text
stringlengths
1
1.02k
class_index
int64
0
10.8k
source
stringlengths
85
188
batch_encoding = tokenizer(lines, add_special_tokens=True, truncation=True, max_length=block_size) self.examples = batch_encoding["input_ids"] self.examples = [{"input_ids": torch.tensor(e, dtype=torch.long)} for e in self.examples] def __len__(self): return len(self.examples) def __getitem__(self, i) -> Dict[str, torch.tensor]: return self.examples[i]
10,618
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
class LineByLineWithRefDataset(Dataset): """ This will be superseded by a framework-agnostic approach soon. """
10,619
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
def __init__(self, tokenizer: PreTrainedTokenizer, file_path: str, block_size: int, ref_path: str): warnings.warn( DEPRECATION_WARNING.format( "https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm_wwm.py" ), FutureWarning, ) if os.path.isfile(file_path) is False: raise ValueError(f"Input file path {file_path} not found") if os.path.isfile(ref_path) is False: raise ValueError(f"Ref file path {file_path} not found") # Here, we do not cache the features, operating under the assumption # that we will soon use fast multithreaded tokenizers from the # `tokenizers` repo everywhere =) logger.info(f"Creating features from dataset file at {file_path}") logger.info(f"Use ref segment results at {ref_path}") with open(file_path, encoding="utf-8") as f:
10,619
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
data = f.readlines() # use this method to avoid delimiter '\u2029' to split a line data = [line.strip() for line in data if len(line) > 0 and not line.isspace()] # Get ref inf from file with open(ref_path, encoding="utf-8") as f: ref = [json.loads(line) for line in f.read().splitlines() if (len(line) > 0 and not line.isspace())] if len(data) != len(ref): raise ValueError( f"Length of Input file should be equal to Ref file. But the length of {file_path} is {len(data)} " f"while length of {ref_path} is {len(ref)}" )
10,619
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
batch_encoding = tokenizer(data, add_special_tokens=True, truncation=True, max_length=block_size) self.examples = batch_encoding["input_ids"] self.examples = [{"input_ids": torch.tensor(e, dtype=torch.long)} for e in self.examples] n = len(self.examples) for i in range(n): self.examples[i]["chinese_ref"] = torch.tensor(ref[i], dtype=torch.long) def __len__(self): return len(self.examples) def __getitem__(self, i) -> Dict[str, torch.tensor]: return self.examples[i]
10,619
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
class LineByLineWithSOPTextDataset(Dataset): """ Dataset for sentence order prediction task, prepare sentence pairs for SOP task """
10,620
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
def __init__(self, tokenizer: PreTrainedTokenizer, file_dir: str, block_size: int): warnings.warn( DEPRECATION_WARNING.format( "https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py" ), FutureWarning, ) if os.path.isdir(file_dir) is False: raise ValueError(f"{file_dir} is not a directory") logger.info(f"Creating features from dataset file folder at {file_dir}") self.examples = [] # TODO: randomness could apply a random seed, ex. rng = random.Random(random_seed) # file path looks like ./dataset/wiki_1, ./dataset/wiki_2 for file_name in os.listdir(file_dir): file_path = os.path.join(file_dir, file_name) if os.path.isfile(file_path) is False: raise ValueError(f"{file_path} is not a file") article_open = False with open(file_path, encoding="utf-8") as f:
10,620
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
original_lines = f.readlines() article_lines = [] for line in original_lines: if "<doc id=" in line: article_open = True elif "</doc>" in line: article_open = False document = [ tokenizer.convert_tokens_to_ids(tokenizer.tokenize(line)) for line in article_lines[1:] if (len(line) > 0 and not line.isspace()) ]
10,620
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
examples = self.create_examples_from_document(document, block_size, tokenizer) self.examples.extend(examples) article_lines = [] else: if article_open: article_lines.append(line) logger.info("Dataset parse finished.") def create_examples_from_document(self, document, block_size, tokenizer, short_seq_prob=0.1): """Creates examples for a single document.""" # Account for special tokens max_num_tokens = block_size - tokenizer.num_special_tokens_to_add(pair=True)
10,620
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
# We *usually* want to fill up the entire sequence since we are padding # to `block_size` anyways, so short sequences are generally wasted # computation. However, we *sometimes* # (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter # sequences to minimize the mismatch between pretraining and fine-tuning. # The `target_seq_length` is just a rough target however, whereas # `block_size` is a hard limit. target_seq_length = max_num_tokens if random.random() < short_seq_prob: target_seq_length = random.randint(2, max_num_tokens)
10,620
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
# We DON'T just concatenate all of the tokens from a document into a long # sequence and choose an arbitrary split point because this would make the # next sentence prediction task too easy. Instead, we split the input into # segments "A" and "B" based on the actual "sentences" provided by the user # input. examples = [] current_chunk = [] # a buffer stored current working segments current_length = 0 i = 0 while i < len(document): segment = document[i] # get a segment if not segment: i += 1 continue current_chunk.append(segment) # add a segment to current chunk current_length += len(segment) # overall token length # if current length goes to the target length or reaches the end of file, start building token a and b if i == len(document) - 1 or current_length >= target_seq_length: if current_chunk:
10,620
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
# `a_end` is how many segments from `current_chunk` go into the `A` (first) sentence. a_end = 1 # if current chunk has more than 2 sentences, pick part of it `A` (first) sentence if len(current_chunk) >= 2: a_end = random.randint(1, len(current_chunk) - 1) # token a tokens_a = [] for j in range(a_end): tokens_a.extend(current_chunk[j])
10,620
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
# token b tokens_b = [] for j in range(a_end, len(current_chunk)): tokens_b.extend(current_chunk[j]) if len(tokens_a) == 0 or len(tokens_b) == 0: continue # switch tokens_a and tokens_b randomly if random.random() < 0.5: is_next = False tokens_a, tokens_b = tokens_b, tokens_a else: is_next = True
10,620
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
def truncate_seq_pair(tokens_a, tokens_b, max_num_tokens): """Truncates a pair of sequences to a maximum sequence length.""" while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_num_tokens: break trunc_tokens = tokens_a if len(tokens_a) > len(tokens_b) else tokens_b if not (len(trunc_tokens) >= 1): raise ValueError("Sequence length to be truncated must be no less than one") # We want to sometimes truncate from the front and sometimes from the # back to add more randomness and avoid biases. if random.random() < 0.5: del trunc_tokens[0] else: trunc_tokens.pop()
10,620
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
truncate_seq_pair(tokens_a, tokens_b, max_num_tokens) if not (len(tokens_a) >= 1): raise ValueError(f"Length of sequence a is {len(tokens_a)} which must be no less than 1") if not (len(tokens_b) >= 1): raise ValueError(f"Length of sequence b is {len(tokens_b)} which must be no less than 1") # add special tokens input_ids = tokenizer.build_inputs_with_special_tokens(tokens_a, tokens_b) # add token type ids, 0 for sentence a, 1 for sentence b token_type_ids = tokenizer.create_token_type_ids_from_sequences(tokens_a, tokens_b)
10,620
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
example = { "input_ids": torch.tensor(input_ids, dtype=torch.long), "token_type_ids": torch.tensor(token_type_ids, dtype=torch.long), "sentence_order_label": torch.tensor(0 if is_next else 1, dtype=torch.long), } examples.append(example) current_chunk = [] # clear current chunk current_length = 0 # reset current text length i += 1 # go to next line return examples def __len__(self): return len(self.examples) def __getitem__(self, i) -> Dict[str, torch.tensor]: return self.examples[i]
10,620
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
class TextDatasetForNextSentencePrediction(Dataset): """ This will be superseded by a framework-agnostic approach soon. """ def __init__( self, tokenizer: PreTrainedTokenizer, file_path: str, block_size: int, overwrite_cache=False, short_seq_probability=0.1, nsp_probability=0.5, ): warnings.warn( DEPRECATION_WARNING.format( "https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py" ), FutureWarning, ) if not os.path.isfile(file_path): raise ValueError(f"Input file path {file_path} not found") self.short_seq_probability = short_seq_probability self.nsp_probability = nsp_probability
10,621
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
directory, filename = os.path.split(file_path) cached_features_file = os.path.join( directory, f"cached_nsp_{tokenizer.__class__.__name__}_{block_size}_{filename}", ) self.tokenizer = tokenizer # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lock_path = cached_features_file + ".lock" # Input file format: # (1) One sentence per line. These should ideally be actual sentences, not # entire paragraphs or arbitrary spans of text. (Because we use the # sentence boundaries for the "next sentence prediction" task). # (2) Blank lines between documents. Document boundaries are needed so # that the "next sentence prediction" task doesn't span between documents. # # Example: # I am very happy. # Here is the second sentence. # # A new document.
10,621
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
with FileLock(lock_path): if os.path.exists(cached_features_file) and not overwrite_cache: start = time.time() with open(cached_features_file, "rb") as handle: self.examples = pickle.load(handle) logger.info( f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start ) else: logger.info(f"Creating features from dataset file at {directory}") self.documents = [[]] with open(file_path, encoding="utf-8") as f: while True: line = f.readline() if not line: break line = line.strip()
10,621
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
# Empty lines are used as document delimiters if not line and len(self.documents[-1]) != 0: self.documents.append([]) tokens = tokenizer.tokenize(line) tokens = tokenizer.convert_tokens_to_ids(tokens) if tokens: self.documents[-1].append(tokens) logger.info(f"Creating examples from {len(self.documents)} documents.") self.examples = [] for doc_index, document in enumerate(self.documents): self.create_examples_from_document(document, doc_index, block_size)
10,621
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
start = time.time() with open(cached_features_file, "wb") as handle: pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL) logger.info( f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" ) def create_examples_from_document(self, document: List[List[int]], doc_index: int, block_size: int): """Creates examples for a single document.""" max_num_tokens = block_size - self.tokenizer.num_special_tokens_to_add(pair=True)
10,621
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
# We *usually* want to fill up the entire sequence since we are padding # to `block_size` anyways, so short sequences are generally wasted # computation. However, we *sometimes* # (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter # sequences to minimize the mismatch between pretraining and fine-tuning. # The `target_seq_length` is just a rough target however, whereas # `block_size` is a hard limit. target_seq_length = max_num_tokens if random.random() < self.short_seq_probability: target_seq_length = random.randint(2, max_num_tokens) current_chunk = [] # a buffer stored current working segments current_length = 0 i = 0
10,621
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
while i < len(document): segment = document[i] current_chunk.append(segment) current_length += len(segment) if i == len(document) - 1 or current_length >= target_seq_length: if current_chunk: # `a_end` is how many segments from `current_chunk` go into the `A` # (first) sentence. a_end = 1 if len(current_chunk) >= 2: a_end = random.randint(1, len(current_chunk) - 1) tokens_a = [] for j in range(a_end): tokens_a.extend(current_chunk[j]) tokens_b = [] if len(current_chunk) == 1 or random.random() < self.nsp_probability: is_random_next = True target_b_length = target_seq_length - len(tokens_a)
10,621
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
# This should rarely go for more than one iteration for large # corpora. However, just to be careful, we try to make sure that # the random document is not the same as the document # we're processing. for _ in range(10): random_document_index = random.randint(0, len(self.documents) - 1) if random_document_index != doc_index: break
10,621
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
random_document = self.documents[random_document_index] random_start = random.randint(0, len(random_document) - 1) for j in range(random_start, len(random_document)): tokens_b.extend(random_document[j]) if len(tokens_b) >= target_b_length: break # We didn't actually use these segments so we "put them back" so # they don't go to waste. num_unused_segments = len(current_chunk) - a_end i -= num_unused_segments # Actual next else: is_random_next = False for j in range(a_end, len(current_chunk)): tokens_b.extend(current_chunk[j])
10,621
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
if not (len(tokens_a) >= 1): raise ValueError(f"Length of sequence a is {len(tokens_a)} which must be no less than 1") if not (len(tokens_b) >= 1): raise ValueError(f"Length of sequence b is {len(tokens_b)} which must be no less than 1") # add special tokens input_ids = self.tokenizer.build_inputs_with_special_tokens(tokens_a, tokens_b) # add token type ids, 0 for sentence a, 1 for sentence b token_type_ids = self.tokenizer.create_token_type_ids_from_sequences(tokens_a, tokens_b) example = { "input_ids": torch.tensor(input_ids, dtype=torch.long), "token_type_ids": torch.tensor(token_type_ids, dtype=torch.long), "next_sentence_label": torch.tensor(1 if is_random_next else 0, dtype=torch.long), }
10,621
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
self.examples.append(example) current_chunk = [] current_length = 0 i += 1 def __len__(self): return len(self.examples) def __getitem__(self, i): return self.examples[i]
10,621
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
class SquadDataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """
10,622
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/squad.py
model_type: str = field( default=None, metadata={"help": "Model type selected in the list: " + ", ".join(MODEL_TYPES)} ) data_dir: str = field( default=None, metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."} ) max_seq_length: int = field( default=128, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) doc_stride: int = field( default=128, metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."}, ) max_query_length: int = field( default=64, metadata={ "help": ( "The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length." )
10,622
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/squad.py
}, ) max_answer_length: int = field( default=30, metadata={ "help": ( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ) }, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) version_2_with_negative: bool = field( default=False, metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."} ) null_score_diff_threshold: float = field( default=0.0, metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) n_best_size: int = field( default=20, metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) lang_id: int = field( default=0, metadata={
10,622
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/squad.py
"help": ( "language id of input for language-specific xlm models (see" " tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)" ) }, ) threads: int = field(default=1, metadata={"help": "multiple threads for converting example to features"})
10,622
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/squad.py
class Split(Enum): train = "train" dev = "dev"
10,623
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/squad.py
class SquadDataset(Dataset): """ This will be superseded by a framework-agnostic approach soon. """ args: SquadDataTrainingArguments features: List[SquadFeatures] mode: Split is_language_sensitive: bool
10,624
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/squad.py
def __init__( self, args: SquadDataTrainingArguments, tokenizer: PreTrainedTokenizer, limit_length: Optional[int] = None, mode: Union[str, Split] = Split.train, is_language_sensitive: Optional[bool] = False, cache_dir: Optional[str] = None, dataset_format: Optional[str] = "pt", ): self.args = args self.is_language_sensitive = is_language_sensitive self.processor = SquadV2Processor() if args.version_2_with_negative else SquadV1Processor() if isinstance(mode, str): try: mode = Split[mode] except KeyError: raise KeyError("mode is not a valid split name") self.mode = mode # Load data features from cache or dataset file version_tag = "v2" if args.version_2_with_negative else "v1" cached_features_file = os.path.join( cache_dir if cache_dir is not None else args.data_dir,
10,624
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/squad.py
f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}", )
10,624
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/squad.py
# Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lock_path = cached_features_file + ".lock" with FileLock(lock_path): if os.path.exists(cached_features_file) and not args.overwrite_cache: start = time.time() self.old_features = torch.load(cached_features_file) # Legacy cache files have only features, while new cache files # will have dataset and examples also. self.features = self.old_features["features"] self.dataset = self.old_features.get("dataset", None) self.examples = self.old_features.get("examples", None) logger.info( f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start )
10,624
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/squad.py
if self.dataset is None or self.examples is None: logger.warning( f"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in" " future run" ) else: if mode == Split.dev: self.examples = self.processor.get_dev_examples(args.data_dir) else: self.examples = self.processor.get_train_examples(args.data_dir) self.features, self.dataset = squad_convert_examples_to_features( examples=self.examples, tokenizer=tokenizer, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=dataset_format, )
10,624
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/squad.py
start = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples}, cached_features_file, ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" ) def __len__(self): return len(self.features) def __getitem__(self, i) -> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset feature = self.features[i]
10,624
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/squad.py
input_ids = torch.tensor(feature.input_ids, dtype=torch.long) attention_mask = torch.tensor(feature.attention_mask, dtype=torch.long) token_type_ids = torch.tensor(feature.token_type_ids, dtype=torch.long) cls_index = torch.tensor(feature.cls_index, dtype=torch.long) p_mask = torch.tensor(feature.p_mask, dtype=torch.float) is_impossible = torch.tensor(feature.is_impossible, dtype=torch.float) inputs = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"]
10,624
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/squad.py
if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask}) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible}) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape, dtype=torch.int64) * self.args.lang_id)}) if self.mode == Split.train: start_positions = torch.tensor(feature.start_position, dtype=torch.long) end_positions = torch.tensor(feature.end_position, dtype=torch.long) inputs.update({"start_positions": start_positions, "end_positions": end_positions}) return inputs
10,624
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/squad.py
class GlueDataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify them on the command line. """ task_name: str = field(metadata={"help": "The name of the task to train on: " + ", ".join(glue_processors.keys())}) data_dir: str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) max_seq_length: int = field( default=128, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} )
10,625
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/glue.py
def __post_init__(self): self.task_name = self.task_name.lower()
10,625
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/glue.py
class Split(Enum): train = "train" dev = "dev" test = "test"
10,626
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/glue.py
class GlueDataset(Dataset): """ This will be superseded by a framework-agnostic approach soon. """ args: GlueDataTrainingArguments output_mode: str features: List[InputFeatures]
10,627
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/glue.py
def __init__( self, args: GlueDataTrainingArguments, tokenizer: PreTrainedTokenizerBase, limit_length: Optional[int] = None, mode: Union[str, Split] = Split.train, cache_dir: Optional[str] = None, ): warnings.warn( "This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets " "library. You can have a look at this example script for pointers: " "https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py", FutureWarning, ) self.args = args self.processor = glue_processors[args.task_name]() self.output_mode = glue_output_modes[args.task_name] if isinstance(mode, str): try: mode = Split[mode] except KeyError: raise KeyError("mode is not a valid split name") # Load data features from cache or dataset file
10,627
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/glue.py
cached_features_file = os.path.join( cache_dir if cache_dir is not None else args.data_dir, f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}", ) label_list = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) label_list[1], label_list[2] = label_list[2], label_list[1] self.label_list = label_list
10,627
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/glue.py
# Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lock_path = cached_features_file + ".lock" with FileLock(lock_path): if os.path.exists(cached_features_file) and not args.overwrite_cache: start = time.time() self.features = torch.load(cached_features_file) logger.info( f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start ) else: logger.info(f"Creating features from dataset file at {args.data_dir}")
10,627
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/glue.py
if mode == Split.dev: examples = self.processor.get_dev_examples(args.data_dir) elif mode == Split.test: examples = self.processor.get_test_examples(args.data_dir) else: examples = self.processor.get_train_examples(args.data_dir) if limit_length is not None: examples = examples[:limit_length] self.features = glue_convert_examples_to_features( examples, tokenizer, max_length=args.max_seq_length, label_list=label_list, output_mode=self.output_mode, ) start = time.time() torch.save(self.features, cached_features_file) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info(
10,627
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/glue.py
f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" )
10,627
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/glue.py
def __len__(self): return len(self.features) def __getitem__(self, i) -> InputFeatures: return self.features[i] def get_labels(self): return self.label_list
10,627
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/glue.py
class XnliProcessor(DataProcessor): """ Processor for the XNLI dataset. Adapted from https://github.com/google-research/bert/blob/f39e881b169b9d53bea03d2d341b31707a6c052b/run_classifier.py#L207 """ def __init__(self, language, train_language=None): self.language = language self.train_language = train_language
10,628
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/xnli.py
def get_train_examples(self, data_dir): """See base class.""" lg = self.language if self.train_language is None else self.train_language lines = self._read_tsv(os.path.join(data_dir, f"XNLI-MT-1.0/multinli/multinli.train.{lg}.tsv")) examples = [] for i, line in enumerate(lines): if i == 0: continue guid = f"train-{i}" text_a = line[0] text_b = line[1] label = "contradiction" if line[2] == "contradictory" else line[2] if not isinstance(text_a, str): raise TypeError(f"Training input {text_a} is not a string") if not isinstance(text_b, str): raise TypeError(f"Training input {text_b} is not a string") if not isinstance(label, str): raise TypeError(f"Training label {label} is not a string") examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples
10,628
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/xnli.py
def get_test_examples(self, data_dir): """See base class.""" lines = self._read_tsv(os.path.join(data_dir, "XNLI-1.0/xnli.test.tsv")) examples = [] for i, line in enumerate(lines): if i == 0: continue language = line[0] if language != self.language: continue guid = f"test-{i}" text_a = line[6] text_b = line[7] label = line[1] if not isinstance(text_a, str): raise TypeError(f"Training input {text_a} is not a string") if not isinstance(text_b, str): raise TypeError(f"Training input {text_b} is not a string") if not isinstance(label, str): raise TypeError(f"Training label {label} is not a string") examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples
10,628
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/xnli.py
def get_labels(self): """See base class.""" return ["contradiction", "entailment", "neutral"]
10,628
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/xnli.py
class SquadProcessor(DataProcessor): """ Processor for the SQuAD data set. overridden by SquadV1Processor and SquadV2Processor, used by the version 1.1 and version 2.0 of SQuAD, respectively. """ train_file = None dev_file = None def _get_example_from_tensor_dict(self, tensor_dict, evaluate=False): if not evaluate: answer = tensor_dict["answers"]["text"][0].numpy().decode("utf-8") answer_start = tensor_dict["answers"]["answer_start"][0].numpy() answers = [] else: answers = [ {"answer_start": start.numpy(), "text": text.numpy().decode("utf-8")} for start, text in zip(tensor_dict["answers"]["answer_start"], tensor_dict["answers"]["text"]) ] answer = None answer_start = None
10,629
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/squad.py
return SquadExample( qas_id=tensor_dict["id"].numpy().decode("utf-8"), question_text=tensor_dict["question"].numpy().decode("utf-8"), context_text=tensor_dict["context"].numpy().decode("utf-8"), answer_text=answer, start_position_character=answer_start, title=tensor_dict["title"].numpy().decode("utf-8"), answers=answers, ) def get_examples_from_dataset(self, dataset, evaluate=False): """ Creates a list of [`~data.processors.squad.SquadExample`] using a TFDS dataset. Args: dataset: The tfds dataset loaded from *tensorflow_datasets.load("squad")* evaluate: Boolean specifying if in evaluation mode or in training mode Returns: List of SquadExample Examples: ```python >>> import tensorflow_datasets as tfds >>> dataset = tfds.load("squad")
10,629
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/squad.py
>>> training_examples = get_examples_from_dataset(dataset, evaluate=False) >>> evaluation_examples = get_examples_from_dataset(dataset, evaluate=True) ```""" if evaluate: dataset = dataset["validation"] else: dataset = dataset["train"] examples = [] for tensor_dict in tqdm(dataset): examples.append(self._get_example_from_tensor_dict(tensor_dict, evaluate=evaluate)) return examples def get_train_examples(self, data_dir, filename=None): """ Returns the training examples from the data directory. Args: data_dir: Directory containing the data files used for training and evaluating. filename: None by default, specify this if the training file has a different name than the original one which is `train-v1.1.json` and `train-v2.0.json` for squad versions 1.1 and 2.0 respectively. """ if data_dir is None: data_dir = ""
10,629
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/squad.py
if self.train_file is None: raise ValueError("SquadProcessor should be instantiated via SquadV1Processor or SquadV2Processor") with open( os.path.join(data_dir, self.train_file if filename is None else filename), "r", encoding="utf-8" ) as reader: input_data = json.load(reader)["data"] return self._create_examples(input_data, "train") def get_dev_examples(self, data_dir, filename=None): """ Returns the evaluation example from the data directory. Args: data_dir: Directory containing the data files used for training and evaluating. filename: None by default, specify this if the evaluation file has a different name than the original one which is `dev-v1.1.json` and `dev-v2.0.json` for squad versions 1.1 and 2.0 respectively. """ if data_dir is None: data_dir = ""
10,629
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/squad.py
if self.dev_file is None: raise ValueError("SquadProcessor should be instantiated via SquadV1Processor or SquadV2Processor") with open( os.path.join(data_dir, self.dev_file if filename is None else filename), "r", encoding="utf-8" ) as reader: input_data = json.load(reader)["data"] return self._create_examples(input_data, "dev") def _create_examples(self, input_data, set_type): is_training = set_type == "train" examples = [] for entry in tqdm(input_data): title = entry["title"] for paragraph in entry["paragraphs"]: context_text = paragraph["context"] for qa in paragraph["qas"]: qas_id = qa["id"] question_text = qa["question"] start_position_character = None answer_text = None answers = []
10,629
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/squad.py
is_impossible = qa.get("is_impossible", False) if not is_impossible: if is_training: answer = qa["answers"][0] answer_text = answer["text"] start_position_character = answer["answer_start"] else: answers = qa["answers"] example = SquadExample( qas_id=qas_id, question_text=question_text, context_text=context_text, answer_text=answer_text, start_position_character=start_position_character, title=title, is_impossible=is_impossible, answers=answers, ) examples.append(example) return examples
10,629
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/squad.py
class SquadV1Processor(SquadProcessor): train_file = "train-v1.1.json" dev_file = "dev-v1.1.json"
10,630
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/squad.py
class SquadV2Processor(SquadProcessor): train_file = "train-v2.0.json" dev_file = "dev-v2.0.json"
10,631
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/squad.py
class SquadExample: """ A single training/test example for the Squad dataset, as loaded from disk. Args: qas_id: The example's unique identifier question_text: The question string context_text: The context string answer_text: The answer string start_position_character: The character position of the start of the answer title: The title of the example answers: None by default, this is used during evaluation. Holds answers as well as their start positions. is_impossible: False by default, set to True if the example has no possible answer. """
10,632
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/squad.py
def __init__( self, qas_id, question_text, context_text, answer_text, start_position_character, title, answers=[], is_impossible=False, ): self.qas_id = qas_id self.question_text = question_text self.context_text = context_text self.answer_text = answer_text self.title = title self.is_impossible = is_impossible self.answers = answers self.start_position, self.end_position = 0, 0 doc_tokens = [] char_to_word_offset = [] prev_is_whitespace = True
10,632
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/squad.py
# Split on whitespace so that different tokens may be attributed to their original position. for c in self.context_text: if _is_whitespace(c): prev_is_whitespace = True else: if prev_is_whitespace: doc_tokens.append(c) else: doc_tokens[-1] += c prev_is_whitespace = False char_to_word_offset.append(len(doc_tokens) - 1) self.doc_tokens = doc_tokens self.char_to_word_offset = char_to_word_offset # Start and end positions only has a value during evaluation. if start_position_character is not None and not is_impossible: self.start_position = char_to_word_offset[start_position_character] self.end_position = char_to_word_offset[ min(start_position_character + len(answer_text) - 1, len(char_to_word_offset) - 1) ]
10,632
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/squad.py
class SquadFeatures: """ Single squad example features to be fed to a model. Those features are model-specific and can be crafted from [`~data.processors.squad.SquadExample`] using the :method:*~transformers.data.processors.squad.squad_convert_examples_to_features* method.
10,633
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/squad.py
Args: input_ids: Indices of input sequence tokens in the vocabulary. attention_mask: Mask to avoid performing attention on padding token indices. token_type_ids: Segment token indices to indicate first and second portions of the inputs. cls_index: the index of the CLS token. p_mask: Mask identifying tokens that can be answers vs. tokens that cannot. Mask with 1 for tokens than cannot be in the answer and 0 for token that can be in an answer example_index: the index of the example unique_id: The unique Feature identifier paragraph_len: The length of the context token_is_max_context: List of booleans identifying which tokens have their maximum context in this feature object. If a token does not have their maximum context in this feature object, it means that another feature object has more information related to that token and should be prioritized over this feature for that token.
10,633
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/squad.py
tokens: list of tokens corresponding to the input ids token_to_orig_map: mapping between the tokens and the original text, needed in order to identify the answer. start_position: start of the answer token index end_position: end of the answer token index encoding: optionally store the BatchEncoding with the fast-tokenizer alignment methods. """
10,633
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/squad.py
def __init__( self, input_ids, attention_mask, token_type_ids, cls_index, p_mask, example_index, unique_id, paragraph_len, token_is_max_context, tokens, token_to_orig_map, start_position, end_position, is_impossible, qas_id: str = None, encoding: BatchEncoding = None, ): self.input_ids = input_ids self.attention_mask = attention_mask self.token_type_ids = token_type_ids self.cls_index = cls_index self.p_mask = p_mask self.example_index = example_index self.unique_id = unique_id self.paragraph_len = paragraph_len self.token_is_max_context = token_is_max_context self.tokens = tokens self.token_to_orig_map = token_to_orig_map self.start_position = start_position self.end_position = end_position self.is_impossible = is_impossible self.qas_id = qas_id
10,633
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/squad.py
self.encoding = encoding
10,633
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/squad.py
class SquadResult: """ Constructs a SquadResult which can be used to evaluate a model's output on the SQuAD dataset. Args: unique_id: The unique identifier corresponding to that example. start_logits: The logits corresponding to the start of the answer end_logits: The logits corresponding to the end of the answer """ def __init__(self, unique_id, start_logits, end_logits, start_top_index=None, end_top_index=None, cls_logits=None): self.start_logits = start_logits self.end_logits = end_logits self.unique_id = unique_id if start_top_index: self.start_top_index = start_top_index self.end_top_index = end_top_index self.cls_logits = cls_logits
10,634
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/squad.py
class OutputMode(Enum): classification = "classification" regression = "regression"
10,635
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/glue.py
class MrpcProcessor(DataProcessor): """Processor for the MRPC data set (GLUE version).""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning) def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["sentence1"].numpy().decode("utf-8"), tensor_dict["sentence2"].numpy().decode("utf-8"), str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir): """See base class.""" logger.info(f"LOOKING AT {os.path.join(data_dir, 'train.tsv')}") return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
10,636
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/glue.py
def get_test_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training, dev and test sets.""" examples = [] for i, line in enumerate(lines): if i == 0: continue guid = f"{set_type}-{i}" text_a = line[3] text_b = line[4] label = None if set_type == "test" else line[0] examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples
10,636
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/glue.py
class MnliProcessor(DataProcessor): """Processor for the MultiNLI data set (GLUE version).""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning) def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["premise"].numpy().decode("utf-8"), tensor_dict["hypothesis"].numpy().decode("utf-8"), str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")), "dev_matched")
10,637
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/glue.py
def get_test_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "test_matched.tsv")), "test_matched") def get_labels(self): """See base class.""" return ["contradiction", "entailment", "neutral"] def _create_examples(self, lines, set_type): """Creates examples for the training, dev and test sets.""" examples = [] for i, line in enumerate(lines): if i == 0: continue guid = f"{set_type}-{line[0]}" text_a = line[8] text_b = line[9] label = None if set_type.startswith("test") else line[-1] examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples
10,637
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/glue.py
class MnliMismatchedProcessor(MnliProcessor): """Processor for the MultiNLI Mismatched data set (GLUE version).""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning) def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev_mismatched.tsv")), "dev_mismatched") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "test_mismatched.tsv")), "test_mismatched")
10,638
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/glue.py
class ColaProcessor(DataProcessor): """Processor for the CoLA data set (GLUE version).""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning) def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["sentence"].numpy().decode("utf-8"), None, str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
10,639
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/glue.py
def get_test_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training, dev and test sets.""" test_mode = set_type == "test" if test_mode: lines = lines[1:] text_index = 1 if test_mode else 3 examples = [] for i, line in enumerate(lines): guid = f"{set_type}-{i}" text_a = line[text_index] label = None if test_mode else line[1] examples.append(InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples
10,639
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/glue.py
class Sst2Processor(DataProcessor): """Processor for the SST-2 data set (GLUE version).""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning) def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["sentence"].numpy().decode("utf-8"), None, str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
10,640
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/glue.py
def get_test_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training, dev and test sets.""" examples = [] text_index = 1 if set_type == "test" else 0 for i, line in enumerate(lines): if i == 0: continue guid = f"{set_type}-{i}" text_a = line[text_index] label = None if set_type == "test" else line[1] examples.append(InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples
10,640
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/glue.py
class StsbProcessor(DataProcessor): """Processor for the STS-B data set (GLUE version).""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning) def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["sentence1"].numpy().decode("utf-8"), tensor_dict["sentence2"].numpy().decode("utf-8"), str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
10,641
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/glue.py
def get_test_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") def get_labels(self): """See base class.""" return [None] def _create_examples(self, lines, set_type): """Creates examples for the training, dev and test sets.""" examples = [] for i, line in enumerate(lines): if i == 0: continue guid = f"{set_type}-{line[0]}" text_a = line[7] text_b = line[8] label = None if set_type == "test" else line[-1] examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples
10,641
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/glue.py
class QqpProcessor(DataProcessor): """Processor for the QQP data set (GLUE version).""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning) def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["question1"].numpy().decode("utf-8"), tensor_dict["question2"].numpy().decode("utf-8"), str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
10,642
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/glue.py
def get_test_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training, dev and test sets.""" test_mode = set_type == "test" q1_index = 1 if test_mode else 3 q2_index = 2 if test_mode else 4 examples = [] for i, line in enumerate(lines): if i == 0: continue guid = f"{set_type}-{line[0]}" try: text_a = line[q1_index] text_b = line[q2_index] label = None if test_mode else line[5] except IndexError: continue examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples
10,642
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/glue.py
class QnliProcessor(DataProcessor): """Processor for the QNLI data set (GLUE version).""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning) def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["question"].numpy().decode("utf-8"), tensor_dict["sentence"].numpy().decode("utf-8"), str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
10,643
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/glue.py
def get_test_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") def get_labels(self): """See base class.""" return ["entailment", "not_entailment"] def _create_examples(self, lines, set_type): """Creates examples for the training, dev and test sets.""" examples = [] for i, line in enumerate(lines): if i == 0: continue guid = f"{set_type}-{line[0]}" text_a = line[1] text_b = line[2] label = None if set_type == "test" else line[-1] examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples
10,643
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/glue.py
class RteProcessor(DataProcessor): """Processor for the RTE data set (GLUE version).""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning) def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["sentence1"].numpy().decode("utf-8"), tensor_dict["sentence2"].numpy().decode("utf-8"), str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
10,644
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/glue.py
def get_test_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") def get_labels(self): """See base class.""" return ["entailment", "not_entailment"] def _create_examples(self, lines, set_type): """Creates examples for the training, dev and test sets.""" examples = [] for i, line in enumerate(lines): if i == 0: continue guid = f"{set_type}-{line[0]}" text_a = line[1] text_b = line[2] label = None if set_type == "test" else line[-1] examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples
10,644
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/glue.py
class WnliProcessor(DataProcessor): """Processor for the WNLI data set (GLUE version).""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning) def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["sentence1"].numpy().decode("utf-8"), tensor_dict["sentence2"].numpy().decode("utf-8"), str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
10,645
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/glue.py
def get_test_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training, dev and test sets.""" examples = [] for i, line in enumerate(lines): if i == 0: continue guid = f"{set_type}-{line[0]}" text_a = line[1] text_b = line[2] label = None if set_type == "test" else line[-1] examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples
10,645
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/glue.py
class InputExample: """ A single training/test example for simple sequence classification. Args: guid: Unique id for the example. text_a: string. The untokenized text of the first sequence. For single sequence tasks, only this sequence must be specified. text_b: (Optional) string. The untokenized text of the second sequence. Only must be specified for sequence pair tasks. label: (Optional) string. The label of the example. This should be specified for train and dev examples, but not for test examples. """ guid: str text_a: str text_b: Optional[str] = None label: Optional[str] = None def to_json_string(self): """Serializes this instance to a JSON string.""" return json.dumps(dataclasses.asdict(self), indent=2) + "\n"
10,646
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/utils.py
class InputFeatures: """ A single set of features of data. Property names are the same names as the corresponding inputs to a model. Args: input_ids: Indices of input sequence tokens in the vocabulary. attention_mask: Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: Usually `1` for tokens that are NOT MASKED, `0` for MASKED (padded) tokens. token_type_ids: (Optional) Segment token indices to indicate first and second portions of the inputs. Only some models use them. label: (Optional) Label corresponding to the input. Int for classification problems, float for regression problems. """ input_ids: List[int] attention_mask: Optional[List[int]] = None token_type_ids: Optional[List[int]] = None label: Optional[Union[int, float]] = None
10,647
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/utils.py
def to_json_string(self): """Serializes this instance to a JSON string.""" return json.dumps(dataclasses.asdict(self)) + "\n"
10,647
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/utils.py
class DataProcessor: """Base class for data converters for sequence classification data sets.""" def get_example_from_tensor_dict(self, tensor_dict): """ Gets an example from a dict with tensorflow tensors. Args: tensor_dict: Keys and values should match the corresponding Glue tensorflow_dataset examples. """ raise NotImplementedError() def get_train_examples(self, data_dir): """Gets a collection of [`InputExample`] for the train set.""" raise NotImplementedError() def get_dev_examples(self, data_dir): """Gets a collection of [`InputExample`] for the dev set.""" raise NotImplementedError() def get_test_examples(self, data_dir): """Gets a collection of [`InputExample`] for the test set.""" raise NotImplementedError() def get_labels(self): """Gets the list of labels for this data set.""" raise NotImplementedError()
10,648
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/utils.py
def tfds_map(self, example): """ Some tensorflow_datasets datasets are not formatted the same way the GLUE datasets are. This method converts examples to the correct format. """ if len(self.get_labels()) > 1: example.label = self.get_labels()[int(example.label)] return example @classmethod def _read_tsv(cls, input_file, quotechar=None): """Reads a tab separated value file.""" with open(input_file, "r", encoding="utf-8-sig") as f: return list(csv.reader(f, delimiter="\t", quotechar=quotechar))
10,648
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/utils.py
class SingleSentenceClassificationProcessor(DataProcessor): """Generic processor for a single sentence classification data set.""" def __init__(self, labels=None, examples=None, mode="classification", verbose=False): self.labels = [] if labels is None else labels self.examples = [] if examples is None else examples self.mode = mode self.verbose = verbose def __len__(self): return len(self.examples) def __getitem__(self, idx): if isinstance(idx, slice): return SingleSentenceClassificationProcessor(labels=self.labels, examples=self.examples[idx]) return self.examples[idx]
10,649
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/utils.py
@classmethod def create_from_csv( cls, file_name, split_name="", column_label=0, column_text=1, column_id=None, skip_first_row=False, **kwargs ): processor = cls(**kwargs) processor.add_examples_from_csv( file_name, split_name=split_name, column_label=column_label, column_text=column_text, column_id=column_id, skip_first_row=skip_first_row, overwrite_labels=True, overwrite_examples=True, ) return processor @classmethod def create_from_examples(cls, texts_or_text_and_labels, labels=None, **kwargs): processor = cls(**kwargs) processor.add_examples(texts_or_text_and_labels, labels=labels) return processor
10,649
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/utils.py
def add_examples_from_csv( self, file_name, split_name="", column_label=0, column_text=1, column_id=None, skip_first_row=False, overwrite_labels=False, overwrite_examples=False, ): lines = self._read_tsv(file_name) if skip_first_row: lines = lines[1:] texts = [] labels = [] ids = [] for i, line in enumerate(lines): texts.append(line[column_text]) labels.append(line[column_label]) if column_id is not None: ids.append(line[column_id]) else: guid = f"{split_name}-{i}" if split_name else str(i) ids.append(guid) return self.add_examples( texts, labels, ids, overwrite_labels=overwrite_labels, overwrite_examples=overwrite_examples )
10,649
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/utils.py
def add_examples( self, texts_or_text_and_labels, labels=None, ids=None, overwrite_labels=False, overwrite_examples=False ): if labels is not None and len(texts_or_text_and_labels) != len(labels): raise ValueError( f"Text and labels have mismatched lengths {len(texts_or_text_and_labels)} and {len(labels)}" ) if ids is not None and len(texts_or_text_and_labels) != len(ids): raise ValueError(f"Text and ids have mismatched lengths {len(texts_or_text_and_labels)} and {len(ids)}") if ids is None: ids = [None] * len(texts_or_text_and_labels) if labels is None: labels = [None] * len(texts_or_text_and_labels) examples = [] added_labels = set() for text_or_text_and_label, label, guid in zip(texts_or_text_and_labels, labels, ids): if isinstance(text_or_text_and_label, (tuple, list)) and label is None: text, label = text_or_text_and_label
10,649
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/utils.py