=self.config.assign_second_stage,
)
criterion.to(logits.device)
# Third: compute the losses, based on outputs and labels
outputs_loss = {}
outputs_loss["logits"] = logits
outputs_loss["pred_boxes"] = pred_boxes
outputs_loss["init_reference"] = init_reference
if self.config.auxiliary_loss:
auxiliary_outputs = self._set_aux_loss(outputs_class, outputs_coord)
outputs_loss["auxiliary_outputs"] = auxiliary_outputs
if self.config.two_stage:
enc_outputs_coord = outputs.enc_outputs_coord_logits.sigmoid()
outputs_loss["enc_outputs"] = {
"logits": outputs.enc_outputs_class,
"pred_boxes": enc_outputs_coord,
"anchors": outputs.output_proposals.sigmoid(),
}
loss_dict = criterion(outputs_loss, labels)
# Fourth: compute total loss, as a weighted sum of the various losses
weight_dict = {"loss_ce": 1, "loss_bbox": self.config.bbox_loss_coefficient}
weight_dict["loss_giou"] = self.config.giou_loss_coefficient
if self.config.auxiliary_loss:
aux_weight_dict = {}
for i in range(self.config.decoder_layers - 1):
aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()})
aux_weight_dict.update({k + "_enc": v for k, v in weight_dict.items()})
weight_dict.update(aux_weight_dict)
loss = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
if not return_dict:
if auxiliary_outputs is not None:
output = (logits, pred_boxes) + auxiliary_outputs + outputs
else:
output = (logits, pred_boxes) + outputs
tuple_outputs = ((loss, loss_dict) + output) if loss is not None else output
return tuple_outputs
dict_outputs = DetaObjectDetectionOutput(
loss=loss,
loss_dict=loss_dict,
logits=logits,
pred_boxes=pred_boxes,
auxiliary_outputs=auxiliary_outputs,
last_hidden_state=outputs.last_hidden_state,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
intermediate_hidden_states=outputs.intermediate_hidden_states,
intermediate_reference_points=outputs.intermediate_reference_points,
init_reference_points=outputs.init_reference_points,
enc_outputs_class=outputs.enc_outputs_class,
enc_outputs_coord_logits=outputs.enc_outputs_coord_logits,
output_proposals=outputs.output_proposals,
)
return dict_outputs
|
class_definition
| 89,601 | 101,596 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/deta/modeling_deta.py
| null | 10,417 |
class DetaLoss(nn.Module):
"""
This class computes the losses for `DetaForObjectDetection`. The process happens in two steps: 1) we compute
hungarian assignment between ground truth boxes and the outputs of the model 2) we supervise each pair of matched
ground-truth / prediction (supervised class and box).
Args:
matcher (`DetaHungarianMatcher`):
Module able to compute a matching between targets and proposals.
num_classes (`int`):
Number of object categories, omitting the special no-object category.
focal_alpha (`float`):
Alpha parameter in focal loss.
losses (`List[str]`):
List of all the losses to be applied. See `get_loss` for a list of all available losses.
"""
def __init__(
self,
matcher,
num_classes,
focal_alpha,
losses,
num_queries,
assign_first_stage=False,
assign_second_stage=False,
):
super().__init__()
self.matcher = matcher
self.num_classes = num_classes
self.focal_alpha = focal_alpha
self.losses = losses
self.assign_first_stage = assign_first_stage
self.assign_second_stage = assign_second_stage
if self.assign_first_stage:
self.stg1_assigner = DetaStage1Assigner()
if self.assign_second_stage:
self.stg2_assigner = DetaStage2Assigner(num_queries)
def loss_labels(self, outputs, targets, indices, num_boxes):
"""
Classification loss (Binary focal loss) targets dicts must contain the key "class_labels" containing a tensor
of dim [nb_target_boxes]
"""
if "logits" not in outputs:
raise KeyError("No logits were found in the outputs")
source_logits = outputs["logits"]
idx = self._get_source_permutation_idx(indices)
target_classes_o = torch.cat([t["class_labels"][J] for t, (_, J) in zip(targets, indices)])
target_classes = torch.full(
source_logits.shape[:2], self.num_classes, dtype=torch.int64, device=source_logits.device
)
target_classes[idx] = target_classes_o
target_classes_onehot = torch.zeros(
[source_logits.shape[0], source_logits.shape[1], source_logits.shape[2] + 1],
dtype=source_logits.dtype,
layout=source_logits.layout,
device=source_logits.device,
)
target_classes_onehot.scatter_(2, target_classes.unsqueeze(-1), 1)
target_classes_onehot = target_classes_onehot[:, :, :-1]
loss_ce = (
sigmoid_focal_loss(source_logits, target_classes_onehot, num_boxes, alpha=self.focal_alpha, gamma=2)
* source_logits.shape[1]
)
losses = {"loss_ce": loss_ce}
return losses
@torch.no_grad()
def loss_cardinality(self, outputs, targets, indices, num_boxes):
"""
Compute the cardinality error, i.e. the absolute error in the number of predicted non-empty boxes.
This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients.
"""
logits = outputs["logits"]
device = logits.device
target_lengths = torch.as_tensor([len(v["class_labels"]) for v in targets], device=device)
# Count the number of predictions that are NOT "no-object" (which is the last class)
card_pred = (logits.argmax(-1) != logits.shape[-1] - 1).sum(1)
card_err = nn.functional.l1_loss(card_pred.float(), target_lengths.float())
losses = {"cardinality_error": card_err}
return losses
def loss_boxes(self, outputs, targets, indices, num_boxes):
"""
Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss.
Targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]. The target boxes
are expected in format (center_x, center_y, w, h), normalized by the image size.
"""
if "pred_boxes" not in outputs:
raise KeyError("No predicted boxes found in outputs")
idx = self._get_source_permutation_idx(indices)
source_boxes = outputs["pred_boxes"][idx]
target_boxes = torch.cat([t["boxes"][i] for t, (_, i) in zip(targets, indices)], dim=0)
loss_bbox = nn.functional.l1_loss(source_boxes, target_boxes, reduction="none")
losses = {}
losses["loss_bbox"] = loss_bbox.sum() / num_boxes
loss_giou = 1 - torch.diag(
generalized_box_iou(center_to_corners_format(source_boxes), center_to_corners_format(target_boxes))
)
losses["loss_giou"] = loss_giou.sum() / num_boxes
return losses
def _get_source_permutation_idx(self, indices):
# permute predictions following indices
batch_idx = torch.cat([torch.full_like(source, i) for i, (source, _) in enumerate(indices)])
source_idx = torch.cat([source for (source, _) in indices])
return batch_idx, source_idx
def _get_target_permutation_idx(self, indices):
# permute targets following indices
batch_idx = torch.cat([torch.full_like(target, i) for i, (_, target) in enumerate(indices)])
target_idx = torch.cat([target for (_, target) in indices])
return batch_idx, target_idx
def get_loss(self, loss, outputs, targets, indices, num_boxes):
loss_map = {
"labels": self.loss_labels,
"cardinality": self.loss_cardinality,
"boxes": self.loss_boxes,
}
if loss not in loss_map:
raise ValueError(f"Loss {loss} not supported")
return loss_map[loss](outputs, targets, indices, num_boxes)
def forward(self, outputs, targets):
"""
This performs the loss computation.
Args:
outputs (`dict`, *optional*):
Dictionary of tensors, see the output specification of the model for the format.
targets (`List[dict]`, *optional*):
List of dicts, such that `len(targets) == batch_size`. The expected keys in each dict depends on the
losses applied, see each loss' doc.
"""
outputs_without_aux = {k: v for k, v in outputs.items() if k not in ("auxiliary_outputs", "enc_outputs")}
# Retrieve the matching between the outputs of the last layer and the targets
if self.assign_second_stage:
indices = self.stg2_assigner(outputs_without_aux, targets)
else:
indices = self.matcher(outputs_without_aux, targets)
# Compute the average number of target boxes accross all nodes, for normalization purposes
num_boxes = sum(len(t["class_labels"]) for t in targets)
num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device)
# Check that we have initialized the distributed state
world_size = 1
if is_accelerate_available():
if PartialState._shared_state != {}:
num_boxes = reduce(num_boxes)
world_size = PartialState().num_processes
num_boxes = torch.clamp(num_boxes / world_size, min=1).item()
# Compute all the requested losses
losses = {}
for loss in self.losses:
losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes))
# In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
if "auxiliary_outputs" in outputs:
for i, auxiliary_outputs in enumerate(outputs["auxiliary_outputs"]):
if not self.assign_second_stage:
indices = self.matcher(auxiliary_outputs, targets)
for loss in self.losses:
l_dict = self.get_loss(loss, auxiliary_outputs, targets, indices, num_boxes)
l_dict = {k + f"_{i}": v for k, v in l_dict.items()}
losses.update(l_dict)
if "enc_outputs" in outputs:
enc_outputs = outputs["enc_outputs"]
bin_targets = copy.deepcopy(targets)
for bt in bin_targets:
bt["class_labels"] = torch.zeros_like(bt["class_labels"])
if self.assign_first_stage:
indices = self.stg1_assigner(enc_outputs, bin_targets)
else:
indices = self.matcher(enc_outputs, bin_targets)
for loss in self.losses:
l_dict = self.get_loss(loss, enc_outputs, bin_targets, indices, num_boxes)
l_dict = {k + "_enc": v for k, v in l_dict.items()}
losses.update(l_dict)
return losses
|
class_definition
| 103,575 | 112,313 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/deta/modeling_deta.py
| null | 10,418 |
class DetaMLPPredictionHead(nn.Module):
"""
Very simple multi-layer perceptron (MLP, also called FFN), used to predict the normalized center coordinates,
height and width of a bounding box w.r.t. an image.
Copied from https://github.com/facebookresearch/detr/blob/master/models/detr.py
"""
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
def forward(self, x):
for i, layer in enumerate(self.layers):
x = nn.functional.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
return x
|
class_definition
| 112,316 | 113,089 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/deta/modeling_deta.py
| null | 10,419 |
class DetaHungarianMatcher(nn.Module):
"""
This class computes an assignment between the targets and the predictions of the network.
For efficiency reasons, the targets don't include the no_object. Because of this, in general, there are more
predictions than targets. In this case, we do a 1-to-1 matching of the best predictions, while the others are
un-matched (and thus treated as non-objects).
Args:
class_cost:
The relative weight of the classification error in the matching cost.
bbox_cost:
The relative weight of the L1 error of the bounding box coordinates in the matching cost.
giou_cost:
The relative weight of the giou loss of the bounding box in the matching cost.
"""
def __init__(self, class_cost: float = 1, bbox_cost: float = 1, giou_cost: float = 1):
super().__init__()
requires_backends(self, ["scipy"])
self.class_cost = class_cost
self.bbox_cost = bbox_cost
self.giou_cost = giou_cost
if class_cost == 0 and bbox_cost == 0 and giou_cost == 0:
raise ValueError("All costs of the Matcher can't be 0")
@torch.no_grad()
def forward(self, outputs, targets):
"""
Args:
outputs (`dict`):
A dictionary that contains at least these entries:
* "logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits
* "pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates.
targets (`List[dict]`):
A list of targets (len(targets) = batch_size), where each target is a dict containing:
* "class_labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of
ground-truth
objects in the target) containing the class labels
* "boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates.
Returns:
`List[Tuple]`: A list of size `batch_size`, containing tuples of (index_i, index_j) where:
- index_i is the indices of the selected predictions (in order)
- index_j is the indices of the corresponding selected targets (in order)
For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes)
"""
batch_size, num_queries = outputs["logits"].shape[:2]
# We flatten to compute the cost matrices in a batch
out_prob = outputs["logits"].flatten(0, 1).sigmoid() # [batch_size * num_queries, num_classes]
out_bbox = outputs["pred_boxes"].flatten(0, 1) # [batch_size * num_queries, 4]
# Also concat the target labels and boxes
target_ids = torch.cat([v["class_labels"] for v in targets])
target_bbox = torch.cat([v["boxes"] for v in targets])
# Compute the classification cost.
alpha = 0.25
gamma = 2.0
neg_cost_class = (1 - alpha) * (out_prob**gamma) * (-(1 - out_prob + 1e-8).log())
pos_cost_class = alpha * ((1 - out_prob) ** gamma) * (-(out_prob + 1e-8).log())
class_cost = pos_cost_class[:, target_ids] - neg_cost_class[:, target_ids]
# Compute the L1 cost between boxes
bbox_cost = torch.cdist(out_bbox, target_bbox, p=1)
# Compute the giou cost between boxes
giou_cost = -generalized_box_iou(center_to_corners_format(out_bbox), center_to_corners_format(target_bbox))
# Final cost matrix
cost_matrix = self.bbox_cost * bbox_cost + self.class_cost * class_cost + self.giou_cost * giou_cost
cost_matrix = cost_matrix.view(batch_size, num_queries, -1).cpu()
sizes = [len(v["boxes"]) for v in targets]
indices = [linear_sum_assignment(c[i]) for i, c in enumerate(cost_matrix.split(sizes, -1))]
return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices]
|
class_definition
| 113,092 | 117,122 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/deta/modeling_deta.py
| null | 10,420 |
class DetaMatcher:
"""
This class assigns to each predicted "element" (e.g., a box) a ground-truth element. Each predicted element will
have exactly zero or one matches; each ground-truth element may be matched to zero or more predicted elements.
The matching is determined by the MxN match_quality_matrix, that characterizes how well each (ground-truth,
prediction)-pair match each other. For example, if the elements are boxes, this matrix may contain box
intersection-over-union overlap values.
The matcher returns (a) a vector of length N containing the index of the ground-truth element m in [0, M) that
matches to prediction n in [0, N). (b) a vector of length N containing the labels for each prediction.
"""
def __init__(self, thresholds: List[float], labels: List[int], allow_low_quality_matches: bool = False):
"""
Args:
thresholds (`list[float]`):
A list of thresholds used to stratify predictions into levels.
labels (`list[int`):
A list of values to label predictions belonging at each level. A label can be one of {-1, 0, 1}
signifying {ignore, negative class, positive class}, respectively.
allow_low_quality_matches (`bool`, *optional*, defaults to `False`):
If `True`, produce additional matches for predictions with maximum match quality lower than
high_threshold. See `set_low_quality_matches_` for more details.
For example,
thresholds = [0.3, 0.5] labels = [0, -1, 1] All predictions with iou < 0.3 will be marked with 0 and
thus will be considered as false positives while training. All predictions with 0.3 <= iou < 0.5 will
be marked with -1 and thus will be ignored. All predictions with 0.5 <= iou will be marked with 1 and
thus will be considered as true positives.
"""
# Add -inf and +inf to first and last position in thresholds
thresholds = thresholds[:]
if thresholds[0] < 0:
raise ValueError("Thresholds should be positive")
thresholds.insert(0, -float("inf"))
thresholds.append(float("inf"))
# Currently torchscript does not support all + generator
if not all(low <= high for (low, high) in zip(thresholds[:-1], thresholds[1:])):
raise ValueError("Thresholds should be sorted.")
if not all(l in [-1, 0, 1] for l in labels):
raise ValueError("All labels should be either -1, 0 or 1")
if len(labels) != len(thresholds) - 1:
raise ValueError("Number of labels should be equal to number of thresholds - 1")
self.thresholds = thresholds
self.labels = labels
self.allow_low_quality_matches = allow_low_quality_matches
def __call__(self, match_quality_matrix):
"""
Args:
match_quality_matrix (Tensor[float]): an MxN tensor, containing the
pairwise quality between M ground-truth elements and N predicted elements. All elements must be >= 0
(due to the us of `torch.nonzero` for selecting indices in `set_low_quality_matches_`).
Returns:
matches (Tensor[int64]): a vector of length N, where matches[i] is a matched
ground-truth index in [0, M)
match_labels (Tensor[int8]): a vector of length N, where pred_labels[i] indicates
whether a prediction is a true or false positive or ignored
"""
assert match_quality_matrix.dim() == 2
if match_quality_matrix.numel() == 0:
default_matches = match_quality_matrix.new_full((match_quality_matrix.size(1),), 0, dtype=torch.int64)
# When no gt boxes exist, we define IOU = 0 and therefore set labels
# to `self.labels[0]`, which usually defaults to background class 0
# To choose to ignore instead, can make labels=[-1,0,-1,1] + set appropriate thresholds
default_match_labels = match_quality_matrix.new_full(
(match_quality_matrix.size(1),), self.labels[0], dtype=torch.int8
)
return default_matches, default_match_labels
assert torch.all(match_quality_matrix >= 0)
# match_quality_matrix is M (gt) x N (predicted)
# Max over gt elements (dim 0) to find best gt candidate for each prediction
matched_vals, matches = match_quality_matrix.max(dim=0)
match_labels = matches.new_full(matches.size(), 1, dtype=torch.int8)
for l, low, high in zip(self.labels, self.thresholds[:-1], self.thresholds[1:]):
low_high = (matched_vals >= low) & (matched_vals < high)
match_labels[low_high] = l
if self.allow_low_quality_matches:
self.set_low_quality_matches_(match_labels, match_quality_matrix)
return matches, match_labels
def set_low_quality_matches_(self, match_labels, match_quality_matrix):
"""
Produce additional matches for predictions that have only low-quality matches. Specifically, for each
ground-truth G find the set of predictions that have maximum overlap with it (including ties); for each
prediction in that set, if it is unmatched, then match it to the ground-truth G.
This function implements the RPN assignment case (i) in Sec. 3.1.2 of :paper:`Faster R-CNN`.
"""
# For each gt, find the prediction with which it has highest quality
highest_quality_foreach_gt, _ = match_quality_matrix.max(dim=1)
# Find the highest quality match available, even if it is low, including ties.
# Note that the matches qualities must be positive due to the use of
# `torch.nonzero`.
_, pred_inds_with_highest_quality = nonzero_tuple(match_quality_matrix == highest_quality_foreach_gt[:, None])
# If an anchor was labeled positive only due to a low-quality match
# with gt_A, but it has larger overlap with gt_B, it's matched index will still be gt_B.
# This follows the implementation in Detectron, and is found to have no significant impact.
match_labels[pred_inds_with_highest_quality] = 1
|
class_definition
| 120,130 | 126,373 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/deta/modeling_deta.py
| null | 10,421 |
class DetaStage2Assigner(nn.Module):
def __init__(self, num_queries, max_k=4):
super().__init__()
self.positive_fraction = 0.25
self.bg_label = 400 # number > 91 to filter out later
self.batch_size_per_image = num_queries
self.proposal_matcher = DetaMatcher(thresholds=[0.6], labels=[0, 1], allow_low_quality_matches=True)
self.k = max_k
def _sample_proposals(self, matched_idxs: torch.Tensor, matched_labels: torch.Tensor, gt_classes: torch.Tensor):
"""
Based on the matching between N proposals and M groundtruth, sample the proposals and set their classification
labels.
Args:
matched_idxs (Tensor): a vector of length N, each is the best-matched
gt index in [0, M) for each proposal.
matched_labels (Tensor): a vector of length N, the matcher's label
(one of cfg.MODEL.ROI_HEADS.IOU_LABELS) for each proposal.
gt_classes (Tensor): a vector of length M.
Returns:
Tensor: a vector of indices of sampled proposals. Each is in [0, N). Tensor: a vector of the same length,
the classification label for
each sampled proposal. Each sample is labeled as either a category in [0, num_classes) or the
background (num_classes).
"""
has_gt = gt_classes.numel() > 0
# Get the corresponding GT for each proposal
if has_gt:
gt_classes = gt_classes[matched_idxs]
# Label unmatched proposals (0 label from matcher) as background (label=num_classes)
gt_classes[matched_labels == 0] = self.bg_label
# Label ignore proposals (-1 label)
gt_classes[matched_labels == -1] = -1
else:
gt_classes = torch.zeros_like(matched_idxs) + self.bg_label
sampled_fg_idxs, sampled_bg_idxs = subsample_labels(
gt_classes, self.batch_size_per_image, self.positive_fraction, self.bg_label
)
sampled_idxs = torch.cat([sampled_fg_idxs, sampled_bg_idxs], dim=0)
return sampled_idxs, gt_classes[sampled_idxs]
def forward(self, outputs, targets, return_cost_matrix=False):
# COCO categories are from 1 to 90. They set num_classes=91 and apply sigmoid.
bs = len(targets)
indices = []
ious = []
for b in range(bs):
iou, _ = box_iou(
center_to_corners_format(targets[b]["boxes"]),
center_to_corners_format(outputs["init_reference"][b].detach()),
)
matched_idxs, matched_labels = self.proposal_matcher(
iou
) # proposal_id -> highest_iou_gt_id, proposal_id -> [1 if iou > 0.6, 0 ow]
(
sampled_idxs,
sampled_gt_classes,
) = self._sample_proposals( # list of sampled proposal_ids, sampled_id -> [0, num_classes)+[bg_label]
matched_idxs, matched_labels, targets[b]["class_labels"]
)
pos_pr_inds = sampled_idxs[sampled_gt_classes != self.bg_label]
pos_gt_inds = matched_idxs[pos_pr_inds]
pos_pr_inds, pos_gt_inds = self.postprocess_indices(pos_pr_inds, pos_gt_inds, iou)
indices.append((pos_pr_inds, pos_gt_inds))
ious.append(iou)
if return_cost_matrix:
return indices, ious
return indices
def postprocess_indices(self, pr_inds, gt_inds, iou):
return sample_topk_per_gt(pr_inds, gt_inds, iou, self.k)
|
class_definition
| 129,352 | 132,915 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/deta/modeling_deta.py
| null | 10,422 |
class DetaStage1Assigner(nn.Module):
def __init__(self, t_low=0.3, t_high=0.7, max_k=4):
super().__init__()
self.positive_fraction = 0.5
self.batch_size_per_image = 256
self.k = max_k
self.t_low = t_low
self.t_high = t_high
self.anchor_matcher = DetaMatcher(
thresholds=[t_low, t_high], labels=[0, -1, 1], allow_low_quality_matches=True
)
def _subsample_labels(self, label):
"""
Randomly sample a subset of positive and negative examples, and overwrite the label vector to the ignore value
(-1) for all elements that are not included in the sample.
Args:
labels (Tensor): a vector of -1, 0, 1. Will be modified in-place and returned.
"""
pos_idx, neg_idx = subsample_labels(label, self.batch_size_per_image, self.positive_fraction, 0)
# Fill with the ignore label (-1), then set positive and negative labels
label.fill_(-1)
label.scatter_(0, pos_idx, 1)
label.scatter_(0, neg_idx, 0)
return label
def forward(self, outputs, targets):
bs = len(targets)
indices = []
for b in range(bs):
anchors = outputs["anchors"][b]
if len(targets[b]["boxes"]) == 0:
indices.append(
(
torch.tensor([], dtype=torch.long, device=anchors.device),
torch.tensor([], dtype=torch.long, device=anchors.device),
)
)
continue
iou, _ = box_iou(
center_to_corners_format(targets[b]["boxes"]),
center_to_corners_format(anchors),
)
matched_idxs, matched_labels = self.anchor_matcher(
iou
) # proposal_id -> highest_iou_gt_id, proposal_id -> [1 if iou > 0.7, 0 if iou < 0.3, -1 ow]
matched_labels = self._subsample_labels(matched_labels)
all_pr_inds = torch.arange(len(anchors), device=matched_labels.device)
pos_pr_inds = all_pr_inds[matched_labels == 1]
pos_gt_inds = matched_idxs[pos_pr_inds]
pos_pr_inds, pos_gt_inds = self.postprocess_indices(pos_pr_inds, pos_gt_inds, iou)
pos_pr_inds, pos_gt_inds = pos_pr_inds.to(anchors.device), pos_gt_inds.to(anchors.device)
indices.append((pos_pr_inds, pos_gt_inds))
return indices
def postprocess_indices(self, pr_inds, gt_inds, iou):
return sample_topk_per_gt(pr_inds, gt_inds, iou, self.k)
|
class_definition
| 133,078 | 135,662 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/deta/modeling_deta.py
| null | 10,423 |
class DetaConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`DetaModel`]. It is used to instantiate a DETA
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the DETA
[SenseTime/deformable-detr](https://huggingface.co/SenseTime/deformable-detr) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
backbone_config (`PretrainedConfig` or `dict`, *optional*, defaults to `ResNetConfig()`):
The configuration of the backbone model.
backbone (`str`, *optional*):
Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this
will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone`
is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights.
use_pretrained_backbone (`bool`, *optional*, `False`):
Whether to use pretrained weights for the backbone.
use_timm_backbone (`bool`, *optional*, `False`):
Whether to load `backbone` from the timm library. If `False`, the backbone is loaded from the transformers
library.
backbone_kwargs (`dict`, *optional*):
Keyword arguments to be passed to AutoBackbone when loading from a checkpoint
e.g. `{'out_indices': (0, 1, 2, 3)}`. Cannot be specified if `backbone_config` is set.
num_queries (`int`, *optional*, defaults to 900):
Number of object queries, i.e. detection slots. This is the maximal number of objects [`DetaModel`] can
detect in a single image. In case `two_stage` is set to `True`, we use `two_stage_num_proposals` instead.
d_model (`int`, *optional*, defaults to 256):
Dimension of the layers.
encoder_layers (`int`, *optional*, defaults to 6):
Number of encoder layers.
decoder_layers (`int`, *optional*, defaults to 6):
Number of decoder layers.
encoder_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer decoder.
decoder_ffn_dim (`int`, *optional*, defaults to 2048):
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
encoder_ffn_dim (`int`, *optional*, defaults to 2048):
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
activation_function (`str` or `function`, *optional*, defaults to `"relu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
init_xavier_std (`float`, *optional*, defaults to 1):
The scaling factor used for the Xavier initialization gain in the HM Attention map module.
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
auxiliary_loss (`bool`, *optional*, defaults to `False`):
Whether auxiliary decoding losses (loss at each decoder layer) are to be used.
position_embedding_type (`str`, *optional*, defaults to `"sine"`):
Type of position embeddings to be used on top of the image features. One of `"sine"` or `"learned"`.
class_cost (`float`, *optional*, defaults to 1):
Relative weight of the classification error in the Hungarian matching cost.
bbox_cost (`float`, *optional*, defaults to 5):
Relative weight of the L1 error of the bounding box coordinates in the Hungarian matching cost.
giou_cost (`float`, *optional*, defaults to 2):
Relative weight of the generalized IoU loss of the bounding box in the Hungarian matching cost.
mask_loss_coefficient (`float`, *optional*, defaults to 1):
Relative weight of the Focal loss in the panoptic segmentation loss.
dice_loss_coefficient (`float`, *optional*, defaults to 1):
Relative weight of the DICE/F-1 loss in the panoptic segmentation loss.
bbox_loss_coefficient (`float`, *optional*, defaults to 5):
Relative weight of the L1 bounding box loss in the object detection loss.
giou_loss_coefficient (`float`, *optional*, defaults to 2):
Relative weight of the generalized IoU loss in the object detection loss.
eos_coefficient (`float`, *optional*, defaults to 0.1):
Relative classification weight of the 'no-object' class in the object detection loss.
num_feature_levels (`int`, *optional*, defaults to 5):
The number of input feature levels.
encoder_n_points (`int`, *optional*, defaults to 4):
The number of sampled keys in each feature level for each attention head in the encoder.
decoder_n_points (`int`, *optional*, defaults to 4):
The number of sampled keys in each feature level for each attention head in the decoder.
two_stage (`bool`, *optional*, defaults to `True`):
Whether to apply a two-stage deformable DETR, where the region proposals are also generated by a variant of
DETA, which are further fed into the decoder for iterative bounding box refinement.
two_stage_num_proposals (`int`, *optional*, defaults to 300):
The number of region proposals to be generated, in case `two_stage` is set to `True`.
with_box_refine (`bool`, *optional*, defaults to `True`):
Whether to apply iterative bounding box refinement, where each decoder layer refines the bounding boxes
based on the predictions from the previous layer.
focal_alpha (`float`, *optional*, defaults to 0.25):
Alpha parameter in the focal loss.
assign_first_stage (`bool`, *optional*, defaults to `True`):
Whether to assign each prediction i to the highest overlapping ground truth object if the overlap is larger than a threshold 0.7.
assign_second_stage (`bool`, *optional*, defaults to `True`):
Whether to assign second assignment procedure in the second stage closely follows the first stage assignment procedure.
disable_custom_kernels (`bool`, *optional*, defaults to `True`):
Disable the use of custom CUDA and CPU kernels. This option is necessary for the ONNX export, as custom
kernels are not supported by PyTorch ONNX export.
Examples:
```python
>>> from transformers import DetaConfig, DetaModel
>>> # Initializing a DETA SenseTime/deformable-detr style configuration
>>> configuration = DetaConfig()
>>> # Initializing a model (with random weights) from the SenseTime/deformable-detr style configuration
>>> model = DetaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "deta"
attribute_map = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
def __init__(
self,
backbone_config=None,
backbone=None,
use_pretrained_backbone=False,
use_timm_backbone=False,
backbone_kwargs=None,
num_queries=900,
max_position_embeddings=2048,
encoder_layers=6,
encoder_ffn_dim=2048,
encoder_attention_heads=8,
decoder_layers=6,
decoder_ffn_dim=1024,
decoder_attention_heads=8,
encoder_layerdrop=0.0,
is_encoder_decoder=True,
activation_function="relu",
d_model=256,
dropout=0.1,
attention_dropout=0.0,
activation_dropout=0.0,
init_std=0.02,
init_xavier_std=1.0,
return_intermediate=True,
auxiliary_loss=False,
position_embedding_type="sine",
num_feature_levels=5,
encoder_n_points=4,
decoder_n_points=4,
two_stage=True,
two_stage_num_proposals=300,
with_box_refine=True,
assign_first_stage=True,
assign_second_stage=True,
class_cost=1,
bbox_cost=5,
giou_cost=2,
mask_loss_coefficient=1,
dice_loss_coefficient=1,
bbox_loss_coefficient=5,
giou_loss_coefficient=2,
eos_coefficient=0.1,
focal_alpha=0.25,
disable_custom_kernels=True,
**kwargs,
):
if use_pretrained_backbone:
raise ValueError("Pretrained backbones are not supported yet.")
if backbone_config is not None and backbone is not None:
raise ValueError("You can't specify both `backbone` and `backbone_config`.")
if backbone_config is None and backbone is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.")
backbone_config = CONFIG_MAPPING["resnet"](out_features=["stage2", "stage3", "stage4"])
else:
if isinstance(backbone_config, dict):
backbone_model_type = backbone_config.pop("model_type")
config_class = CONFIG_MAPPING[backbone_model_type]
backbone_config = config_class.from_dict(backbone_config)
if backbone_kwargs is not None and backbone_kwargs and backbone_config is not None:
raise ValueError("You can't specify both `backbone_kwargs` and `backbone_config`.")
self.backbone_config = backbone_config
self.backbone = backbone
self.use_pretrained_backbone = use_pretrained_backbone
self.use_timm_backbone = use_timm_backbone
self.backbone_kwargs = backbone_kwargs
self.num_queries = num_queries
self.max_position_embeddings = max_position_embeddings
self.d_model = d_model
self.encoder_ffn_dim = encoder_ffn_dim
self.encoder_layers = encoder_layers
self.encoder_attention_heads = encoder_attention_heads
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_layers = decoder_layers
self.decoder_attention_heads = decoder_attention_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.activation_function = activation_function
self.init_std = init_std
self.init_xavier_std = init_xavier_std
self.encoder_layerdrop = encoder_layerdrop
self.auxiliary_loss = auxiliary_loss
self.position_embedding_type = position_embedding_type
# deformable attributes
self.num_feature_levels = num_feature_levels
self.encoder_n_points = encoder_n_points
self.decoder_n_points = decoder_n_points
self.two_stage = two_stage
self.two_stage_num_proposals = two_stage_num_proposals
self.with_box_refine = with_box_refine
self.assign_first_stage = assign_first_stage
self.assign_second_stage = assign_second_stage
if two_stage is True and with_box_refine is False:
raise ValueError("If two_stage is True, with_box_refine must be True.")
# Hungarian matcher
self.class_cost = class_cost
self.bbox_cost = bbox_cost
self.giou_cost = giou_cost
# Loss coefficients
self.mask_loss_coefficient = mask_loss_coefficient
self.dice_loss_coefficient = dice_loss_coefficient
self.bbox_loss_coefficient = bbox_loss_coefficient
self.giou_loss_coefficient = giou_loss_coefficient
self.eos_coefficient = eos_coefficient
self.focal_alpha = focal_alpha
self.disable_custom_kernels = disable_custom_kernels
super().__init__(is_encoder_decoder=is_encoder_decoder, **kwargs)
@property
def num_attention_heads(self) -> int:
return self.encoder_attention_heads
@property
def hidden_size(self) -> int:
return self.d_model
|
class_definition
| 832 | 13,947 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/deta/configuration_deta.py
| null | 10,424 |
class DetaImageProcessor(BaseImageProcessor):
r"""
Constructs a Deformable DETR image processor.
Args:
format (`str`, *optional*, defaults to `"coco_detection"`):
Data format of the annotations. One of "coco_detection" or "coco_panoptic".
do_resize (`bool`, *optional*, defaults to `True`):
Controls whether to resize the image's (height, width) dimensions to the specified `size`. Can be
overridden by the `do_resize` parameter in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 800, "longest_edge": 1333}`):
Size of the image's `(height, width)` dimensions after resizing. Can be overridden by the `size` parameter
in the `preprocess` method. Available options are:
- `{"height": int, "width": int}`: The image will be resized to the exact size `(height, width)`.
Do NOT keep the aspect ratio.
- `{"shortest_edge": int, "longest_edge": int}`: The image will be resized to a maximum size respecting
the aspect ratio and keeping the shortest edge less or equal to `shortest_edge` and the longest edge
less or equal to `longest_edge`.
- `{"max_height": int, "max_width": int}`: The image will be resized to the maximum size respecting the
aspect ratio and keeping the height less or equal to `max_height` and the width less or equal to
`max_width`.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
Resampling filter to use if resizing the image.
do_rescale (`bool`, *optional*, defaults to `True`):
Controls whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the
`do_rescale` parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
`preprocess` method.
do_normalize:
Controls whether to normalize the image. Can be overridden by the `do_normalize` parameter in the
`preprocess` method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_MEAN`):
Mean values to use when normalizing the image. Can be a single value or a list of values, one for each
channel. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_STD`):
Standard deviation values to use when normalizing the image. Can be a single value or a list of values, one
for each channel. Can be overridden by the `image_std` parameter in the `preprocess` method.
do_convert_annotations (`bool`, *optional*, defaults to `True`):
Controls whether to convert the annotations to the format expected by the DETR model. Converts the
bounding boxes to the format `(center_x, center_y, width, height)` and in the range `[0, 1]`.
Can be overridden by the `do_convert_annotations` parameter in the `preprocess` method.
do_pad (`bool`, *optional*, defaults to `True`):
Controls whether to pad the image. Can be overridden by the `do_pad` parameter in the `preprocess`
method. If `True`, padding will be applied to the bottom and right of the image with zeros.
If `pad_size` is provided, the image will be padded to the specified dimensions.
Otherwise, the image will be padded to the maximum height and width of the batch.
pad_size (`Dict[str, int]`, *optional*):
The size `{"height": int, "width" int}` to pad the images to. Must be larger than any image size
provided for preprocessing. If `pad_size` is not provided, images will be padded to the largest
height and width in the batch.
"""
model_input_names = ["pixel_values", "pixel_mask"]
def __init__(
self,
format: Union[str, AnnotationFormat] = AnnotationFormat.COCO_DETECTION,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Union[float, List[float]] = None,
image_std: Union[float, List[float]] = None,
do_convert_annotations: bool = True,
do_pad: bool = True,
pad_size: Optional[Dict[str, int]] = None,
**kwargs,
) -> None:
if "pad_and_return_pixel_mask" in kwargs:
do_pad = kwargs.pop("pad_and_return_pixel_mask")
size = size if size is not None else {"shortest_edge": 800, "longest_edge": 1333}
size = get_size_dict(size, default_to_square=False)
if do_convert_annotations is None:
do_convert_annotations = do_normalize
super().__init__(**kwargs)
self.format = format
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.do_convert_annotations = do_convert_annotations
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
self.do_pad = do_pad
self.pad_size = pad_size
def prepare_annotation(
self,
image: np.ndarray,
target: Dict,
format: Optional[AnnotationFormat] = None,
return_segmentation_masks: bool = None,
masks_path: Optional[Union[str, pathlib.Path]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> Dict:
"""
Prepare an annotation for feeding into DETA model.
"""
format = format if format is not None else self.format
if format == AnnotationFormat.COCO_DETECTION:
return_segmentation_masks = False if return_segmentation_masks is None else return_segmentation_masks
target = prepare_coco_detection_annotation(
image, target, return_segmentation_masks, input_data_format=input_data_format
)
elif format == AnnotationFormat.COCO_PANOPTIC:
return_segmentation_masks = True if return_segmentation_masks is None else return_segmentation_masks
target = prepare_coco_panoptic_annotation(
image,
target,
masks_path=masks_path,
return_masks=return_segmentation_masks,
input_data_format=input_data_format,
)
else:
raise ValueError(f"Format {format} is not supported.")
return target
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BILINEAR,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize the image to the given size. Size can be `min_size` (scalar) or `(height, width)` tuple. If size is an
int, smaller edge of the image will be matched to this number.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the image's `(height, width)` dimensions after resizing. Available options are:
- `{"height": int, "width": int}`: The image will be resized to the exact size `(height, width)`.
Do NOT keep the aspect ratio.
- `{"shortest_edge": int, "longest_edge": int}`: The image will be resized to a maximum size respecting
the aspect ratio and keeping the shortest edge less or equal to `shortest_edge` and the longest edge
less or equal to `longest_edge`.
- `{"max_height": int, "max_width": int}`: The image will be resized to the maximum size respecting the
aspect ratio and keeping the height less or equal to `max_height` and the width less or equal to
`max_width`.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
Resampling filter to use if resizing the image.
data_format (`ChannelDimension`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred from the input
image.
"""
size = get_size_dict(size, default_to_square=False)
if "shortest_edge" in size and "longest_edge" in size:
new_size = get_resize_output_image_size(
image, size["shortest_edge"], size["longest_edge"], input_data_format=input_data_format
)
elif "height" in size and "width" in size:
new_size = (size["height"], size["width"])
elif "max_height" in size and "max_width" in size:
new_size = get_image_size_for_max_height_width(
image, size["max_height"], size["max_width"], input_data_format=input_data_format
)
else:
raise ValueError(
"Size must contain 'height' and 'width' keys or 'shortest_edge' and 'longest_edge' keys. Got"
f" {size.keys()}."
)
image = resize(
image, size=new_size, resample=resample, data_format=data_format, input_data_format=input_data_format
)
return image
def resize_annotation(
self,
annotation,
orig_size,
size,
resample: PILImageResampling = PILImageResampling.NEAREST,
) -> Dict:
"""
Resize the annotation to match the resized image. If size is an int, smaller edge of the mask will be matched
to this number.
"""
return resize_annotation(annotation, orig_size=orig_size, target_size=size, resample=resample)
def rescale(
self,
image: np.ndarray,
rescale_factor: float,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Rescale the image by the given factor. image = image * rescale_factor.
Args:
image (`np.ndarray`):
Image to rescale.
rescale_factor (`float`):
The value to use for rescaling.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the input image. If unset, is inferred from the input image. Can be
one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
"""
return rescale(image, rescale_factor, data_format=data_format, input_data_format=input_data_format)
def normalize_annotation(self, annotation: Dict, image_size: Tuple[int, int]) -> Dict:
"""
Normalize the boxes in the annotation from `[top_left_x, top_left_y, bottom_right_x, bottom_right_y]` to
`[center_x, center_y, width, height]` format and from absolute to relative pixel values.
"""
return normalize_annotation(annotation, image_size=image_size)
def _update_annotation_for_padded_image(
self,
annotation: Dict,
input_image_size: Tuple[int, int],
output_image_size: Tuple[int, int],
padding,
update_bboxes,
) -> Dict:
"""
Update the annotation for a padded image.
"""
new_annotation = {}
new_annotation["size"] = output_image_size
for key, value in annotation.items():
if key == "masks":
masks = value
masks = pad(
masks,
padding,
mode=PaddingMode.CONSTANT,
constant_values=0,
input_data_format=ChannelDimension.FIRST,
)
masks = safe_squeeze(masks, 1)
new_annotation["masks"] = masks
elif key == "boxes" and update_bboxes:
boxes = value
boxes *= np.asarray(
[
input_image_size[1] / output_image_size[1],
input_image_size[0] / output_image_size[0],
input_image_size[1] / output_image_size[1],
input_image_size[0] / output_image_size[0],
]
)
new_annotation["boxes"] = boxes
elif key == "size":
new_annotation["size"] = output_image_size
else:
new_annotation[key] = value
return new_annotation
def _pad_image(
self,
image: np.ndarray,
output_size: Tuple[int, int],
annotation: Optional[Dict[str, Any]] = None,
constant_values: Union[float, Iterable[float]] = 0,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
update_bboxes: bool = True,
) -> np.ndarray:
"""
Pad an image with zeros to the given size.
"""
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
output_height, output_width = output_size
pad_bottom = output_height - input_height
pad_right = output_width - input_width
padding = ((0, pad_bottom), (0, pad_right))
padded_image = pad(
image,
padding,
mode=PaddingMode.CONSTANT,
constant_values=constant_values,
data_format=data_format,
input_data_format=input_data_format,
)
if annotation is not None:
annotation = self._update_annotation_for_padded_image(
annotation, (input_height, input_width), (output_height, output_width), padding, update_bboxes
)
return padded_image, annotation
def pad(
self,
images: List[np.ndarray],
annotations: Optional[Union[AnnotationType, List[AnnotationType]]] = None,
constant_values: Union[float, Iterable[float]] = 0,
return_pixel_mask: bool = True,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
update_bboxes: bool = True,
pad_size: Optional[Dict[str, int]] = None,
) -> BatchFeature:
"""
Pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width
in the batch and optionally returns their corresponding pixel mask.
Args:
images (List[`np.ndarray`]):
Images to pad.
annotations (`AnnotationType` or `List[AnnotationType]`, *optional*):
Annotations to transform according to the padding that is applied to the images.
constant_values (`float` or `Iterable[float]`, *optional*):
The value to use for the padding if `mode` is `"constant"`.
return_pixel_mask (`bool`, *optional*, defaults to `True`):
Whether to return a pixel mask.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
update_bboxes (`bool`, *optional*, defaults to `True`):
Whether to update the bounding boxes in the annotations to match the padded images. If the
bounding boxes have not been converted to relative coordinates and `(centre_x, centre_y, width, height)`
format, the bounding boxes will not be updated.
pad_size (`Dict[str, int]`, *optional*):
The size `{"height": int, "width" int}` to pad the images to. Must be larger than any image size
provided for preprocessing. If `pad_size` is not provided, images will be padded to the largest
height and width in the batch.
"""
pad_size = pad_size if pad_size is not None else self.pad_size
if pad_size is not None:
padded_size = (pad_size["height"], pad_size["width"])
else:
padded_size = get_max_height_width(images, input_data_format=input_data_format)
annotation_list = annotations if annotations is not None else [None] * len(images)
padded_images = []
padded_annotations = []
for image, annotation in zip(images, annotation_list):
padded_image, padded_annotation = self._pad_image(
image,
padded_size,
annotation,
constant_values=constant_values,
data_format=data_format,
input_data_format=input_data_format,
update_bboxes=update_bboxes,
)
padded_images.append(padded_image)
padded_annotations.append(padded_annotation)
data = {"pixel_values": padded_images}
if return_pixel_mask:
masks = [
make_pixel_mask(image=image, output_size=padded_size, input_data_format=input_data_format)
for image in images
]
data["pixel_mask"] = masks
encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors)
if annotations is not None:
encoded_inputs["labels"] = [
BatchFeature(annotation, tensor_type=return_tensors) for annotation in padded_annotations
]
return encoded_inputs
def preprocess(
self,
images: ImageInput,
annotations: Optional[Union[List[Dict], List[List[Dict]]]] = None,
return_segmentation_masks: bool = None,
masks_path: Optional[Union[str, pathlib.Path]] = None,
do_resize: Optional[bool] = None,
size: Optional[Dict[str, int]] = None,
resample=None, # PILImageResampling
do_rescale: Optional[bool] = None,
rescale_factor: Optional[Union[int, float]] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_annotations: Optional[bool] = None,
do_pad: Optional[bool] = None,
format: Optional[Union[str, AnnotationFormat]] = None,
return_tensors: Optional[Union[TensorType, str]] = None,
data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
pad_size: Optional[Dict[str, int]] = None,
**kwargs,
) -> BatchFeature:
"""
Preprocess an image or a batch of images so that it can be used by the model.
Args:
images (`ImageInput`):
Image or batch of images to preprocess. Expects a single or batch of images with pixel values ranging
from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`.
annotations (`List[Dict]` or `List[List[Dict]]`, *optional*):
List of annotations associated with the image or batch of images. If annotation is for object
detection, the annotations should be a dictionary with the following keys:
- "image_id" (`int`): The image id.
- "annotations" (`List[Dict]`): List of annotations for an image. Each annotation should be a
dictionary. An image can have no annotations, in which case the list should be empty.
If annotation is for segmentation, the annotations should be a dictionary with the following keys:
- "image_id" (`int`): The image id.
- "segments_info" (`List[Dict]`): List of segments for an image. Each segment should be a dictionary.
An image can have no segments, in which case the list should be empty.
- "file_name" (`str`): The file name of the image.
return_segmentation_masks (`bool`, *optional*, defaults to self.return_segmentation_masks):
Whether to return segmentation masks.
masks_path (`str` or `pathlib.Path`, *optional*):
Path to the directory containing the segmentation masks.
do_resize (`bool`, *optional*, defaults to self.do_resize):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to self.size):
Size of the image's `(height, width)` dimensions after resizing. Available options are:
- `{"height": int, "width": int}`: The image will be resized to the exact size `(height, width)`.
Do NOT keep the aspect ratio.
- `{"shortest_edge": int, "longest_edge": int}`: The image will be resized to a maximum size respecting
the aspect ratio and keeping the shortest edge less or equal to `shortest_edge` and the longest edge
less or equal to `longest_edge`.
- `{"max_height": int, "max_width": int}`: The image will be resized to the maximum size respecting the
aspect ratio and keeping the height less or equal to `max_height` and the width less or equal to
`max_width`.
resample (`PILImageResampling`, *optional*, defaults to self.resample):
Resampling filter to use when resizing the image.
do_rescale (`bool`, *optional*, defaults to self.do_rescale):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to self.rescale_factor):
Rescale factor to use when rescaling the image.
do_normalize (`bool`, *optional*, defaults to self.do_normalize):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to self.image_mean):
Mean to use when normalizing the image.
image_std (`float` or `List[float]`, *optional*, defaults to self.image_std):
Standard deviation to use when normalizing the image.
do_convert_annotations (`bool`, *optional*, defaults to self.do_convert_annotations):
Whether to convert the annotations to the format expected by the model. Converts the bounding
boxes from the format `(top_left_x, top_left_y, width, height)` to `(center_x, center_y, width, height)`
and in relative coordinates.
do_pad (`bool`, *optional*, defaults to self.do_pad):
Whether to pad the image. If `True`, padding will be applied to the bottom and right of
the image with zeros. If `pad_size` is provided, the image will be padded to the specified
dimensions. Otherwise, the image will be padded to the maximum height and width of the batch.
format (`str` or `AnnotationFormat`, *optional*, defaults to self.format):
Format of the annotations.
return_tensors (`str` or `TensorType`, *optional*, defaults to self.return_tensors):
Type of tensors to return. If `None`, will return the list of images.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
pad_size (`Dict[str, int]`, *optional*):
The size `{"height": int, "width" int}` to pad the images to. Must be larger than any image size
provided for preprocessing. If `pad_size` is not provided, images will be padded to the largest
height and width in the batch.
"""
if "pad_and_return_pixel_mask" in kwargs:
logger.warning_once(
"The `pad_and_return_pixel_mask` argument is deprecated and will be removed in a future version, "
"use `do_pad` instead.",
)
do_pad = kwargs.pop("pad_and_return_pixel_mask")
do_resize = self.do_resize if do_resize is None else do_resize
size = self.size if size is None else size
size = get_size_dict(size=size, default_to_square=False)
resample = self.resample if resample is None else resample
do_rescale = self.do_rescale if do_rescale is None else do_rescale
rescale_factor = self.rescale_factor if rescale_factor is None else rescale_factor
do_normalize = self.do_normalize if do_normalize is None else do_normalize
image_mean = self.image_mean if image_mean is None else image_mean
image_std = self.image_std if image_std is None else image_std
do_convert_annotations = (
self.do_convert_annotations if do_convert_annotations is None else do_convert_annotations
)
do_pad = self.do_pad if do_pad is None else do_pad
pad_size = self.pad_size if pad_size is None else pad_size
format = self.format if format is None else format
# Here, the pad() method pads to the maximum of (width, height). It does not need to be validated.
validate_preprocess_arguments(
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_resize=do_resize,
size=size,
resample=resample,
)
if not is_batched(images):
images = [images]
annotations = [annotations] if annotations is not None else None
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if annotations is not None and len(images) != len(annotations):
raise ValueError(
f"The number of images ({len(images)}) and annotations ({len(annotations)}) do not match."
)
format = AnnotationFormat(format)
if annotations is not None:
validate_annotations(format, SUPPORTED_ANNOTATION_FORMATS, annotations)
if (
masks_path is not None
and format == AnnotationFormat.COCO_PANOPTIC
and not isinstance(masks_path, (pathlib.Path, str))
):
raise ValueError(
"The path to the directory containing the mask PNG files should be provided as a"
f" `pathlib.Path` or string object, but is {type(masks_path)} instead."
)
# All transformations expect numpy arrays
images = [to_numpy_array(image) for image in images]
if do_rescale and is_scaled_image(images[0]):
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
# prepare (COCO annotations as a list of Dict -> DETR target as a single Dict per image)
if annotations is not None:
prepared_images = []
prepared_annotations = []
for image, target in zip(images, annotations):
target = self.prepare_annotation(
image,
target,
format,
return_segmentation_masks=return_segmentation_masks,
masks_path=masks_path,
input_data_format=input_data_format,
)
prepared_images.append(image)
prepared_annotations.append(target)
images = prepared_images
annotations = prepared_annotations
del prepared_images, prepared_annotations
# transformations
if do_resize:
if annotations is not None:
resized_images, resized_annotations = [], []
for image, target in zip(images, annotations):
orig_size = get_image_size(image, input_data_format)
resized_image = self.resize(
image, size=size, resample=resample, input_data_format=input_data_format
)
resized_annotation = self.resize_annotation(
target, orig_size, get_image_size(resized_image, input_data_format)
)
resized_images.append(resized_image)
resized_annotations.append(resized_annotation)
images = resized_images
annotations = resized_annotations
del resized_images, resized_annotations
else:
images = [
self.resize(image, size=size, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_rescale:
images = [self.rescale(image, rescale_factor, input_data_format=input_data_format) for image in images]
if do_normalize:
images = [
self.normalize(image, image_mean, image_std, input_data_format=input_data_format) for image in images
]
if do_convert_annotations and annotations is not None:
annotations = [
self.normalize_annotation(annotation, get_image_size(image, input_data_format))
for annotation, image in zip(annotations, images)
]
if do_pad:
# Pads images and returns their mask: {'pixel_values': ..., 'pixel_mask': ...}
encoded_inputs = self.pad(
images,
annotations=annotations,
return_pixel_mask=True,
data_format=data_format,
input_data_format=input_data_format,
return_tensors=return_tensors,
update_bboxes=do_convert_annotations,
pad_size=pad_size,
)
else:
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
for image in images
]
encoded_inputs = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors)
if annotations is not None:
encoded_inputs["labels"] = [
BatchFeature(annotation, tensor_type=return_tensors) for annotation in annotations
]
return encoded_inputs
def post_process_object_detection(
self,
outputs,
threshold: float = 0.5,
target_sizes: Union[TensorType, List[Tuple]] = None,
nms_threshold: float = 0.7,
):
"""
Converts the output of [`DetaForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y,
bottom_right_x, bottom_right_y) format. Only supports PyTorch.
Args:
outputs ([`DetrObjectDetectionOutput`]):
Raw outputs of the model.
threshold (`float`, *optional*, defaults to 0.5):
Score threshold to keep object detection predictions.
target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*):
Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size
(height, width) of each image in the batch. If left to None, predictions will not be resized.
nms_threshold (`float`, *optional*, defaults to 0.7):
NMS threshold.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
in the batch as predicted by the model.
"""
out_logits, out_bbox = outputs.logits, outputs.pred_boxes
batch_size, num_queries, num_labels = out_logits.shape
if target_sizes is not None:
if len(out_logits) != len(target_sizes):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
)
prob = out_logits.sigmoid()
all_scores = prob.view(batch_size, num_queries * num_labels).to(out_logits.device)
all_indexes = torch.arange(num_queries * num_labels)[None].repeat(batch_size, 1).to(out_logits.device)
all_boxes = torch.div(all_indexes, out_logits.shape[2], rounding_mode="floor")
all_labels = all_indexes % out_logits.shape[2]
boxes = center_to_corners_format(out_bbox)
boxes = torch.gather(boxes, 1, all_boxes.unsqueeze(-1).repeat(1, 1, 4))
# and from relative [0, 1] to absolute [0, height] coordinates
if target_sizes is not None:
if isinstance(target_sizes, List):
img_h = torch.Tensor([i[0] for i in target_sizes])
img_w = torch.Tensor([i[1] for i in target_sizes])
else:
img_h, img_w = target_sizes.unbind(1)
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device)
boxes = boxes * scale_fct[:, None, :]
results = []
for b in range(batch_size):
box = boxes[b]
score = all_scores[b]
lbls = all_labels[b]
pre_topk = score.topk(min(10000, num_queries * num_labels)).indices
box = box[pre_topk]
score = score[pre_topk]
lbls = lbls[pre_topk]
# apply NMS
keep_inds = batched_nms(box, score, lbls, nms_threshold)[:100]
score = score[keep_inds]
lbls = lbls[keep_inds]
box = box[keep_inds]
results.append(
{
"scores": score[score > threshold],
"labels": lbls[score > threshold],
"boxes": box[score > threshold],
}
)
return results
|
class_definition
| 17,424 | 54,890 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/deta/image_processing_deta.py
| null | 10,425 |
class RetriBertTokenizer(PreTrainedTokenizer):
r"""
Constructs a RetriBERT tokenizer.
[`RetriBertTokenizer`] is identical to [`BertTokenizer`] and runs end-to-end tokenization: punctuation splitting
and wordpiece.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer
to: this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
File containing the vocabulary.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
do_basic_tokenize (`bool`, *optional*, defaults to `True`):
Whether or not to do basic tokenization before WordPiece.
never_split (`Iterable`, *optional*):
Collection of tokens which will never be split during tokenization. Only has an effect when
`do_basic_tokenize=True`
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
do_lower_case=True,
do_basic_tokenize=True,
never_split=None,
unk_token="[UNK]",
sep_token="[SEP]",
pad_token="[PAD]",
cls_token="[CLS]",
mask_token="[MASK]",
tokenize_chinese_chars=True,
strip_accents=None,
**kwargs,
):
if not os.path.isfile(vocab_file):
raise ValueError(
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
" model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
)
self.vocab = load_vocab(vocab_file)
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
self.do_basic_tokenize = do_basic_tokenize
if do_basic_tokenize:
self.basic_tokenizer = BasicTokenizer(
do_lower_case=do_lower_case,
never_split=never_split,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
)
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
super().__init__(
do_lower_case=do_lower_case,
do_basic_tokenize=do_basic_tokenize,
never_split=never_split,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
**kwargs,
)
@property
def do_lower_case(self):
return self.basic_tokenizer.do_lower_case
@property
def vocab_size(self):
return len(self.vocab)
def get_vocab(self):
return dict(self.vocab, **self.added_tokens_encoder)
def _tokenize(self, text, split_special_tokens=False):
split_tokens = []
if self.do_basic_tokenize:
for token in self.basic_tokenizer.tokenize(
text, never_split=self.all_special_tokens if not split_special_tokens else None
):
# If the token is part of the never_split set
if token in self.basic_tokenizer.never_split:
split_tokens.append(token)
else:
split_tokens += self.wordpiece_tokenizer.tokenize(token)
else:
split_tokens = self.wordpiece_tokenizer.tokenize(text)
return split_tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.vocab.get(token, self.vocab.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.ids_to_tokens.get(index, self.unk_token)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
out_string = " ".join(tokens).replace(" ##", "").strip()
return out_string
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A BERT sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
index = 0
if os.path.isdir(save_directory):
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
else:
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
with open(vocab_file, "w", encoding="utf-8") as writer:
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
" Please check that the vocabulary is not corrupted!"
)
index = token_index
writer.write(token + "\n")
index += 1
return (vocab_file,)
|
class_definition
| 1,512 | 12,007 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/retribert/tokenization_retribert.py
| null | 10,426 |
class BasicTokenizer:
"""
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
Args:
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
never_split (`Iterable`, *optional*):
Collection of tokens which will never be split during tokenization. Only has an effect when
`do_basic_tokenize=True`
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters.
This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
do_split_on_punc (`bool`, *optional*, defaults to `True`):
In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
the full context of the words, such as contractions.
"""
def __init__(
self,
do_lower_case=True,
never_split=None,
tokenize_chinese_chars=True,
strip_accents=None,
do_split_on_punc=True,
):
if never_split is None:
never_split = []
self.do_lower_case = do_lower_case
self.never_split = set(never_split)
self.tokenize_chinese_chars = tokenize_chinese_chars
self.strip_accents = strip_accents
self.do_split_on_punc = do_split_on_punc
def tokenize(self, text, never_split=None):
"""
Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
Args:
never_split (`List[str]`, *optional*)
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
[`PreTrainedTokenizer.tokenize`]) List of token not to split.
"""
# union() returns a new set by concatenating the two sets.
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
text = self._clean_text(text)
# This was added on November 1st, 2018 for the multilingual and Chinese
# models. This is also applied to the English models now, but it doesn't
# matter since the English models were not trained on any Chinese data
# and generally don't have any Chinese data in them (there are Chinese
# characters in the vocabulary because Wikipedia does have some Chinese
# words in the English Wikipedia.).
if self.tokenize_chinese_chars:
text = self._tokenize_chinese_chars(text)
# prevents treating the same character with different unicode codepoints as different characters
unicode_normalized_text = unicodedata.normalize("NFC", text)
orig_tokens = whitespace_tokenize(unicode_normalized_text)
split_tokens = []
for token in orig_tokens:
if token not in never_split:
if self.do_lower_case:
token = token.lower()
if self.strip_accents is not False:
token = self._run_strip_accents(token)
elif self.strip_accents:
token = self._run_strip_accents(token)
split_tokens.extend(self._run_split_on_punc(token, never_split))
output_tokens = whitespace_tokenize(" ".join(split_tokens))
return output_tokens
def _run_strip_accents(self, text):
"""Strips accents from a piece of text."""
text = unicodedata.normalize("NFD", text)
output = []
for char in text:
cat = unicodedata.category(char)
if cat == "Mn":
continue
output.append(char)
return "".join(output)
def _run_split_on_punc(self, text, never_split=None):
"""Splits punctuation on a piece of text."""
if not self.do_split_on_punc or (never_split is not None and text in never_split):
return [text]
chars = list(text)
i = 0
start_new_word = True
output = []
while i < len(chars):
char = chars[i]
if _is_punctuation(char):
output.append([char])
start_new_word = True
else:
if start_new_word:
output.append([])
start_new_word = False
output[-1].append(char)
i += 1
return ["".join(x) for x in output]
def _tokenize_chinese_chars(self, text):
"""Adds whitespace around any CJK character."""
output = []
for char in text:
cp = ord(char)
if self._is_chinese_char(cp):
output.append(" ")
output.append(char)
output.append(" ")
else:
output.append(char)
return "".join(output)
def _is_chinese_char(self, cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4E00 and cp <= 0x9FFF)
or (cp >= 0x3400 and cp <= 0x4DBF) #
or (cp >= 0x20000 and cp <= 0x2A6DF) #
or (cp >= 0x2A700 and cp <= 0x2B73F) #
or (cp >= 0x2B740 and cp <= 0x2B81F) #
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
or (cp >= 0xF900 and cp <= 0xFAFF)
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
): #
return True
return False
def _clean_text(self, text):
"""Performs invalid character removal and whitespace cleanup on text."""
output = []
for char in text:
cp = ord(char)
if cp == 0 or cp == 0xFFFD or _is_control(char):
continue
if _is_whitespace(char):
output.append(" ")
else:
output.append(char)
return "".join(output)
|
class_definition
| 12,010 | 18,758 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/retribert/tokenization_retribert.py
| null | 10,427 |
class WordpieceTokenizer:
"""Runs WordPiece tokenization."""
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
self.vocab = vocab
self.unk_token = unk_token
self.max_input_chars_per_word = max_input_chars_per_word
def tokenize(self, text):
"""
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
tokenization using the given vocabulary.
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
Args:
text: A single token or whitespace separated tokens. This should have
already been passed through *BasicTokenizer*.
Returns:
A list of wordpiece tokens.
"""
output_tokens = []
for token in whitespace_tokenize(text):
chars = list(token)
if len(chars) > self.max_input_chars_per_word:
output_tokens.append(self.unk_token)
continue
is_bad = False
start = 0
sub_tokens = []
while start < len(chars):
end = len(chars)
cur_substr = None
while start < end:
substr = "".join(chars[start:end])
if start > 0:
substr = "##" + substr
if substr in self.vocab:
cur_substr = substr
break
end -= 1
if cur_substr is None:
is_bad = True
break
sub_tokens.append(cur_substr)
start = end
if is_bad:
output_tokens.append(self.unk_token)
else:
output_tokens.extend(sub_tokens)
return output_tokens
|
class_definition
| 18,761 | 20,649 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/retribert/tokenization_retribert.py
| null | 10,428 |
class RetriBertTokenizerFast(PreTrainedTokenizerFast):
r"""
Construct a "fast" RetriBERT tokenizer (backed by HuggingFace's *tokenizers* library).
[`RetriBertTokenizerFast`] is identical to [`BertTokenizerFast`] and runs end-to-end tokenization: punctuation
splitting and wordpiece.
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
File containing the vocabulary.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
clean_text (`bool`, *optional*, defaults to `True`):
Whether or not to clean the text before tokenization by removing any control characters and replacing all
whitespaces by the classic one.
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this
issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
wordpieces_prefix (`str`, *optional*, defaults to `"##"`):
The prefix for subwords.
"""
vocab_files_names = VOCAB_FILES_NAMES
slow_tokenizer_class = RetriBertTokenizer
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
do_lower_case=True,
unk_token="[UNK]",
sep_token="[SEP]",
pad_token="[PAD]",
cls_token="[CLS]",
mask_token="[MASK]",
tokenize_chinese_chars=True,
strip_accents=None,
**kwargs,
):
super().__init__(
vocab_file,
tokenizer_file=tokenizer_file,
do_lower_case=do_lower_case,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
**kwargs,
)
normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__())
if (
normalizer_state.get("lowercase", do_lower_case) != do_lower_case
or normalizer_state.get("strip_accents", strip_accents) != strip_accents
or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars
):
normalizer_class = getattr(normalizers, normalizer_state.pop("type"))
normalizer_state["lowercase"] = do_lower_case
normalizer_state["strip_accents"] = strip_accents
normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars
self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state)
self.do_lower_case = do_lower_case
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A BERT sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
if token_ids_1 is not None:
output += token_ids_1 + [self.sep_token_id]
return output
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
return tuple(files)
|
class_definition
| 1,014 | 7,819 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/retribert/tokenization_retribert_fast.py
| null | 10,429 |
class RetriBertConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`RetriBertModel`]. It is used to instantiate a
RetriBertModel model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the RetriBERT
[yjernite/retribert-base-uncased](https://huggingface.co/yjernite/retribert-base-uncased) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the RetriBERT model. Defines the number of different tokens that can be represented by
the `inputs_ids` passed when calling [`RetriBertModel`]
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the *token_type_ids* passed into [`BertModel`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
share_encoders (`bool`, *optional*, defaults to `True`):
Whether or not to use the same Bert-type encoder for the queries and document
projection_dim (`int`, *optional*, defaults to 128):
Final dimension of the query and document representation after projection
"""
model_type = "retribert"
def __init__(
self,
vocab_size=30522,
hidden_size=768,
num_hidden_layers=8,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
share_encoders=True,
projection_dim=128,
pad_token_id=0,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.share_encoders = share_encoders
self.projection_dim = projection_dim
|
class_definition
| 823 | 5,199 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/retribert/configuration_retribert.py
| null | 10,430 |
class RetriBertPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = RetriBertConfig
load_tf_weights = None
base_model_prefix = "retribert"
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
|
class_definition
| 1,094 | 2,035 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/retribert/modeling_retribert.py
| null | 10,431 |
class RetriBertModel(RetriBertPreTrainedModel):
def __init__(self, config: RetriBertConfig) -> None:
super().__init__(config)
self.projection_dim = config.projection_dim
self.bert_query = BertModel(config)
self.bert_doc = None if config.share_encoders else BertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.project_query = nn.Linear(config.hidden_size, config.projection_dim, bias=False)
self.project_doc = nn.Linear(config.hidden_size, config.projection_dim, bias=False)
self.ce_loss = nn.CrossEntropyLoss(reduction="mean")
# Initialize weights and apply final processing
self.post_init()
def embed_sentences_checkpointed(
self,
input_ids,
attention_mask,
sent_encoder,
checkpoint_batch_size=-1,
):
# reproduces BERT forward pass with checkpointing
if checkpoint_batch_size < 0 or input_ids.shape[0] < checkpoint_batch_size:
return sent_encoder(input_ids, attention_mask=attention_mask)[1]
else:
# prepare implicit variables
device = input_ids.device
input_shape = input_ids.size()
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
head_mask = [None] * sent_encoder.config.num_hidden_layers
extended_attention_mask: torch.Tensor = sent_encoder.get_extended_attention_mask(
attention_mask, input_shape
)
# define function for checkpointing
def partial_encode(*inputs):
encoder_outputs = sent_encoder.encoder(
inputs[0],
attention_mask=inputs[1],
head_mask=head_mask,
)
sequence_output = encoder_outputs[0]
pooled_output = sent_encoder.pooler(sequence_output)
return pooled_output
# run embedding layer on everything at once
embedding_output = sent_encoder.embeddings(
input_ids=input_ids, position_ids=None, token_type_ids=token_type_ids, inputs_embeds=None
)
# run encoding and pooling on one mini-batch at a time
pooled_output_list = []
for b in range(math.ceil(input_ids.shape[0] / checkpoint_batch_size)):
b_embedding_output = embedding_output[b * checkpoint_batch_size : (b + 1) * checkpoint_batch_size]
b_attention_mask = extended_attention_mask[b * checkpoint_batch_size : (b + 1) * checkpoint_batch_size]
pooled_output = checkpoint.checkpoint(partial_encode, b_embedding_output, b_attention_mask)
pooled_output_list.append(pooled_output)
return torch.cat(pooled_output_list, dim=0)
def embed_questions(
self,
input_ids,
attention_mask=None,
checkpoint_batch_size=-1,
):
q_reps = self.embed_sentences_checkpointed(
input_ids,
attention_mask,
self.bert_query,
checkpoint_batch_size,
)
return self.project_query(q_reps)
def embed_answers(
self,
input_ids,
attention_mask=None,
checkpoint_batch_size=-1,
):
a_reps = self.embed_sentences_checkpointed(
input_ids,
attention_mask,
self.bert_query if self.bert_doc is None else self.bert_doc,
checkpoint_batch_size,
)
return self.project_doc(a_reps)
def forward(
self,
input_ids_query: torch.LongTensor,
attention_mask_query: Optional[torch.FloatTensor],
input_ids_doc: torch.LongTensor,
attention_mask_doc: Optional[torch.FloatTensor],
checkpoint_batch_size: int = -1,
) -> torch.FloatTensor:
r"""
Args:
input_ids_query (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary for the queries in a batch.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask_query (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
input_ids_doc (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary for the documents in a batch.
attention_mask_doc (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on documents padding token indices.
checkpoint_batch_size (`int`, *optional*, defaults to `-1`):
If greater than 0, uses gradient checkpointing to only compute sequence representation on
`checkpoint_batch_size` examples at a time on the GPU. All query representations are still compared to
all document representations in the batch.
Return:
`torch.FloatTensor``: The bidirectional cross-entropy loss obtained while trying to match each query to its
corresponding document and each document to its corresponding query in the batch
"""
device = input_ids_query.device
q_reps = self.embed_questions(input_ids_query, attention_mask_query, checkpoint_batch_size)
a_reps = self.embed_answers(input_ids_doc, attention_mask_doc, checkpoint_batch_size)
compare_scores = torch.mm(q_reps, a_reps.t())
loss_qa = self.ce_loss(compare_scores, torch.arange(compare_scores.shape[1]).to(device))
loss_aq = self.ce_loss(compare_scores.t(), torch.arange(compare_scores.shape[0]).to(device))
loss = (loss_qa + loss_aq) / 2
return loss
|
class_definition
| 3,048 | 9,296 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/retribert/modeling_retribert.py
| null | 10,432 |
class Speech2Text2Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Speech2Text2ForCausalLM`]. It is used to
instantiate an Speech2Text2 model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the Speech2Text2
[facebook/s2t-wav2vec2-large-en-de](https://huggingface.co/facebook/s2t-wav2vec2-large-en-de) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50265):
Vocabulary size of the Speech2Text model. Defines the number of different tokens that can be represented by
the `inputs_ids` passed when calling [`Speech2TextModel`]
d_model (`int`, *optional*, defaults to 1024):
Dimensionality of the layers and the pooler layer.
decoder_layers (`int`, *optional*, defaults to 12):
Number of decoder layers.
decoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the pooler. If string, `"gelu"`, `"relu"`,
`"silu"` and `"gelu_new"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
https://arxiv.org/abs/1909.11556>`__ for more details.
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
max_target_positions (`int`, *optional*, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
Example:
```python
>>> from transformers import Speech2Text2Config, Speech2Text2ForCausalLM
>>> # Initializing a Speech2Text2 s2t_transformer_s style configuration
>>> configuration = Speech2Text2Config()
>>> # Initializing a model (with random weights) from the s2t_transformer_s style configuration
>>> model = Speech2Text2ForCausalLM(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "speech_to_text_2"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"}
def __init__(
self,
vocab_size=10000,
decoder_layers=6,
decoder_ffn_dim=2048,
decoder_attention_heads=4,
decoder_layerdrop=0.0,
use_cache=True,
activation_function="relu",
d_model=256,
dropout=0.1,
attention_dropout=0.0,
activation_dropout=0.0,
init_std=0.02,
decoder_start_token_id=2,
scale_embedding=True,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
max_target_positions=1024,
**kwargs,
):
self.vocab_size = vocab_size
self.d_model = d_model
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_layers = decoder_layers
self.decoder_attention_heads = decoder_attention_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.activation_function = activation_function
self.init_std = init_std
self.decoder_layerdrop = decoder_layerdrop
self.use_cache = use_cache
self.num_hidden_layers = decoder_layers
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
self.max_target_positions = max_target_positions
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
decoder_start_token_id=decoder_start_token_id,
**kwargs,
)
|
class_definition
| 790 | 6,000 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/speech_to_text_2/configuration_speech_to_text_2.py
| null | 10,433 |
class Speech2Text2Tokenizer(PreTrainedTokenizer):
"""
Constructs a Speech2Text2Tokenizer.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains some of the main methods. Users should refer to
the superclass for more information regarding such methods.
Args:
vocab_file (`str`):
File containing the vocabulary.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sentence token.
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sentence token.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
**kwargs
Additional keyword arguments passed along to [`PreTrainedTokenizer`]
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
bos_token="<s>",
pad_token="<pad>",
eos_token="</s>",
unk_token="<unk>",
do_lower_case=False,
merges_file=None,
**kwargs,
):
self.do_lower_case = do_lower_case
with open(vocab_file, encoding="utf-8") as vocab_handle:
self.encoder = json.load(vocab_handle)
self.decoder = {v: k for k, v in self.encoder.items()}
if merges_file is None:
logger.info(f"No merges files provided. {self.__class__.__name__} can only be used for decoding.")
self.bpe_ranks = None
self.cache = None
else:
with open(merges_file, encoding="utf-8") as merges_handle:
merges = merges_handle.read().split("\n")[:-1]
merges = [tuple(merge.split()[:2]) for merge in merges]
self.bpe_ranks = dict(zip(merges, range(len(merges))))
self.cache = {}
super().__init__(
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
pad_token=pad_token,
do_lower_case=do_lower_case,
**kwargs,
)
@property
def vocab_size(self) -> int:
return len(self.decoder)
def get_vocab(self) -> Dict:
return dict(self.encoder, **self.added_tokens_encoder)
def bpe(self, token):
word = tuple(token[:-1]) + (token[-1] + BPE_TOKEN_MERGES,)
if token in self.cache:
return self.cache[token]
pairs = get_pairs(word)
if not pairs:
return token
while True:
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
except ValueError:
new_word.extend(word[i:])
break
else:
new_word.extend(word[i:j])
i = j
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = " ".join(word)
if word == "\n " + BPE_TOKEN_MERGES:
word = "\n" + BPE_TOKEN_MERGES
if word.endswith(BPE_TOKEN_MERGES):
word = word.replace(BPE_TOKEN_MERGES, "")
word = word.replace(" ", BPE_TOKEN_VOCAB)
self.cache[token] = word
return word
def _tokenize(self, text):
"""Tokenize a string."""
if self.bpe_ranks is None:
raise ValueError(
"This tokenizer was instantiated without a `merges.txt` file, so"
" that it can only be used for decoding, not for encoding. "
"Make sure to provide `merges.txt` file at instantiation to enable "
"encoding."
)
if self.do_lower_case:
text = text.lower()
text = text.split()
split_tokens = []
for token in text:
if token:
split_tokens.extend(list(self.bpe(token).split(" ")))
return split_tokens
def _convert_token_to_id(self, token: str) -> int:
"""Converts a token (str) in an index (integer) using the vocab."""
return self.encoder.get(token, self.encoder.get(self.unk_token))
def _convert_id_to_token(self, index: int) -> str:
"""Converts an index (integer) in a token (str) using the vocab."""
result = self.decoder.get(index, self.unk_token)
return result
def convert_tokens_to_string(self, tokens: List[str]) -> str:
"""
Converts a list of output tokens into a single string.
"""
# combine tokens
string = " ".join(tokens)
# make sure @@ tokens are concatenated
string = "".join(string.split(BPE_TOKEN_VOCAB))
return string
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
merges_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
)
with open(vocab_file, "w", encoding="utf-8") as f:
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
index = 0
if self.bpe_ranks is None:
return (vocab_file,)
with open(merges_file, "w", encoding="utf-8") as writer:
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merges_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!"
)
index = token_index
writer.write(" ".join(bpe_tokens) + "\n")
index += 1
return (vocab_file, merges_file)
|
class_definition
| 1,439 | 8,404 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/speech_to_text_2/tokenization_speech_to_text_2.py
| null | 10,434 |
class Speech2Text2SinusoidalPositionalEmbedding(nn.Module):
"""This module produces sinusoidal positional embeddings of any length."""
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None):
super().__init__()
self.offset = 2
self.embedding_dim = embedding_dim
self.padding_idx = padding_idx
self.make_weights(num_positions + self.offset, embedding_dim, padding_idx)
def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx)
if hasattr(self, "weights"):
# in forward put the weights on the correct dtype and device of the param
emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device)
self.weights = nn.Parameter(emb_weights)
self.weights.requires_grad = False
self.weights.detach_()
@staticmethod
def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
"""
Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the
description in Section 3.5 of "Attention Is All You Need".
"""
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb)
emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
if embedding_dim % 2 == 1:
# zero pad
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
if padding_idx is not None:
emb[padding_idx, :] = 0
return emb.to(torch.get_default_dtype())
@torch.no_grad()
def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0):
bsz, seq_len = input_ids.size()
# Create the position ids from the input token ids. Any padded tokens remain padded.
position_ids = self.create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length).to(
input_ids.device
)
# expand embeddings if needed
max_pos = self.padding_idx + 1 + seq_len
if max_pos > self.weights.size(0):
self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx)
return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, -1).detach()
def create_position_ids_from_input_ids(
self, input_ids: torch.Tensor, padding_idx: int, past_key_values_length: Optional[int] = 0
):
"""
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding
symbols are ignored. This is modified from fairseq's `utils.make_positions`.
Args:
x: torch.Tensor x:
Returns: torch.Tensor
"""
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
mask = input_ids.ne(padding_idx).int()
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
return incremental_indices.long() + padding_idx
|
class_definition
| 1,402 | 4,818 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/speech_to_text_2/modeling_speech_to_text_2.py
| null | 10,435 |
class Speech2Text2Attention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
is_causal: bool = False,
config: Optional[Speech2Text2Config] = None,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.config = config
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.is_causal = is_causal
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.reshape(*proj_shape)
value_states = value_states.reshape(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
|
class_definition
| 4,821 | 12,227 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/speech_to_text_2/modeling_speech_to_text_2.py
| null | 10,436 |
class Speech2Text2DecoderLayer(nn.Module):
def __init__(self, config: Speech2Text2Config):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = Speech2Text2Attention(
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
if config.is_decoder:
self.encoder_attn = Speech2Text2Attention(
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
)
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = True,
):
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
size *(decoder_attention_heads,)*.
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
if use_cache:
outputs += (present_key_value,)
return outputs
|
class_definition
| 12,230 | 18,020 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/speech_to_text_2/modeling_speech_to_text_2.py
| null | 10,437 |
class Speech2Text2PreTrainedModel(PreTrainedModel):
config_class = Speech2Text2Config
base_model_prefix = "model"
supports_gradient_checkpointing = True
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, (nn.Linear, nn.Conv1d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
|
class_definition
| 18,023 | 18,669 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/speech_to_text_2/modeling_speech_to_text_2.py
| null | 10,438 |
class Speech2Text2Decoder(Speech2Text2PreTrainedModel):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`Speech2Text2DecoderLayer`]
Args:
config: Speech2Text2Config
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: Speech2Text2Config):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_target_positions
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
self.embed_positions = Speech2Text2SinusoidalPositionalEmbedding(
self.max_target_positions,
config.d_model,
self.padding_idx,
)
self.layers = nn.ModuleList([Speech2Text2DecoderLayer(config) for _ in range(config.decoder_layers)])
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward(
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`Speech2Text2Tokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in encoder to avoid performing cross-attention
on hidden heads. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask(
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
# embed positions
positions = self.embed_positions(input_ids, past_key_values_length=past_key_values_length)
hidden_states = inputs_embeds + positions
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache = True` is incompatible with gradient checkpointing. Setting `use_cache =" " False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
next_decoder_cache = () if use_cache else None
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
if attn_mask is not None:
if attn_mask.size()[0] != (len(self.layers)):
raise ValueError(
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop:
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
head_mask[idx] if head_mask is not None else None,
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
None,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
cross_attn_layer_head_mask=(
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
),
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
|
class_definition
| 19,566 | 31,681 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/speech_to_text_2/modeling_speech_to_text_2.py
| null | 10,439 |
class Speech2Text2DecoderWrapper(Speech2Text2PreTrainedModel):
"""
This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
used in combination with the [`EncoderDecoderModel`] framework.
"""
def __init__(self, config):
super().__init__(config)
self.decoder = Speech2Text2Decoder(config)
def forward(self, *args, **kwargs):
return self.decoder(*args, **kwargs)
|
class_definition
| 31,839 | 32,304 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/speech_to_text_2/modeling_speech_to_text_2.py
| null | 10,440 |
class Speech2Text2ForCausalLM(Speech2Text2PreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
config = copy.deepcopy(config)
config.is_decoder = True
config.is_encoder_decoder = False
super().__init__(config)
self.model = Speech2Text2DecoderWrapper(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.decoder.embed_tokens
def set_input_embeddings(self, value):
self.model.decoder.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model.decoder = decoder
def get_decoder(self):
return self.model.decoder
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], CausalLMOutputWithCrossAttentions]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`Speech2Text2Tokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
if the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used
in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Returns:
Example:
```python
>>> from transformers import (
... SpeechEncoderDecoderModel,
... Speech2Text2ForCausalLM,
... Wav2Vec2Model,
... Speech2Text2Config,
... Wav2Vec2Config,
... Wav2Vec2FeatureExtractor,
... Speech2Text2Tokenizer,
... )
>>> from datasets import load_dataset
>>> feature_extractor = Wav2Vec2FeatureExtractor()
>>> tokenizer = Speech2Text2Tokenizer.from_pretrained("facebook/s2t-wav2vec2-large-en-de")
>>> encoder = Wav2Vec2Model(Wav2Vec2Config())
>>> decoder = Speech2Text2ForCausalLM(Speech2Text2Config())
>>> # init random speech2text model
>>> model = SpeechEncoderDecoderModel(encoder=encoder, decoder=decoder)
>>> model.config.pad_token_id = tokenizer.pad_token_id
>>> model.config.decoder_start_token_id = tokenizer.bos_token_id
>>> # pre-process inputs and labels
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> inputs = feature_extractor(
... ds[0]["audio"]["array"], sampling_rate=ds[0]["audio"]["sampling_rate"], return_tensors="pt"
... )
>>> input_values = inputs.input_values
>>> decoder_input_ids = tokenizer(ds[0]["text"], return_tensors="pt").input_ids
>>> # compute loss
>>> loss = model(inputs=input_values, labels=decoder_input_ids).loss
>>> # backprop loss
>>> loss.backward() # doctest: +IGNORE_RESULT
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model.decoder(
input_ids=input_ids,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = self.lm_head(outputs[0])
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, **kwargs
):
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
if attention_mask is None:
attention_mask = input_ids.new_ones(input_ids.shape)
if past_key_values:
past_length = past_key_values[0][0].shape[2]
# Some generation methods already pass only the last input ID
if input_ids.shape[1] > past_length:
remove_prefix_length = past_length
else:
# Default to old behavior: keep only final ID
remove_prefix_length = input_ids.shape[1] - 1
input_ids = input_ids[:, remove_prefix_length:]
# first step, decoder_cached_states are empty
return {
"input_ids": input_ids, # encoder_outputs is defined. input_ids not needed
"attention_mask": attention_mask,
"past_key_values": past_key_values,
"use_cache": use_cache,
}
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
|
class_definition
| 32,529 | 43,879 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/speech_to_text_2/modeling_speech_to_text_2.py
| null | 10,441 |
class Speech2Text2Processor(ProcessorMixin):
r"""
Constructs a Speech2Text2 processor which wraps a Speech2Text2 feature extractor and a Speech2Text2 tokenizer into
a single processor.
[`Speech2Text2Processor`] offers all the functionalities of [`AutoFeatureExtractor`] and [`Speech2Text2Tokenizer`].
See the [`~Speech2Text2Processor.__call__`] and [`~Speech2Text2Processor.decode`] for more information.
Args:
feature_extractor (`AutoFeatureExtractor`):
An instance of [`AutoFeatureExtractor`]. The feature extractor is a required input.
tokenizer (`Speech2Text2Tokenizer`):
An instance of [`Speech2Text2Tokenizer`]. The tokenizer is a required input.
"""
feature_extractor_class = "AutoFeatureExtractor"
tokenizer_class = "Speech2Text2Tokenizer"
def __init__(self, feature_extractor, tokenizer):
super().__init__(feature_extractor, tokenizer)
self.current_processor = self.feature_extractor
self._in_target_context_manager = False
def __call__(self, *args, **kwargs):
"""
When used in normal mode, this method forwards all its arguments to AutoFeatureExtractor's
[`~AutoFeatureExtractor.__call__`] and returns its output. If used in the context
[`~Speech2Text2Processor.as_target_processor`] this method forwards all its arguments to
Speech2Text2Tokenizer's [`~Speech2Text2Tokenizer.__call__`]. Please refer to the doctsring of the above two
methods for more information.
"""
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*args, **kwargs)
if "raw_speech" in kwargs:
warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.")
audio = kwargs.pop("raw_speech")
else:
audio = kwargs.pop("audio", None)
sampling_rate = kwargs.pop("sampling_rate", None)
text = kwargs.pop("text", None)
if len(args) > 0:
audio = args[0]
args = args[1:]
if audio is None and text is None:
raise ValueError("You need to specify either an `audio` or `text` input to process.")
if audio is not None:
inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs)
if text is not None:
encodings = self.tokenizer(text, **kwargs)
if text is None:
return inputs
elif audio is None:
return encodings
else:
inputs["labels"] = encodings["input_ids"]
return inputs
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to Speech2Text2Tokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to Speech2Text2Tokenizer's [`~PreTrainedTokenizer.decode`]. Please refer
to the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@contextmanager
def as_target_processor(self):
"""
Temporarily sets the tokenizer for processing the input. Useful for encoding the labels when fine-tuning
Speech2Text2.
"""
warnings.warn(
"`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your "
"labels by using the argument `text` of the regular `__call__` method (either in the same call as "
"your audio inputs, or in a separate call."
)
self._in_target_context_manager = True
self.current_processor = self.tokenizer
yield
self.current_processor = self.feature_extractor
self._in_target_context_manager = False
|
class_definition
| 759 | 4,791 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/speech_to_text_2/processing_speech_to_text_2.py
| null | 10,442 |
class EfficientFormerConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of an [`EfficientFormerModel`]. It is used to
instantiate an EfficientFormer model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the EfficientFormer
[snap-research/efficientformer-l1](https://huggingface.co/snap-research/efficientformer-l1) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
depths (`List(int)`, *optional*, defaults to `[3, 2, 6, 4]`)
Depth of each stage.
hidden_sizes (`List(int)`, *optional*, defaults to `[48, 96, 224, 448]`)
Dimensionality of each stage.
downsamples (`List(bool)`, *optional*, defaults to `[True, True, True, True]`)
Whether or not to downsample inputs between two stages.
dim (`int`, *optional*, defaults to 448):
Number of channels in Meta3D layers
key_dim (`int`, *optional*, defaults to 32):
The size of the key in meta3D block.
attention_ratio (`int`, *optional*, defaults to 4):
Ratio of the dimension of the query and value to the dimension of the key in MSHA block
resolution (`int`, *optional*, defaults to 7)
Size of each patch
num_hidden_layers (`int`, *optional*, defaults to 5):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the 3D MetaBlock.
mlp_expansion_ratio (`int`, *optional*, defaults to 4):
Ratio of size of the hidden dimensionality of an MLP to the dimensionality of its input.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings and encoder.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
pool_size (`int`, *optional*, defaults to 3):
Kernel size of pooling layers.
downsample_patch_size (`int`, *optional*, defaults to 3):
The size of patches in downsampling layers.
downsample_stride (`int`, *optional*, defaults to 2):
The stride of convolution kernels in downsampling layers.
downsample_pad (`int`, *optional*, defaults to 1):
Padding in downsampling layers.
drop_path_rate (`int`, *optional*, defaults to 0):
Rate at which to increase dropout probability in DropPath.
num_meta3d_blocks (`int`, *optional*, defaults to 1):
The number of 3D MetaBlocks in the last stage.
distillation (`bool`, *optional*, defaults to `True`):
Whether to add a distillation head.
use_layer_scale (`bool`, *optional*, defaults to `True`):
Whether to scale outputs from token mixers.
layer_scale_init_value (`float`, *optional*, defaults to 1e-5):
Factor by which outputs from token mixers are scaled.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
image_size (`int`, *optional*, defaults to `224`):
The size (resolution) of each image.
Example:
```python
>>> from transformers import EfficientFormerConfig, EfficientFormerModel
>>> # Initializing a EfficientFormer efficientformer-l1 style configuration
>>> configuration = EfficientFormerConfig()
>>> # Initializing a EfficientFormerModel (with random weights) from the efficientformer-l3 style configuration
>>> model = EfficientFormerModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "efficientformer"
def __init__(
self,
depths: List[int] = [3, 2, 6, 4],
hidden_sizes: List[int] = [48, 96, 224, 448],
downsamples: List[bool] = [True, True, True, True],
dim: int = 448,
key_dim: int = 32,
attention_ratio: int = 4,
resolution: int = 7,
num_hidden_layers: int = 5,
num_attention_heads: int = 8,
mlp_expansion_ratio: int = 4,
hidden_dropout_prob: float = 0.0,
patch_size: int = 16,
num_channels: int = 3,
pool_size: int = 3,
downsample_patch_size: int = 3,
downsample_stride: int = 2,
downsample_pad: int = 1,
drop_path_rate: float = 0.0,
num_meta3d_blocks: int = 1,
distillation: bool = True,
use_layer_scale: bool = True,
layer_scale_init_value: float = 1e-5,
hidden_act: str = "gelu",
initializer_range: float = 0.02,
layer_norm_eps: float = 1e-12,
image_size: int = 224,
batch_norm_eps: float = 1e-05,
**kwargs,
) -> None:
super().__init__(**kwargs)
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.hidden_sizes = hidden_sizes
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.patch_size = patch_size
self.num_channels = num_channels
self.depths = depths
self.mlp_expansion_ratio = mlp_expansion_ratio
self.downsamples = downsamples
self.dim = dim
self.key_dim = key_dim
self.attention_ratio = attention_ratio
self.resolution = resolution
self.pool_size = pool_size
self.downsample_patch_size = downsample_patch_size
self.downsample_stride = downsample_stride
self.downsample_pad = downsample_pad
self.drop_path_rate = drop_path_rate
self.num_meta3d_blocks = num_meta3d_blocks
self.distillation = distillation
self.use_layer_scale = use_layer_scale
self.layer_scale_init_value = layer_scale_init_value
self.image_size = image_size
self.batch_norm_eps = batch_norm_eps
|
class_definition
| 819 | 7,718 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/configuration_efficientformer.py
| null | 10,443 |
class EfficientFormerPatchEmbeddings(nn.Module):
"""
This class performs downsampling between two stages. For the input tensor with the shape [batch_size, num_channels,
height, width] it produces output tensor with the shape [batch_size, num_channels, height/stride, width/stride]
"""
def __init__(self, config: EfficientFormerConfig, num_channels: int, embed_dim: int, apply_norm: bool = True):
super().__init__()
self.num_channels = num_channels
self.projection = nn.Conv2d(
num_channels,
embed_dim,
kernel_size=config.downsample_patch_size,
stride=config.downsample_stride,
padding=config.downsample_pad,
)
self.norm = nn.BatchNorm2d(embed_dim, eps=config.batch_norm_eps) if apply_norm else nn.Identity()
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
batch_size, num_channels, height, width = pixel_values.shape
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
embeddings = self.projection(pixel_values)
embeddings = self.norm(embeddings)
return embeddings
|
class_definition
| 1,682 | 2,980 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
| null | 10,444 |
class EfficientFormerSelfAttention(nn.Module):
def __init__(self, dim: int, key_dim: int, num_heads: int, attention_ratio: int, resolution: int):
super().__init__()
self.num_heads = num_heads
self.key_dim = key_dim
self.attention_ratio = attention_ratio
self.scale = key_dim**-0.5
self.total_key_dim = key_dim * num_heads
self.expanded_key_dim = int(attention_ratio * key_dim)
self.total_expanded_key_dim = int(self.expanded_key_dim * num_heads)
hidden_size = self.total_expanded_key_dim + self.total_key_dim * 2
self.qkv = nn.Linear(dim, hidden_size)
self.projection = nn.Linear(self.total_expanded_key_dim, dim)
points = list(itertools.product(range(resolution), range(resolution)))
num_points = len(points)
attention_offsets = {}
idxs = []
for point_1 in points:
for point_2 in points:
offset = (abs(point_1[0] - point_2[0]), abs(point_1[1] - point_2[1]))
if offset not in attention_offsets:
attention_offsets[offset] = len(attention_offsets)
idxs.append(attention_offsets[offset])
self.attention_biases = torch.nn.Parameter(torch.zeros(num_heads, len(attention_offsets)))
self.register_buffer("attention_bias_idxs", torch.LongTensor(idxs).view(num_points, num_points))
@torch.no_grad()
def train(self, mode=True):
super().train(mode)
if mode and hasattr(self, "ab"):
del self.ab
else:
self.ab = self.attention_biases[:, self.attention_bias_idxs]
def forward(self, hidden_states: torch.Tensor, output_attentions: bool = False) -> Tuple[torch.Tensor]:
batch_size, sequence_length, num_channels = hidden_states.shape
qkv = self.qkv(hidden_states)
query_layer, key_layer, value_layer = qkv.reshape(batch_size, sequence_length, self.num_heads, -1).split(
[self.key_dim, self.key_dim, self.expanded_key_dim], dim=3
)
query_layer = query_layer.permute(0, 2, 1, 3)
key_layer = key_layer.permute(0, 2, 1, 3)
value_layer = value_layer.permute(0, 2, 1, 3)
# set `model.to(torch_device)` won't change `self.ab.device`, if there is no follow-up `train` or `eval` call.
# Let's do it manually here, so users won't have to do this everytime.
if not self.training:
self.ab = self.ab.to(self.attention_biases.device)
attention_probs = (torch.matmul(query_layer, key_layer.transpose(-2, -1))) * self.scale + (
self.attention_biases[:, self.attention_bias_idxs] if self.training else self.ab
)
attention_probs = attention_probs.softmax(dim=-1)
context_layer = torch.matmul(attention_probs, value_layer).transpose(1, 2)
context_layer = context_layer.reshape(batch_size, sequence_length, self.total_expanded_key_dim)
context_layer = self.projection(context_layer)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
|
class_definition
| 2,983 | 6,106 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
| null | 10,445 |
class EfficientFormerConvStem(nn.Module):
def __init__(self, config: EfficientFormerConfig, out_channels: int):
super().__init__()
self.convolution1 = nn.Conv2d(config.num_channels, out_channels // 2, kernel_size=3, stride=2, padding=1)
self.batchnorm_before = nn.BatchNorm2d(out_channels // 2, eps=config.batch_norm_eps)
self.convolution2 = nn.Conv2d(out_channels // 2, out_channels, kernel_size=3, stride=2, padding=1)
self.batchnorm_after = nn.BatchNorm2d(out_channels, eps=config.batch_norm_eps)
self.activation = nn.ReLU()
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
features = self.batchnorm_before(self.convolution1(pixel_values))
features = self.activation(features)
features = self.batchnorm_after(self.convolution2(features))
features = self.activation(features)
return features
|
class_definition
| 6,109 | 7,017 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
| null | 10,446 |
class EfficientFormerPooling(nn.Module):
def __init__(self, pool_size: int):
super().__init__()
self.pool = nn.AvgPool2d(pool_size, stride=1, padding=pool_size // 2, count_include_pad=False)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
output = self.pool(hidden_states) - hidden_states
return output
|
class_definition
| 7,020 | 7,379 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
| null | 10,447 |
class EfficientFormerDenseMlp(nn.Module):
def __init__(
self,
config: EfficientFormerConfig,
in_features: int,
hidden_features: Optional[int] = None,
out_features: Optional[int] = None,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.linear_in = nn.Linear(in_features, hidden_features)
self.activation = ACT2FN[config.hidden_act]
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.linear_out = nn.Linear(hidden_features, out_features)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.linear_in(hidden_states)
hidden_states = self.activation(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.linear_out(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
|
class_definition
| 7,382 | 8,367 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
| null | 10,448 |
class EfficientFormerConvMlp(nn.Module):
def __init__(
self,
config: EfficientFormerConfig,
in_features: int,
hidden_features: Optional[int] = None,
out_features: Optional[int] = None,
drop: float = 0.0,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.convolution1 = nn.Conv2d(in_features, hidden_features, 1)
self.activation = ACT2FN[config.hidden_act]
self.convolution2 = nn.Conv2d(hidden_features, out_features, 1)
self.dropout = nn.Dropout(drop)
self.batchnorm_before = nn.BatchNorm2d(hidden_features, eps=config.batch_norm_eps)
self.batchnorm_after = nn.BatchNorm2d(out_features, eps=config.batch_norm_eps)
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
hidden_state = self.convolution1(hidden_state)
hidden_state = self.batchnorm_before(hidden_state)
hidden_state = self.activation(hidden_state)
hidden_state = self.dropout(hidden_state)
hidden_state = self.convolution2(hidden_state)
hidden_state = self.batchnorm_after(hidden_state)
hidden_state = self.dropout(hidden_state)
return hidden_state
|
class_definition
| 8,370 | 9,661 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
| null | 10,449 |
class EfficientFormerDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
|
class_definition
| 10,756 | 11,245 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
| null | 10,450 |
class EfficientFormerFlat(nn.Module):
def __init__(self):
super().__init__()
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor]:
hidden_states = hidden_states.flatten(2).transpose(1, 2)
return hidden_states
|
class_definition
| 11,248 | 11,506 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
| null | 10,451 |
class EfficientFormerMeta3D(nn.Module):
def __init__(self, config: EfficientFormerConfig, dim: int, drop_path: float = 0.0):
super().__init__()
self.token_mixer = EfficientFormerSelfAttention(
dim=config.dim,
key_dim=config.key_dim,
num_heads=config.num_attention_heads,
attention_ratio=config.attention_ratio,
resolution=config.resolution,
)
self.layernorm1 = nn.LayerNorm(dim, eps=config.layer_norm_eps)
self.layernorm2 = nn.LayerNorm(dim, eps=config.layer_norm_eps)
mlp_hidden_dim = int(dim * config.mlp_expansion_ratio)
self.mlp = EfficientFormerDenseMlp(config, in_features=dim, hidden_features=mlp_hidden_dim)
self.drop_path = EfficientFormerDropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.use_layer_scale = config.use_layer_scale
if config.use_layer_scale:
self.layer_scale_1 = nn.Parameter(config.layer_scale_init_value * torch.ones((dim)), requires_grad=True)
self.layer_scale_2 = nn.Parameter(config.layer_scale_init_value * torch.ones((dim)), requires_grad=True)
def forward(self, hidden_states: torch.Tensor, output_attentions: bool = False) -> Tuple[torch.Tensor]:
self_attention_outputs = self.token_mixer(self.layernorm1(hidden_states), output_attentions)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
if self.use_layer_scale:
layer_output = hidden_states + self.drop_path(
self.layer_scale_1.unsqueeze(0).unsqueeze(0) * attention_output
)
layer_output = layer_output + self.drop_path(
self.layer_scale_2.unsqueeze(0).unsqueeze(0) * self.mlp(self.layernorm2(layer_output))
)
else:
layer_output = hidden_states + self.drop_path(attention_output)
layer_output = layer_output + self.drop_path(self.mlp(self.layernorm2(layer_output)))
outputs = (layer_output,) + outputs
return outputs
|
class_definition
| 11,509 | 13,650 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
| null | 10,452 |
class EfficientFormerMeta3DLayers(nn.Module):
def __init__(self, config: EfficientFormerConfig):
super().__init__()
drop_paths = [
config.drop_path_rate * (block_idx + sum(config.depths[:-1]))
for block_idx in range(config.num_meta3d_blocks)
]
self.blocks = nn.ModuleList(
[EfficientFormerMeta3D(config, config.hidden_sizes[-1], drop_path=drop_path) for drop_path in drop_paths]
)
def forward(self, hidden_states: torch.Tensor, output_attentions: bool = False) -> Tuple[torch.Tensor]:
all_attention_outputs = () if output_attentions else None
for layer_module in self.blocks:
if isinstance(hidden_states, tuple):
hidden_states = hidden_states[0]
hidden_states = layer_module(hidden_states, output_attentions)
if output_attentions:
all_attention_outputs = all_attention_outputs + (hidden_states[1],)
if output_attentions:
outputs = (hidden_states[0],) + all_attention_outputs
return outputs
return hidden_states
|
class_definition
| 13,653 | 14,777 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
| null | 10,453 |
class EfficientFormerMeta4D(nn.Module):
def __init__(self, config: EfficientFormerConfig, dim: int, drop_path: float = 0.0):
super().__init__()
pool_size = config.pool_size if config.pool_size is not None else 3
self.token_mixer = EfficientFormerPooling(pool_size=pool_size)
mlp_hidden_dim = int(dim * config.mlp_expansion_ratio)
self.mlp = EfficientFormerConvMlp(
config, in_features=dim, hidden_features=mlp_hidden_dim, drop=config.hidden_dropout_prob
)
self.drop_path = EfficientFormerDropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.use_layer_scale = config.use_layer_scale
if config.use_layer_scale:
self.layer_scale_1 = nn.Parameter(config.layer_scale_init_value * torch.ones((dim)), requires_grad=True)
self.layer_scale_2 = nn.Parameter(config.layer_scale_init_value * torch.ones((dim)), requires_grad=True)
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor]:
outputs = self.token_mixer(hidden_states)
if self.use_layer_scale:
layer_output = hidden_states + self.drop_path(self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) * outputs)
layer_output = layer_output + self.drop_path(
self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) * self.mlp(layer_output)
)
else:
layer_output = hidden_states + self.drop_path(outputs)
layer_output = layer_output + self.drop_path(self.mlp(layer_output))
return layer_output
|
class_definition
| 14,780 | 16,349 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
| null | 10,454 |
class EfficientFormerMeta4DLayers(nn.Module):
def __init__(self, config: EfficientFormerConfig, stage_idx: int):
super().__init__()
num_layers = (
config.depths[stage_idx] if stage_idx != -1 else config.depths[stage_idx] - config.num_meta3d_blocks
)
drop_paths = [
config.drop_path_rate * (block_idx + sum(config.depths[:stage_idx])) for block_idx in range(num_layers)
]
self.blocks = nn.ModuleList(
[
EfficientFormerMeta4D(config, config.hidden_sizes[stage_idx], drop_path=drop_path)
for drop_path in drop_paths
]
)
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor]:
for layer_module in self.blocks:
hidden_states = layer_module(hidden_states)
return hidden_states
|
class_definition
| 16,352 | 17,211 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
| null | 10,455 |
class EfficientFormerIntermediateStage(nn.Module):
def __init__(self, config: EfficientFormerConfig, index: int):
super().__init__()
self.meta4D_layers = EfficientFormerMeta4DLayers(config, index)
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor]:
hidden_states = self.meta4D_layers(hidden_states)
return hidden_states
|
class_definition
| 17,214 | 17,593 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
| null | 10,456 |
class EfficientFormerLastStage(nn.Module):
def __init__(self, config: EfficientFormerConfig):
super().__init__()
self.meta4D_layers = EfficientFormerMeta4DLayers(config, -1)
self.flat = EfficientFormerFlat()
self.meta3D_layers = EfficientFormerMeta3DLayers(config)
def forward(self, hidden_states: torch.Tensor, output_attentions: bool = False) -> Tuple[torch.Tensor]:
hidden_states = self.meta4D_layers(hidden_states)
hidden_states = self.flat(hidden_states)
hidden_states = self.meta3D_layers(hidden_states, output_attentions)
return hidden_states
|
class_definition
| 17,596 | 18,219 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
| null | 10,457 |
class EfficientFormerEncoder(nn.Module):
def __init__(self, config: EfficientFormerConfig):
super().__init__()
self.config = config
num_intermediate_stages = len(config.depths) - 1
downsamples = [
config.downsamples[i] or config.hidden_sizes[i] != config.hidden_sizes[i + 1]
for i in range(num_intermediate_stages)
]
intermediate_stages = []
for i in range(num_intermediate_stages):
intermediate_stages.append(EfficientFormerIntermediateStage(config, i))
if downsamples[i]:
intermediate_stages.append(
EfficientFormerPatchEmbeddings(config, config.hidden_sizes[i], config.hidden_sizes[i + 1])
)
self.intermediate_stages = nn.ModuleList(intermediate_stages)
self.last_stage = EfficientFormerLastStage(config)
def forward(
self,
hidden_states: torch.Tensor,
output_hidden_states: bool = False,
output_attentions: bool = False,
return_dict: bool = True,
) -> BaseModelOutput:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
for layer_module in self.intermediate_stages:
hidden_states = layer_module(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_output = self.last_stage(hidden_states, output_attentions=output_attentions)
if output_attentions:
all_self_attentions = all_self_attentions + layer_output[1:]
if output_hidden_states:
all_hidden_states = all_hidden_states + (layer_output[0],)
if not return_dict:
return tuple(v for v in [layer_output[0], all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=layer_output[0],
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
|
class_definition
| 18,222 | 20,395 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
| null | 10,458 |
class EfficientFormerPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = EfficientFormerConfig
base_model_prefix = "efficientformer"
main_input_name = "pixel_values"
supports_gradient_checkpointing = False
def _init_weights(self, module: nn.Module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
|
class_definition
| 20,398 | 21,194 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
| null | 10,459 |
class EfficientFormerModel(EfficientFormerPreTrainedModel):
def __init__(self, config: EfficientFormerConfig):
super().__init__(config)
self.config = config
_no_split_modules = ["EfficientFormerMeta4D"]
self.patch_embed = EfficientFormerConvStem(config, config.hidden_sizes[0])
self.encoder = EfficientFormerEncoder(config)
self.layernorm = nn.LayerNorm(config.hidden_sizes[-1], eps=config.layer_norm_eps)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(EFFICIENTFORMER_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPooling,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
embedding_output = self.patch_embed(pixel_values)
encoder_outputs = self.encoder(
embedding_output, output_attentions=output_attentions, output_hidden_states=output_hidden_states
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output)
if not return_dict:
head_outputs = (sequence_output,)
return head_outputs + encoder_outputs[1:]
return BaseModelOutput(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
|
class_definition
| 22,816 | 25,051 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
| null | 10,460 |
class EfficientFormerForImageClassification(EfficientFormerPreTrainedModel):
def __init__(self, config: EfficientFormerConfig):
super().__init__(config)
self.num_labels = config.num_labels
self.efficientformer = EfficientFormerModel(config)
# Classifier head
self.classifier = (
nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(EFFICIENTFORMER_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=ImageClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, ImageClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.efficientformer(
pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output.mean(-2))
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 25,304 | 28,743 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
| null | 10,461 |
class EfficientFormerForImageClassificationWithTeacherOutput(ModelOutput):
"""
Output type of [`EfficientFormerForImageClassificationWithTeacher`].
Args:
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
Prediction scores as the average of the cls_logits and distillation logits.
cls_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
Prediction scores of the classification head (i.e. the linear layer on top of the final hidden state of the
class token).
distillation_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
Prediction scores of the distillation head (i.e. the linear layer on top of the final hidden state of the
distillation token).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
"""
logits: torch.FloatTensor = None
cls_logits: torch.FloatTensor = None
distillation_logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
class_definition
| 28,757 | 30,690 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
| null | 10,462 |
class EfficientFormerForImageClassificationWithTeacher(EfficientFormerPreTrainedModel):
def __init__(self, config: EfficientFormerConfig):
super().__init__(config)
self.num_labels = config.num_labels
self.efficientformer = EfficientFormerModel(config)
# Classifier head
self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
# Distillation head
self.distillation_classifier = (
nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(EFFICIENTFORMER_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=EfficientFormerForImageClassificationWithTeacherOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, EfficientFormerForImageClassificationWithTeacherOutput]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.efficientformer(
pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
cls_logits = self.classifier(sequence_output.mean(-2))
distillation_logits = self.distillation_classifier(sequence_output.mean(-2))
# during inference, return the average of both classifier predictions
logits = (cls_logits + distillation_logits) / 2
if not return_dict:
output = (logits, cls_logits, distillation_logits) + outputs[1:]
return output
return EfficientFormerForImageClassificationWithTeacherOutput(
logits=logits,
cls_logits=cls_logits,
distillation_logits=distillation_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 31,194 | 33,579 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
| null | 10,463 |
class EfficientFormerImageProcessor(BaseImageProcessor):
r"""
Constructs a EfficientFormer image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `(size["height"],
size["width"])`. Can be overridden by the `do_resize` parameter in the `preprocess` method.
size (`dict`, *optional*, defaults to `{"height": 224, "width": 224}`):
Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess`
method.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
`preprocess` method.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to center crop the image to the specified `crop_size`. Can be overridden by `do_center_crop` in the
`preprocess` method.
crop_size (`Dict[str, int]` *optional*, defaults to 224):
Size of the output image after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess`
method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
`preprocess` method.
do_normalize:
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_center_crop: bool = True,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
crop_size: Dict[str, int] = None,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
**kwargs,
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"height": 224, "width": 224}
size = get_size_dict(size)
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size")
self.do_resize = do_resize
self.do_rescale = do_rescale
self.do_normalize = do_normalize
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.size = size
self.resample = resample
self.rescale_factor = rescale_factor
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
self._valid_processor_keys = [
"images",
"do_resize",
"size",
"resample",
"do_center_crop",
"crop_size",
"do_rescale",
"rescale_factor",
"do_normalize",
"image_mean",
"image_std",
"return_tensors",
"data_format",
"input_data_format",
]
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BILINEAR,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image to `(size["height"], size["width"])`.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
resample:
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
Returns:
`np.ndarray`: The resized image.
"""
size = get_size_dict(size)
if "shortest_edge" in size:
size = get_resize_output_image_size(
image, size=size["shortest_edge"], default_to_square=False, input_data_format=input_data_format
)
# size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"])
elif "height" in size and "width" in size:
size = (size["height"], size["width"])
else:
raise ValueError(f"Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}")
return resize(
image, size=size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs
)
def preprocess(
self,
images: ImageInput,
do_resize: Optional[bool] = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: int = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> BatchFeature:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Dictionary in the format `{"height": h, "width": w}` specifying the size of the output image after
resizing.
resample (`PILImageResampling` filter, *optional*, defaults to `self.resample`):
`PILImageResampling` filter to use if resizing the image e.g. `PILImageResampling.BILINEAR`. Only has
an effect if `do_resize` is set to `True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether to center crop the image.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean to use if `do_normalize` is set to `True`.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to use if `do_normalize` is set to `True`.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size, param_name="crop_size", default_to_square=True)
resample = resample if resample is not None else self.resample
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
size = size if size is not None else self.size
size_dict = get_size_dict(size)
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
if not is_batched(images):
images = [images]
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
validate_preprocess_arguments(
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_resize=do_resize,
size=size,
resample=resample,
)
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if do_rescale and is_scaled_image(images[0]):
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_resize:
images = [
self.resize(image=image, size=size_dict, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_center_crop:
images = [
self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images
]
if do_rescale:
images = [
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
for image in images
]
if do_normalize:
images = [
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
for image in images
]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
|
class_definition
| 1,345 | 15,697 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/image_processing_efficientformer.py
| null | 10,464 |
class TFEfficientFormerPatchEmbeddings(keras.layers.Layer):
"""
This class performs downsampling between two stages. For the input tensor with the shape [batch_size, num_channels,
height, width] it produces output tensor with the shape [batch_size, num_channels, height/stride, width/stride]
"""
def __init__(
self, config: EfficientFormerConfig, num_channels: int, embed_dim: int, apply_norm: bool = True, **kwargs
) -> None:
super().__init__(**kwargs)
self.num_channels = num_channels
self.padding = keras.layers.ZeroPadding2D(padding=config.downsample_pad)
self.projection = keras.layers.Conv2D(
filters=embed_dim,
kernel_size=config.downsample_patch_size,
strides=config.downsample_stride,
padding="valid",
name="projection",
)
# Use same default momentum and epsilon as PyTorch equivalent for BatchNormalization
self.norm = (
keras.layers.BatchNormalization(axis=-1, epsilon=config.batch_norm_eps, momentum=0.9, name="norm")
if apply_norm
else tf.identity
)
self.embed_dim = embed_dim
def call(self, pixel_values: tf.Tensor, training: bool = False) -> tf.Tensor:
tf.debugging.assert_shapes(
[(pixel_values, (..., None, None, self.num_channels))],
message="Make sure that the channel dimension of the pixel values match with the one set in the configuration.",
)
embeddings = self.projection(self.padding(pixel_values))
embeddings = self.norm(embeddings, training=training)
return embeddings
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "projection", None) is not None:
with tf.name_scope(self.projection.name):
self.projection.build([None, None, None, self.num_channels])
if getattr(self, "norm", None) is not None:
if hasattr(self.norm, "name"):
with tf.name_scope(self.norm.name):
self.norm.build([None, None, None, self.embed_dim])
|
class_definition
| 1,780 | 3,962 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
| null | 10,465 |
class TFEfficientFormerSelfAttention(keras.layers.Layer):
def __init__(
self,
dim: int,
key_dim: int,
num_heads: int,
attention_ratio: int,
resolution: int,
config: EfficientFormerConfig,
**kwargs,
):
super().__init__(**kwargs)
self.num_heads = num_heads
self.key_dim = key_dim
self.attention_ratio = attention_ratio
self.scale = key_dim**-0.5
self.total_key_dim = key_dim * num_heads
self.expanded_key_dim = int(attention_ratio * key_dim)
self.total_expanded_key_dim = int(self.expanded_key_dim * num_heads)
hidden_size = self.total_expanded_key_dim + self.total_key_dim * 2
self.qkv = keras.layers.Dense(
units=hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="qkv"
)
self.projection = keras.layers.Dense(
units=dim, kernel_initializer=get_initializer(config.initializer_range), name="projection"
)
self.resolution = resolution
self.dim = dim
def build(self, input_shape: tf.TensorShape) -> None:
points = list(itertools.product(range(self.resolution), range(self.resolution)))
num_points = len(points)
attention_offsets = {}
idxs = []
for point_1 in points:
for point_2 in points:
offset = (abs(point_1[0] - point_2[0]), abs(point_1[1] - point_2[1]))
if offset not in attention_offsets:
attention_offsets[offset] = len(attention_offsets)
idxs.append(attention_offsets[offset])
self.attention_biases = self.add_weight(
shape=(self.num_heads, len(attention_offsets)),
initializer=keras.initializers.zeros(),
trainable=True,
name="attention_biases",
)
self.attention_bias_idxs = self.add_weight(
shape=(num_points, num_points),
trainable=False,
dtype=tf.int32,
name="attention_bias_idxs",
)
self.attention_bias_idxs.assign(tf.reshape(tf.cast(idxs, dtype=tf.int32), (num_points, num_points)))
if self.built:
return
self.built = True
if getattr(self, "qkv", None) is not None:
with tf.name_scope(self.qkv.name):
self.qkv.build([None, None, self.dim])
if getattr(self, "projection", None) is not None:
with tf.name_scope(self.projection.name):
self.projection.build([None, None, self.total_expanded_key_dim])
def call(
self, hidden_states: tf.Tensor, output_attentions: bool = False, training: bool = False
) -> Tuple[tf.Tensor]:
batch_size, sequence_length, *_ = shape_list(hidden_states)
qkv = self.qkv(inputs=hidden_states)
query_layer, key_layer, value_layer = tf.split(
tf.reshape(tensor=qkv, shape=(batch_size, sequence_length, self.num_heads, -1)),
num_or_size_splits=[self.key_dim, self.key_dim, self.expanded_key_dim],
axis=3,
)
query_layer = tf.transpose(query_layer, perm=[0, 2, 1, 3])
key_layer = tf.transpose(key_layer, perm=[0, 2, 1, 3])
value_layer = tf.transpose(value_layer, perm=[0, 2, 1, 3])
attention_probs = tf.matmul(query_layer, tf.transpose(key_layer, perm=[0, 1, 3, 2]))
scale = tf.cast(self.scale, dtype=attention_probs.dtype)
attention_probs = tf.multiply(attention_probs, scale)
attention_biases = tf.gather(params=self.attention_biases, indices=self.attention_bias_idxs, axis=1)
attention_probs = attention_probs + attention_biases
attention_probs = stable_softmax(logits=attention_probs, axis=-1)
context_layer = tf.matmul(attention_probs, value_layer)
context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3])
context_layer = tf.reshape(
tensor=context_layer, shape=(batch_size, sequence_length, self.total_expanded_key_dim)
)
context_layer = self.projection(context_layer)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
|
class_definition
| 3,965 | 8,220 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
| null | 10,466 |
class TFEfficientFormerConvStem(keras.layers.Layer):
def __init__(self, config: EfficientFormerConfig, out_channels: int, **kwargs):
super().__init__(**kwargs)
self.padding = keras.layers.ZeroPadding2D(padding=1)
self.convolution1 = keras.layers.Conv2D(
filters=out_channels // 2, kernel_size=3, strides=2, padding="valid", name="convolution1"
)
# Use same default momentum and epsilon as PyTorch equivalent for BatchNormalization
self.batchnorm_before = keras.layers.BatchNormalization(
axis=-1, epsilon=config.batch_norm_eps, momentum=0.9, name="batchnorm_before"
)
self.convolution2 = keras.layers.Conv2D(
filters=out_channels,
kernel_size=3,
strides=2,
padding="valid",
name="convolution2",
)
# Use same default momentum and epsilon as PyTorch equivalent for BatchNormalization
self.batchnorm_after = keras.layers.BatchNormalization(
axis=-1, epsilon=config.batch_norm_eps, momentum=0.9, name="batchnorm_after"
)
self.activation = keras.layers.Activation(activation=keras.activations.relu, name="activation")
self.out_channels = out_channels
self.config = config
def call(self, pixel_values: tf.Tensor, training: bool = False) -> tf.Tensor:
features = self.batchnorm_before(self.convolution1(self.padding(pixel_values)), training=training)
features = self.activation(features)
features = self.batchnorm_after(self.convolution2(self.padding(features)), training=training)
features = self.activation(features)
return features
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "convolution1", None) is not None:
with tf.name_scope(self.convolution1.name):
self.convolution1.build([None, None, None, self.config.num_channels])
if getattr(self, "batchnorm_before", None) is not None:
with tf.name_scope(self.batchnorm_before.name):
self.batchnorm_before.build([None, None, None, self.out_channels // 2])
if getattr(self, "convolution2", None) is not None:
with tf.name_scope(self.convolution2.name):
self.convolution2.build([None, None, None, self.out_channels // 2])
if getattr(self, "batchnorm_after", None) is not None:
with tf.name_scope(self.batchnorm_after.name):
self.batchnorm_after.build([None, None, None, self.out_channels])
if getattr(self, "activation", None) is not None:
with tf.name_scope(self.activation.name):
self.activation.build(None)
|
class_definition
| 8,223 | 11,000 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
| null | 10,467 |
class TFEfficientFormerPooling(keras.layers.Layer):
def __init__(self, pool_size: int, **kwargs):
super().__init__(**kwargs)
self.pool = keras.layers.AveragePooling2D(pool_size=pool_size, strides=1, padding="same")
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
output = self.pool(hidden_states)
output = output - hidden_states
return output
|
class_definition
| 11,003 | 11,401 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
| null | 10,468 |
class TFEfficientFormerDenseMlp(keras.layers.Layer):
def __init__(
self,
config: EfficientFormerConfig,
in_features: int,
hidden_features: Optional[int] = None,
out_features: Optional[int] = None,
**kwargs,
):
super().__init__(**kwargs)
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.linear_in = keras.layers.Dense(
units=hidden_features, kernel_initializer=get_initializer(config.initializer_range), name="linear_in"
)
self.activation = ACT2FN[config.hidden_act]
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
self.linear_out = keras.layers.Dense(
units=out_features, kernel_initializer=get_initializer(config.initializer_range), name="linear_out"
)
self.hidden_features = hidden_features
self.in_features = in_features
def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = self.linear_in(inputs=hidden_states)
hidden_states = self.activation(hidden_states)
hidden_states = self.dropout(inputs=hidden_states, training=training)
hidden_states = self.linear_out(inputs=hidden_states)
hidden_states = self.dropout(inputs=hidden_states, training=training)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "linear_in", None) is not None:
with tf.name_scope(self.linear_in.name):
self.linear_in.build([None, None, self.in_features])
if getattr(self, "linear_out", None) is not None:
with tf.name_scope(self.linear_out.name):
self.linear_out.build([None, None, self.hidden_features])
|
class_definition
| 11,404 | 13,287 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
| null | 10,469 |
class TFEfficientFormerConvMlp(keras.layers.Layer):
def __init__(
self,
config: EfficientFormerConfig,
in_features: int,
hidden_features: Optional[int] = None,
out_features: Optional[int] = None,
drop: float = 0.0,
**kwargs,
):
super().__init__(**kwargs)
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.convolution1 = keras.layers.Conv2D(
filters=hidden_features,
kernel_size=1,
name="convolution1",
padding="valid",
)
self.activation = ACT2FN[config.hidden_act]
self.convolution2 = keras.layers.Conv2D(
filters=out_features,
kernel_size=1,
name="convolution2",
padding="valid",
)
self.dropout = keras.layers.Dropout(rate=drop)
# Use same default momentum and epsilon as PyTorch equivalent for BatchNormalization
self.batchnorm_before = keras.layers.BatchNormalization(
axis=-1, epsilon=config.batch_norm_eps, momentum=0.9, name="batchnorm_before"
)
# Use same default momentum and epsilon as PyTorch equivalent for BatchNormalization
self.batchnorm_after = keras.layers.BatchNormalization(
axis=-1, epsilon=config.batch_norm_eps, momentum=0.9, name="batchnorm_after"
)
self.hidden_features = hidden_features
self.in_features = in_features
self.out_features = out_features
def call(self, hidden_state: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_state = self.convolution1(hidden_state)
hidden_state = self.batchnorm_before(hidden_state, training=training)
hidden_state = self.activation(hidden_state)
hidden_state = self.dropout(hidden_state, training=training)
hidden_state = self.convolution2(hidden_state)
hidden_state = self.batchnorm_after(hidden_state, training=training)
hidden_state = self.dropout(hidden_state, training=training)
return hidden_state
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "convolution1", None) is not None:
with tf.name_scope(self.convolution1.name):
self.convolution1.build([None, None, None, self.in_features])
if getattr(self, "convolution2", None) is not None:
with tf.name_scope(self.convolution2.name):
self.convolution2.build([None, None, None, self.hidden_features])
if getattr(self, "batchnorm_before", None) is not None:
with tf.name_scope(self.batchnorm_before.name):
self.batchnorm_before.build([None, None, None, self.hidden_features])
if getattr(self, "batchnorm_after", None) is not None:
with tf.name_scope(self.batchnorm_after.name):
self.batchnorm_after.build([None, None, None, self.out_features])
|
class_definition
| 13,290 | 16,325 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
| null | 10,470 |
class TFEfficientFormerDropPath(keras.layers.Layer):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
References:
(1) github.com:rwightman/pytorch-image-models
"""
def __init__(self, drop_path: float, **kwargs):
super().__init__(**kwargs)
self.drop_path = drop_path
def call(self, x: tf.Tensor, training=None):
if training:
keep_prob = 1 - self.drop_path
shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1)
random_tensor = keep_prob + tf.random.uniform(shape, 0, 1)
random_tensor = tf.floor(random_tensor)
return (x / keep_prob) * random_tensor
return x
|
class_definition
| 16,442 | 17,166 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
| null | 10,471 |
class TFEfficientFormerFlat(keras.layers.Layer):
def __init__(self, **kwargs):
super().__init__(**kwargs)
def call(self, hidden_states: tf.Tensor) -> Tuple[tf.Tensor]:
batch_size, _, _, in_channels = shape_list(hidden_states)
hidden_states = tf.reshape(hidden_states, shape=[batch_size, -1, in_channels])
return hidden_states
|
class_definition
| 17,169 | 17,535 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
| null | 10,472 |
class TFEfficientFormerMeta3D(keras.layers.Layer):
def __init__(self, config: EfficientFormerConfig, dim: int, drop_path: float = 0.0, **kwargs):
super().__init__(**kwargs)
self.token_mixer = TFEfficientFormerSelfAttention(
dim=config.dim,
key_dim=config.key_dim,
num_heads=config.num_attention_heads,
attention_ratio=config.attention_ratio,
resolution=config.resolution,
name="token_mixer",
config=config,
)
self.dim = dim
self.config = config
self.layernorm1 = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm1")
self.layernorm2 = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm2")
mlp_hidden_dim = int(dim * config.mlp_expansion_ratio)
self.mlp = TFEfficientFormerDenseMlp(config, in_features=dim, hidden_features=mlp_hidden_dim, name="mlp")
# Using `layers.Activation` instead of `tf.identity` to better control `training' behavior.
self.drop_path = (
TFEfficientFormerDropPath(drop_path)
if drop_path > 0.0
else keras.layers.Activation("linear", name="drop_path")
)
self.config = config
def build(self, input_shape=None):
self.layer_scale_1 = None
self.layer_scale_2 = None
if self.config.use_layer_scale:
self.layer_scale_1 = self.add_weight(
shape=(self.dim,),
initializer=keras.initializers.Constant(value=self.config.layer_scale_init_value),
trainable=True,
name="layer_scale_1",
)
self.layer_scale_2 = self.add_weight(
shape=(self.dim,),
initializer=keras.initializers.Constant(value=self.config.layer_scale_init_value),
trainable=True,
name="layer_scale_2",
)
if self.built:
return
self.built = True
if getattr(self, "token_mixer", None) is not None:
with tf.name_scope(self.token_mixer.name):
self.token_mixer.build(None)
if getattr(self, "layernorm1", None) is not None:
with tf.name_scope(self.layernorm1.name):
self.layernorm1.build([None, None, self.dim])
if getattr(self, "layernorm2", None) is not None:
with tf.name_scope(self.layernorm2.name):
self.layernorm2.build([None, None, self.dim])
if getattr(self, "mlp", None) is not None:
with tf.name_scope(self.mlp.name):
self.mlp.build(None)
if getattr(self, "drop_path", None) is not None:
with tf.name_scope(self.drop_path.name):
self.drop_path.build(None)
def call(
self, hidden_states: tf.Tensor, output_attentions: bool = False, training: bool = False
) -> Tuple[tf.Tensor]:
self_attention_outputs = self.token_mixer(
hidden_states=self.layernorm1(hidden_states, training=training),
output_attentions=output_attentions,
training=training,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
if self.config.use_layer_scale:
layer_output = hidden_states + self.drop_path(
tf.expand_dims(tf.expand_dims(self.layer_scale_1, 0), 0) * attention_output,
training=training,
)
layer_output = layer_output + self.drop_path(
tf.expand_dims(tf.expand_dims(self.layer_scale_2, 0), 0)
* self.mlp(hidden_states=self.layernorm2(inputs=layer_output, training=training), training=training),
training=training,
)
else:
layer_output = hidden_states + self.drop_path(attention_output, training=training)
layer_output = layer_output + self.drop_path(
self.mlp(hidden_states=self.layernorm2(inputs=layer_output, training=training), training=training),
training=training,
)
outputs = (layer_output,) + outputs
return outputs
|
class_definition
| 17,538 | 21,820 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
| null | 10,473 |
class TFEfficientFormerMeta3DLayers(keras.layers.Layer):
def __init__(self, config: EfficientFormerConfig, **kwargs):
super().__init__(**kwargs)
drop_paths = [
config.drop_path_rate * (block_idx + sum(config.depths[:-1]))
for block_idx in range(config.num_meta3d_blocks)
]
self.blocks = [
TFEfficientFormerMeta3D(config, config.hidden_sizes[-1], drop_path=drop_path, name=f"blocks.{i}")
for i, drop_path in enumerate(drop_paths)
]
def call(
self, hidden_states: tf.Tensor, output_attentions: bool = False, training: bool = False
) -> Tuple[tf.Tensor]:
all_attention_outputs = () if output_attentions else None
for i, layer_module in enumerate(self.blocks):
if isinstance(hidden_states, tuple):
hidden_states = hidden_states[0]
hidden_states = layer_module(
hidden_states=hidden_states, output_attentions=output_attentions, training=training
)
if output_attentions:
all_attention_outputs = all_attention_outputs + (hidden_states[1],)
if output_attentions:
outputs = (hidden_states[0],) + all_attention_outputs
return outputs
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "blocks", None) is not None:
for layer in self.blocks:
with tf.name_scope(layer.name):
layer.build(None)
|
class_definition
| 21,823 | 23,418 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
| null | 10,474 |
class TFEfficientFormerMeta4D(keras.layers.Layer):
def __init__(self, config: EfficientFormerConfig, dim: int, drop_path: float = 0.0, **kwargs):
super().__init__(**kwargs)
pool_size = config.pool_size if config.pool_size is not None else 3
self.token_mixer = TFEfficientFormerPooling(pool_size=pool_size, name="token_mixer")
self.dim = dim
mlp_hidden_dim = int(dim * config.mlp_expansion_ratio)
self.mlp = TFEfficientFormerConvMlp(
config=config, in_features=dim, hidden_features=mlp_hidden_dim, drop=config.hidden_dropout_prob, name="mlp"
)
self.drop_path = (
TFEfficientFormerDropPath(drop_path, name="drop_path")
if drop_path > 0.0
else keras.layers.Activation("linear", name="drop_path")
)
self.config = config
def build(self, input_shape=None):
self.layer_scale_1 = None
self.layer_scale_2 = None
if self.config.use_layer_scale:
self.layer_scale_1 = self.add_weight(
shape=(self.dim),
initializer=keras.initializers.Constant(value=self.config.layer_scale_init_value),
trainable=True,
name="layer_scale_1",
)
self.layer_scale_2 = self.add_weight(
shape=(self.dim),
initializer=keras.initializers.Constant(value=self.config.layer_scale_init_value),
trainable=True,
name="layer_scale_2",
)
if self.built:
return
self.built = True
if getattr(self, "token_mixer", None) is not None:
with tf.name_scope(self.token_mixer.name):
self.token_mixer.build(None)
if getattr(self, "mlp", None) is not None:
with tf.name_scope(self.mlp.name):
self.mlp.build(None)
if getattr(self, "drop_path", None) is not None:
with tf.name_scope(self.drop_path.name):
self.drop_path.build(None)
def call(self, hidden_states: tf.Tensor, training: bool = False) -> Tuple[tf.Tensor]:
outputs = self.token_mixer(hidden_states)
if self.config.use_layer_scale:
layer_output = hidden_states + self.drop_path(
tf.expand_dims(tf.expand_dims(self.layer_scale_1, 0), 0) * outputs,
training=training,
)
layer_output = layer_output + self.drop_path(
tf.expand_dims(tf.expand_dims(self.layer_scale_2, 0), 0)
* self.mlp(hidden_state=layer_output, training=training),
training=training,
)
else:
layer_output = hidden_states + self.drop_path(outputs, training=training)
layer_output = layer_output + self.drop_path(
self.mlp(hidden_state=layer_output, training=training), training=training
)
return layer_output
|
class_definition
| 23,421 | 26,389 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
| null | 10,475 |
class TFEfficientFormerMeta4DLayers(keras.layers.Layer):
def __init__(self, config: EfficientFormerConfig, stage_idx: int, **kwargs):
super().__init__(**kwargs)
num_layers = (
config.depths[stage_idx] if stage_idx != -1 else config.depths[stage_idx] - config.num_meta3d_blocks
)
drop_paths = [
config.drop_path_rate * (block_idx + sum(config.depths[:stage_idx])) for block_idx in range(num_layers)
]
self.blocks = [
TFEfficientFormerMeta4D(
config=config, dim=config.hidden_sizes[stage_idx], drop_path=drop_paths[i], name=f"blocks.{i}"
)
for i in range(len(drop_paths))
]
def call(self, hidden_states: tf.Tensor, training: bool = False) -> Tuple[tf.Tensor]:
for layer_module in self.blocks:
hidden_states = layer_module(hidden_states=hidden_states, training=training)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "blocks", None) is not None:
for layer in self.blocks:
with tf.name_scope(layer.name):
layer.build(None)
|
class_definition
| 26,392 | 27,636 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
| null | 10,476 |
class TFEfficientFormerIntermediateStage(keras.layers.Layer):
def __init__(self, config: EfficientFormerConfig, index: int, **kwargs):
super().__init__(**kwargs)
self.meta4D_layers = TFEfficientFormerMeta4DLayers(config=config, stage_idx=index, name="meta4D_layers")
def call(self, hidden_states: tf.Tensor, training: bool = False) -> Tuple[tf.Tensor]:
hidden_states = self.meta4D_layers(hidden_states=hidden_states, training=training)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "meta4D_layers", None) is not None:
with tf.name_scope(self.meta4D_layers.name):
self.meta4D_layers.build(None)
|
class_definition
| 27,639 | 28,409 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
| null | 10,477 |
class TFEfficientFormerLastStage(keras.layers.Layer):
def __init__(self, config: EfficientFormerConfig, **kwargs):
super().__init__(**kwargs)
self.meta4D_layers = TFEfficientFormerMeta4DLayers(config=config, stage_idx=-1, name="meta4D_layers")
self.flat = TFEfficientFormerFlat(name="flat")
self.meta3D_layers = TFEfficientFormerMeta3DLayers(config, name="meta3D_layers")
def call(
self, hidden_states: tf.Tensor, output_attentions: bool = False, training: bool = False
) -> Tuple[tf.Tensor]:
hidden_states = self.meta4D_layers(hidden_states=hidden_states, training=training)
hidden_states = self.flat(hidden_states=hidden_states)
hidden_states = self.meta3D_layers(
hidden_states=hidden_states, output_attentions=output_attentions, training=training
)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "meta4D_layers", None) is not None:
with tf.name_scope(self.meta4D_layers.name):
self.meta4D_layers.build(None)
if getattr(self, "flat", None) is not None:
with tf.name_scope(self.flat.name):
self.flat.build(None)
if getattr(self, "meta3D_layers", None) is not None:
with tf.name_scope(self.meta3D_layers.name):
self.meta3D_layers.build(None)
|
class_definition
| 28,412 | 29,867 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
| null | 10,478 |
class TFEfficientFormerEncoder(keras.layers.Layer):
def __init__(self, config: EfficientFormerConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
num_intermediate_stages = len(config.depths) - 1
downsamples = [
config.downsamples[i] or config.hidden_sizes[i] != config.hidden_sizes[i + 1]
for i in range(num_intermediate_stages)
]
intermediate_stages = []
layer_count = -1
for i in range(num_intermediate_stages):
layer_count += 1
intermediate_stages.append(
TFEfficientFormerIntermediateStage(config, i, name=f"intermediate_stages.{layer_count}")
)
if downsamples[i]:
layer_count += 1
intermediate_stages.append(
TFEfficientFormerPatchEmbeddings(
config,
config.hidden_sizes[i],
config.hidden_sizes[i + 1],
name=f"intermediate_stages.{layer_count}",
)
)
self.intermediate_stages = intermediate_stages
self.last_stage = TFEfficientFormerLastStage(config, name="last_stage")
def call(
self,
hidden_states: tf.Tensor,
output_hidden_states: bool,
output_attentions: bool,
return_dict: bool,
training: bool = False,
) -> TFBaseModelOutput:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
for layer_module in self.intermediate_stages:
hidden_states = layer_module(hidden_states, training=training)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_output = self.last_stage(hidden_states, output_attentions=output_attentions, training=training)
if output_attentions:
all_self_attentions = all_self_attentions + layer_output[1:]
if output_hidden_states:
all_hidden_states = all_hidden_states + (layer_output[0],)
if not return_dict:
return tuple(v for v in [layer_output[0], all_hidden_states, all_self_attentions] if v is not None)
return TFBaseModelOutput(
last_hidden_state=layer_output[0],
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "last_stage", None) is not None:
with tf.name_scope(self.last_stage.name):
self.last_stage.build(None)
for layer in self.intermediate_stages:
with tf.name_scope(layer.name):
layer.build(None)
|
class_definition
| 29,870 | 32,839 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
| null | 10,479 |
class TFEfficientFormerMainLayer(keras.layers.Layer):
config_class = EfficientFormerConfig
def __init__(self, config: EfficientFormerConfig, **kwargs) -> None:
super().__init__(**kwargs)
self.config = config
self.patch_embed = TFEfficientFormerConvStem(config, config.hidden_sizes[0], name="patch_embed")
self.encoder = TFEfficientFormerEncoder(config, name="encoder")
self.layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm")
@unpack_inputs
def call(
self,
pixel_values: Optional[tf.Tensor] = None,
output_attentions: Optional[tf.Tensor] = None,
output_hidden_states: Optional[tf.Tensor] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor, ...]]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
# When running on CPU, keras.layers.Conv2D and keras.layers.AveragePool2D do not
# support channels first NCHW format. A number of blocks contain both.
# So change the input format from (batch_size, num_channels, height, width) to
# (batch_size, height, width, num_channels) here.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1))
embedding_output = self.patch_embed(pixel_values, training=training)
encoder_outputs = self.encoder(
hidden_states=embedding_output,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output, training=training)
# Change the hidden states from (batch_size, height, width, num_channels) to
# (batch_size, num_channels, height, width).
# The hidden states are in (batch_size, height, width, num_channels)
# shape after all stages except the MB3D blocks.
if output_hidden_states:
hidden_states = tuple([tf.transpose(h, perm=(0, 3, 1, 2)) for h in encoder_outputs[1][:-1]]) + (
encoder_outputs[1][-1],
)
if not return_dict:
head_outputs = (sequence_output,)
return head_outputs + encoder_outputs[1:]
return TFBaseModelOutput(
last_hidden_state=sequence_output,
hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "patch_embed", None) is not None:
with tf.name_scope(self.patch_embed.name):
self.patch_embed.build(None)
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
if getattr(self, "layernorm", None) is not None:
with tf.name_scope(self.layernorm.name):
self.layernorm.build([None, None, self.config.hidden_sizes[-1]])
|
class_definition
| 32,862 | 36,555 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
| null | 10,480 |
class TFEfficientFormerPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = EfficientFormerConfig
base_model_prefix = "efficientformer"
main_input_name = "pixel_values"
|
class_definition
| 36,558 | 36,882 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
| null | 10,481 |
class TFEfficientFormerModel(TFEfficientFormerPreTrainedModel):
def __init__(self, config: EfficientFormerConfig, **kwargs) -> None:
super().__init__(config, **kwargs)
self.efficientformer = TFEfficientFormerMainLayer(config, name="efficientformer")
@unpack_inputs
@add_start_docstrings_to_model_forward(EFFICIENTFORMER_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFBaseModelOutputWithPooling,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def call(
self,
pixel_values: Optional[tf.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[Tuple, TFBaseModelOutput]:
outputs = self.efficientformer(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "efficientformer", None) is not None:
with tf.name_scope(self.efficientformer.name):
self.efficientformer.build(None)
|
class_definition
| 38,537 | 40,008 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
| null | 10,482 |
class TFEfficientFormerForImageClassification(TFEfficientFormerPreTrainedModel, TFSequenceClassificationLoss):
def __init__(self, config: EfficientFormerConfig):
super().__init__(config)
self.num_labels = config.num_labels
self.efficientformer = TFEfficientFormerMainLayer(config, name="efficientformer")
# Classifier head
self.classifier = (
keras.layers.Dense(config.num_labels, name="classifier")
if config.num_labels > 0
else keras.layers.Activation("linear", name="classifier")
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(EFFICIENTFORMER_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=TFImageClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def call(
self,
pixel_values: Optional[tf.Tensor] = None,
labels: Optional[tf.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[tf.Tensor, TFImageClassifierOutput]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.efficientformer(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
logits = self.classifier(tf.reduce_mean(sequence_output, axis=-2))
loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFImageClassifierOutput(
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "efficientformer", None) is not None:
with tf.name_scope(self.efficientformer.name):
self.efficientformer.build(None)
if getattr(self, "classifier", None) is not None:
if hasattr(self.classifier, "name"):
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_sizes[-1]])
|
class_definition
| 40,221 | 43,278 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
| null | 10,483 |
class TFEfficientFormerForImageClassificationWithTeacherOutput(ModelOutput):
"""
Args:
Output type of [`EfficientFormerForImageClassificationWithTeacher`].
logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`):
Prediction scores as the average of the cls_logits and distillation logits.
cls_logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`):
Prediction scores of the classification head (i.e. the linear layer on top of the final hidden state of the
class token).
distillation_logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`):
Prediction scores of the distillation head (i.e. the linear layer on top of the final hidden state of the
distillation token).
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when
`config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus
the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when
`config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
"""
logits: tf.Tensor = None
cls_logits: tf.Tensor = None
distillation_logits: tf.Tensor = None
hidden_states: Optional[Tuple[tf.Tensor]] = None
attentions: Optional[Tuple[tf.Tensor]] = None
|
class_definition
| 43,292 | 45,146 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
| null | 10,484 |
class TFEfficientFormerForImageClassificationWithTeacher(TFEfficientFormerPreTrainedModel):
def __init__(self, config: EfficientFormerConfig) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.efficientformer = TFEfficientFormerMainLayer(config, name="efficientformer")
# Classifier heads
self.classifier = (
keras.layers.Dense(config.num_labels, name="classifier")
if config.num_labels > 0
else keras.layers.Activation("linear", name="classifier")
)
self.distillation_classifier = (
keras.layers.Dense(config.num_labels, name="distillation_classifier")
if config.num_labels > 0
else keras.layers.Activation("linear", name="distillation_classifier")
)
@unpack_inputs
@add_start_docstrings_to_model_forward(EFFICIENTFORMER_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=TFEfficientFormerForImageClassificationWithTeacherOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def call(
self,
pixel_values: Optional[tf.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[tuple, TFEfficientFormerForImageClassificationWithTeacherOutput]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if training:
raise Exception(
"This model supports inference-only. Fine-tuning with distillation (i.e. with a teacher) is not yet supported."
)
outputs = self.efficientformer(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
cls_logits = self.classifier(tf.reduce_mean(sequence_output, axis=-2))
distillation_logits = self.distillation_classifier(tf.reduce_mean(sequence_output, axis=-2))
logits = (cls_logits + distillation_logits) / 2
if not return_dict:
output = (logits, cls_logits, distillation_logits) + outputs[1:]
return output
return TFEfficientFormerForImageClassificationWithTeacherOutput(
logits=logits,
cls_logits=cls_logits,
distillation_logits=distillation_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "efficientformer", None) is not None:
with tf.name_scope(self.efficientformer.name):
self.efficientformer.build(None)
if getattr(self, "classifier", None) is not None:
if hasattr(self.classifier, "name"):
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_sizes[-1]])
if getattr(self, "distillation_classifier", None) is not None:
if hasattr(self.distillation_classifier, "name"):
with tf.name_scope(self.distillation_classifier.name):
self.distillation_classifier.build([None, None, self.config.hidden_sizes[-1]])
|
class_definition
| 45,608 | 49,193 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
| null | 10,485 |
class ScaNNSearcher:
"""Note that ScaNNSearcher cannot currently be used within the model. In future versions, it might however be included."""
def __init__(
self,
db,
num_neighbors,
dimensions_per_block=2,
num_leaves=1000,
num_leaves_to_search=100,
training_sample_size=100000,
):
"""Build scann searcher."""
from scann.scann_ops.py.scann_ops_pybind import builder as Builder
builder = Builder(db=db, num_neighbors=num_neighbors, distance_measure="dot_product")
builder = builder.tree(
num_leaves=num_leaves, num_leaves_to_search=num_leaves_to_search, training_sample_size=training_sample_size
)
builder = builder.score_ah(dimensions_per_block=dimensions_per_block)
self.searcher = builder.build()
def search_batched(self, question_projection):
retrieved_block_ids, _ = self.searcher.search_batched(question_projection.detach().cpu())
return retrieved_block_ids.astype("int64")
|
class_definition
| 1,336 | 2,375 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/retrieval_realm.py
| null | 10,486 |
class RealmRetriever:
"""The retriever of REALM outputting the retrieved evidence block and whether the block has answers as well as answer
positions."
Parameters:
block_records (`np.ndarray`):
A numpy array which cantains evidence texts.
tokenizer ([`RealmTokenizer`]):
The tokenizer to encode retrieved texts.
"""
def __init__(self, block_records, tokenizer):
super().__init__()
self.block_records = block_records
self.tokenizer = tokenizer
def __call__(self, retrieved_block_ids, question_input_ids, answer_ids, max_length=None, return_tensors="pt"):
retrieved_blocks = np.take(self.block_records, indices=retrieved_block_ids, axis=0)
question = self.tokenizer.decode(question_input_ids[0], skip_special_tokens=True)
text = []
text_pair = []
for retrieved_block in retrieved_blocks:
text.append(question)
text_pair.append(retrieved_block.decode())
concat_inputs = self.tokenizer(
text, text_pair, padding=True, truncation=True, return_special_tokens_mask=True, max_length=max_length
)
concat_inputs_tensors = concat_inputs.convert_to_tensors(return_tensors)
if answer_ids is not None:
return self.block_has_answer(concat_inputs, answer_ids) + (concat_inputs_tensors,)
else:
return (None, None, None, concat_inputs_tensors)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *init_inputs, **kwargs):
if os.path.isdir(pretrained_model_name_or_path):
block_records_path = os.path.join(pretrained_model_name_or_path, _REALM_BLOCK_RECORDS_FILENAME)
else:
block_records_path = hf_hub_download(
repo_id=pretrained_model_name_or_path, filename=_REALM_BLOCK_RECORDS_FILENAME, **kwargs
)
block_records = np.load(block_records_path, allow_pickle=True)
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, *init_inputs, **kwargs)
return cls(block_records, tokenizer)
def save_pretrained(self, save_directory):
# save block records
np.save(os.path.join(save_directory, _REALM_BLOCK_RECORDS_FILENAME), self.block_records)
# save tokenizer
self.tokenizer.save_pretrained(save_directory)
def block_has_answer(self, concat_inputs, answer_ids):
"""check if retrieved_blocks has answers."""
has_answers = []
start_pos = []
end_pos = []
max_answers = 0
for input_id in concat_inputs.input_ids:
input_id_list = input_id.tolist()
# Check answers between two [SEP] tokens
first_sep_idx = input_id_list.index(self.tokenizer.sep_token_id)
second_sep_idx = first_sep_idx + 1 + input_id_list[first_sep_idx + 1 :].index(self.tokenizer.sep_token_id)
start_pos.append([])
end_pos.append([])
for answer in answer_ids:
for idx in range(first_sep_idx + 1, second_sep_idx):
if answer[0] == input_id_list[idx]:
if input_id_list[idx : idx + len(answer)] == answer:
start_pos[-1].append(idx)
end_pos[-1].append(idx + len(answer) - 1)
if len(start_pos[-1]) == 0:
has_answers.append(False)
else:
has_answers.append(True)
if len(start_pos[-1]) > max_answers:
max_answers = len(start_pos[-1])
# Pad -1 to max_answers
for start_pos_, end_pos_ in zip(start_pos, end_pos):
if len(start_pos_) < max_answers:
padded = [-1] * (max_answers - len(start_pos_))
start_pos_ += padded
end_pos_ += padded
return has_answers, start_pos, end_pos
|
class_definition
| 2,378 | 6,371 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/retrieval_realm.py
| null | 10,487 |
class RealmTokenizer(PreTrainedTokenizer):
r"""
Construct a REALM tokenizer.
[`RealmTokenizer`] is identical to [`BertTokenizer`] and runs end-to-end tokenization: punctuation splitting and
wordpiece.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
File containing the vocabulary.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
do_basic_tokenize (`bool`, *optional*, defaults to `True`):
Whether or not to do basic tokenization before WordPiece.
never_split (`Iterable`, *optional*):
Collection of tokens which will never be split during tokenization. Only has an effect when
`do_basic_tokenize=True`
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters.
This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
"""
vocab_files_names = VOCAB_FILES_NAMES
def __init__(
self,
vocab_file,
do_lower_case=True,
do_basic_tokenize=True,
never_split=None,
unk_token="[UNK]",
sep_token="[SEP]",
pad_token="[PAD]",
cls_token="[CLS]",
mask_token="[MASK]",
tokenize_chinese_chars=True,
strip_accents=None,
**kwargs,
):
if not os.path.isfile(vocab_file):
raise ValueError(
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
" model use `tokenizer = RealmTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
)
self.vocab = load_vocab(vocab_file)
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
self.do_basic_tokenize = do_basic_tokenize
if do_basic_tokenize:
self.basic_tokenizer = BasicTokenizer(
do_lower_case=do_lower_case,
never_split=never_split,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
)
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
super().__init__(
do_lower_case=do_lower_case,
do_basic_tokenize=do_basic_tokenize,
never_split=never_split,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
**kwargs,
)
@property
def do_lower_case(self):
return self.basic_tokenizer.do_lower_case
@property
def vocab_size(self):
return len(self.vocab)
def get_vocab(self):
return dict(self.vocab, **self.added_tokens_encoder)
def _tokenize(self, text):
split_tokens = []
if self.do_basic_tokenize:
for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens):
# If the token is part of the never_split set
if token in self.basic_tokenizer.never_split:
split_tokens.append(token)
else:
split_tokens += self.wordpiece_tokenizer.tokenize(token)
else:
split_tokens = self.wordpiece_tokenizer.tokenize(text)
return split_tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.vocab.get(token, self.vocab.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.ids_to_tokens.get(index, self.unk_token)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
out_string = " ".join(tokens).replace(" ##", "").strip()
return out_string
def batch_encode_candidates(self, text, **kwargs):
r"""
Encode a batch of text or text pair. This method is similar to regular __call__ method but has the following
differences:
1. Handle additional num_candidate axis. (batch_size, num_candidates, text)
2. Always pad the sequences to *max_length*.
3. Must specify *max_length* in order to stack packs of candidates into a batch.
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
text (`List[List[str]]`):
The batch of sequences to be encoded. Each sequence must be in this format: (batch_size,
num_candidates, text).
text_pair (`List[List[str]]`, *optional*):
The batch of sequences to be encoded. Each sequence must be in this format: (batch_size,
num_candidates, text).
**kwargs:
Keyword arguments of the __call__ method.
Returns:
[`BatchEncoding`]: Encoded text or text pair.
Example:
```python
>>> from transformers import RealmTokenizer
>>> # batch_size = 2, num_candidates = 2
>>> text = [["Hello world!", "Nice to meet you!"], ["The cute cat.", "The adorable dog."]]
>>> tokenizer = RealmTokenizer.from_pretrained("google/realm-cc-news-pretrained-encoder")
>>> tokenized_text = tokenizer.batch_encode_candidates(text, max_length=10, return_tensors="pt")
```"""
# Always using a fixed sequence length to encode in order to stack candidates into a batch.
kwargs["padding"] = PaddingStrategy.MAX_LENGTH
batch_text = text
batch_text_pair = kwargs.pop("text_pair", None)
return_tensors = kwargs.pop("return_tensors", None)
output_data = {
"input_ids": [],
"attention_mask": [],
"token_type_ids": [],
}
for idx, candidate_text in enumerate(batch_text):
if batch_text_pair is not None:
candidate_text_pair = batch_text_pair[idx]
else:
candidate_text_pair = None
encoded_candidates = super().__call__(candidate_text, candidate_text_pair, return_tensors=None, **kwargs)
encoded_input_ids = encoded_candidates.get("input_ids")
encoded_attention_mask = encoded_candidates.get("attention_mask")
encoded_token_type_ids = encoded_candidates.get("token_type_ids")
if encoded_input_ids is not None:
output_data["input_ids"].append(encoded_input_ids)
if encoded_attention_mask is not None:
output_data["attention_mask"].append(encoded_attention_mask)
if encoded_token_type_ids is not None:
output_data["token_type_ids"].append(encoded_token_type_ids)
output_data = {key: item for key, item in output_data.items() if len(item) != 0}
return BatchEncoding(output_data, tensor_type=return_tensors)
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A REALM sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A REALM sequence
pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
index = 0
if os.path.isdir(save_directory):
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
else:
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
with open(vocab_file, "w", encoding="utf-8") as writer:
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
" Please check that the vocabulary is not corrupted!"
)
index = token_index
writer.write(token + "\n")
index += 1
return (vocab_file,)
|
class_definition
| 1,601 | 15,033 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/tokenization_realm.py
| null | 10,488 |
class BasicTokenizer:
"""
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
Args:
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
never_split (`Iterable`, *optional*):
Collection of tokens which will never be split during tokenization. Only has an effect when
`do_basic_tokenize=True`
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters.
This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
"""
def __init__(self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None):
if never_split is None:
never_split = []
self.do_lower_case = do_lower_case
self.never_split = set(never_split)
self.tokenize_chinese_chars = tokenize_chinese_chars
self.strip_accents = strip_accents
def tokenize(self, text, never_split=None):
"""
Basic Tokenization of a piece of text. Split on "white spaces" only, for sub-word tokenization, see
WordPieceTokenizer.
Args:
never_split (`List[str]`, *optional*)
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
[`PreTrainedTokenizer.tokenize`]) List of token not to split.
"""
# union() returns a new set by concatenating the two sets.
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
text = self._clean_text(text)
# This was added on November 1st, 2018 for the multilingual and Chinese
# models. This is also applied to the English models now, but it doesn't
# matter since the English models were not trained on any Chinese data
# and generally don't have any Chinese data in them (there are Chinese
# characters in the vocabulary because Wikipedia does have some Chinese
# words in the English Wikipedia.).
if self.tokenize_chinese_chars:
text = self._tokenize_chinese_chars(text)
orig_tokens = whitespace_tokenize(text)
split_tokens = []
for token in orig_tokens:
if token not in never_split:
if self.do_lower_case:
token = token.lower()
if self.strip_accents is not False:
token = self._run_strip_accents(token)
elif self.strip_accents:
token = self._run_strip_accents(token)
split_tokens.extend(self._run_split_on_punc(token, never_split))
output_tokens = whitespace_tokenize(" ".join(split_tokens))
return output_tokens
def _run_strip_accents(self, text):
"""Strips accents from a piece of text."""
text = unicodedata.normalize("NFD", text)
output = []
for char in text:
cat = unicodedata.category(char)
if cat == "Mn":
continue
output.append(char)
return "".join(output)
def _run_split_on_punc(self, text, never_split=None):
"""Splits punctuation on a piece of text."""
if never_split is not None and text in never_split:
return [text]
chars = list(text)
i = 0
start_new_word = True
output = []
while i < len(chars):
char = chars[i]
if _is_punctuation(char):
output.append([char])
start_new_word = True
else:
if start_new_word:
output.append([])
start_new_word = False
output[-1].append(char)
i += 1
return ["".join(x) for x in output]
def _tokenize_chinese_chars(self, text):
"""Adds whitespace around any CJK character."""
output = []
for char in text:
cp = ord(char)
if self._is_chinese_char(cp):
output.append(" ")
output.append(char)
output.append(" ")
else:
output.append(char)
return "".join(output)
def _is_chinese_char(self, cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4E00 and cp <= 0x9FFF)
or (cp >= 0x3400 and cp <= 0x4DBF) #
or (cp >= 0x20000 and cp <= 0x2A6DF) #
or (cp >= 0x2A700 and cp <= 0x2B73F) #
or (cp >= 0x2B740 and cp <= 0x2B81F) #
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
or (cp >= 0xF900 and cp <= 0xFAFF)
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
): #
return True
return False
def _clean_text(self, text):
"""Performs invalid character removal and whitespace cleanup on text."""
output = []
for char in text:
cp = ord(char)
if cp == 0 or cp == 0xFFFD or _is_control(char):
continue
if _is_whitespace(char):
output.append(" ")
else:
output.append(char)
return "".join(output)
|
class_definition
| 15,036 | 21,222 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/tokenization_realm.py
| null | 10,489 |
class WordpieceTokenizer:
"""Runs WordPiece tokenization."""
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
self.vocab = vocab
self.unk_token = unk_token
self.max_input_chars_per_word = max_input_chars_per_word
def tokenize(self, text):
"""
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
tokenization using the given vocabulary.
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
Args:
text: A single token or whitespace separated tokens. This should have
already been passed through *BasicTokenizer*.
Returns:
A list of wordpiece tokens.
"""
output_tokens = []
for token in whitespace_tokenize(text):
chars = list(token)
if len(chars) > self.max_input_chars_per_word:
output_tokens.append(self.unk_token)
continue
is_bad = False
start = 0
sub_tokens = []
while start < len(chars):
end = len(chars)
cur_substr = None
while start < end:
substr = "".join(chars[start:end])
if start > 0:
substr = "##" + substr
if substr in self.vocab:
cur_substr = substr
break
end -= 1
if cur_substr is None:
is_bad = True
break
sub_tokens.append(cur_substr)
start = end
if is_bad:
output_tokens.append(self.unk_token)
else:
output_tokens.extend(sub_tokens)
return output_tokens
|
class_definition
| 21,225 | 23,113 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/tokenization_realm.py
| null | 10,490 |
class RealmConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of
1. [`RealmEmbedder`]
2. [`RealmScorer`]
3. [`RealmKnowledgeAugEncoder`]
4. [`RealmRetriever`]
5. [`RealmReader`]
6. [`RealmForOpenQA`]
It is used to instantiate an REALM model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the REALM
[google/realm-cc-news-pretrained-embedder](https://huggingface.co/google/realm-cc-news-pretrained-embedder)
architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the REALM model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`RealmEmbedder`], [`RealmScorer`], [`RealmKnowledgeAugEncoder`], or
[`RealmReader`].
hidden_size (`int`, *optional*, defaults to 768):
Dimension of the encoder layers and the pooler layer.
retriever_proj_size (`int`, *optional*, defaults to 128):
Dimension of the retriever(embedder) projection.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
num_candidates (`int`, *optional*, defaults to 8):
Number of candidates inputted to the RealmScorer or RealmKnowledgeAugEncoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`RealmEmbedder`], [`RealmScorer`],
[`RealmKnowledgeAugEncoder`], or [`RealmReader`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
span_hidden_size (`int`, *optional*, defaults to 256):
Dimension of the reader's spans.
max_span_width (`int`, *optional*, defaults to 10):
Max span width of the reader.
reader_layer_norm_eps (`float`, *optional*, defaults to 1e-3):
The epsilon used by the reader's layer normalization layers.
reader_beam_size (`int`, *optional*, defaults to 5):
Beam size of the reader.
reader_seq_len (`int`, *optional*, defaults to 288+32):
Maximum sequence length of the reader.
num_block_records (`int`, *optional*, defaults to 13353718):
Number of block records.
searcher_beam_size (`int`, *optional*, defaults to 5000):
Beam size of the searcher. Note that when eval mode is enabled, *searcher_beam_size* will be the same as
*reader_beam_size*.
Example:
```python
>>> from transformers import RealmConfig, RealmEmbedder
>>> # Initializing a REALM realm-cc-news-pretrained-* style configuration
>>> configuration = RealmConfig()
>>> # Initializing a model (with random weights) from the google/realm-cc-news-pretrained-embedder style configuration
>>> model = RealmEmbedder(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "realm"
def __init__(
self,
vocab_size=30522,
hidden_size=768,
retriever_proj_size=128,
num_hidden_layers=12,
num_attention_heads=12,
num_candidates=8,
intermediate_size=3072,
hidden_act="gelu_new",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
span_hidden_size=256,
max_span_width=10,
reader_layer_norm_eps=1e-3,
reader_beam_size=5,
reader_seq_len=320, # 288 + 32
num_block_records=13353718,
searcher_beam_size=5000,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
# Common config
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.retriever_proj_size = retriever_proj_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_candidates = num_candidates
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.type_vocab_size = type_vocab_size
self.layer_norm_eps = layer_norm_eps
# Reader config
self.span_hidden_size = span_hidden_size
self.max_span_width = max_span_width
self.reader_layer_norm_eps = reader_layer_norm_eps
self.reader_beam_size = reader_beam_size
self.reader_seq_len = reader_seq_len
# Retrieval config
self.num_block_records = num_block_records
self.searcher_beam_size = searcher_beam_size
|
class_definition
| 786 | 7,556 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/configuration_realm.py
| null | 10,491 |
class RealmTokenizerFast(PreTrainedTokenizerFast):
r"""
Construct a "fast" REALM tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece.
[`RealmTokenizerFast`] is identical to [`BertTokenizerFast`] and runs end-to-end tokenization: punctuation
splitting and wordpiece.
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
File containing the vocabulary.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
clean_text (`bool`, *optional*, defaults to `True`):
Whether or not to clean the text before tokenization by removing any control characters and replacing all
whitespaces by the classic one.
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this
issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
wordpieces_prefix (`str`, *optional*, defaults to `"##"`):
The prefix for subwords.
"""
vocab_files_names = VOCAB_FILES_NAMES
slow_tokenizer_class = RealmTokenizer
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
do_lower_case=True,
unk_token="[UNK]",
sep_token="[SEP]",
pad_token="[PAD]",
cls_token="[CLS]",
mask_token="[MASK]",
tokenize_chinese_chars=True,
strip_accents=None,
**kwargs,
):
super().__init__(
vocab_file,
tokenizer_file=tokenizer_file,
do_lower_case=do_lower_case,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
**kwargs,
)
normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__())
if (
normalizer_state.get("lowercase", do_lower_case) != do_lower_case
or normalizer_state.get("strip_accents", strip_accents) != strip_accents
or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars
):
normalizer_class = getattr(normalizers, normalizer_state.pop("type"))
normalizer_state["lowercase"] = do_lower_case
normalizer_state["strip_accents"] = strip_accents
normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars
self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state)
self.do_lower_case = do_lower_case
def batch_encode_candidates(self, text, **kwargs):
r"""
Encode a batch of text or text pair. This method is similar to regular __call__ method but has the following
differences:
1. Handle additional num_candidate axis. (batch_size, num_candidates, text)
2. Always pad the sequences to *max_length*.
3. Must specify *max_length* in order to stack packs of candidates into a batch.
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
text (`List[List[str]]`):
The batch of sequences to be encoded. Each sequence must be in this format: (batch_size,
num_candidates, text).
text_pair (`List[List[str]]`, *optional*):
The batch of sequences to be encoded. Each sequence must be in this format: (batch_size,
num_candidates, text).
**kwargs:
Keyword arguments of the __call__ method.
Returns:
[`BatchEncoding`]: Encoded text or text pair.
Example:
```python
>>> from transformers import RealmTokenizerFast
>>> # batch_size = 2, num_candidates = 2
>>> text = [["Hello world!", "Nice to meet you!"], ["The cute cat.", "The adorable dog."]]
>>> tokenizer = RealmTokenizerFast.from_pretrained("google/realm-cc-news-pretrained-encoder")
>>> tokenized_text = tokenizer.batch_encode_candidates(text, max_length=10, return_tensors="pt")
```"""
# Always using a fixed sequence length to encode in order to stack candidates into a batch.
kwargs["padding"] = PaddingStrategy.MAX_LENGTH
batch_text = text
batch_text_pair = kwargs.pop("text_pair", None)
return_tensors = kwargs.pop("return_tensors", None)
output_data = {
"input_ids": [],
"attention_mask": [],
"token_type_ids": [],
}
for idx, candidate_text in enumerate(batch_text):
if batch_text_pair is not None:
candidate_text_pair = batch_text_pair[idx]
else:
candidate_text_pair = None
encoded_candidates = super().__call__(candidate_text, candidate_text_pair, return_tensors=None, **kwargs)
encoded_input_ids = encoded_candidates.get("input_ids")
encoded_attention_mask = encoded_candidates.get("attention_mask")
encoded_token_type_ids = encoded_candidates.get("token_type_ids")
if encoded_input_ids is not None:
output_data["input_ids"].append(encoded_input_ids)
if encoded_attention_mask is not None:
output_data["attention_mask"].append(encoded_attention_mask)
if encoded_token_type_ids is not None:
output_data["token_type_ids"].append(encoded_token_type_ids)
output_data = {key: item for key, item in output_data.items() if len(item) != 0}
return BatchEncoding(output_data, tensor_type=return_tensors)
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A REALM sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
if token_ids_1 is not None:
output += token_ids_1 + [self.sep_token_id]
return output
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A REALM sequence
pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
return tuple(files)
|
class_definition
| 1,100 | 10,952 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/tokenization_realm_fast.py
| null | 10,492 |
class RealmEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
self.register_buffer(
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values_length: int = 0,
) -> torch.Tensor:
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
# issue #5664
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
|
class_definition
| 6,786 | 9,960 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
| null | 10,493 |
class RealmSelfAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = position_embedding_type or getattr(
config, "position_embedding_type", "absolute"
)
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
self.is_decoder = config.is_decoder
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
use_cache = past_key_value is not None
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
if use_cache:
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
-1, 1
)
else:
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in RealmModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
|
class_definition
| 9,963 | 17,307 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
| null | 10,494 |
class RealmSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
|
class_definition
| 17,310 | 17,917 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
| null | 10,495 |
class RealmAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
self.self = REALM_SELF_ATTENTION_CLASSES[config._attn_implementation](
config, position_embedding_type=position_embedding_type
)
self.output = RealmSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
|
class_definition
| 17,990 | 20,115 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
| null | 10,496 |
class RealmIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
|
class_definition
| 20,118 | 20,684 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
| null | 10,497 |
class RealmOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
|
class_definition
| 20,687 | 21,296 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
| null | 10,498 |
class RealmLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = RealmAttention(config)
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
if not self.is_decoder:
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
self.crossattention = RealmAttention(config, position_embedding_type="absolute")
self.intermediate = RealmIntermediate(config)
self.output = RealmOutput(config)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
past_key_value=self_attn_past_key_value,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
if self.is_decoder:
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
else:
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
cross_attn_present_key_value = None
if self.is_decoder and encoder_hidden_states is not None:
if not hasattr(self, "crossattention"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
" by setting `config.add_cross_attention=True`"
)
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
cross_attn_past_key_value,
output_attentions,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
# add cross-attn cache to positions 3,4 of present_key_value tuple
cross_attn_present_key_value = cross_attention_outputs[-1]
present_key_value = present_key_value + cross_attn_present_key_value
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
# if decoder, return the attn key/values as the last output
if self.is_decoder:
outputs = outputs + (present_key_value,)
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
|
class_definition
| 21,299 | 25,211 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
| null | 10,499 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.