text
stringlengths 1
1.02k
| class_index
int64 0
10.8k
| source
stringlengths 85
188
|
---|---|---|
batch_encoding = tokenizer(lines, add_special_tokens=True, truncation=True, max_length=block_size)
self.examples = batch_encoding["input_ids"]
self.examples = [{"input_ids": torch.tensor(e, dtype=torch.long)} for e in self.examples]
def __len__(self):
return len(self.examples)
def __getitem__(self, i) -> Dict[str, torch.tensor]:
return self.examples[i]
| 10,618 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
|
class LineByLineWithRefDataset(Dataset):
"""
This will be superseded by a framework-agnostic approach soon.
"""
| 10,619 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
|
def __init__(self, tokenizer: PreTrainedTokenizer, file_path: str, block_size: int, ref_path: str):
warnings.warn(
DEPRECATION_WARNING.format(
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm_wwm.py"
),
FutureWarning,
)
if os.path.isfile(file_path) is False:
raise ValueError(f"Input file path {file_path} not found")
if os.path.isfile(ref_path) is False:
raise ValueError(f"Ref file path {file_path} not found")
# Here, we do not cache the features, operating under the assumption
# that we will soon use fast multithreaded tokenizers from the
# `tokenizers` repo everywhere =)
logger.info(f"Creating features from dataset file at {file_path}")
logger.info(f"Use ref segment results at {ref_path}")
with open(file_path, encoding="utf-8") as f:
| 10,619 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
|
data = f.readlines() # use this method to avoid delimiter '\u2029' to split a line
data = [line.strip() for line in data if len(line) > 0 and not line.isspace()]
# Get ref inf from file
with open(ref_path, encoding="utf-8") as f:
ref = [json.loads(line) for line in f.read().splitlines() if (len(line) > 0 and not line.isspace())]
if len(data) != len(ref):
raise ValueError(
f"Length of Input file should be equal to Ref file. But the length of {file_path} is {len(data)} "
f"while length of {ref_path} is {len(ref)}"
)
| 10,619 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
|
batch_encoding = tokenizer(data, add_special_tokens=True, truncation=True, max_length=block_size)
self.examples = batch_encoding["input_ids"]
self.examples = [{"input_ids": torch.tensor(e, dtype=torch.long)} for e in self.examples]
n = len(self.examples)
for i in range(n):
self.examples[i]["chinese_ref"] = torch.tensor(ref[i], dtype=torch.long)
def __len__(self):
return len(self.examples)
def __getitem__(self, i) -> Dict[str, torch.tensor]:
return self.examples[i]
| 10,619 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
|
class LineByLineWithSOPTextDataset(Dataset):
"""
Dataset for sentence order prediction task, prepare sentence pairs for SOP task
"""
| 10,620 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
|
def __init__(self, tokenizer: PreTrainedTokenizer, file_dir: str, block_size: int):
warnings.warn(
DEPRECATION_WARNING.format(
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py"
),
FutureWarning,
)
if os.path.isdir(file_dir) is False:
raise ValueError(f"{file_dir} is not a directory")
logger.info(f"Creating features from dataset file folder at {file_dir}")
self.examples = []
# TODO: randomness could apply a random seed, ex. rng = random.Random(random_seed)
# file path looks like ./dataset/wiki_1, ./dataset/wiki_2
for file_name in os.listdir(file_dir):
file_path = os.path.join(file_dir, file_name)
if os.path.isfile(file_path) is False:
raise ValueError(f"{file_path} is not a file")
article_open = False
with open(file_path, encoding="utf-8") as f:
| 10,620 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
|
original_lines = f.readlines()
article_lines = []
for line in original_lines:
if "<doc id=" in line:
article_open = True
elif "</doc>" in line:
article_open = False
document = [
tokenizer.convert_tokens_to_ids(tokenizer.tokenize(line))
for line in article_lines[1:]
if (len(line) > 0 and not line.isspace())
]
| 10,620 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
|
examples = self.create_examples_from_document(document, block_size, tokenizer)
self.examples.extend(examples)
article_lines = []
else:
if article_open:
article_lines.append(line)
logger.info("Dataset parse finished.")
def create_examples_from_document(self, document, block_size, tokenizer, short_seq_prob=0.1):
"""Creates examples for a single document."""
# Account for special tokens
max_num_tokens = block_size - tokenizer.num_special_tokens_to_add(pair=True)
| 10,620 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
|
# We *usually* want to fill up the entire sequence since we are padding
# to `block_size` anyways, so short sequences are generally wasted
# computation. However, we *sometimes*
# (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter
# sequences to minimize the mismatch between pretraining and fine-tuning.
# The `target_seq_length` is just a rough target however, whereas
# `block_size` is a hard limit.
target_seq_length = max_num_tokens
if random.random() < short_seq_prob:
target_seq_length = random.randint(2, max_num_tokens)
| 10,620 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
|
# We DON'T just concatenate all of the tokens from a document into a long
# sequence and choose an arbitrary split point because this would make the
# next sentence prediction task too easy. Instead, we split the input into
# segments "A" and "B" based on the actual "sentences" provided by the user
# input.
examples = []
current_chunk = [] # a buffer stored current working segments
current_length = 0
i = 0
while i < len(document):
segment = document[i] # get a segment
if not segment:
i += 1
continue
current_chunk.append(segment) # add a segment to current chunk
current_length += len(segment) # overall token length
# if current length goes to the target length or reaches the end of file, start building token a and b
if i == len(document) - 1 or current_length >= target_seq_length:
if current_chunk:
| 10,620 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
|
# `a_end` is how many segments from `current_chunk` go into the `A` (first) sentence.
a_end = 1
# if current chunk has more than 2 sentences, pick part of it `A` (first) sentence
if len(current_chunk) >= 2:
a_end = random.randint(1, len(current_chunk) - 1)
# token a
tokens_a = []
for j in range(a_end):
tokens_a.extend(current_chunk[j])
| 10,620 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
|
# token b
tokens_b = []
for j in range(a_end, len(current_chunk)):
tokens_b.extend(current_chunk[j])
if len(tokens_a) == 0 or len(tokens_b) == 0:
continue
# switch tokens_a and tokens_b randomly
if random.random() < 0.5:
is_next = False
tokens_a, tokens_b = tokens_b, tokens_a
else:
is_next = True
| 10,620 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
|
def truncate_seq_pair(tokens_a, tokens_b, max_num_tokens):
"""Truncates a pair of sequences to a maximum sequence length."""
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_num_tokens:
break
trunc_tokens = tokens_a if len(tokens_a) > len(tokens_b) else tokens_b
if not (len(trunc_tokens) >= 1):
raise ValueError("Sequence length to be truncated must be no less than one")
# We want to sometimes truncate from the front and sometimes from the
# back to add more randomness and avoid biases.
if random.random() < 0.5:
del trunc_tokens[0]
else:
trunc_tokens.pop()
| 10,620 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
|
truncate_seq_pair(tokens_a, tokens_b, max_num_tokens)
if not (len(tokens_a) >= 1):
raise ValueError(f"Length of sequence a is {len(tokens_a)} which must be no less than 1")
if not (len(tokens_b) >= 1):
raise ValueError(f"Length of sequence b is {len(tokens_b)} which must be no less than 1")
# add special tokens
input_ids = tokenizer.build_inputs_with_special_tokens(tokens_a, tokens_b)
# add token type ids, 0 for sentence a, 1 for sentence b
token_type_ids = tokenizer.create_token_type_ids_from_sequences(tokens_a, tokens_b)
| 10,620 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
|
example = {
"input_ids": torch.tensor(input_ids, dtype=torch.long),
"token_type_ids": torch.tensor(token_type_ids, dtype=torch.long),
"sentence_order_label": torch.tensor(0 if is_next else 1, dtype=torch.long),
}
examples.append(example)
current_chunk = [] # clear current chunk
current_length = 0 # reset current text length
i += 1 # go to next line
return examples
def __len__(self):
return len(self.examples)
def __getitem__(self, i) -> Dict[str, torch.tensor]:
return self.examples[i]
| 10,620 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
|
class TextDatasetForNextSentencePrediction(Dataset):
"""
This will be superseded by a framework-agnostic approach soon.
"""
def __init__(
self,
tokenizer: PreTrainedTokenizer,
file_path: str,
block_size: int,
overwrite_cache=False,
short_seq_probability=0.1,
nsp_probability=0.5,
):
warnings.warn(
DEPRECATION_WARNING.format(
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py"
),
FutureWarning,
)
if not os.path.isfile(file_path):
raise ValueError(f"Input file path {file_path} not found")
self.short_seq_probability = short_seq_probability
self.nsp_probability = nsp_probability
| 10,621 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
|
directory, filename = os.path.split(file_path)
cached_features_file = os.path.join(
directory,
f"cached_nsp_{tokenizer.__class__.__name__}_{block_size}_{filename}",
)
self.tokenizer = tokenizer
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
lock_path = cached_features_file + ".lock"
# Input file format:
# (1) One sentence per line. These should ideally be actual sentences, not
# entire paragraphs or arbitrary spans of text. (Because we use the
# sentence boundaries for the "next sentence prediction" task).
# (2) Blank lines between documents. Document boundaries are needed so
# that the "next sentence prediction" task doesn't span between documents.
#
# Example:
# I am very happy.
# Here is the second sentence.
#
# A new document.
| 10,621 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
|
with FileLock(lock_path):
if os.path.exists(cached_features_file) and not overwrite_cache:
start = time.time()
with open(cached_features_file, "rb") as handle:
self.examples = pickle.load(handle)
logger.info(
f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start
)
else:
logger.info(f"Creating features from dataset file at {directory}")
self.documents = [[]]
with open(file_path, encoding="utf-8") as f:
while True:
line = f.readline()
if not line:
break
line = line.strip()
| 10,621 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
|
# Empty lines are used as document delimiters
if not line and len(self.documents[-1]) != 0:
self.documents.append([])
tokens = tokenizer.tokenize(line)
tokens = tokenizer.convert_tokens_to_ids(tokens)
if tokens:
self.documents[-1].append(tokens)
logger.info(f"Creating examples from {len(self.documents)} documents.")
self.examples = []
for doc_index, document in enumerate(self.documents):
self.create_examples_from_document(document, doc_index, block_size)
| 10,621 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
|
start = time.time()
with open(cached_features_file, "wb") as handle:
pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL)
logger.info(
f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]"
)
def create_examples_from_document(self, document: List[List[int]], doc_index: int, block_size: int):
"""Creates examples for a single document."""
max_num_tokens = block_size - self.tokenizer.num_special_tokens_to_add(pair=True)
| 10,621 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
|
# We *usually* want to fill up the entire sequence since we are padding
# to `block_size` anyways, so short sequences are generally wasted
# computation. However, we *sometimes*
# (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter
# sequences to minimize the mismatch between pretraining and fine-tuning.
# The `target_seq_length` is just a rough target however, whereas
# `block_size` is a hard limit.
target_seq_length = max_num_tokens
if random.random() < self.short_seq_probability:
target_seq_length = random.randint(2, max_num_tokens)
current_chunk = [] # a buffer stored current working segments
current_length = 0
i = 0
| 10,621 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
|
while i < len(document):
segment = document[i]
current_chunk.append(segment)
current_length += len(segment)
if i == len(document) - 1 or current_length >= target_seq_length:
if current_chunk:
# `a_end` is how many segments from `current_chunk` go into the `A`
# (first) sentence.
a_end = 1
if len(current_chunk) >= 2:
a_end = random.randint(1, len(current_chunk) - 1)
tokens_a = []
for j in range(a_end):
tokens_a.extend(current_chunk[j])
tokens_b = []
if len(current_chunk) == 1 or random.random() < self.nsp_probability:
is_random_next = True
target_b_length = target_seq_length - len(tokens_a)
| 10,621 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
|
# This should rarely go for more than one iteration for large
# corpora. However, just to be careful, we try to make sure that
# the random document is not the same as the document
# we're processing.
for _ in range(10):
random_document_index = random.randint(0, len(self.documents) - 1)
if random_document_index != doc_index:
break
| 10,621 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
|
random_document = self.documents[random_document_index]
random_start = random.randint(0, len(random_document) - 1)
for j in range(random_start, len(random_document)):
tokens_b.extend(random_document[j])
if len(tokens_b) >= target_b_length:
break
# We didn't actually use these segments so we "put them back" so
# they don't go to waste.
num_unused_segments = len(current_chunk) - a_end
i -= num_unused_segments
# Actual next
else:
is_random_next = False
for j in range(a_end, len(current_chunk)):
tokens_b.extend(current_chunk[j])
| 10,621 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
|
if not (len(tokens_a) >= 1):
raise ValueError(f"Length of sequence a is {len(tokens_a)} which must be no less than 1")
if not (len(tokens_b) >= 1):
raise ValueError(f"Length of sequence b is {len(tokens_b)} which must be no less than 1")
# add special tokens
input_ids = self.tokenizer.build_inputs_with_special_tokens(tokens_a, tokens_b)
# add token type ids, 0 for sentence a, 1 for sentence b
token_type_ids = self.tokenizer.create_token_type_ids_from_sequences(tokens_a, tokens_b)
example = {
"input_ids": torch.tensor(input_ids, dtype=torch.long),
"token_type_ids": torch.tensor(token_type_ids, dtype=torch.long),
"next_sentence_label": torch.tensor(1 if is_random_next else 0, dtype=torch.long),
}
| 10,621 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
|
self.examples.append(example)
current_chunk = []
current_length = 0
i += 1
def __len__(self):
return len(self.examples)
def __getitem__(self, i):
return self.examples[i]
| 10,621 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/language_modeling.py
|
class SquadDataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
| 10,622 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/squad.py
|
model_type: str = field(
default=None, metadata={"help": "Model type selected in the list: " + ", ".join(MODEL_TYPES)}
)
data_dir: str = field(
default=None, metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."}
)
max_seq_length: int = field(
default=128,
metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
doc_stride: int = field(
default=128,
metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."},
)
max_query_length: int = field(
default=64,
metadata={
"help": (
"The maximum number of tokens for the question. Questions longer than this will "
"be truncated to this length."
)
| 10,622 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/squad.py
|
},
)
max_answer_length: int = field(
default=30,
metadata={
"help": (
"The maximum length of an answer that can be generated. This is needed because the start "
"and end predictions are not conditioned on one another."
)
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
version_2_with_negative: bool = field(
default=False, metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."}
)
null_score_diff_threshold: float = field(
default=0.0, metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."}
)
n_best_size: int = field(
default=20, metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."}
)
lang_id: int = field(
default=0,
metadata={
| 10,622 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/squad.py
|
"help": (
"language id of input for language-specific xlm models (see"
" tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)"
)
},
)
threads: int = field(default=1, metadata={"help": "multiple threads for converting example to features"})
| 10,622 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/squad.py
|
class Split(Enum):
train = "train"
dev = "dev"
| 10,623 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/squad.py
|
class SquadDataset(Dataset):
"""
This will be superseded by a framework-agnostic approach soon.
"""
args: SquadDataTrainingArguments
features: List[SquadFeatures]
mode: Split
is_language_sensitive: bool
| 10,624 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/squad.py
|
def __init__(
self,
args: SquadDataTrainingArguments,
tokenizer: PreTrainedTokenizer,
limit_length: Optional[int] = None,
mode: Union[str, Split] = Split.train,
is_language_sensitive: Optional[bool] = False,
cache_dir: Optional[str] = None,
dataset_format: Optional[str] = "pt",
):
self.args = args
self.is_language_sensitive = is_language_sensitive
self.processor = SquadV2Processor() if args.version_2_with_negative else SquadV1Processor()
if isinstance(mode, str):
try:
mode = Split[mode]
except KeyError:
raise KeyError("mode is not a valid split name")
self.mode = mode
# Load data features from cache or dataset file
version_tag = "v2" if args.version_2_with_negative else "v1"
cached_features_file = os.path.join(
cache_dir if cache_dir is not None else args.data_dir,
| 10,624 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/squad.py
|
f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}",
)
| 10,624 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/squad.py
|
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
lock_path = cached_features_file + ".lock"
with FileLock(lock_path):
if os.path.exists(cached_features_file) and not args.overwrite_cache:
start = time.time()
self.old_features = torch.load(cached_features_file)
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
self.features = self.old_features["features"]
self.dataset = self.old_features.get("dataset", None)
self.examples = self.old_features.get("examples", None)
logger.info(
f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start
)
| 10,624 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/squad.py
|
if self.dataset is None or self.examples is None:
logger.warning(
f"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in"
" future run"
)
else:
if mode == Split.dev:
self.examples = self.processor.get_dev_examples(args.data_dir)
else:
self.examples = self.processor.get_train_examples(args.data_dir)
self.features, self.dataset = squad_convert_examples_to_features(
examples=self.examples,
tokenizer=tokenizer,
max_seq_length=args.max_seq_length,
doc_stride=args.doc_stride,
max_query_length=args.max_query_length,
is_training=mode == Split.train,
threads=args.threads,
return_dataset=dataset_format,
)
| 10,624 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/squad.py
|
start = time.time()
torch.save(
{"features": self.features, "dataset": self.dataset, "examples": self.examples},
cached_features_file,
)
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]"
)
def __len__(self):
return len(self.features)
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
# Convert to Tensors and build dataset
feature = self.features[i]
| 10,624 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/squad.py
|
input_ids = torch.tensor(feature.input_ids, dtype=torch.long)
attention_mask = torch.tensor(feature.attention_mask, dtype=torch.long)
token_type_ids = torch.tensor(feature.token_type_ids, dtype=torch.long)
cls_index = torch.tensor(feature.cls_index, dtype=torch.long)
p_mask = torch.tensor(feature.p_mask, dtype=torch.float)
is_impossible = torch.tensor(feature.is_impossible, dtype=torch.float)
inputs = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
| 10,624 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/squad.py
|
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({"cls_index": cls_index, "p_mask": p_mask})
if self.args.version_2_with_negative:
inputs.update({"is_impossible": is_impossible})
if self.is_language_sensitive:
inputs.update({"langs": (torch.ones(input_ids.shape, dtype=torch.int64) * self.args.lang_id)})
if self.mode == Split.train:
start_positions = torch.tensor(feature.start_position, dtype=torch.long)
end_positions = torch.tensor(feature.end_position, dtype=torch.long)
inputs.update({"start_positions": start_positions, "end_positions": end_positions})
return inputs
| 10,624 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/squad.py
|
class GlueDataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify them on the command
line.
"""
task_name: str = field(metadata={"help": "The name of the task to train on: " + ", ".join(glue_processors.keys())})
data_dir: str = field(
metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."}
)
max_seq_length: int = field(
default=128,
metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
| 10,625 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/glue.py
|
def __post_init__(self):
self.task_name = self.task_name.lower()
| 10,625 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/glue.py
|
class Split(Enum):
train = "train"
dev = "dev"
test = "test"
| 10,626 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/glue.py
|
class GlueDataset(Dataset):
"""
This will be superseded by a framework-agnostic approach soon.
"""
args: GlueDataTrainingArguments
output_mode: str
features: List[InputFeatures]
| 10,627 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/glue.py
|
def __init__(
self,
args: GlueDataTrainingArguments,
tokenizer: PreTrainedTokenizerBase,
limit_length: Optional[int] = None,
mode: Union[str, Split] = Split.train,
cache_dir: Optional[str] = None,
):
warnings.warn(
"This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets "
"library. You can have a look at this example script for pointers: "
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py",
FutureWarning,
)
self.args = args
self.processor = glue_processors[args.task_name]()
self.output_mode = glue_output_modes[args.task_name]
if isinstance(mode, str):
try:
mode = Split[mode]
except KeyError:
raise KeyError("mode is not a valid split name")
# Load data features from cache or dataset file
| 10,627 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/glue.py
|
cached_features_file = os.path.join(
cache_dir if cache_dir is not None else args.data_dir,
f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}",
)
label_list = self.processor.get_labels()
if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in (
"RobertaTokenizer",
"RobertaTokenizerFast",
"XLMRobertaTokenizer",
"BartTokenizer",
"BartTokenizerFast",
):
# HACK(label indices are swapped in RoBERTa pretrained model)
label_list[1], label_list[2] = label_list[2], label_list[1]
self.label_list = label_list
| 10,627 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/glue.py
|
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
lock_path = cached_features_file + ".lock"
with FileLock(lock_path):
if os.path.exists(cached_features_file) and not args.overwrite_cache:
start = time.time()
self.features = torch.load(cached_features_file)
logger.info(
f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start
)
else:
logger.info(f"Creating features from dataset file at {args.data_dir}")
| 10,627 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/glue.py
|
if mode == Split.dev:
examples = self.processor.get_dev_examples(args.data_dir)
elif mode == Split.test:
examples = self.processor.get_test_examples(args.data_dir)
else:
examples = self.processor.get_train_examples(args.data_dir)
if limit_length is not None:
examples = examples[:limit_length]
self.features = glue_convert_examples_to_features(
examples,
tokenizer,
max_length=args.max_seq_length,
label_list=label_list,
output_mode=self.output_mode,
)
start = time.time()
torch.save(self.features, cached_features_file)
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
| 10,627 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/glue.py
|
f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]"
)
| 10,627 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/glue.py
|
def __len__(self):
return len(self.features)
def __getitem__(self, i) -> InputFeatures:
return self.features[i]
def get_labels(self):
return self.label_list
| 10,627 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/datasets/glue.py
|
class XnliProcessor(DataProcessor):
"""
Processor for the XNLI dataset. Adapted from
https://github.com/google-research/bert/blob/f39e881b169b9d53bea03d2d341b31707a6c052b/run_classifier.py#L207
"""
def __init__(self, language, train_language=None):
self.language = language
self.train_language = train_language
| 10,628 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/xnli.py
|
def get_train_examples(self, data_dir):
"""See base class."""
lg = self.language if self.train_language is None else self.train_language
lines = self._read_tsv(os.path.join(data_dir, f"XNLI-MT-1.0/multinli/multinli.train.{lg}.tsv"))
examples = []
for i, line in enumerate(lines):
if i == 0:
continue
guid = f"train-{i}"
text_a = line[0]
text_b = line[1]
label = "contradiction" if line[2] == "contradictory" else line[2]
if not isinstance(text_a, str):
raise TypeError(f"Training input {text_a} is not a string")
if not isinstance(text_b, str):
raise TypeError(f"Training input {text_b} is not a string")
if not isinstance(label, str):
raise TypeError(f"Training label {label} is not a string")
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
| 10,628 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/xnli.py
|
def get_test_examples(self, data_dir):
"""See base class."""
lines = self._read_tsv(os.path.join(data_dir, "XNLI-1.0/xnli.test.tsv"))
examples = []
for i, line in enumerate(lines):
if i == 0:
continue
language = line[0]
if language != self.language:
continue
guid = f"test-{i}"
text_a = line[6]
text_b = line[7]
label = line[1]
if not isinstance(text_a, str):
raise TypeError(f"Training input {text_a} is not a string")
if not isinstance(text_b, str):
raise TypeError(f"Training input {text_b} is not a string")
if not isinstance(label, str):
raise TypeError(f"Training label {label} is not a string")
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
| 10,628 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/xnli.py
|
def get_labels(self):
"""See base class."""
return ["contradiction", "entailment", "neutral"]
| 10,628 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/xnli.py
|
class SquadProcessor(DataProcessor):
"""
Processor for the SQuAD data set. overridden by SquadV1Processor and SquadV2Processor, used by the version 1.1 and
version 2.0 of SQuAD, respectively.
"""
train_file = None
dev_file = None
def _get_example_from_tensor_dict(self, tensor_dict, evaluate=False):
if not evaluate:
answer = tensor_dict["answers"]["text"][0].numpy().decode("utf-8")
answer_start = tensor_dict["answers"]["answer_start"][0].numpy()
answers = []
else:
answers = [
{"answer_start": start.numpy(), "text": text.numpy().decode("utf-8")}
for start, text in zip(tensor_dict["answers"]["answer_start"], tensor_dict["answers"]["text"])
]
answer = None
answer_start = None
| 10,629 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/squad.py
|
return SquadExample(
qas_id=tensor_dict["id"].numpy().decode("utf-8"),
question_text=tensor_dict["question"].numpy().decode("utf-8"),
context_text=tensor_dict["context"].numpy().decode("utf-8"),
answer_text=answer,
start_position_character=answer_start,
title=tensor_dict["title"].numpy().decode("utf-8"),
answers=answers,
)
def get_examples_from_dataset(self, dataset, evaluate=False):
"""
Creates a list of [`~data.processors.squad.SquadExample`] using a TFDS dataset.
Args:
dataset: The tfds dataset loaded from *tensorflow_datasets.load("squad")*
evaluate: Boolean specifying if in evaluation mode or in training mode
Returns:
List of SquadExample
Examples:
```python
>>> import tensorflow_datasets as tfds
>>> dataset = tfds.load("squad")
| 10,629 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/squad.py
|
>>> training_examples = get_examples_from_dataset(dataset, evaluate=False)
>>> evaluation_examples = get_examples_from_dataset(dataset, evaluate=True)
```"""
if evaluate:
dataset = dataset["validation"]
else:
dataset = dataset["train"]
examples = []
for tensor_dict in tqdm(dataset):
examples.append(self._get_example_from_tensor_dict(tensor_dict, evaluate=evaluate))
return examples
def get_train_examples(self, data_dir, filename=None):
"""
Returns the training examples from the data directory.
Args:
data_dir: Directory containing the data files used for training and evaluating.
filename: None by default, specify this if the training file has a different name than the original one
which is `train-v1.1.json` and `train-v2.0.json` for squad versions 1.1 and 2.0 respectively.
"""
if data_dir is None:
data_dir = ""
| 10,629 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/squad.py
|
if self.train_file is None:
raise ValueError("SquadProcessor should be instantiated via SquadV1Processor or SquadV2Processor")
with open(
os.path.join(data_dir, self.train_file if filename is None else filename), "r", encoding="utf-8"
) as reader:
input_data = json.load(reader)["data"]
return self._create_examples(input_data, "train")
def get_dev_examples(self, data_dir, filename=None):
"""
Returns the evaluation example from the data directory.
Args:
data_dir: Directory containing the data files used for training and evaluating.
filename: None by default, specify this if the evaluation file has a different name than the original one
which is `dev-v1.1.json` and `dev-v2.0.json` for squad versions 1.1 and 2.0 respectively.
"""
if data_dir is None:
data_dir = ""
| 10,629 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/squad.py
|
if self.dev_file is None:
raise ValueError("SquadProcessor should be instantiated via SquadV1Processor or SquadV2Processor")
with open(
os.path.join(data_dir, self.dev_file if filename is None else filename), "r", encoding="utf-8"
) as reader:
input_data = json.load(reader)["data"]
return self._create_examples(input_data, "dev")
def _create_examples(self, input_data, set_type):
is_training = set_type == "train"
examples = []
for entry in tqdm(input_data):
title = entry["title"]
for paragraph in entry["paragraphs"]:
context_text = paragraph["context"]
for qa in paragraph["qas"]:
qas_id = qa["id"]
question_text = qa["question"]
start_position_character = None
answer_text = None
answers = []
| 10,629 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/squad.py
|
is_impossible = qa.get("is_impossible", False)
if not is_impossible:
if is_training:
answer = qa["answers"][0]
answer_text = answer["text"]
start_position_character = answer["answer_start"]
else:
answers = qa["answers"]
example = SquadExample(
qas_id=qas_id,
question_text=question_text,
context_text=context_text,
answer_text=answer_text,
start_position_character=start_position_character,
title=title,
is_impossible=is_impossible,
answers=answers,
)
examples.append(example)
return examples
| 10,629 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/squad.py
|
class SquadV1Processor(SquadProcessor):
train_file = "train-v1.1.json"
dev_file = "dev-v1.1.json"
| 10,630 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/squad.py
|
class SquadV2Processor(SquadProcessor):
train_file = "train-v2.0.json"
dev_file = "dev-v2.0.json"
| 10,631 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/squad.py
|
class SquadExample:
"""
A single training/test example for the Squad dataset, as loaded from disk.
Args:
qas_id: The example's unique identifier
question_text: The question string
context_text: The context string
answer_text: The answer string
start_position_character: The character position of the start of the answer
title: The title of the example
answers: None by default, this is used during evaluation. Holds answers as well as their start positions.
is_impossible: False by default, set to True if the example has no possible answer.
"""
| 10,632 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/squad.py
|
def __init__(
self,
qas_id,
question_text,
context_text,
answer_text,
start_position_character,
title,
answers=[],
is_impossible=False,
):
self.qas_id = qas_id
self.question_text = question_text
self.context_text = context_text
self.answer_text = answer_text
self.title = title
self.is_impossible = is_impossible
self.answers = answers
self.start_position, self.end_position = 0, 0
doc_tokens = []
char_to_word_offset = []
prev_is_whitespace = True
| 10,632 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/squad.py
|
# Split on whitespace so that different tokens may be attributed to their original position.
for c in self.context_text:
if _is_whitespace(c):
prev_is_whitespace = True
else:
if prev_is_whitespace:
doc_tokens.append(c)
else:
doc_tokens[-1] += c
prev_is_whitespace = False
char_to_word_offset.append(len(doc_tokens) - 1)
self.doc_tokens = doc_tokens
self.char_to_word_offset = char_to_word_offset
# Start and end positions only has a value during evaluation.
if start_position_character is not None and not is_impossible:
self.start_position = char_to_word_offset[start_position_character]
self.end_position = char_to_word_offset[
min(start_position_character + len(answer_text) - 1, len(char_to_word_offset) - 1)
]
| 10,632 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/squad.py
|
class SquadFeatures:
"""
Single squad example features to be fed to a model. Those features are model-specific and can be crafted from
[`~data.processors.squad.SquadExample`] using the
:method:*~transformers.data.processors.squad.squad_convert_examples_to_features* method.
| 10,633 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/squad.py
|
Args:
input_ids: Indices of input sequence tokens in the vocabulary.
attention_mask: Mask to avoid performing attention on padding token indices.
token_type_ids: Segment token indices to indicate first and second portions of the inputs.
cls_index: the index of the CLS token.
p_mask: Mask identifying tokens that can be answers vs. tokens that cannot.
Mask with 1 for tokens than cannot be in the answer and 0 for token that can be in an answer
example_index: the index of the example
unique_id: The unique Feature identifier
paragraph_len: The length of the context
token_is_max_context:
List of booleans identifying which tokens have their maximum context in this feature object. If a token
does not have their maximum context in this feature object, it means that another feature object has more
information related to that token and should be prioritized over this feature for that token.
| 10,633 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/squad.py
|
tokens: list of tokens corresponding to the input ids
token_to_orig_map: mapping between the tokens and the original text, needed in order to identify the answer.
start_position: start of the answer token index
end_position: end of the answer token index
encoding: optionally store the BatchEncoding with the fast-tokenizer alignment methods.
"""
| 10,633 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/squad.py
|
def __init__(
self,
input_ids,
attention_mask,
token_type_ids,
cls_index,
p_mask,
example_index,
unique_id,
paragraph_len,
token_is_max_context,
tokens,
token_to_orig_map,
start_position,
end_position,
is_impossible,
qas_id: str = None,
encoding: BatchEncoding = None,
):
self.input_ids = input_ids
self.attention_mask = attention_mask
self.token_type_ids = token_type_ids
self.cls_index = cls_index
self.p_mask = p_mask
self.example_index = example_index
self.unique_id = unique_id
self.paragraph_len = paragraph_len
self.token_is_max_context = token_is_max_context
self.tokens = tokens
self.token_to_orig_map = token_to_orig_map
self.start_position = start_position
self.end_position = end_position
self.is_impossible = is_impossible
self.qas_id = qas_id
| 10,633 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/squad.py
|
self.encoding = encoding
| 10,633 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/squad.py
|
class SquadResult:
"""
Constructs a SquadResult which can be used to evaluate a model's output on the SQuAD dataset.
Args:
unique_id: The unique identifier corresponding to that example.
start_logits: The logits corresponding to the start of the answer
end_logits: The logits corresponding to the end of the answer
"""
def __init__(self, unique_id, start_logits, end_logits, start_top_index=None, end_top_index=None, cls_logits=None):
self.start_logits = start_logits
self.end_logits = end_logits
self.unique_id = unique_id
if start_top_index:
self.start_top_index = start_top_index
self.end_top_index = end_top_index
self.cls_logits = cls_logits
| 10,634 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/squad.py
|
class OutputMode(Enum):
classification = "classification"
regression = "regression"
| 10,635 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/glue.py
|
class MrpcProcessor(DataProcessor):
"""Processor for the MRPC data set (GLUE version)."""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning)
def get_example_from_tensor_dict(self, tensor_dict):
"""See base class."""
return InputExample(
tensor_dict["idx"].numpy(),
tensor_dict["sentence1"].numpy().decode("utf-8"),
tensor_dict["sentence2"].numpy().decode("utf-8"),
str(tensor_dict["label"].numpy()),
)
def get_train_examples(self, data_dir):
"""See base class."""
logger.info(f"LOOKING AT {os.path.join(data_dir, 'train.tsv')}")
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
| 10,636 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/glue.py
|
def get_test_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
def get_labels(self):
"""See base class."""
return ["0", "1"]
def _create_examples(self, lines, set_type):
"""Creates examples for the training, dev and test sets."""
examples = []
for i, line in enumerate(lines):
if i == 0:
continue
guid = f"{set_type}-{i}"
text_a = line[3]
text_b = line[4]
label = None if set_type == "test" else line[0]
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
| 10,636 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/glue.py
|
class MnliProcessor(DataProcessor):
"""Processor for the MultiNLI data set (GLUE version)."""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning)
def get_example_from_tensor_dict(self, tensor_dict):
"""See base class."""
return InputExample(
tensor_dict["idx"].numpy(),
tensor_dict["premise"].numpy().decode("utf-8"),
tensor_dict["hypothesis"].numpy().decode("utf-8"),
str(tensor_dict["label"].numpy()),
)
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")), "dev_matched")
| 10,637 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/glue.py
|
def get_test_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "test_matched.tsv")), "test_matched")
def get_labels(self):
"""See base class."""
return ["contradiction", "entailment", "neutral"]
def _create_examples(self, lines, set_type):
"""Creates examples for the training, dev and test sets."""
examples = []
for i, line in enumerate(lines):
if i == 0:
continue
guid = f"{set_type}-{line[0]}"
text_a = line[8]
text_b = line[9]
label = None if set_type.startswith("test") else line[-1]
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
| 10,637 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/glue.py
|
class MnliMismatchedProcessor(MnliProcessor):
"""Processor for the MultiNLI Mismatched data set (GLUE version)."""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning)
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev_mismatched.tsv")), "dev_mismatched")
def get_test_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "test_mismatched.tsv")), "test_mismatched")
| 10,638 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/glue.py
|
class ColaProcessor(DataProcessor):
"""Processor for the CoLA data set (GLUE version)."""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning)
def get_example_from_tensor_dict(self, tensor_dict):
"""See base class."""
return InputExample(
tensor_dict["idx"].numpy(),
tensor_dict["sentence"].numpy().decode("utf-8"),
None,
str(tensor_dict["label"].numpy()),
)
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
| 10,639 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/glue.py
|
def get_test_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
def get_labels(self):
"""See base class."""
return ["0", "1"]
def _create_examples(self, lines, set_type):
"""Creates examples for the training, dev and test sets."""
test_mode = set_type == "test"
if test_mode:
lines = lines[1:]
text_index = 1 if test_mode else 3
examples = []
for i, line in enumerate(lines):
guid = f"{set_type}-{i}"
text_a = line[text_index]
label = None if test_mode else line[1]
examples.append(InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
return examples
| 10,639 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/glue.py
|
class Sst2Processor(DataProcessor):
"""Processor for the SST-2 data set (GLUE version)."""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning)
def get_example_from_tensor_dict(self, tensor_dict):
"""See base class."""
return InputExample(
tensor_dict["idx"].numpy(),
tensor_dict["sentence"].numpy().decode("utf-8"),
None,
str(tensor_dict["label"].numpy()),
)
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
| 10,640 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/glue.py
|
def get_test_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
def get_labels(self):
"""See base class."""
return ["0", "1"]
def _create_examples(self, lines, set_type):
"""Creates examples for the training, dev and test sets."""
examples = []
text_index = 1 if set_type == "test" else 0
for i, line in enumerate(lines):
if i == 0:
continue
guid = f"{set_type}-{i}"
text_a = line[text_index]
label = None if set_type == "test" else line[1]
examples.append(InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
return examples
| 10,640 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/glue.py
|
class StsbProcessor(DataProcessor):
"""Processor for the STS-B data set (GLUE version)."""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning)
def get_example_from_tensor_dict(self, tensor_dict):
"""See base class."""
return InputExample(
tensor_dict["idx"].numpy(),
tensor_dict["sentence1"].numpy().decode("utf-8"),
tensor_dict["sentence2"].numpy().decode("utf-8"),
str(tensor_dict["label"].numpy()),
)
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
| 10,641 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/glue.py
|
def get_test_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
def get_labels(self):
"""See base class."""
return [None]
def _create_examples(self, lines, set_type):
"""Creates examples for the training, dev and test sets."""
examples = []
for i, line in enumerate(lines):
if i == 0:
continue
guid = f"{set_type}-{line[0]}"
text_a = line[7]
text_b = line[8]
label = None if set_type == "test" else line[-1]
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
| 10,641 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/glue.py
|
class QqpProcessor(DataProcessor):
"""Processor for the QQP data set (GLUE version)."""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning)
def get_example_from_tensor_dict(self, tensor_dict):
"""See base class."""
return InputExample(
tensor_dict["idx"].numpy(),
tensor_dict["question1"].numpy().decode("utf-8"),
tensor_dict["question2"].numpy().decode("utf-8"),
str(tensor_dict["label"].numpy()),
)
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
| 10,642 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/glue.py
|
def get_test_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
def get_labels(self):
"""See base class."""
return ["0", "1"]
def _create_examples(self, lines, set_type):
"""Creates examples for the training, dev and test sets."""
test_mode = set_type == "test"
q1_index = 1 if test_mode else 3
q2_index = 2 if test_mode else 4
examples = []
for i, line in enumerate(lines):
if i == 0:
continue
guid = f"{set_type}-{line[0]}"
try:
text_a = line[q1_index]
text_b = line[q2_index]
label = None if test_mode else line[5]
except IndexError:
continue
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
| 10,642 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/glue.py
|
class QnliProcessor(DataProcessor):
"""Processor for the QNLI data set (GLUE version)."""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning)
def get_example_from_tensor_dict(self, tensor_dict):
"""See base class."""
return InputExample(
tensor_dict["idx"].numpy(),
tensor_dict["question"].numpy().decode("utf-8"),
tensor_dict["sentence"].numpy().decode("utf-8"),
str(tensor_dict["label"].numpy()),
)
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
| 10,643 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/glue.py
|
def get_test_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
def get_labels(self):
"""See base class."""
return ["entailment", "not_entailment"]
def _create_examples(self, lines, set_type):
"""Creates examples for the training, dev and test sets."""
examples = []
for i, line in enumerate(lines):
if i == 0:
continue
guid = f"{set_type}-{line[0]}"
text_a = line[1]
text_b = line[2]
label = None if set_type == "test" else line[-1]
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
| 10,643 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/glue.py
|
class RteProcessor(DataProcessor):
"""Processor for the RTE data set (GLUE version)."""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning)
def get_example_from_tensor_dict(self, tensor_dict):
"""See base class."""
return InputExample(
tensor_dict["idx"].numpy(),
tensor_dict["sentence1"].numpy().decode("utf-8"),
tensor_dict["sentence2"].numpy().decode("utf-8"),
str(tensor_dict["label"].numpy()),
)
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
| 10,644 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/glue.py
|
def get_test_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
def get_labels(self):
"""See base class."""
return ["entailment", "not_entailment"]
def _create_examples(self, lines, set_type):
"""Creates examples for the training, dev and test sets."""
examples = []
for i, line in enumerate(lines):
if i == 0:
continue
guid = f"{set_type}-{line[0]}"
text_a = line[1]
text_b = line[2]
label = None if set_type == "test" else line[-1]
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
| 10,644 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/glue.py
|
class WnliProcessor(DataProcessor):
"""Processor for the WNLI data set (GLUE version)."""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning)
def get_example_from_tensor_dict(self, tensor_dict):
"""See base class."""
return InputExample(
tensor_dict["idx"].numpy(),
tensor_dict["sentence1"].numpy().decode("utf-8"),
tensor_dict["sentence2"].numpy().decode("utf-8"),
str(tensor_dict["label"].numpy()),
)
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
| 10,645 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/glue.py
|
def get_test_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
def get_labels(self):
"""See base class."""
return ["0", "1"]
def _create_examples(self, lines, set_type):
"""Creates examples for the training, dev and test sets."""
examples = []
for i, line in enumerate(lines):
if i == 0:
continue
guid = f"{set_type}-{line[0]}"
text_a = line[1]
text_b = line[2]
label = None if set_type == "test" else line[-1]
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
| 10,645 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/glue.py
|
class InputExample:
"""
A single training/test example for simple sequence classification.
Args:
guid: Unique id for the example.
text_a: string. The untokenized text of the first sequence. For single
sequence tasks, only this sequence must be specified.
text_b: (Optional) string. The untokenized text of the second sequence.
Only must be specified for sequence pair tasks.
label: (Optional) string. The label of the example. This should be
specified for train and dev examples, but not for test examples.
"""
guid: str
text_a: str
text_b: Optional[str] = None
label: Optional[str] = None
def to_json_string(self):
"""Serializes this instance to a JSON string."""
return json.dumps(dataclasses.asdict(self), indent=2) + "\n"
| 10,646 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/utils.py
|
class InputFeatures:
"""
A single set of features of data. Property names are the same names as the corresponding inputs to a model.
Args:
input_ids: Indices of input sequence tokens in the vocabulary.
attention_mask: Mask to avoid performing attention on padding token indices.
Mask values selected in `[0, 1]`: Usually `1` for tokens that are NOT MASKED, `0` for MASKED (padded)
tokens.
token_type_ids: (Optional) Segment token indices to indicate first and second
portions of the inputs. Only some models use them.
label: (Optional) Label corresponding to the input. Int for classification problems,
float for regression problems.
"""
input_ids: List[int]
attention_mask: Optional[List[int]] = None
token_type_ids: Optional[List[int]] = None
label: Optional[Union[int, float]] = None
| 10,647 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/utils.py
|
def to_json_string(self):
"""Serializes this instance to a JSON string."""
return json.dumps(dataclasses.asdict(self)) + "\n"
| 10,647 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/utils.py
|
class DataProcessor:
"""Base class for data converters for sequence classification data sets."""
def get_example_from_tensor_dict(self, tensor_dict):
"""
Gets an example from a dict with tensorflow tensors.
Args:
tensor_dict: Keys and values should match the corresponding Glue
tensorflow_dataset examples.
"""
raise NotImplementedError()
def get_train_examples(self, data_dir):
"""Gets a collection of [`InputExample`] for the train set."""
raise NotImplementedError()
def get_dev_examples(self, data_dir):
"""Gets a collection of [`InputExample`] for the dev set."""
raise NotImplementedError()
def get_test_examples(self, data_dir):
"""Gets a collection of [`InputExample`] for the test set."""
raise NotImplementedError()
def get_labels(self):
"""Gets the list of labels for this data set."""
raise NotImplementedError()
| 10,648 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/utils.py
|
def tfds_map(self, example):
"""
Some tensorflow_datasets datasets are not formatted the same way the GLUE datasets are. This method converts
examples to the correct format.
"""
if len(self.get_labels()) > 1:
example.label = self.get_labels()[int(example.label)]
return example
@classmethod
def _read_tsv(cls, input_file, quotechar=None):
"""Reads a tab separated value file."""
with open(input_file, "r", encoding="utf-8-sig") as f:
return list(csv.reader(f, delimiter="\t", quotechar=quotechar))
| 10,648 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/utils.py
|
class SingleSentenceClassificationProcessor(DataProcessor):
"""Generic processor for a single sentence classification data set."""
def __init__(self, labels=None, examples=None, mode="classification", verbose=False):
self.labels = [] if labels is None else labels
self.examples = [] if examples is None else examples
self.mode = mode
self.verbose = verbose
def __len__(self):
return len(self.examples)
def __getitem__(self, idx):
if isinstance(idx, slice):
return SingleSentenceClassificationProcessor(labels=self.labels, examples=self.examples[idx])
return self.examples[idx]
| 10,649 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/utils.py
|
@classmethod
def create_from_csv(
cls, file_name, split_name="", column_label=0, column_text=1, column_id=None, skip_first_row=False, **kwargs
):
processor = cls(**kwargs)
processor.add_examples_from_csv(
file_name,
split_name=split_name,
column_label=column_label,
column_text=column_text,
column_id=column_id,
skip_first_row=skip_first_row,
overwrite_labels=True,
overwrite_examples=True,
)
return processor
@classmethod
def create_from_examples(cls, texts_or_text_and_labels, labels=None, **kwargs):
processor = cls(**kwargs)
processor.add_examples(texts_or_text_and_labels, labels=labels)
return processor
| 10,649 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/utils.py
|
def add_examples_from_csv(
self,
file_name,
split_name="",
column_label=0,
column_text=1,
column_id=None,
skip_first_row=False,
overwrite_labels=False,
overwrite_examples=False,
):
lines = self._read_tsv(file_name)
if skip_first_row:
lines = lines[1:]
texts = []
labels = []
ids = []
for i, line in enumerate(lines):
texts.append(line[column_text])
labels.append(line[column_label])
if column_id is not None:
ids.append(line[column_id])
else:
guid = f"{split_name}-{i}" if split_name else str(i)
ids.append(guid)
return self.add_examples(
texts, labels, ids, overwrite_labels=overwrite_labels, overwrite_examples=overwrite_examples
)
| 10,649 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/utils.py
|
def add_examples(
self, texts_or_text_and_labels, labels=None, ids=None, overwrite_labels=False, overwrite_examples=False
):
if labels is not None and len(texts_or_text_and_labels) != len(labels):
raise ValueError(
f"Text and labels have mismatched lengths {len(texts_or_text_and_labels)} and {len(labels)}"
)
if ids is not None and len(texts_or_text_and_labels) != len(ids):
raise ValueError(f"Text and ids have mismatched lengths {len(texts_or_text_and_labels)} and {len(ids)}")
if ids is None:
ids = [None] * len(texts_or_text_and_labels)
if labels is None:
labels = [None] * len(texts_or_text_and_labels)
examples = []
added_labels = set()
for text_or_text_and_label, label, guid in zip(texts_or_text_and_labels, labels, ids):
if isinstance(text_or_text_and_label, (tuple, list)) and label is None:
text, label = text_or_text_and_label
| 10,649 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/processors/utils.py
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.