text
stringlengths 1
1.02k
| class_index
int64 0
10.8k
| source
stringlengths 85
188
|
---|---|---|
class WatermarkingConfig(BaseWatermarkingConfig):
"""
Class that holds arguments for watermark generation and should be passed into `GenerationConfig` during `generate`.
See [this paper](https://arxiv.org/abs/2306.04634) for more details on the arguments.
| 10,653 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/configuration_utils.py
|
Accepts the following keys:
- greenlist_ratio (`float`):
Used for watermarking. The ratio of "green" tokens used to the vocabulary size. Defaults to 0.25.
- bias (`float`):
Used with watermarking. The bias added to the selected "green" tokens' logits. Defaults to 2.0.
- hashing_key (`int`):
Hashing key used for watermarking. Defaults to 15485863 (the millionth prime).
- seeding_scheme (`str`):
Algorithm to use for watermarking. Accepts values:
- "lefthash" (default): "green" tokens selection depend on the last token (Algorithm 2 from the paper)
- "selfhash": "green" tokens selection depends on the current token itself (Algorithm 3 from the paper)
The downside of this scheme is that it considers all possible next tokens and can be slower than "lefthash".
- context_width(`int`):
| 10,653 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/configuration_utils.py
|
The context length of previous tokens to use in seeding. Higher context length makes watermarking more robust.
"""
| 10,653 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/configuration_utils.py
|
def __init__(
self,
greenlist_ratio: Optional[float] = 0.25,
bias: Optional[float] = 2.0,
hashing_key: Optional[int] = 15485863,
seeding_scheme: Optional[str] = "lefthash",
context_width: Optional[int] = 1,
):
self.greenlist_ratio = greenlist_ratio
self.bias = bias
self.hashing_key = hashing_key
self.seeding_scheme = seeding_scheme
self.context_width = context_width
| 10,653 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/configuration_utils.py
|
def validate(self):
watermark_missing_arg_msg = (
"Some of the keys in `watermarking_config` are defined incorrectly. `{key}` should be {correct_value}` "
"but found {found_value}"
)
if self.seeding_scheme not in ["selfhash", "lefthash"]:
raise ValueError(
watermark_missing_arg_msg.format(
key="seeding_scheme",
correct_value="[`selfhash`, `lefthash`]",
found_value=self.seeding_scheme,
),
)
if not 0.0 <= self.greenlist_ratio <= 1.0:
raise ValueError(
watermark_missing_arg_msg.format(
key="greenlist_ratio",
correct_value="in range between 0.0 and 1.0",
found_value=self.seeding_scheme,
),
)
if not self.context_width >= 1:
raise ValueError(
watermark_missing_arg_msg.format(
| 10,653 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/configuration_utils.py
|
key="context_width",
correct_value="a positive integer",
found_value=self.context_width,
),
)
| 10,653 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/configuration_utils.py
|
def construct_processor(self, vocab_size: int, device) -> "WatermarkLogitsProcessor":
return WatermarkLogitsProcessor(
vocab_size=vocab_size,
device=device,
greenlist_ratio=self.greenlist_ratio,
bias=self.bias,
hashing_key=self.hashing_key,
seeding_scheme=self.seeding_scheme,
context_width=self.context_width,
)
| 10,653 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/configuration_utils.py
|
class SynthIDTextWatermarkingConfig(BaseWatermarkingConfig):
"""
Class that holds arguments for watermark generation and should be passed into `GenerationConfig` during `generate`.
See [this paper](https://www.nature.com/articles/s41586-024-08025-4) for more details on the arguments.
| 10,654 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/configuration_utils.py
|
Args:
ngram_len (`int`):
Ngram length.
keys (`List[int]`):
A sequence of watermarking keys, one for each depth.
context_history_size (`int`, *optional*, defaults to 1024):
Size of the tensor to keep track of seen contexts.
sampling_table_seed (`int`, *optional*, defaults to 0):
Random seed to generate the sampling table.
sampling_table_size (`int`, *optional*, defaults to 65536):
Size of the sampling table.
skip_first_ngram_calls (`bool`, *optional*, defaults to `False`):
Whether to skip first ngram calls.
debug_mode (`bool`, optional, *optional*, defaults to `False`):
Logits are modified to uniform one got before watermarking modification is applied. This is to test the
implementation.
Examples:
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer, SynthIDTextWatermarkingConfig
| 10,654 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/configuration_utils.py
|
>>> tokenizer = AutoTokenizer.from_pretrained('google/gemma-2-2b', padding_side="left")
>>> model = AutoModelForCausalLM.from_pretrained('google/gemma-2-2b')
>>> # SynthID Text configuration
>>> watermarking_config = SynthIDTextWatermarkingConfig(
... keys=[654, 400, 836, 123, 340, 443, 597, 160, 57],
... ngram_len=5,
... )
>>> # Generation with watermarking
>>> tokenized_prompts = tokenizer(["Once upon a time, "], return_tensors="pt", padding=True)
>>> output_sequences = model.generate(
... **tokenized_prompts, watermarking_config=watermarking_config, do_sample=True, max_new_tokens=10
... )
>>> watermarked_text = tokenizer.batch_decode(output_sequences, skip_special_tokens=True)
```
"""
| 10,654 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/configuration_utils.py
|
def __init__(
self,
ngram_len: int,
keys: List[int],
context_history_size: int = 1024,
sampling_table_seed: int = 0,
sampling_table_size: int = 2**16,
skip_first_ngram_calls: bool = False,
debug_mode: bool = False,
):
self.ngram_len = ngram_len
self.keys = keys
self.sampling_table_size = sampling_table_size
self.sampling_table_seed = sampling_table_seed
self.context_history_size = context_history_size
self.skip_first_ngram_calls = skip_first_ngram_calls
self.debug_mode = debug_mode
| 10,654 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/configuration_utils.py
|
def validate(self):
watermark_missing_arg_msg = (
"Some of the keys in `watermarking_config` are defined incorrectly. `{key}` should be {correct_value}` "
"but found {found_value}"
)
if self.sampling_table_size > 2**24:
raise ValueError(
watermark_missing_arg_msg.format(
key="sampling_table_size",
correct_value="< 2**24",
found_value=self.sampling_table_size,
),
)
| 10,654 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/configuration_utils.py
|
def construct_processor(self, vocab_size: int, device) -> "WatermarkLogitsProcessor":
return SynthIDTextWatermarkLogitsProcessor(
ngram_len=self.ngram_len,
keys=self.keys,
sampling_table_size=self.sampling_table_size,
sampling_table_seed=self.sampling_table_seed,
context_history_size=self.context_history_size,
device=device,
skip_first_ngram_calls=self.skip_first_ngram_calls,
debug_mode=self.debug_mode,
)
| 10,654 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/configuration_utils.py
|
class CompileConfig(object):
"""
Class that holds arguments relative to `torch.compile` behavior, when using automatic compilation in `generate`.
See [`torch.compile`](https://pytorch.org/docs/stable/generated/torch.compile.html) for more details on the arguments.
Args:
fullgraph (`bool`, *optional*, defaults to `True`):
If `True`, requires that the whole forward be capturable in a single graph.
dynamic (`bool` or `None`, *optional*):
Whether to try to use dynamic shape graphs.
backend (`str` or `Callable`, *optional*, defaults to `"inductor"`):
Backend to be used.
mode (`str`, *optional*, defaults to `"reduce-overhead"`):
Controls balance between performance and overhead.
options (`dict`, *optional*):
A dictionary of options to pass to the backend.
Examples:
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer, CompileConfig
| 10,655 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/configuration_utils.py
|
>>> tokenizer = AutoTokenizer.from_pretrained('google/gemma-2-2b')
>>> model = AutoModelForCausalLM.from_pretrained('google/gemma-2-2b').cuda()
>>> # Automatic compile configuration, used with static cache
>>> compile_config = CompileConfig(dynamic=True)
>>> # Generation with static cache and compile config
>>> input = tokenizer.encode("Hello there, how", return_tensors="pt").cuda()
>>> output = model.generate(
... input, do_sample=False, max_new_tokens=300, cache_implementation="static", compile_config=compile_config
... )
>>> output_text = tokenizer.batch_decode(output, skip_special_tokens=True)[0]
```
"""
fullgraph: bool = True
dynamic: Optional[bool] = None
backend: Union[str, Callable] = "inductor"
mode: str = "reduce-overhead"
options: Optional[dict] = None
def to_dict(self) -> Dict[str, Any]:
"""Serializes this instance to a Python dictionary."""
return copy.deepcopy(self.__dict__)
| 10,655 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/configuration_utils.py
|
class FlaxGreedySearchOutput(ModelOutput):
"""
Flax Base class for outputs of decoder-only generation models using greedy search.
Args:
sequences (`jnp.ndarray` of shape `(batch_size, max_length)`):
The generated sequences.
"""
sequences: jnp.ndarray = None
| 10,656 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
class FlaxSampleOutput(ModelOutput):
"""
Flax Base class for outputs of decoder-only generation models using sampling.
Args:
sequences (`jnp.ndarray` of shape `(batch_size, max_length)`):
The generated sequences.
"""
sequences: jnp.ndarray = None
| 10,657 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
class FlaxBeamSearchOutput(ModelOutput):
"""
Flax Base class for outputs of decoder-only generation models using greedy search.
Args:
sequences (`jnp.ndarray` of shape `(batch_size, max_length)`):
The generated sequences.
scores (`jnp.ndarray` of shape `(batch_size,)`):
The scores (log probabilities) of the generated sequences.
"""
sequences: jnp.ndarray = None
scores: jnp.ndarray = None
| 10,658 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
class GreedyState:
cur_len: jnp.ndarray
sequences: jnp.ndarray
running_token: jnp.ndarray
is_sent_finished: jnp.ndarray
model_kwargs: Dict[str, jnp.ndarray]
| 10,659 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
class SampleState:
cur_len: jnp.ndarray
sequences: jnp.ndarray
running_token: jnp.ndarray
is_sent_finished: jnp.ndarray
prng_key: jnp.ndarray
model_kwargs: Dict[str, jnp.ndarray]
| 10,660 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
class BeamSearchState:
cur_len: jnp.ndarray
running_sequences: jnp.ndarray
running_scores: jnp.ndarray
sequences: jnp.ndarray
scores: jnp.ndarray
is_sent_finished: jnp.ndarray
model_kwargs: Dict[str, jnp.ndarray]
| 10,661 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
class FlaxGenerationMixin:
"""
A class containing all functions for auto-regressive text generation, to be used as a mixin in
[`FlaxPreTrainedModel`].
The class exposes [`~generation.FlaxGenerationMixin.generate`], which can be used for:
- *greedy decoding* by calling [`~generation.FlaxGenerationMixin._greedy_search`] if `num_beams=1` and
`do_sample=False`
- *multinomial sampling* by calling [`~generation.FlaxGenerationMixin._sample`] if `num_beams=1` and
`do_sample=True`
- *beam-search decoding* by calling [`~generation.FlaxGenerationMixin._beam_search`] if `num_beams>1` and
`do_sample=False`
You do not need to call any of the above methods directly. Pass custom parameter values to 'generate' instead. To
learn more about decoding strategies refer to the [text generation strategies guide](../generation_strategies).
"""
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
def prepare_inputs_for_generation(self, *args, **kwargs):
raise NotImplementedError(
"A model class needs to define a `prepare_inputs_for_generation` method in order to use `generate`."
)
@staticmethod
def _run_loop_in_debug(cond_fn, body_fn, init_state):
"""
Run generation in untraced mode. This should only be used for debugging purposes.
"""
state = init_state
while cond_fn(state):
state = body_fn(state)
return state
def _prepare_encoder_decoder_kwargs_for_generation(self, input_ids, params, model_kwargs):
encoder_kwargs = {
argument: value
for argument, value in model_kwargs.items()
if not (argument.startswith("decoder_") or argument.startswith("cross_attn"))
}
model_kwargs["encoder_outputs"] = self.encode(input_ids, params=params, return_dict=True, **encoder_kwargs)
return model_kwargs
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
def _prepare_decoder_input_ids_for_generation(
self,
batch_size: int,
decoder_start_token_id: int = None,
bos_token_id: int = None,
model_kwargs: Optional[Dict[str, jnp.ndarray]] = None,
) -> jnp.ndarray:
if model_kwargs is not None and "decoder_input_ids" in model_kwargs:
# Only use this arg if not None, otherwise just remove from model_kwargs
decoder_input_ids = model_kwargs.pop("decoder_input_ids")
if decoder_input_ids is not None:
return decoder_input_ids
decoder_start_token_id = self._get_decoder_start_token_id(decoder_start_token_id, bos_token_id)
return jnp.array(decoder_start_token_id, dtype="i4").reshape(1, -1).repeat(batch_size, axis=0)
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
def _get_decoder_start_token_id(self, decoder_start_token_id: int = None, bos_token_id: int = None) -> int:
# retrieve decoder_start_token_id for encoder-decoder models
# fall back to bos_token_id if necessary
decoder_start_token_id = (
decoder_start_token_id
if decoder_start_token_id is not None
else self.generation_config.decoder_start_token_id
)
bos_token_id = bos_token_id if bos_token_id is not None else self.generation_config.bos_token_id
if decoder_start_token_id is not None:
return decoder_start_token_id
elif (
hasattr(self.config, "decoder")
and hasattr(self.config.decoder, "decoder_start_token_id")
and self.config.decoder.decoder_start_token_id is not None
):
return self.config.decoder.decoder_start_token_id
elif bos_token_id is not None:
return bos_token_id
elif (
hasattr(self.config, "decoder")
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
and hasattr(self.config.decoder, "bos_token_id")
and self.config.decoder.bos_token_id is not None
):
return self.config.decoder.bos_token_id
raise ValueError(
"`decoder_start_token_id` or `bos_token_id` has to be defined for encoder-decoder generation."
)
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
@staticmethod
def _expand_to_num_beams(tensor, num_beams):
return jnp.broadcast_to(tensor[:, None], (tensor.shape[0], num_beams) + tensor.shape[1:])
def _adapt_logits_for_beam_search(self, logits):
"""
This function can be overwritten in the specific modeling_flax_<model-name>.py classes to allow for custom beam
search behavior. Note that the only model that overwrites this method is [`~transformes.FlaxMarianMTModel`].
"""
return logits
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
def _validate_model_class(self):
"""
Confirms that the model class is compatible with generation. If not, raises an exception that points to the
right class to use.
"""
if not self.can_generate():
generate_compatible_mappings = [
FLAX_MODEL_FOR_CAUSAL_LM_MAPPING,
FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING,
FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
]
generate_compatible_classes = set()
for model_mapping in generate_compatible_mappings:
supported_models = model_mapping.get(type(self.config), default=None)
if supported_models is not None:
generate_compatible_classes.add(supported_models.__name__)
exception_message = (
f"The current model class ({self.__class__.__name__}) is not compatible with `.generate()`, as "
"it doesn't have a language model head."
)
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
if generate_compatible_classes:
exception_message += f" Please use one of the following classes instead: {generate_compatible_classes}"
raise TypeError(exception_message)
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]):
"""Validates model kwargs for generation. Generate argument typos will also be caught here."""
unused_model_args = []
model_args = set(inspect.signature(self.prepare_inputs_for_generation).parameters)
# `kwargs`/`model_kwargs` is often used to handle optional forward pass inputs like `attention_mask`. If
# `prepare_inputs_for_generation` doesn't accept them, then a stricter check can be made ;)
if "kwargs" in model_args or "model_kwargs" in model_args:
model_args |= set(inspect.signature(self.__call__).parameters)
for key, value in model_kwargs.items():
if value is not None and key not in model_args:
unused_model_args.append(key)
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
if unused_model_args:
raise ValueError(
f"The following `model_kwargs` are not used by the model: {unused_model_args} (note: typos in the"
" generate arguments will also show up in this list)"
)
def generate(
self,
input_ids: jnp.ndarray,
generation_config: Optional[GenerationConfig] = None,
prng_key: Optional[jnp.ndarray] = None,
trace: bool = True,
params: Optional[Dict[str, jnp.ndarray]] = None,
logits_processor: Optional[FlaxLogitsProcessorList] = None,
**kwargs,
):
r"""
Generates sequences of token ids for models with a language modeling head.
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
Parameters:
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
The sequence used as a prompt for the generation.
generation_config (`~generation.GenerationConfig`, *optional*):
The generation configuration to be used as base parametrization for the generation call. `**kwargs`
passed to generate matching the attributes of `generation_config` will override them. If
`generation_config` is not provided, the default will be used, which had the following loading
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
default values, whose documentation should be checked to parameterize generation.
trace (`bool`, *optional*, defaults to `True`):
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
Whether to trace generation. Setting `trace=False` should only be used for debugging and will lead to a
considerably slower runtime.
params (`Dict[str, jnp.ndarray]`, *optional*):
Optionally the model parameters can be passed. Can be useful for parallelized generation.
logits_processor (`FlaxLogitsProcessorList `, *optional*):
Custom logits processors that complement the default logits processors built from arguments and
generation config. If a logit processor is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users.
kwargs (`Dict[str, Any]`, *optional*):
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
Return:
[`~utils.ModelOutput`].
"""
# Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call
self._validate_model_class()
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
# priority: `generation_config` argument > `model.generation_config` (the default generation config)
if generation_config is None:
# legacy: users may modify the model configuration to control generation. To trigger this legacy behavior,
# two conditions must be met
# 1) the generation config must have been created from the model config (`_from_model_config` field);
# 2) the generation config must have seen no modification since its creation (the hash is the same).
if self.generation_config._from_model_config and self.generation_config._original_object_hash == hash(
self.generation_config
):
new_generation_config = GenerationConfig.from_model_config(self.config)
if new_generation_config != self.generation_config:
warnings.warn(
"You have modified the pretrained model configuration to control generation. This is a"
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
" deprecated strategy to control generation and will be removed soon, in a future version."
" Please use and modify the model generation configuration (see"
" https://huggingface.co/docs/transformers/generation_strategies#default-text-generation-configuration )"
)
self.generation_config = new_generation_config
generation_config = self.generation_config
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
generation_config = copy.deepcopy(generation_config)
model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs
self._validate_model_kwargs(model_kwargs.copy())
logits_processor = logits_processor if logits_processor is not None else FlaxLogitsProcessorList()
# set init values
prng_key = prng_key if prng_key is not None else jax.random.PRNGKey(0)
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
if generation_config.pad_token_id is None and generation_config.eos_token_id is not None:
if model_kwargs.get("attention_mask") is None:
logger.warning(
"The attention mask and the pad token id were not set. As a consequence, you may observe "
"unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results."
)
eos_token_id = generation_config.eos_token_id
if isinstance(eos_token_id, list):
eos_token_id = eos_token_id[0]
generation_config.pad_token_id = eos_token_id
if generation_config.decoder_start_token_id is None and self.config.is_encoder_decoder:
raise ValueError("`decoder_start_token_id` has to be defined for encoder-decoder generation.")
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
# decoder-only models should use left-padding for generation (can't be checked with `trace=True`)
if not self.config.is_encoder_decoder and not trace:
if (
generation_config.pad_token_id is not None
and jnp.sum(input_ids[:, -1] == generation_config.pad_token_id) > 0
):
logger.warning(
"A decoder-only architecture is being used, but right-padding was detected! For correct "
"generation results, please set `padding_side='left'` when initializing the tokenizer."
)
batch_size = input_ids.shape[0]
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
if self.config.is_encoder_decoder:
# add encoder_outputs to model_kwargs
if model_kwargs.get("encoder_outputs") is None:
model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation(input_ids, params, model_kwargs)
# prepare decoder_input_ids for generation
input_ids = self._prepare_decoder_input_ids_for_generation(
batch_size,
decoder_start_token_id=generation_config.decoder_start_token_id,
bos_token_id=generation_config.bos_token_id,
model_kwargs=model_kwargs,
)
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
# Prepare `max_length` depending on other stopping criteria.
input_ids_seq_length = input_ids.shape[-1]
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
if has_default_max_length and generation_config.max_new_tokens is None and generation_config.max_length == 20:
# 20 is the default max_length of the generation config
warnings.warn(
f"Using the model-agnostic default `max_length` (={generation_config.max_length}) "
"to control the generation length. recommend setting `max_new_tokens` to control the maximum length of the generation.",
UserWarning,
)
elif generation_config.max_new_tokens is not None:
if not has_default_max_length and generation_config.max_length is not None:
logger.warning(
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
"Please refer to the documentation for more information. "
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)"
)
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
else: # by default let's always generate 10 new tokens
if generation_config.max_length == GenerationConfig().max_length:
generation_config.max_length = generation_config.max_length + input_ids_seq_length
max_position_embeddings = getattr(self.config, "max_position_embeddings", None)
if max_position_embeddings is not None:
generation_config.max_length = min(generation_config.max_length, max_position_embeddings)
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
if generation_config.min_length is not None and generation_config.min_length > generation_config.max_length:
raise ValueError(
f"Unfeasable length constraints: the minimum length ({generation_config.min_length}) is larger than"
f" the maximum length ({generation_config.max_length})"
)
if input_ids_seq_length >= generation_config.max_length:
input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
logger.warning(
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
" increasing`max_new_tokens`."
)
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
logits_processor = self._get_logits_processor(
generation_config=generation_config,
input_ids_seq_length=input_ids_seq_length,
logits_processor=logits_processor,
)
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
if not generation_config.do_sample and generation_config.num_beams == 1:
return self._greedy_search(
input_ids,
generation_config.max_length,
generation_config.pad_token_id,
generation_config.eos_token_id,
logits_processor=logits_processor,
trace=trace,
params=params,
model_kwargs=model_kwargs,
)
elif generation_config.do_sample and generation_config.num_beams == 1:
logits_warper = self._get_logits_warper(generation_config=generation_config)
return self._sample(
input_ids,
generation_config.max_length,
generation_config.pad_token_id,
generation_config.eos_token_id,
prng_key,
logits_warper=logits_warper,
logits_processor=logits_processor,
trace=trace,
params=params,
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
model_kwargs=model_kwargs,
)
elif not generation_config.do_sample and generation_config.num_beams > 1:
# broadcast input_ids & encoder_outputs
input_ids = self._expand_to_num_beams(input_ids, num_beams=generation_config.num_beams)
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
if "encoder_outputs" in model_kwargs:
model_kwargs["encoder_outputs"]["last_hidden_state"] = self._expand_to_num_beams(
model_kwargs["encoder_outputs"]["last_hidden_state"], num_beams=generation_config.num_beams
)
for kwarg in ["attention_mask", "decoder_attention_mask"]:
if kwarg in model_kwargs:
model_kwargs[kwarg] = self._expand_to_num_beams(
model_kwargs[kwarg], num_beams=generation_config.num_beams
)
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
return self._beam_search(
input_ids,
generation_config.max_length,
generation_config.pad_token_id,
generation_config.eos_token_id,
length_penalty=generation_config.length_penalty,
early_stopping=generation_config.early_stopping,
logits_processor=logits_processor,
trace=trace,
params=params,
num_return_sequences=generation_config.num_return_sequences,
model_kwargs=model_kwargs,
)
else:
raise NotImplementedError("`Beam sampling is currently not implemented.")
def _get_logits_warper(self, generation_config: GenerationConfig) -> FlaxLogitsProcessorList:
"""
This class returns a [`FlaxLogitsProcessorList`] list object that contains all relevant [`FlaxLogitsWarper`]
instances used for multinomial sampling.
"""
warpers = FlaxLogitsProcessorList()
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
if generation_config.temperature is not None and generation_config.temperature != 1.0:
warpers.append(FlaxTemperatureLogitsWarper(generation_config.temperature))
if generation_config.top_k is not None and generation_config.top_k != 0:
warpers.append(FlaxTopKLogitsWarper(top_k=generation_config.top_k, min_tokens_to_keep=1))
if generation_config.top_p is not None and generation_config.top_p < 1.0:
warpers.append(FlaxTopPLogitsWarper(top_p=generation_config.top_p, min_tokens_to_keep=1))
return warpers
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
def _get_logits_processor(
self,
generation_config: GenerationConfig,
input_ids_seq_length: int,
logits_processor: Optional[FlaxLogitsProcessorList],
) -> FlaxLogitsProcessorList:
"""
This class returns a [`FlaxLogitsProcessorList`] list object that contains all relevant [`FlaxLogitsProcessor`]
instances used to modify the scores of the language model head.
"""
processors = FlaxLogitsProcessorList()
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
if (
generation_config.min_length is not None
and generation_config.eos_token_id is not None
and generation_config.min_length > -1
):
processors.append(
FlaxMinLengthLogitsProcessor(generation_config.min_length, generation_config.eos_token_id)
)
if generation_config.forced_bos_token_id is not None:
processors.append(FlaxForcedBOSTokenLogitsProcessor(generation_config.forced_bos_token_id))
if generation_config.forced_eos_token_id is not None:
processors.append(
FlaxForcedEOSTokenLogitsProcessor(generation_config.max_length, generation_config.forced_eos_token_id)
)
if generation_config.suppress_tokens is not None:
processors.append(FlaxSuppressTokensLogitsProcessor(generation_config.suppress_tokens))
if generation_config.begin_suppress_tokens is not None:
begin_index = input_ids_seq_length
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
begin_index = (
begin_index
if (input_ids_seq_length > 1 or generation_config.forced_bos_token_id is None)
else begin_index + 1
)
if generation_config.forced_decoder_ids is not None and len(generation_config.forced_decoder_ids) > 0:
# generation starts after the last token that is forced
begin_index += generation_config.forced_decoder_ids[-1][0]
processors.append(
FlaxSuppressTokensAtBeginLogitsProcessor(generation_config.begin_suppress_tokens, begin_index)
)
if generation_config.forced_decoder_ids is not None:
forced_decoder_ids = [
[input_ids_seq_length + i[0] - 1, i[1]] for i in generation_config.forced_decoder_ids
]
processors.append(FlaxForceTokensLogitsProcessor(forced_decoder_ids))
if generation_config.no_repeat_ngram_size is not None and generation_config.no_repeat_ngram_size > 0:
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
processors.append(FlaxNoRepeatNGramLogitsProcessor(generation_config.no_repeat_ngram_size))
processors = self._merge_criteria_processor_list(processors, logits_processor)
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
return processors
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
def _merge_criteria_processor_list(
self,
default_list: FlaxLogitsProcessorList,
custom_list: FlaxLogitsProcessorList,
) -> FlaxLogitsProcessorList:
if len(custom_list) == 0:
return default_list
for default in default_list:
for custom in custom_list:
if type(custom) is type(default):
object_type = "logits processor"
raise ValueError(
f"A custom {object_type} of type {type(custom)} with values {custom} has been passed to"
f" `generate`, but it has already been created with the values {default}. {default} has been"
" created by passing the corresponding arguments to generate or by the model's config default"
f" values. If you just want to change the default values of {object_type} consider passing"
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
f" them as arguments to `generate` instead of using a custom {object_type}."
)
default_list.extend(custom_list)
return default_list
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
def _greedy_search(
self,
input_ids: None,
max_length: Optional[int] = None,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[int] = None,
logits_processor: Optional[FlaxLogitsProcessorList] = None,
trace: bool = True,
params: Optional[Dict[str, jnp.ndarray]] = None,
model_kwargs: Optional[Dict[str, jnp.ndarray]] = None,
):
# init values
max_length = max_length if max_length is not None else self.generation_config.max_length
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
batch_size, cur_len = input_ids.shape
eos_token_id = jnp.array(eos_token_id, dtype=jnp.int32 if eos_token_id is not None else None)
pad_token_id = jnp.array(pad_token_id, dtype=jnp.int32)
cur_len = jnp.array(cur_len)
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
# per batch-item holding current token in loop.
sequences = jnp.full((batch_size, max_length), pad_token_id, dtype=jnp.int32)
sequences = lax.dynamic_update_slice(sequences, input_ids, (0, 0))
# per batch-item state bit indicating if sentence has finished.
is_sent_finished = jnp.zeros((batch_size,), dtype=jnp.bool_)
# For Seq2Seq generation, we only need to use the decoder instead of the whole model in generation loop
# and pass it the `encoder_outputs`, which are part of the `model_kwargs`.
model = self.decode if self.config.is_encoder_decoder else self
# initialize model specific kwargs
model_kwargs = self.prepare_inputs_for_generation(input_ids, max_length, **model_kwargs)
# initialize state
state = GreedyState(
cur_len=cur_len,
sequences=sequences,
running_token=input_ids,
is_sent_finished=is_sent_finished,
model_kwargs=model_kwargs,
)
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
def greedy_search_cond_fn(state):
"""state termination condition fn."""
has_reached_max_length = state.cur_len == max_length
all_sequence_finished = jnp.all(state.is_sent_finished)
finish_generation = jnp.logical_or(has_reached_max_length, all_sequence_finished)
return ~finish_generation
def greedy_search_body_fn(state):
"""state update fn."""
model_outputs = model(state.running_token, params=params, **state.model_kwargs)
logits = model_outputs.logits[:, -1]
# apply min_length, ...
logits = logits_processor(state.sequences, logits, state.cur_len)
next_token = jnp.argmax(logits, axis=-1)
next_token = next_token * ~state.is_sent_finished + pad_token_id * state.is_sent_finished
next_is_sent_finished = state.is_sent_finished | (next_token == eos_token_id)
next_token = next_token[:, None]
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
next_sequences = lax.dynamic_update_slice(state.sequences, next_token, (0, state.cur_len))
next_model_kwargs = self.update_inputs_for_generation(model_outputs, state.model_kwargs)
return GreedyState(
cur_len=state.cur_len + 1,
sequences=next_sequences,
running_token=next_token,
is_sent_finished=next_is_sent_finished,
model_kwargs=next_model_kwargs,
)
# The very first prompt often has sequence length > 1, so run outside of `lax.while_loop` to comply with TPU
if input_ids.shape[1] > 1:
state = greedy_search_body_fn(state)
if not trace:
state = self._run_loop_in_debug(greedy_search_cond_fn, greedy_search_body_fn, state)
else:
state = lax.while_loop(greedy_search_cond_fn, greedy_search_body_fn, state)
return FlaxGreedySearchOutput(sequences=state.sequences)
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
def _sample(
self,
input_ids: None,
max_length: Optional[int] = None,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[int] = None,
prng_key: Optional[jnp.ndarray] = None,
logits_processor: Optional[FlaxLogitsProcessorList] = None,
logits_warper: Optional[FlaxLogitsProcessorList] = None,
trace: bool = True,
params: Optional[Dict[str, jnp.ndarray]] = None,
model_kwargs: Optional[Dict[str, jnp.ndarray]] = None,
):
# init values
max_length = max_length if max_length is not None else self.generation_config.max_length
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
prng_key = prng_key if prng_key is not None else jax.random.PRNGKey(0)
batch_size, cur_len = input_ids.shape
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
eos_token_id = jnp.array(eos_token_id, dtype=jnp.int32 if eos_token_id is not None else None)
pad_token_id = jnp.array(pad_token_id, dtype=jnp.int32)
cur_len = jnp.array(cur_len)
# per batch-item holding current token in loop.
sequences = jnp.full((batch_size, max_length), pad_token_id, dtype=jnp.int32)
sequences = lax.dynamic_update_slice(sequences, input_ids, (0, 0))
# per batch-item state bit indicating if sentence has finished.
is_sent_finished = jnp.zeros((batch_size,), dtype=jnp.bool_)
# For Seq2Seq generation, we only need to use the decoder instead of the whole model in generation loop
# and pass it the `encoder_outputs`, which are part of the `model_kwargs`.
model = self.decode if self.config.is_encoder_decoder else self
# initialize model specific kwargs
model_kwargs = self.prepare_inputs_for_generation(input_ids, max_length, **model_kwargs)
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
# initialize state
state = SampleState(
cur_len=cur_len,
sequences=sequences,
running_token=input_ids,
is_sent_finished=is_sent_finished,
prng_key=prng_key,
model_kwargs=model_kwargs,
)
def sample_search_cond_fn(state):
"""state termination condition fn."""
has_reached_max_length = state.cur_len == max_length
all_sequence_finished = jnp.all(state.is_sent_finished)
finish_generation = jnp.logical_or(has_reached_max_length, all_sequence_finished)
return ~finish_generation
def sample_search_body_fn(state):
"""state update fn."""
prng_key, prng_key_next = jax.random.split(state.prng_key)
model_outputs = model(state.running_token, params=params, **state.model_kwargs)
logits = model_outputs.logits[:, -1]
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
# apply min_length, ...
logits = logits_processor(state.sequences, logits, state.cur_len)
# apply top_p, top_k, temperature
logits = logits_warper(logits, logits, state.cur_len)
next_token = jax.random.categorical(prng_key, logits, axis=-1)
next_token = next_token * ~state.is_sent_finished + pad_token_id * state.is_sent_finished
next_is_sent_finished = state.is_sent_finished | (next_token == eos_token_id)
next_token = next_token[:, None]
next_sequences = lax.dynamic_update_slice(state.sequences, next_token, (0, state.cur_len))
next_model_kwargs = self.update_inputs_for_generation(model_outputs, state.model_kwargs)
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
return SampleState(
cur_len=state.cur_len + 1,
sequences=next_sequences,
running_token=next_token,
is_sent_finished=next_is_sent_finished,
model_kwargs=next_model_kwargs,
prng_key=prng_key_next,
)
# The very first prompt often has sequence length > 1, so run outside of `lax.while_loop` to comply with TPU
if input_ids.shape[1] > 1:
state = sample_search_body_fn(state)
if not trace:
state = self._run_loop_in_debug(sample_search_cond_fn, sample_search_body_fn, state)
else:
state = lax.while_loop(sample_search_cond_fn, sample_search_body_fn, state)
return FlaxSampleOutput(sequences=state.sequences)
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
def _beam_search(
self,
input_ids: None,
max_length: Optional[int] = None,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[int] = None,
length_penalty: Optional[float] = None,
early_stopping: Optional[Union[bool, str]] = None,
logits_processor: Optional[FlaxLogitsProcessorList] = None,
trace: bool = True,
params: Optional[Dict[str, jnp.ndarray]] = None,
num_return_sequences: Optional[int] = None,
model_kwargs: Optional[Dict[str, jnp.ndarray]] = None,
):
"""
This beam search function is heavily inspired by Flax's official example:
https://github.com/google/flax/blob/main/examples/wmt/decode.py
"""
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
def flatten_beam_dim(tensor):
"""Flattens the first two dimensions of a non-scalar array."""
# ignore scalars (e.g. cache index)
if tensor.ndim == 0:
return tensor
return tensor.reshape((tensor.shape[0] * tensor.shape[1],) + tensor.shape[2:])
def unflatten_beam_dim(tensor, batch_size, num_beams):
"""Unflattens the first, flat batch*beam dimension of a non-scalar array."""
# ignore scalars (e.g. cache index)
if tensor.ndim == 0:
return tensor
return tensor.reshape((batch_size, num_beams) + tensor.shape[1:])
def gather_beams(nested, beam_indices, batch_size, new_num_beams):
"""
Gathers the beam slices indexed by beam_indices into new beam array.
"""
batch_indices = jnp.reshape(
jnp.arange(batch_size * new_num_beams) // new_num_beams, (batch_size, new_num_beams)
)
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
def gather_fn(tensor):
# ignore scalars (e.g. cache index)
if tensor.ndim == 0:
return tensor
else:
return tensor[batch_indices, beam_indices]
return jax.tree_util.tree_map(gather_fn, nested)
# init values
max_length = max_length if max_length is not None else self.generation_config.max_length
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
length_penalty = length_penalty if length_penalty is not None else self.generation_config.length_penalty
early_stopping = early_stopping if early_stopping is not None else self.generation_config.early_stopping
num_return_sequences = (
num_return_sequences if num_return_sequences is not None else self.generation_config.num_return_sequences
)
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
batch_size, num_beams, cur_len = input_ids.shape
eos_token_id = jnp.array(eos_token_id, dtype=jnp.int32 if eos_token_id is not None else None)
pad_token_id = jnp.array(pad_token_id, dtype=jnp.int32)
cur_len = jnp.array(cur_len)
# record the prompt length of decoder
decoder_prompt_len = input_ids.shape[-1]
# per batch,beam-item holding current token in loop.
sequences = jnp.full((batch_size, num_beams, max_length), pad_token_id, dtype=jnp.int32)
running_sequences = jnp.full((batch_size, num_beams, max_length), pad_token_id, dtype=jnp.int32)
running_sequences = lax.dynamic_update_slice(sequences, input_ids, (0, 0, 0))
# per batch,beam-item state bit indicating if sentence has finished.
is_sent_finished = jnp.zeros((batch_size, num_beams), dtype=jnp.bool_)
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
# per batch,beam-item score, logprobs
running_scores = jnp.tile(jnp.array([0.0] + [np.array(-1.0e7)] * (num_beams - 1)), [batch_size, 1])
scores = jnp.ones((batch_size, num_beams)) * np.array(-1.0e7)
# For Seq2Seq generation, we only need to use the decoder instead of the whole model in generation loop
# and pass it the `encoder_outputs`, which are part of the `model_kwargs`.
model = self.decode if self.config.is_encoder_decoder else self
# flatten beam dim
if "encoder_outputs" in model_kwargs:
model_kwargs["encoder_outputs"]["last_hidden_state"] = flatten_beam_dim(
model_kwargs["encoder_outputs"]["last_hidden_state"]
)
for kwarg in ["attention_mask", "decoder_attention_mask"]:
if kwarg in model_kwargs:
model_kwargs[kwarg] = flatten_beam_dim(model_kwargs[kwarg])
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
# initialize model specific kwargs
model_kwargs = self.prepare_inputs_for_generation(flatten_beam_dim(input_ids), max_length, **model_kwargs)
# initialize state
state = BeamSearchState(
cur_len=cur_len,
running_sequences=running_sequences,
running_scores=running_scores,
sequences=sequences,
scores=scores,
is_sent_finished=is_sent_finished,
model_kwargs=model_kwargs,
)
def beam_search_cond_fn(state):
"""beam search state termination condition fn."""
# 1. is less than max length?
not_max_length_yet = state.cur_len < max_length
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
# 2. can the new beams still improve?
# early_stopping == False -> apply heuristic = always get the best score from `cur_len`. See the discussion
# below for more details.
# https://github.com/huggingface/transformers/pull/20901#issuecomment-1369845565
# early_stopping == "never" -> compute the best score from max_length or cur_len, depending on the sign of
# length_penalty. Positive length_penalty favors longer sequences, thus we use max_length there.
if early_stopping == "never" and length_penalty > 0.0:
best_running_score = state.running_scores[:, :1] / (
(max_length - decoder_prompt_len) ** length_penalty
)
else:
best_running_score = state.running_scores[:, :1] / (
(state.cur_len - decoder_prompt_len) ** length_penalty
)
worst_finished_score = jnp.where(
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
state.is_sent_finished, jnp.min(state.scores, axis=1, keepdims=True), np.array(-1.0e7)
)
improvement_still_possible = jnp.any(best_running_score > worst_finished_score)
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
# 3. is there still a beam that has not finished?
still_open_beam = ~(jnp.all(state.is_sent_finished) & (early_stopping is True))
return not_max_length_yet & still_open_beam & improvement_still_possible
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
def beam_search_body_fn(state, input_ids_length=1):
"""beam search state update fn."""
# 1. Forward current tokens
# Collect the current position slice along length to feed the fast
# autoregressive decoder model. Flatten the beam dimension into batch
# dimension for feeding into the model.
# unflatten beam dimension
# Unflatten beam dimension in attention cache arrays
input_token = flatten_beam_dim(
lax.dynamic_slice(
state.running_sequences,
(0, 0, state.cur_len - input_ids_length),
(batch_size, num_beams, input_ids_length),
)
)
model_outputs = model(input_token, params=params, **state.model_kwargs)
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
logits = unflatten_beam_dim(model_outputs.logits[:, -1], batch_size, num_beams)
cache = jax.tree_util.tree_map(
lambda tensor: unflatten_beam_dim(tensor, batch_size, num_beams), model_outputs.past_key_values
)
# adapt logits for FlaxMarianMTModel
logits = self._adapt_logits_for_beam_search(logits)
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
# 2. Compute log probs
# get log probabilities from logits,
# process logits with processors (*e.g.* min_length, ...), and
# add new logprobs to existing running logprobs scores.
log_probs = jax.nn.log_softmax(logits)
log_probs = logits_processor(
flatten_beam_dim(state.running_sequences), flatten_beam_dim(log_probs), state.cur_len
)
log_probs = unflatten_beam_dim(log_probs, batch_size, num_beams)
log_probs = log_probs + jnp.expand_dims(state.running_scores, axis=2)
vocab_size = log_probs.shape[2]
log_probs = log_probs.reshape((batch_size, num_beams * vocab_size))
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
# 3. Retrieve top-K
# Each item in batch has num_beams * vocab_size candidate sequences.
# For each item, get the top 2*k candidates with the highest log-
# probabilities. We gather the top 2*K beams here so that even if the best
# K sequences reach EOS simultaneously, we have another K sequences
# remaining to continue the live beam search.
# Gather the top 2*K scores from _all_ beams.
# Gather 2*k top beams.
# Recover the beam index by floor division.
# Recover token id by modulo division and expand Id array for broadcasting.
# Update sequences for the 2*K top-k new sequences.
beams_to_keep = 2 * num_beams
topk_log_probs, topk_indices = lax.top_k(log_probs, k=beams_to_keep)
topk_beam_indices = topk_indices // vocab_size
topk_running_sequences = gather_beams(
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
state.running_sequences, topk_beam_indices, batch_size, beams_to_keep
)
topk_ids = jnp.expand_dims(topk_indices % vocab_size, axis=2)
topk_sequences = lax.dynamic_update_slice(topk_running_sequences, topk_ids, (0, 0, state.cur_len))
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
# 4. Check which sequences have ended
# Update current sequences:
# Did any of these sequences reach an end marker?
# To prevent these just finished sequences from being added to the current sequences
# set of active beam search sequences, set their log probs to a very large
# negative value.
did_topk_just_finished = topk_sequences[:, :, state.cur_len] == eos_token_id
running_topk_log_probs = topk_log_probs + did_topk_just_finished * np.array(-1.0e7)
# 5. Get running sequences scores for next
# Determine the top k beam indices (from top 2*k beams) from log probs
# and gather top k beams (from top 2*k beams).
next_topk_indices = lax.top_k(running_topk_log_probs, k=num_beams)[1]
next_running_sequences, next_running_scores = gather_beams(
[topk_sequences, running_topk_log_probs], next_topk_indices, batch_size, num_beams
)
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
# 6. Process topk logits
# Further process log probs:
# - add length penalty
# - make sure no scores can be added anymore if beam is full
# - make sure still running sequences cannot be chosen as finalized beam
topk_log_probs = topk_log_probs / ((state.cur_len + 1 - decoder_prompt_len) ** length_penalty)
beams_in_batch_are_full = jnp.broadcast_to(
state.is_sent_finished.all(axis=-1, keepdims=True), did_topk_just_finished.shape
) & (early_stopping is True)
add_penalty = ~did_topk_just_finished | beams_in_batch_are_full
topk_log_probs += add_penalty * np.array(-1.0e7)
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
# 7. Get scores, sequences, is sentence finished for next.
# Combine sequences, scores, and flags along the beam dimension and compare
# new finished sequence scores to existing finished scores and select the
# best from the new set of beams
merged_sequences = jnp.concatenate([state.sequences, topk_sequences], axis=1)
merged_scores = jnp.concatenate([state.scores, topk_log_probs], axis=1)
merged_is_sent_finished = jnp.concatenate([state.is_sent_finished, did_topk_just_finished], axis=1)
topk_merged_indices = lax.top_k(merged_scores, k=num_beams)[1]
next_sequences, next_scores, next_is_sent_finished = gather_beams(
[merged_sequences, merged_scores, merged_is_sent_finished], topk_merged_indices, batch_size, num_beams
)
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
# 8. Update model kwargs.
# Determine the top k beam indices from the original set of all beams.
# With these, gather the top k beam-associated caches.
next_running_indices = gather_beams(topk_beam_indices, next_topk_indices, batch_size, num_beams)
next_cache = gather_beams(cache, next_running_indices, batch_size, num_beams)
model_outputs["past_key_values"] = jax.tree_util.tree_map(lambda x: flatten_beam_dim(x), next_cache)
next_model_kwargs = self.update_inputs_for_generation(model_outputs, state.model_kwargs)
return BeamSearchState(
cur_len=state.cur_len + 1,
running_scores=next_running_scores,
running_sequences=next_running_sequences,
scores=next_scores,
sequences=next_sequences,
is_sent_finished=next_is_sent_finished,
model_kwargs=next_model_kwargs,
)
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
# Always run first iteration outside of `lax.while_loop` to avoid calling `beam_search_cond_fn`
# when `state.cur_len` equals `decoder_prompt_len`. This also helps to comply with TPU when
# the very first prompt has sequence length > 1.
state = partial(beam_search_body_fn, input_ids_length=input_ids.shape[-1])(state)
if not trace:
state = self._run_loop_in_debug(beam_search_cond_fn, beam_search_body_fn, state)
else:
state = lax.while_loop(beam_search_cond_fn, beam_search_body_fn, state)
# Account for the edge-case where there are no finished sequences for a
# particular batch item. If so, return running sequences for that batch item.
none_finished = jnp.any(state.is_sent_finished, axis=1)
sequences = jnp.where(none_finished[:, None, None], state.sequences, state.running_sequences)
scores = jnp.where(none_finished[:, None], state.scores, state.running_scores)
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
# Take best beams for each batch (the score is sorted in descending order)
sequences = flatten_beam_dim(sequences[:, :num_return_sequences, :])
scores = flatten_beam_dim(scores[:, :num_return_sequences])
return FlaxBeamSearchOutput(sequences=sequences, scores=scores)
| 10,662 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/flax_utils.py
|
class LogitsProcessor:
"""Abstract base class for all logit processors that can be applied during generation."""
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
raise NotImplementedError(
f"{self.__class__} is an abstract class. Only classes inheriting this class can be called."
)
| 10,663 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/logits_process.py
|
class LogitsProcessorList(list):
"""
This class can be used to create a list of [`LogitsProcessor`] to subsequently process a `scores` input tensor.
This class inherits from list and adds a specific *__call__* method to apply each [`LogitsProcessor`] to the
inputs.
"""
| 10,664 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/logits_process.py
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> torch.FloatTensor:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids)
scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):
Prediction scores of a language modeling head. These can be logits for each vocabulary when not using
beam search or log softmax for each vocabulary token when using beam search
kwargs (`Dict[str, Any]`, *optional*):
Additional kwargs that are specific to a logits processor.
Return:
`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`:
The processed prediction scores.
| 10,664 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/logits_process.py
|
"""
for processor in self:
function_args = inspect.signature(processor.__call__).parameters
if len(function_args) > 2:
if not all(arg in kwargs for arg in list(function_args.keys())[2:]):
raise ValueError(
f"Make sure that all the required parameters: {list(function_args.keys())} for "
f"{processor.__class__} are passed to the logits processor."
)
scores = processor(input_ids, scores, **kwargs)
else:
scores = processor(input_ids, scores)
return scores
| 10,664 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/logits_process.py
|
class MinLengthLogitsProcessor(LogitsProcessor):
r"""
[`LogitsProcessor`] enforcing a min-length by setting EOS probability to 0. Note that, for decoder-only models
like most LLMs, the length includes the prompt.
Args:
min_length (`int`):
The minimum length below which the score of `eos_token_id` is set to `-float("Inf")`.
eos_token_id (`Union[int, List[int], torch.Tensor]`):
The id(s) of the *end-of-sequence* token.
device (`str`, *optional*, defaults to `"cpu"`):
The device to allocate the tensors.
Examples:
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloomz-560m")
>>> model = AutoModelForCausalLM.from_pretrained("bigscience/bloomz-560m")
| 10,665 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/logits_process.py
|
>>> inputs = tokenizer("A number:", return_tensors="pt")
>>> gen_out = model.generate(**inputs)
>>> print(tokenizer.batch_decode(gen_out, skip_special_tokens=True)[0])
A number: one
>>> # setting `min_length` to a value smaller than the uncontrolled output length has no impact
>>> gen_out = model.generate(**inputs, min_length=3)
>>> print(tokenizer.batch_decode(gen_out, skip_special_tokens=True)[0])
A number: one
>>> # setting a larger `min_length` will force the model to generate beyond its natural ending point, which is not
>>> # necessarily incorrect
>>> gen_out = model.generate(**inputs, min_length=10)
>>> print(tokenizer.batch_decode(gen_out, skip_special_tokens=True)[0])
A number: one thousand, nine hundred and ninety-four
```
"""
| 10,665 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/logits_process.py
|
def __init__(self, min_length: int, eos_token_id: Union[int, List[int], torch.Tensor], device: str = "cpu"):
if not isinstance(min_length, int) or min_length < 0:
raise ValueError(f"`min_length` has to be a non-negative integer, but is {min_length}")
if not isinstance(eos_token_id, torch.Tensor):
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
eos_token_id = torch.tensor(eos_token_id, device=device)
self.min_length = min_length
self.eos_token_id = eos_token_id
| 10,665 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/logits_process.py
|
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
vocab_tensor = torch.arange(scores.shape[-1], device=scores.device)
eos_token_mask = isin_mps_friendly(vocab_tensor, self.eos_token_id)
scores_processed = scores.clone()
if input_ids.shape[-1] < self.min_length:
scores_processed = torch.where(eos_token_mask, -math.inf, scores)
return scores_processed
| 10,665 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/logits_process.py
|
class MinNewTokensLengthLogitsProcessor(LogitsProcessor):
r"""
[`LogitsProcessor`] enforcing a min-length of new tokens by setting EOS (End-Of-Sequence) token probability to 0.
Contrarily to [`MinLengthLogitsProcessor`], this processor ignores the prompt.
Args:
prompt_length_to_skip (`int`):
The input tokens length. Not a valid argument when used with `generate` as it will automatically assign the
input length.
min_new_tokens (`int`):
The minimum *new* tokens length below which the score of `eos_token_id` is set to `-float("Inf")`.
eos_token_id (`Union[int, List[int], torch.Tensor]`):
The id(s) of the *end-of-sequence* token.
device (`str`, *optional*, defaults to `"cpu"`):
The device to allocate the tensors.
Examples:
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
| 10,666 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/logits_process.py
|
>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloomz-560m")
>>> model = AutoModelForCausalLM.from_pretrained("bigscience/bloomz-560m")
>>> inputs = tokenizer(["A number:"], return_tensors="pt")
>>> gen_out = model.generate(**inputs)
>>> print(tokenizer.batch_decode(gen_out, skip_special_tokens=True)[0])
A number: one
>>> # setting `min_new_tokens` will force the model to generate beyond its natural ending point, which is not
>>> # necessarily incorrect
>>> gen_out = model.generate(**inputs, min_new_tokens=2)
>>> print(tokenizer.batch_decode(gen_out, skip_special_tokens=True)[0])
A number: one thousand
```
"""
| 10,666 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/logits_process.py
|
def __init__(
self,
prompt_length_to_skip: int,
min_new_tokens: int,
eos_token_id: Union[int, List[int], torch.Tensor],
device: str = "cpu",
):
for arg_name, arg_value in [
("prompt_length_to_skip", prompt_length_to_skip),
("min_new_tokens", min_new_tokens),
]:
if not isinstance(arg_value, int) or arg_value < 0:
raise ValueError(f"`{arg_name}` has to be a positive integer, but is {arg_value}")
if not isinstance(eos_token_id, torch.Tensor):
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
eos_token_id = torch.tensor(eos_token_id, device=device)
self.prompt_length_to_skip = prompt_length_to_skip
self.min_new_tokens = min_new_tokens
self.eos_token_id = eos_token_id
| 10,666 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/logits_process.py
|
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
new_tokens_length = input_ids.shape[-1] - self.prompt_length_to_skip
scores_processed = scores.clone()
vocab_tensor = torch.arange(scores.shape[-1], device=scores.device)
eos_token_mask = isin_mps_friendly(vocab_tensor, self.eos_token_id)
if new_tokens_length < self.min_new_tokens:
scores_processed = torch.where(eos_token_mask, -math.inf, scores)
return scores_processed
| 10,666 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/logits_process.py
|
class TemperatureLogitsWarper(LogitsProcessor):
r"""
[`LogitsProcessor`] for temperature (exponential scaling output probability distribution), which effectively means
that it can control the randomness of the predicted tokens. Often used together with [`TopPLogitsWarper`] and
[`TopKLogitsWarper`].
<Tip>
Make sure that `do_sample=True` is included in the `generate` arguments otherwise the temperature value won't have
any effect.
</Tip>
Args:
temperature (`float`):
Strictly positive float value used to modulate the logits distribution. A value smaller than `1` decreases
randomness (and vice versa), with `0` being equivalent to shifting all probability mass to the most likely
token.
Examples:
```python
>>> import torch
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
>>> set_seed(0) # for reproducibility
| 10,667 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/logits_process.py
|
>>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
>>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
>>> model.config.pad_token_id = model.config.eos_token_id
>>> inputs = tokenizer(["Hugging Face Company is"], return_tensors="pt")
>>> # With temperature=1.0, the default, we consistently get random outputs due to random sampling.
>>> generate_kwargs = {"max_new_tokens": 10, "do_sample": True, "temperature": 1.0, "num_return_sequences": 2}
>>> outputs = model.generate(**inputs, **generate_kwargs)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
['Hugging Face Company is one of these companies that is going to take a',
"Hugging Face Company is a brand created by Brian A. O'Neil"]
| 10,667 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/logits_process.py
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.