text
stringlengths
1
1.02k
class_index
int64
0
10.8k
source
stringlengths
85
188
if not hasattr(self, "added_tokens"): self.added_tokens = [] if not hasattr(self, "unk_token_id"): self.unk_token_id = None # Llama2 uses the field `unknown_token_id` if hasattr(self, "unknown_token_id") and self.unk_token_id is None: self.unk_token_id = self.unknown_token_id
10,562
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/ggml.py
class GGUFLlamaConverter(LlamaConverter): def __init__(self, tokenizer_dict): self.proto = GGUFTokenizerSkeleton(tokenizer_dict) self.original_tokenizer = self.proto self.additional_kwargs = {} self.is_llama_3_tokenizer = getattr(self.proto, "tokenizer_type", "llama") != "llama" def vocab(self, proto): return list(zip(proto.tokens, proto.scores)) def merges(self, proto): return proto.merges def tokenizer(self, proto): vocab_scores = self.vocab(self.proto) merges = self.merges(self.proto) bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)} unk_token = proto.tokens[proto.unk_token_id] if proto.unk_token_id is not None else None bos_token = proto.tokens[proto.bos_token_id] if getattr(proto, "bos_token_id", None) is not None else None eos_token = proto.tokens[proto.bos_token_id] if getattr(proto, "eos_token_id", None) is not None else None
10,563
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/ggml.py
tokenizer = Tokenizer( BPE( bpe_vocab, merges, unk_token=unk_token, fuse_unk=True, byte_fallback=True, ) ) special_tokens = [] if not hasattr(self.proto, "token_type"): if unk_token is not None: special_tokens.append(AddedToken(unk_token, normalized=False, special=True)) if bos_token is not None: special_tokens.append(AddedToken(bos_token, normalized=False, special=True)) if eos_token is not None: special_tokens.append(AddedToken(eos_token, normalized=False, special=True)) else: # 3 stands for special tokens special_tokens_idx = np.where(np.array(self.proto.token_type) == 3)[0] for idx in special_tokens_idx: special_tokens.append(AddedToken(self.proto.tokens[idx], normalized=False, special=True))
10,563
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/ggml.py
if len(special_tokens) != 0: tokenizer.add_special_tokens(special_tokens) if len(self.proto.added_tokens) != 0: tokenizer.add_tokens( [AddedToken(added_token, normalized=False, special=False) for added_token in self.proto.added_tokens] ) self.additional_kwargs["unk_token"] = unk_token self.additional_kwargs["eos_token"] = bos_token self.additional_kwargs["bos_token"] = eos_token if self.is_llama_3_tokenizer: self.additional_kwargs["add_prefix_space"] = None self.additional_kwargs["clean_up_tokenization_spaces"] = True self.additional_kwargs["legacy"] = False self.original_tokenizer.legacy = False return tokenizer def decoder(self, replacement, add_prefix_space): sequence = [ decoders.ByteFallback(), decoders.Fuse(), decoders.Replace("▁", " "), ]
10,563
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/ggml.py
if self.is_llama_3_tokenizer: sequence += [decoders.ByteLevel(add_prefix_space=False, trim_offsets=False, use_regex=True)] if add_prefix_space: sequence += [decoders.Strip(content=" ", left=1)] return decoders.Sequence(sequence) def converted(self): # Copied partly from converted method in SpmConverter class tokenizer = self.tokenizer(self.proto) # Tokenizer assemble normalizer = self.normalizer(self.proto) if normalizer is not None: tokenizer.normalizer = normalizer replacement = "▁" add_prefix_space = True if hasattr(self.original_tokenizer, "add_prefix_space"): add_prefix_space = self.original_tokenizer.add_prefix_space pre_tokenizer = self.pre_tokenizer(replacement, add_prefix_space) if pre_tokenizer is not None: tokenizer.pre_tokenizer = pre_tokenizer
10,563
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/ggml.py
tokenizer.decoder = self.decoder(replacement, add_prefix_space) post_processor = self.post_processor() if post_processor: tokenizer.post_processor = post_processor # HACK: patch the llama-3 tokenizer to use the correspinding pre-tokenizer # and normalizer if self.is_llama_3_tokenizer: tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel( add_prefix_space=False, trim_offsets=False, use_regex=True ) # This is tricky as the additional kwargs are passed after legacy is force-set in LlamaTokenizer's # init. tokenizer.normalizer = normalizers.Sequence([]) return tokenizer
10,563
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/ggml.py
class GGUFQwen2Converter(Qwen2Converter): def __init__(self, tokenizer_dict): self.original_tokenizer = GGUFTokenizerSkeleton(tokenizer_dict) self.additional_kwargs = {} def converted(self) -> Tokenizer: vocab = {word: i for i, word in enumerate(self.original_tokenizer.tokens)} merges = self.original_tokenizer.merges tokenizer = super().converted(vocab, merges) tokenizer.add_special_tokens( [ AddedToken("<|endoftext|>", normalized=False, special=True), AddedToken("<|im_start|>", normalized=False, special=True), AddedToken("<|im_end|>", normalized=False, special=True), ] ) return tokenizer
10,564
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/ggml.py
class GGUFPhi3Converter(LlamaConverter): def __init__(self, tokenizer_dict): self.proto = GGUFTokenizerSkeleton(tokenizer_dict) self.original_tokenizer = self.proto self.additional_kwargs = {} def vocab(self, proto): return list(zip(proto.tokens, proto.scores)) def merges(self, proto): return proto.merges def tokenizer(self, proto): vocab_scores = self.vocab(self.proto) merges = self.merges(self.proto) bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)}
10,565
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/ggml.py
tokenizer = Tokenizer(BPE(bpe_vocab, merges)) # add the special tokens from phi3 tokenizer config tokenizer.add_special_tokens( [ AddedToken("</s>", rstrip=True, lstrip=False, normalized=False, special=True), AddedToken("<|endoftext|>", normalized=False, special=True), AddedToken("<|assistant|>", rstrip=True, normalized=False, special=True), AddedToken("<|placeholder1|>", rstrip=True, normalized=False, special=True), AddedToken("<|placeholder2|>", rstrip=True, normalized=False, special=True), AddedToken("<|placeholder3|>", rstrip=True, normalized=False, special=True), AddedToken("<|placeholder4|>", rstrip=True, normalized=False, special=True), AddedToken("<|system|>", rstrip=True, normalized=False, special=True), AddedToken("<|end|>", rstrip=True, normalized=False, special=True),
10,565
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/ggml.py
AddedToken("<|placeholder5|>", rstrip=True, normalized=False, special=True), AddedToken("<|placeholder6|>", rstrip=True, normalized=False, special=True), AddedToken("<|user|>", rstrip=True, normalized=False, special=True), ] )
10,565
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/ggml.py
self.additional_kwargs["unk_token"] = ( proto.tokens[proto.unk_token_id] if proto.unk_token_id is not None else None ) self.additional_kwargs["eos_token"] = ( proto.tokens[proto.eos_token_id] if proto.eos_token_id is not None else None ) self.additional_kwargs["bos_token"] = ( proto.tokens[proto.bos_token_id] if proto.bos_token_id is not None else None ) self.additional_kwargs["pad_token"] = ( proto.tokens[proto.pad_token_id] if proto.pad_token_id is not None else None ) return tokenizer def decoder(self, replacement, add_prefix_space): sequence = [ decoders.ByteFallback(), decoders.Fuse(), decoders.Replace(replacement, " "), ] if add_prefix_space: sequence += [decoders.Strip(content=" ", left=1)] return decoders.Sequence(sequence)
10,565
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/ggml.py
def converted(self) -> Tokenizer: tokenizer = self.tokenizer(self.proto) replacement = "▁" add_prefix_space = True if hasattr(self.original_tokenizer, "add_prefix_space"): add_prefix_space = self.original_tokenizer.add_prefix_space tokenizer.decoder = self.decoder(replacement, add_prefix_space) return tokenizer
10,565
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/ggml.py
class GGUFGPTConverter(GPT2Converter): def __init__(self, tokenizer_dict): self.original_tokenizer = GGUFTokenizerSkeleton(tokenizer_dict) self.additional_kwargs = {} def converted(self) -> Tokenizer: vocab = {word: i for i, word in enumerate(self.original_tokenizer.tokens)} merges = self.original_tokenizer.merges tokenizer = super().converted(vocab, merges) return tokenizer
10,566
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/ggml.py
class GGUFT5Converter(T5Converter): def __init__(self, tokenizer_dict): # set dummy data to avoid unnecessary merges calculation tokenizer_dict["merges"] = ["dummy text"] self.proto = GGUFTokenizerSkeleton(tokenizer_dict) self.token2id = {k: v for v, k in enumerate(self.proto.tokens)} self.original_tokenizer = self.proto self.additional_kwargs = {} def vocab(self, proto): return list(zip(proto.tokens, proto.scores)) def normalizer(self, proto): if getattr(self.original_tokenizer, "legacy", True): sequence = [] if getattr(self.original_tokenizer, "add_prefix_space", True): sequence += [normalizers.Prepend(prepend="▁")] sequence += [normalizers.Replace(pattern=" ", content="▁")] return normalizers.Sequence(sequence) return None # non-legacy, no normalizer
10,567
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/ggml.py
def post_processor(self): return processors.TemplateProcessing( single=["$A", "</s>"], pair=["$A", "</s>", "$B", "</s>"], special_tokens=[ ("</s>", self.token2id["</s>"]), ], ) def converted(self) -> Tokenizer: vocab_scores = self.vocab(self.proto) tokenizer = Tokenizer( Unigram( vocab_scores, unk_id=self.proto.unk_token_id, byte_fallback=False, ) ) # Tokenizer assemble normalizer = self.normalizer(self.proto) if normalizer is not None: tokenizer.normalizer = normalizer replacement = "▁" add_prefix_space = True if hasattr(self.original_tokenizer, "add_prefix_space"): add_prefix_space = self.original_tokenizer.add_prefix_space
10,567
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/ggml.py
pre_tokenizer = self.pre_tokenizer(replacement, add_prefix_space) if pre_tokenizer is not None: tokenizer.pre_tokenizer = pre_tokenizer tokenizer.decoder = self.decoder(replacement, add_prefix_space) post_processor = self.post_processor() if post_processor: tokenizer.post_processor = post_processor return tokenizer
10,567
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/ggml.py
class GGUFGemmaConverter(GemmaConverter): def __init__(self, tokenizer_dict): # set dummy data to avoid unnecessary merges calculation tokenizer_dict["merges"] = ["dummy text"] self.proto = GGUFTokenizerSkeleton(tokenizer_dict) self.original_tokenizer = self.proto self.additional_kwargs = {} def vocab(self, proto): original_vocab = list(zip(proto.tokens, proto.scores)) updated_vocab = [] for token, score in original_vocab: if token == "<0x09>": updated_vocab.append(("\t", score)) elif " " in token and len(token.strip()) == 0: underscores = "▁" * len(token) updated_vocab.append((underscores, score)) else: updated_vocab.append((token, score)) return updated_vocab def normalizer(self, proto): return normalizers.Replace(" ", "▁")
10,568
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/ggml.py
def decoder(self, replacement, add_prefix_space): sequence = [ decoders.Replace("▁", " "), decoders.ByteFallback(), decoders.Fuse(), ] if add_prefix_space: sequence += [decoders.Strip(content=" ", left=1)] return decoders.Sequence(sequence) def converted(self) -> Tokenizer: vocab_scores = self.vocab(self.proto) tokenizer = Tokenizer( Unigram( vocab_scores, unk_id=self.proto.unk_token_id, byte_fallback=self.handle_byte_fallback, ) ) normalizer = self.normalizer(self.proto) if normalizer is not None: tokenizer.normalizer = normalizer replacement = "▁" add_prefix_space = True if hasattr(self.original_tokenizer, "add_prefix_space"): add_prefix_space = self.original_tokenizer.add_prefix_space
10,568
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/ggml.py
tokenizer.decoder = self.decoder(replacement, add_prefix_space) pre_tokenizer = self.pre_tokenizer(replacement, add_prefix_space) if pre_tokenizer is not None: tokenizer.pre_tokenizer = pre_tokenizer return tokenizer
10,568
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/ggml.py
class TorchExportableModuleWithStaticCache(torch.nn.Module): """ A wrapper module designed to make a `PreTrainedModel` exportable with `torch.export`, specifically for use with static caching. This module ensures that the exported model is compatible with further lowering and execution in `ExecuTorch`. Note: This class is specifically designed to support export process using `torch.export` in a way that ensures the model can be further lowered and run efficiently in `ExecuTorch`. """ def __init__(self, model: PreTrainedModel): """ Initializes the wrapper module with the pretrained model. Args: model (`PreTrainedModel`): The pretrained model to wrap. The model must have caching enabled and use a 'static' caching implementation.
10,569
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/executorch.py
Raises: AssertionError: If the pretrained model does not have caching enabled or if it does not use a 'static' caching implementation in `model.generation_config`. """ super().__init__() # Sanity checks if model.generation_config is None: raise AssertionError( "The model must have a generation config to be exported with static caching. " "Please set `generation_config`." ) if not model.generation_config.use_cache: raise AssertionError( "The model must have caching enabled to be exported with static caching. " "Please set `generation_config.use_cache=True`." )
10,569
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/executorch.py
if model.generation_config.cache_implementation != "static": raise AssertionError( "The model must use a 'static' caching implementation to be exported with static caching. " "Please set `generation_config.cache_implementation='static'`." )
10,569
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/executorch.py
self.model = model self.static_cache = StaticCache( config=self.model.config, batch_size=self.model.generation_config.cache_config.batch_size, max_cache_len=self.model.generation_config.cache_config.max_cache_len, dtype=self.model.dtype, ) self.is_causal = any("CausalLM" in arch for arch in self.model.config.architectures) if self.is_causal: causal_mask = torch.tril( torch.ones( self.static_cache.max_cache_len, self.static_cache.max_cache_len, dtype=torch.bool, ) ) self.register_buffer("mask", causal_mask, persistent=False) def forward(self, input_ids: torch.Tensor, cache_position: torch.Tensor): """ Forward pass of the module, which is compatible with the ExecuTorch runtime.
10,569
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/executorch.py
Args: input_ids (`torch.Tensor`): Tensor representing current input token id to the module. cache_position (`torch.Tensor`): Tensor representing current input position in the cache. Returns: torch.Tensor: Logits output from the model. This forward adapter serves two primary purposes: 1. **Making the Model `torch.export`-Compatible**: The adapter hides unsupported objects, such as the `Cache`, from the graph inputs and outputs, enabling the model to be exportable using `torch.export` without encountering issues.
10,569
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/executorch.py
2. **Ensuring Compatibility with `ExecuTorch` runtime**: The adapter matches the model's forward signature with that in `executorch/extension/llm/runner`, ensuring that the exported model can be executed in `ExecuTorch` out-of-the-box. """ _, seqlen = input_ids.shape attn_mask = self.mask[cache_position, :seqlen] if self.is_causal else None outs = self.model( input_ids=input_ids, attention_mask=attn_mask, position_ids=cache_position.unsqueeze(0), cache_position=cache_position, past_key_values=self.static_cache, use_cache=True, ) return outs.logits @staticmethod def generate( exported_program: torch.export.ExportedProgram, prompt_token_ids: torch.Tensor, max_new_tokens: int ) -> torch.Tensor: """ Generate a sequence of tokens using an exported program.
10,569
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/executorch.py
This util function is designed to test exported models by simulating the generation process. It processes the input prompt tokens sequentially (no parallel prefill). This generate function is not intended to replace the original `generate` method, and the support for leveraging the original `generate` is potentially planed! Args: exported_program (`torch.export.ExportedProgram`): The exported program generated via `torch.export`. prompt_token_ids (`torch.Tensor`): Tensor representing the input prompt token IDs. max_new_tokens (`int`): Maximum number of new tokens to generate. Note that the total generation length is limited by both `max_new_tokens` and the model's cache size.
10,569
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/executorch.py
Returns: torch.Tensor: A tensor containing the generated sequence of token IDs, including the original prompt tokens. """ prompt_token_len = prompt_token_ids.shape[-1] max_generation_length = prompt_token_len + max_new_tokens for buffer_name, buffer in exported_program.named_buffers(): if buffer_name.startswith("static_cache.key_cache"): max_cache_len = buffer.shape[2] max_generation_length = min(max_generation_length, max_cache_len) break response_tokens = [] for input_pos in range(min(max_generation_length, prompt_token_len)): result = exported_program.module().forward( input_ids=prompt_token_ids[:, input_pos : input_pos + 1], cache_position=torch.tensor([input_pos], dtype=torch.long), ) response_tokens.append(prompt_token_ids[0][input_pos].item())
10,569
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/executorch.py
current_token = torch.argmax(result[:, -1, :], dim=-1).item() response_tokens.append(current_token) while len(response_tokens) < max_generation_length: result = exported_program.module().forward( input_ids=torch.tensor([[current_token]], dtype=torch.long), cache_position=torch.tensor([len(response_tokens)], dtype=torch.long), ) current_token = torch.argmax(result[:, -1, :], dim=-1).item() response_tokens.append(current_token) return torch.tensor([response_tokens], dtype=torch.long)
10,569
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/executorch.py
class TensorBoardCallback(TrainerCallback): """ A [`TrainerCallback`] that sends the logs to [TensorBoard](https://www.tensorflow.org/tensorboard). Args: tb_writer (`SummaryWriter`, *optional*): The writer to use. Will instantiate one if not set. """ def __init__(self, tb_writer=None): has_tensorboard = is_tensorboard_available() if not has_tensorboard: raise RuntimeError( "TensorBoardCallback requires tensorboard to be installed. Either update your PyTorch version or" " install tensorboardX." ) if has_tensorboard: try: from torch.utils.tensorboard import SummaryWriter # noqa: F401 self._SummaryWriter = SummaryWriter except ImportError: try: from tensorboardX import SummaryWriter
10,570
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
self._SummaryWriter = SummaryWriter except ImportError: self._SummaryWriter = None else: self._SummaryWriter = None self.tb_writer = tb_writer def _init_summary_writer(self, args, log_dir=None): log_dir = log_dir or args.logging_dir if self._SummaryWriter is not None: self.tb_writer = self._SummaryWriter(log_dir=log_dir) def on_train_begin(self, args, state, control, **kwargs): if not state.is_world_process_zero: return log_dir = None if state.is_hyper_param_search: trial_name = state.trial_name if trial_name is not None: log_dir = os.path.join(args.logging_dir, trial_name) if self.tb_writer is None: self._init_summary_writer(args, log_dir)
10,570
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
if self.tb_writer is not None: self.tb_writer.add_text("args", args.to_json_string()) if "model" in kwargs: model = kwargs["model"] if hasattr(model, "config") and model.config is not None: model_config_json = model.config.to_json_string() self.tb_writer.add_text("model_config", model_config_json) def on_log(self, args, state, control, logs=None, **kwargs): if not state.is_world_process_zero: return if self.tb_writer is None: self._init_summary_writer(args)
10,570
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
if self.tb_writer is not None: logs = rewrite_logs(logs) for k, v in logs.items(): if isinstance(v, (int, float)): self.tb_writer.add_scalar(k, v, state.global_step) elif isinstance(v, str): self.tb_writer.add_text(k, v, state.global_step) else: logger.warning( "Trainer is attempting to log a value of " f'"{v}" of type {type(v)} for key "{k}" as a scalar. ' "This invocation of Tensorboard's writer.add_scalar() " "is incorrect so we dropped this attribute." ) self.tb_writer.flush() def on_train_end(self, args, state, control, **kwargs): if self.tb_writer: self.tb_writer.close() self.tb_writer = None
10,570
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
class WandbLogModel(str, Enum): """Enum of possible log model values in W&B.""" CHECKPOINT = "checkpoint" END = "end" FALSE = "false" @property def is_enabled(self) -> bool: """Check if the value corresponds to a state where the `WANDB_LOG_MODEL` setting is enabled.""" return self in (WandbLogModel.CHECKPOINT, WandbLogModel.END)
10,571
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
@classmethod def _missing_(cls, value: Any) -> "WandbLogModel": if not isinstance(value, str): raise ValueError(f"Expecting to have a string `WANDB_LOG_MODEL` setting, but got {type(value)}") if value.upper() in ENV_VARS_TRUE_VALUES: raise DeprecationWarning( f"Setting `WANDB_LOG_MODEL` as {os.getenv('WANDB_LOG_MODEL')} is deprecated and will be removed in " "version 5 of transformers. Use one of `'end'` or `'checkpoint'` instead." ) logger.info(f"Setting `WANDB_LOG_MODEL` from {os.getenv('WANDB_LOG_MODEL')} to `end` instead") return WandbLogModel.END logger.warning( f"Received unrecognized `WANDB_LOG_MODEL` setting value={value}; so disabling `WANDB_LOG_MODEL`" ) return WandbLogModel.FALSE
10,571
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
class WandbCallback(TrainerCallback): """ A [`TrainerCallback`] that logs metrics, media, model checkpoints to [Weight and Biases](https://www.wandb.com/). """ def __init__(self): has_wandb = is_wandb_available() if not has_wandb: raise RuntimeError("WandbCallback requires wandb to be installed. Run `pip install wandb`.") if has_wandb: import wandb self._wandb = wandb self._initialized = False self._log_model = WandbLogModel(os.getenv("WANDB_LOG_MODEL", "false")) def setup(self, args, state, model, **kwargs): """ Setup the optional Weights & Biases (*wandb*) integration. One can subclass and override this method to customize the setup if needed. Find more information [here](https://docs.wandb.ai/guides/integrations/huggingface). You can also override the following environment variables:
10,572
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
Environment: - **WANDB_LOG_MODEL** (`str`, *optional*, defaults to `"false"`): Whether to log model and checkpoints during training. Can be `"end"`, `"checkpoint"` or `"false"`. If set to `"end"`, the model will be uploaded at the end of training. If set to `"checkpoint"`, the checkpoint will be uploaded every `args.save_steps` . If set to `"false"`, the model will not be uploaded. Use along with [`~transformers.TrainingArguments.load_best_model_at_end`] to upload best model. <Deprecated version="5.0"> Setting `WANDB_LOG_MODEL` as `bool` will be deprecated in version 5 of 🤗 Transformers.
10,572
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
</Deprecated> - **WANDB_WATCH** (`str`, *optional* defaults to `"false"`): Can be `"gradients"`, `"all"`, `"parameters"`, or `"false"`. Set to `"all"` to log gradients and parameters. - **WANDB_PROJECT** (`str`, *optional*, defaults to `"huggingface"`): Set this to a custom string to store results in a different project. - **WANDB_DISABLED** (`bool`, *optional*, defaults to `False`): Whether to disable wandb entirely. Set `WANDB_DISABLED=true` to disable. """ if self._wandb is None: return self._initialized = True # prepare to handle potential configuration issues during setup from wandb.sdk.lib.config_util import ConfigError as WandbConfigError
10,572
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
if state.is_world_process_zero: logger.info( 'Automatic Weights & Biases logging enabled, to disable set os.environ["WANDB_DISABLED"] = "true"' ) combined_dict = {**args.to_dict()}
10,572
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
if hasattr(model, "config") and model.config is not None: model_config = model.config if isinstance(model.config, dict) else model.config.to_dict() combined_dict = {**model_config, **combined_dict} if hasattr(model, "peft_config") and model.peft_config is not None: peft_config = model.peft_config combined_dict = {**{"peft_config": peft_config}, **combined_dict} trial_name = state.trial_name init_args = {} if trial_name is not None: init_args["name"] = trial_name init_args["group"] = args.run_name elif args.run_name is not None: init_args["name"] = args.run_name if args.run_name == args.output_dir: self._wandb.termwarn( "The `run_name` is currently set to the same value as `TrainingArguments.output_dir`. If this was "
10,572
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
"not intended, please specify a different run name by setting the `TrainingArguments.run_name` parameter.", repeat=False, )
10,572
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
if self._wandb.run is None: self._wandb.init( project=os.getenv("WANDB_PROJECT", "huggingface"), **init_args, ) # add config parameters (run may have been created manually) self._wandb.config.update(combined_dict, allow_val_change=True) # define default x-axis (for latest wandb versions) if getattr(self._wandb, "define_metric", None): self._wandb.define_metric("train/global_step") self._wandb.define_metric("*", step_metric="train/global_step", step_sync=True)
10,572
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
# keep track of model topology and gradients, unsupported on TPU _watch_model = os.getenv("WANDB_WATCH", "false") if not is_torch_xla_available() and _watch_model in ("all", "parameters", "gradients"): self._wandb.watch(model, log=_watch_model, log_freq=max(100, state.logging_steps)) self._wandb.run._label(code="transformers_trainer") # add number of model parameters to wandb config try: self._wandb.config["model/num_parameters"] = model.num_parameters() except AttributeError: logger.info( "Could not log the number of model parameters in Weights & Biases due to an AttributeError." ) except WandbConfigError: logger.warning( "A ConfigError was raised whilst setting the number of model parameters in Weights & Biases config." )
10,572
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
# log the initial model architecture to an artifact if self._log_model.is_enabled: with tempfile.TemporaryDirectory() as temp_dir: model_name = ( f"model-{self._wandb.run.id}" if (args.run_name is None or args.run_name == args.output_dir) else f"model-{self._wandb.run.name}" ) model_artifact = self._wandb.Artifact( name=model_name, type="model", metadata={ "model_config": model.config.to_dict() if hasattr(model, "config") else None, "num_parameters": self._wandb.config.get("model/num_parameters"), "initial_model": True, }, ) # add the architecture to a separate text file
10,572
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
save_model_architecture_to_file(model, temp_dir)
10,572
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
for f in Path(temp_dir).glob("*"): if f.is_file(): with model_artifact.new_file(f.name, mode="wb") as fa: fa.write(f.read_bytes()) self._wandb.run.log_artifact(model_artifact, aliases=["base_model"]) badge_markdown = ( f'[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge' f'-28.svg" alt="Visualize in Weights & Biases" width="20' f'0" height="32"/>]({self._wandb.run.get_url()})' ) modelcard.AUTOGENERATED_TRAINER_COMMENT += f"\n{badge_markdown}"
10,572
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
def on_train_begin(self, args, state, control, model=None, **kwargs): if self._wandb is None: return hp_search = state.is_hyper_param_search if hp_search: self._wandb.finish() self._initialized = False args.run_name = None if not self._initialized: self.setup(args, state, model, **kwargs) def on_train_end(self, args, state, control, model=None, tokenizer=None, **kwargs): if self._wandb is None: return if self._log_model.is_enabled and self._initialized and state.is_world_process_zero: from ..trainer import Trainer
10,572
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
fake_trainer = Trainer(args=args, model=model, processing_class=tokenizer, eval_dataset=["fake"]) with tempfile.TemporaryDirectory() as temp_dir: fake_trainer.save_model(temp_dir) metadata = ( { k: v for k, v in dict(self._wandb.summary).items() if isinstance(v, numbers.Number) and not k.startswith("_") } if not args.load_best_model_at_end else { f"eval/{args.metric_for_best_model}": state.best_metric, "train/total_floss": state.total_flos, "model/num_parameters": self._wandb.config.get("model/num_parameters"), } ) metadata["final_model"] = True logger.info("Logging model artifacts. ...") model_name = (
10,572
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
f"model-{self._wandb.run.id}" if (args.run_name is None or args.run_name == args.output_dir) else f"model-{self._wandb.run.name}" ) # add the model architecture to a separate text file save_model_architecture_to_file(model, temp_dir)
10,572
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
artifact = self._wandb.Artifact(name=model_name, type="model", metadata=metadata) for f in Path(temp_dir).glob("*"): if f.is_file(): with artifact.new_file(f.name, mode="wb") as fa: fa.write(f.read_bytes()) self._wandb.run.log_artifact(artifact, aliases=["final_model"]) def on_log(self, args, state, control, model=None, logs=None, **kwargs): single_value_scalars = [ "train_runtime", "train_samples_per_second", "train_steps_per_second", "train_loss", "total_flos", ]
10,572
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
if self._wandb is None: return if not self._initialized: self.setup(args, state, model) if state.is_world_process_zero: for k, v in logs.items(): if k in single_value_scalars: self._wandb.run.summary[k] = v non_scalar_logs = {k: v for k, v in logs.items() if k not in single_value_scalars} non_scalar_logs = rewrite_logs(non_scalar_logs) self._wandb.log({**non_scalar_logs, "train/global_step": state.global_step})
10,572
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
def on_save(self, args, state, control, **kwargs): if self._log_model == WandbLogModel.CHECKPOINT and self._initialized and state.is_world_process_zero: checkpoint_metadata = { k: v for k, v in dict(self._wandb.summary).items() if isinstance(v, numbers.Number) and not k.startswith("_") } checkpoint_metadata["model/num_parameters"] = self._wandb.config.get("model/num_parameters")
10,572
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
ckpt_dir = f"checkpoint-{state.global_step}" artifact_path = os.path.join(args.output_dir, ckpt_dir) logger.info(f"Logging checkpoint artifacts in {ckpt_dir}. ...") checkpoint_name = ( f"model-{self._wandb.run.id}" if (args.run_name is None or args.run_name == args.output_dir) else f"model-{self._wandb.run.name}" ) artifact = self._wandb.Artifact(name=checkpoint_name, type="model", metadata=checkpoint_metadata) artifact.add_dir(artifact_path) self._wandb.log_artifact( artifact, aliases=[f"epoch_{round(state.epoch, 2)}", f"checkpoint_global_step_{state.global_step}"] )
10,572
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
def on_predict(self, args, state, control, metrics, **kwargs): if self._wandb is None: return if not self._initialized: self.setup(args, state, **kwargs) if state.is_world_process_zero: metrics = rewrite_logs(metrics) self._wandb.log(metrics)
10,572
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
class CometCallback(TrainerCallback): """ A [`TrainerCallback`] that sends the logs to [Comet ML](https://www.comet.com/site/). """ def __init__(self): if _is_comet_installed is False or _is_comet_recent_enough is False: raise RuntimeError( f"CometCallback requires comet-ml>={_MIN_COMET_VERSION} to be installed. Run `pip install comet-ml>={_MIN_COMET_VERSION}`." ) self._initialized = False self._log_assets = False self._experiment = None def setup(self, args, state, model): """ Setup the optional Comet integration.
10,573
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
Environment: - **COMET_MODE** (`str`, *optional*, default to `get_or_create`): Control whether to create and log to a new Comet experiment or append to an existing experiment. It accepts the following values: * `get_or_create`: Decides automatically depending if `COMET_EXPERIMENT_KEY` is set and whether an Experiment with that key already exists or not. * `create`: Always create a new Comet Experiment. * `get`: Always try to append to an Existing Comet Experiment. Requires `COMET_EXPERIMENT_KEY` to be set. * `ONLINE`: **deprecated**, used to create an online Experiment. Use `COMET_START_ONLINE=1` instead. * `OFFLINE`: **deprecated**, used to created an offline Experiment. Use `COMET_START_ONLINE=0` instead. * `DISABLED`: **deprecated**, used to disable Comet logging.
10,573
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
Use the `--report_to` flag to control the integrations used for logging result instead. - **COMET_PROJECT_NAME** (`str`, *optional*): Comet project name for experiments. - **COMET_LOG_ASSETS** (`str`, *optional*, defaults to `TRUE`): Whether or not to log training assets (tf event logs, checkpoints, etc), to Comet. Can be `TRUE`, or `FALSE`.
10,573
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
For a number of configurable items in the environment, see [here](https://www.comet.com/docs/v2/guides/experiment-management/configure-sdk/#explore-comet-configuration-options). """ self._initialized = True log_assets = os.getenv("COMET_LOG_ASSETS", "FALSE").upper() if log_assets in {"TRUE", "1"}: self._log_assets = True if state.is_world_process_zero: comet_old_mode = os.getenv("COMET_MODE") mode = None online = None if comet_old_mode is not None: comet_old_mode = comet_old_mode.lower()
10,573
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
if comet_old_mode == "online": online = True elif comet_old_mode == "offline": online = False elif comet_old_mode in ("get", "get_or_create", "create"): mode = comet_old_mode elif comet_old_mode: logger.warning("Invalid COMET_MODE env value %r, Comet logging is disabled", comet_old_mode) return # For HPO, we always create a new experiment for each trial if state.is_hyper_param_search: if mode is not None: logger.warning( "Hyperparameter Search is enabled, forcing the creation of new experimetns, COMET_MODE value %r is ignored", comet_old_mode, ) mode = "create" import comet_ml
10,573
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
# Do not use the default run_name as the experiment name if args.run_name is not None and args.run_name != args.output_dir: experiment_config = comet_ml.ExperimentConfig(name=args.run_name) else: experiment_config = comet_ml.ExperimentConfig() self._experiment = comet_ml.start(online=online, mode=mode, experiment_config=experiment_config) self._experiment.__internal_api__set_model_graph__(model, framework="transformers") params = {"args": args.to_dict()} if hasattr(model, "config") and model.config is not None: model_config = model.config.to_dict() params["config"] = model_config if hasattr(model, "peft_config") and model.peft_config is not None: peft_config = model.peft_config params["peft_config"] = peft_config
10,573
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
self._experiment.__internal_api__log_parameters__( params, framework="transformers", source="manual", flatten_nested=True ) if state.is_hyper_param_search: optimization_id = getattr(state, "trial_name", None) optimization_params = getattr(state, "trial_params", None) self._experiment.log_optimization(optimization_id=optimization_id, parameters=optimization_params) def on_train_begin(self, args, state, control, model=None, **kwargs): if not self._initialized: self.setup(args, state, model)
10,573
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
def on_log(self, args, state, control, model=None, logs=None, **kwargs): if not self._initialized: self.setup(args, state, model) if state.is_world_process_zero: if self._experiment is not None: rewritten_logs = rewrite_logs(logs) self._experiment.__internal_api__log_metrics__( rewritten_logs, step=state.global_step, epoch=state.epoch, framework="transformers" ) def on_train_end(self, args, state, control, **kwargs): if self._initialized and state.is_world_process_zero: if self._experiment is not None: if self._log_assets is True: logger.info("Logging checkpoints. This may take time.") self._experiment.log_asset_folder( args.output_dir, recursive=True, log_file_name=True, step=state.global_step )
10,573
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
# We create one experiment per trial in HPO mode if state.is_hyper_param_search: self._experiment.clean() self._initialized = False def on_predict(self, args, state, control, metrics, **kwargs): if not self._initialized: self.setup(args, state, model=None) if state.is_world_process_zero and self._experiment is not None: rewritten_metrics = rewrite_logs(metrics) self._experiment.__internal_api__log_metrics__( rewritten_metrics, step=state.global_step, epoch=state.epoch, framework="transformers" )
10,573
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
class AzureMLCallback(TrainerCallback): """ A [`TrainerCallback`] that sends the logs to [AzureML](https://pypi.org/project/azureml-sdk/). """ def __init__(self, azureml_run=None): if not is_azureml_available(): raise RuntimeError("AzureMLCallback requires azureml to be installed. Run `pip install azureml-sdk`.") self.azureml_run = azureml_run def on_init_end(self, args, state, control, **kwargs): from azureml.core.run import Run if self.azureml_run is None and state.is_world_process_zero: self.azureml_run = Run.get_context() def on_log(self, args, state, control, logs=None, **kwargs): if self.azureml_run and state.is_world_process_zero: for k, v in logs.items(): if isinstance(v, (int, float)): self.azureml_run.log(k, v, description=k)
10,574
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
class MLflowCallback(TrainerCallback): """ A [`TrainerCallback`] that sends the logs to [MLflow](https://www.mlflow.org/). Can be disabled by setting environment variable `DISABLE_MLFLOW_INTEGRATION = TRUE`. """ def __init__(self): if not is_mlflow_available(): raise RuntimeError("MLflowCallback requires mlflow to be installed. Run `pip install mlflow`.") import mlflow self._MAX_PARAM_VAL_LENGTH = mlflow.utils.validation.MAX_PARAM_VAL_LENGTH self._MAX_PARAMS_TAGS_PER_BATCH = mlflow.utils.validation.MAX_PARAMS_TAGS_PER_BATCH self._initialized = False self._auto_end_run = False self._log_artifacts = False self._ml_flow = mlflow def setup(self, args, state, model): """ Setup the optional MLflow integration.
10,575
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
Environment: - **HF_MLFLOW_LOG_ARTIFACTS** (`str`, *optional*): Whether to use MLflow `.log_artifact()` facility to log artifacts. This only makes sense if logging to a remote server, e.g. s3 or GCS. If set to `True` or *1*, will copy each saved checkpoint on each save in [`TrainingArguments`]'s `output_dir` to the local or remote artifact storage. Using it without a remote storage will just copy the files to your artifact location. - **MLFLOW_TRACKING_URI** (`str`, *optional*): Whether to store runs at a specific path or remote server. Unset by default, which skips setting the tracking URI entirely. - **MLFLOW_EXPERIMENT_NAME** (`str`, *optional*, defaults to `None`): Whether to use an MLflow experiment_name under which to launch the run. Default to `None` which will point to the `Default` experiment in MLflow. Otherwise, it is a case sensitive name of the experiment to be
10,575
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
activated. If an experiment with this name does not exist, a new experiment with this name is created. - **MLFLOW_TAGS** (`str`, *optional*): A string dump of a dictionary of key/value pair to be added to the MLflow run as tags. Example: `os.environ['MLFLOW_TAGS']='{"release.candidate": "RC1", "release.version": "2.2.0"}'`. - **MLFLOW_NESTED_RUN** (`str`, *optional*): Whether to use MLflow nested runs. If set to `True` or *1*, will create a nested run inside the current run. - **MLFLOW_RUN_ID** (`str`, *optional*): Allow to reattach to an existing run which can be usefull when resuming training from a checkpoint. When `MLFLOW_RUN_ID` environment variable is set, `start_run` attempts to resume a run with the specified run ID and other parameters are ignored. - **MLFLOW_FLATTEN_PARAMS** (`str`, *optional*, defaults to `False`):
10,575
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
Whether to flatten the parameters dictionary before logging. - **MLFLOW_MAX_LOG_PARAMS** (`int`, *optional*): Set the maximum number of parameters to log in the run. """ self._log_artifacts = os.getenv("HF_MLFLOW_LOG_ARTIFACTS", "FALSE").upper() in ENV_VARS_TRUE_VALUES self._nested_run = os.getenv("MLFLOW_NESTED_RUN", "FALSE").upper() in ENV_VARS_TRUE_VALUES self._tracking_uri = os.getenv("MLFLOW_TRACKING_URI", None) self._experiment_name = os.getenv("MLFLOW_EXPERIMENT_NAME", None) self._flatten_params = os.getenv("MLFLOW_FLATTEN_PARAMS", "FALSE").upper() in ENV_VARS_TRUE_VALUES self._run_id = os.getenv("MLFLOW_RUN_ID", None) self._max_log_params = os.getenv("MLFLOW_MAX_LOG_PARAMS", None)
10,575
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
# "synchronous" flag is only available with mlflow version >= 2.8.0 # https://github.com/mlflow/mlflow/pull/9705 # https://github.com/mlflow/mlflow/releases/tag/v2.8.0 self._async_log = packaging.version.parse(self._ml_flow.__version__) >= packaging.version.parse("2.8.0")
10,575
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
logger.debug( f"MLflow experiment_name={self._experiment_name}, run_name={args.run_name}, nested={self._nested_run}," f" tracking_uri={self._tracking_uri}" ) if state.is_world_process_zero: if not self._ml_flow.is_tracking_uri_set(): if self._tracking_uri: self._ml_flow.set_tracking_uri(self._tracking_uri) logger.debug(f"MLflow tracking URI is set to {self._tracking_uri}") else: logger.debug( "Environment variable `MLFLOW_TRACKING_URI` is not provided and therefore will not be" " explicitly set." ) else: logger.debug(f"MLflow tracking URI is set to {self._ml_flow.get_tracking_uri()}")
10,575
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
if self._ml_flow.active_run() is None or self._nested_run or self._run_id: if self._experiment_name: # Use of set_experiment() ensure that Experiment is created if not exists self._ml_flow.set_experiment(self._experiment_name) self._ml_flow.start_run(run_name=args.run_name, nested=self._nested_run) logger.debug(f"MLflow run started with run_id={self._ml_flow.active_run().info.run_id}") self._auto_end_run = True combined_dict = args.to_dict() if hasattr(model, "config") and model.config is not None: model_config = model.config.to_dict() combined_dict = {**model_config, **combined_dict} combined_dict = flatten_dict(combined_dict) if self._flatten_params else combined_dict # remove params that are too long for MLflow for name, value in list(combined_dict.items()):
10,575
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
# internally, all values are converted to str in MLflow if len(str(value)) > self._MAX_PARAM_VAL_LENGTH: logger.warning( f'Trainer is attempting to log a value of "{value}" for key "{name}" as a parameter. MLflow\'s' " log_param() only accepts values no longer than 250 characters so we dropped this attribute." " You can use `MLFLOW_FLATTEN_PARAMS` environment variable to flatten the parameters and" " avoid this message." ) del combined_dict[name] # MLflow cannot log more than 100 values in one go, so we have to split it combined_dict_items = list(combined_dict.items()) if self._max_log_params and self._max_log_params.isdigit(): max_log_params = int(self._max_log_params) if max_log_params < len(combined_dict_items): logger.debug(
10,575
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
f"Reducing the number of parameters to log from {len(combined_dict_items)} to {max_log_params}." ) combined_dict_items = combined_dict_items[:max_log_params] for i in range(0, len(combined_dict_items), self._MAX_PARAMS_TAGS_PER_BATCH): if self._async_log: self._ml_flow.log_params( dict(combined_dict_items[i : i + self._MAX_PARAMS_TAGS_PER_BATCH]), synchronous=False ) else: self._ml_flow.log_params(dict(combined_dict_items[i : i + self._MAX_PARAMS_TAGS_PER_BATCH])) mlflow_tags = os.getenv("MLFLOW_TAGS", None) if mlflow_tags: mlflow_tags = json.loads(mlflow_tags) self._ml_flow.set_tags(mlflow_tags) self._initialized = True
10,575
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
def on_train_begin(self, args, state, control, model=None, **kwargs): if not self._initialized: self.setup(args, state, model) def on_log(self, args, state, control, logs, model=None, **kwargs): if not self._initialized: self.setup(args, state, model) if state.is_world_process_zero: metrics = {} for k, v in logs.items(): if isinstance(v, (int, float)): metrics[k] = v elif isinstance(v, torch.Tensor) and v.numel() == 1: metrics[k] = v.item() else: logger.warning( f'Trainer is attempting to log a value of "{v}" of type {type(v)} for key "{k}" as a metric. ' "MLflow's log_metric() only accepts float and int types so we dropped this attribute." )
10,575
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
if self._async_log: self._ml_flow.log_metrics(metrics=metrics, step=state.global_step, synchronous=False) else: self._ml_flow.log_metrics(metrics=metrics, step=state.global_step) def on_train_end(self, args, state, control, **kwargs): if self._initialized and state.is_world_process_zero: if self._auto_end_run and self._ml_flow.active_run(): self._ml_flow.end_run()
10,575
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
def on_save(self, args, state, control, **kwargs): if self._initialized and state.is_world_process_zero and self._log_artifacts: ckpt_dir = f"checkpoint-{state.global_step}" artifact_path = os.path.join(args.output_dir, ckpt_dir) logger.info(f"Logging checkpoint artifacts in {ckpt_dir}. This may take time.") self._ml_flow.pyfunc.log_model( ckpt_dir, artifacts={"model_path": artifact_path}, python_model=self._ml_flow.pyfunc.PythonModel(), ) def __del__(self): # if the previous run is not terminated correctly, the fluent API will # not let you start a new run before the previous one is killed if ( self._auto_end_run and callable(getattr(self._ml_flow, "active_run", None)) and self._ml_flow.active_run() is not None ): self._ml_flow.end_run()
10,575
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
class DagsHubCallback(MLflowCallback): """ A [`TrainerCallback`] that logs to [DagsHub](https://dagshub.com/). Extends [`MLflowCallback`] """ def __init__(self): super().__init__() if not is_dagshub_available(): raise ImportError("DagsHubCallback requires dagshub to be installed. Run `pip install dagshub`.") from dagshub.upload import Repo self.Repo = Repo def setup(self, *args, **kwargs): """ Setup the DagsHub's Logging integration. Environment: - **HF_DAGSHUB_LOG_ARTIFACTS** (`str`, *optional*): Whether to save the data and model artifacts for the experiment. Default to `False`. """
10,576
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
self.log_artifacts = os.getenv("HF_DAGSHUB_LOG_ARTIFACTS", "FALSE").upper() in ENV_VARS_TRUE_VALUES self.name = os.getenv("HF_DAGSHUB_MODEL_NAME") or "main" self.remote = os.getenv("MLFLOW_TRACKING_URI") self.repo = self.Repo( owner=self.remote.split(os.sep)[-2], name=self.remote.split(os.sep)[-1].split(".")[0], branch=os.getenv("BRANCH") or "main", ) self.path = Path("artifacts") if self.remote is None: raise RuntimeError( "DagsHubCallback requires the `MLFLOW_TRACKING_URI` environment variable to be set. Did you run" " `dagshub.init()`?" ) super().setup(*args, **kwargs) def on_train_end(self, args, state, control, **kwargs): if self.log_artifacts: if getattr(self, "train_dataloader", None): torch.save(self.train_dataloader.dataset, os.path.join(args.output_dir, "dataset.pt"))
10,576
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
self.repo.directory(str(self.path)).add_dir(args.output_dir)
10,576
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
class NeptuneMissingConfiguration(Exception): def __init__(self): super().__init__( """ ------ Unsupported ---- We were not able to create new runs. You provided a custom Neptune run to `NeptuneCallback` with the `run` argument. For the integration to work fully, provide your `api_token` and `project` by saving them as environment variables or passing them to the callback. """ )
10,577
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
class NeptuneCallback(TrainerCallback): """TrainerCallback that sends the logs to [Neptune](https://app.neptune.ai).
10,578
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
Args: api_token (`str`, *optional*): Neptune API token obtained upon registration. You can leave this argument out if you have saved your token to the `NEPTUNE_API_TOKEN` environment variable (strongly recommended). See full setup instructions in the [docs](https://docs.neptune.ai/setup/installation). project (`str`, *optional*): Name of an existing Neptune project, in the form "workspace-name/project-name". You can find and copy the name in Neptune from the project settings -> Properties. If None (default), the value of the `NEPTUNE_PROJECT` environment variable is used. name (`str`, *optional*): Custom name for the run. base_namespace (`str`, *optional*, defaults to "finetuning"): In the Neptune run, the root namespace that will contain all of the metadata logged by the callback. log_parameters (`bool`, *optional*, defaults to `True`):
10,578
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
If True, logs all Trainer arguments and model parameters provided by the Trainer. log_checkpoints (`str`, *optional*): If "same", uploads checkpoints whenever they are saved by the Trainer. If "last", uploads only the most recently saved checkpoint. If "best", uploads the best checkpoint (among the ones saved by the Trainer). If `None`, does not upload checkpoints. run (`Run`, *optional*): Pass a Neptune run object if you want to continue logging to an existing run. Read more about resuming runs in the [docs](https://docs.neptune.ai/logging/to_existing_object). **neptune_run_kwargs (*optional*): Additional keyword arguments to be passed directly to the [`neptune.init_run()`](https://docs.neptune.ai/api/neptune#init_run) function when a new run is created.
10,578
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
For instructions and examples, see the [Transformers integration guide](https://docs.neptune.ai/integrations/transformers) in the Neptune documentation. """ integration_version_key = "source_code/integrations/transformers" model_parameters_key = "model_parameters" trial_name_key = "trial" trial_params_key = "trial_params" trainer_parameters_key = "trainer_parameters" flat_metrics = {"train/epoch"} def __init__( self, *, api_token: Optional[str] = None, project: Optional[str] = None, name: Optional[str] = None, base_namespace: str = "finetuning", run=None, log_parameters: bool = True, log_checkpoints: Optional[str] = None, **neptune_run_kwargs, ): if not is_neptune_available(): raise ValueError( "NeptuneCallback requires the Neptune client library to be installed. " "To install the library, run `pip install neptune`." )
10,578
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
try: from neptune import Run from neptune.internal.utils import verify_type except ImportError: from neptune.new.internal.utils import verify_type from neptune.new.metadata_containers.run import Run verify_type("api_token", api_token, (str, type(None))) verify_type("project", project, (str, type(None))) verify_type("name", name, (str, type(None))) verify_type("base_namespace", base_namespace, str) verify_type("run", run, (Run, type(None))) verify_type("log_parameters", log_parameters, bool) verify_type("log_checkpoints", log_checkpoints, (str, type(None))) self._base_namespace_path = base_namespace self._log_parameters = log_parameters self._log_checkpoints = log_checkpoints self._initial_run: Optional[Run] = run
10,578
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
self._run = None self._is_monitoring_run = False self._run_id = None self._force_reset_monitoring_run = False self._init_run_kwargs = {"api_token": api_token, "project": project, "name": name, **neptune_run_kwargs} self._volatile_checkpoints_dir = None self._should_upload_checkpoint = self._log_checkpoints is not None self._recent_checkpoint_path = None if self._log_checkpoints in {"last", "best"}: self._target_checkpoints_namespace = f"checkpoints/{self._log_checkpoints}" self._should_clean_recently_uploaded_checkpoint = True else: self._target_checkpoints_namespace = "checkpoints" self._should_clean_recently_uploaded_checkpoint = False def _stop_run_if_exists(self): if self._run: self._run.stop() del self._run self._run = None
10,578
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
def _initialize_run(self, **additional_neptune_kwargs): try: from neptune import init_run from neptune.exceptions import NeptuneMissingApiTokenException, NeptuneMissingProjectNameException except ImportError: from neptune.new import init_run from neptune.new.exceptions import NeptuneMissingApiTokenException, NeptuneMissingProjectNameException self._stop_run_if_exists() try: run_params = additional_neptune_kwargs.copy() run_params.update(self._init_run_kwargs) self._run = init_run(**run_params) self._run_id = self._run["sys/id"].fetch() except (NeptuneMissingProjectNameException, NeptuneMissingApiTokenException) as e: raise NeptuneMissingConfiguration() from e def _use_initial_run(self): self._run = self._initial_run self._is_monitoring_run = True self._run_id = self._run["sys/id"].fetch() self._initial_run = None
10,578
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
def _ensure_run_with_monitoring(self): if self._initial_run is not None: self._use_initial_run() else: if not self._force_reset_monitoring_run and self._is_monitoring_run: return if self._run and not self._is_monitoring_run and not self._force_reset_monitoring_run: self._initialize_run(with_id=self._run_id) self._is_monitoring_run = True else: self._initialize_run() self._force_reset_monitoring_run = False
10,578
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
def _ensure_at_least_run_without_monitoring(self): if self._initial_run is not None: self._use_initial_run() else: if not self._run: self._initialize_run( with_id=self._run_id, capture_stdout=False, capture_stderr=False, capture_hardware_metrics=False, capture_traceback=False, ) self._is_monitoring_run = False @property def run(self): if self._run is None: self._ensure_at_least_run_without_monitoring() return self._run @property def _metadata_namespace(self): return self.run[self._base_namespace_path] def _log_integration_version(self): self.run[NeptuneCallback.integration_version_key] = version def _log_trainer_parameters(self, args): self._metadata_namespace[NeptuneCallback.trainer_parameters_key] = args.to_sanitized_dict()
10,578
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
def _log_model_parameters(self, model): from neptune.utils import stringify_unsupported if model and hasattr(model, "config") and model.config is not None: self._metadata_namespace[NeptuneCallback.model_parameters_key] = stringify_unsupported( model.config.to_dict() ) def _log_hyper_param_search_parameters(self, state): if state and hasattr(state, "trial_name"): self._metadata_namespace[NeptuneCallback.trial_name_key] = state.trial_name if state and hasattr(state, "trial_params") and state.trial_params is not None: self._metadata_namespace[NeptuneCallback.trial_params_key] = state.trial_params def _log_model_checkpoint(self, source_directory: str, checkpoint: str): target_path = relative_path = os.path.join(source_directory, checkpoint)
10,578
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
if self._volatile_checkpoints_dir is not None: consistent_checkpoint_path = os.path.join(self._volatile_checkpoints_dir, checkpoint) try: # Remove leading ../ from a relative path. cpkt_path = relative_path.replace("..", "").lstrip(os.path.sep) copy_path = os.path.join(consistent_checkpoint_path, cpkt_path) shutil.copytree(relative_path, copy_path) target_path = consistent_checkpoint_path except IOError as e: logger.warning( "NeptuneCallback was unable to made a copy of checkpoint due to I/O exception: '{}'. " "Could fail trying to upload.".format(e) ) self._metadata_namespace[self._target_checkpoints_namespace].upload_files(target_path)
10,578
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
if self._should_clean_recently_uploaded_checkpoint and self._recent_checkpoint_path is not None: self._metadata_namespace[self._target_checkpoints_namespace].delete_files(self._recent_checkpoint_path) self._recent_checkpoint_path = relative_path def on_init_end(self, args, state, control, **kwargs): self._volatile_checkpoints_dir = None if self._log_checkpoints and (args.overwrite_output_dir or args.save_total_limit is not None): self._volatile_checkpoints_dir = tempfile.TemporaryDirectory().name if self._log_checkpoints == "best" and not args.load_best_model_at_end: raise ValueError("To save the best model checkpoint, the load_best_model_at_end argument must be enabled.") def on_train_begin(self, args, state, control, model=None, **kwargs): if not state.is_world_process_zero: return self._ensure_run_with_monitoring() self._force_reset_monitoring_run = True
10,578
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
self._log_integration_version() if self._log_parameters: self._log_trainer_parameters(args) self._log_model_parameters(model) if state.is_hyper_param_search: self._log_hyper_param_search_parameters(state) def on_train_end(self, args, state, control, **kwargs): self._stop_run_if_exists() def __del__(self): if self._volatile_checkpoints_dir is not None: shutil.rmtree(self._volatile_checkpoints_dir, ignore_errors=True) self._stop_run_if_exists() def on_save(self, args, state, control, **kwargs): if self._should_upload_checkpoint: self._log_model_checkpoint(args.output_dir, f"checkpoint-{state.global_step}")
10,578
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
def on_evaluate(self, args, state, control, metrics=None, **kwargs): if self._log_checkpoints == "best": best_metric_name = args.metric_for_best_model if not best_metric_name.startswith("eval_"): best_metric_name = f"eval_{best_metric_name}" metric_value = metrics.get(best_metric_name) operator = np.greater if args.greater_is_better else np.less self._should_upload_checkpoint = state.best_metric is None or operator(metric_value, state.best_metric) @classmethod def get_run(cls, trainer): for callback in trainer.callback_handler.callbacks: if isinstance(callback, cls): return callback.run raise Exception("The trainer doesn't have a NeptuneCallback configured.") def on_log(self, args, state, control, logs: Optional[Dict[str, float]] = None, **kwargs): if not state.is_world_process_zero: return
10,578
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
if logs is not None: for name, value in rewrite_logs(logs).items(): if isinstance(value, (int, float)): if name in NeptuneCallback.flat_metrics: self._metadata_namespace[name] = value else: self._metadata_namespace[name].log(value, step=state.global_step)
10,578
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
class CodeCarbonCallback(TrainerCallback): """ A [`TrainerCallback`] that tracks the CO2 emission of training. """ def __init__(self): if not is_codecarbon_available(): raise RuntimeError( "CodeCarbonCallback requires `codecarbon` to be installed. Run `pip install codecarbon`." ) elif torch.version.hip: raise RuntimeError( "CodeCarbonCallback requires `codecarbon` package, which is not compatible with AMD ROCm (https://github.com/mlco2/codecarbon/pull/490). When using the Trainer, please specify the `report_to` argument (https://huggingface.co/docs/transformers/v4.39.3/en/main_classes/trainer#transformers.TrainingArguments.report_to) to disable CodeCarbonCallback." ) import codecarbon self._codecarbon = codecarbon self.tracker = None
10,579
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
def on_init_end(self, args, state, control, **kwargs): if self.tracker is None and state.is_local_process_zero: # CodeCarbon will automatically handle environment variables for configuration self.tracker = self._codecarbon.EmissionsTracker(output_dir=args.output_dir) def on_train_begin(self, args, state, control, model=None, **kwargs): if self.tracker and state.is_local_process_zero: self.tracker.start() def on_train_end(self, args, state, control, **kwargs): if self.tracker and state.is_local_process_zero: self.tracker.stop()
10,579
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
class ClearMLCallback(TrainerCallback): """ A [`TrainerCallback`] that sends the logs to [ClearML](https://clear.ml/). Environment: - **CLEARML_PROJECT** (`str`, *optional*, defaults to `HuggingFace Transformers`): ClearML project name. - **CLEARML_TASK** (`str`, *optional*, defaults to `Trainer`): ClearML task name. - **CLEARML_LOG_MODEL** (`bool`, *optional*, defaults to `False`): Whether to log models as artifacts during training. """ log_suffix = ""
10,580
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
_hparams_section = "Transformers" _model_config_section = "Model Configuration" _ignore_hparams_overrides = "_ignore_hparams_ui_overrides_" _ignoge_model_config_overrides = "_ignore_model_config_ui_overrides_" _model_config_description = "The configuration of model number {}." _model_config_description_note = ( "Note that, when cloning this task and running it remotely," " the configuration might be applied to another model instead of this one." " To avoid this, initialize the task externally by calling `Task.init`" " before the `ClearMLCallback` is instantiated." ) _train_run_counter = 0 _model_connect_counter = 0 _task_created_in_callback = False _should_close_on_train_end = None def __init__(self): if is_clearml_available(): import clearml self._clearml = clearml else: raise RuntimeError("ClearMLCallback requires 'clearml' to be installed. Run `pip install clearml`.")
10,580
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
self._initialized = False self._clearml_task = None self._log_model = False self._checkpoints_saved = []
10,580
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py
def setup(self, args, state, model, tokenizer, **kwargs): if self._clearml is None: return if self._initialized: return ClearMLCallback._train_run_counter += 1 ClearMLCallback._model_connect_counter += 1 ClearMLCallback.log_suffix = ( "" if ClearMLCallback._train_run_counter == 1 else "_" + str(ClearMLCallback._train_run_counter) ) if state.is_world_process_zero: logger.info("Automatic ClearML logging enabled.") if self._clearml_task is None: if ClearMLCallback._should_close_on_train_end is None: if not self._clearml.Task.running_locally() or self._clearml.Task.current_task(): ClearMLCallback._should_close_on_train_end = False else: ClearMLCallback._should_close_on_train_end = True
10,580
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/integrations/integration_utils.py