text
stringlengths
31
243k
type
stringclasses
1 value
start
int64
36
275k
end
int64
286
280k
depth
int64
0
1
filepath
stringlengths
85
188
parent_class
stringclasses
3 values
class_index
int64
0
10.8k
class NezhaEmbeddings(nn.Module): """Construct the embeddings from word and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.register_buffer( "token_type_ids", torch.zeros((1, config.max_position_embeddings), dtype=torch.long), persistent=False ) def forward( self, input_ids: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, ) -> torch.Tensor: if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=inputs_embeds.device) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings
class_definition
6,316
8,633
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/nezha/modeling_nezha.py
null
10,300
class NezhaSelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.relative_positions_encoding = NezhaRelativePositionsEncoding( length=config.max_position_embeddings, depth=self.attention_head_size, max_relative_position=config.max_relative_position, ) self.is_decoder = config.is_decoder def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) batch_size, num_attention_heads, from_seq_length, to_seq_length = attention_scores.size() relations_keys = self.relative_positions_encoding(to_seq_length) query_layer_t = query_layer.permute(2, 0, 1, 3) query_layer_r = query_layer_t.contiguous().view( from_seq_length, batch_size * num_attention_heads, self.attention_head_size ) key_position_scores = torch.matmul(query_layer_r, relations_keys.permute(0, 2, 1)) key_position_scores_r = key_position_scores.view( from_seq_length, batch_size, num_attention_heads, from_seq_length ) key_position_scores_r_t = key_position_scores_r.permute(1, 2, 0, 3) attention_scores = attention_scores + key_position_scores_r_t attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in NezhaModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) relations_values = self.relative_positions_encoding(to_seq_length) attention_probs_t = attention_probs.permute(2, 0, 1, 3) attentions_probs_r = attention_probs_t.contiguous().view( from_seq_length, batch_size * num_attention_heads, to_seq_length ) value_position_scores = torch.matmul(attentions_probs_r, relations_values) value_position_scores_r = value_position_scores.view( from_seq_length, batch_size, num_attention_heads, self.attention_head_size ) value_position_scores_r_t = value_position_scores_r.permute(1, 2, 0, 3) context_layer = context_layer + value_position_scores_r_t context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs
class_definition
8,636
15,541
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/nezha/modeling_nezha.py
null
10,301
class NezhaSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states
class_definition
15,544
16,151
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/nezha/modeling_nezha.py
null
10,302
class NezhaAttention(nn.Module): def __init__(self, config): super().__init__() self.self = NezhaSelfAttention(config) self.output = NezhaSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs
class_definition
16,154
18,139
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/nezha/modeling_nezha.py
null
10,303
class NezhaIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states
class_definition
18,142
18,708
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/nezha/modeling_nezha.py
null
10,304
class NezhaOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states
class_definition
18,711
19,320
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/nezha/modeling_nezha.py
null
10,305
class NezhaLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = NezhaAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = NezhaAttention(config) self.intermediate = NezhaIntermediate(config) self.output = NezhaOutput(config) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output
class_definition
19,323
23,199
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/nezha/modeling_nezha.py
null
10,306
class NezhaEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([NezhaLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, )
class_definition
23,202
26,994
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/nezha/modeling_nezha.py
null
10,307
class NezhaPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output
class_definition
26,997
27,557
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/nezha/modeling_nezha.py
null
10,308
class NezhaPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states
class_definition
27,560
28,261
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/nezha/modeling_nezha.py
null
10,309
class NezhaLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = NezhaPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def _tie_weights(self): self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states
class_definition
28,264
29,098
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/nezha/modeling_nezha.py
null
10,310
class NezhaOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = NezhaLMPredictionHead(config) def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: prediction_scores = self.predictions(sequence_output) return prediction_scores
class_definition
29,101
29,417
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/nezha/modeling_nezha.py
null
10,311
class NezhaOnlyNSPHead(nn.Module): def __init__(self, config): super().__init__() self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, pooled_output): seq_relationship_score = self.seq_relationship(pooled_output) return seq_relationship_score
class_definition
29,420
29,725
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/nezha/modeling_nezha.py
null
10,312
class NezhaPreTrainingHeads(nn.Module): def __init__(self, config): super().__init__() self.predictions = NezhaLMPredictionHead(config) self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, sequence_output, pooled_output): prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score
class_definition
29,728
30,193
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/nezha/modeling_nezha.py
null
10,313
class NezhaPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = NezhaConfig load_tf_weights = load_tf_weights_in_nezha base_model_prefix = "nezha" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0)
class_definition
30,196
31,350
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/nezha/modeling_nezha.py
null
10,314
class NezhaForPreTrainingOutput(ModelOutput): """ Output type of [`NezhaForPreTraining`]. Args: loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None prediction_logits: torch.FloatTensor = None seq_relationship_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None
class_definition
31,364
33,316
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/nezha/modeling_nezha.py
null
10,315
class NezhaModel(NezhaPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in [Attention is all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. """ def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = NezhaEmbeddings(config) self.encoder = NezhaEncoder(config) self.pooler = NezhaPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(NEZHA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, )
class_definition
36,682
45,666
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/nezha/modeling_nezha.py
null
10,316
class NezhaForPreTraining(NezhaPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder"] def __init__(self, config): super().__init__(config) self.nezha = NezhaModel(config) self.cls = NezhaPreTrainingHeads(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings self.cls.predictions.bias = new_embeddings.bias @add_start_docstrings_to_model_forward(NEZHA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=NezhaForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, next_sentence_label: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], NezhaForPreTrainingOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1]`: - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. kwargs (`Dict[str, any]`, optional, defaults to *{}*): Used to hide legacy arguments that have been deprecated. Returns: Example: ```python >>> from transformers import AutoTokenizer, NezhaForPreTraining >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("sijunhe/nezha-cn-base") >>> model = NezhaForPreTraining.from_pretrained("sijunhe/nezha-cn-base") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.prediction_logits >>> seq_relationship_logits = outputs.seq_relationship_logits ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.nezha( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output, pooled_output = outputs[:2] prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) total_loss = None if labels is not None and next_sentence_label is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) total_loss = masked_lm_loss + next_sentence_loss if not return_dict: output = (prediction_scores, seq_relationship_score) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return NezhaForPreTrainingOutput( loss=total_loss, prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
45,902
50,382
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/nezha/modeling_nezha.py
null
10,317
class NezhaForMaskedLM(NezhaPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder"] def __init__(self, config): super().__init__(config) if config.is_decoder: logger.warning( "If you want to use `NezhaForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.nezha = NezhaModel(config, add_pooling_layer=False) self.cls = NezhaOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings self.cls.predictions.bias = new_embeddings.bias @add_start_docstrings_to_model_forward(NEZHA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.nezha( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs): input_shape = input_ids.shape effective_batch_size = input_shape[0] # add a dummy token if self.config.pad_token_id is None: raise ValueError("The PAD token should be defined for generation") attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1) dummy_token = torch.full( (effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device ) input_ids = torch.cat([input_ids, dummy_token], dim=1) return {"input_ids": input_ids, "attention_mask": attention_mask}
class_definition
50,489
54,698
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/nezha/modeling_nezha.py
null
10,318
class NezhaForNextSentencePrediction(NezhaPreTrainedModel): def __init__(self, config): super().__init__(config) self.nezha = NezhaModel(config) self.cls = NezhaOnlyNSPHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(NEZHA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple[torch.Tensor], NextSentencePredictorOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring). Indices should be in `[0, 1]`: - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. Returns: Example: ```python >>> from transformers import AutoTokenizer, NezhaForNextSentencePrediction >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("sijunhe/nezha-cn-base") >>> model = NezhaForNextSentencePrediction.from_pretrained("sijunhe/nezha-cn-base") >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." >>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt") >>> outputs = model(**encoding, labels=torch.LongTensor([1])) >>> logits = outputs.logits >>> assert logits[0, 0] < logits[0, 1] # next sentence was random ``` """ if "next_sentence_label" in kwargs: warnings.warn( "The `next_sentence_label` argument is deprecated and will be removed in a future version, use" " `labels` instead.", FutureWarning, ) labels = kwargs.pop("next_sentence_label") return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.nezha( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] seq_relationship_scores = self.cls(pooled_output) next_sentence_loss = None if labels is not None: loss_fct = CrossEntropyLoss() next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1)) if not return_dict: output = (seq_relationship_scores,) + outputs[2:] return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output return NextSentencePredictorOutput( loss=next_sentence_loss, logits=seq_relationship_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
54,840
58,640
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/nezha/modeling_nezha.py
null
10,319
class NezhaForSequenceClassification(NezhaPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.nezha = NezhaModel(config) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(NEZHA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.nezha( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
58,864
62,770
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/nezha/modeling_nezha.py
null
10,320
class NezhaForMultipleChoice(NezhaPreTrainedModel): def __init__(self, config): super().__init__(config) self.nezha = NezhaModel(config) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(NEZHA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.nezha( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] print(pooled_output.shape) pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) print(logits.shape) print(num_choices) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
63,003
66,531
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/nezha/modeling_nezha.py
null
10,321
class NezhaForTokenClassification(NezhaPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.nezha = NezhaModel(config, add_pooling_layer=False) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(NEZHA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.nezha( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
66,762
69,518
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/nezha/modeling_nezha.py
null
10,322
class NezhaForQuestionAnswering(NezhaPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.nezha = NezhaModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(NEZHA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.nezha( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
69,807
73,923
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/nezha/modeling_nezha.py
null
10,323
class MMBTConfig: """ This is the configuration class to store the configuration of a [`MMBTModel`]. It is used to instantiate a MMBT model according to the specified arguments, defining the model architecture. Args: config ([`PreTrainedConfig`]): Config of the underlying Transformer models. Its values are copied over to use a single config. num_labels (`int`, *optional*): Size of final Linear layer for classification. modal_hidden_size (`int`, *optional*, defaults to 2048): Embedding dimension of the non-text modality encoder. """ def __init__(self, config, num_labels=None, modal_hidden_size=2048): self.__dict__ = config.__dict__ self.modal_hidden_size = modal_hidden_size if num_labels: self.num_labels = num_labels
class_definition
749
1,596
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mmbt/configuration_mmbt.py
null
10,324
class ModalEmbeddings(nn.Module): """Generic Modal Embeddings which takes in an encoder, and a transformer embedding.""" def __init__(self, config, encoder, embeddings): super().__init__() self.config = config self.encoder = encoder self.proj_embeddings = nn.Linear(config.modal_hidden_size, config.hidden_size) self.position_embeddings = embeddings.position_embeddings self.token_type_embeddings = embeddings.token_type_embeddings self.word_embeddings = embeddings.word_embeddings self.LayerNorm = embeddings.LayerNorm self.dropout = nn.Dropout(p=config.hidden_dropout_prob) def forward(self, input_modal, start_token=None, end_token=None, position_ids=None, token_type_ids=None): token_embeddings = self.proj_embeddings(self.encoder(input_modal)) seq_length = token_embeddings.size(1) if start_token is not None: start_token_embeds = self.word_embeddings(start_token) seq_length += 1 token_embeddings = torch.cat([start_token_embeds.unsqueeze(1), token_embeddings], dim=1) if end_token is not None: end_token_embeds = self.word_embeddings(end_token) seq_length += 1 token_embeddings = torch.cat([token_embeddings, end_token_embeds.unsqueeze(1)], dim=1) if position_ids is None: position_ids = torch.arange(seq_length, dtype=torch.long, device=input_modal.device) position_ids = position_ids.unsqueeze(0).expand(input_modal.size(0), seq_length) if token_type_ids is None: token_type_ids = torch.zeros( (input_modal.size(0), seq_length), dtype=torch.long, device=input_modal.device ) position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = token_embeddings + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings
class_definition
1,086
3,192
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mmbt/modeling_mmbt.py
null
10,325
class MMBTModel(nn.Module, ModuleUtilsMixin): def __init__(self, config, transformer, encoder): super().__init__() self.config = config self.transformer = transformer self.modal_encoder = ModalEmbeddings(config, encoder, transformer.embeddings) @add_start_docstrings_to_model_forward(MMBT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC) def forward( self, input_modal, input_ids=None, modal_start_tokens=None, modal_end_tokens=None, attention_mask=None, token_type_ids=None, modal_token_type_ids=None, position_ids=None, modal_position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Returns: Examples: ```python # For example purposes. Not runnable. transformer = BertModel.from_pretrained("google-bert/bert-base-uncased") encoder = ImageEncoder(args) mmbt = MMBTModel(config, transformer, encoder) ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_txt_shape = input_ids.size() elif inputs_embeds is not None: input_txt_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device modal_embeddings = self.modal_encoder( input_modal, start_token=modal_start_tokens, end_token=modal_end_tokens, position_ids=modal_position_ids, token_type_ids=modal_token_type_ids, ) input_modal_shape = modal_embeddings.size()[:-1] if token_type_ids is None: token_type_ids = torch.ones(input_txt_shape, dtype=torch.long, device=device) txt_embeddings = self.transformer.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds ) embedding_output = torch.cat([modal_embeddings, txt_embeddings], 1) input_shape = embedding_output.size()[:-1] if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) else: attention_mask = torch.cat( [torch.ones(input_modal_shape, device=device, dtype=torch.long), attention_mask], dim=1 ) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(input_shape, device=device) else: encoder_attention_mask = torch.cat( [torch.ones(input_modal_shape, device=device), encoder_attention_mask], dim=1 ) extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) encoder_outputs = self.transformer.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.transformer.pooler(sequence_output) if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value
class_definition
9,790
14,625
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mmbt/modeling_mmbt.py
null
10,326
class MMBTForClassification(nn.Module): r""" **labels**: (*optional*) `torch.LongTensor` of shape `(batch_size,)`: Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: *Tuple* comprising various elements depending on the configuration (config) and inputs: **loss**: (*optional*, returned when `labels` is provided) `torch.FloatTensor` of shape `(1,)`: Classification (or regression if config.num_labels==1) loss. **logits**: `torch.FloatTensor` of shape `(batch_size, config.num_labels)` Classification (or regression if config.num_labels==1) scores (before SoftMax). **hidden_states**: (*optional*, returned when `output_hidden_states=True`) list of `torch.FloatTensor` (one for the output of each layer + the output of the embeddings) of shape `(batch_size, sequence_length, hidden_size)`: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (*optional*, returned when `output_attentions=True`) list of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples: ```python # For example purposes. Not runnable. transformer = BertModel.from_pretrained("google-bert/bert-base-uncased") encoder = ImageEncoder(args) model = MMBTForClassification(config, transformer, encoder) outputs = model(input_modal, input_ids, labels=labels) loss, logits = outputs[:2] ```""" def __init__(self, config, transformer, encoder): super().__init__() self.num_labels = config.num_labels self.mmbt = MMBTModel(config, transformer, encoder) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) def forward( self, input_modal, input_ids=None, modal_start_tokens=None, modal_end_tokens=None, attention_mask=None, token_type_ids=None, modal_token_type_ids=None, position_ids=None, modal_position_ids=None, head_mask=None, inputs_embeds=None, labels=None, return_dict=None, ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mmbt( input_modal=input_modal, input_ids=input_ids, modal_start_tokens=modal_start_tokens, modal_end_tokens=modal_end_tokens, attention_mask=attention_mask, token_type_ids=token_type_ids, modal_token_type_ids=modal_token_type_ids, position_ids=position_ids, modal_position_ids=modal_position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.num_labels == 1: # We are doing regression loss_fct = MSELoss() loss = loss_fct(logits.view(-1), labels.view(-1)) else: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
14,837
18,912
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mmbt/modeling_mmbt.py
null
10,327
class MegaConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MegaModel`]. It is used to instantiate a Mega model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Mega [mnaylor/mega-base-wikitext](https://huggingface.co/mnaylor/mega-base-wikitext) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the Mega model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`MegaModel`]. hidden_size (`int`, *optional*, defaults to 128): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 4): Number of hidden layers in the Mega encoder. intermediate_size (`int`, *optional*, defaults to 256): Dimensionality of the hidden size (self-attention value projection) within the Mega encoder ema_projection_size (`int`, *optional*, defaults to 16): Dimensionality of the MegaMultiDimensionDampedEma bidirectional (`bool`, *optional*, defaults to `True`): Whether the MegaMultiDimensionDampedEma used in Mega's self-attention should work bidirectionally (`True`) or unidirectionally (`False`). Bidirectional EMA is incompatible with causal decoding, so this should be False if you intend to use the model as a decoder. shared_representation_size (`int`, *optional*, defaults to 64): Dimensionality of the linear projection for shared representation of self-attention queries and keys use_chunking (`bool`, *optional*, defaults to `False`): Whether to chunk inputs for linear self-attention complexity (described as Mega-chunk in the paper) chunk_size (`int`, *optional*, defaults to -1): If `use_chunking` is set to `True`, determines the size of the chunks to apply to the input sequence. If chunking is used, input sequences must be padded to a multiple of `chunk_size` truncation (`int`, *optional*): If specified, the sequence length for which to truncate MegaMultiDimensionDampedEma normalize_before_mega (`bool`, *optional*, defaults to `True`): Whether to normalize before (`True`) or after (`False`) passing through Mega encoder blocks normalization_type (`str`, *optional*, defaults to `"scalenorm"`): Type of normalization to use in Mega encoder blocks. Choose one of `"scalenorm"`, `"layernorm"`, `"rmsnorm"`, `"batchnorm"`, or `"syncbatchnorm"` (GPU required for syncbatchnorm) norm_affine (`bool`, *optional*, defaults to `True`): If `True`, applies a parameterized affine transformation to inputs during normalization activation (`str`, *optional*, defaults to `"silu"`): Activation function to apply within Mega encoder blocks. Choose one of `"silu"`, `"relu"`, `"linear"`, `"gelu"`, or `"gelu_accurate"` attention_activation (`str`, *optional*, defaults to `"softmax"`): Activation function to apply for single-headed self-attention (a la Transformer). Choose one of `"softmax"`, `"laplace"`, or `"relu2"` dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for EMA self-attention hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. use_feature_dropout (`bool`, *optional*, defaults to `False`): Whether to use feature-based (`True`) or standard dropout (`False`) use_normalized_ffn (`bool`, *optional*, defaults to `True`): Whether to use the normalized feed-forward sub-layer in Mega blocks (`True`) or pass Mega encoder output as-is (`False`) nffn_hidden_size (`int`, *optional*, defaults to 256): If using the normalized feed-forward network (NFFN) layer within Mega (`use_normalized_ffn = True`), this is the hidden size of the NFFN normalize_before_ffn (`bool`, *optional*, defaults to `True`): Whether to normalize before (`True`) or after (`False`) the feed-forward portion of NFFN nffn_activation_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the NFFN component. max_positions (`int`, *optional*, defaults to 2048): The maximum sequence length to use for positional representations. For `"simple"` relative positional bias, this is a hard limit on input length; `"rotary"` relative positional bias will extrapolate to longer sequences add_token_type_embeddings (`bool`, *optional*, defaults to `True`): Whether to account for token types in embeddings. Left as optional to maintain compatibility with original implementation while adding support for token types. type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`MegaModel`]. Only used if `add_token_type_embeddings = True` initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. ema_delta_alpha_range (`float`, *optional*, defaults to 0.2): The standard deviation for initializing the delta (damping factor) and alpha (decay factor) parameters in MegaMultiDimensionDampedEma. ema_beta_range (`float`, *optional*, defaults to 0.02): The standard deviation for initializing the beta parameter (expansion matrix) in MegaMultiDimensionDampedEma. ema_gamma_omega_range (`float`, *optional*, defaults to 1.0): The standard deviation for initializing the gamma (projection matrix) and omega (residual weight) parameters in MultiDimensionEMA. relative_positional_bias (`str`, *optional*, defaults to `"rotary"`): Type of relative positional encoding. Choose one of `"rotary"` or `"simple"`. If `"simple"` is selected, `max_positions` is used as a limit on input size, while `"rotary"` extrapolates beyond `max_positions`. is_decoder (`bool`, *optional*, defaults to `False`): Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. classifier_dropout (`float`, *optional*): The dropout ratio for the classification head. add_lm_hidden_dense_layer (`bool`, *optional*, defaults to `True`): Whether to include a hidden layer for projection between encoder outputs and LM heads (`True`) or pass hidden states directly to LM head (`False`). Remains optional for compatibility with original implementation Examples: ```python >>> from transformers import MegaConfig, MegaModel >>> # Initializing a Mega configuration >>> configuration = MegaConfig() >>> # Initializing a model (with random weights) from the configuration >>> model = MegaModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "mega" def __init__( self, vocab_size=30522, hidden_size=128, num_hidden_layers=4, intermediate_size=256, ema_projection_size=16, bidirectional=True, shared_representation_size=64, use_chunking=False, chunk_size=-1, truncation=None, normalize_before_mega=True, normalization_type="scalenorm", norm_affine=True, activation="silu", attention_activation="softmax", dropout_prob=0.1, hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, use_feature_dropout=False, use_normalized_ffn=True, nffn_hidden_size=256, normalize_before_ffn=True, nffn_activation_dropout_prob=0.1, max_positions=2048, add_token_type_embeddings=False, type_vocab_size=2, initializer_range=0.02, ema_delta_alpha_range=0.2, ema_beta_range=0.02, ema_gamma_omega_range=1.0, pad_token_id=1, bos_token_id=0, eos_token_id=2, relative_positional_bias="rotary", classifier_dropout=None, use_cache=True, add_lm_hidden_dense_layer=True, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.activation = activation self.attention_activation = attention_activation self.intermediate_size = intermediate_size self.ema_projection_size = ema_projection_size self.bidirectional = bidirectional self.shared_representation_size = shared_representation_size self.use_chunking = use_chunking self.chunk_size = chunk_size self.truncation = truncation self.normalize_before_mega = normalize_before_mega self.normalization_type = normalization_type self.norm_affine = norm_affine self.dropout_prob = dropout_prob self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.use_feature_dropout = use_feature_dropout self.use_normalized_ffn = use_normalized_ffn self.nffn_hidden_size = nffn_hidden_size self.normalize_before_ffn = normalize_before_ffn self.nffn_activation_dropout_prob = nffn_activation_dropout_prob self.max_positions = max_positions self.add_token_type_embeddings = add_token_type_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.ema_delta_alpha_range = ema_delta_alpha_range self.ema_beta_range = ema_beta_range self.ema_gamma_omega_range = ema_gamma_omega_range self.relative_positional_bias = relative_positional_bias self.use_cache = use_cache self.classifier_dropout = classifier_dropout self.add_lm_hidden_dense_layer = add_lm_hidden_dense_layer self.num_attention_heads = 1 # not used but required by Hugging Face
class_definition
873
12,139
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mega/configuration_mega.py
null
10,328
class MegaOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} else: dynamic_axis = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
class_definition
12,142
12,587
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mega/configuration_mega.py
null
10,329
class MegaLM(nn.Module): "The base class for our Mega encoder - given input IDs, embed text and return encoder output" def __init__(self, mega_args, depth, vocab_size): super().__init__() self.mega_args = mega_args self.embedding_layer = nn.Embedding(vocab_size, self.mega_args.encoder_embed_dim) self.encoders = nn.ModuleList([MegaEncoderLayer(self.mega_args) for _ in range(depth)]) self.depth = depth def forward(self, input_ids, attention_mask, batch_first=True, ignore_mask_value=0): """ Code for a forward pass - expects input_ids and attention_mask to come from a Hugging Face tokenizer as PyTorch tensors, and returns a tensor of size (batch, n_classes) containing classification logits Other options: - batch_first: boolean indicating whether the batch dimension is first in input_ids (default: True, which aligns with the HF tokenizer behavior) - ignore_mask_value: the value in attention_mask that identifies tokens that should be ignored (default: 0, which aligns with HF tokenizer) """ # Mega expects embeddings to be (time, batch, embedding size), but # Hugging Face returns tokens as (batch, time) if batch_first: input_ids = input_ids.T # to make things more confusing, Mega expects the attention mask to # be (batch, time), but with values of 0 (normal token) and 1 (ignore token) # which is the opposite of what HF returns if ignore_mask_value == 0: attention_mask = 1 - attention_mask # get token embeddings from IDs embeds = self.embedding_layer(input_ids) # pass through the Mega layers # input is (time, batch, encoder dim) and output is the same for encoder in self.encoders: embeds = encoder(embeds, attention_mask) # return according to the shape specified if batch_first: # (T, B, H) --> (B, T, H) return torch.transpose(embeds, 0, 1) else: return embeds
class_definition
1,828
3,944
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mega/convert_mega_original_pytorch_checkpoint_to_pytorch.py
null
10,330
class OriginalMegaForMaskedLM(nn.Module): "A wrapper class for doing masked language modeling with Mega" def __init__(self, mega_args, depth, vocab_size): super().__init__() self.mega = MegaLM(mega_args, depth, vocab_size) self.mlm_head = nn.Linear(mega_args.encoder_embed_dim, vocab_size) self.dropout = nn.Dropout(p=0.1) def forward(self, input_ids, attention_mask, batch_first=True, ignore_mask_value=0): """ Perform a forward pass through the Mega encoder and the masked LM head. Returns logits for each vocabulary entry. If `batch_first` (default to align with Hugging Face tokenizer behavior), output will have the shape (Batch size, Sequence length, Vocab size); otherwise (S, B, V) """ encoder_output = self.mega(input_ids, attention_mask, batch_first, ignore_mask_value) return self.mlm_head(self.dropout(encoder_output))
class_definition
4,013
4,954
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mega/convert_mega_original_pytorch_checkpoint_to_pytorch.py
null
10,331
class MegaEmbeddings(nn.Module): """ Mega's basic implementation does not incorporate token type embeddings, so this is a stripped-down version of RoBERTa's embeddings which optionally includes token types """ def __init__(self, config: MegaConfig): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.use_token_types = config.add_token_type_embeddings if self.use_token_types: self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # registering a buffer here allows model tracing when not passing optional token type IDs # more info at transformers issue #5664 self.register_buffer( "token_type_ids", torch.zeros(config.max_positions, dtype=torch.long).expand((1, -1)), persistent=False ) self.padding_idx = config.pad_token_id def forward(self, input_ids=None, token_type_ids=None, inputs_embeds=None): if (input_ids is None) and (inputs_embeds is None): raise ValueError("Must provide one of input_ids or inputs_embeds") elif input_ids is not None: input_shape = input_ids.size() device = input_ids.device # get the word embeddings if only IDs are provided inputs_embeds = self.word_embeddings(input_ids) else: input_shape = inputs_embeds.size()[:-1] device = inputs_embeds.device # the original Mega implementation did not include token type embeddings, so we add # an option to use them if desired; if embeddings are present and token type IDs are # not provided, we will use a registered buffer (which helps with tracing) if self.use_token_types: if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, : input_shape[1]] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], input_shape[1]) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # access token type embeddings token_type_embeddings = self.token_type_embeddings(token_type_ids) # add the token type embeddings to the word embeddings embeddings = inputs_embeds + token_type_embeddings else: embeddings = inputs_embeds return embeddings
class_definition
1,617
4,281
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mega/modeling_mega.py
null
10,332
class MegaSimpleRelativePositionalBias(nn.Module): """ Simple relative positional embeddings copied from the Mega repo; renamed variables for better readability """ def __init__(self, config: MegaConfig): super().__init__() self.config = config self.max_positions = self.config.max_positions if self.config.chunk_size < 0 else self.config.chunk_size self.rel_pos_bias = nn.Parameter(torch.Tensor(2 * config.max_positions - 1)) def forward(self, seq_len): if seq_len > self.max_positions: raise ValueError("Sequence length {} going beyond max length {}".format(seq_len, self.max_positions)) # seq_len * 2 - 1 bias = self.rel_pos_bias[(self.max_positions - seq_len) : (self.max_positions + seq_len - 1)] # seq_len * 3 - 1 tile = F.pad(bias, (0, seq_len)) # (seq_len * 3 - 1) * seq_len tile = torch.tile(tile, (seq_len,)) tile = tile[:-seq_len] # seq_len x (3 * seq_len - 2) tile = tile.view(seq_len, 3 * seq_len - 2) start = (2 * seq_len - 1) // 2 end = tile.size(1) - start tile = tile[:, start:end] return tile
class_definition
4,284
5,473
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mega/modeling_mega.py
null
10,333
class MegaRotaryRelativePositionalBias(nn.Module): """ Rotary relative bias for positional information; similar in concept to RoPE (i.e. RoFormer) but taken from the Mega repo due to differences in implementation. When initialized, produces a positional bias which ranges from position 0 to config.max_positions, but can extrapolate to longer sequences. Can be indexed according to input position IDs """ def __init__(self, config: MegaConfig): super().__init__() if config.hidden_size % 2 != 0: raise RuntimeError("Rotary positional bias requires `hidden_size` to be a multiple of 2") self.config = config self.embed_dim = config.shared_representation_size self.max_positions = self.config.max_positions if self.config.chunk_size < 0 else self.config.chunk_size self.sine, self.cosine = MegaRotaryRelativePositionalBias.get_sinusoid_embeddings( config.max_positions, self.embed_dim ) # alpha and beta parameters for the rotary bias; beta renamed to b_param to avoid clashes with tf/flax weight handling # in loading pretrained weights self.alpha = nn.Parameter(torch.Tensor(1, self.embed_dim)) self.b_param = nn.Parameter(torch.Tensor(1, self.embed_dim)) self.register_buffer("_float_tensor", torch.FloatTensor([0.0])) @staticmethod def get_sinusoid_embeddings(max_positions: int, embedding_dim: int): half_dim = embedding_dim // 2 emb = math.log(10000) / half_dim emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb) emb = torch.arange(max_positions, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0) return torch.sin(emb), torch.cos(emb) def rotary(self, input): seq_len, embed_dim = input.size() chunk_1, chunk_2 = torch.chunk(input, 2, dim=-1) if self.sine is None or seq_len > self.sine.size(0): self.sine, self.cosine = MegaRotaryRelativePositionalBias.get_sinusoid_embeddings(seq_len, embed_dim) self.max_positions = seq_len self.sine = self.sine.to(self._float_tensor) self.cosine = self.cosine.to(self._float_tensor) sin = self.sine[:seq_len] cos = self.cosine[:seq_len] return torch.cat([chunk_1 * cos - chunk_2 * sin, chunk_2 * cos + chunk_1 * sin], dim=1) def forward(self, seq_len): rotary_alpha = self.rotary(self.alpha.expand(seq_len, self.embed_dim)) rotary_beta = self.rotary(self.b_param.expand(seq_len, self.embed_dim)) bias = torch.einsum("mk,nk->mn", rotary_alpha, rotary_beta) return bias
class_definition
5,476
8,139
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mega/modeling_mega.py
null
10,334
class MegaDropout(nn.Module): """ A unified class for standard dropout functionality and featurewise dropout. The original fairseq Mega repo used 2 classes for these, which included some unnecessary handling of training logic and an unused `inplace` option. The original implementation used torch.nn.functional instead of submodules, which is retained here as well. """ def __init__(self, dropout_probability, is_featurewise=False): super().__init__() self.dropout_probability = dropout_probability self.is_featurewise = is_featurewise def forward(self, input, batch_first: bool = False): if self.is_featurewise: if batch_first: # (batch_size X sequence_length X feature_dimension) # -> (batch_size X feature_dimension X sequence_length) # -> (batch_size X sequence_length X feature_dimension) return F.dropout2d( input.transpose(-1, -2), p=self.dropout_probability, training=self.training ).transpose(-1, -2) else: if input.dim() != 3: raise ValueError( "Feature dropout inputs must be exactly 3-dimensional if inputs are ordered [sequence length, batch size, hidden dimension]" ) # (sequence_length X batch_size X feature_dimension) # -> (batch_size X feature_dimension X sequence_length) # -> (sequence_length X batch_size X feature_dimension) return F.dropout2d(input.permute(1, 2, 0), p=self.dropout_probability, training=self.training).permute( 2, 0, 1 ) else: return F.dropout(input, p=self.dropout_probability, training=self.training)
class_definition
8,142
9,975
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mega/modeling_mega.py
null
10,335
class MegaRMSNorm(nn.Module): """ RMSNorm used in Mega implementation. Differs from T5's RMSNorm by applying the weight prior to taking the square root (as opposed to after in T5) """ def __init__(self, number_features, eps=1e-6, affine=True): super().__init__() self.num_features = number_features self.eps = eps self.affine = affine if affine: self.weight = nn.Parameter(torch.Tensor(self.num_features)) else: self.register_parameter("weight", None) def forward(self, input): mean_square = torch.mean(torch.square(input), dim=-1, keepdim=True) if self.weight is not None: input = input * self.weight input * torch.rsqrt(mean_square + self.eps) return input def extra_repr(self): return f"{self.num_features}, eps={self.eps}, affine={self.affine}"
class_definition
9,978
10,882
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mega/modeling_mega.py
null
10,336
class MegaScaleNorm(nn.Module): """ Scale normalization introduced in MEGA which is similar to RMSNorm, but uses a single parameter for scalar multiplication instead of a vector, and applies over a specified dimension """ def __init__(self, dim, eps=1e-6, affine=True): super().__init__() self.dim = dim self.eps = eps self.affine = affine if affine: self.scalar = nn.Parameter(torch.Tensor(1)) else: self.register_parameter("scalar", None) def forward(self, input): mean_square = torch.mean(torch.square(input), dim=self.dim, keepdim=True) if self.scalar is not None: input = self.scalar * input output = input * torch.rsqrt(mean_square + self.eps) return output
class_definition
10,885
11,691
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mega/modeling_mega.py
null
10,337
class MegaSequenceNorm(nn.Module): """ A wrapper class for various layer normalization options used in Mega. Used to handle differences in expectations on input axis locations for different normalization methods. """ def __init__(self, norm_type, embedding_dim, eps=1e-5, affine=True, export=False): super().__init__() if norm_type == "layernorm": self.norm = nn.LayerNorm(embedding_dim, eps, elementwise_affine=affine) elif norm_type == "scalenorm": self.norm = MegaScaleNorm(dim=-1, eps=eps, affine=affine) elif norm_type == "rmsnorm": self.norm = MegaRMSNorm(embedding_dim, eps=eps, affine=affine) elif norm_type == "batchnorm": self.norm = nn.BatchNorm1d(embedding_dim, eps=eps, affine=affine) elif norm_type == "syncbatchnorm": self.norm = nn.SyncBatchNorm(embedding_dim, eps=eps, affine=affine) else: raise ValueError("Unknown norm type: {}".format(norm_type)) def forward(self, input): if isinstance(self.norm, nn.modules.batchnorm._BatchNorm): if input.dim() != 3: raise ValueError("BatchNorm inputs must be exactly 3-dimensional") input = input.permute(1, 2, 0) input = self.norm(input) return input.permute(2, 0, 1) else: return self.norm(input)
class_definition
11,694
13,095
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mega/modeling_mega.py
null
10,338
class MegaMultiDimensionDampedEma(nn.Module): """ Mega's Exponential Moving Average layer, largely left unmodified from the original repo with the exception of variable names and moving away from the stateful representation of incremental decoding state. See "https://arxiv.org/abs/2209.10655" for more details. """ def __init__(self, config: MegaConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.ndim = config.ema_projection_size self.bidirectional = config.bidirectional self.truncation = config.truncation self.scale = math.sqrt(1.0 / self.ndim) kernel_dim = 2 * config.hidden_size if self.bidirectional else config.hidden_size # renamed delta (damping_factor) and alpha (decay_factor) to be more descriptive of what the parameters are doing self.damping_factor = nn.Parameter(torch.Tensor(kernel_dim, self.ndim, 1)) self.decay_factor = nn.Parameter(torch.Tensor(kernel_dim, self.ndim, 1)) # renamed gamma (kernel_projection_matrix) and beta (ema_expansion_matrix) respectively to avoid HF renaming # things and align with the paper's description of these params' behavior self.ema_expansion_matrix = nn.Parameter(torch.Tensor(kernel_dim, self.ndim, 1)) self.kernel_projection_matrix = nn.Parameter(torch.Tensor(kernel_dim, self.ndim)) # renamed omega to residual_weight to describe what it's doing self.residual_weight = nn.Parameter(torch.Tensor(config.hidden_size)) self._kernel = None self._coeffs = None def _compute_ema_coefficients(self): self._coeffs = None # convert the alpha and delta parameters (kernel_dim x EMA projection size x 1) to [0, 1] with sigmoid damping_factor = torch.sigmoid(self.damping_factor) decay_factor = torch.sigmoid(self.decay_factor) previous_timestep_weight = 1.0 - damping_factor * decay_factor return damping_factor, previous_timestep_weight def _compute_efficient_ema_kernel(self, length: int): # computes the kernel used for efficient damped EMA applied via FFT convolution self._kernel = None # p and q have shape (kernel_dim x ema_projection_size x 1) damping_factor, previous_timestep_weight = self._compute_ema_coefficients() # extend the kernel to (kernel_dim X ema_projection_size X sequence_length) and # multiply q by sequential ints up to the sequence length vander = torch.arange(length).to(damping_factor).view(1, 1, length) * torch.log(previous_timestep_weight) kernel = (damping_factor * self.ema_expansion_matrix) * torch.exp(vander) # (kernel_dim X ema_projection_size X sequence_length) -> (kernel_dim, sequence_length) return torch.einsum("dnl,dn->dl", kernel, self.kernel_projection_matrix * self.scale) def get_ema_coefficients(self): if self.training: return self._compute_ema_coefficients() else: if self._coeffs is None: self._coeffs = self._compute_ema_coefficients() return self._coeffs def get_ema_kernel(self, length: int): kernel_size = length if self.truncation is None else min(self.truncation, length) if self.training: return self._compute_efficient_ema_kernel(kernel_size) else: if self._kernel is None or self._kernel.size(-1) < kernel_size: self._kernel = self._compute_efficient_ema_kernel(kernel_size) return self._kernel[..., :kernel_size] def fft_convolution(self, inputs, kernel, length): # this is a wrapper for repeated use of EMA calculation via FFT (fast Fourier transform) convolution inputs_fft = torch.fft.rfft(inputs.float(), n=2 * length) kernel_fft = torch.fft.rfft(kernel.float(), n=2 * length) convolved_sequence = torch.fft.irfft(inputs_fft * kernel_fft, n=2 * length) return convolved_sequence def ema_step(self, inputs, length, past_state=None): if length == 1: return self.one_ema_step(inputs, past_state=past_state) # (kernel_dim X ema_projection_size X 1) damping_factor, previous_timestep_weight = self.get_ema_coefficients() # (kernel_dim X ema_projection_size X 1+sequence_length) vander = torch.arange(length + 1).to(damping_factor).view(1, 1, length + 1) * torch.log( previous_timestep_weight ) vander = torch.exp(vander) if past_state is not None: # (kernel_dim X ema_projection_size X sequence_length) * (kernel_dim X ema_projection_size X 1) # -> (kernel_dim X ema_projection_size X sequence_length) past_ema_proj = vander[:, :, 1:] * (self.kernel_projection_matrix * self.scale).unsqueeze(-1) # past_state will be (batch_size, kernel_dim, ema_projection_size) past_ema_state = torch.einsum("bdn,dnl->bdl", past_state, past_ema_proj) # (kernel_dim X ema_projection_size) * (batch_size X kernel_dim X ema_projection_size) # -> (batch_size X kernel_dim X ema_projection_size) past_vandermonde = vander[:, :, -1] * past_state else: past_ema_state = None past_vandermonde = None # (kernel_dim X ema_projection_size X sequence_length) vander = vander[:, :, :-1] kernel = (damping_factor * self.ema_expansion_matrix) * vander kernel_proj = torch.einsum("dnl,dn->dl", kernel, self.kernel_projection_matrix * self.scale) ema_output = self.fft_convolution(inputs, kernel_proj, length=length)[..., 0:length] ema_output = ema_output.type_as(inputs) if past_ema_state is not None: ema_output = ema_output + past_ema_state updated_hidden_state = torch.einsum("bdl,dnl->bdn", inputs, torch.flip(kernel, dims=[2])) if past_vandermonde is not None: updated_hidden_state = updated_hidden_state + past_vandermonde # return a tuple: # (sequence_length, batch_size, kernel_dim) # (batch_size, kernel_dim, ema_projection_size) return ema_output.permute(2, 0, 1), updated_hidden_state def one_ema_step(self, inputs, past_state=None): damping_factor, previous_timestep_weight = self.get_ema_coefficients() # (kernel_dim X ema_projection_size) x (batch_size X kernel_dim X 1) # -> (batch_size X kernel_dim X ema_projection_size) updated_state = (damping_factor * self.ema_expansion_matrix).squeeze(-1) * inputs if past_state is not None: updated_state = updated_state + previous_timestep_weight.squeeze(-1) * past_state # (batch_size X kernel_dim) out = torch.einsum("bdn,dn->bd", updated_state, self.kernel_projection_matrix * self.scale) # (1 X batch_size X kernel_dim), (batch_size X kernel_dim X ema_projection_size) return out.unsqueeze(0), updated_state def forward( self, inputs, attention_mask: Optional[torch.Tensor] = None, prev_state: Optional[torch.Tensor] = None, use_cache: bool = False, ) -> torch.Tensor: """ Mega's exponential moving average (EMA) sub-layer applied prior to single-headed (traditional) self-attention Args: inputs (`torch.Tensor` of shape `(sequence_length, batch_size, hidden_size)`): Hidden state / embedding input to update via EMA based on FFT convolution attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indicates which inputs are to be ignored (mostly due to padding), where elements are either 1 for *not masked* or 0 for *masked* prev_state (`torch.Tensor` of shape `(batch_size, config.ndim)`, *optional*): The hidden state returned from the previous timestep during incremental decoding. use_cache (`bool`, default `False`): Whether to perfom incremental decoding; uses `prev_state` as the prior timestep, and returns the updated EMA hidden state for use in the next step Returns: `tuple(torch.FloatTensor)` containing various elements depending on configuration ([`MegaConfig`]) and inputs: - **hidden_states** (`torch.FloatTensor` of shape `(sequence_length, batch_size, hidden_size)`) -- Hidden states updated by EMA, with same shapes as inputs - **updated_state** (*optional*, returned when `use_cache=True`) `torch.FloatTensor of shape `(batch_size, config.ndim)` -- The incremental EMA state for use in the next step of incremental decoding """ seq_len, bsz, embed_dim = inputs.size() if embed_dim != self.embed_dim: raise ValueError( f"Unexpected embedding dimension received: input is {embed_dim}, model expects {self.embed_dim}" ) # sequence_length X batch_size X hidden_size residual = inputs * self.residual_weight # (sequence_length x batch_size x hidden_size) -> (batch_size x hidden_size x sequence_length) inputs = inputs.permute(1, 2, 0) # mask the input: output is a tensor with 0 in the masked positions if attention_mask is not None: inputs = inputs * (attention_mask.unsqueeze(1).type_as(inputs)) if self.bidirectional and use_cache: raise RuntimeError("Bidirectional EMA does not support incremental state") if use_cache: out, updated_state = self.ema_step(inputs, seq_len, past_state=prev_state) # (batch_size X hidden_size) -> (1 x batch_size x hidden_size) out = F.silu(out + residual) # if incremental decoding, return the new state along with the output return out, updated_state else: # (hidden_size x sequence_length) kernel = self.get_ema_kernel(seq_len) fft_len = seq_len s_index = 0 kernel_size = kernel.size(1) if self.bidirectional: # split the kernel for each direction of EMA k1, k2 = torch.split(kernel, [self.embed_dim, self.embed_dim], dim=0) # (hidden_size X 2*sequence_length - 1) kernel = F.pad(k1, (kernel_size - 1, 0)) + F.pad(k2.flip(-1), (0, kernel_size - 1)) inputs = F.pad(inputs, (kernel_size - 1, 0)) fft_len = fft_len + kernel_size - 1 s_index = 2 * kernel_size - 2 ema_output = self.fft_convolution(inputs, kernel, length=fft_len)[..., s_index : s_index + seq_len] ema_output = ema_output.type_as(inputs) # (batch_size X hidden_size X sequence_length) -> (sequence_length X batch_size X hidden_size) gated_ema_output = F.silu(ema_output.permute(2, 0, 1) + residual) return gated_ema_output, None
class_definition
13,197
24,287
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mega/modeling_mega.py
null
10,339
class MegaGatedCrossAttention(nn.Module): """ Gated Structured State Attention for use in encoder-decoder model. See Mega paper for more details. Only modifications from original implementation are variable names, removing the unnecessary `before_attn_fn` and `static_kv` arguments, and the stateful representation of incremental decoder state. """ def __init__(self, config: MegaConfig): super().__init__() self.config = config self.activation = ACT2FN[self.config.activation] self.attention_activation = self.config.attention_activation self.scaling = self.config.shared_representation_size**-0.5 if self.attention_activation == "softmax" else None self.dropout = MegaDropout(self.config.dropout_prob, is_featurewise=self.config.use_feature_dropout) self.hidden_dropout = MegaDropout( self.config.hidden_dropout_prob, is_featurewise=self.config.use_feature_dropout ) # Attention dropout is standard dropout self.attention_dropout = MegaDropout(self.config.attention_probs_dropout_prob, is_featurewise=False) self.prenorm = self.config.normalize_before_mega self.norm = MegaSequenceNorm( self.config.normalization_type, self.config.hidden_size, affine=self.config.norm_affine ) self.k_proj = nn.Linear(self.config.hidden_size, self.config.shared_representation_size) self.v_proj = nn.Linear(self.config.hidden_size, self.config.hidden_size) self.q_proj = nn.Linear( self.config.hidden_size, 2 * self.config.hidden_size + self.config.shared_representation_size ) self.h_proj = nn.Linear(self.config.hidden_size, self.config.hidden_size) if self.config.relative_positional_bias == "simple": self.rel_pos_bias = MegaSimpleRelativePositionalBias(config) elif self.config.relative_positional_bias == "rotary": self.rel_pos_bias = MegaRotaryRelativePositionalBias(config) else: raise ValueError("unknown relative position bias: {}".format(self.config.relative_positional_bias)) self.softmax = nn.Softmax(dim=-1) def element_attention(self, query, key, key_padding_mask, pidx): bsz, src_len, _ = key.size() tgt_len = query.size(1) if pidx is None else pidx + 1 if key_padding_mask is not None: # (batch_size X source_sequence_length) --> (batch_size X 1 X 1) lengths = key_padding_mask.sum(dim=-1).view(bsz, 1, 1) else: lengths = src_len # (target_sequence_length X source_sequence_length) bias = self.rel_pos_bias(max(tgt_len, src_len))[:, :src_len] if pidx is not None: if query.size(1) != 1: raise ValueError("Position offset provided with queries longer than 1 token") # source_sequence_length bias = bias[pidx] else: # (target_sequence_length X source_sequence_length) bias = bias[:tgt_len] # (batch_size X target_sequence_length X source_sequence_length) qk = torch.bmm(query, key.transpose(1, 2)) / lengths + bias attn_weights = ACT2FN[self.attention_activation](qk).type_as(qk) if key_padding_mask is not None: attn_weights = attn_weights * key_padding_mask.unsqueeze(1) return attn_weights def softmax_attention(self, query, key, key_padding_mask, pidx): bsz, src_len, _ = key.size() tgt_len = query.size(1) if pidx is None else pidx + 1 # (target_sequence_length X source_sequence_length) bias = self.rel_pos_bias(max(tgt_len, src_len))[:, :src_len] if pidx is not None: if query.size(1) != 1: raise ValueError("Position offset provided with queries longer than 1 token") # source_sequence_length bias = bias[pidx] else: # (target_sequence_length X source_sequence_length) bias = bias[:tgt_len] # scaled attention query = query * self.scaling # (batch_size X target_sequence_length X source_sequence_length) qk = torch.bmm(query, key.transpose(1, 2)) + bias if key_padding_mask is not None: qk = qk.masked_fill((1 - key_padding_mask).unsqueeze(1).to(torch.bool), float("-inf")) attn_weights = self.softmax(qk).type_as(qk) return attn_weights def forward( self, query, key: Optional[torch.Tensor], value: Optional[torch.Tensor], key_padding_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: """ Gated cross-attention used in Mega Args: query (`torch.Tensor` of shape `(target_sequence_length, batch_size, hidden_size)`): The self (or target) sequence input used as query inputs for cross-attention key (`torch.Tensor` of shape `(source_sequence_length, batch_size, hidden_size)`): The cross (or source) sequence input with shape used as keys in cross-attention value (`torch.Tensor` of shape `(source_sequence_length, batch_size, hidden_size)`): The cross (or source) sequence input with shape used as values in cross-attention key_padding_mask (`torch.LongTensor` of shape `(batch_size, source_sequence_length)`, *optional*): Padding mask corresponding to the source sequence, where entries are 1 for *not masked* and 0 for *masked* tokens past_key_values (`tuple(torch.FloatTensor)`, *optional*): If provided, the hidden state returned from the previous timestep during incremental decoding; expects that prior cross-attention keys and values will be the last two items in the tuple output_attentions (`bool`, defaults to `False`): Whether or not to return the cross-attention weights. use_cache (`bool`, defaults to `False`): Whether to perfom incremental decoding; uses `prev_state` as the prior timestep, and returns the updated EMA hidden state for use in the next step Returns: `tuple(torch.FloatTensor)` containing various elements depending on configuration ([`MegaConfig`]) and inputs: - **hidden_states** (`torch.FloatTensor` of shape `(target_sequence_length, batch_size, hidden_size)`) -- Hidden states from target sequence updated by gated cross-attention - **attn_weights** (*optional*, returned when `output_attentions=True`) `torch.FloatTensor` of shape `(batch_size, source_sequence_length, target_sequence_length)` -- The pairwise cross-attention weights corresponding to each token in the source and target sequences - **cross_key** (*optional*, returned when `use_cache=True`) `torch.FloatTensor` of shape `(batch_size, source_sequence_length, config.shared_representation_size)` -- The cross-attention key state for use in the next step of incremental decoding - **cross_value** (*optional*, returned when `use_cache=True`) `torch.FloatTensor` of shape `(batch_size, source_sequence_length, config.hidden_size)` -- The cross-attention value state for use in the next step of incremental decoding """ seq_len, bsz, embed_dim = query.size() if embed_dim != self.config.hidden_size: raise ValueError( f"Unexpected embedding dimension received: input is {embed_dim} but expected {self.config.hidden_size}" ) if past_key_values is not None: # make sure the inputs only have a sequence length of 1 if we're doing incremental decoding if seq_len != 1: raise ValueError(f"Incremental decoding requested with self-sequence length > 1: {seq_len}") # expect past_key_values to have (self_key, self_value, self_ema, cross_key, cross_value) prev_cross_key, prev_cross_value = past_key_values[-2:] key = value = None # use the self-attention cache to get the position id of the current step prev_self_key = past_key_values[0] num_incremental_steps = prev_self_key.size(1) + 1 else: prev_cross_key = prev_cross_value = None # we still need the position id if we're doing incremental decoding (past_key_values will be None for the first step) num_incremental_steps = 0 if use_cache and (seq_len == 1) else None full_query = query if self.prenorm: full_query = self.norm(full_query) # (target_sequence_length X batch_size X 2*hidden_size + shared_representation_size) query_projected = self.q_proj(full_query) # split the query projections into separate components # - residual_weight is passed through sigmoid and sent through elementwise multiplication to the gated/weighted targets prior to being added to the query directly # - target_gate is a silu-gated tensor that is multiplied by the attention-weighted target below prior to residual connection # - attention_query is the part that is passed to the attention function residual_weight, target_gate, attention_query = torch.split( query_projected, [self.config.hidden_size, self.config.hidden_size, self.config.shared_representation_size], dim=-1, ) # (target_sequence_length X batch_size X hidden_size) residual_weight = torch.sigmoid(residual_weight) target_gate = F.silu(target_gate) if key is None: if value is not None: raise ValueError("Key and value must be `None` simultaneously") projected_key = projected_value = None else: # (source_sequence_length X batch_size X shared_representation_size) projected_key = self.k_proj(key) # (source_sequence_length X batch_size X hidden_size) projected_value = self.activation(self.v_proj(key)) # (target_sequence_length X batch_size X shared_representation_size) # -> (batch_size X target_sequence_length X shared_representation_size) attention_query = attention_query.transpose(0, 1) if projected_key is not None: projected_key = projected_key.transpose(0, 1) if projected_value is not None: projected_value = projected_value.transpose(0, 1) # if we're doing incremental decoding, k and v are None and need to be overwritten with past values if past_key_values is not None: projected_key = prev_cross_key projected_value = prev_cross_value # if we're returning the cache for later use, store these now for later return (can be done without having past_key_values provided) if use_cache: updated_cross_key = projected_key updated_cross_value = projected_value ctx_len = projected_key.size(1) # This is part of a workaround to get around fork/join parallelism # not supporting Optional types. if key_padding_mask is not None and key_padding_mask.dim() == 0: key_padding_mask = None if key_padding_mask is not None: if key_padding_mask.size(0) != bsz: raise ValueError("Key padding mask does not align on the batch dimension") if key_padding_mask.size(1) != ctx_len: raise ValueError("Key padding mask does not align on the sequence length dimension") if self.attention_activation == "softmax": attn_weights = self.softmax_attention( attention_query, projected_key, key_padding_mask, num_incremental_steps ) else: attn_weights = self.element_attention( attention_query, projected_key, key_padding_mask, num_incremental_steps ) projected_value = self.hidden_dropout(projected_value, batch_first=True) kernel = self.attention_dropout(attn_weights) # (batch_size X target_sequence_length X hidden_size) # -> (target_sequence_length X batch_size X hidden_size) weighted_targets = torch.bmm(kernel, projected_value).transpose(0, 1) # (target_sequence_length X batch_size X hidden_size) weighted_targets = self.activation(self.h_proj(weighted_targets * target_gate)) weighted_targets = self.dropout(weighted_targets) out = torch.addcmul(query, residual_weight, weighted_targets - query) if not self.prenorm: out = self.norm(out) outputs = (out, attn_weights) if output_attentions else (out,) if use_cache: outputs = outputs + (updated_cross_key, updated_cross_value) return outputs
class_definition
24,290
37,442
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mega/modeling_mega.py
null
10,340
class MegaMovingAverageGatedAttention(nn.Module): """ Pure PyTorch implementation of Mega block; see https://arxiv.org/abs/2209.10655 and original fairseq implementation at https://github.com/facebookresearch/mega (copyright Meta Research, licensed under MIT License) Differences from original implementation include hidden state refactor and fixed inconsistency with additive / multiplicative attention masks """ def __init__(self, config: MegaConfig): super().__init__() self.config = config self.activation = ACT2FN[self.config.activation] self.scaling = ( self.config.shared_representation_size**-0.5 if self.config.attention_activation == "softmax" else None ) self.dropout = MegaDropout(self.config.dropout_prob, is_featurewise=self.config.use_feature_dropout) self.hidden_dropout = MegaDropout( self.config.hidden_dropout_prob, is_featurewise=self.config.use_feature_dropout ) # attention dropout is standard dropout self.attention_dropout = MegaDropout(self.config.attention_probs_dropout_prob, is_featurewise=False) self.norm = MegaSequenceNorm( self.config.normalization_type, self.config.hidden_size, affine=self.config.norm_affine ) self.ema_gate = MegaMultiDimensionDampedEma(config) self.v_proj = nn.Linear(self.config.hidden_size, self.config.intermediate_size) self.mx_proj = nn.Linear( self.config.hidden_size, self.config.shared_representation_size + self.config.intermediate_size + 2 * self.config.hidden_size, ) self.h_proj = nn.Linear(self.config.intermediate_size, self.config.hidden_size) self.qk_weight = nn.Parameter(torch.Tensor(2, self.config.shared_representation_size)) self.qk_bias = nn.Parameter(torch.Tensor(2, self.config.shared_representation_size)) if self.config.relative_positional_bias == "simple": self.rel_pos_bias = MegaSimpleRelativePositionalBias(config) elif self.config.relative_positional_bias == "rotary": self.rel_pos_bias = MegaRotaryRelativePositionalBias(config) else: raise ValueError(f"Unknown relative positional bias: {self.config.relative_positional_bias}") self.softmax = nn.Softmax(dim=-1) self.attention_function = ( self.softmax_attention if self.config.attention_activation == "softmax" else self.element_attention ) def element_attention(self, query, key, padding_mask, causal_mask): """ Apply element-wise attention via relu^2 or laplace. Same as original implementation but with standardized causal attention mask. Expects the Hugging Face standard attention mask paradigm: 1 for not masked, and 0 for masked. """ seq_len = key.size(2) if padding_mask is not None: # (batch_size X number of chunks X 1) lengths = padding_mask.sum(-1, keepdim=True) # (batch_size X number of chunks X 1 X 1) lengths = lengths.clamp(min=1.0).unsqueeze(-1) else: lengths = seq_len if causal_mask is not None: lengths = causal_mask.sum(dim=-1, keepdim=True) # (sequence_length X sequence_length) bias = self.rel_pos_bias(seq_len) if seq_len != query.size(2): if query.size(2) != 1: raise ValueError("Size mismatch between Q and K in element attention") # (1 X sequence_length) bias = bias[-1:] # (batch_size X number of chunks X sequence_length X sequence_length) qk = torch.matmul(query, key.transpose(2, 3)) / lengths + bias attn_weights = ACT2FN[self.config.attention_activation](qk).type_as(qk) if padding_mask is not None: attn_weights = attn_weights * padding_mask.unsqueeze(2) if causal_mask is not None: attn_weights = attn_weights * causal_mask return attn_weights def softmax_attention(self, query, key, padding_mask, causal_mask): "Standard softmax self-attention, as in the original Transformer paper" seq_len = key.size(2) # (sequence_length X sequence_length) bias = self.rel_pos_bias(seq_len) if seq_len != query.size(2): if query.size(2) != 1: raise ValueError("Size mismatch between Q and K in softmax attention") # (1 X sequence_length) bias = bias[-1:] # scaled attention query = query * self.scaling # (batch_size x number of chunks x chunk_size x chunk_size) if chunking # (batch_size x 1 x sequence_length x sequence_length) otherwise qk = torch.matmul(query, key.transpose(2, 3)) + bias # apply causal mask (presumed to be 1/0 for not masked / masked) # additive, but convert to 0/-inf (which is not explicitly in the Mega source code) if causal_mask is not None: additive_causal_mask = torch.zeros_like(causal_mask, dtype=qk.dtype) additive_causal_mask = additive_causal_mask.masked_fill((1 - causal_mask).bool(), float("-inf")) qk = qk + additive_causal_mask if padding_mask is not None: # 1 for tokens which are *not masked* # 0 for tokens which are *masked* # replace masked tokens with -inf to make softmax ignore them # need to invert the padding mask to match what mega original did padding_mask = 1 - padding_mask padding_mask_all = padding_mask.all(dim=-1, keepdim=True) padding_mask = torch.logical_and(padding_mask, ~padding_mask_all) qk = qk.masked_fill(padding_mask.unsqueeze(2).to(torch.bool), float("-inf")) attn_weights = self.softmax(qk).type_as(qk) return attn_weights def forward( self, input, padding_mask: Optional[torch.Tensor] = None, causal_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[torch.Tensor]] = None, output_attentions=False, use_cache=False, ): """ Mega's self-attention block, which combines multi-headed EMA with traditional self-attention Args: input (`torch.Tensor` of shape `(sequence_length, batch_size, hidden_size)`): Hidden states to be updated by Mega's self-attention padding_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indicates which inputs are to be ignored due to padding, where elements are either 1 for *not masked* or 0 for *masked* causal_mask (`torch.LongTensor` of shape `(sequence_length, sequence_length)`, *optional*): Indicates which inputs are to be ignored due to causal attention, where elements are either 1 for *not masked* or 0 for *masked* past_key_values (`tuple(torch.Tensor)`, *optional*): The hidden states returned from the previous timestep during incremental decoding; expects that self-attention key, value, and EMA states are the first 3 entries in the tuple output_attentions (`bool`, default `False`): Whether to return self-attention weights use_cache (`bool`, default `False`): Whether to perfom incremental decoding; uses `past_key_values` as prior state, and returns the updated states for use in the next step Returns: `tuple(torch.FloatTensor)` containing various elements depending on configuration ([`MegaConfig`]) and inputs: - **hidden_states** (`torch.FloatTensor` of shape `(sequence_length, batch_size, hidden_size)`) -- Hidden states from target sequence updated by Mega's self-attention - **attn_weights** (*optional*, returned when `output_attentions=True`) `torch.FloatTensor` of shape `(batch_size, 1, sequence_length, sequence_length)` -- The self-attention weights corresponding to how each token in the input sequence attends to every other token - **self_key** (*optional*, returned when `use_cache=True`) `torch.FloatTensor` of shape `(batch_size, sequence_length, config.shared_representation_size)` -- The self-attention key state for use in the next step of incremental decoding - **self_value** (*optional*, returned when `use_cache=True`) `torch.FloatTensor` of shape `(batch_size, sequence_length, config.hidden_size)` -- The self-attention value state for use in the next step of incremental decoding - **self_ema_state** (*optional*, returned when `use_cache=True`) `torch.FloatTensor` of shape `(batch_size, config.ndim)` The incremental EMA state for use in the next step of incremental decoding. """ seq_len, bsz, embed_dim = input.size() if embed_dim != self.config.hidden_size: raise ValueError(f"Input embedding dimension should be {self.config.hidden_size}; received {embed_dim}") # store inputs for residual connection and handle pre-norm if requested residual = input if self.config.normalize_before_mega: input = self.norm(input) # (sequence_length X batch_size X hidden_size) -> (sequence_length X batch_size X intermediate_size) value = self.activation(self.v_proj(input)) # unpack the incremental state if provided # assumed to be (self K, self V, self EMA state, cross K, cross V) # also assumes that incremental decoding is working one token at a time, so input sequence length must be 1 if self.config.is_decoder and (past_key_values is not None): if seq_len > 1: raise ValueError(f"Incremental decoding only supports self sequence length of 1; received {seq_len}") # the first 3 items in the saved states will be these regardless of whether cross-attention is present prev_self_key, prev_self_value, prev_ema_state = past_key_values[0:3] else: prev_self_key = prev_self_value = prev_ema_state = None # ema output is (sequence_length x batch_size x hidden_size) # updated_ema_state will be None if use_cache=False; otherwise (batch_size, config.ndim) ema_out, updated_ema_state = self.ema_gate( input, attention_mask=padding_mask, prev_state=prev_ema_state, use_cache=use_cache ) ema_out = self.dropout(ema_out) # (sequence_length X batch_size X hidden_size) # -> (sequence_length X batch_size X 2*hidden_size + config.shared_representation_size + config.intermediate_size) # - residual_weight -> sigmoid -> applied to residual connection in torch.addcmul # - query_key_gates -> split into two components: query_key becomes query and key for attention input, gates becomes gating for self-attention output # - intermediate_state -> added to weighted attention output, sent through activation, and has inputs subtracted during # torch.addcmul to create the final layer output base = self.mx_proj(ema_out) residual_weight, query_key_gates, intermediate_state = torch.split( base, [ self.config.hidden_size, self.config.shared_representation_size + self.config.intermediate_size, self.config.hidden_size, ], dim=-1, ) # (sequence_length X batch_size X hidden_size) residual_weight = torch.sigmoid(residual_weight) # (sequence_length X batch_size X shared_representation_size + intermediate_size) query_key_gates = F.silu(query_key_gates) # split into two different tensors: one for Q/K usage and the other for gating self-attention query_key, attention_gate = torch.split( query_key_gates, [self.config.shared_representation_size, self.config.intermediate_size], dim=-1 ) # (sequence_length X batch_size X shared_representation_size) # -> (sequence_length X batch_size X 1 X shared_representation_size) # -> (sequence_length X batch_size X 2 X shared_representation_size) query_key = query_key.unsqueeze(2) * self.qk_weight + self.qk_bias # (sequence_length X batch_size X 2 X shared_representation_size) # -> 2 tensors of (sequence_length X batch_size X shared_representation_size) query, key = torch.unbind(query_key, dim=2) # (sequence_length X batch_size X dimension) # -> (batch_size X sequence_length X dimension) # where `dimension` is either shared_representation_size (queries and keys) or intermediate_size (values) query = query.transpose(0, 1) key = key.transpose(0, 1) value = value.transpose(0, 1) if self.config.is_decoder: # combine history and current to save updated state (if history is provided) # when chunking is applied, the past states will be None at the end of the chunk, in # which case, proceed as if no K/V history had been provided # saved states are stored with shape (batch_size X sequence_length X dimension) if prev_self_key is not None: key = torch.cat([prev_self_key, key], dim=1) if prev_self_value is not None: value = torch.cat([prev_self_value, value], dim=1) # if not chunking, store as-is if not self.config.use_chunking: updated_self_key = key updated_self_value = value else: curr_len = key.size(1) % self.config.chunk_size if curr_len == 0: # if we're chunking and have reached the end of a chunk, wipe out the saved state updated_self_key = None updated_self_value = None else: updated_self_key = key updated_self_value = value ctx_len = key.size(1) # potentially differs from seq_len because of incremental decoding if not self.config.use_chunking: # if we're not chunking, treat the entire sequence as one long chunk # (batch_size X sequence_length X dimension) -> (batch_size X 1 X sequence_length X dimension) query = query.unsqueeze(1) key = key.unsqueeze(1) value = value.unsqueeze(1) if padding_mask is not None: # (batch_size X sequence_length) -> (batch_size X 1 X sequence_length) padding_mask = padding_mask.unsqueeze(1) else: # otherwise, split the sequences in the batch into `n_chunks` chunks of size `chunk_size` if seq_len < self.config.chunk_size: query = query.unsqueeze(1) else: # (batch_size X sequence_length X dimension) -> (batch_size X n_chunks X chunk_size X dimension) n_chunks = seq_len // self.config.chunk_size query = query.reshape(bsz, n_chunks, self.config.chunk_size, self.config.shared_representation_size) if ctx_len < self.config.chunk_size: key = key.unsqueeze(1) value = value.unsqueeze(1) if padding_mask is not None: padding_mask = padding_mask.unsqueeze(1) else: # (batch_size X sequence_length X dimension) -> (batch_size X n_chunks X chunk_size X dimension) n_chunks = ctx_len // self.config.chunk_size key = key.reshape(bsz, n_chunks, self.config.chunk_size, self.config.shared_representation_size) value = value.reshape(bsz, n_chunks, self.config.chunk_size, self.config.intermediate_size) if padding_mask is not None: padding_mask = padding_mask.view(bsz, n_chunks, self.config.chunk_size) # this is in the original Mega implementation to work around fork/join parallelism not supporting optional types if padding_mask is not None and padding_mask.dim() == 0: padding_mask = None attn_weights = self.attention_function(query, key, padding_mask=padding_mask, causal_mask=causal_mask) value = self.hidden_dropout(value, batch_first=True) kernel = self.attention_dropout(attn_weights) # (batch_size x n_chunks x chunk_size x intermediate_size) -> (sequence_length X batch_size X intermediate_size) weighted_self_output = ( torch.matmul(kernel, value).view(bsz, seq_len, self.config.intermediate_size).transpose(0, 1) ) # (sequence_length X batch_size X intermediate_size) -> (sequence_length X batch_size X hidden_size) weighted_self_output = self.activation(intermediate_state + self.h_proj(weighted_self_output * attention_gate)) weighted_self_output = self.dropout(weighted_self_output) # (sequence_length X batch_size X hidden_size) out = torch.addcmul(residual, residual_weight, weighted_self_output - residual) if not self.config.normalize_before_mega: out = self.norm(out) return_values = (out, attn_weights) if output_attentions else (out,) if self.config.is_decoder: return_values = return_values + (updated_self_key, updated_self_value, updated_ema_state) return return_values
class_definition
37,445
55,106
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mega/modeling_mega.py
null
10,341
class MegaNormalizedFeedForwardNetwork(nn.Module): """ Normalized feed-forward network used in Mega blocks. Left as-is from original Mega repo aside from retrieving args from Hugging Face config """ def __init__(self, config: MegaConfig): super().__init__() self.config = config self.hidden_dim = config.nffn_hidden_size self.act_fn = config.activation self.activation = ACT2FN[config.activation] self.dropout = MegaDropout(self.config.dropout_prob, is_featurewise=self.config.use_feature_dropout) self.hidden_dropout = MegaDropout( self.config.nffn_activation_dropout_prob, is_featurewise=self.config.use_feature_dropout ) self.prenorm = self.config.normalize_before_ffn self.norm = MegaSequenceNorm( self.config.normalization_type, self.config.hidden_size, affine=self.config.norm_affine ) self.fc1 = nn.Linear(self.config.hidden_size, self.config.nffn_hidden_size) self.fc2 = nn.Linear(self.config.nffn_hidden_size, self.config.hidden_size) def forward(self, inputs): residual = inputs if self.prenorm: inputs = self.norm(inputs) hidden = self.activation(self.fc1(inputs)) hidden = self.hidden_dropout(hidden) output = self.fc2(hidden) output = self.dropout(output) output = output + residual if not self.prenorm: output = self.norm(output) return output
class_definition
55,109
56,624
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mega/modeling_mega.py
null
10,342
class MegaBlock(nn.Module): def __init__(self, config: MegaConfig): super().__init__() self.seq_len_dim = 1 self.mega_layer = MegaMovingAverageGatedAttention(config) self.nffn = MegaNormalizedFeedForwardNetwork(config) if config.use_normalized_ffn else None self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.cross_attn = MegaGatedCrossAttention(config) else: self.cross_attn = None def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.LongTensor] = None, causal_mask: Optional[torch.LongTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[torch.FloatTensor]] = None, output_attentions: Optional[bool] = False, use_cache: bool = False, ) -> Tuple[torch.Tensor]: """ A single Mega layer: either encoder or decoder, with optional cross-attention and optional normalized feed-forward layer Args: hidden_states (`torch.Tensor` of shape `(target_sequence_length, batch_size, hidden_size)`): Hidden states to be updated by the Mega block attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indicates which entries in the self/target sequence are to be ignored (mostly due to padding), where elements are either 1 for *not masked* or 0 for *masked*. Causal attention is enforced internally. causal_mask (`torch.LongTensor` of shape `(sequence_length, sequence_length)`, *optional*): Indicates which inputs are to be ignored due to causal attention, where elements are either 1 for *not masked* or 0 for *masked* encoder_hidden_states (`torch.Tensor`, of shape `(source_sequence_length, batch_size, hidden_size)`, *optional*): Encoder hidden states to be used for cross-attention (and required for encoder-decoder model setup) encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, source_sequence_length)`, *optional*): Indicates which entries in the cross/source sequence are to be ignored (mostly due to padding), where elements are either 1 for *not masked* or 0 for *masked*. past_key_value (`tuple(torch.Tensor)`, *optional*): The hidden states returned from the previous timestep during incremental decoding; expects that self-attention key, value, and EMA states are the first 3 entries in the tuple, and (if doing cross-attention) cross-attention key and value are the last 2 entries in the tuple output_attentions (`bool`, default `False`): Whether to return self-attention weights use_cache (`bool`, default `False`): Whether to perfom incremental decoding; uses `past_key_value` as prior state, and returns the updated states for use in the next step Returns: `tuple(torch.FloatTensor)` containing various elements depending on configuration ([`MegaConfig`]) and inputs: - **hidden_states** (`torch.FloatTensor` of shape `(target_sequence_length, batch_size, hidden_size)`) -- Hidden states from target sequence updated by Mega - **self_attn_weights** (*optional*, returned when `output_attentions=True`) `torch.FloatTensor` of shape `(batch_size, 1, target_sequence_length, target_sequence_length)` -- The self-attention weights corresponding to how each token in the input sequence attends to every other token - **cross_attn_weights** (*optional*, returned when `output_attentions=True` and `config.add_cross_attention=True`) `torch.FloatTensor` of shape `(batch_size, source_sequence_length, target_sequence_length)` -- Pairwise cross-attention weights between every entry in the source sequence and target sequence - **self_key** (*optional*, returned when `use_cache=True`) `torch.FloatTensor` of shape `(batch_size, sequence_length, config.shared_representation_size)` -- The self-attention key state for use in the next step of incremental decoding - **self_value** (*optional*, returned when `use_cache=True`) `torch.FloatTensor` of shape `(batch_size, sequence_length, config.hidden_size)` -- The self-attention value state for use in the next step of incremental decoding - **self_ema_state** (*optional*, returned when `use_cache=True`) `torch.FloatTensor` of shape `(batch_size, config.ndim)` The incremental EMA state for use in the next step of incremental decoding. - **cross_key** (*optional*, returned when `use_cache=True` and `config.is_decoder=True`) `torch.FloatTensor` of shape `(batch_size, source_sequence_length, config.shared_representation_size)` -- The cross-attention key state for use in the next step of incremental decoding - **cross_value** (*optional*, returned when `use_cache=True` and `config.is_decoder=True`) `torch.FloatTensor` of shape `(batch_size, source_sequence_length, config.hidden_size)` -- The cross-attention value state for use in the next step of incremental decoding """ # incremental decoding in the MegaMultiDimensionDampedEma module requires that the attention mask has the same # sequence length as the input tensor; if we're caching incremental states, we assume the input # sequence length is 1 (Mega will break otherwise), so we take the padding mask for the final # token in the input (mask is received as [batch X sequence length]) if use_cache and (past_key_value is not None) and (attention_mask is not None): mega_padding_mask = attention_mask[:, -1].unsqueeze(-1) else: mega_padding_mask = attention_mask mega_outputs = self.mega_layer( input=hidden_states, padding_mask=mega_padding_mask, causal_mask=causal_mask, past_key_values=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) new_hidden_states = mega_outputs[0] self_key, self_value, self_ema_state = mega_outputs[-3:] if use_cache else (None, None, None) self_attention_weights = mega_outputs[1] if output_attentions else None # optional cross attention if self.cross_attn is not None: if encoder_hidden_states is None: raise ValueError("Requested cross-attention without providing encoder hidden states") cross_attn_outputs = self.cross_attn( query=new_hidden_states, key=encoder_hidden_states, value=encoder_hidden_states, key_padding_mask=encoder_attention_mask, past_key_values=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) # update the hidden state from cross attention new_hidden_states = cross_attn_outputs[0] # store cross-attention k/v if caching cross_key, cross_value = cross_attn_outputs[-2:] if use_cache else (None, None) cross_attention_weights = cross_attn_outputs[1] if output_attentions else None # optional NFFN follows cross attention if self.nffn is not None: new_hidden_states = self.nffn(new_hidden_states) outs = (new_hidden_states,) if output_attentions: outs = outs + (self_attention_weights,) if self.cross_attn is not None: outs = outs + (cross_attention_weights,) if use_cache: new_key_values = ( self_key, self_value, self_ema_state, ) if self.cross_attn is not None: new_key_values = new_key_values + (cross_key, cross_value) outs = outs + (new_key_values,) return outs
class_definition
56,627
65,241
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mega/modeling_mega.py
null
10,343
class MegaPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output
class_definition
65,336
65,895
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mega/modeling_mega.py
null
10,344
class MegaPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MegaConfig base_model_prefix = "mega" supports_gradient_checkpointing = False _no_split_modules = ["MegaMovingAverageGatedAttention"] def _init_weights(self, module): """Initialize the weights""" if isinstance(module, MegaMultiDimensionDampedEma): with torch.no_grad(): # delta & alpha nn.init.normal_(module.damping_factor, mean=0.0, std=self.config.ema_delta_alpha_range) nn.init.normal_(module.decay_factor, mean=0.0, std=self.config.ema_delta_alpha_range) # beta [1, -1, 1, -1, ...] seems more stable. val = torch.ones(self.config.ema_projection_size, 1) if self.config.ema_projection_size > 1: idx = torch.tensor(list(range(1, self.config.ema_projection_size, 2))) val.index_fill_(0, idx, -1.0) module.ema_expansion_matrix.normal_(mean=0.0, std=self.config.ema_beta_range).add_(val) # gamma & omega nn.init.normal_(module.kernel_projection_matrix, mean=0.0, std=self.config.ema_gamma_omega_range) nn.init.normal_(module.residual_weight, mean=0.0, std=self.config.ema_gamma_omega_range) elif isinstance(module, MegaSimpleRelativePositionalBias): nn.init.normal_(module.rel_pos_bias, mean=0.0, std=self.config.initializer_range) elif isinstance(module, MegaRotaryRelativePositionalBias): nn.init.normal_(module.alpha, mean=0.0, std=self.config.initializer_range) nn.init.normal_(module.b_param, mean=0.0, std=self.config.initializer_range) elif isinstance(module, MegaScaleNorm): if self.config.norm_affine: nn.init.constant_(module.scalar, 1.0) elif isinstance(module, MegaRMSNorm): if self.config.norm_affine: nn.init.constant_(module.weight, 1.0) elif isinstance(module, MegaMovingAverageGatedAttention): # linear layers covered separately by the generic nn.Linear init below nn.init.normal_(module.qk_weight, mean=0.0, std=self.config.initializer_range) nn.init.constant_(module.qk_bias, 0.0) elif isinstance(module, nn.Linear): # initializes all linear layers in the entire network module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0)
class_definition
65,898
68,961
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mega/modeling_mega.py
null
10,345
class MegaModel(MegaPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added after self-attention, following the architecture described in *Mega: Moving Average Equipped Gated Attention*_ by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer To behave as a decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to `True` and `bidirectional` set to `False`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder=True` and `bidirectional=False` argument as well as `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. .. _*Mega: Moving Average Equipped Gated Attention*: https://arxiv.org/abs/2209.10655 """ def __init__(self, config: MegaConfig, add_pooling_layer=True): super().__init__(config) self.config = config self.embedding_layer = MegaEmbeddings(config) self.layers = nn.ModuleList([MegaBlock(config) for _ in range(config.num_hidden_layers)]) self.pooler = MegaPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing (retained from RoBERTa code) self.post_init() def get_input_embeddings(self): return self.embedding_layer.word_embeddings def set_input_embeddings(self, value): self.embedding_layer.word_embeddings = value @add_start_docstrings_to_model_forward(MEGA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() device = input_ids.device elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] device = inputs_embeds.device else: raise ValueError("You have to specify either input_ids or inputs_embeds") if self.config.use_chunking: input_shape = torch.tensor([input_shape[0], self.config.chunk_size]) batch_size, sequence_length = input_shape if self.config.use_chunking and (sequence_length > self.config.chunk_size): if sequence_length % self.config.chunk_size != 0: raise ValueError( f"config.use_chunking is activated; input sequence length must be shorter than or a multiple of config.chunk_size\nreceived sequence length of {sequence_length} with chunk size {self.config.chunk_size}" ) if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache # Mega expects the causal mask to be a 2D square matrix of (from) x (to) over the input sequence length # the HF utility function generates a 3D causal mask which includes batch size, so we'll create a dummy # mask with the correct device and all ones temp_mask_for_extension = torch.ones((1, sequence_length), dtype=torch.long, device=device) causal_mask = self.create_extended_attention_mask_for_decoder(input_shape, temp_mask_for_extension) # get rid of batch dimension in the generated mask; result is (sequence_length X sequence_length) causal_mask = causal_mask.squeeze(0) else: use_cache = False causal_mask = None # if using cache, make sure we have a tuple of tuples which matches the length of our hidden layers if (past_key_values is not None) and (len(past_key_values) != self.config.num_hidden_layers): raise ValueError( f"Received past key/value cache with size mismatch; expected {self.config.num_hidden_layers}, received {len(past_key_values)}" ) # get embeddings (batch X sequence length X embed dim) embedding_output = self.embedding_layer( input_ids=input_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds ) # transpose for Mega --> (seq len X batch X embed dim) hidden_states = embedding_output.transpose(0, 1) # we expect encoder hidden states to also have batch first in line # with typical Hugging Face behavior (which is also how we return them) # Mega expects sequence length first, so do the same transpose here if encoder_hidden_states is not None: encoder_hidden_states = encoder_hidden_states.transpose(0, 1) # pass through mega layers all_hidden_states = (embedding_output,) if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None next_decoder_cache = () if use_cache else None for i, mega_layer in enumerate(self.layers): current_decoder_cache = past_key_values[i] if past_key_values is not None else None mega_outputs = mega_layer( hidden_states=hidden_states, attention_mask=attention_mask, causal_mask=causal_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=current_decoder_cache, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = mega_outputs[0] if output_hidden_states: # store layer-wise hidden states in the way that the user expects # (seq len X batch X embed dim) --> (batch X seq len X embed dim) all_hidden_states += (hidden_states.transpose(0, 1),) if output_attentions: self_attn_weights = mega_outputs[1] all_self_attentions += (self_attn_weights,) if self.config.add_cross_attention: cross_attn_weights = mega_outputs[2] all_cross_attentions += (cross_attn_weights,) if use_cache: updated_cache = mega_outputs[-1] next_decoder_cache += (updated_cache,) # transpose final hidden states hidden_states = hidden_states.transpose(0, 1) # optional pooling layer pooled_output = self.pooler(hidden_states) if self.pooler is not None else None if not return_dict: return (hidden_states, pooled_output) + ( all_hidden_states, next_decoder_cache, all_self_attentions, all_cross_attentions, ) return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=hidden_states, pooler_output=pooled_output, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, )
class_definition
72,205
82,382
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mega/modeling_mega.py
null
10,346
class MegaForCausalLM(MegaPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config: MegaConfig): super().__init__(config) if not config.is_decoder: logger.warning("If you want to use `MegaForCausalLM` as a standalone, add `is_decoder=True.`") self.mega = MegaModel(config, add_pooling_layer=False) if config.add_lm_hidden_dense_layer: self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.hidden_activation = nn.Tanh() else: self.dense = None self.hidden_activation = None self.lm_head = nn.Linear(config.hidden_size, config.vocab_size) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings @add_start_docstrings_to_model_forward(MEGA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, past_key_values: Tuple[Tuple[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Returns: Example: ```python >>> from transformers import AutoTokenizer, MegaForCausalLM, AutoConfig >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("mnaylor/mega-base-wikitext") >>> config = AutoConfig.from_pretrained("mnaylor/mega-base-wikitext") >>> config.is_decoder = True >>> config.bidirectional = False >>> model = MegaForCausalLM.from_pretrained( ... "mnaylor/mega-base-wikitext", config=config, ignore_mismatched_sizes=True ... ) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: use_cache = False outputs = self.mega( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] if self.dense is not None: sequence_output = self.dense(sequence_output) sequence_output = self.hidden_activation(sequence_output) prediction_scores = self.lm_head(sequence_output) lm_loss = None if labels is not None: # we are doing next-token prediction; shift prediction scores and input ids by one shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() labels = labels[:, 1:].contiguous() loss_fct = CrossEntropyLoss() lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((lm_loss,) + output) if lm_loss is not None else output return CausalLMOutputWithCrossAttentions( loss=lm_loss, logits=prediction_scores, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs): input_shape = input_ids.shape # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_shape) # cut decoder_input_ids if past is used if past_key_values is not None: input_ids = input_ids[:, -1:] return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values} def _reorder_cache(self, past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past
class_definition
82,513
89,950
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mega/modeling_mega.py
null
10,347
class MegaForMaskedLM(MegaPreTrainedModel): _tied_weights_keys = ["mlm_head.weight"] def __init__(self, config: MegaConfig): super().__init__(config) if config.is_decoder: logger.warning( "If you want to use `MegaForMaskedLM`, set `config.is_decoder=False` for " "bi-directional self-attention." ) self.mega = MegaModel(config, add_pooling_layer=False) if config.add_lm_hidden_dense_layer: self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.hidden_activation = nn.Tanh() else: self.dense = None self.hidden_activation = None self.mlm_head = nn.Linear(config.hidden_size, config.vocab_size) self.dropout = nn.Dropout(config.dropout_prob) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.mlm_head def set_output_embeddings(self, new_embeddings): self.mlm_head = new_embeddings @add_start_docstrings_to_model_forward(MEGA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, mask="<mask>", expected_output="' Paris'", expected_loss=0.1, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` kwargs (`Dict[str, any]`, optional, defaults to *{}*): Used to hide legacy arguments that have been deprecated. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mega( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] if self.dense is not None: sequence_output = self.dense(sequence_output) sequence_output = self.hidden_activation(sequence_output) prediction_scores = self.mlm_head(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
90,055
94,071
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mega/modeling_mega.py
null
10,348
class MegaForSequenceClassification(MegaPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.mega = MegaModel(config, add_pooling_layer=False) self.classifier = MegaClassificationHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MEGA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mega( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
94,293
97,884
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mega/modeling_mega.py
null
10,349
class MegaForMultipleChoice(MegaPreTrainedModel): def __init__(self, config): super().__init__(config) self.mega = MegaModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MEGA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None flat_inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.mega( flat_input_ids, token_type_ids=flat_token_type_ids, attention_mask=flat_attention_mask, inputs_embeds=flat_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
98,115
101,383
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mega/modeling_mega.py
null
10,350
class MegaForTokenClassification(MegaPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.mega = MegaModel(config, add_pooling_layer=False) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MEGA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mega( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
101,612
104,301
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mega/modeling_mega.py
null
10,351
class MegaClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = torch.tanh(x) x = self.dropout(x) x = self.out_proj(x) return x
class_definition
104,408
105,178
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mega/modeling_mega.py
null
10,352
class MegaForQuestionAnswering(MegaPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.mega = MegaModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MEGA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mega( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
105,465
109,518
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mega/modeling_mega.py
null
10,353
class JukeboxPriorConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a [`JukeboxPrior`]. It is used to instantiate a `JukeboxPrior` according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the top level prior from the [openai/jukebox-1b-lyrics](https://huggingface.co/openai/jukebox -1b-lyrics) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: act_fn (`str`, *optional*, defaults to `"quick_gelu"`): Activation function. alignment_head (`int`, *optional*, defaults to 2): Head that is responsible of the alignment between lyrics and music. Only used to compute the lyric to audio alignment alignment_layer (`int`, *optional*, defaults to 68): Index of the layer that is responsible of the alignment between lyrics and music. Only used to compute the lyric to audio alignment attention_multiplier (`float`, *optional*, defaults to 0.25): Multiplier coefficient used to define the hidden dimension of the attention layers. 0.25 means that 0.25*width of the model will be used. attention_pattern (`str`, *optional*, defaults to `"enc_dec_with_lyrics"`): Which attention pattern to use for the decoder/ attn_dropout (`int`, *optional*, defaults to 0): Dropout probability for the post-attention layer dropout in the decoder. attn_res_scale (`bool`, *optional*, defaults to `False`): Whether or not to scale the residuals in the attention conditioner block. blocks (`int`, *optional*, defaults to 64): Number of blocks used in the `block_attn`. A sequence of length seq_len is factored as `[blocks, seq_len // blocks]` in the `JukeboxAttention` layer. conv_res_scale (`int`, *optional*): Whether or not to scale the residuals in the conditioner block. Since the top level prior does not have a conditioner, the default value is to None and should not be modified. num_layers (`int`, *optional*, defaults to 72): Number of layers of the transformer architecture. emb_dropout (`int`, *optional*, defaults to 0): Embedding dropout used in the lyric decoder. encoder_config (`JukeboxPriorConfig`, *optional*) : Configuration of the encoder which models the prior on the lyrics. encoder_loss_fraction (`float`, *optional*, defaults to 0.4): Multiplication factor used in front of the lyric encoder loss. hidden_size (`int`, *optional*, defaults to 2048): Hidden dimension of the attention layers. init_scale (`float`, *optional*, defaults to 0.2): Initialization scales for the prior modules. is_encoder_decoder (`bool`, *optional*, defaults to `True`): Whether or not the prior is an encoder-decoder model. In case it is not, and `nb_relevant_lyric_tokens` is greater than 0, the `encoder` args should be specified for the lyric encoding. mask (`bool`, *optional*, defaults to `False`): Whether or not to mask the previous positions in the attention. max_duration (`int`, *optional*, defaults to 600): Maximum supported duration of the generated song in seconds. max_nb_genres (`int`, *optional*, defaults to 1): Maximum number of genres that can be used to condition the model. merged_decoder (`bool`, *optional*, defaults to `True`): Whether or not the decoder and the encoder inputs are merged. This is used for the separated encoder-decoder architecture metadata_conditioning (`bool`, *optional*, defaults to `True)`: Whether or not to condition on the artist and genre metadata. metadata_dims (`List[int]`, *optional*, defaults to `[604, 7898]`): Number of genres and the number of artists that were used to train the embedding layers of the prior models. min_duration (`int`, *optional*, defaults to 0): Minimum duration of the generated audio on which the model was trained. mlp_multiplier (`float`, *optional*, defaults to 1.0): Multiplier coefficient used to define the hidden dimension of the MLP layers. 0.25 means that 0.25*width of the model will be used. music_vocab_size (`int`, *optional*, defaults to 2048): Number of different music tokens. Should be similar to the `JukeboxVQVAEConfig.nb_discrete_codes`. n_ctx (`int`, *optional*, defaults to 6144): Number of context tokens for each prior. The context tokens are the music tokens that are attended to when generating music tokens. n_heads (`int`, *optional*, defaults to 2): Number of attention heads. nb_relevant_lyric_tokens (`int`, *optional*, defaults to 384): Number of lyric tokens that are used when sampling a single window of length `n_ctx` res_conv_depth (`int`, *optional*, defaults to 3): Depth of the `JukeboxDecoderConvBock` used to upsample the previously sampled audio in the `JukeboxMusicTokenConditioner`. res_conv_width (`int`, *optional*, defaults to 128): Width of the `JukeboxDecoderConvBock` used to upsample the previously sampled audio in the `JukeboxMusicTokenConditioner`. res_convolution_multiplier (`int`, *optional*, defaults to 1): Multiplier used to scale the `hidden_dim` of the `JukeboxResConv1DBlock`. res_dilation_cycle (`int`, *optional*): Dilation cycle used to define the `JukeboxMusicTokenConditioner`. Usually similar to the ones used in the corresponding level of the VQVAE. The first prior does not use it as it is not conditioned on upper level tokens. res_dilation_growth_rate (`int`, *optional*, defaults to 1): Dilation grow rate used between each convolutionnal block of the `JukeboxMusicTokenConditioner` res_downs_t (`List[int]`, *optional*, defaults to `[3, 2, 2]`): Downsampling rates used in the audio conditioning network res_strides_t (`List[int]`, *optional*, defaults to `[2, 2, 2]`): Striding used in the audio conditioning network resid_dropout (`int`, *optional*, defaults to 0): Residual dropout used in the attention pattern. sampling_rate (`int`, *optional*, defaults to 44100): Sampling rate used for training. spread (`int`, *optional*): Spread used in the `summary_spread_attention` pattern timing_dims (`int`, *optional*, defaults to 64): Dimension of the timing embedding. zero_out (`bool`, *optional*, defaults to `False`): Whether or not to zero out convolution weights when initializing. """ model_type = "jukebox_prior" attribute_map = { "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", } def __init__( self, act_fn="quick_gelu", level=0, alignment_head=2, alignment_layer=68, attention_multiplier=0.25, attention_pattern="enc_dec_with_lyrics", attn_dropout=0, attn_res_scale=False, blocks=64, conv_res_scale=None, num_layers=72, emb_dropout=0, encoder_config=None, encoder_loss_fraction=0.4, hidden_size=2048, init_scale=0.2, is_encoder_decoder=True, lyric_vocab_size=80, mask=False, max_duration=600, max_nb_genres=1, merged_decoder=True, metadata_conditioning=True, metadata_dims=[604, 7898], min_duration=0, mlp_multiplier=1.0, music_vocab_size=2048, n_ctx=6144, n_heads=2, nb_relevant_lyric_tokens=384, res_conv_depth=3, res_conv_width=128, res_convolution_multiplier=1, res_dilation_cycle=None, res_dilation_growth_rate=1, res_downs_t=[3, 2, 2], res_strides_t=[2, 2, 2], resid_dropout=0, sampling_rate=44100, spread=None, timing_dims=64, zero_out=False, **kwargs, ): self.act_fn = act_fn self.alignment_head = alignment_head self.alignment_layer = alignment_layer self.attention_multiplier = attention_multiplier self.attention_pattern = attention_pattern self.attn_dropout = attn_dropout self.attn_res_scale = attn_res_scale self.blocks = blocks self.conv_res_scale = conv_res_scale self.num_layers = num_layers self.emb_dropout = emb_dropout self.music_vocab_size = music_vocab_size if encoder_config is not None: self.encoder_config = JukeboxPriorConfig(**encoder_config) else: self.encoder_config = None self.encoder_loss_fraction = encoder_loss_fraction self.init_scale = init_scale self.is_encoder_decoder = is_encoder_decoder self.lyric_vocab_size = lyric_vocab_size self.level = level self.mask = mask self.max_duration = max_duration self.max_nb_genres = max_nb_genres self.merged_decoder = merged_decoder self.metadata_conditioning = metadata_conditioning self.metadata_dims = metadata_dims self.min_duration = min_duration self.mlp_multiplier = mlp_multiplier self.n_ctx = n_ctx self.n_heads = n_heads self.nb_relevant_lyric_tokens = nb_relevant_lyric_tokens self.res_conv_depth = res_conv_depth self.res_conv_width = res_conv_width self.res_convolution_multiplier = res_convolution_multiplier self.res_dilation_cycle = res_dilation_cycle self.res_dilation_growth_rate = res_dilation_growth_rate self.res_downs_t = res_downs_t self.res_strides_t = res_strides_t self.resid_dropout = resid_dropout self.sampling_rate = sampling_rate self.spread = spread self.timing_dims = timing_dims self.hidden_size = hidden_size self.zero_out = zero_out @classmethod def from_pretrained( cls, pretrained_model_name_or_path: Union[str, os.PathLike], level=0, **kwargs ) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the prior config dict if we are loading from JukeboxConfig if config_dict.get("model_type") == "jukebox": config_dict = config_dict[f"prior_{level}"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs)
class_definition
3,712
15,233
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/jukebox/configuration_jukebox.py
null
10,354
class JukeboxVQVAEConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a [`JukeboxVQVAE`]. It is used to instantiate a `JukeboxVQVAE` according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the VQVAE from [openai/jukebox-1b-lyrics](https://huggingface.co/openai/jukebox-1b-lyrics) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: act_fn (`str`, *optional*, defaults to `"relu"`): Activation function of the model. nb_discrete_codes (`int`, *optional*, defaults to 2048): Number of codes of the VQVAE. commit (`float`, *optional*, defaults to 0.02): Commit loss multiplier. conv_input_shape (`int`, *optional*, defaults to 1): Number of audio channels. conv_res_scale (`bool`, *optional*, defaults to `False`): Whether or not to scale the residuals of the `JukeboxResConv1DBlock`. embed_dim (`int`, *optional*, defaults to 64): Embedding dimension of the codebook vectors. hop_fraction (`List[int]`, *optional*, defaults to `[0.125, 0.5, 0.5]`): Fraction of non-intersecting window used when continuing the sampling process. levels (`int`, *optional*, defaults to 3): Number of hierarchical levels that used in the VQVAE. lmu (`float`, *optional*, defaults to 0.99): Used in the codebook update, exponential moving average coefficient. For more detail refer to Appendix A.1 of the original [VQVAE paper](https://arxiv.org/pdf/1711.00937v2.pdf) multipliers (`List[int]`, *optional*, defaults to `[2, 1, 1]`): Depth and width multipliers used for each level. Used on the `res_conv_width` and `res_conv_depth` res_conv_depth (`int`, *optional*, defaults to 4): Depth of the encoder and decoder block. If no `multipliers` are used, this is the same for each level. res_conv_width (`int`, *optional*, defaults to 32): Width of the encoder and decoder block. If no `multipliers` are used, this is the same for each level. res_convolution_multiplier (`int`, *optional*, defaults to 1): Scaling factor of the hidden dimension used in the `JukeboxResConv1DBlock`. res_dilation_cycle (`int`, *optional*): Dilation cycle value used in the `JukeboxResnet`. If an int is used, each new Conv1 block will have a depth reduced by a power of `res_dilation_cycle`. res_dilation_growth_rate (`int`, *optional*, defaults to 3): Resnet dilation growth rate used in the VQVAE (dilation_growth_rate ** depth) res_downs_t (`List[int]`, *optional*, defaults to `[3, 2, 2]`): Downsampling rate for each level of the hierarchical VQ-VAE. res_strides_t (`List[int]`, *optional*, defaults to `[2, 2, 2]`): Stride used for each level of the hierarchical VQ-VAE. sample_length (`int`, *optional*, defaults to 1058304): Provides the max input shape of the VQVAE. Is used to compute the input shape of each level. init_scale (`float`, *optional*, defaults to 0.2): Initialization scale. zero_out (`bool`, *optional*, defaults to `False`): Whether or not to zero out convolution weights when initializing. """ model_type = "jukebox_vqvae" def __init__( self, act_fn="relu", nb_discrete_codes=2048, commit=0.02, conv_input_shape=1, conv_res_scale=False, embed_dim=64, hop_fraction=[0.125, 0.5, 0.5], levels=3, lmu=0.99, multipliers=[2, 1, 1], res_conv_depth=4, res_conv_width=32, res_convolution_multiplier=1, res_dilation_cycle=None, res_dilation_growth_rate=3, res_downs_t=[3, 2, 2], res_strides_t=[2, 2, 2], sample_length=1058304, init_scale=0.2, zero_out=False, **kwargs, ): self.hop_fraction = hop_fraction self.conv_input_shape = conv_input_shape self.sample_length = sample_length # VQVAE parameters (all used) self.levels = levels self.embed_dim = embed_dim self.nb_discrete_codes = nb_discrete_codes self.res_conv_width = res_conv_width self.res_conv_depth = res_conv_depth self.res_convolution_multiplier = res_convolution_multiplier self.res_dilation_growth_rate = res_dilation_growth_rate self.res_dilation_cycle = res_dilation_cycle self.multipliers = multipliers self.res_downs_t = res_downs_t self.res_strides_t = res_strides_t self.lmu = lmu self.commit = commit self.conv_res_scale = conv_res_scale self.act_fn = act_fn self.init_scale = init_scale self.zero_out = zero_out @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the text config dict if we are loading from CLIPConfig if config_dict.get("model_type") == "jukebox": config_dict = config_dict["vqvae_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs)
class_definition
15,236
21,289
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/jukebox/configuration_jukebox.py
null
10,355
class JukeboxConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a [`JukeboxModel`]. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Instantiating a configuration with the defaults will yield a similar configuration to that of [openai/jukebox-1b-lyrics](https://huggingface.co/openai/jukebox-1b-lyrics) architecture. The downsampling and stride are used to determine downsampling of the input sequence. For example, downsampling = (5,3), and strides = (2, 2) will downsample the audio by 2^5 = 32 to get the first level of codes, and 2**8 = 256 to get the second level codes. This is mostly true for training the top level prior and the upsamplers. Args: vqvae_config (`JukeboxVQVAEConfig`, *optional*): Configuration for the `JukeboxVQVAE` model. prior_config_list (`List[JukeboxPriorConfig]`, *optional*): List of the configs for each of the `JukeboxPrior` of the model. The original architecture uses 3 priors. nb_priors (`int`, *optional*, defaults to 3): Number of prior models that will sequentially sample tokens. Each prior is conditional auto regressive (decoder) model, apart from the top prior, which can include a lyric encoder. The available models were trained using a top prior and 2 upsampler priors. sampling_rate (`int`, *optional*, defaults to 44100): Sampling rate of the raw audio. timing_dims (`int`, *optional*, defaults to 64): Dimensions of the JukeboxRangeEmbedding layer which is equivalent to traditional positional embedding layer. The timing embedding layer converts the absolute and relative position in the currently sampled audio to a tensor of length `timing_dims` that will be added to the music tokens. min_duration (`int`, *optional*, defaults to 0): Minimum duration of the audios to generate max_duration (`float`, *optional*, defaults to 600.0): Maximum duration of the audios to generate max_nb_genres (`int`, *optional*, defaults to 5): Maximum number of genres that can be used to condition a single sample. metadata_conditioning (`bool`, *optional*, defaults to `True`): Whether or not to use metadata conditioning, corresponding to the artist, the genre and the min/maximum duration. Example: ```python >>> from transformers import JukeboxModel, JukeboxConfig >>> # Initializing a Jukebox configuration >>> configuration = JukeboxConfig() >>> # Initializing a model from the configuration >>> model = JukeboxModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ``` """ model_type = "jukebox" def __init__( self, vqvae_config=None, prior_config_list=None, nb_priors=3, sampling_rate=44100, timing_dims=64, min_duration=0, max_duration=600.0, max_nb_genres=5, metadata_conditioning=True, **kwargs, ): if vqvae_config is None: vqvae_config = {} logger.info("vqvae_config is None. initializing the JukeboxVQVAE with default values.") self.vqvae_config = JukeboxVQVAEConfig(**vqvae_config) if prior_config_list is not None: self.prior_configs = [JukeboxPriorConfig(**prior_config) for prior_config in prior_config_list] else: self.prior_configs = [] for prior_idx in range(nb_priors): prior_config = kwargs.pop(f"prior_{prior_idx}", None) if prior_config is None: prior_config = {} logger.info( f"prior_{prior_idx}'s config is None. Initializing the JukeboxPriorConfig list with default" " values." ) self.prior_configs.append(JukeboxPriorConfig(**prior_config)) self.hop_fraction = self.vqvae_config.hop_fraction self.nb_priors = nb_priors # Metadata conditioning self.max_nb_genres = max_nb_genres self.sampling_rate = sampling_rate self.timing_dims = timing_dims self.min_duration = min_duration self.max_duration = max_duration self.metadata_conditioning = metadata_conditioning super().__init__(**kwargs) @classmethod def from_configs(cls, prior_configs: List[JukeboxPriorConfig], vqvae_config: JukeboxVQVAEConfig, **kwargs): r""" Instantiate a [`JukeboxConfig`] (or a derived class) from clip text model configuration and clip vision model configuration. Returns: [`JukeboxConfig`]: An instance of a configuration object """ prior_config_list = [config.to_dict() for config in prior_configs] return cls(prior_config_list=prior_config_list, vqvae_config_dict=vqvae_config.to_dict(), **kwargs) def to_dict(self): # Override the default to_dict to apply to_dict to the list of prior configs. result = super().to_dict() result["prior_config_list"] = [config.to_dict() for config in result.pop("prior_configs")] return result
class_definition
21,292
26,748
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/jukebox/configuration_jukebox.py
null
10,356
class JukeboxTokenizer(PreTrainedTokenizer): """ Constructs a Jukebox tokenizer. Jukebox can be conditioned on 3 different inputs : - Artists, unique ids are associated to each artist from the provided dictionary. - Genres, unique ids are associated to each genre from the provided dictionary. - Lyrics, character based tokenization. Must be initialized with the list of characters that are inside the vocabulary. This tokenizer does not require training. It should be able to process a different number of inputs: as the conditioning of the model can be done on the three different queries. If None is provided, defaults values will be used.: Depending on the number of genres on which the model should be conditioned (`n_genres`). ```python >>> from transformers import JukeboxTokenizer >>> tokenizer = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics") >>> tokenizer("Alan Jackson", "Country Rock", "old town road")["input_ids"] [tensor([[ 0, 0, 0, 6785, 546, 41, 38, 30, 76, 46, 41, 49, 40, 76, 44, 41, 27, 30]]), tensor([[ 0, 0, 0, 145, 0]]), tensor([[ 0, 0, 0, 145, 0]])] ``` You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance. <Tip> If nothing is provided, the genres and the artist will either be selected randomly or set to None </Tip> This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to: this superclass for more information regarding those methods. However the code does not allow that and only supports composing from various genres. Args: artists_file (`str`): Path to the vocabulary file which contains a mapping between artists and ids. The default file supports both "v2" and "v3" genres_file (`str`): Path to the vocabulary file which contain a mapping between genres and ids. lyrics_file (`str`): Path to the vocabulary file which contains the accepted characters for the lyrics tokenization. version (`List[str]`, `optional`, default to `["v3", "v2", "v2"]`) : List of the tokenizer versions. The `5b-lyrics`'s top level prior model was trained using `v3` instead of `v2`. n_genres (`int`, `optional`, defaults to 1): Maximum number of genres to use for composition. max_n_lyric_tokens (`int`, `optional`, defaults to 512): Maximum number of lyric tokens to keep. unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] def __init__( self, artists_file, genres_file, lyrics_file, version=["v3", "v2", "v2"], max_n_lyric_tokens=512, n_genres=5, unk_token="<|endoftext|>", **kwargs, ): unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token self.version = version self.max_n_lyric_tokens = max_n_lyric_tokens self.n_genres = n_genres self._added_tokens_decoder = {0: unk_token} with open(artists_file, encoding="utf-8") as vocab_handle: self.artists_encoder = json.load(vocab_handle) with open(genres_file, encoding="utf-8") as vocab_handle: self.genres_encoder = json.load(vocab_handle) with open(lyrics_file, encoding="utf-8") as vocab_handle: self.lyrics_encoder = json.load(vocab_handle) oov = r"[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder) == 79: oov = oov.replace(r"\-'", r"\-+'") self.out_of_vocab = regex.compile(oov) self.artists_decoder = {v: k for k, v in self.artists_encoder.items()} self.genres_decoder = {v: k for k, v in self.genres_encoder.items()} self.lyrics_decoder = {v: k for k, v in self.lyrics_encoder.items()} super().__init__( unk_token=unk_token, n_genres=n_genres, version=version, max_n_lyric_tokens=max_n_lyric_tokens, **kwargs, ) @property def vocab_size(self): return len(self.artists_encoder) + len(self.genres_encoder) + len(self.lyrics_encoder) def get_vocab(self): return { "artists_encoder": self.artists_encoder, "genres_encoder": self.genres_encoder, "lyrics_encoder": self.lyrics_encoder, } def _convert_token_to_id(self, list_artists, list_genres, list_lyrics): """Converts the artist, genre and lyrics tokens to their index using the vocabulary. The total_length, offset and duration have to be provided in order to select relevant lyrics and add padding to the lyrics token sequence. """ artists_id = [self.artists_encoder.get(artist, 0) for artist in list_artists] for genres in range(len(list_genres)): list_genres[genres] = [self.genres_encoder.get(genre, 0) for genre in list_genres[genres]] list_genres[genres] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres])) lyric_ids = [[self.lyrics_encoder.get(character, 0) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def _tokenize(self, lyrics): """ Converts a string into a sequence of tokens (string), using the tokenizer. Split in words for word-based vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces). Do NOT take care of added tokens. Only the lyrics are split into character for the character-based vocabulary. """ # only lyrics are not tokenized, but character based is easily handled return list(lyrics) def tokenize(self, artist, genre, lyrics, **kwargs): """ Converts three strings in a 3 sequence of tokens using the tokenizer """ artist, genre, lyrics = self.prepare_for_tokenization(artist, genre, lyrics) lyrics = self._tokenize(lyrics) return artist, genre, lyrics def prepare_for_tokenization( self, artists: str, genres: str, lyrics: str, is_split_into_words: bool = False ) -> Tuple[str, str, str, Dict[str, Any]]: """ Performs any necessary transformations before tokenization. Args: artist (`str`): The artist name to prepare. This will mostly lower the string genres (`str`): The genre name to prepare. This will mostly lower the string. lyrics (`str`): The lyrics to prepare. is_split_into_words (`bool`, *optional*, defaults to `False`): Whether or not the input is already pre-tokenized (e.g., split into words). If set to `True`, the tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace) which it will tokenize. This is useful for NER or token classification. """ for idx in range(len(self.version)): if self.version[idx] == "v3": artists[idx] = artists[idx].lower() genres[idx] = [genres[idx].lower()] else: artists[idx] = self._normalize(artists[idx]) + ".v2" genres[idx] = [ self._normalize(genre) + ".v2" for genre in genres[idx].split("_") ] # split is for the full dictionary with combined genres if self.version[0] == "v2": self.out_of_vocab = regex.compile(r"[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+") vocab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n" self.vocab = {vocab[index]: index + 1 for index in range(len(vocab))} self.vocab["<unk>"] = 0 self.n_vocab = len(vocab) + 1 self.lyrics_encoder = self.vocab self.lyrics_decoder = {v: k for k, v in self.vocab.items()} self.lyrics_decoder[0] = "" else: self.out_of_vocab = regex.compile(r"[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+") lyrics = self._run_strip_accents(lyrics) lyrics = lyrics.replace("\\", "\n") lyrics = self.out_of_vocab.sub("", lyrics), [], [] return artists, genres, lyrics def _run_strip_accents(self, text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output) def _normalize(self, text: str) -> str: """ Normalizes the input text. This process is for the genres and the artist Args: text (`str`): Artist or Genre string to normalize """ accepted = ( [chr(i) for i in range(ord("a"), ord("z") + 1)] + [chr(i) for i in range(ord("A"), ord("Z") + 1)] + [chr(i) for i in range(ord("0"), ord("9") + 1)] + ["."] ) accepted = frozenset(accepted) pattern = re.compile(r"_+") text = "".join([c if c in accepted else "_" for c in text.lower()]) text = pattern.sub("_", text).strip("_") return text def convert_lyric_tokens_to_string(self, lyrics: List[str]) -> str: return " ".join(lyrics) def convert_to_tensors( self, inputs, tensor_type: Optional[Union[str, TensorType]] = None, prepend_batch_axis: bool = False ): """ Convert the inner content to tensors. Args: tensor_type (`str` or [`~utils.TensorType`], *optional*): The type of tensors to use. If `str`, should be one of the values of the enum [`~utils.TensorType`]. If unset, no modification is done. prepend_batch_axis (`int`, *optional*, defaults to `False`): Whether or not to add the batch dimension during the conversion. """ # Convert to TensorType if not isinstance(tensor_type, TensorType): tensor_type = TensorType(tensor_type) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( "Unable to convert output to TensorFlow tensors format, TensorFlow is not installed." ) import tensorflow as tf as_tensor = tf.constant is_tensor = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("Unable to convert output to PyTorch tensors format, PyTorch is not installed.") import torch as_tensor = torch.tensor is_tensor = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("Unable to convert output to JAX tensors format, JAX is not installed.") import jax.numpy as jnp # noqa: F811 as_tensor = jnp.array is_tensor = _is_jax else: as_tensor = np.asarray is_tensor = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: inputs = [inputs] if not is_tensor(inputs): inputs = as_tensor(inputs) except: # noqa E722 raise ValueError( "Unable to create tensor, you should probably activate truncation and/or padding " "with 'padding=True' 'truncation=True' to have batched tensors with the same length." ) return inputs def __call__(self, artist, genres, lyrics="", return_tensors="pt") -> BatchEncoding: """Convert the raw string to a list of token ids Args: artist (`str`): Name of the artist. genres (`str`): List of genres that will be mixed to condition the audio lyrics (`str`, *optional*, defaults to `""`): Lyrics used to condition the generation """ input_ids = [0, 0, 0] artist = [artist] * len(self.version) genres = [genres] * len(self.version) artists_tokens, genres_tokens, lyrics_tokens = self.tokenize(artist, genres, lyrics) artists_id, genres_ids, full_tokens = self._convert_token_to_id(artists_tokens, genres_tokens, lyrics_tokens) attention_masks = [-INFINITY] * len(full_tokens[-1]) input_ids = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]], tensor_type=return_tensors ) for i in range(len(self.version)) ] return BatchEncoding({"input_ids": input_ids, "attention_masks": attention_masks}) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: """ Saves the tokenizer's vocabulary dictionary to the provided save_directory. Args: save_directory (`str`): A path to the directory where to saved. It will be created if it doesn't exist. filename_prefix (`Optional[str]`, *optional*): A prefix to add to the names of the files saved by the tokenizer. """ if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return artists_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["artists_file"] ) with open(artists_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.artists_encoder, ensure_ascii=False)) genres_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["genres_file"] ) with open(genres_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.genres_encoder, ensure_ascii=False)) lyrics_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["lyrics_file"] ) with open(lyrics_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.lyrics_encoder, ensure_ascii=False)) return (artists_file, genres_file, lyrics_file) def _convert_id_to_token(self, artists_index, genres_index, lyric_index): """ Converts an index (integer) in a token (str) using the vocab. Args: artists_index (`int`): Index of the artist in its corresponding dictionary. genres_index (`Union[List[int], int]`): Index of the genre in its corresponding dictionary. lyric_index (`List[int]`): List of character indices, which each correspond to a character. """ artist = self.artists_decoder.get(artists_index) genres = [self.genres_decoder.get(genre) for genre in genres_index] lyrics = [self.lyrics_decoder.get(character) for character in lyric_index] return artist, genres, lyrics
class_definition
1,299
17,351
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/jukebox/tokenization_jukebox.py
null
10,357
class JukeboxConv1D(nn.Module): def __init__(self, input_width, output_width): super().__init__() self.input_width = input_width self.output_width = output_width weight = torch.empty(input_width, output_width) bias = torch.zeros(output_width) self.weight = nn.Parameter(weight) self.bias = nn.Parameter(bias) def forward(self, hidden_states): size_out = (*hidden_states.size()[:-1], self.output_width) hidden_states = torch.addmm( self.bias.type_as(hidden_states), hidden_states.view(-1, hidden_states.size(-1)), self.weight.type_as(hidden_states), ) hidden_states = hidden_states.view(*size_out) return hidden_states
class_definition
9,576
10,334
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/jukebox/modeling_jukebox.py
null
10,358
class JukeboxResConv1DBlock(nn.Module): def __init__(self, config, conv_width, depth=1, res_scale=1.0): super().__init__() hidden_dim = config.res_convolution_multiplier * conv_width dilation = config.res_dilation_growth_rate**depth padding = dilation self.res_scale = res_scale self.activation = nn.ReLU() self.conv1d_1 = nn.Conv1d(conv_width, hidden_dim, 3, 1, padding, dilation) self.conv1d_2 = nn.Conv1d(hidden_dim, conv_width, 1, 1, 0) def forward(self, hidden_states): residuals = hidden_states hidden_states = self.activation(hidden_states) hidden_states = self.conv1d_1(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = self.conv1d_2(hidden_states) return residuals + self.res_scale * hidden_states
class_definition
10,337
11,193
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/jukebox/modeling_jukebox.py
null
10,359
class JukeboxResnet1D(nn.Module): def __init__(self, config, conv_width, n_depth, reverse_dilation=False): super().__init__() self.dilation_cycle = config.res_dilation_cycle res_scale = 1.0 if not config.conv_res_scale else 1.0 / math.sqrt(n_depth) blocks = [] for depth in range(n_depth): block_depth = depth if self.dilation_cycle is None else depth % self.dilation_cycle blocks.append(JukeboxResConv1DBlock(config, conv_width, block_depth, res_scale)) if reverse_dilation: blocks = blocks[::-1] self.resnet_block = nn.ModuleList(blocks) def forward(self, hidden_states): for block in self.resnet_block: hidden_states = block(hidden_states) return hidden_states
class_definition
11,196
11,990
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/jukebox/modeling_jukebox.py
null
10,360
class JukeboxEncoderConvBlock(nn.Module): def __init__(self, config, embed_dim, hidden_dim, depth, down_t, stride_t): super().__init__() blocks = [] filter_t = stride_t * 2 pad_t = stride_t // 2 if down_t > 0: for i in range(down_t): blocks.append(nn.Conv1d(embed_dim if i == 0 else hidden_dim, hidden_dim, filter_t, stride_t, pad_t)) blocks.append(JukeboxResnet1D(config, hidden_dim, depth)) self.proj_out = nn.Conv1d(hidden_dim, config.embed_dim, 3, 1, 1) self.downsample_block = nn.ModuleList(blocks) def forward(self, hidden_states): for block in self.downsample_block: hidden_states = block(hidden_states) hidden_states = self.proj_out(hidden_states) return hidden_states
class_definition
11,993
12,814
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/jukebox/modeling_jukebox.py
null
10,361
class JukeboxEncoder(nn.Module): def __init__(self, config, width, depth, levels, downs_t, strides_t): super().__init__() self.levels = levels self.level_blocks = nn.ModuleList() iterator = zip(list(range(self.levels)), downs_t, strides_t) for i, down_t, stride_t in iterator: self.level_blocks.append( JukeboxEncoderConvBlock( config, config.conv_input_shape if i == 0 else config.embed_dim, width, depth, down_t, stride_t ) ) def forward(self, hidden_states): all_hidden_states = [] # 64, 32, ... for level in range(self.levels): level_block = self.level_blocks[level] hidden_states = level_block(hidden_states) all_hidden_states.append(hidden_states) return all_hidden_states
class_definition
12,817
13,691
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/jukebox/modeling_jukebox.py
null
10,362
class JukeboxDecoderConvBock(nn.Module): def __init__(self, config, embed_dim, hidden_dim, depth, down_t, stride_t, reverse_dilation=True): self.embed_dim = embed_dim self.hidden_dim = hidden_dim super().__init__() blocks = [] if down_t > 0: filter_t = stride_t * 2 pad_t = stride_t // 2 self.proj_in = nn.Conv1d(embed_dim, hidden_dim, 3, 1, 1) for i in range(down_t): blocks.append(JukeboxResnet1D(config, hidden_dim, depth, reverse_dilation)) blocks.append( nn.ConvTranspose1d( hidden_dim, hidden_dim if i < down_t - 1 else embed_dim, filter_t, stride_t, pad_t ) ) self.upsample_block = nn.ModuleList(blocks) def forward(self, hidden_states): hidden_states = self.proj_in(hidden_states) for block in self.upsample_block: hidden_states = block(hidden_states) return hidden_states
class_definition
13,694
14,727
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/jukebox/modeling_jukebox.py
null
10,363
class JukeboxDecoder(nn.Module): def __init__(self, config, hidden_dim, depth, levels, downs_t, strides_t): super().__init__() self.levels = levels self.level_blocks = nn.ModuleList() for level, down_t, stride_t in zip(list(range(self.levels)), downs_t, strides_t): self.level_blocks.append( JukeboxDecoderConvBock(config, config.embed_dim, hidden_dim, depth, down_t, stride_t) ) self.out = nn.Conv1d(config.embed_dim, config.conv_input_shape, 3, 1, 1) def forward(self, hidden_states, all_levels=True): hidden_state = hidden_states[-1] # 32, 64 ... for level in reversed(range(self.levels)): level_block = self.level_blocks[level] hidden_state = level_block(hidden_state) if level != 0 and all_levels: hidden_state = hidden_state + hidden_states[level - 1] hidden_state = self.out(hidden_state) return hidden_state
class_definition
14,730
15,730
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/jukebox/modeling_jukebox.py
null
10,364
class JukeboxBottleneckBlock(nn.Module): def __init__(self, config: JukeboxVQVAEConfig): super().__init__() self.nb_discrete_codes = config.nb_discrete_codes self.codebook_width = config.embed_dim self.mu = config.lmu self.threshold = 1.0 self.init = False self.codebook_sum = None self.codebook_elem = None self.register_buffer("codebook", torch.zeros(self.nb_discrete_codes, self.codebook_width)) def _tile(self, hidden_states): dim, embed_width = hidden_states.shape if dim < self.nb_discrete_codes: n_repeats = (self.nb_discrete_codes + dim - 1) // dim std = 0.01 / np.sqrt(embed_width) hidden_states = hidden_states.repeat(n_repeats, 1) hidden_states = hidden_states + torch.randn_like(hidden_states) * std return hidden_states def init_codebook(self, hidden_states): nb_discrete_codes = self.nb_discrete_codes self.init = True codes = self._tile(hidden_states) self.codebook = codes[torch.randperm(codes.shape[0])][:nb_discrete_codes] self.codebook_sum = self.codebook self.codebook_elem = torch.ones(nb_discrete_codes, device=self.codebook.device) def update_codebook(self, hidden_states, latent_states): mu, codebook_width, nb_discrete_codes = self.mu, self.codebook_width, self.nb_discrete_codes with torch.no_grad(): # Calculate new centres # nb_discrete_codes, batch_size * seq_length latent_states_onehot = torch.zeros(nb_discrete_codes, hidden_states.shape[0], device=hidden_states.device) latent_states_onehot.scatter_(0, latent_states.view(1, hidden_states.shape[0]), 1) _codebook_sum = torch.matmul(latent_states_onehot, hidden_states) _codebook_elem = latent_states_onehot.sum(dim=-1) # nb_discrete_codes codes = self._tile(hidden_states) _random_codebook = codes[torch.randperm(codes.shape[0])][:nb_discrete_codes] # Update centres old_codebook = self.codebook self.codebook_sum = mu * self.codebook_sum + (1.0 - mu) * _codebook_sum self.codebook_elem = mu * self.codebook_elem + (1.0 - mu) * _codebook_elem # nb_discrete_codes usage = (self.codebook_elem.view(nb_discrete_codes, 1) >= self.threshold).float() norm_code = self.codebook_sum.view(nb_discrete_codes, codebook_width) / self.codebook_elem.view( nb_discrete_codes, 1 ) self.codebook = usage * (norm_code) + (1 - usage) * _random_codebook _codebook_prob = _codebook_elem / torch.sum(_codebook_elem) # prob of each bin entropy = -torch.sum(_codebook_prob * torch.log(_codebook_prob + 1e-8)) # entropy ie how diverse used_curr = (_codebook_elem >= self.threshold).sum() usage = torch.sum(usage) dk = torch.norm(self.codebook - old_codebook) / np.sqrt(np.prod(old_codebook.shape)) return {"entropy": entropy, "used_curr": used_curr, "usage": usage, "dk": dk} def preprocess(self, hidden_states): hidden_states = hidden_states.permute(0, 2, 1).contiguous() hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) if hidden_states.shape[-1] == self.codebook_width: prenorm = torch.norm(hidden_states - torch.mean(hidden_states)) / np.sqrt(np.prod(hidden_states.shape)) elif hidden_states.shape[-1] == 2 * self.codebook_width: x1, x2 = hidden_states[..., : self.codebook_width], hidden_states[..., self.codebook_width :] prenorm = (torch.norm(x1 - torch.mean(x1)) / np.sqrt(np.prod(x1.shape))) + ( torch.norm(x2 - torch.mean(x2)) / np.sqrt(np.prod(x2.shape)) ) # Normalise hidden_states = x1 + x2 return hidden_states, prenorm def postprocess(self, latent_states, dequantised_states, x_shape): batch_size, time = x_shape dequantised_states = dequantised_states.view(batch_size, time, -1).permute(0, 2, 1).contiguous() latent_states = latent_states.view(batch_size, time) return latent_states, dequantised_states def quantise(self, latent_states): # Calculate latent code latent_states codebook_weights = self.codebook.t() distance = ( torch.sum(latent_states**2, dim=-1, keepdim=True) - 2 * torch.matmul(latent_states, codebook_weights) + torch.sum(codebook_weights**2, dim=0, keepdim=True) ) # (batch_size * latent_states , codebook_weights) min_distance, music_tokens = torch.min(distance, dim=-1) fit = torch.mean(min_distance) return music_tokens, fit def dequantise(self, music_tokens): dequantised_states = F.embedding(music_tokens, self.codebook) return dequantised_states def encode(self, latent_states): samples, _, seq_len = latent_states.shape # Preprocess. latent_states, _ = self.preprocess(latent_states) # Quantise music_tokens, _ = self.quantise(latent_states) # Postprocess. music_tokens = music_tokens.view(samples, seq_len) return music_tokens def decode(self, music_tokens): samples, seq_len = music_tokens.shape # Dequantise dequantised_states = self.dequantise(music_tokens) # Postprocess dequantised_states = ( dequantised_states.view(samples, seq_len, self.codebook_width).permute(0, 2, 1).contiguous() ) return dequantised_states def forward(self, hidden_states, update_codebook=True): samples, _, seq_len = hidden_states.shape # Preprocess hidden_states, prenorm = self.preprocess(hidden_states) # Init codebook if not inited if update_codebook and not self.init: self.init_codebook(hidden_states) # Quantise and dequantise through bottleneck music_tokens, fit = self.quantise(hidden_states) dequantised_states = self.dequantise(music_tokens) # Update embeddings if update_codebook: update_metrics = self.update_codebook(hidden_states, music_tokens) else: update_metrics = {} # Loss commit_loss = torch.norm(dequantised_states.detach() - hidden_states) ** 2 / np.prod(hidden_states.shape) # Passthrough dequantised_states = hidden_states + (dequantised_states - hidden_states).detach() # Postprocess music_tokens, dequantised_states = self.postprocess(music_tokens, dequantised_states, (samples, seq_len)) return music_tokens, dequantised_states, commit_loss, dict(fit=fit, pn=prenorm, **update_metrics)
class_definition
15,733
22,583
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/jukebox/modeling_jukebox.py
null
10,365
class JukeboxBottleneck(nn.Module): def __init__(self, config, levels): super().__init__() self.levels = levels self.level_blocks = nn.ModuleList() for level in range(self.levels): self.level_blocks.append(JukeboxBottleneckBlock(config)) def encode(self, raw_audio): music_tokens = [ level_block.encode(hidden_states) for (level_block, hidden_states) in zip(self.level_blocks, raw_audio) ] return music_tokens def decode(self, music_tokens, start_level=0, end_level=None): if end_level is None: end_level = self.levels quantised_audio = [ level_block.decode(z) for (level_block, z) in zip(self.level_blocks[start_level:end_level], music_tokens) ] return quantised_audio def forward(self, input_audio): music_tokens, quantised_states, commit_losses, metrics = [], [], [], [] for level in range(self.levels): level_block = self.level_blocks[-level - 1] hidden_states = input_audio[level] sampled_tokens, quantised_state, commit_loss, metric = level_block( hidden_states, update_codebook=self.training ) music_tokens.append(sampled_tokens) if not self.training: # Be extra paranoid and make sure the encoder weights can't # change from straight-through estimator quantised_state = quantised_state.detach() quantised_states.append(quantised_state) commit_losses.append(commit_loss) if self.training: metrics.append(metric) return music_tokens, quantised_states, commit_losses, metrics
class_definition
22,586
24,333
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/jukebox/modeling_jukebox.py
null
10,366
class JukeboxVQVAE(PreTrainedModel): config_class = JukeboxVQVAEConfig base_model_prefix = "vqvae" def _init_weights(self, module): if isinstance(module, nn.Embedding): # embed_tokens module.weight.data.normal_(mean=0.0, std=0.02 * self.config.init_scale) elif isinstance(module, JukeboxConv1D): if self.config.zero_out: module.weight.data.zero_() else: module.weight.data.normal_(mean=0.0, std=0.02 * self.config.init_scale) elif isinstance(module, JukeboxResConv1DBlock) and self.config.zero_out: module.conv1d_2.weight.data.zero_() module.conv1d_2.bias.data.zero_() if isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() def __init__(self, config: JukeboxVQVAEConfig): super().__init__(config) downs_t = config.res_downs_t strides_t = config.res_strides_t if not config.sample_length: downsamples = [stride**down for stride, down in zip(strides_t, downs_t)] top_raw_to_tokens = np.prod(downsamples) config.sample_length = ( config.sample_length_in_seconds * config.sampling_rate // top_raw_to_tokens ) * top_raw_to_tokens config.sample_length = config.sample_length.astype(int) self.nb_discrete_codes = config.nb_discrete_codes self.commit = config.commit self.sample_length = config.sample_length self.downsamples = [stride**down for stride, down in zip(strides_t, downs_t)] self.hop_lengths = np.cumprod(self.downsamples) self.levels = levels = config.levels self.music_tokens_shapes = [ (int(self.sample_length // self.hop_lengths[-level - 1])) for level in range(levels) ] self.multipliers = config.multipliers if config.multipliers is not None else [1] * levels self.encoders = nn.ModuleList() self.decoders = nn.ModuleList() for level in range(levels): width = config.res_conv_width * self.multipliers[level] depth = config.res_conv_depth * self.multipliers[level] self.encoders.append( JukeboxEncoder(config, width, depth, level + 1, downs_t[: level + 1], strides_t[: level + 1]) ) self.decoders.append( JukeboxDecoder(config, width, depth, level + 1, downs_t[: level + 1], strides_t[: level + 1]) ) self.bottleneck = JukeboxBottleneck(config, levels) def _decode(self, music_tokens, start_level=0, end_level=None): # Decode if end_level is None: end_level = self.levels latent_states = self.bottleneck.decode(music_tokens, start_level=start_level, end_level=end_level) # Use only lowest level decoder, dequantised_state = self.decoders[start_level], latent_states[0:1] dequantised_state = decoder(dequantised_state, all_levels=False) dequantised_state = dequantised_state.permute(0, 2, 1) return dequantised_state def decode(self, music_tokens, start_level=0, end_level=None, bs_chunks=1) -> torch.Tensor: """ Transforms the input `music_tokens` to their `raw_audio` representation. Args: music_tokens (`torch.LongTensor`): Tensor of music tokens which will be decoded to raw audio by using the codebook. Each music token should be an index to a corresponding `code` vector in the codebook. start_level (`int`, *optional*): Level at which the decoding process will start. Default to 0. end_level (`int`, *optional*): Level at which the decoding process will start. Default to None. bs_chunks (int, *optional*): Number of chunks to process at the same time. """ token_chunks = [torch.chunk(token, bs_chunks, dim=0) for token in music_tokens] dequantised_states = [] for i in range(bs_chunks): music_tokens_i = [chunks[i] for chunks in token_chunks] dequantised_state = self._decode(music_tokens_i, start_level=start_level, end_level=end_level) dequantised_states.append(dequantised_state) return torch.cat(dequantised_states, dim=0) def _encode(self, raw_audio, start_level=0, end_level=None): # Encode if end_level is None: end_level = self.levels input_audio = raw_audio.permute(0, 2, 1).float() latent_states = [] for level in range(self.levels): encoder = self.encoders[level] latent_state = encoder(input_audio) latent_states.append(latent_state[-1]) music_tokens = self.bottleneck.encode(latent_states) return music_tokens[start_level:end_level] def encode(self, input_audio, start_level=0, end_level=None, bs_chunks=1): """ Transforms the `input_audio` to a discrete representation made out of `music_tokens`. Args: input_audio (`torch.Tensor`): Raw audio which will be encoded to its discrete representation using the codebook. The closest `code` form the codebook will be computed for each sequence of samples. start_level (`int`, *optional*, defaults to 0): Level at which the encoding process will start. Default to 0. end_level (`int`, *optional*): Level at which the encoding process will start. Default to None. bs_chunks (int, *optional*, defaults to 1): Number of chunks of raw audio to process at the same time. """ audio_chunks = torch.chunk(input_audio, bs_chunks, dim=0) music_tokens_list = [] for chunk_i in audio_chunks: music_tokens_i = self._encode(chunk_i, start_level=start_level, end_level=end_level) music_tokens_list.append(music_tokens_i) music_tokens = [torch.cat(music_tokens_level, dim=0) for music_tokens_level in zip(*music_tokens_list)] return music_tokens def sample(self, n_samples): music_tokens = [ torch.randint(0, self.nb_discrete_codes, size=(n_samples, *music_tokens_shape), device="cpu") for music_tokens_shape in self.music_tokens_shapes ] return self.decode(music_tokens) def forward(self, raw_audio: torch.FloatTensor) -> Tuple[torch.Tensor, torch.Tensor]: """ Forward pass of the VQ-VAE, encodes the `raw_audio` to latent states, which are then decoded for each level. The commit loss, which ensure that the encoder's computed embeddings are close to the codebook vectors, is computed. Args: raw_audio (`torch.FloatTensor`): Audio input which will be encoded and decoded. Returns: `Tuple[torch.Tensor, torch.Tensor]` Example: ```python >>> from transformers import JukeboxVQVAE, set_seed >>> import torch >>> model = JukeboxVQVAE.from_pretrained("openai/jukebox-1b-lyrics").eval() >>> set_seed(0) >>> zs = [torch.randint(100, (4, 1))] >>> model.decode(zs).shape torch.Size([4, 8, 1]) ``` """ # Encode/Decode input_audio = raw_audio.permute(0, 2, 1).float() latent_states = [] for level in range(self.levels): encoder = self.encoders[level] latent_state = encoder(input_audio) latent_states.append(latent_state[-1]) _, music_tokens, commit_losses, _ = self.bottleneck(latent_states) dequantised_states = [] for level in range(self.levels): decoder = self.decoders[level] dequantised_state = decoder(music_tokens[level : level + 1], all_levels=False) dequantised_states.append(dequantised_state.permute(0, 2, 1)) commit_loss = sum(commit_losses) loss = self.commit * commit_loss return dequantised_states, loss
class_definition
25,491
33,751
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/jukebox/modeling_jukebox.py
null
10,367
class JukeboxMLP(nn.Module): def __init__(self, config): # a single channel is always used in original code super().__init__() embed_dim = config.hidden_size hidden_dim = int(config.mlp_multiplier * embed_dim) self.c_fc = JukeboxConv1D(embed_dim, hidden_dim) self.c_proj = JukeboxConv1D(hidden_dim, embed_dim) self.act = ACT2FN[config.act_fn] self.dropout = nn.Dropout(config.resid_dropout) def forward(self, hidden_states): hidden_states = self.c_fc(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.c_proj(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states
class_definition
33,754
34,481
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/jukebox/modeling_jukebox.py
null
10,368
class JukeboxLayerNorm(FusedLayerNorm): def __init__(self, normalized_shape, eps=1e-5, elementwise_affine=True): super().__init__(normalized_shape, eps=eps, elementwise_affine=elementwise_affine) self.width = np.prod(normalized_shape) self.max_numel = 65535 * self.width def forward(self, input): if input.numel() > self.max_numel: return F.layer_norm(input, self.normalized_shape, self.weight, self.bias, self.eps).type_as(input) else: return super().forward(input).type_as(input)
class_definition
34,484
35,038
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/jukebox/modeling_jukebox.py
null
10,369
class JukeboxAttention(nn.Module): def __init__(self, config, n_ctx, attn_func="dense_attn"): super().__init__() self.embed_dim = config.hidden_size self.n_heads = config.n_heads self.dropout = config.attn_dropout hidden_dim = int(config.attention_multiplier * self.embed_dim) self.head_dim = hidden_dim // config.n_heads self.n_ctx = n_ctx self.hidden_dim = hidden_dim self.scale = self.head_dim**-0.25 self.mask = config.mask if attn_func == "cross_attention": self.c_attn = JukeboxConv1D(self.embed_dim, hidden_dim) self.c_enc_kv = JukeboxConv1D(self.embed_dim, hidden_dim * 2) else: self.c_attn = JukeboxConv1D(self.embed_dim, hidden_dim * 3) self.c_proj = JukeboxConv1D(hidden_dim, self.embed_dim) self.attn_dropout = nn.Dropout(config.attn_dropout) self.resid_dropout = nn.Dropout(config.resid_dropout) # Sequence of length seq_len is factored as [blocks, seq_len // blocks] self.attn_func = attn_func if attn_func == "cross_attention": self.qkv = self.decode_qkv elif attn_func == "prime_attn": self.qkv = self.prime_qkv else: self.qkv = self.factored_qkv ATTENTION_MAP = { "dense_attn": (self.dense_attn, "autoregressive"), "block_attn": (self.block_attn, "autoregressive"), "transpose_block_attn": (self.transpose_block_attn, "autoregressive"), "prev_block_attn": (self.prev_block_attn, None), "summary_attn": (self.summary_attn, "summary"), "summary_spread_attn": (self.summary_spread_attn, "summary"), "cross_attention": (self.dense_attn, None), "prime_attn": (self.prime_attn, "prime"), } self.attn, self.attn_mask = ATTENTION_MAP[attn_func] self.blocks = config.blocks self.spread = config.spread if self.blocks is not None: self.block_ctx = self.n_ctx // self.blocks self.sample_t = 0 self.cache = {} self.encoder_len = config.nb_relevant_lyric_tokens # length of the encoder input ids self.record_attn = False def _attn(self, query_states, key_states, value_states, sample): scale = self.scale if self.training: attention_weight = torch.matmul(query_states * scale, key_states * scale) else: attention_weight = torch.matmul(query_states, key_states) attention_weight.mul_(scale * scale) attn_weight_type = attention_weight.dtype attention_weight = attention_weight.float() if self.mask: # Generate appropriate mask to mask out all positions before current # Might take up lot of memory for dense, so can cache it mask = get_mask( self.attn_mask, query_states.size(-2), key_states.size(-1), self.blocks, self.spread, attention_weight.device, sample, self.sample_t, ) if mask is not None: attention_weight = attention_weight * mask + -1e9 * (1 - mask) attention_prob = F.softmax(attention_weight, dim=-1).type(attn_weight_type) if self.record_attn: self.attention_prob = attention_prob if self.attn_func == "prime_attn": # only keep music queries and lyrics keys/values self.attention_prob = self.attention_prob[:, :, self.encoder_len :, : self.encoder_len] attention_prob = self.attn_dropout(attention_prob) context_states = torch.matmul(attention_prob, value_states) return context_states def merge_heads(self, hidden_states): hidden_states = hidden_states.permute(0, 2, 1, 3).contiguous() new_hidden_states_shape = (*hidden_states.size()[:-2], hidden_states.size(-2) * hidden_states.size(-1)) return hidden_states.view(*new_hidden_states_shape) # in Tensorflow implem: fct merge_states def split_heads(self, hidden_states, is_key=False): new_hidden_states_shape = ( *hidden_states.size()[:-1], self.n_heads, hidden_states.size(-1) // self.n_heads, ) hidden_states = hidden_states.view(*new_hidden_states_shape) # in Tensorflow implem: fct split_states if is_key: return hidden_states.permute(0, 2, 3, 1) else: return hidden_states.permute(0, 2, 1, 3) def dense_attn(self, query, key, value, sample): query = self.split_heads(query) key = self.split_heads(key, is_key=True) value = self.split_heads(value) context_states = self._attn(query, key, value, sample) context_states = self.merge_heads(context_states) return context_states def block_attn(self, query, key, value, sample): block_ctx = self.block_ctx batch_size, seq_len, embed_dim = value.shape # For sample, query_len= 1, key_len = value_len = sample_t if sample: return self.dense_attn(query, key, value, sample).view(batch_size, 1, embed_dim) else: query_length = query.shape[1] query = query.view(batch_size * query_length // block_ctx, block_ctx, embed_dim) if query_length < seq_len: seq_len = query_length key = key[:, -seq_len:].contiguous() value = value[:, -seq_len:].contiguous() key = key.view(batch_size * seq_len // block_ctx, block_ctx, embed_dim) value = value.view(batch_size * seq_len // block_ctx, block_ctx, embed_dim) return self.dense_attn(query, key, value, sample).view(batch_size, seq_len, embed_dim) def transpose_block_attn(self, query, key, value, sample): block_ctx = self.block_ctx batch_size, seq_len, embed_dim = value.shape # For sample, query_len= 1, key_len = value_len = sample_t if sample: block_len = (seq_len - 1) % block_ctx key = key[:, block_len::block_ctx, :] value = value[:, block_len::block_ctx, :] return self.dense_attn(query, key, value, sample).view(batch_size, 1, embed_dim) else: query_length = query.shape[1] query = query.view(batch_size, query_length // block_ctx, block_ctx, embed_dim) query = query.transpose(1, 2).contiguous() query = query.view(batch_size * block_ctx, query_length // block_ctx, embed_dim) key = key.view(batch_size, seq_len // block_ctx, block_ctx, embed_dim) key = key.transpose(1, 2).contiguous() key = key.view(batch_size * block_ctx, seq_len // block_ctx, embed_dim) value = value.view(batch_size, seq_len // block_ctx, block_ctx, embed_dim) value = value.transpose(1, 2).contiguous() value = value.view(batch_size * block_ctx, seq_len // block_ctx, embed_dim) block_attn = self.dense_attn(query, key, value, sample) block_attn = block_attn.view(batch_size, block_ctx, query_length // block_ctx, embed_dim) block_attn = block_attn.transpose(1, 2).contiguous() block_attn = block_attn.view(batch_size, query_length, embed_dim) return block_attn def prev_block_attn(self, query, key, value, sample): block_ctx = self.block_ctx batch_size, seq_len, embed_dim = value.shape # For sample, query_len= 1, key_len = value_len = sample_t if sample: block = (seq_len - 1) // block_ctx prev_l = (block - 1) * block_ctx if block > 0: key = key[:, prev_l : prev_l + block_ctx, :] value = value[:, prev_l : prev_l + block_ctx, :] else: key = torch.zeros(batch_size, block_ctx, embed_dim, device=query.device, dtype=query.dtype) value = torch.zeros(batch_size, block_ctx, embed_dim, device=query.device, dtype=query.dtype) return self.dense_attn(query, key, value, sample).view(batch_size, 1, embed_dim) else: query_length = query.shape[1] query = query.view(batch_size * query_length // block_ctx, block_ctx, embed_dim) key = key.view(batch_size, seq_len // block_ctx, block_ctx, embed_dim)[:, :-1, :, :] key = torch.nn.functional.pad(key, (0, 0, 0, 0, 1, 0)) key = key.view(batch_size * seq_len // block_ctx, block_ctx, embed_dim) value = value.view(batch_size, seq_len // block_ctx, block_ctx, embed_dim)[:, :-1, :, :] value = torch.nn.functional.pad(value, (0, 0, 0, 0, 1, 0)) value = value.view(batch_size * seq_len // block_ctx, block_ctx, embed_dim) if query_length < seq_len: nb_query_blocks = query_length // block_ctx nb_key_blocks = seq_len // block_ctx seq_len = query_length key = key.view(batch_size, nb_key_blocks, block_ctx, embed_dim)[:, -nb_query_blocks:] key = key.contiguous().view(batch_size * nb_query_blocks, block_ctx, embed_dim) value = value.view(batch_size, nb_key_blocks, block_ctx, embed_dim)[:, -nb_query_blocks:] value = value.contiguous().view(batch_size * nb_query_blocks, block_ctx, embed_dim) return self.dense_attn(query, key, value, sample).view(batch_size, seq_len, embed_dim) def summary_attn(self, query, key, value, sample): blocks = self.blocks block_ctx = self.block_ctx batch_size, seq_len, embed_dim = value.shape # For sample, query_len= 1, key_len = value_len = sample_t if sample: key = key[:, block_ctx - 1 : blocks * block_ctx - 1 : block_ctx, :] key = torch.nn.functional.pad(key, (0, 0, 1, 0)) value = value[:, block_ctx - 1 : blocks * block_ctx - 1 : block_ctx, :] value = torch.nn.functional.pad(value, (0, 0, 1, 0)) return self.dense_attn(query, key, value, sample).view(batch_size, 1, embed_dim) else: key = key.view(batch_size, blocks, seq_len // blocks, embed_dim)[:, :-1, -1, :] key = torch.nn.functional.pad(key, (0, 0, 1, 0)) # batch_size, blocks, embed_dim value = value.view(batch_size, blocks, seq_len // blocks, embed_dim)[:, :-1, -1, :] value = torch.nn.functional.pad(value, (0, 0, 1, 0)) # batch_size, blocks, embed_dim return self.dense_attn(query, key, value, sample).view(batch_size, seq_len, embed_dim) def summary_spread_attn(self, query, key, value, sample): blocks = self.blocks spread = self.spread batch_size, seq_len, embed_dim = value.shape # For sample, query_len= 1, key_len = value_len = sample_t if sample: raise NotImplementedError else: key = key.view(batch_size, blocks, seq_len // blocks, embed_dim)[:, :-1, -spread:, :] key = torch.nn.functional.pad(key, (0, 0, 0, 0, 1, 0)).contiguous() key = key.view(batch_size, blocks * spread, embed_dim) value = value.view(batch_size, blocks, seq_len // blocks, embed_dim)[:, :-1, -spread:, :] value = torch.nn.functional.pad(value, (0, 0, 0, 0, 1, 0)).contiguous() value = value.view(batch_size, blocks * spread, embed_dim) return self.dense_attn(query, key, value, sample).view(batch_size, seq_len, embed_dim) def prime_attn(self, query, key, value, sample): encoder_len = self._encoder_len key = key[:, :encoder_len] value = value[:, :encoder_len] return self.dense_attn(query, key, value, sample) def factored_qkv(self, hidden_states, last_encoder_hidden_states=None, sample=False): curr_ctx = hidden_states.shape[1] if last_encoder_hidden_states is not None: raise TypeError("last_encoder_hidden_states should be None") query, key, value = hidden_states.chunk(3, dim=2) if sample: self.sample_t += curr_ctx key, value = self._append_cache(key, value) l_cache = self._suff_cache_len() if self._cache_len() > l_cache: self._slice_cache(-l_cache) if curr_ctx > 1: if self.attn_func != "dense_attn": query = self._pad_to_block_ctx(query, query=True) key = self._pad_to_block_ctx(key) value = self._pad_to_block_ctx(value) sample = False else: key = self.cache["key"] value = self.cache["value"] return query, key, value, sample def prime_qkv(self, hidden_states, last_encoder_hidden_states=None, sample=False): curr_ctx = hidden_states.shape[1] if last_encoder_hidden_states is not None: raise TypeError("last_encoder_hidden_states should be None") query, key, value = hidden_states.chunk(3, dim=2) if sample: if self._cache_len() < self._encoder_len: self._append_cache(key, value) if self._cache_len() > self._encoder_len: self._slice_cache(0, self._encoder_len) key, value = self.cache["key"], self.cache["value"] self.sample_t += curr_ctx return query, key, value, sample def decode_qkv(self, hidden_states, last_encoder_hidden_states=None, sample=False): curr_ctx = hidden_states.shape[1] query = hidden_states if sample: if self.sample_t == 0: self.cache["key"], self.cache["value"] = self.c_enc_kv( last_encoder_hidden_states.type_as(hidden_states) ).chunk(2, dim=2) key, value = self.cache["key"], self.cache["value"] self.sample_t += curr_ctx else: key, value = self.c_enc_kv(last_encoder_hidden_states.type_as(hidden_states)).chunk(2, dim=2) return query, key, value, sample def forward(self, hidden_states, last_encoder_hidden_states=None, sample=False): curr_ctx = hidden_states.shape[1] hidden_states = self.c_attn(hidden_states) query, key, value, sample = self.qkv( hidden_states, last_encoder_hidden_states=last_encoder_hidden_states, sample=sample ) attention_scores = self.attn(query, key, value, sample) if attention_scores.shape[1] != curr_ctx: offset = self._offset(curr_ctx) attention_scores = attention_scores[:, offset : offset + curr_ctx, :].contiguous() attention_scores = self.c_proj(attention_scores) return self.resid_dropout(attention_scores) @property def _encoder_len(self): encoder_len = self.encoder_len encoder_blocks = (encoder_len // self.blocks) + 1 return encoder_blocks * self.blocks def _offset(self, curr_ctx): if self.attn_func == "dense_attn": return 0 return (self.sample_t - curr_ctx) % self.block_ctx def _pad_to_block_ctx(self, hidden_states, query=False): seq_len = hidden_states.shape[1] offset = self._offset(seq_len) if query else 0 n_blocks = (seq_len + offset + self.block_ctx - 1) // self.block_ctx pad = n_blocks * self.block_ctx - seq_len - offset if pad == 0 and offset == 0: return hidden_states else: return F.pad(hidden_states, (0, 0, offset, pad)) def _cache_len(self): return 0 if "key" not in self.cache else self.cache["key"].shape[1] def _suff_cache_len(self): """ Precondition: key and value are appended with the current context and self.sample_t reflects the 1-indexed sample location in the context. """ previous_block_length = (self.sample_t - 1) % self.block_ctx + 1 + self.block_ctx REQUIRED_CACHE_LEN = { "dense_attn": self.sample_t, "block_attn": (self.sample_t - 1) % self.block_ctx + 1, "transpose_block_attn": self.sample_t, "prev_block_attn": self.sample_t if self.sample_t <= self.block_ctx else previous_block_length, "cross_attn": self.encoder_len, "prime_attn": min(self.sample_t, self._encoder_len), } return REQUIRED_CACHE_LEN[self.attn_func] def _slice_cache(self, start, end=None): self.cache["key"] = self.cache["key"][:, start:end] self.cache["value"] = self.cache["value"][:, start:end] def _append_cache(self, key, value): if "key" not in self.cache: self.cache["key"] = key self.cache["value"] = value else: old_key, old_value = key, value key = torch.cat([self.cache["key"], old_key], dim=1) value = torch.cat([self.cache["value"], old_value], dim=1) del self.cache["key"] del self.cache["value"] del old_key del old_value self.cache["key"] = key self.cache["value"] = value return self.cache["key"], self.cache["value"] def del_cache(self): self.sample_t = 0 if "key" in self.cache: del self.cache["key"] if "value" in self.cache: del self.cache["value"] self.cache = {}
class_definition
35,041
52,588
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/jukebox/modeling_jukebox.py
null
10,370
class JukeboxBlock(nn.Module): def __init__(self, config, n_ctx, attn_func="dense_attn"): super().__init__() self.width = config.hidden_size self.attn = JukeboxAttention(config, n_ctx, attn_func=attn_func) self.layer_norm_0 = JukeboxLayerNorm(config.hidden_size) self.mlp = JukeboxMLP(config) self.layer_norm_1 = JukeboxLayerNorm(config.hidden_size) self.res_scale = 1.0 / config.num_layers if config.attn_res_scale else 1.0 self.attn_func = attn_func def forward(self, hidden_states, last_encoder_hidden_states, sample=False): residuals = hidden_states hidden_states = self.layer_norm_0(hidden_states) hidden_states = self.attn(hidden_states, last_encoder_hidden_states, sample) output_states = self.layer_norm_1(residuals + hidden_states) output_states = self.mlp(output_states) if self.res_scale == 1.0: output = residuals + hidden_states + output_states else: output = residuals + self.res_scale * (hidden_states + output_states) return output
class_definition
52,591
53,701
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/jukebox/modeling_jukebox.py
null
10,371
class JukeboxLayerStack(nn.Module): def __init__(self, config, n_ctx): super().__init__() self.n_ctx = n_ctx self.width = config.hidden_size self.num_layers = config.num_layers self.blocks = config.blocks self.attention_pattern = config.attention_pattern if self.blocks is not None: self.block_ctx = n_ctx // self.blocks self.encoder_len = config.nb_relevant_lyric_tokens self.n_heads = config.n_heads # Orders of attn_func attention_pattern = ATTENTION_PATTERNS[self.attention_pattern] self._attn_mods = nn.ModuleList() for depth in range(self.num_layers): self._attn_mods.append(JukeboxBlock(config, n_ctx, attn_func=attention_pattern(depth))) self.saved_attn_weights = [] def set_record_attn(self, record_attn): """ Makes forward prop dump self-attention softmaxes to self.saved_attn_weights. Args: record_attn (`Union[bool,set]`): Either a set of layer indices indicating which layers to store, or a boolean value indicating Whether to dump all. """ def _should_record_attn(layer_idx): if isinstance(record_attn, bool): return record_attn return layer_idx in record_attn for i, layer in enumerate(self._attn_mods): layer.attn.record_attn = _should_record_attn(i) if not record_attn: self.saved_attn_weights = [] def forward(self, hidden_states, last_encoder_hidden_states=None, sample=False): # Blocks for i, attn_layer in enumerate(self._attn_mods): if attn_layer.attn_func == "cross_attention": # attend to the lyrics hidden_states = attn_layer( hidden_states, last_encoder_hidden_states=last_encoder_hidden_states, sample=sample ) else: hidden_states = attn_layer(hidden_states, last_encoder_hidden_states=None, sample=sample) if attn_layer.attn.record_attn: self.saved_attn_weights.append(attn_layer.attn.c_attn.weight) return hidden_states def del_cache(self): for attn_layer in self._attn_mods: attn_layer.attn.del_cache()
class_definition
53,704
56,026
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/jukebox/modeling_jukebox.py
null
10,372
class JukeboxPositionalEmbedding(nn.Module): def __init__(self, embed_dim, width): super().__init__() self.pos_emb = nn.Parameter(torch.empty((embed_dim, width))) def forward(self): pos_emb = self.pos_emb return pos_emb
class_definition
56,029
56,289
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/jukebox/modeling_jukebox.py
null
10,373
class JukeboxConditionalAutoregressive(nn.Module): def __init__( self, config, n_ctx=None, embed_dim=None, audio_conditioning=False, metadata_conditioning=False, is_encoder=False, ): """ Autoregressive model on either lyric tokens or music tokens, or both. The attention pattern should be properly set fro each configuration. Args: config (`JukeboxPriorConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. n_ctx (`int`, *optional*): Number of tokens or lyrics tokens provided in a single pass. embed_dim (`int`, *optional*): Either equals to the dimension of the codebook, or the sum of n_vocab (lyrics) and codeboook dimension, if the model combines lyrics and music tokens, or simply n_vocab if the model is a seperate encoder audio_conditioning (`bool`, *optional*, defaults to `False`): Whether or not the prior supports conditionning on audio. metadata_conditioning (`bool`, *optional*, defaults to `False`): Whether or not the prior supports conditionning on artitst, genres, lyrics and timing. is_encoder (`bool`, *optional*, defaults to `False`): Whether the model is an encoder only model. """ super().__init__() self.width = config.hidden_size self.num_layers = config.num_layers self.n_ctx = n_ctx if n_ctx is not None else config.n_ctx self.embed_dim = embed_dim if embed_dim is not None else config.music_vocab_size self.embed_tokens = nn.Embedding(self.embed_dim, config.hidden_size) self.embed_tokens_dropout = nn.Dropout(config.emb_dropout) self.metadata_conditioning = metadata_conditioning self.audio_conditioning = audio_conditioning if not metadata_conditioning: self.start_token = nn.Parameter(torch.empty((1, config.hidden_size))) self.pos_emb = JukeboxPositionalEmbedding(self.n_ctx, config.hidden_size) self.pos_emb_dropout = nn.Dropout(config.emb_dropout) self.transformer = JukeboxLayerStack(config, n_ctx=self.n_ctx) self.is_encoder = is_encoder self.encoder_len = config.nb_relevant_lyric_tokens if config.merged_decoder: # Merged piped model uses this setup self.add_cond_after_transformer = False self.share_embed_tokens_fc_proj_out = False else: self.add_cond_after_transformer = True self.share_embed_tokens_fc_proj_out = True if not is_encoder: self.fc_proj_out = nn.Linear(config.hidden_size, self.embed_dim, bias=False) if self.share_embed_tokens_fc_proj_out: self.fc_proj_out.weight = self.embed_tokens.weight self.loss = torch.nn.CrossEntropyLoss() def forward( self, tokens, audio_conditioning=None, metadata_conditioning=None, last_encoder_hidden_states=None, get_preds=False, get_acts=False, get_sep_loss=False, ): """ Args: tokens (`torch.tensor`): Can represent music tokens, lyrics tokens or both, depending on the configuration. """ # Preprocess. batch_size = tokens.shape[0] with torch.no_grad(): tokens = tokens.view(batch_size, -1).long() if not self.audio_conditioning: audio_conditioning = torch.zeros( (batch_size, 1, self.width), device=tokens.device, dtype=self.transformer._attn_mods[0].mlp.c_fc.weight.dtype, ) target = tokens # Target hidden_states = self.embed_tokens(tokens) # Shift by 1, and fill in start token hidden_states = torch.cat((hidden_states[:, -1:], hidden_states[:, :-1]), dim=1) if self.metadata_conditioning: hidden_states[:, 0] = metadata_conditioning.view(batch_size, self.width) else: hidden_states[:, 0] = self.start_token hidden_states = ( self.embed_tokens_dropout(hidden_states) + self.pos_emb_dropout(self.pos_emb()) + audio_conditioning ) # Pos emb and dropout hidden_states = self.transformer( hidden_states, last_encoder_hidden_states=last_encoder_hidden_states ) # Transformer if self.add_cond_after_transformer: # Piped doesnt add x_cond hidden_states = hidden_states + audio_conditioning activations = hidden_states if self.is_encoder: return hidden_states hidden_states = self.fc_proj_out(hidden_states) # Predictions loss_fn = nn.CrossEntropyLoss() if get_sep_loss: lyric_hidden_states = hidden_states[:, : self.encoder_len].reshape(-1, self.embed_dim) token_hidden_states = hidden_states[:, self.encoder_len :].reshape(-1, self.embed_dim) lyric_loss = loss_fn(lyric_hidden_states, target[:, : self.encoder_len].reshape(-1)) / np.log(2.0) music_token_loss = loss_fn(token_hidden_states, target[:, self.encoder_len :].reshape(-1)) / np.log(2.0) loss = (lyric_loss, music_token_loss) # Note order! Lyric is first else: loss = loss_fn(hidden_states.view(-1, self.embed_dim), target.view(-1)) / np.log(2.0) # Loss if get_preds: return loss, hidden_states elif get_acts: return loss, activations else: return loss, None def get_emb(self, sample_t, n_samples, tokens, audio_conditioning, metadata_conditioning): if sample_t == 0: hidden_states = torch.empty(n_samples, 1, self.width, dtype=self.embed_tokens.weight.dtype).to( self.embed_tokens.weight.device ) if self.metadata_conditioning: hidden_states[:, 0] = metadata_conditioning.view(n_samples, self.width) else: hidden_states[:, 0] = self.start_token else: hidden_states = self.embed_tokens(tokens) if audio_conditioning.shape == (n_samples, self.n_ctx, self.width): cond = audio_conditioning[:, sample_t : sample_t + 1, :] else: cond = audio_conditioning # Pos emb, dropout is identity at eval time hidden_states = hidden_states + self.pos_emb()[sample_t : sample_t + 1] + cond return hidden_states, cond def sample( self, n_samples, audio_conditioning=None, metadata_conditioning=None, last_encoder_hidden_states=None, temp=1.0, top_k=0, top_p=0.0, get_preds=False, sample_tokens=None, ): if sample_tokens is None: sample_tokens = self.n_ctx if not self.audio_conditioning: audio_conditioning = torch.zeros( (n_samples, 1, self.width), dtype=self.transformer._attn_mods[0].mlp.c_fc.weight.dtype ).to(self.fc_proj_out.device) with torch.no_grad(): sampled_tokens = [] tokens = None if get_preds: preds = [] iter = tqdm(range(0, sample_tokens), leave=False) for sample_t in iter: iter.set_description(f"Ancestral sampling {sample_tokens} music tokens", refresh=True) hidden_states, cond = self.get_emb( sample_t, n_samples, tokens, audio_conditioning, metadata_conditioning ) hidden_states = self.transformer( hidden_states, last_encoder_hidden_states=last_encoder_hidden_states, sample=True ) if self.add_cond_after_transformer: hidden_states = hidden_states + cond hidden_states = self.fc_proj_out(hidden_states) # Predictions if get_preds: preds.append(hidden_states.clone()) # Adjust logits hidden_states = hidden_states / temp hidden_states = filter_logits(hidden_states, top_k=top_k, top_p=top_p) # Sample and replace hidden_states tokens = torch.distributions.Categorical(logits=hidden_states).sample() sampled_tokens.append(tokens.clone()) del tokens self.transformer.del_cache() tokens = torch.cat(sampled_tokens, dim=1) if get_preds: preds = torch.cat(preds, dim=1) if get_preds: return tokens, preds else: return tokens def split_chunks(self, length, chunk_size): n_passes = (length + chunk_size - 1) // chunk_size chunk_sizes = [*[chunk_size] * (n_passes - 1), (length - 1) % chunk_size + 1] return chunk_sizes def primed_sample( self, n_samples, lyric_and_music_tokens, audio_conditioning=None, metadata_conditioning=None, last_encoder_hidden_states=None, temp=1.0, top_k=0, top_p=0.0, get_preds=False, chunk_size=None, sample_tokens=None, ): if sample_tokens is None: sample_tokens = self.n_ctx # Preprocess. batch_size = lyric_and_music_tokens.shape[0] with torch.no_grad(): lyric_and_music_tokens = lyric_and_music_tokens.view(batch_size, -1).long() sampled_audio = torch.split(lyric_and_music_tokens, 1, dim=1) sampled_audio = list(sampled_audio) if not self.audio_conditioning: audio_conditioning = torch.zeros( (n_samples, 1, self.width), dtype=self.transformer._attn_mods[0].mlp.c_fc.weight.dtype ).to(lyric_and_music_tokens.device) with torch.no_grad(): if get_preds: preds = [] # Fill up key/value cache for past context by runing forward pass. # We do so in chunks instead of doing the whole past in one forward pass to reduce max memory usage. if chunk_size is None: chunk_size = len(sampled_audio) chunk_sizes = self.split_chunks(len(sampled_audio), chunk_size) x_primes = [] start = 0 token = None for current_chunk_size in tqdm(chunk_sizes, desc="Preparing past key value", leave=False): sampled_audio_prime, conds_prime = [], [] for sample_t in range(start, start + current_chunk_size): x_prime, cond_prime = self.get_emb( sample_t, n_samples, token, audio_conditioning, metadata_conditioning ) token = sampled_audio[sample_t] sampled_audio_prime.append(x_prime) conds_prime.append(cond_prime) start = start + current_chunk_size x_prime, cond_prime = torch.cat(sampled_audio_prime, dim=1), torch.cat(conds_prime, dim=1) del sampled_audio_prime del conds_prime if not get_preds: del cond_prime x_prime = self.transformer(x_prime, last_encoder_hidden_states=last_encoder_hidden_states, sample=True) if get_preds: if self.add_cond_after_transformer: x_prime = x_prime + cond_prime del cond_prime x_primes.append(x_prime) else: del x_prime if get_preds: x_prime = torch.cat(x_primes, dim=1) x_prime = self.fc_proj_out(x_prime) # Predictions preds.append(x_prime) # the input of the encoder and decoder can be merged into (lyrics, music tokens) input_tokens = sampled_audio[-1] itererator = tqdm( range(len(sampled_audio), sample_tokens), desc=f"Sampling {len(range(len(sampled_audio), sample_tokens))} music tokens", leave=False, ) for sample_t in itererator: hidden_states, cond = self.get_emb( sample_t, n_samples, input_tokens, audio_conditioning, metadata_conditioning ) hidden_states = self.transformer( hidden_states, last_encoder_hidden_states=last_encoder_hidden_states, sample=True ) if self.add_cond_after_transformer: hidden_states = hidden_states + cond hidden_states = self.fc_proj_out(hidden_states) # Predictions if get_preds: preds.append(hidden_states) # Adjust logits hidden_states = hidden_states / temp hidden_states = filter_logits(hidden_states, top_k=top_k, top_p=top_p) # only music tokens are sampled music_tokens = torch.distributions.Categorical(logits=hidden_states).sample() sampled_audio.append(music_tokens.clone()) input_tokens = music_tokens del input_tokens, music_tokens self.transformer.del_cache() music_tokens = torch.cat(sampled_audio, dim=1) if get_preds: preds = torch.cat(preds, dim=1) if get_preds: return music_tokens, preds else: return music_tokens
class_definition
56,292
70,204
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/jukebox/modeling_jukebox.py
null
10,374
class JukeboxMusicTokenConditioner(nn.Module): """ The `JukeboxMusicTokenConditioner` takes music tokens as an input (coresponding to the codes of the VQVAE's codebook) and upsamples it using a single layer of decoder convolution block (the same is used in the VQVAE). """ def __init__(self, config, level): super().__init__() self.embed_tokens = nn.Embedding(config.music_vocab_size, config.hidden_size) config.embed_dim = config.music_vocab_size # setting correct argument for the `JukeboxDecoder` self.upsampler = JukeboxDecoderConvBock( config, config.hidden_size, config.res_conv_width, config.res_conv_depth, config.res_downs_t[level], config.res_strides_t[level], reverse_dilation=False, ) self.layer_norm = JukeboxLayerNorm(config.hidden_size) def forward(self, music_tokens, raw_audio_conditionning=None): """ Args: music_tokens (`torch.LongTensor`): Music tokens form the uper level in range(nb_discrete_codes) raw_audio_conditionning (`torch.LongTensor`, *optional*): Audio used when primed sampling, raw audio information that conditions the generation """ if raw_audio_conditionning is None: raw_audio_conditionning = 0.0 # Embed music_tokens music_tokens = music_tokens.long() hidden_states = self.embed_tokens(music_tokens) hidden_states = hidden_states + raw_audio_conditionning # Run conditioner hidden_states = hidden_states.permute(0, 2, 1) hidden_states = self.upsampler(hidden_states) hidden_states = hidden_states.permute(0, 2, 1) hidden_states = self.layer_norm(hidden_states) return hidden_states
class_definition
70,207
72,068
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/jukebox/modeling_jukebox.py
null
10,375
class JukeboxRangeEmbedding(nn.Module): """ The `JukeboxRangeEmbedding` interpolate the given [pos_start, pos_end] to obtain an equivalent of time positional embedding of length `n_ctx`. Binning process : For each pos in position tensor, find its bin [start,end) mapped to [0,1,...,bins-1] [start,end) -> [0,1) -> [0, bins) -> floor -> [0,...,bins-1] NOTE: Open ended interval on right, so start <= pos < end, not <= end """ def __init__(self, n_time, embed_dim, range, out_width, clamp=False): super().__init__() self.n_time = n_time self.embed_dim = embed_dim self.emb = nn.Embedding(embed_dim, out_width) self.pos_min, self.pos_max = range self.clamp = clamp def forward(self, pos_start, pos_end=None): # Check if [pos_start,pos_end] in [pos_min, pos_max) if not len(pos_start.shape) == 2: raise TypeError(f"Expected shape with 2 dims, got {pos_start.shape}") if not (self.pos_min <= pos_start).all() and (pos_start < self.pos_max).all(): raise TypeError(f"Range is [{self.pos_min},{self.pos_max}), got {pos_start}") pos_start = pos_start.float() if pos_end is not None: if self.clamp: pos_end = pos_end.clamp(self.pos_min, self.pos_max) pos_end = pos_end.float() # Interpolate so that [pos_start, ..., pos_end] <-> position tensor of length n_ctx n_time = self.n_time if n_time != 1: interpolation = ( torch.arange(0, n_time, dtype=torch.float, device=pos_start.device).view(1, n_time) / n_time ) position = pos_start + (pos_end - pos_start) * interpolation else: position = pos_start # Bin each value to bins_ # [0,1) -> [0,1..,embed_dim) -> [0,1...,embed_dim-1 normalised_position = (position - self.pos_min) / (self.pos_max - self.pos_min) bins_ = (self.embed_dim * normalised_position).floor().long().detach() return self.emb(bins_)
class_definition
72,071
74,141
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/jukebox/modeling_jukebox.py
null
10,376
class JukeboxLabelConditioner(nn.Module): def __init__(self, config, include_time_signal): super().__init__() embed_dim = config.hidden_size timing_dims = config.timing_dims sampling_rate = config.sampling_rate nb_genres, nb_artists = config.metadata_dims music_tokens_shape = config.n_ctx self.max_nb_genres = config.max_nb_genres self.bow_genre_emb = nn.Embedding(nb_genres, embed_dim) self.artist_emb = nn.Embedding(nb_artists, embed_dim) self.include_time_signal = include_time_signal if self.include_time_signal: total_length_range = (config.min_duration * sampling_rate, config.max_duration * sampling_rate) absolute_pos_range = (0.0, config.max_duration * sampling_rate) relative_pos_range = (0.0, 1.0) self.total_length_emb = JukeboxRangeEmbedding(1, timing_dims, total_length_range, embed_dim) self.absolute_pos_emb = JukeboxRangeEmbedding( music_tokens_shape, timing_dims, absolute_pos_range, embed_dim ) self.relative_pos_emb = JukeboxRangeEmbedding( music_tokens_shape, timing_dims, relative_pos_range, embed_dim, clamp=True ) def forward(self, metadata): total_length = metadata[:, 0:1] offset = metadata[:, 1:2] length = metadata[:, 2:3] artist = metadata[:, 3:4] genre = metadata[:, 4:] # Start embedding of length 1 artist_emb = self.artist_emb(artist) # Empty genre slots are denoted by -1. We mask these out. mask = (genre >= 0).float().unsqueeze(2) genre_emb = (self.bow_genre_emb(genre.clamp(0)) * mask).sum(dim=1, keepdim=True) start_emb = genre_emb + artist_emb # Pos embedding of length n_ctx if self.include_time_signal: start, end = offset, offset + length total_length = total_length.float() start = start.float() end = end.float() pos_emb = ( self.total_length_emb(total_length) + self.absolute_pos_emb(start, end) + self.relative_pos_emb(start / total_length, end / total_length) ) else: pos_emb = None return start_emb, pos_emb
class_definition
74,144
76,481
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/jukebox/modeling_jukebox.py
null
10,377
class JukeboxPrior(PreTrainedModel): """ The JukeboxPrior class, which is a wrapper around the various conditioning and the transformer. JukeboxPrior can be seen as language models trained on music. They model the next `music token` prediction task. If a (lyric) `encoderù is defined, it also models the `next character` prediction on the lyrics. Can be conditionned on timing, artist, genre, lyrics and codes from lower-levels Priors. Args: config (`JukeboxPriorConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. level (`int`, *optional*): Current level of the Prior. Should be in range `[0,nb_priors]`. nb_priors (`int`, *optional*, defaults to 3): Total number of priors. vqvae_encoder (`Callable`, *optional*): Encoding method of the VQVAE encoder used in the forward pass of the model. Passing functions instead of the vqvae module to avoid getting the parameters. vqvae_decoder (`Callable`, *optional*): Decoding method of the VQVAE decoder used in the forward pass of the model. Passing functions instead of the vqvae module to avoid getting the parameters. """ config_class = JukeboxPriorConfig def _init_weights(self, module): init_scale = self.config.init_scale if isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=0.02 * init_scale) elif isinstance(module, JukeboxConv1D): if self.config.zero_out: module.weight.data.zero_() else: module.weight.data.normal_(mean=0.0, std=0.02 * init_scale) elif isinstance(module, JukeboxPositionalEmbedding): module.pos_emb.data.normal_(mean=0.0, std=0.01 * init_scale) elif isinstance(module, JukeboxRangeEmbedding): module.emb.weight.data.normal_(mean=0.0, std=0.01 * init_scale) elif isinstance(module, JukeboxConditionalAutoregressive) and hasattr(module, "lm_head"): module.lm_head.weight.data.normal_(mean=0.0, std=0.02 * init_scale) elif isinstance(module, JukeboxConditionalAutoregressive) and hasattr(module, "start_token"): module.start_token.data.normal_(mean=0.0, std=0.01 * init_scale) elif isinstance(module, JukeboxResConv1DBlock) and self.config.zero_out: module.conv1d_2.weigth.data.zero_() module.conv1d_2.bias.data.zero_() if isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() def __init__(self, config: JukeboxPriorConfig, level=None, nb_priors=3, vqvae_encoder=None, vqvae_decoder=None): super().__init__(config) # Passing functions instead of the vqvae module to avoid getting params, only used in the # forward loop self.vqvae_encoder = vqvae_encoder self.vqvae_decoder = vqvae_decoder self.levels = nb_priors self.level = level if level is not None else config.level self.base_model_prefix = f"priors.{self.level}" self.n_ctx = config.n_ctx self.lyric_conditioning = config.nb_relevant_lyric_tokens > 0 self.nb_relevant_lyric_tokens = config.nb_relevant_lyric_tokens self.encoder_loss_fraction = config.encoder_loss_fraction # Audio conditioning : conditioning on music tokens (either from audio or from previous levels or both) self.audio_conditioning = self.level != 0 self.cond_level = self.level - 1 if self.audio_conditioning: self.conditioner_blocks = JukeboxMusicTokenConditioner(config, self.level) # metadata conditioning : contioning on timing, genres, and artist self.metadata_conditioning = config.metadata_conditioning if self.metadata_conditioning: self.metadata_embedding = JukeboxLabelConditioner(config, include_time_signal=not self.audio_conditioning) # define encoder-decoder or encoder and decoder self.is_encoder_decoder = config.is_encoder_decoder if config.is_encoder_decoder: # encoder-decoder transformer self.input_shapes = [config.nb_relevant_lyric_tokens, config.n_ctx] self.embed_dim_shift = [0, config.lyric_vocab_size] self.width = config.hidden_size self.nb_relevant_lyric_tokens = config.nb_relevant_lyric_tokens self.prior = JukeboxConditionalAutoregressive( config, n_ctx=config.nb_relevant_lyric_tokens + config.n_ctx, embed_dim=config.lyric_vocab_size + config.music_vocab_size, audio_conditioning=(self.audio_conditioning or self.metadata_conditioning), metadata_conditioning=True, ) else: # Separate encoder-decoder transformer encoder_config = config.encoder_config if self.nb_relevant_lyric_tokens != 0 and self.lyric_conditioning: self.lyric_acts_width = encoder_config.hidden_size self.encoder_width = config.hidden_size self.encoder_dim = config.lyric_vocab_size self.encoder = JukeboxConditionalAutoregressive( encoder_config, n_ctx=self.nb_relevant_lyric_tokens, embed_dim=self.encoder_dim, audio_conditioning=False, metadata_conditioning=False, is_encoder=True, ) self.encoder.proj_in = JukeboxConv1D(encoder_config.hidden_size, config.hidden_size) self.encoder.final_layer_norm = JukeboxLayerNorm(config.hidden_size) self.encoder.lm_head = nn.Linear(config.hidden_size, config.lyric_vocab_size, bias=False) else: self.nb_relevant_lyric_tokens = 0 # decoder model on the tokens self.prior = JukeboxConditionalAutoregressive( config, audio_conditioning=(self.audio_conditioning or self.metadata_conditioning), metadata_conditioning=self.metadata_conditioning, ) self.next_token_prediction_loss_dims = config.n_ctx self.total_loss_dims = self.nb_relevant_lyric_tokens + self.next_token_prediction_loss_dims self.downsamples = [stride**down for stride, down in zip(config.res_strides_t, config.res_downs_t)] self.cond_downsample = self.downsamples[self.level] if self.level != 0 else None self.raw_to_tokens = np.prod(self.downsamples[: nb_priors - self.level]) self.sample_length = self.n_ctx * self.raw_to_tokens logger.info( f"Level:{self.level}, Cond downsample:{self.cond_downsample}, Raw to tokens:{self.raw_to_tokens}, Sample" f" length:{self.sample_length}" ) def get_metadata(self, labels, start, total_length, offset, get_indices=False): metadata = labels.clone() metadata[:, 0] = total_length # Set sample_length to match this level metadata[:, 2] = int(self.sample_length) # Set offset metadata[:, 1:2] = int(offset * self.raw_to_tokens) + int(start * self.raw_to_tokens) # here since metadata has the full token_list, we just need to selected the ones that are relevant # Set lyric tokens metadata, indices = self.set_metadata_lyric_tokens(metadata) if get_indices: return metadata, indices else: return metadata def set_metadata_lyric_tokens(self, labels): """ Processes the full labels to only retreive the relevant lyric tokens and keep the metadata conditioning tokens. """ if self.nb_relevant_lyric_tokens > 0: tokens_list = torch.zeros( (labels.shape[0], self.nb_relevant_lyric_tokens), dtype=torch.long, device=labels.device ) indices_list = [] # whats the index of each current character in original array for idx in range(labels.shape[0]): full_tokens = labels.clone()[:, 4 + self.metadata_embedding.max_nb_genres :] total_length, offset, duration = labels[idx, 0], labels[idx, 1], labels[idx, 2] tokens, indices = get_relevant_lyric_tokens( full_tokens, self.nb_relevant_lyric_tokens, total_length, offset, duration ) tokens_list[idx, :] = tokens indices_list.append(indices) return ( torch.cat((labels[:, : 4 + self.metadata_embedding.max_nb_genres], tokens_list), dim=-1), indices_list, ) else: return labels, None def get_music_tokens_conds(self, music_tokens, start, end): """ Extracts current level's conditioning music tokens. """ if self.level != 0: music_tokens_cond = music_tokens[self.level - 1] music_tokens = music_tokens_cond[:, start // self.cond_downsample : end // self.cond_downsample] missing_cond_len = self.n_ctx // self.cond_downsample - music_tokens_cond[-1].shape[-1] if missing_cond_len > 0: init_cond = torch.zeros(1, missing_cond_len).to(music_tokens_cond.device) music_tokens_cond = torch.cat((music_tokens_cond, init_cond), dim=-1).long() music_tokens_conds = [music_tokens_cond] else: music_tokens_conds = None return music_tokens_conds def prior_preprocess(self, tokens, conds): """ Shifts the input tokens to account for the dictionary merge. The embed_dim_shift give by how much the music tokens should be shifted by. It is equal to `lyric_vocab_size`. """ batch_size = tokens[0].shape[0] for i in range(len(tokens)): tokens[i] = (tokens[i] + int(self.embed_dim_shift[i])).view(batch_size, -1) for i in range(len(conds)): if conds[i] is None: conds[i] = torch.zeros( (batch_size, self.input_shapes[i], self.width), dtype=tokens[0].dtype, device=tokens[0].device ) return torch.cat(tokens, dim=1), torch.cat(conds, dim=1) def prior_postprocess(self, tokens): """ Shifts back the input tokens if the model uses an encoder decoder architecture. As the embedding layer is shared, `prior_embed_dim_shift` shifts the music token ids by `lyric_vocab_size`. Only returns the music tokens. """ batch_size = tokens.shape[0] dims = (self.input_shapes[0], tokens.shape[1] - self.input_shapes[0]) tokens = list(torch.split(tokens, dims, dim=1)) # Some of the input tokens might be shifted to take into account the voccabulary fusion for i in range(len(tokens)): bins_shift = int(self.embed_dim_shift[i]) tokens[i] = (tokens[i] - bins_shift).view(batch_size, -1) tokens[i] = torch.clamp(tokens[i], min=0) # If not masking loss, model may have generated lyric/midi tokens which are now shifted <0 by bin_shift return tokens[-1] def embed_tokens(self, music_tokens_conds): """ Embeds the upper level music tokens and upsamples them to provide as audio conditioning. """ music_tokens_conds = music_tokens_conds[: self.cond_level + 1] audio_conditioning = None for music_tokens_cond, conditioner_block in reversed(list(zip(music_tokens_conds, [self.conditioner_blocks]))): audio_conditioning = conditioner_block(music_tokens_cond, audio_conditioning) return audio_conditioning def encode(self, hidden_states, start_level=None, end_level=None, bs_chunks=1): """ Encodes the hidden states (raw audio) using the VQVAE's encoder. Returns latent_states. """ if start_level is None: start_level = self.level if end_level is None: end_level = self.levels # Get latents with torch.no_grad(): latent_states = self.vqvae_encoder( hidden_states, start_level=start_level, end_level=end_level, bs_chunks=bs_chunks ) return latent_states def decode(self, music_tokens, start_level=None, end_level=None, bs_chunks=1): """ Usamples the sequence of codebook vectors to a raw audio. """ if start_level is None: start_level = self.level if end_level is None: end_level = self.levels with torch.no_grad(): output = self.vqvae_decoder( music_tokens, start_level=start_level, end_level=end_level, bs_chunks=bs_chunks ) return output def get_cond(self, music_tokens_conds, metadata): """ Converts the input tokens to input_embeddings. Splits the lyrics form the rest of the metadata. Lyric tokens can be None. """ if metadata is not None: n_labels = metadata.shape[1] - self.nb_relevant_lyric_tokens metadata, lyric_tokens = metadata[:, :n_labels], metadata[:, n_labels:] else: metadata, lyric_tokens = None, None metadata_conditioning, metadata_pos = ( self.metadata_embedding(metadata) if self.metadata_conditioning else (None, None) ) audio_conditioning = self.embed_tokens(music_tokens_conds) if self.audio_conditioning else metadata_pos return audio_conditioning, metadata_conditioning, lyric_tokens def sample( self, n_samples, music_tokens=None, music_tokens_conds=None, metadata=None, temp=1.0, top_k=0, top_p=0.0, chunk_size=None, sample_tokens=None, ): """ Ancestral/Prime sampling a window of tokens using the provided conditioning and metadatas. Args: n_samples (`int`): Number of samples to generate. music_tokens (`List[torch.LongTensor]`, *optional*): Previously gemerated tokens at the current level. Used as context for the generation. music_tokens_conds (`List[torch.FloatTensor]`, *optional*): Upper-level music tokens generated by the previous prior model. Is `None` if the generation is not conditionned on the upper-level tokens. metadata (`List[torch.LongTensor]`, *optional*): List containing the metatdata tensor with the artist, genre and the lyric tokens. temp (`float`, *optional*, defaults to 1.0): Sampling temperature. top_k (`int`, *optional*, defaults to 0): Top k probabilities used for filtering. top_p (`float`, *optional*, defaults to 0.0): Top p probabilities used for filtering. chunk_size (`int`, *optional*): Size of the chunks used to prepare the cache of the transformer. sample_tokens (`int`, *optional*): Number of tokens to sample. """ no_past_context = music_tokens is None or music_tokens.shape[1] == 0 name = {True: "Ancestral", False: "Primed"}[no_past_context] logger.info(f"{name} sampling {n_samples} samples with temp={temp}, top_k={top_k}, top_p={top_p}") with torch.no_grad(): # Currently audio_conditioning only uses immediately above layer audio_conditioning, metadata_conditioning, lyric_tokens = self.get_cond(music_tokens_conds, metadata) if self.is_encoder_decoder: if no_past_context: # the prime_sample function will be used with music_tokens set to None lyric_and_music_tokens, audio_conditioning = self.prior_preprocess( [lyric_tokens], [None, audio_conditioning] ) else: lyric_and_music_tokens, audio_conditioning = self.prior_preprocess( [lyric_tokens, music_tokens], [None, audio_conditioning] ) if sample_tokens is not None: sample_tokens += self.nb_relevant_lyric_tokens music_tokens = self.prior.primed_sample( n_samples, lyric_and_music_tokens, audio_conditioning, metadata_conditioning, temp=temp, top_k=top_k, top_p=top_p, chunk_size=chunk_size, sample_tokens=sample_tokens, ) music_tokens = self.prior_postprocess(music_tokens) else: last_encoder_hidden_states = self.get_encoder_states(lyric_tokens, sample=True) if no_past_context: music_tokens = self.prior.sample( n_samples, audio_conditioning, metadata_conditioning, last_encoder_hidden_states, temp=temp, top_k=top_k, top_p=top_p, sample_tokens=sample_tokens, ) else: music_tokens = self.prior.primed_sample( n_samples, music_tokens, audio_conditioning, metadata_conditioning, last_encoder_hidden_states, temp=temp, top_k=top_k, top_p=top_p, chunk_size=chunk_size, sample_tokens=sample_tokens, ) return music_tokens def get_encoder_states(self, lyric_tokens, sample=False): """ Retreive the last hidden_states of the lyric encoder that will be attended to by the decoder. Forwards through the lyric encoder. """ if self.nb_relevant_lyric_tokens != 0 and self.lyric_conditioning: if sample: self.encoder = self.encoder.to(lyric_tokens.device) lyric_acts = self.encoder(lyric_tokens, None, None, None) lyric_acts = self.encoder.proj_in(lyric_acts) last_encoder_hidden_states = self.encoder.final_layer_norm(lyric_acts) else: last_encoder_hidden_states = None return last_encoder_hidden_states def get_encoder_loss(self, last_encoder_hidden_states, target_lyrics): """ Computes the loss for the lyric encoder: next lyric token prediction. """ if self.lyric_conditioning: last_encoder_hidden_states = self.encoder.lm_head(last_encoder_hidden_states) encoder_loss = nn.functional.cross_entropy( last_encoder_hidden_states.view(-1, self.encoder_dim), target_lyrics.view(-1) ) / np.log(2.0) else: encoder_loss = torch.tensor(0.0, device=last_encoder_hidden_states.device) return encoder_loss def forward_tokens( self, music_tokens, music_tokens_conds=[], metadata=None, get_preds=False, get_attn_weights=False ): """ Applies a forward pass using the conditioning tokens. Different from the classic forward as it does not use the vqvae's encoding layers. """ if get_attn_weights: self.prior.transformer.set_record_attn(get_attn_weights) audio_conditioning, metadata_conditioning, lyric_tokens = self.get_cond(music_tokens_conds, metadata) if self.is_encoder_decoder: # the preprocess returns the full tokens (Lyrics and Music tokens), shifted tokens, audio_conditioning = self.prior_preprocess( [lyric_tokens, music_tokens], [None, audio_conditioning] ) (encoder_loss, next_token_prediction_loss), preds = self.prior( tokens, audio_conditioning, metadata_conditioning, get_sep_loss=True, get_preds=get_preds ) else: last_encoder_hidden_states = self.get_encoder_states(lyric_tokens) encoder_loss = self.get_encoder_loss(last_encoder_hidden_states, lyric_tokens) next_token_prediction_loss, preds = self.prior( music_tokens, audio_conditioning, metadata_conditioning, last_encoder_hidden_states, get_preds=get_preds, ) loss = self.encoder_loss_fraction * encoder_loss * self.nb_relevant_lyric_tokens / self.total_loss_dims loss += next_token_prediction_loss * self.next_token_prediction_loss_dims / self.total_loss_dims metrics = { "bpd": next_token_prediction_loss.clone().detach(), "encoder_loss": encoder_loss.clone().detach(), "next_token_prediction_loss": next_token_prediction_loss.clone().detach(), } if get_preds: metrics["preds"] = preds.clone().detach() if get_attn_weights: saved_attn_weights = self.prior.transformer.saved_attn_weights self.prior.transformer.set_record_attn(False) return saved_attn_weights else: return loss, metrics def forward( self, hidden_states: torch.Tensor, metadata: Optional[List[torch.LongTensor]], decode: Optional[bool] = False, get_preds: Optional[bool] = False, ) -> List[torch.Tensor]: """ Encode the hidden states using the `vqvae` encoder, and then predicts the next token in the `forward_tokens` function. The loss is the sum of the `encoder` loss and the `decoder` loss. Args: hidden_states (`torch.Tensor`): Hidden states which should be raw audio metadata (`List[torch.LongTensor]`, *optional*): List containing the metadata conditioning tensorwith the lyric and the metadata tokens. decode (`bool`, *optional*, defaults to `False`): Whether or not to decode the encoded to tokens. get_preds (`bool`, *optional*, defaults to `False`): Whether or not to return the actual predicitons of the model. """ batch_size = hidden_states.shape[0] music_tokens, *music_tokens_conds = self.encode(hidden_states, bs_chunks=batch_size) loss, metrics = self.forward_tokens( music_tokens=music_tokens, music_tokens_conds=music_tokens_conds, metadata=metadata, get_preds=get_preds, ) if decode: dequantised_states = self.decode([music_tokens, *music_tokens_conds]) else: dequantised_states = None return dequantised_states, loss, metrics
class_definition
76,484
99,923
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/jukebox/modeling_jukebox.py
null
10,378
class JukeboxPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = JukeboxConfig base_model_prefix = "jukebox" supports_gradient_checkpointing = False def _init_weights(self, module): if isinstance(module, JukeboxPrior) or isinstance(module, JukeboxVQVAE): module.apply(module._init_weights) def __init__(self, *inputs, **kwargs): super().__init__(*inputs, **kwargs)
class_definition
99,926
100,483
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/jukebox/modeling_jukebox.py
null
10,379
class JukeboxModel(JukeboxPreTrainedModel): _no_split_modules = ["JukeboxBlock"] def __init__(self, config): super().__init__(config) vqvae_config = config.vqvae_config self.vqvae = JukeboxVQVAE(vqvae_config) self.set_shared_params(config) self.priors = nn.ModuleList( [JukeboxPrior(config.prior_configs[level], level) for level in range(config.nb_priors)] ) def set_shared_params(self, model_config): """ Initialises the parameters that are shared. This has to be done here because the list of `JukeboxPriorConfig` is nest, and is thus unreachable in the `from_dict` function """ for config in model_config.prior_configs: config.sampling_rate = model_config.sampling_rate config.timing_dims = model_config.timing_dims config.min_duration = model_config.min_duration config.max_duration = model_config.max_duration config.max_nb_genres = model_config.max_nb_genres config.metadata_conditioning = model_config.metadata_conditioning def decode(self, music_tokens, start_level=0, end_level=None, bs_chunks=1): return self.vqvae.decode(music_tokens, start_level, end_level, bs_chunks) def encode(self, input_audio, start_level=0, end_level=None, bs_chunks=1): return self.vqvae.encode(input_audio, start_level, end_level, bs_chunks) def split_batch(self, obj, n_samples, split_size): n_passes = (n_samples + split_size - 1) // split_size if isinstance(obj, torch.Tensor): return torch.split(obj, split_size, dim=0) elif isinstance(obj, list): return list(zip(*[torch.split(item, split_size, dim=0) for item in obj])) elif obj is None: return [None] * n_passes else: raise TypeError("Unknown input type") # Sample a partial window of length<n_ctx with tokens_to_sample new tokens on level=level def sample_partial_window( self, music_tokens, labels, offset, sampling_kwargs, level, tokens_to_sample, max_batch_size ): prior = self.priors[level] sampled_tokens = music_tokens[level] n_ctx = prior.n_ctx nb_sampled_tokens = sampled_tokens.shape[1] if nb_sampled_tokens < n_ctx - tokens_to_sample: sampling_kwargs["sample_tokens"] = nb_sampled_tokens + tokens_to_sample start = 0 else: sampling_kwargs["sample_tokens"] = n_ctx start = nb_sampled_tokens - n_ctx + tokens_to_sample return self.sample_single_window(music_tokens, labels, offset, sampling_kwargs, level, start, max_batch_size) # Sample a single window of length=n_ctx at position=start on level=level def sample_single_window(self, music_tokens, labels, offset, sampling_kwargs, level, start, max_batch_size): prior = self.priors[level] n_samples = music_tokens[0].shape[0] n_ctx = prior.n_ctx end = start + n_ctx # get music_tokens already sampled at current level previous_sampled_tokens = music_tokens[level][:, start:end] sample_tokens = sampling_kwargs.get("sample_tokens", None) if "sample_tokens" in sampling_kwargs: sample_tokens = end - start conditioning_tokens = previous_sampled_tokens.shape[1] new_tokens = sample_tokens - previous_sampled_tokens.shape[1] logger.info( f"Sampling {sample_tokens} tokens for [{start},{start+sample_tokens}]. Conditioning on" f" {conditioning_tokens} tokens" ) if new_tokens <= 0: # Nothing new to sample return music_tokens # get music_tokens_conds from level above music_tokens_conds = prior.get_music_tokens_conds(music_tokens, start, end) # if there are no levels above should return None! # set metadata offset, sample_length and lyrics tokens metadata = prior.get_metadata(labels, start, self.total_length, offset) music_tokens_list = self.split_batch(previous_sampled_tokens, n_samples, max_batch_size) music_tokens_conds_list = self.split_batch(music_tokens_conds, n_samples, max_batch_size) metadata_list = self.split_batch(metadata, n_samples, max_batch_size) tokens = [] iterator = tqdm(zip(music_tokens_list, music_tokens_conds_list, metadata_list), leave=False) for music_tokens_i, music_tokens_conds_i, metadata_i in iterator: name = ["Ancestral", "Primed"][music_tokens_i.shape[1] == 0] iterator.set_description( f"[prior level {level}] {name} Sampling {sample_tokens} tokens out of" f" {self.total_length//prior.raw_to_tokens}", refresh=True, ) tokens_i = prior.sample( n_samples=music_tokens_i.shape[0], music_tokens=music_tokens_i, music_tokens_conds=music_tokens_conds_i, metadata=metadata_i, **sampling_kwargs, ) tokens.append(tokens_i) sampled_tokens = torch.cat(tokens, dim=0) # Update music_tokens with new sample music_tokens_new = sampled_tokens[:, -new_tokens:] music_tokens[level] = torch.cat([music_tokens[level], music_tokens_new], dim=1) return music_tokens # Sample total_length tokens at level=level with hop_length=hop_length def sample_level( self, music_tokens, labels, offset, sampling_kwargs, level, total_length, hop_length, max_batch_size ): if total_length >= self.priors[level].n_ctx: iterator = get_starts(total_length, self.priors[level].n_ctx, hop_length) for start in iterator: music_tokens = self.sample_single_window( music_tokens, labels, offset, sampling_kwargs, level, start, max_batch_size ) else: music_tokens = self.sample_partial_window( music_tokens, labels, offset, sampling_kwargs, level, total_length, max_batch_size ) return music_tokens @torch.no_grad() def _sample( self, music_tokens, labels, sample_levels, metas=None, chunk_size=32, sampling_temperature=0.98, lower_batch_size=16, max_batch_size=16, sample_length_in_seconds=24, compute_alignments=False, sample_tokens=None, offset=0, save_results=True, sample_length=None, ) -> List[torch.LongTensor]: """ Core sampling function used to generate music tokens. Iterates over the provided list of levels, while saving the generated raw audio at each step. Args: music_tokens (`List[torch.LongTensor]`): A sequence of music tokens of length `self.levels` which will be used as context to continue the sampling process. Should have `self.levels` tensors, each corresponding to the generation at a certain level. labels (`List[torch.LongTensor]`): List of length `n_sample`, and shape `(self.levels, 4 + self.config.max_nb_genre + lyric_sequence_length)` metadata such as `artist_id`, `genre_id` and the full list of lyric tokens which are used to condition the generation. sample_levels (`List[int]`): List of the desired levels at which the sampling will be done. A level is equivalent to the index of the prior in the list of priors metas (`List[Any]`, *optional*): Metadatas used to generate the `labels` chunk_size (`int`, *optional*, defaults to 32): Size of a chunk of audio, used to fill up the memory in chuncks to prevent OOM erros. Bigger chunks means faster memory filling but more consumption. sampling_temperature (`float`, *optional*, defaults to 0.98): Temperature used to ajust the randomness of the sampling. lower_batch_size (`int`, *optional*, defaults to 16): Maximum batch size for the lower level priors max_batch_size (`int`, *optional*, defaults to 16): Maximum batch size for the top level priors sample_length_in_seconds (`int`, *optional*, defaults to 24): Desired length of the generation in seconds compute_alignments (`bool`, *optional*, defaults to `False`): Whether or not to compute the alignment between the lyrics and the audio using the top_prior sample_tokens (`int`, *optional*): Precise number of tokens that should be sampled at each level. This is mostly useful for running dummy experiments offset (`int`, *optional*, defaults to 0): Audio offset used as conditioning, corresponds to the starting sample in the music. If the offset is greater than 0, the lyrics will be shifted take that intoaccount save_results (`bool`, *optional*, defaults to `True`): Whether or not to save the intermediate results. If `True`, will generate a folder named with the start time. sample_length (`int`, *optional*): Desired length of the generation in samples. Returns: torch.Tensor Example: ```python >>> from transformers import AutoTokenizer, JukeboxModel, set_seed >>> import torch >>> metas = dict(artist="Zac Brown Band", genres="Country", lyrics="I met a traveller from an antique land") >>> tokenizer = AutoTokenizer.from_pretrained("openai/jukebox-1b-lyrics") >>> model = JukeboxModel.from_pretrained("openai/jukebox-1b-lyrics", min_duration=0).eval() >>> labels = tokenizer(**metas)["input_ids"] >>> set_seed(0) >>> zs = [torch.zeros(1, 0, dtype=torch.long) for _ in range(3)] >>> zs = model._sample(zs, labels, [0], sample_length=40 * model.priors[0].raw_to_tokens, save_results=False) >>> zs[0] tensor([[1853, 1369, 1150, 1869, 1379, 1789, 519, 710, 1306, 1100, 1229, 519, 353, 1306, 1379, 1053, 519, 653, 1631, 1467, 1229, 1229, 10, 1647, 1254, 1229, 1306, 1528, 1789, 216, 1631, 1434, 653, 475, 1150, 1528, 1804, 541, 1804, 1434]]) ``` """ top_prior = self.priors[0] if sample_length is not None: total_length = sample_length else: total_length = ( int(sample_length_in_seconds * self.config.sampling_rate) // top_prior.raw_to_tokens ) * top_prior.raw_to_tokens if sample_levels is None: sample_levels = range(len(self.priors)) # total length of the signal, might be bit different from the actual generated length self.total_length = total_length for level in sample_levels: sampling_kwargs = { "temp": 0.99 if level == len(self.priors) - 1 else sampling_temperature, "chunk_size": chunk_size, "sample_tokens": sample_tokens, } # Set correct total_length, hop_length, labels and sampling_kwargs for level total_token_to_sample = total_length // self.priors[level].raw_to_tokens hop_length = int(self.config.hop_fraction[level] * self.priors[level].n_ctx) max_batch_size = lower_batch_size if level != sample_levels else max_batch_size music_tokens = self.sample_level( music_tokens, labels[level], offset, sampling_kwargs, level, total_token_to_sample, hop_length, max_batch_size, ) if save_results: self.vqvae.to(music_tokens[level].device) # Decode sample with torch.no_grad(): start_level = len(self.priors) - level - 1 # vqvae levels are reversed raw_audio = self.vqvae.decode( music_tokens[: level + 1], start_level=start_level, bs_chunks=music_tokens[level].shape[0] ) logdir = f"jukebox/level_{level}" if not os.path.exists(logdir): os.makedirs(logdir) save_temp_audio(logdir, level, metas=metas, aud=raw_audio.float()) if compute_alignments and self.priors[0] is not None and self.priors[0].nb_relevant_lyric_tokens > 0: with torch.no_grad(): alignments = get_alignment(music_tokens, labels[0], self.priors[0], self.config) torch.save({"alignments": alignments}, f"{logdir}/lyric_alignments.pt") return music_tokens @add_start_docstrings( """ Generates music tokens based on the provided `labels. Will start at the desired prior level and automatically upsample the sequence. If you want to create the audio, you should call `model.decode(tokens)`, which will use the VQ-VAE decoder to convert the music tokens to raw audio. Args: labels (`List[torch.LongTensor]`) : List of length `n_sample`, and shape `(self.levels, 4 + self.config.max_nb_genre + lyric_sequence_length)` metadata such as `artist_id`, `genre_id` and the full list of lyric tokens which are used to condition the generation. n_samples (`int`, *optional*, default to 1) : Number of samples to be generated in parallel. """, ) def ancestral_sample(self, labels, n_samples=1, **sampling_kwargs) -> List[torch.LongTensor]: """ Example: ```python >>> from transformers import AutoTokenizer, JukeboxModel, set_seed >>> model = JukeboxModel.from_pretrained("openai/jukebox-1b-lyrics", min_duration=0).eval() >>> tokenizer = AutoTokenizer.from_pretrained("openai/jukebox-1b-lyrics") >>> lyrics = "Hey, are you awake? Can you talk to me?" >>> artist = "Zac Brown Band" >>> genre = "Country" >>> metas = tokenizer(artist=artist, genres=genre, lyrics=lyrics) >>> set_seed(0) >>> music_tokens = model.ancestral_sample(metas.input_ids, sample_length=400) >>> with torch.no_grad(): ... model.decode(music_tokens)[:, :10].squeeze(-1) tensor([[-0.0219, -0.0679, -0.1050, -0.1203, -0.1271, -0.0936, -0.0396, -0.0405, -0.0818, -0.0697]]) ``` """ sample_levels = sampling_kwargs.pop("sample_levels", list(range(len(self.priors)))) music_tokens = [ torch.zeros(n_samples, 0, dtype=torch.long, device=labels[0].device) for _ in range(len(self.priors)) ] music_tokens = self._sample(music_tokens, labels, sample_levels, **sampling_kwargs) return music_tokens @add_start_docstrings( """Generates a continuation of the previously generated tokens. Args: music_tokens (`List[torch.LongTensor]` of length `self.levels` ) : A sequence of music tokens which will be used as context to continue the sampling process. Should have `self.levels` tensors, each corresponding to the generation at a certain level. """, JUKEBOX_SAMPLING_INPUT_DOCSTRING, ) def continue_sample(self, music_tokens, labels, **sampling_kwargs) -> List[torch.LongTensor]: sample_levels = sampling_kwargs.pop("sample_levels", list(range(len(self.priors)))) music_tokens = self._sample(music_tokens, labels, sample_levels, **sampling_kwargs) return music_tokens @add_start_docstrings( """Upsamples a sequence of music tokens using the prior at level `level`. Args: music_tokens (`List[torch.LongTensor]` of length `self.levels` ) : A sequence of music tokens which will be used as context to continue the sampling process. Should have `self.levels` tensors, each corresponding to the generation at a certain level. """, JUKEBOX_SAMPLING_INPUT_DOCSTRING, ) def upsample(self, music_tokens, labels, **sampling_kwargs) -> List[torch.LongTensor]: sample_levels = sampling_kwargs.pop("sample_levels", list(range(len(self.priors) - 1))) music_tokens = self._sample(music_tokens, labels, sample_levels, **sampling_kwargs) return music_tokens @add_start_docstrings( """Generate a raw audio conditioned on the provided `raw_audio` which is used as conditioning at each of the generation levels. The audio is encoded to music tokens using the 3 levels of the VQ-VAE. These tokens are used: as conditioning for each level, which means that no ancestral sampling is required. Args: raw_audio (`List[torch.Tensor]` of length `n_samples` ) : A list of raw audio that will be used as conditioning information for each samples that will be generated. """, JUKEBOX_SAMPLING_INPUT_DOCSTRING, ) def primed_sample(self, raw_audio, labels, **sampling_kwargs) -> List[torch.LongTensor]: sample_levels = sampling_kwargs.pop("sample_levels", list(range(len(self.priors)))) self.vqvae.to(raw_audio.device).float() with torch.no_grad(): music_tokens = self.vqvae.encode( raw_audio, start_level=0, end_level=len(self.priors), bs_chunks=raw_audio.shape[0] ) music_tokens = self._sample(music_tokens, labels, sample_levels, **sampling_kwargs) return music_tokens
class_definition
101,510
119,470
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/jukebox/modeling_jukebox.py
null
10,380
class TapexTruncationStrategy(ExplicitEnum): """ Possible values for the `truncation` argument in [`~TapasTokenizer.__call__`]. Useful for tab-completion in an IDE. """ DROP_ROWS_TO_FIT = "drop_rows_to_fit"
class_definition
1,321
1,544
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/tapex/tokenization_tapex.py
null
10,381
class IndexedRowTableLinearize: """ FORMAT: col: col1 | col2 | col 3 row 1 : val1 | val2 | val3 row 2 : ... """ def process_table(self, table_content: Dict): """ Given a table, TableLinearize aims at converting it into a flatten sequence with special symbols. """ assert "header" in table_content and "rows" in table_content, self.PROMPT_MESSAGE # process header table_str = self.process_header(table_content["header"]) + " " # process rows for i, row_example in enumerate(table_content["rows"]): # NOTE: the row should start from row 1 instead of 0 table_str += self.process_row(row_example, row_index=i + 1) + " " return table_str.strip() def process_header(self, headers: List): """ Given a list of headers, TableLinearize aims at converting it into a flatten sequence with special symbols. """ return "col : " + " | ".join(headers) def process_row(self, row: List, row_index: int): """ Given a row, TableLinearize aims at converting it into a flatten sequence with special symbols. """ row_str = "" row_cell_values = [] for cell_value in row: if isinstance(cell_value, int): row_cell_values.append(str(cell_value)) else: row_cell_values.append(cell_value) row_str += " | ".join(row_cell_values) return "row " + str(row_index) + " : " + row_str
class_definition
7,152
8,674
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/tapex/tokenization_tapex.py
null
10,382
class TapexTokenizer(PreTrainedTokenizer): r""" Construct a TAPEX tokenizer. Based on byte-level Byte-Pair-Encoding (BPE). This tokenizer can be used to flatten one or more table(s) and concatenate them with one or more related sentences to be used by TAPEX models. The format that the TAPEX tokenizer creates is the following: sentence col: col1 | col2 | col 3 row 1 : val1 | val2 | val3 row 2 : ... The tokenizer supports a single table + single query, a single table and multiple queries (in which case the table will be duplicated for every query), a single query and multiple tables (in which case the query will be duplicated for every table), and multiple tables and queries. In other words, you can provide a batch of tables + questions to the tokenizer for instance to prepare them for the model. Tokenization itself is based on the BPE algorithm. It is identical to the one used by BART, RoBERTa and GPT-2. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. errors (`str`, *optional*, defaults to `"replace"`): Paradigm to follow when decoding bytes to UTF-8. See [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. add_prefix_space (`bool`, *optional*, defaults to `False`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (BART tokenizer detect beginning of words by the preceding space). max_cell_length (`int`, *optional*, defaults to 15): Maximum number of characters per cell when linearizing a table. If this number is exceeded, truncation takes place. """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, merges_file, do_lower_case=True, errors="replace", bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", add_prefix_space=False, max_cell_length=15, **kwargs, ): bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} self.errors = errors # how to handle errors in decoding self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: bpe_merges = merges_handle.read().split("\n")[1:-1] bpe_merges = [tuple(merge.split()) for merge in bpe_merges] self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) self.cache = {} self.add_prefix_space = add_prefix_space self.do_lower_case = do_lower_case # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") # additional properties super().__init__( vocab_file=vocab_file, merges_file=merges_file, do_lower_case=do_lower_case, errors=errors, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, add_prefix_space=add_prefix_space, max_cell_length=max_cell_length, **kwargs, ) self.max_cell_length = max_cell_length self.table_linearize = IndexedRowTableLinearize() def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A TAPEX sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s></s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Args: Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Args: Create a mask from the two sequences passed to be used in a sequence-pair classification task. TAPEX does not: make use of token type ids, therefore a list of zeros is returned. token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()): text = " " + text return (text, kwargs) @property def vocab_size(self): return len(self.encoder) def get_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) pairs = get_pairs(word) if not pairs: return token while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) self.cache[token] = word return word def _tokenize(self, text): """Tokenize a string.""" bpe_tokens = [] for token in re.findall(self.pat, text): token = "".join( self.byte_encoder[b] for b in token.encode("utf-8") ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) return bpe_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" text = "".join(tokens) text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) return text def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") index = 0 with open(merge_file, "w", encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 return vocab_file, merge_file @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPEX_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def __call__( self, table: Union["pd.DataFrame", List["pd.DataFrame"]] = None, query: Optional[Union[TextInput, List[TextInput]]] = None, answer: Union[str, List[str]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Main method to tokenize and prepare for the model one or several table-sequence pair(s). Args: table (`pd.DataFrame`, `List[pd.DataFrame]`): Table(s) containing tabular data. query (`str` or `List[str]`, *optional*): Sentence or batch of sentences related to one or more table(s) to be encoded. Note that the number of sentences must match the number of tables. answer (`str` or `List[str]`, *optional*): Optionally, the corresponding answer to the questions as supervision. """ if table is not None: return self.source_call_func( table=table, query=query, answer=answer, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) elif answer is not None: return self.target_call_func( answer=answer, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) else: raise ValueError("You need to provide either a `table` or an `answer`.") def source_call_func( self, table: Union["pd.DataFrame", List["pd.DataFrame"]], query: Optional[Union[TextInput, List[TextInput]]] = None, answer: Union[str, List[str]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: # Input type checking for clearer error valid_table = False valid_query = False # Check that table have a valid type if isinstance(table, pd.DataFrame): valid_table = True elif isinstance(table, (list, tuple)) and isinstance(table[0], pd.DataFrame): valid_table = True # Check that query have a valid type if query is None or isinstance(query, str): valid_query = True elif isinstance(query, (list, tuple)): if len(query) == 0 or isinstance(query[0], str): valid_query = True if not valid_table: raise ValueError( "table input must of type `pd.DataFrame` (single example), `List[pd.DataFrame]` (batch of examples). " ) if not valid_query: raise ValueError("query input must of type `str` (single example), `List[str]` (batch of examples). ") is_batched = isinstance(table, (list, tuple)) or isinstance(query, (list, tuple)) if is_batched: return self.batch_encode_plus( table=table, query=query, answer=answer, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) else: return self.encode_plus( table=table, query=query, answer=answer, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPEX_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def batch_encode_plus( self, table: Union["pd.DataFrame", List["pd.DataFrame"]], query: Optional[List[TextInput]] = None, answer: List[str] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str] = None, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ <Tip warning={true}> This method is deprecated, `__call__` should be used instead. </Tip> """ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) return self._batch_encode_plus( table=table, query=query, answer=answer, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def _batch_encode_plus( self, table: Union["pd.DataFrame", List["pd.DataFrame"]], query: Optional[List[TextInput]] = None, answer: Optional[List[str]] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast." ) if isinstance(table, pd.DataFrame) and isinstance(query, (list, tuple)): # single table, many queries case # duplicate table for every query table = [table] * len(query) if isinstance(table, (list, tuple)) and isinstance(query, str): # many tables, single query case # duplicate query for every table query = [query] * len(table) batch_outputs = self._batch_prepare_for_model( table=table, query=query, answer=answer, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, return_tensors=return_tensors, verbose=verbose, ) return BatchEncoding(batch_outputs) @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPEX_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def _batch_prepare_for_model( self, table: Union["pd.DataFrame", List["pd.DataFrame"]], query: Optional[Union[TextInput, List[TextInput]]] = None, answer: Optional[Union[str, List[str]]] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[str] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_length: bool = False, verbose: bool = True, ) -> BatchEncoding: """ This method adds special tokens, truncates sequences if overflowing while taking into account the special tokens and manages a moving window (with user defined stride) for overflowing tokens. """ batch_outputs = {} if answer is None: answer = [None] * len(table) for _table, _query, _answer in zip(table, query, answer): text = self.prepare_table_query( _table, _query, _answer, truncation_strategy=truncation_strategy, max_length=max_length ) if self.do_lower_case: text = text.lower() tokens = self.tokenize(text) outputs = self.prepare_for_model( ids=self.convert_tokens_to_ids(tokens), add_special_tokens=add_special_tokens, padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterwards truncation=truncation_strategy.value, max_length=max_length, stride=stride, pad_to_multiple_of=None, # we pad in batch afterwards return_attention_mask=False, # we pad in batch afterwards return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, return_tensors=None, # We convert the whole batch to tensors at the end prepend_batch_axis=False, verbose=verbose, ) for key, value in outputs.items(): if key not in batch_outputs: batch_outputs[key] = [] batch_outputs[key].append(value) batch_outputs = self.pad( batch_outputs, padding=padding_strategy.value, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, ) batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors) return batch_outputs @add_end_docstrings(ENCODE_KWARGS_DOCSTRING) def encode( self, table: "pd.DataFrame", query: Optional[TextInput] = None, answer: Optional[str] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy, TapexTruncationStrategy] = None, max_length: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs, ) -> List[int]: """ Prepare a table, a string and possible answer for the model. This method does not return token type IDs, attention masks, etc. which are necessary for the model to work correctly. Use this method if you want to build your processing on your own, otherwise refer to `__call__`. """ encoded_inputs = self.encode_plus( table, query=query, answer=answer, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, return_tensors=return_tensors, **kwargs, ) return encoded_inputs["input_ids"] @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPEX_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def encode_plus( self, table: "pd.DataFrame", query: Optional[TextInput] = None, answer: Optional[str] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str] = None, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) return self._encode_plus( table=table, query=query, answer=answer, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def _encode_plus( self, table: "pd.DataFrame", query: Optional[TextInput] = None, answer: Optional[str] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast. " "More information on available tokenizers at " "https://github.com/huggingface/transformers/pull/2674" ) text = self.prepare_table_query( table, query, answer, truncation_strategy=truncation_strategy, max_length=max_length ) # if necessary, perform lower case if self.do_lower_case: text = text.lower() tokens = self.tokenize(text) return self.prepare_for_model( ids=self.convert_tokens_to_ids(tokens), add_special_tokens=add_special_tokens, padding=padding_strategy.value, truncation=truncation_strategy.value, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, prepend_batch_axis=True, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, verbose=verbose, ) def target_call_func( self, answer: Union[str, List[str]], add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ The method tokenizes and prepares the answer label for the model. Args: answer (`str` or `List[str]`): Corresponding answer supervision to the queries for training the model. """ is_batched = isinstance(answer, (list, tuple)) if is_batched: return self.target_batch_encode_plus( answer=answer, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) else: return self.target_encode_plus( answer=answer, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def target_batch_encode_plus( self, answer: List[str], add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str] = None, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Prepare answer strings for the model. Args: answer `List[str]`: Corresponding answer supervision to the queries for training the model. """ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) return self._target_batch_encode_plus( answer=answer, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def _target_batch_encode_plus( self, answer: List[str], add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: batch_outputs = {} for text in answer: if self.do_lower_case: text = text.lower() tokens = self.tokenize(text) outputs = self.prepare_for_model( ids=self.convert_tokens_to_ids(tokens), add_special_tokens=add_special_tokens, padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterwards truncation=truncation_strategy.value, max_length=max_length, stride=stride, pad_to_multiple_of=None, # we pad in batch afterwards return_attention_mask=False, # we pad in batch afterwards return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, return_tensors=None, # We convert the whole batch to tensors at the end prepend_batch_axis=False, verbose=verbose, ) for key, value in outputs.items(): if key not in batch_outputs: batch_outputs[key] = [] batch_outputs[key].append(value) batch_outputs = self.pad( batch_outputs, padding=padding_strategy.value, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, ) batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors) return BatchEncoding(batch_outputs) def target_encode( self, answer: str, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy, TapexTruncationStrategy] = None, max_length: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs, ) -> List[int]: """ Prepare the answer string for the model. This method does not return token type IDs, attention masks, etc. which are necessary for the model to work correctly. Use this method if you want to build your processing on your own, otherwise refer to `__call__`. Args: answer `str`: Corresponding answer supervision to the queries for training the model """ encoded_outputs = self.target_encode_plus( answer=answer, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, return_tensors=return_tensors, **kwargs, ) return encoded_outputs["input_ids"] def target_encode_plus( self, answer: str, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str] = None, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Prepare a answer string for the model. Args: answer `str`: Corresponding answer supervision to the queries for training the model. """ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) return self._target_encode_plus( answer=answer, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def _target_encode_plus( self, answer: str, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast. " "More information on available tokenizers at " "https://github.com/huggingface/transformers/pull/2674" ) text = answer # if necessary, perform lower case if self.do_lower_case: text = text.lower() tokens = self.tokenize(text) return self.prepare_for_model( ids=self.convert_tokens_to_ids(tokens), add_special_tokens=add_special_tokens, padding=padding_strategy.value, truncation=truncation_strategy.value, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, prepend_batch_axis=True, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, verbose=verbose, ) def prepare_table_query( self, table, query, answer=None, truncation_strategy=Union[str, TruncationStrategy, TapexTruncationStrategy], max_length=None, ): """ This method can be used to linearize a table and add a corresponding query. Optionally, it also handles truncation of the table (cells). An answer can be provided for more precise truncation. """ if not table.empty: # step 1: create table dictionary table_content = {"header": list(table.columns), "rows": [list(row.values) for i, row in table.iterrows()]} # step 2: modify table internally # always truncate table cells based on self.max_cell_length # optionally truncate rows if truncation_strategy is set to it self.truncate_table_cells(table_content, query, answer) if truncation_strategy == TapexTruncationStrategy.DROP_ROWS_TO_FIT: self.truncate_table_rows(table_content, query, answer, max_length=max_length) # step 3: linearize table linear_table = self.table_linearize.process_table(table_content) else: linear_table = "" if linear_table == "": logger.warning( "You provide an empty table, or all cells contain much tokens (e.g., >= 1024 tokens). " + f"Please carefully check the corresponding table with the query : {query}." ) if query == "": logger.warning("You provide nothing to query with respect to the table.") # step 4: concatenate query with linear_table separator = " " if query and linear_table else "" joint_input = (query + separator + linear_table) if query else linear_table return joint_input def truncate_table_cells(self, table_content: Dict, question: str, answer: List): # TODO (Qian): is it possible to revert the original cell if it is in the final answer? cell_mapping = {} for row in table_content["rows"]: for i, cell in enumerate(row): truncate_cell = self.truncate_cell(cell) if truncate_cell is not None: cell_mapping[cell] = truncate_cell row[i] = truncate_cell # modify the answer list if answer is not None: for i, case in enumerate(answer): if case in cell_mapping.keys(): answer[i] = cell_mapping[case] def truncate_cell(self, cell_value): # do not process on these cases if isinstance(cell_value, int) or isinstance(cell_value, float): return cell_value if cell_value.strip() != "": try_tokens = self.tokenize(cell_value) if len(try_tokens) >= self.max_cell_length: retain_tokens = try_tokens[: self.max_cell_length] retain_cell_value = self.convert_tokens_to_string(retain_tokens) return retain_cell_value else: return None else: return cell_value def truncate_table_rows( self, table_content: Dict, question: str, answer: Optional[Union[str, List[str]]] = None, max_length=None ): """ Args: table_content: {"header": xxx, "rows": xxx, "id" (Optionally): xxx} question: natural language sentence answer: if for training, is the supervision; otherwise will be empty """ delete_ratio, remain_token_len = self.estimate_delete_ratio(table_content, question, max_length) # randomly delete unrelated rows self.delete_unrelated_rows(table_content, question, answer, delete_ratio) # guarantee the result < max_length maximum_keep_rows = 0 for ind, row_example in enumerate(table_content["rows"]): value_string = self.table_linearize.process_row(row_example, ind + 1) value_token_len = len(self.tokenize(value_string)) # over the size limit, and take action if value_token_len > remain_token_len: break remain_token_len -= value_token_len maximum_keep_rows += 1 del table_content["rows"][maximum_keep_rows:] def estimate_delete_ratio(self, table_content: Dict, question: str, max_length=None): if "header" not in table_content or "rows" not in table_content: raise ValueError("The table content should contain both 'header' and 'rows' keys.") # calculate the tokens of header, special tokens will only be pre-prepended into question question_tokens = self.tokenize(question, add_special_tokens=True) # calculate the tokens of header header_string = self.table_linearize.process_header(table_content["header"]) header_tokens = self.tokenize(header_string, add_special_tokens=False) # split all cell values into tokens and see how many can be accommodated used_token_len = len(question_tokens) + len(header_tokens) # remaining token space for rows remain_token_len = max_length - used_token_len value_string = "" for _, row_example in enumerate(table_content["rows"]): # use a general index to roughly estimate the overall token len value_string += self.table_linearize.process_row(row_example, 100) + " " value_token_len = len(self.tokenize(value_string)) if value_token_len < remain_token_len: # no row will be deleted return 0.0, remain_token_len else: # calc a roughly delete rate return 1.0 - remain_token_len / value_token_len, remain_token_len def delete_unrelated_rows(self, table_content: Dict, question: str, answer: List, delete_ratio: float): """ The argument answer is used only during training. """ truncated_unrelated_indices = [] related_indices = [] if answer is None or len(answer) == 0: answer_set = set() else: answer_set = {ans_ex.lower() for ans_ex in answer} # add question key words into answer set if question is not None: answer_set.update(question.split()) question_set = set(question.strip("?!.,").split(" ")) row_max_len = len(table_content["rows"]) for _row_idx, row in enumerate(table_content["rows"]): lower_row = {str(cell).lower() for cell in row} if len(lower_row & answer_set) == 0 and len(lower_row & question_set) == 0: truncated_unrelated_indices.append(_row_idx) else: # add neighbours to preserve information aggressively related_indices.extend([_row_idx - 2, _row_idx - 1, _row_idx, _row_idx + 1, _row_idx + 2]) # remove the neighbours truncated_unrelated_indices = [ _row_idx for _row_idx in truncated_unrelated_indices if _row_idx not in related_indices ] # select some cases to drop drop_items = min(len(truncated_unrelated_indices), int(len(table_content["rows"]) * delete_ratio)) drop_row_indices = random.choices(truncated_unrelated_indices, k=drop_items) for _row_idx in reversed(range(row_max_len)): if _row_idx in drop_row_indices: del table_content["rows"][_row_idx] # only when the drop ratio is too large, logging for warning. if "id" in table_content and len(drop_row_indices) > 0: logger.warning("Delete {:.2f} rows in table {}".format(len(drop_row_indices), table_content["id"]))
class_definition
8,677
64,346
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/tapex/tokenization_tapex.py
null
10,383
class ViTHybridConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`ViTHybridModel`]. It is used to instantiate a ViT Hybrid model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the ViT Hybrid [google/vit-hybrid-base-bit-384](https://huggingface.co/google/vit-hybrid-base-bit-384) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: backbone_config (`Union[Dict[str, Any], PretrainedConfig]`, *optional*): The configuration of the backbone in a dictionary or the config object of the backbone. backbone (`str`, *optional*): Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone` is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights. use_pretrained_backbone (`bool`, *optional*, defaults to `False`): Whether to use pretrained weights for the backbone. use_timm_backbone (`bool`, *optional*, defaults to `False`): Whether to load `backbone` from the timm library. If `False`, the backbone is loaded from the transformers library. backbone_kwargs (`dict`, *optional*): Keyword arguments to be passed to AutoBackbone when loading from a checkpoint e.g. `{'out_indices': (0, 1, 2, 3)}`. Cannot be specified if `backbone_config` is set. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 1): The size (resolution) of each patch. num_channels (`int`, *optional*, defaults to 3): The number of input channels. backbone_featmap_shape (`List[int]`, *optional*, defaults to `[1, 1024, 24, 24]`): Used only for the `hybrid` embedding type. The shape of the feature maps of the backbone. qkv_bias (`bool`, *optional*, defaults to `True`): Whether to add a bias to the queries, keys and values. Example: ```python >>> from transformers import ViTHybridConfig, ViTHybridModel >>> # Initializing a ViT Hybrid vit-hybrid-base-bit-384 style configuration >>> configuration = ViTHybridConfig() >>> # Initializing a model (with random weights) from the vit-hybrid-base-bit-384 style configuration >>> model = ViTHybridModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "vit-hybrid" def __init__( self, backbone_config=None, backbone=None, use_pretrained_backbone=False, use_timm_backbone=False, backbone_kwargs=None, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, initializer_range=0.02, layer_norm_eps=1e-12, image_size=224, patch_size=1, num_channels=3, backbone_featmap_shape=[1, 1024, 24, 24], qkv_bias=True, **kwargs, ): super().__init__(**kwargs) if use_pretrained_backbone: raise ValueError("Pretrained backbones are not supported yet.") if backbone_config is not None and backbone is not None: raise ValueError("You can't specify both `backbone` and `backbone_config`.") if backbone_config is None and backbone is None: logger.info("`backbone_config` is `None`. Initializing the config with a `BiT` backbone.") backbone_config = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage3"], "embedding_dynamic_padding": True, } if backbone_kwargs is not None and backbone_kwargs and backbone_config is not None: raise ValueError("You can't specify both `backbone_kwargs` and `backbone_config`.") if isinstance(backbone_config, dict): if "model_type" in backbone_config: backbone_config_class = CONFIG_MAPPING[backbone_config["model_type"]] else: logger.info( "`model_type` is not found in `backbone_config`. Use `Bit` as the backbone configuration class." ) backbone_config_class = BitConfig backbone_config = backbone_config_class(**backbone_config) self.backbone_featmap_shape = backbone_featmap_shape self.backbone_config = backbone_config self.backbone = backbone self.use_pretrained_backbone = use_pretrained_backbone self.use_timm_backbone = use_timm_backbone self.backbone_kwargs = backbone_kwargs self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.qkv_bias = qkv_bias
class_definition
872
8,229
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/vit_hybrid/configuration_vit_hybrid.py
null
10,384
class ViTHybridImageProcessor(BaseImageProcessor): r""" Constructs a ViT Hybrid image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by `do_resize` in the `preprocess` method. size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`): Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method. do_center_crop (`bool`, *optional*, defaults to `True`): Whether to center crop the image to the specified `crop_size`. Can be overridden by `do_center_crop` in the `preprocess` method. crop_size (`Dict[str, int]` *optional*, defaults to 224): Size of the output image after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess` method. do_normalize: Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. Can be overridden by the `image_std` parameter in the `preprocess` method. do_convert_rgb (`bool`, *optional*, defaults to `True`): Whether to convert the image to RGB. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BICUBIC, do_center_crop: bool = True, crop_size: Dict[str, int] = None, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_convert_rgb: bool = True, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"shortest_edge": 224} size = get_size_dict(size, default_to_square=False) crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224} crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size") self.do_resize = do_resize self.size = size self.resample = resample self.do_center_crop = do_center_crop self.crop_size = crop_size self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD self.do_convert_rgb = do_convert_rgb self._valid_processor_keys = [ "images", "do_resize", "size", "resample", "do_center_crop", "crop_size", "do_rescale", "rescale_factor", "do_normalize", "image_mean", "image_std", "do_convert_rgb", "return_tensors", "data_format", "input_data_format", ] def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BICUBIC, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge resized to keep the input aspect ratio. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Size of the output image. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): Resampling filter to use when resiizing the image. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ default_to_square = True if "shortest_edge" in size: size = size["shortest_edge"] default_to_square = False elif "height" in size and "width" in size: size = (size["height"], size["width"]) else: raise ValueError("Size must contain either 'shortest_edge' or 'height' and 'width'.") output_size = get_resize_output_image_size( image, size=size, default_to_square=default_to_square, input_data_format=input_data_format, ) return resize( image, size=output_size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs, ) def preprocess( self, images: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_center_crop: bool = None, crop_size: int = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_convert_rgb: bool = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> PIL.Image.Image: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with the longest edge resized to keep the input aspect ratio. resample (`int`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only has an effect if `do_resize` is set to `True`. do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`): Whether to center crop the image. crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): Size of the center crop. Only has an effect if `do_center_crop` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to `True`. do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): Whether to convert the image to RGB. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: defaults to the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize size = size if size is not None else self.size size = get_size_dict(size, param_name="size", default_to_square=False) resample = resample if resample is not None else self.resample do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop crop_size = crop_size if crop_size is not None else self.crop_size crop_size = get_size_dict(crop_size, param_name="crop_size", default_to_square=True) do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb images = make_list_of_images(images) validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_center_crop=do_center_crop, crop_size=crop_size, do_resize=do_resize, size=size, resample=resample, ) # PIL RGBA images are converted to RGB if do_convert_rgb: images = [convert_to_rgb(image) for image in images] # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if do_rescale and is_scaled_image(images[0]): logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) all_images = [] for image in images: if do_resize: image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format) if do_center_crop: image = self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) if do_rescale: image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) if do_normalize: image = self.normalize( image=image, mean=image_mean, std=image_std, input_data_format=input_data_format ) all_images.append(image) images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in all_images ] data = {"pixel_values": images} return BatchFeature(data=data, tensor_type=return_tensors)
class_definition
1,423
16,218
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/vit_hybrid/image_processing_vit_hybrid.py
null
10,385
class ViTHybridEmbeddings(nn.Module): """ Construct the CLS token, position and patch embeddings. Optionally, also the mask token. """ def __init__(self, config: ViTHybridConfig, use_mask_token: bool = False) -> None: super().__init__() self.cls_token = nn.Parameter(torch.randn(1, 1, config.hidden_size)) self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if use_mask_token else None self.patch_embeddings = ViTHybridPatchEmbeddings(config) num_patches = self.patch_embeddings.num_patches self.position_embeddings = nn.Parameter(torch.randn(1, num_patches + 1, config.hidden_size)) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.patch_size = config.patch_size self.config = config # Copied from transformers.models.vit.modeling_vit.ViTEmbeddings.interpolate_pos_encoding def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: """ This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution images. This method is also adapted to support torch.jit tracing. Adapted from: - https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and - https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211 """ num_patches = embeddings.shape[1] - 1 num_positions = self.position_embeddings.shape[1] - 1 # always interpolate when tracing to ensure the exported model works for dynamic input shapes if not torch.jit.is_tracing() and num_patches == num_positions and height == width: return self.position_embeddings class_pos_embed = self.position_embeddings[:, :1] patch_pos_embed = self.position_embeddings[:, 1:] dim = embeddings.shape[-1] new_height = height // self.patch_size new_width = width // self.patch_size sqrt_num_positions = torch_int(num_positions**0.5) patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim) patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) patch_pos_embed = nn.functional.interpolate( patch_pos_embed, size=(new_height, new_width), mode="bicubic", align_corners=False, ) patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return torch.cat((class_pos_embed, patch_pos_embed), dim=1) def forward( self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.BoolTensor] = None, interpolate_pos_encoding: bool = False, ) -> torch.Tensor: batch_size, num_channels, height, width = pixel_values.shape embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) if bool_masked_pos is not None: seq_length = embeddings.shape[1] mask_tokens = self.mask_token.expand(batch_size, seq_length, -1) # replace the masked visual tokens by mask_tokens mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) embeddings = embeddings * (1.0 - mask) + mask_tokens * mask # add the [CLS] token to the embedded patch tokens cls_tokens = self.cls_token.expand(batch_size, -1, -1) embeddings = torch.cat((cls_tokens, embeddings), dim=1) # add positional encoding to each token if interpolate_pos_encoding: embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) else: embeddings = embeddings + self.position_embeddings embeddings = self.dropout(embeddings) return embeddings
class_definition
1,790
5,742
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/vit_hybrid/modeling_vit_hybrid.py
null
10,386
class ViTHybridPatchEmbeddings(nn.Module): """ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config, feature_size=None): super().__init__() image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) self.backbone = load_backbone(config) if self.backbone.config.model_type != "bit": raise ValueError(f"Backbone model type {self.backbone.model_type} is not supported.") feature_dim = self.backbone.channels[-1] if feature_size is None: feature_map = config.backbone_featmap_shape feature_size = feature_map[-2:] feature_dim = feature_map[1] else: feature_size = ( feature_size if isinstance(feature_size, collections.abc.Iterable) else (feature_size, feature_size) ) feature_dim = self.backbone.channels[-1] self.grid_size = (feature_size[0] // patch_size[0], feature_size[1] // patch_size[1]) self.num_patches = self.grid_size[0] * self.grid_size[1] self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.projection = nn.Conv2d(feature_dim, hidden_size, kernel_size=patch_size, stride=patch_size) def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor: _, num_channels, height, width = pixel_values.shape if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) if not interpolate_pos_encoding: if height != self.image_size[0] or width != self.image_size[1]: raise ValueError( f"Input image size ({height}*{width}) doesn't match model" f" ({self.image_size[0]}*{self.image_size[1]})." ) features = self.backbone(pixel_values).feature_maps[-1] embeddings = self.projection(features).flatten(2).transpose(1, 2) return embeddings
class_definition
5,745
8,380
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/vit_hybrid/modeling_vit_hybrid.py
null
10,387
class ViTHybridSelfAttention(nn.Module): def __init__(self, config: ViTHybridConfig) -> None: super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs
class_definition
8,383
11,235
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/vit_hybrid/modeling_vit_hybrid.py
null
10,388
class ViTHybridSdpaSelfAttention(ViTHybridSelfAttention): def __init__(self, config: ViTHybridConfig) -> None: super().__init__(config) self.attention_probs_dropout_prob = config.attention_probs_dropout_prob def forward( self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) context_layer = torch.nn.functional.scaled_dot_product_attention( query_layer, key_layer, value_layer, head_mask, self.attention_probs_dropout_prob if self.training else 0.0, is_causal=False, scale=None, ) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) return context_layer, None
class_definition
11,238
12,493
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/vit_hybrid/modeling_vit_hybrid.py
null
10,389
class ViTHybridSelfOutput(nn.Module): """ The residual connection is defined in ViTHybridLayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config: ViTHybridConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states
class_definition
12,496
13,157
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/vit_hybrid/modeling_vit_hybrid.py
null
10,390
class ViTHybridAttention(nn.Module): def __init__(self, config: ViTHybridConfig) -> None: super().__init__() self.attention = ViTHybridSelfAttention(config) self.output = ViTHybridSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads: Set[int]) -> None: if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads ) # Prune linear layers self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_outputs = self.attention(hidden_states, head_mask, output_attentions) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs
class_definition
13,160
14,861
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/vit_hybrid/modeling_vit_hybrid.py
null
10,391
class ViTHybridSdpaAttention(ViTHybridAttention): def __init__(self, config: ViTHybridConfig) -> None: super().__init__(config) self.attention = ViTHybridSdpaSelfAttention(config)
class_definition
14,864
15,063
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/vit_hybrid/modeling_vit_hybrid.py
null
10,392
class ViTHybridIntermediate(nn.Module): def __init__(self, config: ViTHybridConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states
class_definition
15,066
15,662
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/vit_hybrid/modeling_vit_hybrid.py
null
10,393
class ViTHybridOutput(nn.Module): def __init__(self, config: ViTHybridConfig) -> None: super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor return hidden_states
class_definition
15,665
16,204
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/vit_hybrid/modeling_vit_hybrid.py
null
10,394
class ViTHybridLayer(nn.Module): """This corresponds to the Block class in the timm implementation.""" def __init__(self, config: ViTHybridConfig) -> None: super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = VIT_HYBRID_ATTENTION_CLASSES[config._attn_implementation](config) self.intermediate = ViTHybridIntermediate(config) self.output = ViTHybridOutput(config) self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_attention_outputs = self.attention( self.layernorm_before(hidden_states), # in ViTHybrid, layernorm is applied before self-attention head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # first residual connection # We assign to correct device for `accelerate`, check: https://github.com/huggingface/transformers/pull/20705/ hidden_states = attention_output + hidden_states.to(attention_output.device) # in ViTHybrid, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) # second residual connection is done here layer_output = self.output(layer_output, hidden_states) outputs = (layer_output,) + outputs return outputs
class_definition
16,313
18,217
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/vit_hybrid/modeling_vit_hybrid.py
null
10,395
class ViTHybridEncoder(nn.Module): def __init__(self, config: ViTHybridConfig) -> None: super().__init__() self.config = config self.layer = nn.ModuleList([ViTHybridLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, layer_head_mask, output_attentions, ) else: layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, )
class_definition
18,220
20,159
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/vit_hybrid/modeling_vit_hybrid.py
null
10,396
class ViTHybridPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = ViTHybridConfig base_model_prefix = "vit" main_input_name = "pixel_values" supports_gradient_checkpointing = True _no_split_modules = ["ViTHybridEmbeddings", "ViTHybridLayer"] _supports_sdpa = True def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid # `trunc_normal_cpu` not implemented in `half` issues module.weight.data = nn.init.trunc_normal_( module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range ).to(module.weight.dtype) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, ViTHybridEmbeddings): module.position_embeddings.data = nn.init.trunc_normal_( module.position_embeddings.data.to(torch.float32), mean=0.0, std=self.config.initializer_range, ).to(module.position_embeddings.dtype) module.cls_token.data = nn.init.trunc_normal_( module.cls_token.data.to(torch.float32), mean=0.0, std=self.config.initializer_range, ).to(module.cls_token.dtype)
class_definition
20,162
21,878
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/vit_hybrid/modeling_vit_hybrid.py
null
10,397
class ViTHybridModel(ViTHybridPreTrainedModel): def __init__(self, config: ViTHybridConfig, add_pooling_layer: bool = True, use_mask_token: bool = False): super().__init__(config) self.config = config self.embeddings = ViTHybridEmbeddings(config, use_mask_token=use_mask_token) self.encoder = ViTHybridEncoder(config) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.pooler = ViTHybridPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> ViTHybridPatchEmbeddings: return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, bool_masked_pos: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) # TODO: maybe have a cleaner way to cast the input (from `ImageProcessor` side?) expected_dtype = self.embeddings.patch_embeddings.projection.weight.dtype if pixel_values.dtype != expected_dtype: pixel_values = pixel_values.to(expected_dtype) embedding_output = self.embeddings( pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding ) encoder_outputs = self.encoder( embedding_output, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) return head_outputs + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, )
class_definition
23,795
28,068
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/vit_hybrid/modeling_vit_hybrid.py
null
10,398
class ViTHybridPooler(nn.Module): def __init__(self, config: ViTHybridConfig): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output
class_definition
28,071
28,622
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/vit_hybrid/modeling_vit_hybrid.py
null
10,399