text
stringlengths 1
1.02k
| class_index
int64 0
10.8k
| source
stringlengths 85
188
|
---|---|---|
# This might happen when running inside of a pipeline, where the task is already initialized
# from outside of Hugging Face
if self._clearml.Task.running_locally() and self._clearml.Task.current_task():
self._clearml_task = self._clearml.Task.current_task()
self._log_model = os.getenv(
"CLEARML_LOG_MODEL",
"FALSE" if not ClearMLCallback._task_created_in_callback else "TRUE",
).upper() in ENV_VARS_TRUE_VALUES.union({"TRUE"})
logger.info("External ClearML Task has been connected.")
else:
self._clearml_task = self._clearml.Task.init(
project_name=os.getenv("CLEARML_PROJECT", "HuggingFace Transformers"),
task_name=os.getenv("CLEARML_TASK", "Trainer"),
auto_connect_frameworks={"tensorboard": False, "pytorch": False},
| 10,580 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
|
output_uri=True,
)
self._log_model = os.getenv("CLEARML_LOG_MODEL", "TRUE").upper() in ENV_VARS_TRUE_VALUES.union(
{"TRUE"}
)
ClearMLCallback._task_created_in_callback = True
logger.info("ClearML Task has been initialized.")
self._initialized = True
| 10,580 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
|
suffixed_hparams_section = ClearMLCallback._hparams_section + ClearMLCallback.log_suffix
ignore_hparams_config_section = suffixed_hparams_section + "/" + ClearMLCallback._ignore_hparams_overrides
if self._clearml.Task.running_locally():
self._copy_training_args_as_hparams(args, suffixed_hparams_section)
self._clearml_task.set_parameter(
name=ignore_hparams_config_section,
value=True,
value_type=bool,
description=(
"If True, ignore Transformers hyperparameters overrides done in the UI/backend "
+ "when running remotely. Otherwise, the overrides will be applied when running remotely"
),
)
elif not self._clearml_task.get_parameter(ignore_hparams_config_section, default=True, cast=True):
self._clearml_task.connect(args, suffixed_hparams_section)
| 10,580 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
|
else:
self._copy_training_args_as_hparams(
args, ClearMLCallback._hparams_section + ClearMLCallback.log_suffix
)
| 10,580 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
|
if getattr(model, "config", None) is not None:
ignore_model_config_section = (
suffixed_hparams_section + "/" + ClearMLCallback._ignoge_model_config_overrides
)
configuration_object_description = ClearMLCallback._model_config_description.format(
ClearMLCallback._model_connect_counter
)
if ClearMLCallback._model_connect_counter != ClearMLCallback._train_run_counter:
configuration_object_description += " " + ClearMLCallback._model_config_description_note
if self._clearml.Task.running_locally():
self._clearml_task.set_parameter(
name=ignore_model_config_section,
value=True,
value_type=bool,
description=(
"If True, ignore Transformers model configuration overrides done in the UI/backend "
| 10,580 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
|
+ "when running remotely. Otherwise, the overrides will be applied when running remotely"
),
)
self._clearml_task.set_configuration_object(
name=ClearMLCallback._model_config_section + ClearMLCallback.log_suffix,
config_dict=model.config.to_dict(),
description=configuration_object_description,
)
elif not self._clearml_task.get_parameter(ignore_model_config_section, default=True, cast=True):
model.config = model.config.from_dict(
self._clearml_task.get_configuration_object_as_dict(
ClearMLCallback._model_config_section + ClearMLCallback.log_suffix
)
)
else:
self._clearml_task.set_configuration_object(
| 10,580 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
|
name=ClearMLCallback._model_config_section + ClearMLCallback.log_suffix,
config_dict=model.config.to_dict(),
description=configuration_object_description,
)
| 10,580 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
|
def on_train_begin(self, args, state, control, model=None, tokenizer=None, **kwargs):
if self._clearml is None:
return
self._checkpoints_saved = []
if state.is_hyper_param_search:
self._initialized = False
if not self._initialized:
self.setup(args, state, model, tokenizer, **kwargs)
def on_train_end(self, args, state, control, **kwargs):
if ClearMLCallback._should_close_on_train_end:
self._clearml_task.close()
ClearMLCallback._train_run_counter = 0
| 10,580 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
|
def on_log(self, args, state, control, model=None, tokenizer=None, logs=None, **kwargs):
if self._clearml is None:
return
if not self._initialized:
self.setup(args, state, model, tokenizer, **kwargs)
if state.is_world_process_zero:
eval_prefix = "eval_"
eval_prefix_len = len(eval_prefix)
test_prefix = "test_"
test_prefix_len = len(test_prefix)
single_value_scalars = [
"train_runtime",
"train_samples_per_second",
"train_steps_per_second",
"train_loss",
"total_flos",
"epoch",
]
for k, v in logs.items():
if isinstance(v, (int, float)):
if k in single_value_scalars:
self._clearml_task.get_logger().report_single_value(
name=k + ClearMLCallback.log_suffix, value=v
)
| 10,580 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
|
elif k.startswith(eval_prefix):
self._clearml_task.get_logger().report_scalar(
title="eval" + ClearMLCallback.log_suffix,
series=k[eval_prefix_len:],
value=v,
iteration=state.global_step,
)
elif k.startswith(test_prefix):
self._clearml_task.get_logger().report_scalar(
title="test" + ClearMLCallback.log_suffix,
series=k[test_prefix_len:],
value=v,
iteration=state.global_step,
)
else:
self._clearml_task.get_logger().report_scalar(
title="train" + ClearMLCallback.log_suffix,
series=k,
value=v,
| 10,580 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
|
iteration=state.global_step,
)
else:
logger.warning(
"Trainer is attempting to log a value of "
f'"{v}" of type {type(v)} for key "{k}" as a scalar. '
"This invocation of ClearML logger's report_scalar() "
"is incorrect so we dropped this attribute."
)
| 10,580 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
|
def on_save(self, args, state, control, **kwargs):
if self._log_model and self._clearml_task and state.is_world_process_zero:
ckpt_dir = f"checkpoint-{state.global_step}"
artifact_path = os.path.join(args.output_dir, ckpt_dir)
name = ckpt_dir + ClearMLCallback.log_suffix
logger.info(f"Logging checkpoint artifact `{name}`. This may take some time.")
output_model = self._clearml.OutputModel(task=self._clearml_task, name=name)
output_model.connect(task=self._clearml_task, name=name)
output_model.update_weights_package(
weights_path=artifact_path,
target_filename=ckpt_dir,
iteration=state.global_step,
auto_delete_file=False,
)
self._checkpoints_saved.append(output_model)
while args.save_total_limit and args.save_total_limit < len(self._checkpoints_saved):
try:
| 10,580 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
|
self._clearml.model.Model.remove(
self._checkpoints_saved[0],
delete_weights_file=True,
force=True,
raise_on_errors=True,
)
except Exception as e:
logger.warning(
"Could not remove checkpoint `{}` after going over the `save_total_limit`. Error is: {}".format(
self._checkpoints_saved[0].name, e
)
)
break
self._checkpoints_saved = self._checkpoints_saved[1:]
| 10,580 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
|
def _copy_training_args_as_hparams(self, training_args, prefix):
as_dict = {
field.name: getattr(training_args, field.name)
for field in fields(training_args)
if field.init and not field.name.endswith("_token")
}
flat_dict = {str(k): v for k, v in self._clearml.utilities.proxy_object.flatten_dictionary(as_dict).items()}
self._clearml_task._arguments.copy_from_dict(flat_dict, prefix=prefix)
| 10,580 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
|
class FlyteCallback(TrainerCallback):
"""A [`TrainerCallback`] that sends the logs to [Flyte](https://flyte.org/).
NOTE: This callback only works within a Flyte task.
Args:
save_log_history (`bool`, *optional*, defaults to `True`):
When set to True, the training logs are saved as a Flyte Deck.
sync_checkpoints (`bool`, *optional*, defaults to `True`):
When set to True, checkpoints are synced with Flyte and can be used to resume training in the case of an
interruption.
Example:
```python
# Note: This example skips over some setup steps for brevity.
from flytekit import current_context, task
@task
def train_hf_transformer():
cp = current_context().checkpoint
trainer = Trainer(..., callbacks=[FlyteCallback()])
output = trainer.train(resume_from_checkpoint=cp.restore())
```
"""
| 10,581 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
|
def __init__(self, save_log_history: bool = True, sync_checkpoints: bool = True):
super().__init__()
if not is_flytekit_available():
raise ImportError("FlyteCallback requires flytekit to be installed. Run `pip install flytekit`.")
if not is_flyte_deck_standard_available() or not is_pandas_available():
logger.warning(
"Syncing log history requires both flytekitplugins-deck-standard and pandas to be installed. "
"Run `pip install flytekitplugins-deck-standard pandas` to enable this feature."
)
save_log_history = False
from flytekit import current_context
self.cp = current_context().checkpoint
self.save_log_history = save_log_history
self.sync_checkpoints = sync_checkpoints
| 10,581 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
|
def on_save(self, args, state, control, **kwargs):
if self.sync_checkpoints and state.is_world_process_zero:
ckpt_dir = f"checkpoint-{state.global_step}"
artifact_path = os.path.join(args.output_dir, ckpt_dir)
logger.info(f"Syncing checkpoint in {ckpt_dir} to Flyte. This may take time.")
self.cp.save(artifact_path)
def on_train_end(self, args, state, control, **kwargs):
if self.save_log_history:
import pandas as pd
from flytekit import Deck
from flytekitplugins.deck.renderer import TableRenderer
log_history_df = pd.DataFrame(state.log_history)
Deck("Log History", TableRenderer().to_html(log_history_df))
| 10,581 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
|
class DVCLiveCallback(TrainerCallback):
"""
A [`TrainerCallback`] that sends the logs to [DVCLive](https://www.dvc.org/doc/dvclive).
Use the environment variables below in `setup` to configure the integration. To customize this callback beyond
those environment variables, see [here](https://dvc.org/doc/dvclive/ml-frameworks/huggingface).
Args:
live (`dvclive.Live`, *optional*, defaults to `None`):
Optional Live instance. If None, a new instance will be created using **kwargs.
log_model (Union[Literal["all"], bool], *optional*, defaults to `None`):
Whether to use `dvclive.Live.log_artifact()` to log checkpoints created by [`Trainer`]. If set to `True`,
the final checkpoint is logged at the end of training. If set to `"all"`, the entire
[`TrainingArguments`]'s `output_dir` is logged at each checkpoint.
"""
| 10,582 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
|
def __init__(
self,
live: Optional[Any] = None,
log_model: Optional[Union[Literal["all"], bool]] = None,
**kwargs,
):
if not is_dvclive_available():
raise RuntimeError("DVCLiveCallback requires dvclive to be installed. Run `pip install dvclive`.")
from dvclive import Live
self._initialized = False
self.live = None
if isinstance(live, Live):
self.live = live
elif live is not None:
raise RuntimeError(f"Found class {live.__class__} for live, expected dvclive.Live")
self._log_model = log_model
if self._log_model is None:
log_model_env = os.getenv("HF_DVCLIVE_LOG_MODEL", "FALSE")
if log_model_env.upper() in ENV_VARS_TRUE_VALUES:
self._log_model = True
elif log_model_env.lower() == "all":
self._log_model = "all"
| 10,582 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
|
def setup(self, args, state, model):
"""
Setup the optional DVCLive integration. To customize this callback beyond the environment variables below, see
[here](https://dvc.org/doc/dvclive/ml-frameworks/huggingface).
Environment:
- **HF_DVCLIVE_LOG_MODEL** (`str`, *optional*):
Whether to use `dvclive.Live.log_artifact()` to log checkpoints created by [`Trainer`]. If set to `True` or
*1*, the final checkpoint is logged at the end of training. If set to `all`, the entire
[`TrainingArguments`]'s `output_dir` is logged at each checkpoint.
"""
from dvclive import Live
self._initialized = True
if state.is_world_process_zero:
if not self.live:
self.live = Live()
self.live.log_params(args.to_dict())
def on_train_begin(self, args, state, control, model=None, **kwargs):
if not self._initialized:
self.setup(args, state, model)
| 10,582 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
|
def on_log(self, args, state, control, model=None, logs=None, **kwargs):
if not self._initialized:
self.setup(args, state, model)
if state.is_world_process_zero:
from dvclive.plots import Metric
from dvclive.utils import standardize_metric_name
for key, value in logs.items():
if Metric.could_log(value):
self.live.log_metric(standardize_metric_name(key, "dvclive.huggingface"), value)
else:
logger.warning(
"Trainer is attempting to log a value of "
f'"{value}" of type {type(value)} for key "{key}" as a scalar. '
"This invocation of DVCLive's Live.log_metric() "
"is incorrect so we dropped this attribute."
)
self.live.next_step()
| 10,582 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
|
def on_save(self, args, state, control, **kwargs):
if self._log_model == "all" and self._initialized and state.is_world_process_zero:
self.live.log_artifact(args.output_dir)
def on_train_end(self, args, state, control, **kwargs):
if self._initialized and state.is_world_process_zero:
from transformers.trainer import Trainer
if self._log_model is True:
fake_trainer = Trainer(
args=args,
model=kwargs.get("model"),
processing_class=kwargs.get("tokenizer"),
eval_dataset=["fake"],
)
name = "best" if args.load_best_model_at_end else "last"
output_dir = os.path.join(args.output_dir, name)
fake_trainer.save_model(output_dir)
self.live.log_artifact(output_dir, name=name, type="model", copy=True)
self.live.end()
| 10,582 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
|
class UserCommands(BaseTransformersCLICommand):
@staticmethod
def register_subcommand(parser: ArgumentParser):
login_parser = parser.add_parser("login", help="Log in using the same credentials as on huggingface.co")
login_parser.set_defaults(func=lambda args: LoginCommand(args))
whoami_parser = parser.add_parser("whoami", help="Find out which huggingface.co account you are logged in as.")
whoami_parser.set_defaults(func=lambda args: WhoamiCommand(args))
logout_parser = parser.add_parser("logout", help="Log out")
logout_parser.set_defaults(func=lambda args: LogoutCommand(args))
| 10,583 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/user.py
|
# new system: git-based repo system
repo_parser = parser.add_parser(
"repo",
help="Deprecated: use `huggingface-cli` instead. Commands to interact with your huggingface.co repos.",
)
repo_subparsers = repo_parser.add_subparsers(
help="Deprecated: use `huggingface-cli` instead. huggingface.co repos related commands"
)
repo_create_parser = repo_subparsers.add_parser(
"create", help="Deprecated: use `huggingface-cli` instead. Create a new repo on huggingface.co"
)
repo_create_parser.add_argument(
"name",
type=str,
help="Name for your model's repo. Will be namespaced under your username to build the model id.",
)
repo_create_parser.add_argument("--organization", type=str, help="Optional: organization namespace.")
repo_create_parser.add_argument("-y", "--yes", action="store_true", help="Optional: answer Yes to the prompt")
| 10,583 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/user.py
|
repo_create_parser.set_defaults(func=lambda args: RepoCreateCommand(args))
| 10,583 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/user.py
|
class ANSI:
"""
Helper for en.wikipedia.org/wiki/ANSI_escape_code
"""
_bold = "\u001b[1m"
_red = "\u001b[31m"
_gray = "\u001b[90m"
_reset = "\u001b[0m"
@classmethod
def bold(cls, s):
return f"{cls._bold}{s}{cls._reset}"
@classmethod
def red(cls, s):
return f"{cls._bold}{cls._red}{s}{cls._reset}"
@classmethod
def gray(cls, s):
return f"{cls._gray}{s}{cls._reset}"
| 10,584 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/user.py
|
class BaseUserCommand:
def __init__(self, args):
self.args = args
| 10,585 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/user.py
|
class LoginCommand(BaseUserCommand):
def run(self):
print(
ANSI.red(
"ERROR! `huggingface-cli login` uses an outdated login mechanism "
"that is not compatible with the Hugging Face Hub backend anymore. "
"Please use `huggingface-cli login instead."
)
)
| 10,586 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/user.py
|
class WhoamiCommand(BaseUserCommand):
def run(self):
print(
ANSI.red(
"WARNING! `transformers-cli whoami` is deprecated and will be removed in v5. Please use "
"`huggingface-cli whoami` instead."
)
)
token = HfFolder.get_token()
if token is None:
print("Not logged in")
exit()
try:
user, orgs = whoami(token)
print(user)
if orgs:
print(ANSI.bold("orgs: "), ",".join(orgs))
except HTTPError as e:
print(e)
print(ANSI.red(e.response.text))
exit(1)
| 10,587 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/user.py
|
class LogoutCommand(BaseUserCommand):
def run(self):
print(
ANSI.red(
"ERROR! `transformers-cli logout` uses an outdated logout mechanism "
"that is not compatible with the Hugging Face Hub backend anymore. "
"Please use `huggingface-cli logout instead."
)
)
| 10,588 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/user.py
|
class RepoCreateCommand(BaseUserCommand):
def run(self):
print(
ANSI.red(
"WARNING! Managing repositories through transformers-cli is deprecated. "
"Please use `huggingface-cli` instead."
)
)
token = HfFolder.get_token()
if token is None:
print("Not logged in")
exit(1)
try:
stdout = subprocess.check_output(["git", "--version"]).decode("utf-8")
print(ANSI.gray(stdout.strip()))
except FileNotFoundError:
print("Looks like you do not have git installed, please install.")
| 10,589 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/user.py
|
try:
stdout = subprocess.check_output(["git-lfs", "--version"]).decode("utf-8")
print(ANSI.gray(stdout.strip()))
except FileNotFoundError:
print(
ANSI.red(
"Looks like you do not have git-lfs installed, please install."
" You can install from https://git-lfs.github.com/."
" Then run `git lfs install` (you only have to do this once)."
)
)
print("")
user, _ = whoami(token)
namespace = self.args.organization if self.args.organization is not None else user
full_name = f"{namespace}/{self.args.name}"
print(f"You are about to create {ANSI.bold(full_name)}")
| 10,589 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/user.py
|
if not self.args.yes:
choice = input("Proceed? [Y/n] ").lower()
if not (choice == "" or choice == "y" or choice == "yes"):
print("Abort")
exit()
try:
url = create_repo(repo_id=full_name, token=token)
except HTTPError as e:
print(e)
print(ANSI.red(e.response.text))
exit(1)
print("\nYour repo now lives at:")
print(f" {ANSI.bold(url)}")
print("\nYou can clone it locally with the command below, and commit/push as usual.")
print(f"\n git clone {url}")
print("")
| 10,589 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/user.py
|
class RunCommand(BaseTransformersCLICommand):
def __init__(self, nlp: Pipeline, reader: PipelineDataFormat):
self._nlp = nlp
self._reader = reader
| 10,590 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/run.py
|
@staticmethod
def register_subcommand(parser: ArgumentParser):
run_parser = parser.add_parser("run", help="Run a pipeline through the CLI")
run_parser.add_argument("--task", choices=get_supported_tasks(), help="Task to run")
run_parser.add_argument("--input", type=str, help="Path to the file to use for inference")
run_parser.add_argument("--output", type=str, help="Path to the file that will be used post to write results.")
run_parser.add_argument("--model", type=str, help="Name or path to the model to instantiate.")
run_parser.add_argument("--config", type=str, help="Name or path to the model's config to instantiate.")
run_parser.add_argument(
"--tokenizer", type=str, help="Name of the tokenizer to use. (default: same as the model name)"
)
run_parser.add_argument(
"--column",
type=str,
help="Name of the column to use as input. (For multi columns input as QA use column1,columns2)",
| 10,590 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/run.py
|
)
run_parser.add_argument(
"--format",
type=str,
default="infer",
choices=PipelineDataFormat.SUPPORTED_FORMATS,
help="Input format to read from",
)
run_parser.add_argument(
"--device",
type=int,
default=-1,
help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)",
)
run_parser.add_argument("--overwrite", action="store_true", help="Allow overwriting the output file.")
run_parser.set_defaults(func=run_command_factory)
| 10,590 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/run.py
|
def run(self):
nlp, outputs = self._nlp, []
for entry in self._reader:
output = nlp(**entry) if self._reader.is_multi_columns else nlp(entry)
if isinstance(output, dict):
outputs.append(output)
else:
outputs += output
# Saving data
if self._nlp.binary_output:
binary_path = self._reader.save_binary(outputs)
logger.warning(f"Current pipeline requires output to be in binary format, saving at {binary_path}")
else:
self._reader.save(outputs)
| 10,590 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/run.py
|
class ModelPatterns:
"""
Holds the basic information about a new model for the add-new-model-like command.
| 10,591 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/add_new_model_like.py
|
Args:
model_name (`str`): The model name.
checkpoint (`str`): The checkpoint to use for doc examples.
model_type (`str`, *optional*):
The model type, the identifier used internally in the library like `bert` or `xlm-roberta`. Will default to
`model_name` lowercased with spaces replaced with minuses (-).
model_lower_cased (`str`, *optional*):
The lowercased version of the model name, to use for the module name or function names. Will default to
`model_name` lowercased with spaces and minuses replaced with underscores.
model_camel_cased (`str`, *optional*):
The camel-cased version of the model name, to use for the class names. Will default to `model_name`
camel-cased (with spaces and minuses both considered as word separators.
model_upper_cased (`str`, *optional*):
The uppercased version of the model name, to use for the constant names. Will default to `model_name`
| 10,591 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/add_new_model_like.py
|
uppercased with spaces and minuses replaced with underscores.
config_class (`str`, *optional*):
The tokenizer class associated with this model. Will default to `"{model_camel_cased}Config"`.
tokenizer_class (`str`, *optional*):
The tokenizer class associated with this model (leave to `None` for models that don't use a tokenizer).
image_processor_class (`str`, *optional*):
The image processor class associated with this model (leave to `None` for models that don't use an image
processor).
feature_extractor_class (`str`, *optional*):
The feature extractor class associated with this model (leave to `None` for models that don't use a feature
extractor).
processor_class (`str`, *optional*):
The processor class associated with this model (leave to `None` for models that don't use a processor).
"""
| 10,591 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/add_new_model_like.py
|
model_name: str
checkpoint: str
model_type: Optional[str] = None
model_lower_cased: Optional[str] = None
model_camel_cased: Optional[str] = None
model_upper_cased: Optional[str] = None
config_class: Optional[str] = None
tokenizer_class: Optional[str] = None
image_processor_class: Optional[str] = None
feature_extractor_class: Optional[str] = None
processor_class: Optional[str] = None
| 10,591 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/add_new_model_like.py
|
def __post_init__(self):
if self.model_type is None:
self.model_type = self.model_name.lower().replace(" ", "-")
if self.model_lower_cased is None:
self.model_lower_cased = self.model_name.lower().replace(" ", "_").replace("-", "_")
if self.model_camel_cased is None:
# Split the model name on - and space
words = self.model_name.split(" ")
words = list(chain(*[w.split("-") for w in words]))
# Make sure each word is capitalized
words = [w[0].upper() + w[1:] for w in words]
self.model_camel_cased = "".join(words)
if self.model_upper_cased is None:
self.model_upper_cased = self.model_name.upper().replace(" ", "_").replace("-", "_")
if self.config_class is None:
self.config_class = f"{self.model_camel_cased}Config"
| 10,591 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/add_new_model_like.py
|
class AddNewModelLikeCommand(BaseTransformersCLICommand):
@staticmethod
def register_subcommand(parser: ArgumentParser):
add_new_model_like_parser = parser.add_parser("add-new-model-like")
add_new_model_like_parser.add_argument(
"--config_file", type=str, help="A file with all the information for this model creation."
)
add_new_model_like_parser.add_argument(
"--path_to_repo", type=str, help="When not using an editable install, the path to the Transformers repo."
)
add_new_model_like_parser.set_defaults(func=add_new_model_like_command_factory)
| 10,592 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/add_new_model_like.py
|
def __init__(self, config_file=None, path_to_repo=None, *args):
if config_file is not None:
with open(config_file, "r", encoding="utf-8") as f:
config = json.load(f)
self.old_model_type = config["old_model_type"]
self.model_patterns = ModelPatterns(**config["new_model_patterns"])
self.add_copied_from = config.get("add_copied_from", True)
self.frameworks = config.get("frameworks", get_default_frameworks())
self.old_checkpoint = config.get("old_checkpoint", None)
else:
(
self.old_model_type,
self.model_patterns,
self.add_copied_from,
self.frameworks,
self.old_checkpoint,
) = get_user_input()
self.path_to_repo = path_to_repo
def run(self):
if self.path_to_repo is not None:
# Adapt constants
global TRANSFORMERS_PATH
global REPO_PATH
| 10,592 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/add_new_model_like.py
|
REPO_PATH = Path(self.path_to_repo)
TRANSFORMERS_PATH = REPO_PATH / "src" / "transformers"
create_new_model_like(
model_type=self.old_model_type,
new_model_patterns=self.model_patterns,
add_copied_from=self.add_copied_from,
frameworks=self.frameworks,
old_checkpoint=self.old_checkpoint,
)
| 10,592 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/add_new_model_like.py
|
class EnvironmentCommand(BaseTransformersCLICommand):
@staticmethod
def register_subcommand(parser: ArgumentParser):
download_parser = parser.add_parser("env")
download_parser.set_defaults(func=info_command_factory)
download_parser.add_argument(
"--accelerate-config_file",
default=None,
help="The accelerate config file to use for the default values in the launching script.",
)
download_parser.set_defaults(func=download_command_factory)
def __init__(self, accelerate_config_file, *args) -> None:
self._accelerate_config_file = accelerate_config_file
def run(self):
safetensors_version = "not installed"
if is_safetensors_available():
import safetensors
safetensors_version = safetensors.__version__
elif importlib.util.find_spec("safetensors") is not None:
import safetensors
| 10,593 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/env.py
|
safetensors_version = f"{safetensors.__version__} but is ignored because of PyTorch version too old."
accelerate_version = "not installed"
accelerate_config = accelerate_config_str = "not found"
if is_accelerate_available():
import accelerate
from accelerate.commands.config import default_config_file, load_config_from_file
accelerate_version = accelerate.__version__
# Get the default from the config file.
if self._accelerate_config_file is not None or os.path.isfile(default_config_file):
accelerate_config = load_config_from_file(self._accelerate_config_file).to_dict()
accelerate_config_str = (
"\n".join([f"\t- {prop}: {val}" for prop, val in accelerate_config.items()])
if isinstance(accelerate_config, dict)
else f"\t{accelerate_config}"
)
| 10,593 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/env.py
|
pt_version = "not installed"
pt_cuda_available = "NA"
if is_torch_available():
import torch
pt_version = torch.__version__
pt_cuda_available = torch.cuda.is_available()
pt_npu_available = is_torch_npu_available()
tf_version = "not installed"
tf_cuda_available = "NA"
if is_tf_available():
import tensorflow as tf
tf_version = tf.__version__
try:
# deprecated in v2.1
tf_cuda_available = tf.test.is_gpu_available()
except AttributeError:
# returns list of devices, convert to bool
tf_cuda_available = bool(tf.config.list_physical_devices("GPU"))
flax_version = "not installed"
jax_version = "not installed"
jaxlib_version = "not installed"
jax_backend = "NA"
if is_flax_available():
import flax
import jax
import jaxlib
| 10,593 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/env.py
|
flax_version = flax.__version__
jax_version = jax.__version__
jaxlib_version = jaxlib.__version__
jax_backend = jax.lib.xla_bridge.get_backend().platform
| 10,593 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/env.py
|
info = {
"`transformers` version": version,
"Platform": platform.platform(),
"Python version": platform.python_version(),
"Huggingface_hub version": huggingface_hub.__version__,
"Safetensors version": f"{safetensors_version}",
"Accelerate version": f"{accelerate_version}",
"Accelerate config": f"{accelerate_config_str}",
"PyTorch version (GPU?)": f"{pt_version} ({pt_cuda_available})",
"Tensorflow version (GPU?)": f"{tf_version} ({tf_cuda_available})",
"Flax version (CPU?/GPU?/TPU?)": f"{flax_version} ({jax_backend})",
"Jax version": f"{jax_version}",
"JaxLib version": f"{jaxlib_version}",
"Using distributed or parallel set-up in script?": "<fill in>",
}
if is_torch_available():
if pt_cuda_available:
info["Using GPU in script?"] = "<fill in>"
| 10,593 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/env.py
|
info["GPU type"] = torch.cuda.get_device_name()
elif pt_npu_available:
info["Using NPU in script?"] = "<fill in>"
info["NPU type"] = torch.npu.get_device_name()
info["CANN version"] = torch.version.cann
| 10,593 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/env.py
|
print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n")
print(self.format_dict(info))
return info
@staticmethod
def format_dict(d):
return "\n".join([f"- {prop}: {val}" for prop, val in d.items()]) + "\n"
| 10,593 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/env.py
|
class ServeModelInfoResult(BaseModel):
"""
Expose model information
"""
infos: dict
| 10,594 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/serving.py
|
class ServeTokenizeResult(BaseModel):
"""
Tokenize result model
"""
tokens: List[str]
tokens_ids: Optional[List[int]]
| 10,595 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/serving.py
|
class ServeDeTokenizeResult(BaseModel):
"""
DeTokenize result model
"""
text: str
| 10,596 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/serving.py
|
class ServeForwardResult(BaseModel):
"""
Forward result model
"""
output: Any
| 10,597 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/serving.py
|
class ServeCommand(BaseTransformersCLICommand):
@staticmethod
def register_subcommand(parser: ArgumentParser):
"""
Register this command to argparse so it's available for the transformer-cli
| 10,598 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/serving.py
|
Args:
parser: Root parser to register command-specific arguments
"""
serve_parser = parser.add_parser(
"serve", help="CLI tool to run inference requests through REST and GraphQL endpoints."
)
serve_parser.add_argument(
"--task",
type=str,
choices=get_supported_tasks(),
help="The task to run the pipeline on",
)
serve_parser.add_argument("--host", type=str, default="localhost", help="Interface the server will listen on.")
serve_parser.add_argument("--port", type=int, default=8888, help="Port the serving will listen to.")
serve_parser.add_argument("--workers", type=int, default=1, help="Number of http workers")
serve_parser.add_argument("--model", type=str, help="Model's name or path to stored model.")
serve_parser.add_argument("--config", type=str, help="Model's config name or path to stored model.")
| 10,598 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/serving.py
|
serve_parser.add_argument("--tokenizer", type=str, help="Tokenizer name to use.")
serve_parser.add_argument(
"--device",
type=int,
default=-1,
help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)",
)
serve_parser.set_defaults(func=serve_command_factory)
| 10,598 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/serving.py
|
def __init__(self, pipeline: Pipeline, host: str, port: int, workers: int):
self._pipeline = pipeline
self.host = host
self.port = port
self.workers = workers
| 10,598 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/serving.py
|
if not _serve_dependencies_installed:
raise RuntimeError(
"Using serve command requires FastAPI and uvicorn. "
'Please install transformers with [serving]: pip install "transformers[serving]". '
"Or install FastAPI and uvicorn separately."
)
else:
logger.info(f"Serving model over {host}:{port}")
self._app = FastAPI(
routes=[
APIRoute(
"/",
self.model_info,
response_model=ServeModelInfoResult,
response_class=JSONResponse,
methods=["GET"],
),
APIRoute(
"/tokenize",
self.tokenize,
response_model=ServeTokenizeResult,
response_class=JSONResponse,
methods=["POST"],
),
| 10,598 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/serving.py
|
APIRoute(
"/detokenize",
self.detokenize,
response_model=ServeDeTokenizeResult,
response_class=JSONResponse,
methods=["POST"],
),
APIRoute(
"/forward",
self.forward,
response_model=ServeForwardResult,
response_class=JSONResponse,
methods=["POST"],
),
],
timeout=600,
)
| 10,598 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/serving.py
|
def run(self):
run(self._app, host=self.host, port=self.port, workers=self.workers)
def model_info(self):
return ServeModelInfoResult(infos=vars(self._pipeline.model.config))
def tokenize(self, text_input: str = Body(None, embed=True), return_ids: bool = Body(False, embed=True)):
"""
Tokenize the provided input and eventually returns corresponding tokens id: - **text_input**: String to
tokenize - **return_ids**: Boolean flags indicating if the tokens have to be converted to their integer
mapping.
"""
try:
tokens_txt = self._pipeline.tokenizer.tokenize(text_input)
if return_ids:
tokens_ids = self._pipeline.tokenizer.convert_tokens_to_ids(tokens_txt)
return ServeTokenizeResult(tokens=tokens_txt, tokens_ids=tokens_ids)
else:
return ServeTokenizeResult(tokens=tokens_txt)
| 10,598 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/serving.py
|
except Exception as e:
raise HTTPException(status_code=500, detail={"model": "", "error": str(e)})
def detokenize(
self,
tokens_ids: List[int] = Body(None, embed=True),
skip_special_tokens: bool = Body(False, embed=True),
cleanup_tokenization_spaces: bool = Body(True, embed=True),
):
"""
Detokenize the provided tokens ids to readable text: - **tokens_ids**: List of tokens ids -
**skip_special_tokens**: Flag indicating to not try to decode special tokens - **cleanup_tokenization_spaces**:
Flag indicating to remove all leading/trailing spaces and intermediate ones.
"""
try:
decoded_str = self._pipeline.tokenizer.decode(tokens_ids, skip_special_tokens, cleanup_tokenization_spaces)
return ServeDeTokenizeResult(model="", text=decoded_str)
except Exception as e:
raise HTTPException(status_code=500, detail={"model": "", "error": str(e)})
| 10,598 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/serving.py
|
async def forward(self, inputs=Body(None, embed=True)):
"""
**inputs**: **attention_mask**: **tokens_type_ids**:
"""
# Check we don't have empty string
if len(inputs) == 0:
return ServeForwardResult(output=[], attention=[])
try:
# Forward through the model
output = self._pipeline(inputs)
return ServeForwardResult(output=output)
except Exception as e:
raise HTTPException(500, {"error": str(e)})
| 10,598 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/serving.py
|
class DownloadCommand(BaseTransformersCLICommand):
@staticmethod
def register_subcommand(parser: ArgumentParser):
download_parser = parser.add_parser("download")
download_parser.add_argument(
"--cache-dir", type=str, default=None, help="Path to location to store the models"
)
download_parser.add_argument(
"--force", action="store_true", help="Force the model to be download even if already in cache-dir"
)
download_parser.add_argument(
"--trust-remote-code",
action="store_true",
help="Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine",
)
download_parser.add_argument("model", type=str, help="Name of the model to download")
download_parser.set_defaults(func=download_command_factory)
| 10,599 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/download.py
|
def __init__(self, model: str, cache: str, force: bool, trust_remote_code: bool):
self._model = model
self._cache = cache
self._force = force
self._trust_remote_code = trust_remote_code
def run(self):
from ..models.auto import AutoModel, AutoTokenizer
AutoModel.from_pretrained(
self._model, cache_dir=self._cache, force_download=self._force, trust_remote_code=self._trust_remote_code
)
AutoTokenizer.from_pretrained(
self._model, cache_dir=self._cache, force_download=self._force, trust_remote_code=self._trust_remote_code
)
| 10,599 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/download.py
|
class ConvertCommand(BaseTransformersCLICommand):
@staticmethod
def register_subcommand(parser: ArgumentParser):
"""
Register this command to argparse so it's available for the transformer-cli
| 10,600 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/convert.py
|
Args:
parser: Root parser to register command-specific arguments
"""
train_parser = parser.add_parser(
"convert",
help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.",
)
train_parser.add_argument("--model_type", type=str, required=True, help="Model's type.")
train_parser.add_argument(
"--tf_checkpoint", type=str, required=True, help="TensorFlow checkpoint path or folder."
)
train_parser.add_argument(
"--pytorch_dump_output", type=str, required=True, help="Path to the PyTorch saved model output."
)
train_parser.add_argument("--config", type=str, default="", help="Configuration file path or folder.")
train_parser.add_argument(
"--finetuning_task_name",
type=str,
default=None,
help="Optional fine-tuning task name if the TF model was a finetuned model.",
)
| 10,600 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/convert.py
|
train_parser.set_defaults(func=convert_command_factory)
| 10,600 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/convert.py
|
def __init__(
self,
model_type: str,
tf_checkpoint: str,
pytorch_dump_output: str,
config: str,
finetuning_task_name: str,
*args,
):
self._logger = logging.get_logger("transformers-cli/converting")
self._logger.info(f"Loading model {model_type}")
self._model_type = model_type
self._tf_checkpoint = tf_checkpoint
self._pytorch_dump_output = pytorch_dump_output
self._config = config
self._finetuning_task_name = finetuning_task_name
def run(self):
if self._model_type == "albert":
try:
from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(IMPORT_ERROR_MESSAGE)
| 10,600 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/convert.py
|
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
elif self._model_type == "bert":
try:
from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(IMPORT_ERROR_MESSAGE)
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
elif self._model_type == "funnel":
try:
from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(IMPORT_ERROR_MESSAGE)
| 10,600 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/convert.py
|
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
elif self._model_type == "t5":
try:
from ..models.t5.convert_t5_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch
except ImportError:
raise ImportError(IMPORT_ERROR_MESSAGE)
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
elif self._model_type == "gpt":
from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import (
convert_openai_checkpoint_to_pytorch,
)
| 10,600 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/convert.py
|
convert_openai_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
elif self._model_type == "gpt2":
try:
from ..models.gpt2.convert_gpt2_original_tf_checkpoint_to_pytorch import (
convert_gpt2_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(IMPORT_ERROR_MESSAGE)
convert_gpt2_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
elif self._model_type == "xlnet":
try:
from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import (
convert_xlnet_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(IMPORT_ERROR_MESSAGE)
| 10,600 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/convert.py
|
convert_xlnet_checkpoint_to_pytorch(
self._tf_checkpoint, self._config, self._pytorch_dump_output, self._finetuning_task_name
)
elif self._model_type == "xlm":
from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import (
convert_xlm_checkpoint_to_pytorch,
)
convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint, self._pytorch_dump_output)
elif self._model_type == "lxmert":
from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import (
convert_lxmert_checkpoint_to_pytorch,
)
convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint, self._pytorch_dump_output)
elif self._model_type == "rembert":
from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import (
convert_rembert_tf_checkpoint_to_pytorch,
)
| 10,600 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/convert.py
|
convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
else:
raise ValueError("--model_type should be selected in the list [bert, gpt, gpt2, t5, xlnet, xlm, lxmert]")
| 10,600 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/convert.py
|
class BaseTransformersCLICommand(ABC):
@staticmethod
@abstractmethod
def register_subcommand(parser: ArgumentParser):
raise NotImplementedError()
@abstractmethod
def run(self):
raise NotImplementedError()
| 10,601 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/__init__.py
|
class LfsCommands(BaseTransformersCLICommand):
"""
Implementation of a custom transfer agent for the transfer type "multipart" for git-lfs. This lets users upload
large files >5GB 🔥. Spec for LFS custom transfer agent is:
https://github.com/git-lfs/git-lfs/blob/master/docs/custom-transfers.md
This introduces two commands to the CLI:
1. $ transformers-cli lfs-enable-largefiles
This should be executed once for each model repo that contains a model file >5GB. It's documented in the error
message you get if you just try to git push a 5GB file without having enabled it before.
2. $ transformers-cli lfs-multipart-upload
This command is called by lfs directly and is not meant to be called by the user.
"""
| 10,602 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/lfs.py
|
@staticmethod
def register_subcommand(parser: ArgumentParser):
enable_parser = parser.add_parser(
"lfs-enable-largefiles",
help=(
"Deprecated: use `huggingface-cli` instead. Configure your repository to enable upload of files > 5GB."
),
)
enable_parser.add_argument("path", type=str, help="Local path to repository you want to configure.")
enable_parser.set_defaults(func=lambda args: LfsEnableCommand(args))
upload_parser = parser.add_parser(
LFS_MULTIPART_UPLOAD_COMMAND,
help=(
"Deprecated: use `huggingface-cli` instead. "
"Command will get called by git-lfs, do not call it directly."
),
)
upload_parser.set_defaults(func=lambda args: LfsUploadCommand(args))
| 10,602 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/lfs.py
|
class LfsEnableCommand:
def __init__(self, args):
self.args = args
def run(self):
warnings.warn(
"Managing repositories through transformers-cli is deprecated. Please use `huggingface-cli` instead."
)
local_path = os.path.abspath(self.args.path)
if not os.path.isdir(local_path):
print("This does not look like a valid git repo.")
exit(1)
subprocess.run(
"git config lfs.customtransfer.multipart.path transformers-cli".split(), check=True, cwd=local_path
)
subprocess.run(
f"git config lfs.customtransfer.multipart.args {LFS_MULTIPART_UPLOAD_COMMAND}".split(),
check=True,
cwd=local_path,
)
print("Local repo set up for largefiles")
| 10,603 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/lfs.py
|
class FileSlice(AbstractContextManager):
"""
File-like object that only reads a slice of a file
Inspired by stackoverflow.com/a/29838711/593036
"""
def __init__(self, filepath: str, seek_from: int, read_limit: int):
self.filepath = filepath
self.seek_from = seek_from
self.read_limit = read_limit
self.n_seen = 0
def __enter__(self):
self.f = open(self.filepath, "rb")
self.f.seek(self.seek_from)
return self
def __len__(self):
total_length = os.fstat(self.f.fileno()).st_size
return min(self.read_limit, total_length - self.seek_from)
def read(self, n=-1):
if self.n_seen >= self.read_limit:
return b""
remaining_amount = self.read_limit - self.n_seen
data = self.f.read(remaining_amount if n < 0 else min(n, remaining_amount))
self.n_seen += len(data)
return data
def __iter__(self):
yield self.read(n=4 * 1024 * 1024)
| 10,604 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/lfs.py
|
def __exit__(self, *args):
self.f.close()
| 10,604 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/lfs.py
|
class LfsUploadCommand:
def __init__(self, args):
self.args = args
def run(self):
# Immediately after invoking a custom transfer process, git-lfs
# sends initiation data to the process over stdin.
# This tells the process useful information about the configuration.
init_msg = json.loads(sys.stdin.readline().strip())
if not (init_msg.get("event") == "init" and init_msg.get("operation") == "upload"):
write_msg({"error": {"code": 32, "message": "Wrong lfs init operation"}})
sys.exit(1)
# The transfer process should use the information it needs from the
# initiation structure, and also perform any one-off setup tasks it
# needs to do. It should then respond on stdout with a simple empty
# confirmation structure, as follows:
write_msg({})
| 10,605 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/lfs.py
|
# After the initiation exchange, git-lfs will send any number of
# transfer requests to the stdin of the transfer process, in a serial sequence.
while True:
msg = read_msg()
if msg is None:
# When all transfers have been processed, git-lfs will send
# a terminate event to the stdin of the transfer process.
# On receiving this message the transfer process should
# clean up and terminate. No response is expected.
sys.exit(0)
oid = msg["oid"]
filepath = msg["path"]
completion_url = msg["action"]["href"]
header = msg["action"]["header"]
chunk_size = int(header.pop("chunk_size"))
presigned_urls: List[str] = list(header.values())
| 10,605 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/lfs.py
|
parts = []
for i, presigned_url in enumerate(presigned_urls):
with FileSlice(filepath, seek_from=i * chunk_size, read_limit=chunk_size) as data:
r = requests.put(presigned_url, data=data)
r.raise_for_status()
parts.append(
{
"etag": r.headers.get("etag"),
"partNumber": i + 1,
}
)
# In order to support progress reporting while data is uploading / downloading,
# the transfer process should post messages to stdout
write_msg(
{
"event": "progress",
"oid": oid,
"bytesSoFar": (i + 1) * chunk_size,
"bytesSinceLast": chunk_size,
}
)
| 10,605 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/lfs.py
|
# Not precise but that's ok.
| 10,605 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/lfs.py
|
r = requests.post(
completion_url,
json={
"oid": oid,
"parts": parts,
},
)
r.raise_for_status()
write_msg({"event": "complete", "oid": oid})
| 10,605 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/lfs.py
|
class TrainCommand(BaseTransformersCLICommand):
@staticmethod
def register_subcommand(parser: ArgumentParser):
"""
Register this command to argparse so it's available for the transformer-cli
Args:
parser: Root parser to register command-specific arguments
"""
train_parser = parser.add_parser("train", help="CLI tool to train a model on a task.")
| 10,606 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/train.py
|
train_parser.add_argument(
"--train_data",
type=str,
required=True,
help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.",
)
train_parser.add_argument(
"--column_label", type=int, default=0, help="Column of the dataset csv file with example labels."
)
train_parser.add_argument(
"--column_text", type=int, default=1, help="Column of the dataset csv file with example texts."
)
train_parser.add_argument(
"--column_id", type=int, default=2, help="Column of the dataset csv file with example ids."
)
train_parser.add_argument(
"--skip_first_row", action="store_true", help="Skip the first row of the csv file (headers)."
)
| 10,606 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/train.py
|
train_parser.add_argument("--validation_data", type=str, default="", help="path to validation dataset.")
train_parser.add_argument(
"--validation_split",
type=float,
default=0.1,
help="if validation dataset is not provided, fraction of train dataset to use as validation dataset.",
)
train_parser.add_argument("--output", type=str, default="./", help="path to saved the trained model.")
| 10,606 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/train.py
|
train_parser.add_argument(
"--task", type=str, default="text_classification", help="Task to train the model on."
)
train_parser.add_argument(
"--model", type=str, default="google-bert/bert-base-uncased", help="Model's name or path to stored model."
)
train_parser.add_argument("--train_batch_size", type=int, default=32, help="Batch size for training.")
train_parser.add_argument("--valid_batch_size", type=int, default=64, help="Batch size for validation.")
train_parser.add_argument("--learning_rate", type=float, default=3e-5, help="Learning rate.")
train_parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon for Adam optimizer.")
train_parser.set_defaults(func=train_command_factory)
def __init__(self, args: Namespace):
self.logger = logging.get_logger("transformers-cli/training")
self.framework = "tf" if is_tf_available() else "torch"
| 10,606 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/train.py
|
os.makedirs(args.output, exist_ok=True)
self.output = args.output
self.column_label = args.column_label
self.column_text = args.column_text
self.column_id = args.column_id
self.logger.info(f"Loading {args.task} pipeline for {args.model}")
if args.task == "text_classification":
self.pipeline = TextClassificationPipeline.from_pretrained(args.model)
elif args.task == "token_classification":
raise NotImplementedError
elif args.task == "question_answering":
raise NotImplementedError
| 10,606 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/train.py
|
self.logger.info(f"Loading dataset from {args.train_data}")
self.train_dataset = Processor.create_from_csv(
args.train_data,
column_label=args.column_label,
column_text=args.column_text,
column_id=args.column_id,
skip_first_row=args.skip_first_row,
)
self.valid_dataset = None
if args.validation_data:
self.logger.info(f"Loading validation dataset from {args.validation_data}")
self.valid_dataset = Processor.create_from_csv(
args.validation_data,
column_label=args.column_label,
column_text=args.column_text,
column_id=args.column_id,
skip_first_row=args.skip_first_row,
)
| 10,606 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/train.py
|
self.validation_split = args.validation_split
self.train_batch_size = args.train_batch_size
self.valid_batch_size = args.valid_batch_size
self.learning_rate = args.learning_rate
self.adam_epsilon = args.adam_epsilon
def run(self):
if self.framework == "tf":
return self.run_tf()
return self.run_torch()
def run_torch(self):
raise NotImplementedError
def run_tf(self):
self.pipeline.fit(
self.train_dataset,
validation_data=self.valid_dataset,
validation_split=self.validation_split,
learning_rate=self.learning_rate,
adam_epsilon=self.adam_epsilon,
train_batch_size=self.train_batch_size,
valid_batch_size=self.valid_batch_size,
)
# Save trained pipeline
self.pipeline.save_pretrained(self.output)
| 10,606 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/commands/train.py
|
class DataCollatorMixin:
def __call__(self, features, return_tensors=None):
if return_tensors is None:
return_tensors = self.return_tensors
if return_tensors == "tf":
return self.tf_call(features)
elif return_tensors == "pt":
return self.torch_call(features)
elif return_tensors == "np":
return self.numpy_call(features)
else:
raise ValueError(f"Framework '{return_tensors}' not recognized!")
| 10,607 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/data_collator.py
|
class DefaultDataCollator(DataCollatorMixin):
"""
Very simple data collator that simply collates batches of dict-like objects and performs special handling for
potential keys named:
- `label`: handles a single value (int or float) per object
- `label_ids`: handles a list of values per object
Does not do any additional preprocessing: property names of the input object will be used as corresponding inputs
to the model. See glue and ner for example of how it's useful.
This is an object (like other data collators) rather than a pure function like default_data_collator. This can be
helpful if you need to set a return_tensors value at initialization.
Args:
return_tensors (`str`, *optional*, defaults to `"pt"`):
The type of Tensor to return. Allowable values are "np", "pt" and "tf".
"""
return_tensors: str = "pt"
| 10,608 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/data_collator.py
|
def __call__(self, features: List[Dict[str, Any]], return_tensors=None) -> Dict[str, Any]:
if return_tensors is None:
return_tensors = self.return_tensors
return default_data_collator(features, return_tensors)
| 10,608 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/data_collator.py
|
class DataCollatorWithPadding:
"""
Data collator that will dynamically pad the inputs received.
Args:
tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]):
The tokenizer used for encoding the data.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
among:
| 10,609 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/data_collator.py
|
- `True` or `'longest'` (default): Pad to the longest sequence in the batch (or no padding if only a single
sequence is provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'`: No padding (i.e., can output a batch with sequences of different lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
pad_to_multiple_of (`int`, *optional*):
If set will pad the sequence to a multiple of the provided value.
| 10,609 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/data_collator.py
|
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
7.0 (Volta).
return_tensors (`str`, *optional*, defaults to `"pt"`):
The type of Tensor to return. Allowable values are "np", "pt" and "tf".
"""
tokenizer: PreTrainedTokenizerBase
padding: Union[bool, str, PaddingStrategy] = True
max_length: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
return_tensors: str = "pt"
| 10,609 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/data/data_collator.py
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.