text
stringlengths 31
243k
| type
stringclasses 1
value | start
int64 36
275k
| end
int64 286
280k
| depth
int64 0
1
| filepath
stringlengths 85
188
| parent_class
stringclasses 3
values | class_index
int64 0
10.8k
|
---|---|---|---|---|---|---|---|
class TransfoXLModel(TransfoXLPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.n_token = config.vocab_size
self.d_embed = config.d_embed
self.d_model = config.d_model
self.n_head = config.n_head
self.d_head = config.d_head
self.word_emb = AdaptiveEmbedding(
config.vocab_size, config.d_embed, config.d_model, config.cutoffs, div_val=config.div_val
)
self.drop = nn.Dropout(config.dropout)
self.n_layer = config.n_layer
self.mem_len = config.mem_len
self.attn_type = config.attn_type
if not config.untie_r:
self.r_w_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
self.r_r_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
self.layers = nn.ModuleList()
if config.attn_type == 0: # the default attention
for i in range(config.n_layer):
self.layers.append(
RelPartialLearnableDecoderLayer(
config.n_head,
config.d_model,
config.d_head,
config.d_inner,
config.dropout,
dropatt=config.dropatt,
pre_lnorm=config.pre_lnorm,
r_w_bias=None if config.untie_r else self.r_w_bias,
r_r_bias=None if config.untie_r else self.r_r_bias,
layer_norm_epsilon=config.layer_norm_epsilon,
)
)
else: # learnable embeddings and absolute embeddings are not used in our pretrained checkpoints
raise NotImplementedError # Removed them to avoid maintaining dead code
self.same_length = config.same_length
self.clamp_len = config.clamp_len
if self.attn_type == 0: # default attention
self.pos_emb = PositionalEmbedding(self.d_model)
else: # learnable embeddings and absolute embeddings
raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.word_emb
def set_input_embeddings(self, new_embeddings):
self.word_emb = new_embeddings
def backward_compatible(self):
self.sample_softmax = -1
def reset_memory_length(self, mem_len):
self.mem_len = mem_len
def _prune_heads(self, heads):
logger.info("Head pruning is not implemented for Transformer-XL model")
pass
def init_mems(self, bsz):
if self.mem_len > 0:
mems = []
param = next(self.parameters())
for i in range(self.n_layer):
empty = torch.zeros(self.mem_len, bsz, self.config.d_model, dtype=param.dtype, device=param.device)
mems.append(empty)
return mems
else:
return None
def _update_mems(self, hids, mems, mlen, qlen):
# does not deal with None
if mems is None:
return None
# mems is not None
assert len(hids) == len(mems), "len(hids) != len(mems)"
# There are `mlen + qlen` steps that can be cached into mems
with torch.no_grad():
new_mems = []
end_idx = mlen + max(0, qlen)
beg_idx = max(0, end_idx - self.mem_len)
for i in range(len(hids)):
cat = torch.cat([mems[i], hids[i]], dim=0)
new_mems.append(cat[beg_idx:end_idx].detach())
return new_mems
@add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TransfoXLModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
mems: Optional[List[torch.FloatTensor]] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TransfoXLModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# the original code for Transformer-XL used shapes [len, bsz] but we want a unified interface in the library
# so we transpose here from shape [bsz, len] to shape [len, bsz]
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_ids = input_ids.transpose(0, 1).contiguous()
qlen, bsz = input_ids.size()
elif inputs_embeds is not None:
inputs_embeds = inputs_embeds.transpose(0, 1).contiguous()
qlen, bsz = inputs_embeds.shape[0], inputs_embeds.shape[1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if mems is None:
mems = self.init_mems(bsz)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer)
# and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head]
if head_mask is not None:
if head_mask.dim() == 1:
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(0).unsqueeze(0)
head_mask = head_mask.expand(self.n_layer, -1, -1, -1, -1)
elif head_mask.dim() == 2:
head_mask = head_mask.unsqueeze(1).unsqueeze(1).unsqueeze(1)
head_mask = head_mask.to(
dtype=next(self.parameters()).dtype
) # switch to float if need + fp16 compatibility
else:
head_mask = [None] * self.n_layer
if inputs_embeds is not None:
word_emb = inputs_embeds
else:
word_emb = self.word_emb(input_ids)
mlen = mems[0].size(0) if mems is not None else 0
klen = mlen + qlen
if self.same_length:
all_ones = word_emb.new_ones((qlen, klen), dtype=torch.bool)
mask_len = klen - self.mem_len
if mask_len > 0:
mask_shift_len = qlen - mask_len
else:
mask_shift_len = qlen
dec_attn_mask = (torch.triu(all_ones, 1 + mlen) + torch.tril(all_ones, -mask_shift_len))[:, :, None] # -1
else:
dec_attn_mask = torch.triu(word_emb.new_ones((qlen, klen), dtype=torch.bool), diagonal=1 + mlen)[
:, :, None
]
hids = []
attentions = [] if output_attentions else None
if self.attn_type == 0: # default
pos_seq = torch.arange(klen - 1, -1, -1.0, device=word_emb.device, dtype=torch.int64).type_as(
dtype=word_emb.dtype
)
if self.clamp_len > 0:
pos_seq.clamp_(max=self.clamp_len)
pos_emb = self.pos_emb(pos_seq)
core_out = self.drop(word_emb)
pos_emb = self.drop(pos_emb)
for i, layer in enumerate(self.layers):
hids.append(core_out)
mems_i = None if mems is None else mems[i]
layer_outputs = layer(
core_out,
pos_emb,
dec_attn_mask=dec_attn_mask,
mems=mems_i,
head_mask=head_mask[i],
output_attentions=output_attentions,
)
core_out = layer_outputs[0]
if output_attentions:
attentions.append(layer_outputs[1])
else: # learnable embeddings and absolute embeddings
raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint
core_out = self.drop(core_out)
new_mems = self._update_mems(hids, mems, mlen, qlen)
if output_hidden_states:
# Add last layer and transpose to library standard shape [bsz, len, hidden_dim]
hids.append(core_out)
hids = tuple(t.transpose(0, 1).contiguous() for t in hids)
else:
hids = None
if output_attentions:
# Transpose to library standard shape [bsz, n_heads, query_seq_len, key_seq_len]
attentions = tuple(t.permute(2, 3, 0, 1).contiguous() for t in attentions)
# We transpose back here to shape [bsz, len, hidden_dim]
core_out = core_out.transpose(0, 1).contiguous()
if not return_dict:
return tuple(v for v in [core_out, new_mems, hids, attentions] if v is not None)
return TransfoXLModelOutput(
last_hidden_state=core_out,
mems=new_mems,
hidden_states=hids,
attentions=attentions,
)
|
class_definition
| 32,702 | 42,314 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/transfo_xl/modeling_transfo_xl.py
| null | 10,200 |
class TransfoXLLMHeadModel(TransfoXLPreTrainedModel):
_tied_weights_keys = [r"crit\.out_projs\.\d+", r"crit\.out_layers\.\d+\.weight"]
def __init__(self, config):
super().__init__(config)
self.transformer = TransfoXLModel(config)
self.sample_softmax = config.sample_softmax
self.trainer_compatible = getattr(config, "trainer_compatible", False)
if not self.trainer_compatible:
warnings.warn(
"The output of TransfoXL will be updated in v5 to support a single loss as first argument. In order "
"to use that updated output, please specify `trainer_compatible=True` as your configuration"
" attribute.",
DeprecationWarning,
)
assert self.sample_softmax <= 0, (
"Sampling from the softmax is not implemented yet. Please look at issue: #3310:"
" https://github.com/huggingface/transformers/issues/3310"
)
self.crit = ProjectedAdaptiveLogSoftmax(
config.vocab_size, config.d_embed, config.d_model, config.cutoffs, div_val=config.div_val
)
# Initialize weights and apply final processing
self.post_init()
def tie_weights(self):
"""
Run this to be sure output and input (adaptive) softmax weights are tied
"""
if self.config.tie_word_embeddings:
for i in range(len(self.crit.out_layers)):
self._tie_or_clone_weights(self.crit.out_layers[i], self.transformer.word_emb.emb_layers[i])
if self.config.tie_projs:
for i, tie_proj in enumerate(self.config.tie_projs):
if tie_proj and self.config.div_val == 1 and self.config.d_model != self.config.d_embed:
if self.config.torchscript:
self.crit.out_projs[i] = nn.Parameter(self.transformer.word_emb.emb_projs[0].clone())
else:
self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[0]
elif tie_proj and self.config.div_val != 1:
if self.config.torchscript:
self.crit.out_projs[i] = nn.Parameter(self.transformer.word_emb.emb_projs[i].clone())
else:
self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[i]
def reset_memory_length(self, mem_len):
self.transformer.reset_memory_length(mem_len)
def init_mems(self, bsz):
return self.transformer.init_mems(bsz)
@add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TransfoXLLMHeadModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
mems: Optional[List[torch.FloatTensor]] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TransfoXLLMHeadModelOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None:
bsz, tgt_len = input_ids.size(0), input_ids.size(1)
elif inputs_embeds is not None:
bsz, tgt_len = inputs_embeds.size(0), inputs_embeds.size(1)
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
transformer_outputs = self.transformer(
input_ids,
mems=mems,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden = transformer_outputs[0]
pred_hid = last_hidden[:, -tgt_len:]
if labels is not None:
# Prevents all labels being -100 and throwing an error
# when backwarding the loss
miss_valid_label = labels[0, 1:].sum() == (labels.size(1) - 1) * -100
if miss_valid_label:
# Sets an <EOS> token, just to prevent loss from being NaN
labels[0, 1] = self.config.eos_token_id
softmax_output = self.crit(pred_hid, labels)
prediction_scores = softmax_output.view(bsz, tgt_len, -1) if labels is None else ()
if labels is not None:
losses = softmax_output.view(bsz, tgt_len - 1)
# Avoids from incorporating padding (-100) tokens into loss value
loss = losses[losses != 0].mean()
else:
losses, loss = None, None
if not return_dict:
if self.trainer_compatible:
output = (prediction_scores, losses) if losses is not None else (prediction_scores,)
output += transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
else:
output = (prediction_scores, *transformer_outputs[1:])
output = ((losses,) + output) if losses is not None else output
return (output + (loss,)) if loss is not None else output
return TransfoXLLMHeadModelOutput(
loss=loss,
prediction_scores=prediction_scores,
losses=losses,
mems=transformer_outputs.mems,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
def get_output_embeddings(self):
"""Double-check if you are using adaptive softmax."""
if self.sample_softmax > 0:
return self.out_layer
else:
return self.crit.out_layers[-1]
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **model_kwargs):
inputs = {}
# if past is defined in model kwargs then use it for faster decoding
if past_key_values:
inputs["mems"] = past_key_values
inputs["input_ids"] = input_ids[:, -1].unsqueeze(-1)
else:
inputs["input_ids"] = input_ids
return inputs
def _resize_cutoffs(self, new_num_tokens, new_emb_size, new_embedding_shapes, layer):
new_cutoffs = super()._resize_cutoffs(new_num_tokens, new_emb_size, new_embedding_shapes, layer)
self.crit.cutoffs = new_cutoffs
self.crit.cutoff_ends = [0] + new_cutoffs
self.crit.n_token = new_num_tokens
@staticmethod
def _reorder_cache(mems: List[torch.Tensor], beam_idx: torch.Tensor) -> List[torch.Tensor]:
"""
This function is used to re-order the `mems` cache if [`~PreTrainedModel.beam_search`] or
[`~PreTrainedModel.beam_sample`] is called. This is required to match `mems` with the correct beam_idx at every
generation step.
"""
return [layer_past.index_select(1, beam_idx.to(layer_past.device)) for layer_past in mems]
|
class_definition
| 42,531 | 50,187 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/transfo_xl/modeling_transfo_xl.py
| null | 10,201 |
class TransfoXLForSequenceClassification(TransfoXLPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = TransfoXLModel(config)
self.score = nn.Linear(config.d_embed, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TransfoXLSequenceClassifierOutputWithPast,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
mems: Optional[List[torch.FloatTensor]] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TransfoXLSequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
mems=mems,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size, sequence_length = input_ids.shape[:2]
else:
batch_size, sequence_length = inputs_embeds.shape[:2]
assert (
self.config.pad_token_id is not None or batch_size == 1
), "Cannot handle batch sizes > 1 if no padding token is defined."
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
sequence_lengths = sequence_lengths % input_ids.shape[-1]
sequence_lengths = sequence_lengths.to(logits.device)
else:
sequence_lengths = -1
logger.warning_once(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
pooled_logits = logits[range(batch_size), sequence_lengths]
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return TransfoXLSequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
mems=transformer_outputs.mems,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
|
class_definition
| 50,998 | 55,891 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/transfo_xl/modeling_transfo_xl.py
| null | 10,202 |
class TFPositionalEmbedding(keras.layers.Layer):
def __init__(self, demb, **kwargs):
super().__init__(**kwargs)
self.inv_freq = 1 / (10000 ** (tf.range(0, demb, 2.0) / demb))
def call(self, pos_seq, bsz=None):
self.inv_freq = tf.cast(self.inv_freq, dtype=pos_seq.dtype)
sinusoid_inp = tf.einsum("i,j->ij", pos_seq, self.inv_freq)
pos_emb = tf.concat([tf.sin(sinusoid_inp), tf.cos(sinusoid_inp)], -1)
if bsz is not None:
return tf.tile(pos_emb[:, None, :], [1, bsz, 1])
else:
return pos_emb[:, None, :]
|
class_definition
| 1,591 | 2,183 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl.py
| null | 10,203 |
class TFPositionwiseFF(keras.layers.Layer):
def __init__(self, d_model, d_inner, dropout, pre_lnorm=False, layer_norm_epsilon=1e-5, init_std=0.02, **kwargs):
super().__init__(**kwargs)
self.d_model = d_model
self.d_inner = d_inner
self.dropout = dropout
self.layer_1 = keras.layers.Dense(
d_inner, kernel_initializer=get_initializer(init_std), activation=tf.nn.relu, name="CoreNet_._0"
)
self.drop_1 = keras.layers.Dropout(dropout)
self.layer_2 = keras.layers.Dense(d_model, kernel_initializer=get_initializer(init_std), name="CoreNet_._3")
self.drop_2 = keras.layers.Dropout(dropout)
self.layer_norm = keras.layers.LayerNormalization(epsilon=layer_norm_epsilon, name="layer_norm")
self.pre_lnorm = pre_lnorm
def call(self, inp, training=False):
if self.pre_lnorm:
# layer normalization + positionwise feed-forward
core_out = self.layer_norm(inp)
core_out = self.layer_1(core_out)
core_out = self.drop_1(core_out, training=training)
core_out = self.layer_2(core_out)
core_out = self.drop_2(core_out, training=training)
# residual connection
output = core_out + inp
else:
# positionwise feed-forward
core_out = self.layer_1(inp)
core_out = self.drop_1(core_out, training=training)
core_out = self.layer_2(core_out)
core_out = self.drop_2(core_out, training=training)
# residual connection + layer normalization
output = self.layer_norm(inp + core_out)
return output
|
class_definition
| 2,186 | 3,870 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl.py
| null | 10,204 |
class TFRelPartialLearnableMultiHeadAttn(keras.layers.Layer):
def __init__(
self,
n_head,
d_model,
d_head,
dropout,
dropatt=0.0,
pre_lnorm=False,
r_r_bias=None,
r_w_bias=None,
layer_norm_epsilon=1e-5,
init_std=0.02,
output_attentions=False,
**kwargs,
):
super().__init__(**kwargs)
self.n_head = n_head
self.d_model = d_model
self.d_head = d_head
self.dropout = dropout
self.output_attentions = output_attentions
self.qkv_net = keras.layers.Dense(
3 * n_head * d_head, kernel_initializer=get_initializer(init_std), use_bias=False, name="qkv_net"
)
self.drop = keras.layers.Dropout(dropout)
self.dropatt = keras.layers.Dropout(dropatt)
self.o_net = keras.layers.Dense(
d_model, kernel_initializer=get_initializer(init_std), use_bias=False, name="o_net"
)
self.layer_norm = keras.layers.LayerNormalization(epsilon=layer_norm_epsilon, name="layer_norm")
self.scale = 1 / (d_head**0.5)
self.pre_lnorm = pre_lnorm
if r_r_bias is not None and r_w_bias is not None: # Biases are shared
self.r_r_bias = r_r_bias
self.r_w_bias = r_w_bias
else:
self.r_r_bias = None
self.r_w_bias = None
self.r_net = keras.layers.Dense(
self.n_head * self.d_head, kernel_initializer=get_initializer(init_std), use_bias=False, name="r_net"
)
def build(self, input_shape):
if self.r_r_bias is None or self.r_w_bias is None: # Biases are not shared
self.r_r_bias = self.add_weight(
shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_r_bias"
)
self.r_w_bias = self.add_weight(
shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_w_bias"
)
super().build(input_shape)
def _rel_shift(self, x):
x_size = shape_list(x)
x = tf.pad(x, [[0, 0], [1, 0], [0, 0], [0, 0]])
x = tf.reshape(x, [x_size[1] + 1, x_size[0], x_size[2], x_size[3]])
x = tf.slice(x, [1, 0, 0, 0], [-1, -1, -1, -1])
x = tf.reshape(x, x_size)
return x
def call(self, w, r, attn_mask, mems, head_mask, output_attentions, training=False):
qlen, rlen, bsz = shape_list(w)[0], shape_list(r)[0], shape_list(w)[1]
if mems is not None:
mems = tf.cast(mems, dtype=w.dtype)
cat = tf.concat([mems, w], 0)
if self.pre_lnorm:
w_heads = self.qkv_net(self.layer_norm(cat))
else:
w_heads = self.qkv_net(cat)
r_head_k = self.r_net(r)
w_head_q, w_head_k, w_head_v = tf.split(w_heads, 3, axis=-1)
w_head_q = w_head_q[-qlen:]
else:
if self.pre_lnorm:
w_heads = self.qkv_net(self.layer_norm(w))
else:
w_heads = self.qkv_net(w)
r_head_k = self.r_net(r)
w_head_q, w_head_k, w_head_v = tf.split(w_heads, 3, axis=-1)
klen = shape_list(w_head_k)[0]
w_head_q = tf.reshape(w_head_q, (qlen, bsz, self.n_head, self.d_head)) # qlen x bsz x n_head x d_head
w_head_k = tf.reshape(w_head_k, (klen, bsz, self.n_head, self.d_head)) # qlen x bsz x n_head x d_head
w_head_v = tf.reshape(w_head_v, (klen, bsz, self.n_head, self.d_head)) # qlen x bsz x n_head x d_head
r_head_k = tf.reshape(r_head_k, (rlen, self.n_head, self.d_head)) # qlen x n_head x d_head
# compute attention score
rw_head_q = w_head_q + self.r_w_bias # qlen x bsz x n_head x d_head
AC = tf.einsum("ibnd,jbnd->ijbn", rw_head_q, w_head_k) # qlen x klen x bsz x n_head
rr_head_q = w_head_q + self.r_r_bias
BD = tf.einsum("ibnd,jnd->ijbn", rr_head_q, r_head_k) # qlen x klen x bsz x n_head
BD = self._rel_shift(BD)
# [qlen x klen x bsz x n_head]
attn_score = AC + BD
attn_score = attn_score * self.scale
# compute attention probability
if attn_mask is not None:
attn_mask_t = attn_mask[:, :, None, None]
attn_mask_t = tf.cast(attn_mask_t, dtype=attn_score.dtype)
attn_score = attn_score * (1.0 - attn_mask_t) - 1e30 * attn_mask_t
# [qlen x klen x bsz x n_head]
attn_prob = stable_softmax(attn_score, axis=1)
attn_prob = self.dropatt(attn_prob, training=training)
# Mask heads if we want to
if head_mask is not None:
attn_prob = attn_prob * head_mask
# compute attention vector
attn_vec = tf.einsum("ijbn,jbnd->ibnd", attn_prob, w_head_v)
# [qlen x bsz x n_head x d_head]
attn_vec_sizes = shape_list(attn_vec)
attn_vec = tf.reshape(attn_vec, (attn_vec_sizes[0], attn_vec_sizes[1], self.n_head * self.d_head))
# linear projection
attn_out = self.o_net(attn_vec)
attn_out = self.drop(attn_out, training=training)
if self.pre_lnorm:
# residual connection
outputs = [w + attn_out]
else:
# residual connection + layer normalization
outputs = [self.layer_norm(w + attn_out)]
if output_attentions:
outputs.append(attn_prob)
return outputs
|
class_definition
| 3,873 | 9,352 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl.py
| null | 10,205 |
class TFRelPartialLearnableDecoderLayer(keras.layers.Layer):
def __init__(
self,
n_head,
d_model,
d_head,
d_inner,
dropout,
dropatt=0.0,
pre_lnorm=False,
r_w_bias=None,
r_r_bias=None,
layer_norm_epsilon=1e-5,
init_std=0.02,
output_attentions=False,
**kwargs,
):
super().__init__(**kwargs)
self.dec_attn = TFRelPartialLearnableMultiHeadAttn(
n_head,
d_model,
d_head,
dropout,
dropatt=dropatt,
pre_lnorm=pre_lnorm,
r_w_bias=r_w_bias,
r_r_bias=r_r_bias,
init_std=init_std,
layer_norm_epsilon=layer_norm_epsilon,
output_attentions=output_attentions,
name="dec_attn",
)
self.pos_ff = TFPositionwiseFF(
d_model,
d_inner,
dropout,
pre_lnorm=pre_lnorm,
init_std=init_std,
layer_norm_epsilon=layer_norm_epsilon,
name="pos_ff",
)
def call(self, dec_inp, r, dec_attn_mask, mems, head_mask, output_attentions, training=False):
attn_outputs = self.dec_attn(dec_inp, r, dec_attn_mask, mems, head_mask, output_attentions, training=training)
ff_output = self.pos_ff(attn_outputs[0], training=training)
outputs = [ff_output] + attn_outputs[1:]
return outputs
|
class_definition
| 9,355 | 10,824 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl.py
| null | 10,206 |
class TFTransfoEmbeddings(keras.layers.Layer):
def __init__(self, vocab_size, emb_size, init_std, **kwargs):
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.emb_size = emb_size
self.init_std = init_std
def build(self, input_shape):
self.weight = self.add_weight(
shape=(self.vocab_size, self.emb_size),
initializer=get_initializer(self.init_std),
name="embeddings",
)
super().build(input_shape)
def call(self, inputs):
return tf.gather(self.weight, inputs)
|
class_definition
| 10,827 | 11,412 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl.py
| null | 10,207 |
class TFAdaptiveEmbedding(keras.layers.Layer):
def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1, init_std=0.02, sample_softmax=False, **kwargs):
super().__init__(**kwargs)
self.n_token = n_token
self.d_embed = d_embed
self.init_std = init_std
self.cutoffs = cutoffs + [n_token]
self.div_val = div_val
self.d_proj = d_proj
self.emb_scale = d_proj**0.5
self.cutoff_ends = [0] + self.cutoffs
self.emb_layers = []
self.emb_projs = []
if div_val == 1:
raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint
else:
for i in range(len(self.cutoffs)):
l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]
d_emb_i = d_embed // (div_val**i)
self.emb_layers.append(
TFTransfoEmbeddings(
r_idx - l_idx,
d_emb_i,
init_std,
name=f"emb_layers_._{i}",
)
)
def build(self, input_shape):
for i in range(len(self.cutoffs)):
d_emb_i = self.d_embed // (self.div_val**i)
self.emb_projs.append(
self.add_weight(
shape=(d_emb_i, self.d_proj),
initializer=get_initializer(self.init_std),
trainable=True,
name=f"emb_projs_._{i}",
)
)
super().build(input_shape)
def call(self, inp):
if self.div_val == 1:
raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint
else:
inp_flat = tf.reshape(inp, (-1,))
emb_flat = tf.zeros([shape_list(inp_flat)[0], self.d_proj])
for i in range(len(self.cutoffs)):
l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]
mask_i = (inp_flat >= l_idx) & (inp_flat < r_idx)
inp_i = tf.boolean_mask(inp_flat, mask_i) - l_idx
emb_i = self.emb_layers[i](inp_i)
emb_i = tf.einsum("id,de->ie", emb_i, self.emb_projs[i])
mask_idx = tf.where(mask_i)
scatter = tf.scatter_nd(mask_idx, emb_i, shape_list(emb_flat))
emb_flat = tf.cast(emb_flat, dtype=scatter.dtype)
emb_flat += scatter
embed_shape = shape_list(inp) + [self.d_proj]
embed = tf.reshape(emb_flat, embed_shape)
embed *= self.emb_scale
return embed
|
class_definition
| 11,415 | 14,143 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl.py
| null | 10,208 |
class TFTransfoXLMainLayer(keras.layers.Layer):
config_class = TransfoXLConfig
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.config = config
self.output_hidden_states = config.output_hidden_states
self.output_attentions = config.output_attentions
self.return_dict = config.use_return_dict
self.n_token = config.vocab_size
self.d_embed = config.d_embed
self.d_model = config.d_model
self.n_head = config.n_head
self.d_head = config.d_head
self.untie_r = config.untie_r
self.word_emb = TFAdaptiveEmbedding(
config.vocab_size,
config.d_embed,
config.d_model,
config.cutoffs,
div_val=config.div_val,
init_std=config.init_std,
name="word_emb",
)
self.drop = keras.layers.Dropout(config.dropout)
self.n_layer = config.n_layer
self.mem_len = config.mem_len
self.attn_type = config.attn_type
self.layers = []
if config.attn_type == 0: # the default attention
for i in range(config.n_layer):
self.layers.append(
TFRelPartialLearnableDecoderLayer(
config.n_head,
config.d_model,
config.d_head,
config.d_inner,
config.dropout,
dropatt=config.dropatt,
pre_lnorm=config.pre_lnorm,
r_w_bias=None if self.untie_r else self.r_w_bias,
r_r_bias=None if self.untie_r else self.r_r_bias,
layer_norm_epsilon=config.layer_norm_epsilon,
init_std=config.init_std,
output_attentions=self.output_attentions,
name=f"layers_._{i}",
)
)
else: # learnable embeddings and absolute embeddings
raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint
self.same_length = config.same_length
self.clamp_len = config.clamp_len
if self.attn_type == 0: # default attention
self.pos_emb = TFPositionalEmbedding(self.d_model, name="pos_emb")
else: # learnable embeddings and absolute embeddings
raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint
def build(self, input_shape):
if not self.untie_r:
self.r_w_bias = self.add_weight(
shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_w_bias"
)
self.r_r_bias = self.add_weight(
shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_r_bias"
)
super().build(input_shape)
def get_input_embeddings(self):
return self.word_emb
def set_input_embeddings(self, value):
raise NotImplementedError
def backward_compatible(self):
self.sample_softmax = -1
def reset_memory_length(self, mem_len):
self.mem_len = mem_len
def _prune_heads(self, heads):
raise NotImplementedError
def init_mems(self, bsz):
if self.mem_len > 0:
mems = []
for i in range(self.n_layer):
empty = tf.zeros([self.mem_len, bsz, self.d_model])
mems.append(empty)
return mems
else:
return None
def _update_mems(self, hids, mems, mlen, qlen):
# does not deal with None
if mems is None:
return None
# mems is not None
assert len(hids) == len(mems), "len(hids) != len(mems)"
# There are `mlen + qlen` steps that can be cached into mems
new_mems = []
end_idx = mlen + tf.math.maximum(0, qlen)
beg_idx = tf.math.maximum(0, end_idx - tf.convert_to_tensor(self.mem_len))
for i in range(len(hids)):
mems[i] = tf.cast(mems[i], dtype=hids[i].dtype)
cat = tf.concat([mems[i], hids[i]], axis=0)
tf.stop_gradient(cat)
new_mems.append(cat[beg_idx:end_idx])
return new_mems
@unpack_inputs
def call(
self,
input_ids: TFModelInputType | None = None,
mems: List[tf.Tensor] | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: bool = False,
):
# the original code for Transformer-XL used shapes [len, bsz] but we want a unified interface in the library
# so we transpose here from shape [bsz, len] to shape [len, bsz]
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_ids = tf.transpose(input_ids, perm=(1, 0))
qlen, bsz = shape_list(input_ids)
elif inputs_embeds is not None:
inputs_embeds = tf.transpose(inputs_embeds, perm=(1, 0, 2))
qlen, bsz = shape_list(inputs_embeds)[:2]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if mems is None:
mems = self.init_mems(bsz)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer)
# and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head]
if head_mask is not None:
raise NotImplementedError
else:
head_mask = [None] * self.n_layer
if inputs_embeds is not None:
word_emb = inputs_embeds
else:
word_emb = self.word_emb(input_ids)
mlen = shape_list(mems[0])[0] if mems is not None else 0
klen = mlen + qlen
# Compute decoder attention mask
all_ones = tf.ones([qlen, klen], dtype=tf.int32)
upper_mask = 1 - tf.linalg.band_part(tf.ones([qlen, klen], dtype=tf.int32), -1, mlen)
if self.same_length:
mask_len = klen - self.mem_len
mask_shift_len = qlen - tf.nn.relu(mask_len) # Lazy clamping of negatives to zero
# Use an indicator variable instead of a conditional to keep the compiler happy
lower_mask = tf.linalg.band_part(all_ones, -1, 0) - (
tf.linalg.band_part(all_ones, mask_shift_len - 1, 0) * tf.cast(mask_shift_len != 0, tf.int32)
)
dec_attn_mask = upper_mask + lower_mask
else:
dec_attn_mask = upper_mask
hids = []
attentions = [] if output_attentions else None
if self.attn_type == 0: # default
pos_seq = tf.range(klen - 1, -1, -1.0)
if self.clamp_len > 0:
pos_seq = tf.minimum(pos_seq, self.clamp_len)
pos_emb = self.pos_emb(pos_seq)
core_out = self.drop(word_emb, training=training)
pos_emb = self.drop(pos_emb, training=training)
for i, layer in enumerate(self.layers):
hids.append(core_out)
mems_i = None if mems is None else mems[i]
layer_outputs = layer(
core_out,
pos_emb,
dec_attn_mask,
mems_i,
head_mask[i],
output_attentions,
training=training,
)
core_out = layer_outputs[0]
if output_attentions:
attentions.append(layer_outputs[1])
else: # learnable embeddings and absolute embeddings
raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint
core_out = self.drop(core_out, training=training)
new_mems = self._update_mems(hids, mems, mlen, qlen)
# We transpose back here to shape [bsz, len, hidden_dim]
core_out = tf.transpose(core_out, perm=(1, 0, 2))
if output_hidden_states:
# Transpose to library standard shape [bsz, len, hidden_dim] and add last layer
hids = tuple(tf.transpose(t, perm=(1, 0, 2)) for t in hids)
hids = hids + (core_out,)
else:
hids = None
if output_attentions:
# Transpose to library standard shape [bsz, n_heads, query_seq_len, key_seq_len]
attentions = tuple(tf.transpose(t, perm=(2, 3, 0, 1)) for t in attentions)
if not return_dict:
return tuple(v for v in [core_out, new_mems, hids, attentions] if v is not None)
return TFTransfoXLModelOutput(
last_hidden_state=core_out,
mems=new_mems,
hidden_states=hids,
attentions=attentions,
)
|
class_definition
| 14,166 | 23,589 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl.py
| null | 10,209 |
class TFTransfoXLPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = TransfoXLConfig
base_model_prefix = "transformer"
|
class_definition
| 23,592 | 23,863 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl.py
| null | 10,210 |
class TFTransfoXLModelOutput(ModelOutput):
"""
Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding).
Args:
last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
mems (`List[tf.Tensor]` of length `config.n_layers`):
Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems`
input) to speed up sequential decoding. The token ids which have their past given to this model should not
be passed as input ids as they have already been computed.
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
last_hidden_state: tf.Tensor = None
mems: List[tf.Tensor] = None
hidden_states: Tuple[tf.Tensor] | None = None
attentions: Tuple[tf.Tensor] | None = None
|
class_definition
| 23,877 | 25,620 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl.py
| null | 10,211 |
class TFTransfoXLLMHeadModelOutput(ModelOutput):
"""
Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding).
Args:
losses (`tf.Tensor` of shape *(batch_size, sequence_length-1)*, *optional*, returned when `labels` is provided):
Language modeling losses (not reduced).
prediction_scores (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token after SoftMax).
mems (`List[tf.Tensor]` of length `config.n_layers`):
Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems`
input) to speed up sequential decoding. The token ids which have their past given to this model should not
be passed as input ids as they have already been computed.
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
prediction_scores: tf.Tensor = None
mems: List[tf.Tensor] = None
hidden_states: Tuple[tf.Tensor] | None = None
attentions: Tuple[tf.Tensor] | None = None
|
class_definition
| 25,634 | 27,588 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl.py
| null | 10,212 |
class TFTransfoXLSequenceClassifierOutputWithPast(ModelOutput):
"""
Base class for outputs of sentence classification models.
Args:
loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
mems (`List[tf.Tensor]` of length `config.n_layers`):
Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems`
input) to speed up sequential decoding. The token ids which have their past given to this model should not
be passed as input ids as they have already been computed.
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: tf.Tensor | None = None
logits: tf.Tensor = None
mems: List[tf.Tensor] = None
hidden_states: Tuple[tf.Tensor] | None = None
attentions: Tuple[tf.Tensor] | None = None
|
class_definition
| 27,602 | 29,492 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl.py
| null | 10,213 |
class TFTransfoXLModel(TFTransfoXLPreTrainedModel):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.transformer = TFTransfoXLMainLayer(config, name="transformer")
@unpack_inputs
@add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFTransfoXLModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
mems: List[tf.Tensor] | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
return_dict: bool | None = None,
training: bool = False,
) -> TFTransfoXLModelOutput | Tuple[tf.Tensor]:
outputs = self.transformer(
input_ids=input_ids,
mems=mems,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
|
class_definition
| 34,781 | 36,100 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl.py
| null | 10,214 |
class TFTransfoXLLMHeadModel(TFTransfoXLPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.transformer = TFTransfoXLMainLayer(config, name="transformer")
self.sample_softmax = config.sample_softmax
assert self.sample_softmax <= 0, (
"Sampling from the softmax is not implemented yet. Please look at issue: #3310:"
" https://github.com/huggingface/transformers/issues/3310"
)
self.crit = TFAdaptiveSoftmaxMask(
config.vocab_size, config.d_embed, config.d_model, config.cutoffs, div_val=config.div_val, name="crit"
)
def _resize_token_embeddings(self, new_num_tokens):
raise NotImplementedError()
def get_output_embeddings(self):
"""Double-check if you are using adaptive softmax."""
if len(self.crit.out_layers) > 0:
return self.crit.out_layers[-1]
return None
def reset_memory_length(self, mem_len):
self.transformer.reset_memory_length(mem_len)
def init_mems(self, bsz):
return self.transformer.init_mems(bsz)
@unpack_inputs
@add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFTransfoXLLMHeadModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
mems: List[tf.Tensor] | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
return_dict: bool | None = None,
labels: np.ndarray | tf.Tensor | None = None,
training: bool = False,
) -> TFTransfoXLLMHeadModelOutput | Tuple[tf.Tensor]:
if input_ids is not None:
bsz, tgt_len = shape_list(input_ids)[:2]
else:
bsz, tgt_len = shape_list(inputs_embeds)[:2]
transformer_outputs = self.transformer(
input_ids,
mems,
head_mask,
inputs_embeds,
output_attentions,
output_hidden_states,
return_dict,
training=training,
)
last_hidden = transformer_outputs[0]
pred_hid = last_hidden[:, -tgt_len:]
softmax_output = self.crit(pred_hid, labels, training=training)
prediction_scores = softmax_output if labels is None else ()
if not return_dict:
return (prediction_scores,) + transformer_outputs[1:]
return TFTransfoXLLMHeadModelOutput(
prediction_scores=prediction_scores,
mems=transformer_outputs.mems,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **model_kwargs):
inputs = {}
# if past is defined in model kwargs then use it for faster decoding
if past_key_values:
input_ids = tf.expand_dims(input_ids[:, -1], axis=-1)
else:
input_ids = input_ids
return inputs
# Adapted from the torch tie_weights function
def tf_to_pt_weight_rename(self, tf_weight):
if self.config.tie_word_embeddings and "crit.out_layers" in tf_weight:
return tf_weight, tf_weight.replace("crit.out_layers", "transformer.word_emb.emb_layers")
elif self.config.tie_projs and "crit.out_projs" in tf_weight:
for i, tie_proj in enumerate(self.config.tie_projs):
if tie_proj and self.config.div_val == 1 and self.config.d_model != self.config.d_embed:
# self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[0]
return tf_weight, tf_weight.replace(f"crit.out_projs.{i}", "transformer.word_emb.emb_projs.0")
elif tie_proj and self.config.div_val != 1:
# self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[i]
return tf_weight, tf_weight.replace("crit.out_projs", "transformer.word_emb.emb_projs")
else:
return (tf_weight,)
|
class_definition
| 36,317 | 40,613 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl.py
| null | 10,215 |
class TFTransfoXLForSequenceClassification(TFTransfoXLPreTrainedModel, TFSequenceClassificationLoss):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.score = keras.layers.Dense(
config.num_labels,
kernel_initializer=get_initializer(config.init_range),
name="score",
use_bias=False,
)
self.transformer = TFTransfoXLMainLayer(config, name="transformer")
def get_output_embeddings(self):
# Remove after transformers v4.32. Fix this model's `test_model_common_attributes` test too.
logger.warning(
"Sequence classification models do not have output embeddings. `.get_output_embeddings` will be removed "
"in transformers v4.32."
)
return self.transformer.word_emb
@unpack_inputs
@add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFTransfoXLSequenceClassifierOutputWithPast,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
mems: List[tf.Tensor] | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[Tuple, TFTransfoXLSequenceClassifierOutputWithPast]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the cross entropy classification loss. Indices should be in `[0, ...,
config.vocab_size - 1]`.
"""
transformer_outputs = self.transformer(
input_ids=input_ids,
mems=mems,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
in_logits = None
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
sequence_lengths = (
tf.argmax(tf.cast(tf.math.equal(input_ids, self.config.pad_token_id), input_ids.dtype), axis=-1)
- 1
)
sequence_lengths = tf.where(sequence_lengths >= 0, sequence_lengths, input_ids.shape[-1] - 1)
in_logits = tf.gather(logits, sequence_lengths, batch_dims=1, axis=1)
else:
sequence_lengths = -1
logger.warning_once(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
loss = None
if labels is not None:
if input_ids is not None:
batch_size, sequence_length = shape_list(input_ids)[:2]
else:
batch_size, sequence_length = shape_list(inputs_embeds)[:2]
assert (
self.config.pad_token_id is not None or batch_size == 1
), "Cannot handle batch sizes > 1 if no padding token is defined."
if not tf.is_tensor(sequence_lengths):
in_logits = logits[0:batch_size, sequence_lengths]
loss = self.hf_compute_loss(tf.reshape(labels, [-1, 1]), tf.reshape(in_logits, [-1, self.num_labels]))
pooled_logits = in_logits if in_logits is not None else logits
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFTransfoXLSequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
mems=transformer_outputs.mems,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
|
class_definition
| 41,428 | 45,904 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl.py
| null | 10,216 |
class TransfoXLConfig(PretrainedConfig):
"""
This is the configuration class to store the configuration of a [`TransfoXLModel`] or a [`TFTransfoXLModel`]. It is
used to instantiate a Transformer-XL model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the TransfoXL
[transfo-xl/transfo-xl-wt103](https://huggingface.co/transfo-xl/transfo-xl-wt103) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 267735):
Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`TransfoXLModel`] or [`TFTransfoXLModel`].
cutoffs (`List[int]`, *optional*, defaults to `[20000, 40000, 200000]`):
Cutoffs for the adaptive softmax.
d_model (`int`, *optional*, defaults to 1024):
Dimensionality of the model's hidden states.
d_embed (`int`, *optional*, defaults to 1024):
Dimensionality of the embeddings
n_head (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
d_head (`int`, *optional*, defaults to 64):
Dimensionality of the model's heads.
d_inner (`int`, *optional*, defaults to 4096):
Inner dimension in FF
div_val (`int`, *optional*, defaults to 4):
Divident value for adapative input and softmax
pre_lnorm (`boolean`, *optional*, defaults to `False`):
Whether or not to apply LayerNorm to the input instead of the output in the blocks.
n_layer (`int`, *optional*, defaults to 18):
Number of hidden layers in the Transformer encoder.
mem_len (`int`, *optional*, defaults to 1600):
Length of the retained previous heads.
clamp_len (`int`, *optional*, defaults to 1000):
Use the same pos embeddings after clamp_len.
same_length (`boolean`, *optional*, defaults to `True`):
Whether or not to use the same attn length for all tokens
proj_share_all_but_first (`boolean`, *optional*, defaults to `True`):
True to share all but first projs, False not to share.
attn_type (`int`, *optional*, defaults to 0):
Attention type. 0 for Transformer-XL, 1 for Shaw et al, 2 for Vaswani et al, 3 for Al Rfou et al.
sample_softmax (`int`, *optional*, defaults to -1):
Number of samples in the sampled softmax.
adaptive (`boolean`, *optional*, defaults to `True`):
Whether or not to use adaptive softmax.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
dropatt (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
untie_r (`boolean`, *optional*, defaults to `True`):
Whether ot not to untie relative position biases.
init (`str`, *optional*, defaults to `"normal"`):
Parameter initializer to use.
init_range (`float`, *optional*, defaults to 0.01):
Parameters initialized by U(-init_range, init_range).
proj_init_std (`float`, *optional*, defaults to 0.01):
Parameters initialized by N(0, init_std)
init_std (`float`, *optional*, defaults to 0.02):
Parameters initialized by N(0, init_std)
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
The epsilon to use in the layer normalization layers
eos_token_id (`int`, *optional*, defaults to 0):
End of stream token id.
Examples:
```python
>>> from transformers import TransfoXLConfig, TransfoXLModel
>>> # Initializing a Transformer XL configuration
>>> configuration = TransfoXLConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = TransfoXLModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "transfo-xl"
keys_to_ignore_at_inference = ["mems"]
attribute_map = {
"n_token": "vocab_size",
"hidden_size": "d_model",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__(
self,
vocab_size=267735,
cutoffs=[20000, 40000, 200000],
d_model=1024,
d_embed=1024,
n_head=16,
d_head=64,
d_inner=4096,
div_val=4,
pre_lnorm=False,
n_layer=18,
mem_len=1600,
clamp_len=1000,
same_length=True,
proj_share_all_but_first=True,
attn_type=0,
sample_softmax=-1,
adaptive=True,
dropout=0.1,
dropatt=0.0,
untie_r=True,
init="normal",
init_range=0.01,
proj_init_std=0.01,
init_std=0.02,
layer_norm_epsilon=1e-5,
eos_token_id=0,
**kwargs,
):
self.vocab_size = vocab_size
self.cutoffs = []
self.cutoffs.extend(cutoffs)
if proj_share_all_but_first:
self.tie_projs = [False] + [True] * len(self.cutoffs)
else:
self.tie_projs = [False] + [False] * len(self.cutoffs)
self.d_model = d_model
self.d_embed = d_embed
self.d_head = d_head
self.d_inner = d_inner
self.div_val = div_val
self.pre_lnorm = pre_lnorm
self.n_layer = n_layer
self.n_head = n_head
self.mem_len = mem_len
self.same_length = same_length
self.attn_type = attn_type
self.clamp_len = clamp_len
self.sample_softmax = sample_softmax
self.adaptive = adaptive
self.dropout = dropout
self.dropatt = dropatt
self.untie_r = untie_r
self.init = init
self.init_range = init_range
self.proj_init_std = proj_init_std
self.init_std = init_std
self.layer_norm_epsilon = layer_norm_epsilon
super().__init__(eos_token_id=eos_token_id, **kwargs)
@property
def max_position_embeddings(self):
# Message copied from Transformer-XL documentation
logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit.")
return -1
@max_position_embeddings.setter
def max_position_embeddings(self, value):
# Message copied from Transformer-XL documentation
raise NotImplementedError(
f"The model {self.model_type} is one of the few models that has no sequence length limit."
)
|
class_definition
| 897 | 7,873 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/transfo_xl/configuration_transfo_xl.py
| null | 10,217 |
class TFAdaptiveSoftmaxMask(keras.layers.Layer):
def __init__(self, vocab_size, d_embed, d_proj, cutoffs, div_val=1, keep_order=False, **kwargs):
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.d_embed = d_embed
self.d_proj = d_proj
self.cutoffs = cutoffs + [vocab_size]
self.cutoff_ends = [0] + self.cutoffs
self.div_val = div_val
self.shortlist_size = self.cutoffs[0]
self.n_clusters = len(self.cutoffs) - 1
self.head_size = self.shortlist_size + self.n_clusters
self.keep_order = keep_order
self.out_layers = []
self.out_projs = []
def build(self, input_shape):
if self.n_clusters > 0:
self.cluster_weight = self.add_weight(
shape=(self.n_clusters, self.d_embed), initializer="zeros", trainable=True, name="cluster_weight"
)
self.cluster_bias = self.add_weight(
shape=(self.n_clusters,), initializer="zeros", trainable=True, name="cluster_bias"
)
if self.div_val == 1:
for i in range(len(self.cutoffs)):
if self.d_proj != self.d_embed:
weight = self.add_weight(
shape=(self.d_embed, self.d_proj),
initializer="zeros",
trainable=True,
name=f"out_projs_._{i}",
)
self.out_projs.append(weight)
else:
self.out_projs.append(None)
weight = self.add_weight(
shape=(self.vocab_size, self.d_embed),
initializer="zeros",
trainable=True,
name=f"out_layers_._{i}_._weight",
)
bias = self.add_weight(
shape=(self.vocab_size,),
initializer="zeros",
trainable=True,
name=f"out_layers_._{i}_._bias",
)
self.out_layers.append((weight, bias))
else:
for i in range(len(self.cutoffs)):
l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]
d_emb_i = self.d_embed // (self.div_val**i)
weight = self.add_weight(
shape=(d_emb_i, self.d_proj), initializer="zeros", trainable=True, name=f"out_projs_._{i}"
)
self.out_projs.append(weight)
weight = self.add_weight(
shape=(r_idx - l_idx, d_emb_i),
initializer="zeros",
trainable=True,
name=f"out_layers_._{i}_._weight",
)
bias = self.add_weight(
shape=(r_idx - l_idx,),
initializer="zeros",
trainable=True,
name=f"out_layers_._{i}_._bias",
)
self.out_layers.append((weight, bias))
super().build(input_shape)
@staticmethod
def _logit(x, W, b, proj=None):
y = x
if proj is not None:
y = tf.einsum("ibd,ed->ibe", y, proj)
return tf.einsum("ibd,nd->ibn", y, W) + b
@staticmethod
def _gather_logprob(logprob, target):
lp_size = shape_list(logprob)
r = tf.range(lp_size[0], dtype=target.dtype)
idx = tf.stack([r, target], 1)
return tf.gather_nd(logprob, idx)
def call(self, hidden, target, return_mean=True, training=False):
head_logprob = 0
if self.n_clusters == 0:
output = self._logit(hidden, self.out_layers[0][0], self.out_layers[0][1], self.out_projs[0])
if target is not None:
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=target, logits=output)
out = tf.nn.log_softmax(output, axis=-1)
else:
hidden_sizes = shape_list(hidden)
out = []
loss = tf.zeros(hidden_sizes[:2])
for i in range(len(self.cutoffs)):
l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]
if target is not None:
mask = (target >= l_idx) & (target < r_idx)
mask_idx = tf.where(mask)
cur_target = tf.boolean_mask(target, mask) - l_idx
if self.div_val == 1:
cur_W = self.out_layers[0][0][l_idx:r_idx]
cur_b = self.out_layers[0][1][l_idx:r_idx]
else:
cur_W = self.out_layers[i][0]
cur_b = self.out_layers[i][1]
if i == 0:
cur_W = tf.concat([cur_W, self.cluster_weight], 0)
cur_b = tf.concat([cur_b, self.cluster_bias], 0)
head_logit = self._logit(hidden, cur_W, cur_b, self.out_projs[0])
head_logprob = tf.nn.log_softmax(head_logit)
out.append(head_logprob[..., : self.cutoffs[0]])
if target is not None:
cur_head_logprob = tf.boolean_mask(head_logprob, mask)
cur_logprob = self._gather_logprob(cur_head_logprob, cur_target)
else:
tail_logit = self._logit(hidden, cur_W, cur_b, self.out_projs[i])
tail_logprob = tf.nn.log_softmax(tail_logit)
cluster_prob_idx = self.cutoffs[0] + i - 1 # No probability for the head cluster
logprob_i = head_logprob[..., cluster_prob_idx, None] + tail_logprob
out.append(logprob_i)
if target is not None:
cur_head_logprob = tf.boolean_mask(head_logprob, mask)
cur_tail_logprob = tf.boolean_mask(tail_logprob, mask)
cur_logprob = self._gather_logprob(cur_tail_logprob, cur_target)
cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1]
if target is not None:
loss += tf.scatter_nd(mask_idx, -cur_logprob, shape_list(loss))
out = tf.concat(out, axis=-1)
if target is not None:
if return_mean:
loss = tf.reduce_mean(loss)
# Add the training-time loss value to the layer using `self.add_loss()`.
self.add_loss(loss)
# Log the loss as a metric (we could log arbitrary metrics,
# including different metrics for training and inference.
self.add_metric(loss, name=self.name, aggregation="mean" if return_mean else "")
return out
|
class_definition
| 900 | 7,632 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl_utilities.py
| null | 10,218 |
class ProjectedAdaptiveLogSoftmax(nn.Module):
def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1, keep_order=False):
super().__init__()
self.n_token = n_token
self.d_embed = d_embed
self.d_proj = d_proj
self.cutoffs = cutoffs + [n_token]
self.cutoff_ends = [0] + self.cutoffs
self.div_val = div_val
self.shortlist_size = self.cutoffs[0]
self.n_clusters = len(self.cutoffs) - 1
self.head_size = self.shortlist_size + self.n_clusters
if self.n_clusters > 0:
self.cluster_weight = nn.Parameter(torch.zeros(self.n_clusters, self.d_embed))
self.cluster_bias = nn.Parameter(torch.zeros(self.n_clusters))
self.out_layers = nn.ModuleList()
self.out_projs = nn.ParameterList()
if div_val == 1:
for i in range(len(self.cutoffs)):
if d_proj != d_embed:
self.out_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_embed)))
else:
self.out_projs.append(None)
self.out_layers.append(nn.Linear(d_embed, n_token))
else:
for i in range(len(self.cutoffs)):
l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]
d_emb_i = d_embed // (div_val**i)
self.out_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_emb_i)))
self.out_layers.append(nn.Linear(d_emb_i, r_idx - l_idx))
self.keep_order = keep_order
def _compute_logit(self, hidden, weight, bias, proj):
if proj is None:
logit = nn.functional.linear(hidden, weight, bias=bias)
else:
# if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1:
proj_hid = nn.functional.linear(hidden, proj.t().contiguous())
logit = nn.functional.linear(proj_hid, weight, bias=bias)
# else:
# logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t()))
# if bias is not None:
# logit = logit + bias
return logit
def forward(self, hidden, labels=None, keep_order=False):
"""
Params:
hidden :: [len*bsz x d_proj]
labels :: [len*bsz]
Return:
if labels is None: out :: [len*bsz x n_tokens] log probabilities of tokens over the vocabulary else: out ::
[(len-1)*bsz] Negative log likelihood. We could replace this implementation by the native PyTorch one if
theirs had an option to set bias on all clusters in the native one. here:
https://github.com/pytorch/pytorch/blob/dbe6a7a9ff1a364a8706bf5df58a1ca96d2fd9da/torch/nn/modules/adaptive.py#L138
"""
if labels is not None:
# Shift so that tokens < n predict n
hidden = hidden[..., :-1, :].contiguous()
labels = labels[..., 1:].contiguous()
hidden = hidden.view(-1, hidden.size(-1))
labels = labels.view(-1)
if hidden.size(0) != labels.size(0):
raise RuntimeError("Input and labels should have the same size in the batch dimension.")
else:
hidden = hidden.view(-1, hidden.size(-1))
if self.n_clusters == 0:
logit = self._compute_logit(hidden, self.out_layers[0].weight, self.out_layers[0].bias, self.out_projs[0])
if labels is not None:
mask = labels != -100
out = torch.zeros_like(labels, dtype=hidden.dtype, device=hidden.device)
out[mask] = (
-nn.functional.log_softmax(logit, dim=-1)[mask].gather(1, labels[mask].unsqueeze(1)).squeeze(1)
)
else:
out = nn.functional.log_softmax(logit, dim=-1)
else:
# construct weights and biases
weights, biases = [], []
for i in range(len(self.cutoffs)):
if self.div_val == 1:
l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]
weight_i = self.out_layers[0].weight[l_idx:r_idx]
bias_i = self.out_layers[0].bias[l_idx:r_idx]
else:
weight_i = self.out_layers[i].weight
bias_i = self.out_layers[i].bias
if i == 0:
weight_i = torch.cat([weight_i, self.cluster_weight], dim=0)
bias_i = torch.cat([bias_i, self.cluster_bias], dim=0)
weights.append(weight_i)
biases.append(bias_i)
head_weight, head_bias, head_proj = weights[0], biases[0], self.out_projs[0]
head_logit = self._compute_logit(hidden, head_weight, head_bias, head_proj)
head_logprob = nn.functional.log_softmax(head_logit, dim=1)
if labels is None:
out = hidden.new_empty((head_logit.size(0), self.n_token))
else:
out = torch.zeros_like(labels, dtype=hidden.dtype, device=hidden.device)
offset = 0
cutoff_values = [0] + self.cutoffs
for i in range(len(cutoff_values) - 1):
l_idx, r_idx = cutoff_values[i], cutoff_values[i + 1]
if labels is not None:
mask_i = (labels >= l_idx) & (labels < r_idx)
indices_i = mask_i.nonzero().squeeze()
if indices_i.numel() == 0:
continue
target_i = labels.index_select(0, indices_i) - l_idx
head_logprob_i = head_logprob.index_select(0, indices_i)
hidden_i = hidden.index_select(0, indices_i)
else:
hidden_i = hidden
if i == 0:
if labels is not None:
logprob_i = head_logprob_i.gather(1, target_i[:, None]).squeeze(1)
else:
out[:, : self.cutoffs[0]] = head_logprob[:, : self.cutoffs[0]]
else:
weight_i, bias_i, proj_i = weights[i], biases[i], self.out_projs[i]
tail_logit_i = self._compute_logit(hidden_i, weight_i, bias_i, proj_i)
tail_logprob_i = nn.functional.log_softmax(tail_logit_i, dim=1)
cluster_prob_idx = self.cutoffs[0] + i - 1 # No probability for the head cluster
if labels is not None:
logprob_i = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather(
1, target_i[:, None]
).squeeze(1)
else:
logprob_i = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i
out[:, l_idx:r_idx] = logprob_i
if labels is not None:
if (hasattr(self, "keep_order") and self.keep_order) or keep_order:
out.index_copy_(0, indices_i, -logprob_i)
else:
out[offset : offset + logprob_i.size(0)].copy_(-logprob_i)
offset += logprob_i.size(0)
return out
def log_prob(self, hidden):
r"""
Computes log probabilities for all \\(n\_classes\\) From:
https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/adaptive.p
Args:
hidden (Tensor): a minibatch of example
Returns:
log-probabilities of for each class \\(c\\) in range \\(0 <= c <= n\_classes\\), where \\(n\_classes\\) is
a parameter passed to `AdaptiveLogSoftmaxWithLoss` constructor. Shape:
- Input: \\((N, in\_features)\\)
- Output: \\((N, n\_classes)\\)
"""
if self.n_clusters == 0:
logit = self._compute_logit(hidden, self.out_layers[0].weight, self.out_layers[0].bias, self.out_projs[0])
return nn.functional.log_softmax(logit, dim=-1)
else:
# construct weights and biases
weights, biases = [], []
for i in range(len(self.cutoffs)):
if self.div_val == 1:
l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]
weight_i = self.out_layers[0].weight[l_idx:r_idx]
bias_i = self.out_layers[0].bias[l_idx:r_idx]
else:
weight_i = self.out_layers[i].weight
bias_i = self.out_layers[i].bias
if i == 0:
weight_i = torch.cat([weight_i, self.cluster_weight], dim=0)
bias_i = torch.cat([bias_i, self.cluster_bias], dim=0)
weights.append(weight_i)
biases.append(bias_i)
head_weight, head_bias, head_proj = weights[0], biases[0], self.out_projs[0]
head_logit = self._compute_logit(hidden, head_weight, head_bias, head_proj)
out = hidden.new_empty((head_logit.size(0), self.n_token))
head_logprob = nn.functional.log_softmax(head_logit, dim=1)
cutoff_values = [0] + self.cutoffs
for i in range(len(cutoff_values) - 1):
start_idx, stop_idx = cutoff_values[i], cutoff_values[i + 1]
if i == 0:
out[:, : self.cutoffs[0]] = head_logprob[:, : self.cutoffs[0]]
else:
weight_i, bias_i, proj_i = weights[i], biases[i], self.out_projs[i]
tail_logit_i = self._compute_logit(hidden, weight_i, bias_i, proj_i)
tail_logprob_i = nn.functional.log_softmax(tail_logit_i, dim=1)
logprob_i = head_logprob[:, -i] + tail_logprob_i
out[:, start_idx, stop_idx] = logprob_i
return out
|
class_definition
| 1,000 | 10,858 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/transfo_xl/modeling_transfo_xl_utilities.py
| null | 10,219 |
class TransfoXLTokenizer(PreTrainedTokenizer):
"""
Construct a Transformer-XL tokenizer adapted from Vocab class in [the original
code](https://github.com/kimiyoung/transformer-xl). The Transformer-XL tokenizer is a word-level tokenizer (no
sub-word tokenization).
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
special (`List[str]`, *optional*):
A list of special tokens (to be treated by the original implementation of this tokenizer).
min_freq (`int`, *optional*, defaults to 0):
The minimum number of times a token has to be present in order to be kept in the vocabulary (otherwise it
will be mapped to `unk_token`).
max_size (`int`, *optional*):
The maximum size of the vocabulary. If left unset, it will default to the size of the vocabulary found
after excluding the tokens according to the `min_freq` rule.
lower_case (`bool`, *optional*, defaults to `False`):
Whether or not to lowercase the input when tokenizing.
delimiter (`str`, *optional*):
The delimiter used between tokens.
vocab_file (`str`, *optional*):
File containing the vocabulary (from the original implementation).
pretrained_vocab_file (`str`, *optional*):
File containing the vocabulary as saved with the `save_pretrained()` method.
never_split (`List[str]`, *optional*):
List of tokens that should never be split. If no list is specified, will simply use the existing special
tokens.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
eos_token (`str`, *optional*, defaults to `"<eos>"`):
The end of sequence token.
additional_special_tokens (`List[str]`, *optional*, defaults to `['<formula>']`):
A list of additional special tokens (for the HuggingFace functionality).
language (`str`, *optional*, defaults to `"en"`):
The language of this tokenizer (used for mose preprocessing).
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids"]
def __init__(
self,
special=None,
min_freq=0,
max_size=None,
lower_case=False,
delimiter=None,
vocab_file=None,
pretrained_vocab_file: str = None,
never_split=None,
unk_token="<unk>",
eos_token="<eos>",
additional_special_tokens=["<formula>"],
language="en",
**kwargs,
):
logger.error(
"`TransfoXL` was deprecated due to security issues linked to `pickle.load` in `TransfoXLTokenizer`. "
"See more details on this model's documentation page: "
"`https://github.com/huggingface/transformers/blob/main/docs/source/en/model_doc/transfo-xl.md`."
)
requires_backends(self, "sacremoses")
if special is None:
special = []
self.counter = Counter()
self.special = special
self.min_freq = min_freq
self.max_size = max_size
self.lower_case = lower_case
self.delimiter = delimiter
self.vocab_file = vocab_file
self.punctuation_symbols = '!"#$%&()*+,-./\\:;<=>?@[\\]^_`{|}~'
self.punction_without_space_before_pattern = re.compile(rf"[^\s][{self.punctuation_symbols}]")
self.punctuation_with_space_around_pattern = self._compile_space_around_punctuation_pattern()
self.language = language
self.moses_punct_normalizer = sm.MosesPunctNormalizer(language)
self.moses_tokenizer = sm.MosesTokenizer(language)
self.moses_detokenizer = sm.MosesDetokenizer(language)
self.idx2sym = []
self.sym2idx = OrderedDict()
# This try... catch... is not beautiful but honestly this tokenizer was not made to be used
# in a library like ours, at all.
try:
vocab_dict = None
if pretrained_vocab_file is not None:
# Priority on pickle files (support PyTorch and TF)
if not strtobool(os.environ.get("TRUST_REMOTE_CODE", "False")):
raise ValueError(
"This part uses `pickle.load` which is insecure and will execute arbitrary code that is "
"potentially malicious. It's recommended to never unpickle data that could have come from an "
"untrusted source, or that could have been tampered with. If you already verified the pickle "
"data and decided to use it, you can set the environment variable "
"`TRUST_REMOTE_CODE` to `True` to allow it."
)
with open(pretrained_vocab_file, "rb") as f:
vocab_dict = pickle.load(f)
# Loading a torch-saved transfo-xl vocab dict with pickle results in an integer
# Entering this if statement means that we tried to load a torch-saved file with pickle, and we failed.
# We therefore load it with torch, if it's available.
if isinstance(vocab_dict, int):
if not is_torch_available():
raise ImportError(
"Not trying to load dict with PyTorch as you need to install pytorch to load "
"from a PyTorch pretrained vocabulary, "
"or activate it with environment variables USE_TORCH=1 and USE_TF=0."
)
vocab_dict = torch.load(pretrained_vocab_file, weights_only=True)
if vocab_dict is not None:
for key, value in vocab_dict.items():
if key not in self.__dict__ or key in ["sym2idx", "idx2sym"]:
self.__dict__[key] = value
elif vocab_file is not None:
self.build_vocab()
except Exception as e:
raise ValueError(
f"Unable to parse file {pretrained_vocab_file}. Unknown format. "
"If you tried to load a model saved through TransfoXLTokenizerFast, "
"please note they are not compatible."
) from e
if vocab_file is not None:
self.build_vocab()
super().__init__(
special=special,
min_freq=min_freq,
max_size=max_size,
lower_case=lower_case,
delimiter=delimiter,
vocab_file=vocab_file,
pretrained_vocab_file=pretrained_vocab_file,
never_split=never_split,
unk_token=unk_token,
eos_token=eos_token,
additional_special_tokens=additional_special_tokens,
language=language,
**kwargs,
)
# these are not required to initialize the parent class as only used when tokenizing.
if never_split is None:
never_split = self.all_special_tokens
self.never_split = never_split
@property
def do_lower_case(self):
return self.lower_case
def _compile_space_around_punctuation_pattern(self):
look_ahead_for_special_token = f"(?=[{self.punctuation_symbols}])"
look_ahead_to_match_all_except_space = r"(?=[^\s])"
return re.compile(r"" + look_ahead_for_special_token + look_ahead_to_match_all_except_space)
def count_file(self, path, verbose=False, add_eos=False):
if verbose:
logger.info(f"counting file {path} ...")
assert os.path.exists(path), f"Input file {path} not found"
sents = []
with open(path, "r", encoding="utf-8") as f:
for idx, line in enumerate(f):
if verbose and idx > 0 and idx % 500000 == 0:
logger.info(f" line {idx}")
symbols = self.tokenize(line, add_eos=add_eos)
self.counter.update(symbols)
sents.append(symbols)
return sents
def count_sents(self, sents, verbose=False):
"""
sents : a list of sentences, each a list of tokenized symbols
"""
if verbose:
logger.info(f"counting {len(sents)} sents ...")
for idx, symbols in enumerate(sents):
if verbose and idx > 0 and idx % 500000 == 0:
logger.info(f" line {idx}")
self.counter.update(symbols)
def _build_from_file(self, vocab_file):
self.idx2sym = []
self.sym2idx = OrderedDict()
with open(vocab_file, "r", encoding="utf-8") as f:
for line in f:
symb = line.strip().split()[0]
self.add_symbol(symb)
if "<UNK>" in self.sym2idx:
self.unk_idx = self.sym2idx["<UNK>"]
elif "<unk>" in self.sym2idx:
self.unk_idx = self.sym2idx["<unk>"]
else:
raise ValueError("Token not in vocabulary and no <unk> token in vocabulary for replacement.")
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if os.path.isdir(save_directory):
vocab_file = os.path.join(
save_directory,
(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["pretrained_vocab_file"],
)
else:
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
with open(vocab_file, "wb") as f:
pickle.dump(self.__dict__, f)
return (vocab_file,)
def build_vocab(self):
if self.vocab_file:
logger.info(f"building vocab from {self.vocab_file}")
self._build_from_file(self.vocab_file)
logger.info(f"Final vocab size {len(self.sym2idx)}")
else:
logger.info(f"building vocab with min_freq={self.min_freq}, max_size={self.max_size}")
self.idx2sym = []
self.sym2idx = OrderedDict()
for sym in self.special:
self.add_special(sym)
for sym, cnt in self.counter.most_common(self.max_size):
if cnt < self.min_freq:
break
self.add_symbol(sym)
logger.info(f"Final vocab size {len(self.sym2idx)} from {len(self.counter)} unique tokens")
@torch_only_method
def encode_file(self, path, ordered=False, verbose=False, add_eos=True, add_double_eos=False):
if verbose:
logger.info(f"encoding file {path} ...")
assert os.path.exists(path), f"Output file {path} not found"
encoded = []
with open(path, "r", encoding="utf-8") as f:
for idx, line in enumerate(f):
if verbose and idx > 0 and idx % 500000 == 0:
logger.info(f" line {idx}")
symbols = self.tokenize(line, add_eos=add_eos, add_double_eos=add_double_eos)
encoded.append(self.convert_to_tensor(symbols))
if ordered:
encoded = torch.cat(encoded)
return encoded
@torch_only_method
def encode_sents(self, sents, ordered=False, verbose=False):
if verbose:
logger.info(f"encoding {len(sents)} sents ...")
encoded = []
for idx, symbols in enumerate(sents):
if verbose and idx > 0 and idx % 500000 == 0:
logger.info(f" line {idx}")
encoded.append(self.convert_to_tensor(symbols))
if ordered:
encoded = torch.cat(encoded)
return encoded
def add_special(self, sym):
if sym not in self.sym2idx:
self.idx2sym.append(sym)
self.sym2idx[sym] = len(self.idx2sym) - 1
setattr(self, f"{sym.strip('<>')}_idx", self.sym2idx[sym])
def add_symbol(self, sym):
if sym not in self.sym2idx:
self.idx2sym.append(sym)
self.sym2idx[sym] = len(self.idx2sym) - 1
def move_added_token(self, token: str, target_idx: int):
"""
Moves an added token to a specific position in the vocab. This method should be used when resizing an embedding
layer other than the last one in the `AdaptiveEmbedding` in order to move the token in the tokenizer from the
default position (at the very end) to the desired one.
Args:
token: The token to move to a specific position in the vocab.
target_idx: The position where the token should be moved to.
"""
assert token in self.added_tokens_encoder, "Token which should be moved has to be an added token"
assert token not in self.idx2sym, "Token which should be moved is already in vocab"
# Insert sym into vocab
self.idx2sym.insert(target_idx, token)
self.sym2idx[token] = target_idx
# Shift following indices in sym2idx
for idx in range(target_idx + 1, len(self.idx2sym)):
current_sym = self.idx2sym[idx]
self.sym2idx[current_sym] = idx
# Delete token from added_tokens
old_index = self._added_tokens_encoder.pop(token)
self._added_tokens_decoder.pop(old_index)
def moses_punct_norm(self, text):
return self.moses_punct_normalizer.normalize(text)
def moses_tokenize(self, text):
return self.moses_tokenizer.tokenize(
text, aggressive_dash_splits=True, return_str=False, escape=False, protected_patterns=self.never_split
)
def moses_pipeline(self, text: str) -> List[str]:
"""
Does basic tokenization using [`sacremoses.MosesPunctNormalizer`] and [`sacremoses.MosesTokenizer`] with
*aggressive_dash_splits=True* (see [`sacremoses.tokenize.MosesTokenizer.tokenize`]). Additionally, large
comma-separated numbers and floating point values are split. E.g. "23,000 people are 1.80m tall" -> "23 @,@ 000
people are 1 @.@ 80m tall"
Args:
text: Text to be tokenize
Returns:
A list of tokenized string
Example:
```python
>>> tokenizer = TransfoXLTokenizer.from_pretrained("transfo-xl/transfo-xl-wt103")
>>> tokenizer.moses_pipeline("23,000 people are 1.80 m tall")
['23', '@,@', '000', 'people', 'are', '1', '@.@', '80', 'm', 'tall']
```"""
text = self.moses_punct_norm(text)
text = self.moses_tokenize(text)
text = tokenize_numbers(text)
return text
def _convert_id_to_token(self, idx):
"""Converts an id in a token (BPE) using the vocab."""
assert 0 <= idx < len(self), f"Index {idx} out of vocabulary range"
return self.idx2sym[idx]
def _convert_token_to_id(self, sym):
"""Converts a token (str) in an id using the vocab."""
if sym in self.sym2idx:
return self.sym2idx[sym]
else:
# logger.info(f'encounter unk {sym}')
# assert '<eos>' not in sym
if hasattr(self, "unk_idx"):
return self.sym2idx.get(sym, self.unk_idx)
# Backward compatibility with pre-trained models
elif "<unk>" in self.sym2idx:
return self.sym2idx["<unk>"]
elif "<UNK>" in self.sym2idx:
return self.sym2idx["<UNK>"]
else:
raise ValueError("Token not in vocabulary and no <unk> token in vocabulary for replacement.")
def convert_tokens_to_string(self, tokens):
"""
Converts a sequence of tokens (string) in a single string. Additionally, the split numbers are converted back
into it's original form.
"""
out_string = self.moses_detokenizer.detokenize(tokens)
return detokenize_numbers(out_string).strip()
@torch_only_method
def convert_to_tensor(self, symbols):
return torch.LongTensor(self.convert_tokens_to_ids(symbols))
@property
def vocab_size(self):
return len(self.idx2sym)
def get_vocab(self):
vocab = self.sym2idx.copy()
vocab.update(self.added_tokens_encoder)
return vocab
def _tokenize(self, line, add_eos=False, add_double_eos=False):
line = line.strip()
# convert to lower case
if self.lower_case:
line = line.lower()
# empty delimiter '' will evaluate False
if self.delimiter == "":
symbols = line
else:
symbols = self.moses_pipeline(line)
if add_double_eos: # lm1b
return ["<S>"] + symbols + ["<S>"]
elif add_eos:
return symbols + ["<eos>"]
else:
return symbols
|
class_definition
| 2,980 | 19,917 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/transfo_xl/tokenization_transfo_xl.py
| null | 10,220 |
class LMOrderedIterator:
def __init__(self, data, bsz, bptt, device="cpu", ext_len=None):
"""
data -- LongTensor -- the LongTensor is strictly ordered
"""
self.bsz = bsz
self.bptt = bptt
self.ext_len = ext_len if ext_len is not None else 0
self.device = device
# Work out how cleanly we can divide the dataset into bsz parts.
self.n_step = data.size(0) // bsz
# Trim off any extra elements that wouldn't cleanly fit (remainders).
data = data.narrow(0, 0, self.n_step * bsz)
# Evenly divide the data across the bsz batches.
self.data = data.view(bsz, -1).t().contiguous().to(device)
# Number of mini-batches
self.n_batch = (self.n_step + self.bptt - 1) // self.bptt
def get_batch(self, i, bptt=None):
if bptt is None:
bptt = self.bptt
seq_len = min(bptt, self.data.size(0) - 1 - i)
end_idx = i + seq_len
beg_idx = max(0, i - self.ext_len)
data = self.data[beg_idx:end_idx]
target = self.data[i + 1 : i + 1 + seq_len]
data_out = data.transpose(0, 1).contiguous().to(self.device)
target_out = target.transpose(0, 1).contiguous().to(self.device)
return data_out, target_out, seq_len
def get_fixlen_iter(self, start=0):
for i in range(start, self.data.size(0) - 1, self.bptt):
yield self.get_batch(i)
def get_varlen_iter(self, start=0, std=5, min_len=5, max_deviation=3):
max_len = self.bptt + max_deviation * std
i = start
while True:
bptt = self.bptt if np.random.random() < 0.95 else self.bptt / 2.0
bptt = min(max_len, max(min_len, int(np.random.normal(bptt, std))))
data, target, seq_len = self.get_batch(i, bptt)
i += seq_len
yield data, target, seq_len
if i >= self.data.size(0) - 2:
break
def __iter__(self):
return self.get_fixlen_iter()
|
class_definition
| 19,920 | 21,938 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/transfo_xl/tokenization_transfo_xl.py
| null | 10,221 |
class LMShuffledIterator:
def __init__(self, data, bsz, bptt, device="cpu", ext_len=None, shuffle=False):
"""
data -- list[LongTensor] -- there is no order among the LongTensors
"""
self.data = data
self.bsz = bsz
self.bptt = bptt
self.ext_len = ext_len if ext_len is not None else 0
self.device = device
self.shuffle = shuffle
def get_sent_stream(self):
# index iterator
epoch_indices = np.random.permutation(len(self.data)) if self.shuffle else np.array(range(len(self.data)))
# sentence iterator
for idx in epoch_indices:
yield self.data[idx]
@torch_only_method
def stream_iterator(self, sent_stream):
# streams for each data in the batch
streams = [None] * self.bsz
data = torch.LongTensor(self.bptt, self.bsz)
target = torch.LongTensor(self.bptt, self.bsz)
n_retain = 0
while True:
# data : [n_retain+bptt x bsz]
# target : [bptt x bsz]
data[n_retain:].fill_(-1)
target.fill_(-1)
valid_batch = True
for i in range(self.bsz):
n_filled = 0
try:
while n_filled < self.bptt:
if streams[i] is None or len(streams[i]) <= 1:
streams[i] = next(sent_stream)
# number of new tokens to fill in
n_new = min(len(streams[i]) - 1, self.bptt - n_filled)
# first n_retain tokens are retained from last batch
data[n_retain + n_filled : n_retain + n_filled + n_new, i] = streams[i][:n_new]
target[n_filled : n_filled + n_new, i] = streams[i][1 : n_new + 1]
streams[i] = streams[i][n_new:]
n_filled += n_new
except StopIteration:
valid_batch = False
break
if not valid_batch:
return
data_out = data.transpose(0, 1).contiguous().to(self.device)
target_out = target.transpose(0, 1).contiguous().to(self.device)
yield data_out, target_out, self.bptt
n_retain = min(data.size(0), self.ext_len)
if n_retain > 0:
data[:n_retain] = data[-n_retain:]
data.resize_(n_retain + self.bptt, data.size(1))
def __iter__(self):
# sent_stream is an iterator
sent_stream = self.get_sent_stream()
for batch in self.stream_iterator(sent_stream):
yield batch
|
class_definition
| 21,941 | 24,616 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/transfo_xl/tokenization_transfo_xl.py
| null | 10,222 |
class LMMultiFileIterator(LMShuffledIterator):
def __init__(self, paths, vocab, bsz, bptt, device="cpu", ext_len=None, shuffle=False):
self.paths = paths
self.vocab = vocab
self.bsz = bsz
self.bptt = bptt
self.ext_len = ext_len if ext_len is not None else 0
self.device = device
self.shuffle = shuffle
def get_sent_stream(self, path):
sents = self.vocab.encode_file(path, add_double_eos=True)
if self.shuffle:
np.random.shuffle(sents)
sent_stream = iter(sents)
return sent_stream
def __iter__(self):
if self.shuffle:
np.random.shuffle(self.paths)
for path in self.paths:
# sent_stream is an iterator
sent_stream = self.get_sent_stream(path)
for batch in self.stream_iterator(sent_stream):
yield batch
|
class_definition
| 24,619 | 25,517 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/transfo_xl/tokenization_transfo_xl.py
| null | 10,223 |
class TransfoXLCorpus:
@classmethod
@torch_only_method
def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs):
"""
Instantiate a pre-processed corpus.
"""
vocab = TransfoXLTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
is_local = os.path.isdir(pretrained_model_name_or_path)
# redirect to the cache, if necessary
try:
resolved_corpus_file = cached_file(pretrained_model_name_or_path, CORPUS_NAME, cache_dir=cache_dir)
except EnvironmentError:
logger.error(
f"Corpus '{pretrained_model_name_or_path}' was not found in corpus list"
f" ({', '.join(PRETRAINED_CORPUS_ARCHIVE_MAP.keys())}. We assumed '{pretrained_model_name_or_path}'"
f" was a path or url but couldn't find files {CORPUS_NAME} at this path or url."
)
return None
if is_local:
logger.info(f"loading corpus file {resolved_corpus_file}")
else:
logger.info(f"loading corpus file {CORPUS_NAME} from cache at {resolved_corpus_file}")
# Instantiate tokenizer.
corpus = cls(*inputs, **kwargs)
corpus_dict = torch.load(resolved_corpus_file, weights_only=True)
for key, value in corpus_dict.items():
corpus.__dict__[key] = value
corpus.vocab = vocab
if corpus.train is not None:
corpus.train = torch.tensor(corpus.train, dtype=torch.long)
if corpus.valid is not None:
corpus.valid = torch.tensor(corpus.valid, dtype=torch.long)
if corpus.test is not None:
corpus.test = torch.tensor(corpus.test, dtype=torch.long)
return corpus
def __init__(self, *args, **kwargs):
self.vocab = TransfoXLTokenizer(*args, **kwargs)
self.dataset = None
self.train = None
self.valid = None
self.test = None
def build_corpus(self, path, dataset):
self.dataset = dataset
if self.dataset in ["ptb", "wt2", "enwik8", "text8"]:
self.vocab.count_file(os.path.join(path, "train.txt"))
self.vocab.count_file(os.path.join(path, "valid.txt"))
self.vocab.count_file(os.path.join(path, "test.txt"))
elif self.dataset == "wt103":
self.vocab.count_file(os.path.join(path, "train.txt"))
elif self.dataset == "lm1b":
train_path_pattern = os.path.join(
path,
"1-billion-word-language-modeling-benchmark-r13output",
"training-monolingual.tokenized.shuffled",
"news.en-*",
)
train_paths = glob.glob(train_path_pattern)
# the vocab will load from file when build_vocab() is called
self.vocab.build_vocab()
if self.dataset in ["ptb", "wt2", "wt103"]:
self.train = self.vocab.encode_file(os.path.join(path, "train.txt"), ordered=True)
self.valid = self.vocab.encode_file(os.path.join(path, "valid.txt"), ordered=True)
self.test = self.vocab.encode_file(os.path.join(path, "test.txt"), ordered=True)
elif self.dataset in ["enwik8", "text8"]:
self.train = self.vocab.encode_file(os.path.join(path, "train.txt"), ordered=True, add_eos=False)
self.valid = self.vocab.encode_file(os.path.join(path, "valid.txt"), ordered=True, add_eos=False)
self.test = self.vocab.encode_file(os.path.join(path, "test.txt"), ordered=True, add_eos=False)
elif self.dataset == "lm1b":
self.train = train_paths
self.valid = self.vocab.encode_file(os.path.join(path, "valid.txt"), ordered=False, add_double_eos=True)
self.test = self.vocab.encode_file(os.path.join(path, "test.txt"), ordered=False, add_double_eos=True)
def get_iterator(self, split, *args, **kwargs):
if split == "train":
if self.dataset in ["ptb", "wt2", "wt103", "enwik8", "text8"]:
data_iter = LMOrderedIterator(self.train, *args, **kwargs)
elif self.dataset == "lm1b":
kwargs["shuffle"] = True
data_iter = LMMultiFileIterator(self.train, self.vocab, *args, **kwargs)
elif split in ["valid", "test"]:
data = self.valid if split == "valid" else self.test
if self.dataset in ["ptb", "wt2", "wt103", "enwik8", "text8"]:
data_iter = LMOrderedIterator(data, *args, **kwargs)
elif self.dataset == "lm1b":
data_iter = LMShuffledIterator(data, *args, **kwargs)
else:
data_iter = None
raise ValueError(f"Split not recognized: {split}")
return data_iter
|
class_definition
| 25,520 | 30,304 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/transfo_xl/tokenization_transfo_xl.py
| null | 10,224 |
class ErnieMEmbeddings(nn.Module):
"""Construct the embeddings from word and position embeddings."""
def __init__(self, config):
super().__init__()
self.hidden_size = config.hidden_size
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(
config.max_position_embeddings, config.hidden_size, padding_idx=config.pad_token_id
)
self.layer_norm = nn.LayerNorm(normalized_shape=config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(p=config.hidden_dropout_prob)
self.padding_idx = config.pad_token_id
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.LongTensor] = None,
past_key_values_length: int = 0,
) -> torch.Tensor:
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
if position_ids is None:
input_shape = inputs_embeds.size()[:-1]
ones = torch.ones(input_shape, dtype=torch.int64, device=inputs_embeds.device)
seq_length = torch.cumsum(ones, dim=1)
position_ids = seq_length - ones
if past_key_values_length > 0:
position_ids = position_ids + past_key_values_length
# to mimic paddlenlp implementation
position_ids += 2
position_embeddings = self.position_embeddings(position_ids)
embeddings = inputs_embeds + position_embeddings
embeddings = self.layer_norm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
|
class_definition
| 1,760 | 3,517 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/ernie_m/modeling_ernie_m.py
| null | 10,225 |
class ErnieMSelfAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.q_proj = nn.Linear(config.hidden_size, self.all_head_size)
self.k_proj = nn.Linear(config.hidden_size, self.all_head_size)
self.v_proj = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = position_embedding_type or getattr(
config, "position_embedding_type", "absolute"
)
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
self.is_decoder = config.is_decoder
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
mixed_query_layer = self.q_proj(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.k_proj(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.v_proj(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.k_proj(hidden_states))
value_layer = self.transpose_for_scores(self.v_proj(hidden_states))
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.k_proj(hidden_states))
value_layer = self.transpose_for_scores(self.v_proj(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
use_cache = past_key_value is not None
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
if use_cache:
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
-1, 1
)
else:
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in ErnieMModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
|
class_definition
| 3,520 | 10,884 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/ernie_m/modeling_ernie_m.py
| null | 10,226 |
class ErnieMAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
self.self_attn = ErnieMSelfAttention(config, position_embedding_type=position_embedding_type)
self.out_proj = nn.Linear(config.hidden_size, config.hidden_size)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self_attn.num_attention_heads, self.self_attn.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self_attn.q_proj = prune_linear_layer(self.self_attn.q_proj, index)
self.self_attn.k_proj = prune_linear_layer(self.self_attn.k_proj, index)
self.self_attn.v_proj = prune_linear_layer(self.self_attn.v_proj, index)
self.out_proj = prune_linear_layer(self.out_proj, index, dim=1)
# Update hyper params and store pruned heads
self.self_attn.num_attention_heads = self.self_attn.num_attention_heads - len(heads)
self.self_attn.all_head_size = self.self_attn.attention_head_size * self.self_attn.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
self_outputs = self.self_attn(
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
attention_output = self.out_proj(self_outputs[0])
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
|
class_definition
| 10,887 | 13,045 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/ernie_m/modeling_ernie_m.py
| null | 10,227 |
class ErnieMEncoderLayer(nn.Module):
def __init__(self, config):
super().__init__()
# to mimic paddlenlp implementation
dropout = 0.1 if config.hidden_dropout_prob is None else config.hidden_dropout_prob
act_dropout = config.hidden_dropout_prob if config.act_dropout is None else config.act_dropout
self.self_attn = ErnieMAttention(config)
self.linear1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.dropout = nn.Dropout(act_dropout)
self.linear2 = nn.Linear(config.intermediate_size, config.hidden_size)
self.norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
if isinstance(config.hidden_act, str):
self.activation = ACT2FN[config.hidden_act]
else:
self.activation = config.hidden_act
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = True,
):
residual = hidden_states
if output_attentions:
hidden_states, attention_opt_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
head_mask=head_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
)
else:
hidden_states = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
head_mask=head_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
)
hidden_states = residual + self.dropout1(hidden_states)
hidden_states = self.norm1(hidden_states)
residual = hidden_states
hidden_states = self.linear1(hidden_states)
hidden_states = self.activation(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.linear2(hidden_states)
hidden_states = residual + self.dropout2(hidden_states)
hidden_states = self.norm2(hidden_states)
if output_attentions:
return hidden_states, attention_opt_weights
else:
return hidden_states
|
class_definition
| 13,048 | 15,649 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/ernie_m/modeling_ernie_m.py
| null | 10,228 |
class ErnieMEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layers = nn.ModuleList([ErnieMEncoderLayer(config) for _ in range(config.num_hidden_layers)])
def forward(
self,
input_embeds: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
hidden_states = () if output_hidden_states else None
attentions = () if output_attentions else None
output = input_embeds
if output_hidden_states:
hidden_states = hidden_states + (output,)
for i, layer in enumerate(self.layers):
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[i] if past_key_values is not None else None
output, opt_attn_weights = layer(
hidden_states=output,
attention_mask=attention_mask,
head_mask=layer_head_mask,
past_key_value=past_key_value,
)
if output_hidden_states:
hidden_states = hidden_states + (output,)
if output_attentions:
attentions = attentions + (opt_attn_weights,)
last_hidden_state = output
if not return_dict:
return tuple(v for v in [last_hidden_state, hidden_states, attentions] if v is not None)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=last_hidden_state, hidden_states=hidden_states, attentions=attentions
)
|
class_definition
| 15,652 | 17,576 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/ernie_m/modeling_ernie_m.py
| null | 10,229 |
class ErnieMPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
|
class_definition
| 17,579 | 18,140 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/ernie_m/modeling_ernie_m.py
| null | 10,230 |
class ErnieMPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = ErnieMConfig
base_model_prefix = "ernie_m"
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
|
class_definition
| 18,143 | 19,211 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/ernie_m/modeling_ernie_m.py
| null | 10,231 |
class ErnieMModel(ErnieMPreTrainedModel):
def __init__(self, config, add_pooling_layer=True):
super(ErnieMModel, self).__init__(config)
self.initializer_range = config.initializer_range
self.embeddings = ErnieMEmbeddings(config)
self.encoder = ErnieMEncoder(config)
self.pooler = ErnieMPooler(config) if add_pooling_layer else None
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layers[layer].self_attn.prune_heads(heads)
@add_start_docstrings_to_model_forward(ERNIE_M_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPastAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[tensor] = None,
position_ids: Optional[tensor] = None,
attention_mask: Optional[tensor] = None,
head_mask: Optional[tensor] = None,
inputs_embeds: Optional[tensor] = None,
past_key_values: Optional[Tuple[Tuple[tensor]]] = None,
use_cache: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], BaseModelOutputWithPoolingAndCrossAttentions]:
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time.")
# init the default bool value
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
past_key_values_length = 0
if past_key_values is not None:
past_key_values_length = past_key_values[0][0].shape[2]
# Adapted from paddlenlp.transformers.ernie_m.ErnieMModel
if attention_mask is None:
attention_mask = (input_ids == self.config.pad_token_id).to(torch.float32)
attention_mask *= torch.finfo(attention_mask.dtype).min
if past_key_values is not None:
batch_size = past_key_values[0][0].shape[0]
past_mask = torch.zeros([batch_size, 1, 1, past_key_values_length], dtype=attention_mask.dtype)
attention_mask = torch.concat([past_mask, attention_mask], dim=-1)
# For 2D attention_mask from tokenizer
elif attention_mask.ndim == 2:
attention_mask = attention_mask.to(torch.float32)
attention_mask = 1.0 - attention_mask
attention_mask *= torch.finfo(attention_mask.dtype).min
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(1)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
past_key_values=past_key_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
sequence_output = encoder_outputs[0]
pooler_output = self.pooler(sequence_output) if self.pooler is not None else None
return (sequence_output, pooler_output) + encoder_outputs[1:]
sequence_output = encoder_outputs["last_hidden_state"]
pooler_output = self.pooler(sequence_output) if self.pooler is not None else None
hidden_states = None if not output_hidden_states else encoder_outputs["hidden_states"]
attentions = None if not output_attentions else encoder_outputs["attentions"]
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooler_output,
hidden_states=hidden_states,
attentions=attentions,
)
|
class_definition
| 22,505 | 27,432 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/ernie_m/modeling_ernie_m.py
| null | 10,232 |
class ErnieMForSequenceClassification(ErnieMPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.ernie_m = ErnieMModel(config)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(ERNIE_M_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.Tensor]] = None,
use_cache: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = True,
labels: Optional[torch.Tensor] = None,
) -> Union[Tuple[torch.FloatTensor], SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.ernie_m(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 27,649 | 31,756 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/ernie_m/modeling_ernie_m.py
| null | 10,233 |
class ErnieMForMultipleChoice(ErnieMPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.ernie_m = ErnieMModel(config)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(ERNIE_M_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.FloatTensor], MultipleChoiceModelOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.ernie_m(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 31,982 | 35,422 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/ernie_m/modeling_ernie_m.py
| null | 10,234 |
class ErnieMForTokenClassification(ErnieMPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.ernie_m = ErnieMModel(config, add_pooling_layer=False)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(ERNIE_M_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.Tensor]] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = True,
labels: Optional[torch.Tensor] = None,
) -> Union[Tuple[torch.FloatTensor], TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.ernie_m(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 35,646 | 38,561 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/ernie_m/modeling_ernie_m.py
| null | 10,235 |
class ErnieMForQuestionAnswering(ErnieMPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.ernie_m = ErnieMModel(config, add_pooling_layer=False)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(ERNIE_M_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
start_positions: Optional[torch.Tensor] = None,
end_positions: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.FloatTensor], QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.ernie_m(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 38,843 | 43,011 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/ernie_m/modeling_ernie_m.py
| null | 10,236 |
class ErnieMForInformationExtraction(ErnieMPreTrainedModel):
def __init__(self, config):
super(ErnieMForInformationExtraction, self).__init__(config)
self.ernie_m = ErnieMModel(config)
self.linear_start = nn.Linear(config.hidden_size, 1)
self.linear_end = nn.Linear(config.hidden_size, 1)
self.sigmoid = nn.Sigmoid()
self.post_init()
@add_start_docstrings_to_model_forward(ERNIE_M_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
start_positions: Optional[torch.Tensor] = None,
end_positions: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.FloatTensor], QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for position (index) for computing the start_positions loss. Position outside of the sequence are
not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) for computing the end_positions loss. Position outside of the sequence are not
taken into account for computing the loss.
"""
result = self.ernie_m(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if return_dict:
sequence_output = result.last_hidden_state
elif not return_dict:
sequence_output = result[0]
start_logits = self.linear_start(sequence_output)
start_logits = start_logits.squeeze(-1)
end_logits = self.linear_end(sequence_output)
end_logits = end_logits.squeeze(-1)
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = BCEWithLogitsLoss()
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
return tuple(
i
for i in [total_loss, start_logits, end_logits, result.hidden_states, result.attentions]
if i is not None
)
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=result.hidden_states,
attentions=result.attentions,
)
|
class_definition
| 43,277 | 47,027 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/ernie_m/modeling_ernie_m.py
| null | 10,237 |
class ErnieMTokenizer(PreTrainedTokenizer):
r"""
Constructs a Ernie-M tokenizer. It uses the `sentencepiece` tools to cut the words to sub-words.
Args:
sentencepiece_model_file (`str`):
The file path of sentencepiece model.
vocab_file (`str`, *optional*):
The file path of the vocabulary.
do_lower_case (`str`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
A special token representing the `unknown (out-of-vocabulary)` token. An unknown token is set to be
`unk_token` inorder to be converted to an ID.
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
A special token separating two different sentences in the same input.
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
A special token used to make arrays of tokens the same size for batching purposes.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
A special token used for sequence classification. It is the last token of the sequence when built with
special tokens.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
A special token representing a masked token. This is the token used in the masked language modeling task
which the model tries to predict the original unmasked ones.
"""
# Ernie-M model doesn't have token_type embedding.
model_input_names: List[str] = ["input_ids"]
vocab_files_names = VOCAB_FILES_NAMES
resource_files_names = RESOURCE_FILES_NAMES
def __init__(
self,
sentencepiece_model_ckpt,
vocab_file=None,
do_lower_case=False,
encoding="utf8",
unk_token="[UNK]",
sep_token="[SEP]",
pad_token="[PAD]",
cls_token="[CLS]",
mask_token="[MASK]",
sp_model_kwargs: Optional[Dict[str, Any]] = None,
**kwargs,
) -> None:
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
self.do_lower_case = do_lower_case
self.sentencepiece_model_ckpt = sentencepiece_model_ckpt
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(sentencepiece_model_ckpt)
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
if vocab_file is not None:
self.vocab = self.load_vocab(filepath=vocab_file)
else:
self.vocab = {self.sp_model.id_to_piece(id): id for id in range(self.sp_model.get_piece_size())}
self.reverse_vocab = {v: k for k, v in self.vocab.items()}
super().__init__(
do_lower_case=do_lower_case,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
vocab_file=vocab_file,
encoding=encoding,
sp_model_kwargs=self.sp_model_kwargs,
**kwargs,
)
def get_offset_mapping(self, text):
if text is None:
return None
split_tokens = self.tokenize(text)
normalized_text, char_mapping = "", []
for i, ch in enumerate(text):
if ch in self.SP_CHAR_MAPPING:
ch = self.SP_CHAR_MAPPING.get(ch)
else:
ch = unicodedata.normalize("NFKC", ch)
if self.is_whitespace(ch):
continue
normalized_text += ch
char_mapping.extend([i] * len(ch))
text, token_mapping, offset = normalized_text, [], 0
if self.do_lower_case:
text = text.lower()
for token in split_tokens:
if token[:1] == "▁":
token = token[1:]
start = text[offset:].index(token) + offset
end = start + len(token)
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1))
offset = end
return token_mapping
@property
def vocab_size(self):
return len(self.vocab)
def get_vocab(self):
return dict(self.vocab, **self.added_tokens_encoder)
def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
return state
def __setstate__(self, d):
self.__dict__ = d
# for backward compatibility
if not hasattr(self, "sp_model_kwargs"):
self.sp_model_kwargs = {}
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.sentencepiece_model_ckpt)
def clean_text(self, text):
"""Performs invalid character removal and whitespace cleanup on text."""
return "".join((self.SP_CHAR_MAPPING.get(c, c) for c in text))
def _tokenize(self, text, enable_sampling=False, nbest_size=64, alpha=0.1):
"""Tokenize a string."""
if self.sp_model_kwargs.get("enable_sampling") is True:
enable_sampling = True
if self.sp_model_kwargs.get("alpha") is not None:
alpha = self.sp_model_kwargs.get("alpha")
if self.sp_model_kwargs.get("nbest_size") is not None:
nbest_size = self.sp_model_kwargs.get("nbest_size")
if not enable_sampling:
pieces = self.sp_model.EncodeAsPieces(text)
else:
pieces = self.sp_model.SampleEncodeAsPieces(text, nbest_size, alpha)
new_pieces = []
for pi, piece in enumerate(pieces):
if piece == SPIECE_UNDERLINE:
if not pieces[pi + 1].startswith(SPIECE_UNDERLINE) and pi != 0:
new_pieces.append(SPIECE_UNDERLINE)
continue
else:
continue
lst_i = 0
for i, chunk in enumerate(piece):
if chunk == SPIECE_UNDERLINE:
continue
if self.is_ch_char(chunk) or self.is_punct(chunk):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i])
new_pieces.append(chunk)
lst_i = i + 1
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i])
lst_i = i
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i])
lst_i = i
if len(piece) > lst_i:
new_pieces.append(piece[lst_i:])
return new_pieces
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (strings for sub-words) in a single string."""
out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
return out_string
def convert_ids_to_string(self, ids):
"""
Converts a sequence of tokens (strings for sub-words) in a single string.
"""
tokens = self.convert_ids_to_tokens(ids)
out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
return out_string
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
def _convert_token_to_id(self, token):
return self.vocab.get(token, self.vocab.get(self.unk_token))
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.reverse_vocab.get(index, self.unk_token)
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
r"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. An ErnieM sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of input_id with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
_cls = [self.cls_token_id]
_sep = [self.sep_token_id]
return _cls + token_ids_0 + _sep + _sep + token_ids_1 + _sep
def build_offset_mapping_with_special_tokens(self, offset_mapping_0, offset_mapping_1=None):
r"""
Build offset map from a pair of offset map by concatenating and adding offsets of special tokens. An Ernie-M
offset_mapping has the following format:
- single sequence: `(0,0) X (0,0)`
- pair of sequences: `(0,0) A (0,0) (0,0) B (0,0)`
Args:
offset_mapping_ids_0 (`List[tuple]`):
List of char offsets to which the special tokens will be added.
offset_mapping_ids_1 (`List[tuple]`, *optional*):
Optional second list of wordpiece offsets for offset mapping pairs.
Returns:
`List[tuple]`: List of wordpiece offsets with the appropriate offsets of special tokens.
"""
if offset_mapping_1 is None:
return [(0, 0)] + offset_mapping_0 + [(0, 0)]
return [(0, 0)] + offset_mapping_0 + [(0, 0), (0, 0)] + offset_mapping_1 + [(0, 0)]
def get_special_tokens_mask(self, token_ids_0, token_ids_1=None, already_has_special_tokens=False):
r"""
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `encode` method.
Args:
token_ids_0 (`List[int]`):
List of ids of the first sequence.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`str`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`:
The list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
if token_ids_1 is not None:
raise ValueError(
"You should not supply a second sequence if the provided sequence of "
"ids is already formatted with special tokens for the model."
)
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_0]
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create the token type IDs corresponding to the sequences passed. [What are token type
IDs?](../glossary#token-type-ids) Should be overridden in a subclass if the model has a special way of
building: those.
Args:
token_ids_0 (`List[int]`):
The first tokenized sequence.
token_ids_1 (`List[int]`, *optional*):
The second tokenized sequence.
Returns:
`List[int]`: The token type ids.
"""
# called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method
if token_ids_1 is None:
# [CLS] X [SEP]
return (len(token_ids_0) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(token_ids_0) + 1) + [1] * (len(token_ids_1) + 3)
def is_ch_char(self, char):
"""
is_ch_char
"""
if "\u4e00" <= char <= "\u9fff":
return True
return False
def is_alpha(self, char):
"""
is_alpha
"""
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
return True
return False
def is_punct(self, char):
"""
is_punct
"""
if char in ",;:.?!~,;:。?!《》【】":
return True
return False
def is_whitespace(self, char):
"""
is whitespace
"""
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(char) == 1:
cat = unicodedata.category(char)
if cat == "Zs":
return True
return False
def load_vocab(self, filepath):
token_to_idx = {}
with io.open(filepath, "r", encoding="utf-8") as f:
for index, line in enumerate(f):
token = line.rstrip("\n")
token_to_idx[token] = int(index)
return token_to_idx
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
index = 0
if os.path.isdir(save_directory):
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
else:
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
with open(vocab_file, "w", encoding="utf-8") as writer:
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
" Please check that the vocabulary is not corrupted!"
)
index = token_index
writer.write(token + "\n")
index += 1
tokenizer_model_file = os.path.join(save_directory, "sentencepiece.bpe.model")
with open(tokenizer_model_file, "wb") as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
fi.write(content_spiece_model)
return (vocab_file,)
|
class_definition
| 1,317 | 16,168 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/ernie_m/tokenization_ernie_m.py
| null | 10,238 |
class ErnieMConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`ErnieMModel`]. It is used to instantiate a
Ernie-M model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the `Ernie-M`
[susnato/ernie-m-base_pytorch](https://huggingface.co/susnato/ernie-m-base_pytorch) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 250002):
Vocabulary size of `inputs_ids` in [`ErnieMModel`]. Also is the vocab size of token embedding matrix.
Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling
[`ErnieMModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the embedding layer, encoder layers and pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the feed-forward (ff) layer in the encoder. Input tensors to feed-forward layers are
firstly projected from hidden_size to intermediate_size, and then projected back to hidden_size. Typically
intermediate_size is larger than hidden_size.
hidden_act (`str`, *optional*, defaults to `"gelu"`):
The non-linear activation function in the feed-forward layer. `"gelu"`, `"relu"` and any other torch
supported activation functions are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings and encoder.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability used in `MultiHeadAttention` in all encoder layers to drop some attention target.
max_position_embeddings (`int`, *optional*, defaults to 514):
The maximum value of the dimensionality of position encoding, which dictates the maximum supported length
of an input sequence.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the normal initializer for initializing all weight matrices. The index of padding
token in the token vocabulary.
pad_token_id (`int`, *optional*, defaults to 1):
Padding token id.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
classifier_dropout (`float`, *optional*):
The dropout ratio for the classification head.
act_dropout (`float`, *optional*, defaults to 0.0):
This dropout probability is used in `ErnieMEncoderLayer` after activation.
A normal_initializer initializes weight matrices as normal distributions. See
`ErnieMPretrainedModel._init_weights()` for how weights are initialized in `ErnieMModel`.
"""
model_type = "ernie_m"
attribute_map: Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"}
def __init__(
self,
vocab_size: int = 250002,
hidden_size: int = 768,
num_hidden_layers: int = 12,
num_attention_heads: int = 12,
intermediate_size: int = 3072,
hidden_act: str = "gelu",
hidden_dropout_prob: float = 0.1,
attention_probs_dropout_prob: float = 0.1,
max_position_embeddings: int = 514,
initializer_range: float = 0.02,
pad_token_id: int = 1,
layer_norm_eps: float = 1e-05,
classifier_dropout=None,
act_dropout=0.0,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.classifier_dropout = classifier_dropout
self.act_dropout = act_dropout
|
class_definition
| 1,008 | 5,884 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/ernie_m/configuration_ernie_m.py
| null | 10,239 |
class VanDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
|
class_definition
| 2,813 | 3,290 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/van/modeling_van.py
| null | 10,240 |
class VanOverlappingPatchEmbedder(nn.Module):
"""
Downsamples the input using a patchify operation with a `stride` of 4 by default making adjacent windows overlap by
half of the area. From [PVTv2: Improved Baselines with Pyramid Vision
Transformer](https://arxiv.org/abs/2106.13797).
"""
def __init__(self, in_channels: int, hidden_size: int, patch_size: int = 7, stride: int = 4):
super().__init__()
self.convolution = nn.Conv2d(
in_channels, hidden_size, kernel_size=patch_size, stride=stride, padding=patch_size // 2
)
self.normalization = nn.BatchNorm2d(hidden_size)
def forward(self, input: torch.Tensor) -> torch.Tensor:
hidden_state = self.convolution(input)
hidden_state = self.normalization(hidden_state)
return hidden_state
|
class_definition
| 3,293 | 4,124 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/van/modeling_van.py
| null | 10,241 |
class VanMlpLayer(nn.Module):
"""
MLP with depth-wise convolution, from [PVTv2: Improved Baselines with Pyramid Vision
Transformer](https://arxiv.org/abs/2106.13797).
"""
def __init__(
self,
in_channels: int,
hidden_size: int,
out_channels: int,
hidden_act: str = "gelu",
dropout_rate: float = 0.5,
):
super().__init__()
self.in_dense = nn.Conv2d(in_channels, hidden_size, kernel_size=1)
self.depth_wise = nn.Conv2d(hidden_size, hidden_size, kernel_size=3, padding=1, groups=hidden_size)
self.activation = ACT2FN[hidden_act]
self.dropout1 = nn.Dropout(dropout_rate)
self.out_dense = nn.Conv2d(hidden_size, out_channels, kernel_size=1)
self.dropout2 = nn.Dropout(dropout_rate)
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
hidden_state = self.in_dense(hidden_state)
hidden_state = self.depth_wise(hidden_state)
hidden_state = self.activation(hidden_state)
hidden_state = self.dropout1(hidden_state)
hidden_state = self.out_dense(hidden_state)
hidden_state = self.dropout2(hidden_state)
return hidden_state
|
class_definition
| 4,127 | 5,338 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/van/modeling_van.py
| null | 10,242 |
class VanLargeKernelAttention(nn.Module):
"""
Basic Large Kernel Attention (LKA).
"""
def __init__(self, hidden_size: int):
super().__init__()
self.depth_wise = nn.Conv2d(hidden_size, hidden_size, kernel_size=5, padding=2, groups=hidden_size)
self.depth_wise_dilated = nn.Conv2d(
hidden_size, hidden_size, kernel_size=7, dilation=3, padding=9, groups=hidden_size
)
self.point_wise = nn.Conv2d(hidden_size, hidden_size, kernel_size=1)
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
hidden_state = self.depth_wise(hidden_state)
hidden_state = self.depth_wise_dilated(hidden_state)
hidden_state = self.point_wise(hidden_state)
return hidden_state
|
class_definition
| 5,341 | 6,106 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/van/modeling_van.py
| null | 10,243 |
class VanLargeKernelAttentionLayer(nn.Module):
"""
Computes attention using Large Kernel Attention (LKA) and attends the input.
"""
def __init__(self, hidden_size: int):
super().__init__()
self.attention = VanLargeKernelAttention(hidden_size)
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
attention = self.attention(hidden_state)
attended = hidden_state * attention
return attended
|
class_definition
| 6,109 | 6,569 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/van/modeling_van.py
| null | 10,244 |
class VanSpatialAttentionLayer(nn.Module):
"""
Van spatial attention layer composed by projection (via conv) -> act -> Large Kernel Attention (LKA) attention ->
projection (via conv) + residual connection.
"""
def __init__(self, hidden_size: int, hidden_act: str = "gelu"):
super().__init__()
self.pre_projection = nn.Sequential(
OrderedDict(
[
("conv", nn.Conv2d(hidden_size, hidden_size, kernel_size=1)),
("act", ACT2FN[hidden_act]),
]
)
)
self.attention_layer = VanLargeKernelAttentionLayer(hidden_size)
self.post_projection = nn.Conv2d(hidden_size, hidden_size, kernel_size=1)
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
residual = hidden_state
hidden_state = self.pre_projection(hidden_state)
hidden_state = self.attention_layer(hidden_state)
hidden_state = self.post_projection(hidden_state)
hidden_state = hidden_state + residual
return hidden_state
|
class_definition
| 6,572 | 7,657 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/van/modeling_van.py
| null | 10,245 |
class VanLayerScaling(nn.Module):
"""
Scales the inputs by a learnable parameter initialized by `initial_value`.
"""
def __init__(self, hidden_size: int, initial_value: float = 1e-2):
super().__init__()
self.weight = nn.Parameter(initial_value * torch.ones((hidden_size)), requires_grad=True)
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
# unsqueezing for broadcasting
hidden_state = self.weight.unsqueeze(-1).unsqueeze(-1) * hidden_state
return hidden_state
|
class_definition
| 7,660 | 8,198 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/van/modeling_van.py
| null | 10,246 |
class VanLayer(nn.Module):
"""
Van layer composed by normalization layers, large kernel attention (LKA) and a multi layer perceptron (MLP).
"""
def __init__(
self,
config: VanConfig,
hidden_size: int,
mlp_ratio: int = 4,
drop_path_rate: float = 0.5,
):
super().__init__()
self.drop_path = VanDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
self.pre_normomalization = nn.BatchNorm2d(hidden_size)
self.attention = VanSpatialAttentionLayer(hidden_size, config.hidden_act)
self.attention_scaling = VanLayerScaling(hidden_size, config.layer_scale_init_value)
self.post_normalization = nn.BatchNorm2d(hidden_size)
self.mlp = VanMlpLayer(
hidden_size, hidden_size * mlp_ratio, hidden_size, config.hidden_act, config.dropout_rate
)
self.mlp_scaling = VanLayerScaling(hidden_size, config.layer_scale_init_value)
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
residual = hidden_state
# attention
hidden_state = self.pre_normomalization(hidden_state)
hidden_state = self.attention(hidden_state)
hidden_state = self.attention_scaling(hidden_state)
hidden_state = self.drop_path(hidden_state)
# residual connection
hidden_state = residual + hidden_state
residual = hidden_state
# mlp
hidden_state = self.post_normalization(hidden_state)
hidden_state = self.mlp(hidden_state)
hidden_state = self.mlp_scaling(hidden_state)
hidden_state = self.drop_path(hidden_state)
# residual connection
hidden_state = residual + hidden_state
return hidden_state
|
class_definition
| 8,201 | 9,955 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/van/modeling_van.py
| null | 10,247 |
class VanStage(nn.Module):
"""
VanStage, consisting of multiple layers.
"""
def __init__(
self,
config: VanConfig,
in_channels: int,
hidden_size: int,
patch_size: int,
stride: int,
depth: int,
mlp_ratio: int = 4,
drop_path_rate: float = 0.0,
):
super().__init__()
self.embeddings = VanOverlappingPatchEmbedder(in_channels, hidden_size, patch_size, stride)
self.layers = nn.Sequential(
*[
VanLayer(
config,
hidden_size,
mlp_ratio=mlp_ratio,
drop_path_rate=drop_path_rate,
)
for _ in range(depth)
]
)
self.normalization = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
hidden_state = self.embeddings(hidden_state)
hidden_state = self.layers(hidden_state)
# rearrange b c h w -> b (h w) c
batch_size, hidden_size, height, width = hidden_state.shape
hidden_state = hidden_state.flatten(2).transpose(1, 2)
hidden_state = self.normalization(hidden_state)
# rearrange b (h w) c- > b c h w
hidden_state = hidden_state.view(batch_size, height, width, hidden_size).permute(0, 3, 1, 2)
return hidden_state
|
class_definition
| 9,958 | 11,384 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/van/modeling_van.py
| null | 10,248 |
class VanEncoder(nn.Module):
"""
VanEncoder, consisting of multiple stages.
"""
def __init__(self, config: VanConfig):
super().__init__()
self.stages = nn.ModuleList([])
patch_sizes = config.patch_sizes
strides = config.strides
hidden_sizes = config.hidden_sizes
depths = config.depths
mlp_ratios = config.mlp_ratios
drop_path_rates = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))]
for num_stage, (patch_size, stride, hidden_size, depth, mlp_expantion, drop_path_rate) in enumerate(
zip(patch_sizes, strides, hidden_sizes, depths, mlp_ratios, drop_path_rates)
):
is_first_stage = num_stage == 0
in_channels = hidden_sizes[num_stage - 1]
if is_first_stage:
in_channels = config.num_channels
self.stages.append(
VanStage(
config,
in_channels,
hidden_size,
patch_size=patch_size,
stride=stride,
depth=depth,
mlp_ratio=mlp_expantion,
drop_path_rate=drop_path_rate,
)
)
def forward(
self,
hidden_state: torch.Tensor,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple, BaseModelOutputWithNoAttention]:
all_hidden_states = () if output_hidden_states else None
for _, stage_module in enumerate(self.stages):
hidden_state = stage_module(hidden_state)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, all_hidden_states] if v is not None)
return BaseModelOutputWithNoAttention(last_hidden_state=hidden_state, hidden_states=all_hidden_states)
|
class_definition
| 11,387 | 13,398 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/van/modeling_van.py
| null | 10,249 |
class VanPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = VanConfig
base_model_prefix = "van"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
nn.init.trunc_normal_(module.weight, std=self.config.initializer_range)
if isinstance(module, nn.Linear) and module.bias is not None:
nn.init.constant_(module.bias, 0)
elif isinstance(module, nn.LayerNorm):
nn.init.constant_(module.bias, 0)
nn.init.constant_(module.weight, 1.0)
elif isinstance(module, nn.Conv2d):
fan_out = module.kernel_size[0] * module.kernel_size[1] * module.out_channels
fan_out //= module.groups
module.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
if module.bias is not None:
module.bias.data.zero_()
|
class_definition
| 13,401 | 14,517 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/van/modeling_van.py
| null | 10,250 |
class VanModel(VanPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.encoder = VanEncoder(config)
# final layernorm layer
self.layernorm = nn.LayerNorm(config.hidden_sizes[-1], eps=config.layer_norm_eps)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(VAN_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPoolingAndNoAttention,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: Optional[torch.FloatTensor],
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPoolingAndNoAttention]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_outputs = self.encoder(
pixel_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
# global average pooling, n c w h -> n c
pooled_output = last_hidden_state.mean(dim=[-2, -1])
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
)
|
class_definition
| 15,932 | 17,760 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/van/modeling_van.py
| null | 10,251 |
class VanForImageClassification(VanPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.van = VanModel(config)
# Classifier head
self.classifier = (
nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(VAN_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=ImageClassifierOutputWithNoAttention,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, ImageClassifierOutputWithNoAttention]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.van(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
pooled_output = outputs.pooler_output if return_dict else outputs[1]
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.config.num_labels == 1:
self.config.problem_type = "regression"
elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.config.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states)
|
class_definition
| 17,956 | 21,129 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/van/modeling_van.py
| null | 10,252 |
class VanConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`VanModel`]. It is used to instantiate a VAN model
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the VAN
[Visual-Attention-Network/van-base](https://huggingface.co/Visual-Attention-Network/van-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
patch_sizes (`List[int]`, *optional*, defaults to `[7, 3, 3, 3]`):
Patch size to use in each stage's embedding layer.
strides (`List[int]`, *optional*, defaults to `[4, 2, 2, 2]`):
Stride size to use in each stage's embedding layer to downsample the input.
hidden_sizes (`List[int]`, *optional*, defaults to `[64, 128, 320, 512]`):
Dimensionality (hidden size) at each stage.
depths (`List[int]`, *optional*, defaults to `[3, 3, 12, 3]`):
Depth (number of layers) for each stage.
mlp_ratios (`List[int]`, *optional*, defaults to `[8, 8, 4, 4]`):
The expansion ratio for mlp layer at each stage.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in each layer. If string, `"gelu"`, `"relu"`,
`"selu"` and `"gelu_new"` are supported.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
layer_scale_init_value (`float`, *optional*, defaults to 0.01):
The initial value for layer scaling.
drop_path_rate (`float`, *optional*, defaults to 0.0):
The dropout probability for stochastic depth.
dropout_rate (`float`, *optional*, defaults to 0.0):
The dropout probability for dropout.
Example:
```python
>>> from transformers import VanModel, VanConfig
>>> # Initializing a VAN van-base style configuration
>>> configuration = VanConfig()
>>> # Initializing a model from the van-base style configuration
>>> model = VanModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "van"
def __init__(
self,
image_size=224,
num_channels=3,
patch_sizes=[7, 3, 3, 3],
strides=[4, 2, 2, 2],
hidden_sizes=[64, 128, 320, 512],
depths=[3, 3, 12, 3],
mlp_ratios=[8, 8, 4, 4],
hidden_act="gelu",
initializer_range=0.02,
layer_norm_eps=1e-6,
layer_scale_init_value=1e-2,
drop_path_rate=0.0,
dropout_rate=0.0,
**kwargs,
):
super().__init__(**kwargs)
self.image_size = image_size
self.num_channels = num_channels
self.patch_sizes = patch_sizes
self.strides = strides
self.hidden_sizes = hidden_sizes
self.depths = depths
self.mlp_ratios = mlp_ratios
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.layer_scale_init_value = layer_scale_init_value
self.drop_path_rate = drop_path_rate
self.dropout_rate = dropout_rate
|
class_definition
| 782 | 4,656 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/van/configuration_van.py
| null | 10,253 |
class Tracker:
module: nn.Module
traced: List[nn.Module] = field(default_factory=list)
handles: list = field(default_factory=list)
def _forward_hook(self, m, inputs: Tensor, outputs: Tensor):
has_not_submodules = len(list(m.modules())) == 1 or isinstance(m, nn.Conv2d) or isinstance(m, nn.BatchNorm2d)
if has_not_submodules:
if not isinstance(m, VanLayerScaling):
self.traced.append(m)
def __call__(self, x: Tensor):
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook))
self.module(x)
[x.remove() for x in self.handles]
return self
@property
def parametrized(self):
# check the len of the state_dict keys to see if we have learnable params
return list(filter(lambda x: len(list(x.state_dict().keys())) > 0, self.traced))
|
class_definition
| 1,379 | 2,278 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/van/convert_van_to_pytorch.py
| null | 10,254 |
class ModuleTransfer:
src: nn.Module
dest: nn.Module
verbose: int = 0
src_skip: List = field(default_factory=list)
dest_skip: List = field(default_factory=list)
def __call__(self, x: Tensor):
"""
Transfer the weights of `self.src` to `self.dest` by performing a forward pass using `x` as input. Under the
hood we tracked all the operations in both modules.
"""
dest_traced = Tracker(self.dest)(x).parametrized
src_traced = Tracker(self.src)(x).parametrized
src_traced = list(filter(lambda x: type(x) not in self.src_skip, src_traced))
dest_traced = list(filter(lambda x: type(x) not in self.dest_skip, dest_traced))
if len(dest_traced) != len(src_traced):
raise Exception(
f"Numbers of operations are different. Source module has {len(src_traced)} operations while"
f" destination module has {len(dest_traced)}."
)
for dest_m, src_m in zip(dest_traced, src_traced):
dest_m.load_state_dict(src_m.state_dict())
if self.verbose == 1:
print(f"Transfered from={src_m} to={dest_m}")
|
class_definition
| 2,292 | 3,472 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/van/convert_van_to_pytorch.py
| null | 10,255 |
class TvltConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`TvltModel`]. It is used to instantiate a TVLT
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the TVLT
[ZinengTang/tvlt-base](https://huggingface.co/ZinengTang/tvlt-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
spectrogram_length (`int`, *optional*, defaults to 2048):
The time length of each audio spectrogram.
frequency_length (`int`, *optional*, defaults to 128):
The frequency length of audio spectrogram.
image_patch_size (`List[int]`, *optional*, defaults to `[16, 16]`):
The size (resolution) of each image patch.
audio_patch_size (`List[int]`, *optional*, defaults to `[16, 16]`):
The size (resolution) of each audio patch.
num_image_channels (`int`, *optional*, defaults to 3):
The number of input image channels.
num_audio_channels (`int`, *optional*, defaults to 1):
The number of input audio channels.
num_frames (`int`, *optional*, defaults to 8):
The maximum number of frames for an input video.
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether to add a bias to the queries, keys and values.
use_mean_pooling (`bool`, *optional*, defaults to `False`):
Whether to mean pool the final hidden states instead of using the final hidden state of the [CLS] token.
decoder_num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the decoder.
decoder_hidden_size (`int`, *optional*, defaults to 512):
Dimensionality of the decoder.
decoder_num_hidden_layers (`int`, *optional*, defaults to 8):
Number of hidden layers in the decoder.
decoder_intermediate_size (`int`, *optional*, defaults to 2048):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the decoder.
pixel_mask_ratio (`float`, *optional*, defaults to 0.75):
Image patch masking ratio.
audio_mask_ratio (`float`, *optional*, defaults to 0.15):
Audio patch masking ratio.
audio_mask_type (`str`, *optional*, defaults to `"frame-level"`):
Audio patch masking type, choose between "frame-level" and "patch-level".
task_matching (`bool`, *optional*, defaults to `True`):
Whether to use vision audio matching task in pretraining.
task_mae (`bool`, *optional*, defaults to `True`):
Whether to use the masked auto-encoder (MAE) in pretraining.
loss_type (`str`, *optional*, defaults to `"classification"`):
Loss types including regression and classification.
Example:
```python
>>> from transformers import TvltConfig, TvltModel
>>> # # Initializing a TVLT ZinengTang/tvlt-base style configuration
>>> configuration = TvltConfig()
>>> # # Initializing a model (with random weights) from the ZinengTang/tvlt-base style configuration
>>> model = TvltModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "tvlt"
def __init__(
self,
image_size=224,
spectrogram_length=2048,
frequency_length=128,
image_patch_size=[16, 16],
audio_patch_size=[16, 16],
num_image_channels=3,
num_audio_channels=1,
num_frames=8,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
initializer_range=0.02,
layer_norm_eps=1e-6,
qkv_bias=True,
use_mean_pooling=False,
decoder_num_attention_heads=16,
decoder_hidden_size=512,
decoder_num_hidden_layers=8,
decoder_intermediate_size=2048,
pixel_mask_ratio=0.75,
audio_mask_ratio=0.15,
audio_mask_type="frame-level",
task_matching=True,
task_mae=True,
loss_type="classification",
**kwargs,
):
super().__init__(**kwargs)
if audio_mask_type not in ("frame-level", "patch_level"):
raise ValueError(
"audio_mask_type must be one of two acceptable strategies - {'frame_level', 'patch-level') "
f"got {audio_mask_type}"
)
self.image_size = image_size
self.spectrogram_length = spectrogram_length
self.frequency_length = frequency_length
self.image_patch_size = image_patch_size
self.audio_patch_size = audio_patch_size
self.num_image_channels = num_image_channels
self.num_audio_channels = num_audio_channels
self.num_frames = num_frames
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.qkv_bias = qkv_bias
self.use_mean_pooling = use_mean_pooling
self.decoder_num_attention_heads = decoder_num_attention_heads
self.decoder_hidden_size = decoder_hidden_size
self.decoder_num_hidden_layers = decoder_num_hidden_layers
self.decoder_intermediate_size = decoder_intermediate_size
self.pixel_mask_ratio = pixel_mask_ratio
self.audio_mask_ratio = audio_mask_ratio
self.audio_mask_type = audio_mask_type
self.task_matching = task_matching
self.task_mae = task_mae
self.loss_type = loss_type
|
class_definition
| 797 | 8,622 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/tvlt/configuration_tvlt.py
| null | 10,256 |
class TvltProcessor(ProcessorMixin):
r"""
Constructs a TVLT processor which wraps a TVLT image processor and TVLT feature extractor into a single processor.
[`TvltProcessor`] offers all the functionalities of [`TvltImageProcessor`] and [`TvltFeatureExtractor`]. See the
docstring of [`~TvltProcessor.__call__`] for more information.
Args:
image_processor (`TvltImageProcessor`):
An instance of [`TvltImageProcessor`]. The image processor is a required input.
feature_extractor (`TvltFeatureExtractor`):
An instance of [`TvltFeatureExtractor`]. The feature extractor is a required input.
"""
attributes = ["image_processor", "feature_extractor"]
image_processor_class = "TvltImageProcessor"
feature_extractor_class = "TvltFeatureExtractor"
def __init__(self, image_processor, feature_extractor):
super().__init__(image_processor=image_processor, feature_extractor=feature_extractor)
self.image_processor = image_processor
self.feature_extractor = feature_extractor
def __call__(
self,
images=None,
audio=None,
images_mixed=None,
sampling_rate=None,
mask_audio=False,
mask_pixel=False,
*args,
**kwargs,
):
"""
Forwards the `images` argument to TvltImageProcessor's [`~TvltImageProcessor.preprocess`] and the `audio`
argument to TvltFeatureExtractor's [`~TvltFeatureExtractor.__call__`]. Please refer to the docstring of the
above two methods for more information.
"""
if images is None and audio is None:
raise ValueError("You need to specify either an `images` or `audio` input to process.")
images_mixed_dict = None
if images is not None:
images_dict = self.image_processor(images, mask_pixel=mask_pixel, *args, **kwargs)
if images_mixed is not None:
images_mixed_dict = self.image_processor(images_mixed, is_mixed=True, *args, **kwargs)
if audio is not None:
audio_dict = self.feature_extractor(
audio, *args, sampling_rate=sampling_rate, mask_audio=mask_audio, **kwargs
)
output_dict = {}
if audio is not None:
output_dict.update(audio_dict)
if images is not None:
output_dict.update(images_dict)
if images_mixed_dict is not None:
output_dict.update(images_mixed_dict)
return output_dict
@property
def model_input_names(self):
image_processor_input_names = self.image_processor.model_input_names
feature_extractor_input_names = self.feature_extractor.model_input_names
return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
|
class_definition
| 690 | 3,506 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/tvlt/processing_tvlt.py
| null | 10,257 |
class TvltImageProcessor(BaseImageProcessor):
r"""
Constructs a TVLT image processor.
This processor can be used to prepare either videos or images for the model by converting images to 1-frame videos.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
`do_resize` parameter in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
Size of the output image after resizing. The shortest edge of the image will be resized to
`size["shortest_edge"]` while maintaining the aspect ratio of the original image. Can be overriden by
`size` in the `preprocess` method.
patch_size (`List[int]` *optional*, defaults to [16,16]):
The patch size of image patch embedding.
num_frames (`int` *optional*, defaults to 8):
The maximum number of video frames.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
`preprocess` method.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to center crop the image to the specified `crop_size`. Can be overridden by the `do_center_crop`
parameter in the `preprocess` method.
crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
Size of the image after applying the center crop. Can be overridden by the `crop_size` parameter in the
`preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to 1/255):
Defines the scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter
in the `preprocess` method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
"""
model_input_names = [
"pixel_values",
"pixel_mask",
"pixel_values_mixed",
"pixel_mask_mixed",
]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
patch_size: List[int] = [16, 16],
num_frames: int = 8,
resample: PILImageResampling = PILImageResampling.BILINEAR,
do_center_crop: bool = True,
crop_size: Dict[str, int] = None,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = IMAGENET_STANDARD_MEAN,
image_std: Optional[Union[float, List[float]]] = IMAGENET_STANDARD_STD,
init_mask_generator=False,
**kwargs,
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"shortest_edge": 224}
size = get_size_dict(size, default_to_square=False)
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
crop_size = get_size_dict(crop_size, param_name="crop_size")
self.do_resize = do_resize
self.size = size
self.patch_size = patch_size
self.num_frames = num_frames
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self._valid_processor_keys = [
"videos",
"do_resize",
"size",
"patch_size",
"num_frames",
"resample",
"do_center_crop",
"crop_size",
"do_rescale",
"rescale_factor",
"do_normalize",
"image_mean",
"image_std",
"is_mixed",
"return_tensors",
"data_format",
"input_data_format",
]
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BILINEAR,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image. If `size` is of the form `{"height": h, "width": w}`, the output image will
have the size `(h, w)`. If `size` is of the form `{"shortest_edge": s}`, the output image will have its
shortest edge of length `s` while keeping the aspect ratio of the original image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
size = get_size_dict(size, default_to_square=False)
if "shortest_edge" in size:
output_size = get_resize_output_image_size(
image, size["shortest_edge"], default_to_square=False, input_data_format=input_data_format
)
elif "height" in size and "width" in size:
output_size = (size["height"], size["width"])
else:
raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}")
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def _preprocess_image(
self,
image: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""Preprocesses a single image."""
validate_preprocess_arguments(
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_resize=do_resize,
size=size,
resample=resample,
)
# All transformations expect numpy arrays.
image = to_numpy_array(image)
if do_rescale and is_scaled_image(image):
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
input_data_format = infer_channel_dimension_format(image)
if do_resize:
image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
if do_center_crop:
image = self.center_crop(image, size=crop_size, input_data_format=input_data_format)
if do_rescale:
image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
if do_normalize:
image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
return image
def preprocess(
self,
videos: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
patch_size: List[int] = None,
num_frames: int = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
is_mixed: bool = False,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> BatchFeature:
"""
Preprocess an videos or image or batch of videos or images.
Args:
videos (`ImageInput`):
Images or videos to preprocess. Expects a single or batch of frames with pixel values ranging from 0 to
255. If passing in frames with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after applying resize.
patch_size (`List[int]` *optional*, defaults to self.patch_size):
The patch size of image patch embedding.
num_frames (`int` *optional*, defaults to self.num_frames):
The maximum number of video frames.
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
has an effect if `do_resize` is set to `True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_centre_crop`):
Whether to centre crop the image.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the image after applying the centre crop.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation.
is_mixed (`bool`, *optional*):
If the input video has negative samples.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the inferred channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **pixel_values** -- Pixel values to be fed to a model, of shape (batch_size, num_channels, height,
width).
- **pixel_mask** -- Pixel masks to be fed to a model, of shape (batch_size, num_pixel_patches).
- **pixel_values_mixed** -- Pixel values with both postive or negative to be fed to a model, of shape
(batch_size, num_channels, height, width).
- **pixel_mask_mixed** -- Pixel masks with both postive or negative to be fed to a model, of shape
(batch_size, num_pixel_patches).
"""
do_resize = do_resize if do_resize is not None else self.do_resize
resample = resample if resample is not None else self.resample
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
size = size if size is not None else self.size
size = get_size_dict(size, default_to_square=False)
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size, param_name="crop_size")
patch_size = patch_size if patch_size is not None else self.patch_size
num_frames = num_frames if patch_size is not None else self.num_frames
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
if not valid_images(videos):
raise ValueError(
"Invalid image or video type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
videos = make_batched(videos)
# Check number of frames is fewer than maximum frames
for video in videos:
if len(video) > self.num_frames:
raise ValueError(
f"number of frames must not be greater than the maximum frames of the model {self.num_frames}."
)
max_num_frames = max([len(video) for video in videos])
num_patches_per_image = (size["shortest_edge"] // patch_size[0]) ** 2
video_masks = np.array(
[
len(video) * num_patches_per_image * [1] + (max_num_frames - len(video)) * num_patches_per_image * [0]
for video in videos
]
)
videos = [
[
self._preprocess_image(
image=img,
do_resize=do_resize,
size=size,
resample=resample,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
data_format=data_format,
input_data_format=input_data_format,
)
for img in video
]
for video in videos
]
# If videos contain both positive/negative, use mixed key for video-audio matching task
if is_mixed:
data = {"pixel_values_mixed": videos, "pixel_mask_mixed": video_masks}
else:
data = {"pixel_values": videos, "pixel_mask": video_masks}
return BatchFeature(data=data, tensor_type=return_tensors)
|
class_definition
| 2,050 | 20,089 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/tvlt/image_processing_tvlt.py
| null | 10,258 |
class TvltModelOutput(ModelOutput):
"""
Class for TvltModel's outputs, with potential hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
last_pixel_hidden_state (`torch.FloatTensor` of shape `(batch_size, pixel_sequence_length, hidden_size)`):
Pixel sequence of hidden-states at the output of the last layer of the model.
last_audio_hidden_state (`torch.FloatTensor` of shape `(batch_size, audio_sequence_length, hidden_size)`):
Audio sequence of hidden-states at the output of the last layer of the model.
pixel_label_masks (`torch.FloatTensor` of shape `(batch_size, pixel_patch_length)`):
Tensor indicating which pixel patches are masked (1) and which are not (0).
audio_label_masks (`torch.FloatTensor` of shape `(batch_size, audio_patch_length)`):
Tensor indicating which audio patches are masked (1) and which are not (0).
pixel_ids_restore (`torch.LongTensor` of shape `(batch_size, pixel_patch_length)`):
Tensor containing the ids permutation of pixel masking.
audio_ids_restore (`torch.LongTensor` of shape `(batch_size, audio_patch_length)`):
Tensor containing the ids permutation of audio masking.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
"""
last_hidden_state: torch.FloatTensor = None
last_pixel_hidden_state: torch.FloatTensor = None
last_audio_hidden_state: torch.FloatTensor = None
pixel_label_masks: torch.LongTensor = None
audio_label_masks: torch.LongTensor = None
pixel_ids_restore: torch.LongTensor = None
audio_ids_restore: torch.LongTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
class_definition
| 1,505 | 4,268 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/tvlt/modeling_tvlt.py
| null | 10,259 |
class TvltDecoderOutput(ModelOutput):
"""
Class for TvltDecoder's outputs, with potential hidden states and attentions.
Args:
logits (`torch.FloatTensor` of shape `(batch_size, patch_size ** 2 * num_channels)`):
Pixel reconstruction logits.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
"""
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
class_definition
| 4,282 | 5,598 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/tvlt/modeling_tvlt.py
| null | 10,260 |
class TvltForPreTrainingOutput(ModelOutput):
"""
Class for TvltForPreTraining's outputs, with potential hidden states and attentions.
Args:
loss (`torch.FloatTensor` of shape `(1,)`):
Pixel reconstruction loss.
matching_logits (`torch.FloatTensor` of shape `(batch_size, 1)`):
Matching objective logits.
pixel_logits (`torch.FloatTensor` of shape
`(batch_size, pixel_patch_length, image_patch_size ** 3 * pixel_num_channels)`): Pixel reconstruction
logits.
audio_logits (`torch.FloatTensor` of shape
`(batch_size, audio_patch_length, image_patch_size[0] * image_patch_size[1])`): Audio reconstruction
logits.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
"""
loss: Optional[torch.FloatTensor] = None
matching_logits: torch.FloatTensor = None
pixel_logits: torch.FloatTensor = None
audio_logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
class_definition
| 5,612 | 7,520 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/tvlt/modeling_tvlt.py
| null | 10,261 |
class TvltPixelEmbeddings(nn.Module):
"""Construct the patch and position embeddings."""
def __init__(self, config):
super().__init__()
self.patch_embeddings = TvltPixelPatchEmbeddings(config)
self.num_patches_per_image = self.patch_embeddings.num_patches_per_image
self.type_embed_v = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
self.temporal_embed = nn.Parameter(torch.zeros(1, config.num_frames, config.hidden_size))
self.pos_embed_v = nn.Parameter(torch.zeros(1, self.num_patches_per_image, config.hidden_size))
self.config = config
def forward(self, pixel_values, attention_masks=None):
# create patch embeddings
batch_size, num_frames, num_channels, height, width = pixel_values.shape
embeddings = self.patch_embeddings(pixel_values)
embeddings += self.pos_embed_v.repeat(1, num_frames, 1)
embeddings += torch.repeat_interleave(self.temporal_embed[:, :num_frames], self.num_patches_per_image, dim=1)
embeddings += self.type_embed_v
return embeddings, attention_masks
|
class_definition
| 9,767 | 10,878 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/tvlt/modeling_tvlt.py
| null | 10,262 |
class TvltAudioEmbeddings(nn.Module):
"""Construct the patch and position embeddings."""
def __init__(self, config):
super().__init__()
self.patch_embeddings = TvltAudioPatchEmbeddings(config)
self.num_patches = self.patch_embeddings.num_patches
self.type_embed_a = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
self.num_freq_patches = config.frequency_length // config.audio_patch_size[1]
self.pos_embed_a = nn.Parameter(torch.zeros(1, self.num_patches // self.num_freq_patches, config.hidden_size))
self.freq_embed = nn.Parameter(torch.zeros(1, self.num_freq_patches, config.hidden_size))
self.num_freq_patches = config.frequency_length // config.audio_patch_size[1]
self.config = config
def forward(self, audio_values, attention_masks=None):
# create patch embeddings
embeddings = self.patch_embeddings(audio_values)
num_time_patches = embeddings.size(1) // self.num_freq_patches
embeddings += self.freq_embed.repeat(1, num_time_patches, 1)
embeddings += torch.repeat_interleave(self.pos_embed_a[:, :num_time_patches], self.num_freq_patches, dim=1)
embeddings += self.type_embed_a
return embeddings, attention_masks
|
class_definition
| 10,881 | 12,152 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/tvlt/modeling_tvlt.py
| null | 10,263 |
class TvltPixelPatchEmbeddings(nn.Module):
"""
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
Transformer.
"""
def __init__(self, config):
super().__init__()
image_size, patch_size = config.image_size, config.image_patch_size
num_channels, hidden_size = config.num_image_channels, config.hidden_size
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
num_patches_per_image = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.num_patches_per_image = num_patches_per_image
self.hidden_size = hidden_size
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
batch_size, num_frames, num_channels, height, width = pixel_values.shape
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
if height != self.image_size[0] or width != self.image_size[1]:
raise ValueError(
f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})."
)
pixel_values = pixel_values.reshape(batch_size * num_frames, num_channels, height, width)
embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2)
embeddings = embeddings.reshape(batch_size, num_frames * self.num_patches_per_image, self.hidden_size)
return embeddings
|
class_definition
| 12,155 | 14,221 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/tvlt/modeling_tvlt.py
| null | 10,264 |
class TvltAudioPatchEmbeddings(nn.Module):
"""
This class turns `audio_values` of shape `(batch_size, num_channels, height, width)` into the initial
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
Transformer.
"""
def __init__(self, config):
super().__init__()
spectrogram_length, frequency_length, patch_size = (
config.spectrogram_length,
config.frequency_length,
config.audio_patch_size,
)
num_channels, hidden_size = config.num_audio_channels, config.hidden_size
spectrogram_size = (spectrogram_length, frequency_length)
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
num_patches = (spectrogram_size[1] // patch_size[1]) * (spectrogram_size[0] // patch_size[0])
patch_shape = (spectrogram_size[0] // patch_size[0], spectrogram_size[1] // patch_size[1])
self.spectrogram_size = spectrogram_size
self.patch_size = patch_size
self.num_channels = num_channels
self.num_patches = num_patches
self.patch_shape = patch_shape
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
def forward(self, audio_values: torch.Tensor) -> torch.Tensor:
batch_size, num_channels, height, width = audio_values.shape
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
if height > self.spectrogram_size[0] or width != self.spectrogram_size[1]:
raise ValueError(
f"Input audio size ({height}*{width}) doesn't match model"
f" ({self.spectrogram_size[0]}*{self.spectrogram_size[1]})."
)
embeddings = self.projection(audio_values).flatten(2).transpose(1, 2)
return embeddings
|
class_definition
| 14,224 | 16,264 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/tvlt/modeling_tvlt.py
| null | 10,265 |
class TvltSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
f"heads {config.num_attention_heads}."
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False):
mixed_query_layer = self.query(hidden_states)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
|
class_definition
| 16,267 | 19,164 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/tvlt/modeling_tvlt.py
| null | 10,266 |
class TvltSelfOutput(nn.Module):
"""
The residual connection is defined in TvltLayer instead of here (as is the case with other models), due to the
layernorm applied before each block.
"""
def __init__(self, config: TvltConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
|
class_definition
| 19,167 | 19,813 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/tvlt/modeling_tvlt.py
| null | 10,267 |
class TvltAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.attention = TvltSelfAttention(config)
self.output = TvltSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.attention.query = prune_linear_layer(self.attention.query, index)
self.attention.key = prune_linear_layer(self.attention.key, index)
self.attention.value = prune_linear_layer(self.attention.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False):
self_outputs = self.attention(hidden_states, attention_mask, head_mask, output_attentions)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
|
class_definition
| 19,816 | 21,344 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/tvlt/modeling_tvlt.py
| null | 10,268 |
class TvltIntermediate(nn.Module):
def __init__(self, config: TvltConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
|
class_definition
| 21,347 | 21,933 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/tvlt/modeling_tvlt.py
| null | 10,269 |
class TvltOutput(nn.Module):
def __init__(self, config: TvltConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = hidden_states + input_tensor
return hidden_states
|
class_definition
| 21,936 | 22,465 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/tvlt/modeling_tvlt.py
| null | 10,270 |
class TvltLayer(nn.Module):
"""This corresponds to the Block class in the timm implementation."""
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = TvltAttention(config)
self.intermediate = TvltIntermediate(config)
self.output = TvltOutput(config)
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False):
self_attention_outputs = self.attention(
self.layernorm_before(hidden_states), # in ViLT, layernorm is applied before self-attention
attention_mask,
head_mask,
output_attentions=output_attentions,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
# first residual connection
hidden_states = attention_output + hidden_states.to(attention_output.device)
# in ViLT, layernorm is also applied after self-attention
layer_output = self.layernorm_after(hidden_states)
layer_output = self.intermediate(layer_output)
# second residual connection is done here
layer_output = self.output(layer_output, hidden_states)
outputs = (layer_output,) + outputs
return outputs
|
class_definition
| 22,468 | 24,056 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/tvlt/modeling_tvlt.py
| null | 10,271 |
class TvltEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([TvltLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
layer_head_mask,
output_attentions,
)
else:
layer_outputs = layer_module(hidden_states, attention_mask, layer_head_mask, output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
|
class_definition
| 24,059 | 25,947 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/tvlt/modeling_tvlt.py
| null | 10,272 |
class TvltPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = TvltConfig
base_model_prefix = "tvlt"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
|
class_definition
| 25,950 | 26,863 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/tvlt/modeling_tvlt.py
| null | 10,273 |
class TvltModel(TvltPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.pixel_embeddings = TvltPixelEmbeddings(config)
self.audio_embeddings = TvltAudioEmbeddings(config)
self.encoder = TvltEncoder(config)
self.cls_embedding = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
if config.use_mean_pooling:
self.layernorm = None
else:
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.pixel_embeddings.patch_embeddings, self.audio_embeddings.patch_embeddings
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(TVLT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TvltModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.FloatTensor,
audio_values: torch.FloatTensor,
pixel_mask: Optional[torch.FloatTensor] = None,
audio_mask: Optional[torch.FloatTensor] = None,
mask_pixel: bool = False,
mask_audio: bool = False,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], TvltModelOutput]:
r"""
Returns:
Examples:
```python
>>> from transformers import TvltProcessor, TvltModel
>>> import numpy as np
>>> import torch
>>> num_frames = 8
>>> images = list(np.random.randn(num_frames, 3, 224, 224))
>>> audio = list(np.random.randn(10000))
>>> processor = TvltProcessor.from_pretrained("ZinengTang/tvlt-base")
>>> model = TvltModel.from_pretrained("ZinengTang/tvlt-base")
>>> input_dict = processor(images, audio, sampling_rate=44100, return_tensors="pt")
>>> outputs = model(**input_dict)
>>> loss = outputs.loss
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
pixel_embedding_output, pixel_mask = self.pixel_embeddings(pixel_values, pixel_mask)
audio_embedding_output, audio_mask = self.audio_embeddings(audio_values, audio_mask)
# Mask pixel if mask_pixel is True
pixel_label_masks = None
pixel_ids_restore = None
if mask_pixel:
pixel_mask_noise, pixel_len_keep = generate_pixel_mask_noise(
pixel_embedding_output, pixel_mask=pixel_mask, mask_ratio=self.config.pixel_mask_ratio
)
pixel_embedding_output, pixel_mask, pixel_label_masks, pixel_ids_restore = random_masking(
pixel_embedding_output,
pixel_mask_noise,
pixel_len_keep,
attention_masks=pixel_mask,
)
# Mask audio if mask_audio is True
audio_label_masks = None
audio_ids_restore = None
if mask_audio:
num_freq_patches = self.config.frequency_length // self.config.audio_patch_size[1]
audio_mask_noise, audio_len_keep = generate_audio_mask_noise(
audio_embedding_output,
audio_mask=audio_mask,
mask_ratio=self.config.audio_mask_ratio,
mask_type=self.config.audio_mask_type,
freq_len=num_freq_patches,
)
audio_embedding_output, audio_mask, audio_label_masks, audio_ids_restore = random_masking(
audio_embedding_output,
audio_mask_noise,
audio_len_keep,
attention_masks=audio_mask,
)
# Prepare for encoder inputs and attention masks
batch_size = pixel_values.size(0)
embedding_output = torch.cat(
[self.cls_embedding.repeat(batch_size, 1, 1), pixel_embedding_output, audio_embedding_output], 1
)
masked_pixel_len = pixel_embedding_output.size(1)
attention_mask = None
if pixel_mask is not None and audio_mask is not None:
attention_mask = torch.cat([pixel_mask[:, :1], pixel_mask, audio_mask], 1)
input_shape = embedding_output.size()
extended_attention_mask = None
if attention_mask is not None:
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
if self.layernorm is not None:
sequence_output = self.layernorm(sequence_output)
pixel_sequence_output = sequence_output[:, 1 : 1 + masked_pixel_len]
audio_sequence_output = sequence_output[:, 1 + masked_pixel_len :]
if not return_dict:
return (
sequence_output,
pixel_sequence_output,
audio_sequence_output,
pixel_label_masks,
audio_label_masks,
pixel_ids_restore,
audio_ids_restore,
) + encoder_outputs[1:]
return TvltModelOutput(
last_hidden_state=sequence_output,
last_pixel_hidden_state=pixel_sequence_output,
last_audio_hidden_state=audio_sequence_output,
pixel_label_masks=pixel_label_masks,
audio_label_masks=audio_label_masks,
pixel_ids_restore=pixel_ids_restore,
audio_ids_restore=audio_ids_restore,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
|
class_definition
| 29,978 | 36,493 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/tvlt/modeling_tvlt.py
| null | 10,274 |
class TvltDecoder(nn.Module):
def __init__(self, config):
super().__init__()
decoder_config = deepcopy(config)
decoder_config.hidden_size = config.decoder_hidden_size
decoder_config.num_hidden_layers = config.decoder_num_hidden_layers
decoder_config.num_attention_heads = config.decoder_num_attention_heads
decoder_config.intermediate_size = config.decoder_intermediate_size
self.decoder_layers = nn.ModuleList(
[TvltLayer(decoder_config) for _ in range(config.decoder_num_hidden_layers)]
)
self.layernorm = nn.LayerNorm(config.decoder_hidden_size, eps=config.layer_norm_eps)
self.gradient_checkpointing = False
self.config = config
def forward(
self,
hidden_states,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
):
# apply Transformer layers (blocks)
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.decoder_layers):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
None,
output_attentions,
)
else:
layer_outputs = layer_module(hidden_states, output_attentions=output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# predictor projection
logits = self.layernorm(hidden_states)
if not return_dict:
return tuple(v for v in [logits, all_hidden_states, all_self_attentions] if v is not None)
return TvltDecoderOutput(logits=logits, hidden_states=all_hidden_states, attentions=all_self_attentions)
|
class_definition
| 36,496 | 38,732 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/tvlt/modeling_tvlt.py
| null | 10,275 |
class TvltForPreTraining(TvltPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.task_matching = config.task_matching
self.task_mae = config.task_mae
if not (self.task_matching or self.task_mae):
raise ValueError("Must set at least one of matching task and MAE task to true")
self.tvlt = TvltModel(config)
if self.task_matching:
self.matching_head = TvltMatchingHead(config)
if self.task_mae:
self.encoder_to_decoder = nn.Linear(config.hidden_size, config.decoder_hidden_size, bias=True)
self.pixel_mask_token = nn.Parameter(torch.zeros(1, 1, config.decoder_hidden_size))
self.audio_mask_token = nn.Parameter(torch.zeros(1, 1, config.decoder_hidden_size))
self.decoder = TvltDecoder(config)
decoder_hidden_size = config.decoder_hidden_size
num_frames = config.num_frames
num_patches_per_image = self.tvlt.pixel_embeddings.num_patches_per_image
self.decoder_pixel_pos_embed = nn.Parameter(torch.zeros(1, num_patches_per_image, decoder_hidden_size))
self.decoder_temporal_embed = nn.Parameter(torch.zeros(1, config.num_frames, decoder_hidden_size))
self.decoder_pixel_type_embed = nn.Parameter(torch.zeros(1, 1, decoder_hidden_size))
num_audio_patches = self.tvlt.audio_embeddings.num_patches
num_freq_patches = config.frequency_length // config.audio_patch_size[1]
self.decoder_audio_pos_embed = nn.Parameter(
torch.zeros(1, num_audio_patches // num_freq_patches, decoder_hidden_size)
)
self.decoder_freq_embed = nn.Parameter(torch.zeros(1, num_freq_patches, decoder_hidden_size))
self.decoder_audio_type_embed = nn.Parameter(torch.zeros(1, 1, decoder_hidden_size))
pixel_mae_output_dim = self.config.image_patch_size[0] ** 2 * self.config.num_image_channels
self.pixel_mae_head = TvltMAEHead(config, pixel_mae_output_dim)
audio_mae_output_dim = (
self.config.audio_patch_size[0] * self.config.audio_patch_size[1] * self.config.num_audio_channels
)
self.audio_mae_head = TvltMAEHead(config, audio_mae_output_dim)
self.num_frames = num_frames
self.num_patches_per_image = num_patches_per_image
self.num_freq_patches = num_freq_patches
self.image_patch_size = config.image_patch_size
self.audio_patch_size = config.audio_patch_size
# Initialize weights and apply final processing
self.post_init()
def patchify_pixel(self, pixel_values):
"""
pixel_values: [batch_size, num_frames, 3, height, width]
"""
batch_size, num_frames, num_channels, height, width = pixel_values.shape
num_patches_height = pixel_values.shape[3] // self.image_patch_size[0]
num_patches_width = pixel_values.shape[4] // self.image_patch_size[1]
patchified_pixel_values = pixel_values.reshape(
shape=(
batch_size,
num_frames,
num_channels,
num_patches_height,
self.image_patch_size[0],
num_patches_width,
self.image_patch_size[1],
)
)
patchified_pixel_values = torch.einsum("ntchpwq->nthwpqc", patchified_pixel_values)
patchified_pixel_values = patchified_pixel_values.reshape(
shape=(
batch_size,
num_patches_height * num_patches_width * num_frames,
self.image_patch_size[0] * self.image_patch_size[1] * num_channels,
)
)
return patchified_pixel_values
def patchify_audio(self, audio_values):
"""
audio_values: [batch_size, 1, height, width]
"""
batch_size, num_channels, height, width = audio_values.shape
num_patches_height = height // self.audio_patch_size[0]
num_patches_width = width // self.audio_patch_size[1]
patchified_audio_values = audio_values.reshape(
shape=(
batch_size,
num_channels,
num_patches_height,
self.audio_patch_size[0],
num_patches_width,
self.audio_patch_size[1],
)
)
patchified_audio_values = torch.einsum("nchpwq->nhwpqc", patchified_audio_values)
patchified_audio_values = patchified_audio_values.reshape(
shape=(
batch_size,
num_patches_height * num_patches_width,
self.audio_patch_size[0] * self.audio_patch_size[1] * num_channels,
)
)
return patchified_audio_values
def pixel_mae_loss(self, pixel_values, pixel_predictions, mask):
patchified_pixel_values = self.patchify_pixel(pixel_values)
loss = (pixel_predictions - patchified_pixel_values) ** 2
loss = loss.mean(dim=-1) # [batch_size, pixel_pixel_length], mean loss per patch
loss = (loss * mask).sum() / mask.sum() # mean loss on removed patches
return loss
def audio_mae_loss(self, audio_values, audio_predictions, mask):
patchified_audio_values = self.patchify_audio(audio_values)
loss = (audio_predictions - patchified_audio_values) ** 2
loss = loss.mean(dim=-1) # [batch_size, audio_pixel_length], mean loss per patch
loss = (loss * mask).sum() / mask.sum() # mean loss on removed patches
return loss
def concatenate_mask(self, mask_token, sequence, ids_restore):
batch_size, seq_length, dim = sequence.shape
mask_tokens = mask_token.repeat(batch_size, ids_restore.shape[1] - seq_length, 1)
padded_sequence = torch.cat([sequence, mask_tokens], dim=1)
padded_sequence = torch.gather(
padded_sequence, dim=1, index=ids_restore.unsqueeze(-1).repeat(1, 1, dim)
) # unshuffle
return padded_sequence
@add_start_docstrings_to_model_forward(TVLT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TvltForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.FloatTensor,
audio_values: torch.FloatTensor,
pixel_mask: Optional[torch.FloatTensor] = None,
audio_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
pixel_values_mixed: Optional[torch.FloatTensor] = None,
pixel_mask_mixed: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], TvltForPreTrainingOutput]:
r"""
pixel_values_mixed (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`):
Pixel values that mix positive and negative samples in Tvlt vision-audio matching. Audio values can be
obtained using [`TvltProcessor`]. See [`TvltProcessor.__call__`] for details.
pixel_mask_mixed (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel masks of pixel_values_mixed. Pixel values mixed can be obtained using [`TvltProcessor`]. See
[`TvltProcessor.__call__`] for details.
labels (`torch.LongTensor` of shape `(batch_size, num_labels)`, *optional*):
Labels for computing the vision audio matching loss. Indices should be in `[0, 1]`. num_labels has to be 1.
Return:
Examples:
```python
>>> from transformers import TvltProcessor, TvltForPreTraining
>>> import numpy as np
>>> import torch
>>> num_frames = 8
>>> images = list(np.random.randn(num_frames, 3, 224, 224))
>>> images_mixed = list(np.random.randn(num_frames, 3, 224, 224))
>>> audio = list(np.random.randn(10000))
>>> processor = TvltProcessor.from_pretrained("ZinengTang/tvlt-base")
>>> model = TvltForPreTraining.from_pretrained("ZinengTang/tvlt-base")
>>> input_dict = processor(
... images, audio, images_mixed, sampling_rate=44100, mask_pixel=True, mask_audio=True, return_tensors="pt"
... )
>>> outputs = model(**input_dict)
>>> loss = outputs.loss
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
total_loss = 0.0
if self.task_matching:
if labels is None:
raise ValueError("Matching task requires labels")
if pixel_values_mixed is None:
raise ValueError("Matching task requires pixel_values_mixed")
outputs = self.tvlt(
pixel_values_mixed,
audio_values,
pixel_mask=pixel_mask_mixed,
audio_mask=audio_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
matching_logits = self.matching_head(sequence_output)
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(matching_logits.view(-1), labels.view(-1))
total_loss += loss
pixel_logits = None
audio_logits = None
if self.task_mae and self.training:
outputs = self.tvlt(
pixel_values,
audio_values,
pixel_mask=pixel_mask,
audio_mask=audio_mask,
mask_pixel=True,
mask_audio=True,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pixel_sequence_output = outputs.last_pixel_hidden_state if return_dict else outputs[1]
audio_sequence_output = outputs.last_audio_hidden_state if return_dict else outputs[2]
pixel_label_masks = outputs.pixel_label_masks if return_dict else outputs[3]
audio_label_masks = outputs.audio_label_masks if return_dict else outputs[4]
pixel_ids_restore = outputs.pixel_ids_restore if return_dict else outputs[5]
audio_ids_restore = outputs.audio_ids_restore if return_dict else outputs[6]
pixel_decoder_input = self.encoder_to_decoder(
pixel_sequence_output
) # [batch_size, num_masked_pixel_patches, decoder_hidden_size]
audio_decoder_input = self.encoder_to_decoder(
audio_sequence_output
) # [batch_size, num_masked_audio_patches, decoder_hidden_size]
num_frames = pixel_values.size(1)
pixel_decoder_input = self.concatenate_mask(self.pixel_mask_token, pixel_decoder_input, pixel_ids_restore)
pixel_decoder_input = pixel_decoder_input + self.decoder_pixel_pos_embed.repeat(1, num_frames, 1)
pixel_decoder_input = pixel_decoder_input + torch.repeat_interleave(
self.decoder_temporal_embed[:, :num_frames], self.num_patches_per_image, dim=1
)
pixel_decoder_input = pixel_decoder_input + self.decoder_pixel_type_embed
pixel_decoder_outputs = self.decoder(pixel_decoder_input)
pixel_logits = self.pixel_mae_head(pixel_decoder_outputs.logits)
audio_decoder_input = self.concatenate_mask(self.audio_mask_token, audio_decoder_input, audio_ids_restore)
num_time_patches = audio_decoder_input.size(1) // self.num_freq_patches
audio_decoder_input = audio_decoder_input + self.decoder_freq_embed.repeat(1, num_time_patches, 1)
audio_decoder_input = audio_decoder_input + torch.repeat_interleave(
self.decoder_audio_pos_embed[:, :num_time_patches], self.num_freq_patches, dim=1
)
audio_decoder_input = audio_decoder_input + self.decoder_audio_type_embed
audio_decoder_outputs = self.decoder(audio_decoder_input)
audio_logits = self.audio_mae_head(audio_decoder_outputs.logits)
loss = self.pixel_mae_loss(pixel_values, pixel_logits, pixel_label_masks) + self.audio_mae_loss(
audio_values, audio_logits, audio_label_masks
)
total_loss += loss
if not return_dict:
output = (matching_logits, pixel_logits, audio_logits) + outputs[7:]
return ((total_loss,) + output) if loss is not None else output
return TvltForPreTrainingOutput(
loss=total_loss,
matching_logits=matching_logits,
pixel_logits=pixel_logits,
audio_logits=audio_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 38,878 | 51,925 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/tvlt/modeling_tvlt.py
| null | 10,276 |
class TvltPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states):
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
|
class_definition
| 51,928 | 52,349 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/tvlt/modeling_tvlt.py
| null | 10,277 |
class TvltMatchingHead(nn.Module):
def __init__(self, config):
super().__init__()
self.pooler = TvltPooler(config)
self.fc = nn.Linear(config.hidden_size, 1)
def forward(self, hidden_states):
hidden_states = self.fc(self.pooler(hidden_states))
return hidden_states
|
class_definition
| 52,352 | 52,665 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/tvlt/modeling_tvlt.py
| null | 10,278 |
class TvltMAEHead(nn.Module):
def __init__(self, config, output_dim=None):
super().__init__()
self.config = config
self.decoder = nn.Linear(config.decoder_hidden_size, output_dim)
def forward(self, hidden_states):
hidden_states = self.decoder(hidden_states)
return hidden_states
|
class_definition
| 52,668 | 52,995 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/tvlt/modeling_tvlt.py
| null | 10,279 |
class TvltForAudioVisualClassification(TvltPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.tvlt = TvltModel(config)
# Classifier head
self.classifier = nn.Sequential(
nn.Linear(config.hidden_size, config.hidden_size * 2),
nn.LayerNorm(config.hidden_size * 2, eps=config.layer_norm_eps),
nn.GELU(),
nn.Linear(config.hidden_size * 2, config.num_labels),
)
self.config = config
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(TVLT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.FloatTensor,
audio_values: torch.FloatTensor,
pixel_mask: Optional[torch.FloatTensor] = None,
audio_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.LongTensor] = None,
) -> Union[Tuple[torch.FloatTensor], SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, num_labels)`, *optional*):
Labels for computing the audiovisual loss. Indices should be in `[0, ..., num_classes-1]` where num_classes
refers to the number of classes in audiovisual tasks.
Return:
Examples:
```python
>>> from transformers import TvltProcessor, TvltForAudioVisualClassification
>>> import numpy as np
>>> import torch
>>> num_frames = 8
>>> images = list(np.random.randn(num_frames, 3, 224, 224))
>>> audio = list(np.random.randn(10000))
>>> processor = TvltProcessor.from_pretrained("ZinengTang/tvlt-base")
>>> model = TvltForAudioVisualClassification.from_pretrained("ZinengTang/tvlt-base")
>>> input_dict = processor(images, audio, sampling_rate=44100, return_tensors="pt")
>>> outputs = model(**input_dict)
>>> loss = outputs.loss
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.tvlt(
pixel_values,
audio_values,
pixel_mask=pixel_mask,
audio_mask=audio_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0][:, 0]
logits = self.classifier(sequence_output) # rank value
loss = None
if labels is not None:
if self.config.loss_type == "regression":
loss_fct = MSELoss()
loss = loss_fct(logits, labels)
elif self.config.loss_type == "classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[4:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 53,290 | 56,697 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/tvlt/modeling_tvlt.py
| null | 10,280 |
class TvltFeatureExtractor(SequenceFeatureExtractor):
r"""
Constructs a TVLT audio feature extractor. This feature extractor can be used to prepare audios for the model.
This feature extractor inherits from [`FeatureExtractionMixin`] which contains most of the main methods. Users
should refer to this superclass for more information regarding those methods.
Args:
spectrogram_length (`Dict[str, int]` *optional*, defaults to 2048):
The time length of each audio spectrogram.
num_channels (`int` *optional*, defaults to 1):
Number of audio channels.
patch_size (`List[int]` *optional*, defaults to `[16, 16]`):
The patch size of audio patch embedding.
feature_size (`int`, *optional*, defaults to 128):
The frequency length of audio spectrogram.
sampling_rate (`int`, *optional*, defaults to 44100):
The sampling rate at which the audio files should be digitalized expressed in Hertz (Hz).
hop_length_to_sampling_rate (`int`, *optional*, defaults to 86):
Hop length is length of the overlaping windows for the STFT used to obtain the Mel Frequency coefficients.
For example, with sampling rate 44100, the hop length is 512, with 44100 / 512 = 86
n_fft (`int`, *optional*, defaults to 2048):
Size of the Fourier transform.
padding_value (`float`, *optional*, defaults to 0.0):
Padding value used to pad the audio. Should correspond to silences.
"""
model_input_names = ["audio_values", "audio_mask"]
def __init__(
self,
spectrogram_length=2048,
num_channels=1,
patch_size=[16, 16],
feature_size=128,
sampling_rate=44100,
hop_length_to_sampling_rate=86,
n_fft=2048,
padding_value=0.0,
**kwargs,
):
super().__init__(
feature_size=feature_size,
sampling_rate=sampling_rate,
padding_value=padding_value,
**kwargs,
)
self.spectrogram_length = spectrogram_length
self.num_channels = num_channels
self.patch_size = patch_size
self.freq_len = feature_size // self.patch_size[1]
self.n_fft = n_fft
self.hop_length = sampling_rate // hop_length_to_sampling_rate
self.sampling_rate = sampling_rate
self.padding_value = padding_value
self.mel_filters = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2,
num_mel_filters=feature_size,
min_frequency=0.0,
max_frequency=22050.0,
sampling_rate=sampling_rate,
norm="slaney",
mel_scale="slaney",
).T
def _np_extract_fbank_features(self, waveform: np.array) -> np.ndarray:
"""
Compute the log-mel spectrogram of the provided audio, gives similar results to Whisper's original torch
implementation with 1e-5 tolerance.
"""
log_spec = spectrogram(
waveform,
window_function(self.n_fft, "hann"),
frame_length=self.n_fft,
hop_length=self.hop_length,
power=2.0,
mel_filters=self.mel_filters.T,
log_mel="dB",
db_range=80.0,
)
log_spec = log_spec[:, :-1]
log_spec = log_spec - 20.0
log_spec = np.clip(log_spec / 40.0, -2.0, 0.0) + 1.0
return log_spec
def __call__(
self,
raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
return_tensors: Optional[Union[str, TensorType]] = None,
return_attention_mask: Optional[bool] = True,
sampling_rate: Optional[int] = None,
resample: bool = False,
mask_audio: bool = False,
**kwargs,
) -> BatchFeature:
"""
Main method to prepare one or several audio(s) for the model.
Args:
raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`):
The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float
values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not
stereo, i.e. single float per timestep.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
return_attention_mask (`bool`, *optional*, default to `True`):
Whether to return the attention mask. If left to the default, will return the attention mask according
to the specific feature_extractor's default. [What are attention masks?](../glossary#attention-mask)
<Tip>
For TvltTransformer models, `attention_mask` should alwys be passed for batched inference, to avoid
subtle bugs.
</Tip>
sampling_rate (`int`, *optional*):
The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass
`sampling_rate` at the forward call to prevent silent errors and allow automatic speech recognition
pipeline. Current model supports sampling rate 16000 and 44100.
resample (`bool`, *optional*, defaults to `False`):
If the sampling rate is not matched, resample the input audio to match.
mask_audio (`bool`, *optional*, defaults to `False`):
Whether or not to mask input audio for MAE task.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **audio_values** -- Audio values to be fed to a model, of shape (batch_size, num_channels, height,
width).
- **audio_mask** -- Audio masks to be fed to a model, of shape (batch_size, num_audio_patches).
"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
"This feature extractor is set to support sampling rate"
f" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled"
f" with {self.sampling_rate} and not {sampling_rate}."
)
else:
logger.warning(
"It is strongly recommended to pass the `sampling_rate` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug."
)
is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
if is_batched_numpy and len(raw_speech.shape) > 2:
raise ValueError(f"Only mono-channel audio is supported for input to {self}")
is_batched = is_batched_numpy or (
isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list)))
)
if is_batched:
raw_speech = [np.asarray([speech], dtype=np.float32).T for speech in raw_speech]
elif not is_batched and not isinstance(raw_speech, np.ndarray):
raw_speech = np.asarray(raw_speech, dtype=np.float32)
elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64):
raw_speech = raw_speech.astype(np.float32)
# always return batch
if not is_batched:
raw_speech = [np.asarray([raw_speech]).T]
# Convert audio signals to log mel spectrograms, truncate by time axis
audio_features = [
self._np_extract_fbank_features(waveform.squeeze()).T[: self.spectrogram_length] for waveform in raw_speech
]
if isinstance(audio_features[0], List):
audio_features = [np.asarray(feature, dtype=np.float32) for feature in audio_features]
# Create audio attention mask
max_patch_len = max(
[ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len for feature in audio_features]
) # The maximum number of audio patches in a batch
if return_attention_mask:
audio_mask = [
(ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len) * [1]
+ (max_patch_len - ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len) * [0]
for feature in audio_features
]
audio_mask = np.array(audio_mask).astype(np.float32)
# convert into correct format for padding
max_time_len = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch
padded_audio_features = np.ones([len(audio_features), 1, max_time_len, self.feature_size]).astype(np.float32)
padded_audio_features = padded_audio_features * self.padding_value
for i in range(len(audio_features)):
feature = audio_features[i]
padded_audio_features[i, :, : feature.shape[0], :] = feature
# return as BatchFeature
if return_attention_mask:
data = {"audio_values": padded_audio_features, "audio_mask": audio_mask}
else:
data = {"audio_values": padded_audio_features}
encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors)
return encoded_inputs
|
class_definition
| 998 | 10,557 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/tvlt/feature_extraction_tvlt.py
| null | 10,281 |
class MCTCTProcessor(ProcessorMixin):
r"""
Constructs a MCTCT processor which wraps a MCTCT feature extractor and a MCTCT tokenizer into a single processor.
[`MCTCTProcessor`] offers all the functionalities of [`MCTCTFeatureExtractor`] and [`AutoTokenizer`]. See the
[`~MCTCTProcessor.__call__`] and [`~MCTCTProcessor.decode`] for more information.
Args:
feature_extractor (`MCTCTFeatureExtractor`):
An instance of [`MCTCTFeatureExtractor`]. The feature extractor is a required input.
tokenizer (`AutoTokenizer`):
An instance of [`AutoTokenizer`]. The tokenizer is a required input.
"""
feature_extractor_class = "MCTCTFeatureExtractor"
tokenizer_class = "AutoTokenizer"
def __init__(self, feature_extractor, tokenizer):
super().__init__(feature_extractor, tokenizer)
self.current_processor = self.feature_extractor
self._in_target_context_manager = False
def __call__(self, *args, **kwargs):
"""
When used in normal mode, this method forwards all its arguments to MCTCTFeatureExtractor's
[`~MCTCTFeatureExtractor.__call__`] and returns its output. If used in the context
[`~MCTCTProcessor.as_target_processor`] this method forwards all its arguments to AutoTokenizer's
[`~AutoTokenizer.__call__`]. Please refer to the doctsring of the above two methods for more information.
"""
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*args, **kwargs)
if "raw_speech" in kwargs:
warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.")
audio = kwargs.pop("raw_speech")
else:
audio = kwargs.pop("audio", None)
sampling_rate = kwargs.pop("sampling_rate", None)
text = kwargs.pop("text", None)
if len(args) > 0:
audio = args[0]
args = args[1:]
if audio is None and text is None:
raise ValueError("You need to specify either an `audio` or `text` input to process.")
if audio is not None:
inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs)
if text is not None:
encodings = self.tokenizer(text, **kwargs)
if text is None:
return inputs
elif audio is None:
return encodings
else:
inputs["labels"] = encodings["input_ids"]
return inputs
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to AutoTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer
to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def pad(self, *args, **kwargs):
"""
When used in normal mode, this method forwards all its arguments to MCTCTFeatureExtractor's
[`~MCTCTFeatureExtractor.pad`] and returns its output. If used in the context
[`~MCTCTProcessor.as_target_processor`] this method forwards all its arguments to PreTrainedTokenizer's
[`~PreTrainedTokenizer.pad`]. Please refer to the docstring of the above two methods for more information.
"""
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor.pad(*args, **kwargs)
input_features = kwargs.pop("input_features", None)
labels = kwargs.pop("labels", None)
if len(args) > 0:
input_features = args[0]
args = args[1:]
if input_features is not None:
input_features = self.feature_extractor.pad(input_features, *args, **kwargs)
if labels is not None:
labels = self.tokenizer.pad(labels, **kwargs)
if labels is None:
return input_features
elif input_features is None:
return labels
else:
input_features["labels"] = labels["input_ids"]
return input_features
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to AutoTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the
docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@contextmanager
def as_target_processor(self):
"""
Temporarily sets the tokenizer for processing the input. Useful for encoding the labels when fine-tuning MCTCT.
"""
warnings.warn(
"`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your "
"labels by using the argument `text` of the regular `__call__` method (either in the same call as "
"your audio inputs, or in a separate call."
)
self._in_target_context_manager = True
self.current_processor = self.tokenizer
yield
self.current_processor = self.feature_extractor
self._in_target_context_manager = False
|
class_definition
| 775 | 5,930 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mctct/processing_mctct.py
| null | 10,282 |
class MCTCTFeatureExtractor(SequenceFeatureExtractor):
r"""
Constructs a M-CTC-T feature extractor.
This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains
most of the main methods. Users should refer to this superclass for more information regarding those methods. This
code has been adapted from Flashlight's C++ code. For more information about the implementation, one can refer to
this [notebook](https://colab.research.google.com/drive/1GLtINkkhzms-IsdcGy_-tVCkv0qNF-Gt#scrollTo=pMCRGMmUC_an)
that takes the user step-by-step in the implementation.
Args:
feature_size (`int`, defaults to 80):
The feature dimension of the extracted features. This is the number of mel_frequency
sampling_rate (`int`, defaults to 16000):
The sampling rate at which the audio files should be digitalized expressed in hertz (Hz).
padding_value (`float`, defaults to 0.0):
The value that is used to fill the padding values.
hop_length (`int`, defaults to 10):
Number of audio samples between windows. Otherwise referred to as "shift" in many papers.
win_length (`int`, defaults to 25):
Number of ms per window
win_function (`str`, defaults to `"hamming_window"`):
Name for the window function used for windowing, must be accessible via `torch.{win_function}`
frame_signal_scale (`float`, defaults to 32768.0):
Constant multiplied in creating the frames before applying DFT.
preemphasis_coeff (`float`, defaults to 0.97):
Constant multiplied in applying Pre-emphasis before DFT.
mel_floor (`float` defaults to 1.0):
Minimum value of mel frequency banks.
normalize_means (`bool`, *optional*, defaults to `True`):
Whether or not to zero-mean normalize the extracted features.
normalize_vars (`bool`, *optional*, defaults to `True`):
Whether or not to unit-variance normalize the extracted features.
"""
model_input_names = ["input_features", "attention_mask"]
def __init__(
self,
feature_size=80,
sampling_rate=16000,
padding_value=0.0,
hop_length=10,
win_length=25,
win_function="hamming_window",
frame_signal_scale=32768.0,
preemphasis_coeff=0.97,
mel_floor=1.0,
normalize_means=True,
normalize_vars=True,
return_attention_mask=False,
**kwargs,
):
super().__init__(feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, **kwargs)
self.feature_size = feature_size
self.sampling_rate = sampling_rate
self.padding_value = padding_value
self.hop_length = hop_length
self.win_length = win_length
self.frame_signal_scale = frame_signal_scale
self.preemphasis_coeff = preemphasis_coeff
self.mel_floor = mel_floor
self.normalize_means = normalize_means
self.normalize_vars = normalize_vars
self.win_function = win_function
self.return_attention_mask = return_attention_mask
self.sample_size = win_length * sampling_rate // 1000
self.sample_stride = hop_length * sampling_rate // 1000
self.n_fft = optimal_fft_length(self.sample_size)
self.n_freqs = (self.n_fft // 2) + 1
def _extract_mfsc_features(self, one_waveform: np.array) -> np.ndarray:
"""
Extracts MFSC Features for one waveform vector (unbatched). Adapted from Flashlight's C++ MFSC code.
"""
if self.win_function == "hamming_window":
window = window_function(window_length=self.sample_size, name=self.win_function, periodic=False)
else:
window = window_function(window_length=self.sample_size, name=self.win_function)
fbanks = mel_filter_bank(
num_frequency_bins=self.n_freqs,
num_mel_filters=self.feature_size,
min_frequency=0.0,
max_frequency=self.sampling_rate / 2.0,
sampling_rate=self.sampling_rate,
)
msfc_features = spectrogram(
one_waveform * self.frame_signal_scale,
window=window,
frame_length=self.sample_size,
hop_length=self.sample_stride,
fft_length=self.n_fft,
center=False,
preemphasis=self.preemphasis_coeff,
mel_filters=fbanks,
mel_floor=self.mel_floor,
log_mel="log",
)
return msfc_features.T
def _normalize_one(self, x, input_length, padding_value):
# make sure we normalize float32 arrays
if self.normalize_means:
mean = x[:input_length].mean(axis=0)
x = np.subtract(x, mean)
if self.normalize_vars:
std = x[:input_length].std(axis=0)
x = np.divide(x, std)
if input_length < x.shape[0]:
x[input_length:] = padding_value
# make sure array is in float32
x = x.astype(np.float32)
return x
def normalize(
self, input_features: List[np.ndarray], attention_mask: Optional[np.ndarray] = None
) -> List[np.ndarray]:
lengths = attention_mask.sum(-1) if attention_mask is not None else [x.shape[0] for x in input_features]
return [self._normalize_one(x, n, self.padding_value) for x, n in zip(input_features, lengths)]
def __call__(
self,
raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
padding: Union[bool, str, PaddingStrategy] = False,
max_length: Optional[int] = None,
truncation: bool = False,
pad_to_multiple_of: Optional[int] = None,
return_attention_mask: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
sampling_rate: Optional[int] = None,
**kwargs,
) -> BatchFeature:
"""
Main method to featurize and prepare for the model one or several sequence(s). sequences. It returns the
log-mel spectrogram of the input audio, as implemented in the original Flashlight MFSC feature extraction code.
Args:
raw_speech (`torch.Tensor`, `np.ndarray`, `List[float]`, `List[torch.Tensor]`, `List[np.ndarray]`, `List[List[float]]`):
The sequence or batch of sequences to be padded. Each sequence can be a tensor, a numpy array, a list
of float values, a list of tensors, a list of numpy arrays or a list of list of float values. Must be
mono channel audio, not stereo, i.e. single float per timestep.
padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `False`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding
index) among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
truncation (`bool`):
Activates truncation to cut input sequences longer than *max_length* to *max_length*.
pad_to_multiple_of (`int`, *optional*):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
`>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128.
return_attention_mask (`bool`, *optional*):
Whether to return the attention mask. If left to the default, will return the attention mask according
to the specific feature_extractor's default.
[What are attention masks?](../glossary#attention-mask)
return_tensors (`str` or [`~file_utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
sampling_rate (`int`, *optional*):
The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass
`sampling_rate` at the forward call to prevent silent errors.
padding_value (`float`, defaults to 0.0):
"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of"
f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with"
f" {self.sampling_rate} and not {sampling_rate}."
)
else:
logger.warning(
"It is strongly recommended to pass the ``sampling_rate`` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug."
)
is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
if is_batched_numpy and len(raw_speech.shape) > 2:
raise ValueError(f"Only mono-channel audio is supported for input to {self}")
is_batched = is_batched_numpy or (
isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list)))
)
if is_batched:
raw_speech = [np.asarray(speech, dtype=np.float32) for speech in raw_speech]
elif not is_batched and not isinstance(raw_speech, np.ndarray):
raw_speech = np.asarray(raw_speech, dtype=np.float32)
elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64):
raw_speech = raw_speech.astype(np.float32)
# always return batch
if not is_batched:
raw_speech = [raw_speech]
# extract fbank features
features = [self._extract_mfsc_features(one_waveform) for one_waveform in raw_speech]
# convert into correct format for padding
encoded_inputs = BatchFeature({"input_features": features})
padded_inputs = self.pad(
encoded_inputs,
padding=padding,
max_length=max_length,
truncation=truncation,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=True,
**kwargs,
)
# make sure list is in array format
input_features = padded_inputs.get("input_features")
if isinstance(input_features[0], list):
padded_inputs["input_features"] = [np.asarray(feature, dtype=np.float32) for feature in input_features]
attention_mask = padded_inputs.get("attention_mask")
if attention_mask is not None:
padded_inputs["attention_mask"] = [np.asarray(array, dtype=np.int32) for array in attention_mask]
if self.normalize_means or self.normalize_vars:
attention_mask = (
np.array(attention_mask, dtype=np.int32)
if self._get_padding_strategies(padding, max_length=max_length) is not PaddingStrategy.DO_NOT_PAD
and padding
else None
)
padded_inputs["input_features"] = self.normalize(
padded_inputs["input_features"], attention_mask=attention_mask
)
if return_tensors is not None:
padded_inputs = padded_inputs.convert_to_tensors(return_tensors)
return padded_inputs
|
class_definition
| 1,083 | 13,459 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mctct/feature_extraction_mctct.py
| null | 10,283 |
class MCTCTConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MCTCTModel`]. It is used to instantiate an
M-CTC-T model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the M-CTC-T
[speechbrain/m-ctc-t-large](https://huggingface.co/speechbrain/m-ctc-t-large) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 8065):
Vocabulary size of the M-CTC-T model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`MCTCTModel`].
hidden_size (`int`, *optional*, defaults to 1536):
Dimension of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 36):
Number of hidden layers in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 6144):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 4):
Number of attention heads for each attention layer in the Transformer encoder.
attention_head_dim (`int`, *optional*, defaults to 384):
Dimensions of each attention head for each attention layer in the Transformer encoder.
max_position_embeddings (`int`, *optional*, defaults to 920):
The maximum sequence length that this model might ever be used with (after log-mel spectrogram extraction).
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
layerdrop (`float`, *optional*, defaults to 0.3):
The probability of dropping an encoder layer during training. The default 0.3 value is used in the original
implementation.
hidden_act (`str` or `function`, *optional*, defaults to `"relu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
hidden_dropout_prob (`float`, *optional*, defaults to 0.3):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.3):
The dropout ratio for the attention probabilities.
pad_token_id (`int`, *optional*, defaults to 1):
The tokenizer index of the pad token.
bos_token_id (`int`, *optional*, defaults to 0):
The tokenizer index of the bos token.
eos_token_id (`int`, *optional*, defaults to 2):
The tokenizer index of the eos token.
conv_glu_dim (`int`, *optional*, defaults to 1):
The dimension of the output of the `Conv1dSubsampler` layer in which GLU is applied on. Though the original
Flashlight code uses the value of 2, here it's adapted to 1 due to transposition differences.
conv_dropout (`int`, *optional*, defaults to 0.3):
The probability of randomly dropping the `Conv1dSubsampler` layer during training.
num_conv_layers (`int`, *optional*, defaults to 1):
Number of convolution layers before applying transformer encoder layers.
conv_kernel (`Sequence[int]`, *optional*, defaults to `(7,)`):
The kernel size of the 1D convolution applied before transformer layers. `len(conv_kernel)` must be equal
to `num_conv_layers`.
conv_stride (`Sequence[int]`, *optional*, defaults to `(3,)`):
The stride length of the 1D convolution applied before transformer layers. `len(conv_stride)` must be equal
to `num_conv_layers`.
input_feat_per_channel (`int`, *optional*, defaults to 80):
Feature dimensions of the channels of the input to the Conv1D layer.
input_channels (`int`, *optional*, defaults to 1):
Number of input channels of the input to the Conv1D layer.
conv_channels (`List[int]`, *optional*):
Channel sizes of intermediate Conv1D layers.
ctc_loss_reduction (`str`, *optional*, defaults to `"sum"`):
Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an
instance of [`MCTCTForCTC`].
ctc_zero_infinity (`bool`, *optional*, defaults to `False`):
Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly
occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance
of [`MCTCTForCTC`].
Example:
```python
>>> from transformers import MCTCTConfig, MCTCTModel
>>> # Initializing a M-CTC-T mctct-large style configuration
>>> configuration = MCTCTConfig()
>>> # Initializing a model (with random weights) from the mctct-large style configuration
>>> model = MCTCTModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "mctct"
def __init__(
self,
vocab_size=8065,
hidden_size=1536,
num_hidden_layers=36,
intermediate_size=6144,
num_attention_heads=4,
attention_head_dim=384,
max_position_embeddings=920,
layer_norm_eps=1e-5,
layerdrop=0.3,
hidden_act="relu",
initializer_range=0.02,
hidden_dropout_prob=0.3,
attention_probs_dropout_prob=0.3,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
conv_glu_dim=1,
conv_dropout=0.3,
num_conv_layers=1,
conv_kernel=(7,),
conv_stride=(3,),
input_feat_per_channel=80,
input_channels=1,
conv_channels=None,
ctc_loss_reduction="sum",
ctc_zero_infinity=False,
**kwargs,
):
super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.intermediate_size = intermediate_size
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
self.max_position_embeddings = max_position_embeddings
self.layer_norm_eps = layer_norm_eps
self.layerdrop = layerdrop
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
self.conv_glu_dim = conv_glu_dim
self.conv_dropout = conv_dropout
self.num_conv_layers = num_conv_layers
self.input_feat_per_channel = input_feat_per_channel
self.input_channels = input_channels
self.conv_channels = conv_channels
self.ctc_loss_reduction = ctc_loss_reduction
self.ctc_zero_infinity = ctc_zero_infinity
# prevents config testing fail with exporting to json
self.conv_kernel = list(conv_kernel)
self.conv_stride = list(conv_stride)
if len(self.conv_kernel) != self.num_conv_layers:
raise ValueError(
"Configuration for convolutional module is incorrect. "
"It is required that `len(config.conv_kernel)` == `config.num_conv_layers` "
f"but is `len(config.conv_kernel) = {len(self.conv_kernel)}`, "
f"`config.num_conv_layers = {self.num_conv_layers}`."
)
|
class_definition
| 786 | 9,072 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mctct/configuration_mctct.py
| null | 10,284 |
class MCTCTConv1dSubsampler(nn.Module):
"""
Convolutional subsampler: a stack of 1D convolution (along temporal dimension) followed by non-linear activation
via gated linear units (https://arxiv.org/abs/1911.08460)
"""
def __init__(self, config):
super().__init__()
self.config = config
self.glu_dim = config.conv_glu_dim
self.dropout = nn.Dropout(config.conv_dropout)
self.num_layers = config.num_conv_layers
self.in_channels = config.input_feat_per_channel * config.input_channels
if self.num_layers > 1:
if config.conv_channels is None:
raise ValueError(
"Need to specify `conv_channels` configuration in `MCTCTConfig` to use multiple convolution"
" layers."
)
self.mid_channels = config.conv_channels
else:
self.mid_channels = None
self.out_channels = config.hidden_size * 2 # considering GLU halving
self.kernel_size = config.conv_kernel
self.stride = config.conv_stride
# NOTE: MCTCT by construction only uses one convolution kernel. I've made this flexible to allow for
# multiple layers of convolutions, but not sure if this model definition should just restrict it
# to one layer. This becomes especially relevant when considering the padding like line 1 of forward().
self.conv_layers = nn.ModuleList(
nn.Conv1d(
self.in_channels if i == 0 else self.mid_channels[i],
self.mid_channels[i] if i < self.num_layers - 1 else self.out_channels,
kernel_size=k,
stride=self.stride[i],
padding="valid",
)
for i, k in enumerate(self.kernel_size)
)
def forward(self, input_features):
# NOTE: in reference to the NOTE in __init__, right now it just calculates padding as if
# there will be just one conv layer.
padding = sum([size // 2 for size in self.kernel_size]) # (7, 7) -> (3, 3)
input_features = torch.nn.functional.pad(input_features, (0, 0, padding, padding), "constant", 0)
hidden_states = input_features.transpose(1, 2).contiguous() # -> Batch x Frame x Time
for conv in self.conv_layers:
hidden_states = conv(hidden_states)
hidden_states = nn.functional.glu(hidden_states, dim=self.glu_dim)
hidden_states = self.dropout(hidden_states)
hidden_states = hidden_states.transpose(1, 2).contiguous() # -> Batch x Time x Frame
return hidden_states
|
class_definition
| 1,786 | 4,426 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mctct/modeling_mctct.py
| null | 10,285 |
class MCTCTEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
# self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.LayerNorm = MCTCTLayerNorm()
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
self.register_buffer(
"token_type_ids",
torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device),
persistent=False,
)
def forward(
self, input_features=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
):
input_shape = input_features.size() if input_features is not None else inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
# issue #5664
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_features)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
|
class_definition
| 4,429 | 7,227 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mctct/modeling_mctct.py
| null | 10,286 |
class MCTCTSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = config.attention_head_dim
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
self.is_decoder = config.is_decoder
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def reshape_fortran(self, x, shape):
if len(x.shape) > 0:
x = x.permute(*reversed(range(len(x.shape))))
return x.reshape(*reversed(shape)).permute(*reversed(range(len(shape))))
def relative_position_embedding_rotate(self, scores):
# NOTE: should re-evaluate whether this re-implementation was truly necessary
# or the reason why my complete re-haul worked was due to some other part
# of the code. Adding this and the reshape fortrain code seems very undesirable.
scores = scores.permute(0, 2, 3, 1) # e.g. [10, 1839, 14, 4]
batch, hidden_state, seq_len, heads = scores.shape
# e.g. [10, 1853, 14, 4]
scores = torch.cat((scores, torch.zeros((batch, seq_len, seq_len, heads), device=scores.device)), dim=1)
# e.g. [10, 25942, 1, 4]
scores = self.reshape_fortran(scores, [batch, (hidden_state + seq_len) * seq_len, 1, heads])
# e.g. [10, 25928, 1, 4]
scores = scores[:, : (seq_len + hidden_state - 1) * seq_len]
# e.g. [10, 1852, 14, 4]
scores = self.reshape_fortran(scores, [batch, hidden_state + seq_len - 1, seq_len, heads])
halfpoint = hidden_state // 2
scores = scores[:, halfpoint : halfpoint + seq_len].transpose(1, 2) # e.g. [10, 14, 14, 4]
return scores.permute(0, 3, 1, 2)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
output_attentions=False,
):
mixed_query_layer = self.query(hidden_states)
mixed_query_layer = mixed_query_layer / math.sqrt(self.attention_head_size)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
# relative key position embeddings
positional_embedding = self.distance_embedding.weight
relative_position_scores = torch.einsum("lh, bche -> bcle", positional_embedding, query_layer.transpose(2, 3))
relative_position_scores = self.relative_position_embedding_rotate(relative_position_scores)
attention_scores = attention_scores + relative_position_scores
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in MCTCTModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).flatten(start_dim=-2)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
|
class_definition
| 7,230 | 11,975 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mctct/modeling_mctct.py
| null | 10,287 |
class MCTCTLayerNorm(nn.Module):
def __init__(self):
super().__init__()
self.singleton_weight = nn.Parameter(torch.ones(1))
self.singleton_bias = nn.Parameter(torch.zeros(1))
def forward(self, hidden_states):
return (hidden_states * self.singleton_weight) + self.singleton_bias
|
class_definition
| 11,978 | 12,296 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mctct/modeling_mctct.py
| null | 10,288 |
class MCTCTSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.dense = nn.Linear(config.hidden_size, config.hidden_size, bias=False)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
|
class_definition
| 12,299 | 12,903 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mctct/modeling_mctct.py
| null | 10,289 |
class MCTCTAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.self = MCTCTSelfAttention(config)
self.output = MCTCTSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
output_attentions=False,
):
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
output_attentions,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
|
class_definition
| 12,906 | 14,467 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mctct/modeling_mctct.py
| null | 10,290 |
class MCTCTIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
|
class_definition
| 14,470 | 15,018 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mctct/modeling_mctct.py
| null | 10,291 |
class MCTCTOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
|
class_definition
| 15,021 | 15,598 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mctct/modeling_mctct.py
| null | 10,292 |
class MCTCTLayer(nn.Module):
def __init__(self, config: MCTCTConfig):
super().__init__()
self.seq_len_dim = 1
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.intermediate = MCTCTIntermediate(config)
self.attention = MCTCTAttention(config)
self.is_decoder = config.is_decoder
self.output = MCTCTOutput(config)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
output_attentions=False,
):
self_attention_outputs = self.attention(
hidden_states, attention_mask, head_mask, output_attentions=output_attentions
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
|
class_definition
| 15,601 | 16,892 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mctct/modeling_mctct.py
| null | 10,293 |
class MCTCTPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = MCTCTConfig
base_model_prefix = "mctct"
main_input_name = "input_features"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
std = self.config.initializer_range
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, MCTCTLayerNorm):
module.singleton_weight.data.fill_(1.0)
module.singleton_bias.data.zero_()
if isinstance(module, (nn.Linear, nn.Conv1d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor):
"""
Computes the output length of the convolutional layers
"""
dilation = 1
for _, kernel_sz, stride in zip(
range(self.config.num_conv_layers), self.config.conv_kernel, self.config.conv_stride
):
padding = kernel_sz // 2
input_lengths = input_lengths + 2 * padding - dilation * (kernel_sz - 1) - 1
input_lengths = torch.div(input_lengths, stride, rounding_mode="trunc") + 1
return input_lengths
def _get_feature_vector_attention_mask(self, feature_vector_length, attention_mask):
# generate creates 3D attention mask, because of the shape of input_features
# convert it to 2D if thats the case
if len(attention_mask.shape) > 2:
attention_mask = attention_mask[:, :, -1]
# subsampled_lengths = attention_mask.sum(-1)
subsampled_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1))
bsz = attention_mask.size()[0]
attention_mask = torch.zeros(
(bsz, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device
)
# these two operations makes sure that all values
# before the output lengths indices are attended to
attention_mask[(torch.arange(bsz, device=attention_mask.device), subsampled_lengths - 1)] = 1
attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).long()
return attention_mask
|
class_definition
| 16,895 | 19,937 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mctct/modeling_mctct.py
| null | 10,294 |
class MCTCTEncoder(MCTCTPreTrainedModel):
def __init__(self, config: MCTCTConfig):
super().__init__(config)
self.hidden_dropout_prob = config.hidden_dropout_prob
self.layer_norm = MCTCTLayerNorm()
self.conv = MCTCTConv1dSubsampler(config)
self.layers = nn.ModuleList([MCTCTLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
input_features: torch.Tensor,
attention_mask: torch.Tensor,
head_mask: torch.Tensor,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
) -> Union[Tuple, BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
input_features = self.layer_norm(input_features)
inputs_embeds = self.conv(input_features)
# subsample attention mask if necessary
if attention_mask is not None:
attention_mask = self._get_feature_vector_attention_mask(inputs_embeds.shape[1], attention_mask)
hidden_states = nn.functional.dropout(inputs_embeds, p=self.hidden_dropout_prob, training=self.training)
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
if head_mask.size()[0] != len(self.layers):
raise ValueError(
f"The head_mask should be specified for {len(self.layers)} layers, "
f"but it is for {head_mask.size()[0]}."
)
synced_gpus = is_deepspeed_zero3_enabled() or is_fsdp_managed_module(self)
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = torch.rand([])
skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False
if not skip_the_layer or synced_gpus:
# under fsdp or deepspeed zero3 all gpus must run in sync
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
(head_mask[idx] if head_mask is not None else None),
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states=hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if skip_the_layer:
layer_outputs = (None, None)
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
|
class_definition
| 22,154 | 26,267 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mctct/modeling_mctct.py
| null | 10,295 |
class MCTCTModel(MCTCTPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.encoder = MCTCTEncoder(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MCTCT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutput,
config_class=_CONFIG_FOR_DOC,
modality="audio",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
input_features: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_features is None:
raise ValueError("You have to specify input_features.")
encoder_outputs = self.encoder(
input_features,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
if not return_dict:
return (sequence_output,) + encoder_outputs[1:]
return BaseModelOutput(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
|
class_definition
| 26,427 | 28,472 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mctct/modeling_mctct.py
| null | 10,296 |
class MCTCTForCTC(MCTCTPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.mctct = MCTCTModel(config)
if config.vocab_size is None:
raise ValueError(
f"You are trying to instantiate {self.__class__} with a configuration that "
"does not define the vocabulary size of the language model head. Please "
"instantiate the model as follows: `MCTCTForCTC.from_pretrained(..., vocab_size=vocab_size)`. "
"or define `vocab_size` of your model's configuration."
)
output_hidden_size = config.hidden_size
self.ctc_head = nn.Linear(output_hidden_size, config.vocab_size)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MCTCT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=CausalLMOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_CTC_EXPECTED_OUTPUT,
expected_loss=_CTC_EXPECTED_LOSS,
)
def forward(
self,
input_features: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.LongTensor] = None,
) -> Union[Tuple, CausalLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`.
All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ...,
config.vocab_size - 1]`.
"""
if labels is not None and labels.max() >= self.config.vocab_size:
raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}")
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.mctct(
input_features,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.ctc_head(hidden_states)
loss = None
if labels is not None:
# retrieve loss input_lengths from attention_mask
attention_mask = (
attention_mask
if attention_mask is not None
else torch.ones(input_features.shape[:-1], dtype=torch.long)
)
input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long)
# assuming that padded tokens are filled with -100
# when not being attended to
labels_mask = labels >= 0
target_lengths = labels_mask.sum(-1)
flattened_targets = labels.masked_select(labels_mask)
# ctc_loss doesn't support fp16
log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1)
with torch.backends.cudnn.flags(enabled=False):
loss = nn.functional.ctc_loss(
log_probs,
flattened_targets,
input_lengths,
target_lengths,
blank=self.config.pad_token_id,
reduction=self.config.ctc_loss_reduction,
zero_infinity=self.config.ctc_zero_infinity,
)
if not return_dict:
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutput(
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
)
|
class_definition
| 28,638 | 32,873 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/mctct/modeling_mctct.py
| null | 10,297 |
class NezhaConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of an [`NezhaModel`]. It is used to instantiate an Nezha
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Nezha
[sijunhe/nezha-cn-base](https://huggingface.co/sijunhe/nezha-cn-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, optional, defaults to 21128):
Vocabulary size of the NEZHA model. Defines the different tokens that can be represented by the
*inputs_ids* passed to the forward method of [`NezhaModel`].
hidden_size (`int`, optional, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, optional, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, optional, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, optional, defaults to 3072):
The dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, optional, defaults to "gelu"):
The non-linear activation function (function or string) in the encoder and pooler.
hidden_dropout_prob (`float`, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, optional, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, optional, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
(e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, optional, defaults to 2):
The vocabulary size of the *token_type_ids* passed into [`NezhaModel`].
initializer_range (`float`, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, optional, defaults to 1e-12):
The epsilon used by the layer normalization layers.
classifier_dropout (`float`, optional, defaults to 0.1):
The dropout ratio for attached classifiers.
is_decoder (`bool`, *optional*, defaults to `False`):
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
Example:
```python
>>> from transformers import NezhaConfig, NezhaModel
>>> # Initializing an Nezha configuration
>>> configuration = NezhaConfig()
>>> # Initializing a model (with random weights) from the Nezha-base style configuration model
>>> model = NezhaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "nezha"
def __init__(
self,
vocab_size=21128,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
max_relative_position=64,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
classifier_dropout=0.1,
pad_token_id=0,
bos_token_id=2,
eos_token_id=3,
use_cache=True,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.max_relative_position = max_relative_position
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.classifier_dropout = classifier_dropout
self.use_cache = use_cache
|
class_definition
| 36 | 4,816 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/nezha/configuration_nezha.py
| null | 10,298 |
class NezhaRelativePositionsEncoding(nn.Module):
"""Implement the Functional Relative Position Encoding"""
def __init__(self, length, depth, max_relative_position=127):
super().__init__()
vocab_size = max_relative_position * 2 + 1
range_vec = torch.arange(length)
range_mat = range_vec.repeat(length).view(length, length)
distance_mat = range_mat - torch.t(range_mat)
distance_mat_clipped = torch.clamp(distance_mat, -max_relative_position, max_relative_position)
final_mat = distance_mat_clipped + max_relative_position
embeddings_table = torch.zeros(vocab_size, depth)
position = torch.arange(0, vocab_size, dtype=torch.int64).float().unsqueeze(1)
div_term = torch.exp(torch.arange(0, depth, 2).float() * (-math.log(10000.0) / depth))
embeddings_table[:, 0::2] = torch.sin(position * div_term)
embeddings_table[:, 1::2] = torch.cos(position * div_term)
flat_relative_positions_matrix = final_mat.view(-1)
one_hot_relative_positions_matrix = torch.nn.functional.one_hot(
flat_relative_positions_matrix, num_classes=vocab_size
).float()
positions_encoding = torch.matmul(one_hot_relative_positions_matrix, embeddings_table)
my_shape = list(final_mat.size())
my_shape.append(depth)
positions_encoding = positions_encoding.view(my_shape)
self.register_buffer("positions_encoding", positions_encoding, persistent=False)
def forward(self, length):
return self.positions_encoding[:length, :length, :]
|
class_definition
| 4,722 | 6,313 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/nezha/modeling_nezha.py
| null | 10,299 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.