script
stringlengths
113
767k
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session data = pd.read_csv("/kaggle/input/mobile-price-classification/train.csv") data data.info() data.isnull().sum() for col in data.columns: print(col) print(data[col].unique()) print("************") col_names = [ "blue", "dual_sim", "fc", "four_g", "n_cores", "three_g", "touch_screen", "wifi", "price_range", ] for col in col_names: data[col].value_counts().plot(kind="bar", title=col) plt.xticks(rotation=90) plt.show() data.head() ## Now, try to find the correlation between features and price_range sns.heatmap( data.corr()[["price_range"]].sort_values(by="price_range", ascending=False), vmin=-1, vmax=1, annot=True, cmap="BrBG", ) ## So, we can say that ram is highly correlated to target. ## Now, draw a heatmap for four_g, dual_sim, wifi, blue, talk_time, fc, sc_h, three_g, pc, sc_w, int_memory data1 = data[ [ "four_g", "dual_sim", "wifi", "blue", "talk_time", "fc", "sc_h", "three_g", "pc", "sc_w", "int_memory", ] ] data1.head() corr_matrix = data1.corr() plt.figure(figsize=(12, 6)) sns.heatmap(corr_matrix, cmap="coolwarm", annot=True, vmin=-1, vmax=1) plt.show() # ## spliting the model into Training and Testing dataset y = data["price_range"] data.drop(["price_range"], axis=1, inplace=True) X = data from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split( X, y, train_size=0.8, random_state=0 ) X_train.shape X_test.shape y_train.shape y_test.shape # ## Train the model using LinearRegression from sklearn.linear_model import LinearRegression reg = LinearRegression() reg.fit(X_train, y_train) y_pred = reg.predict(X_test) from sklearn.metrics import r2_score print(r2_score(y_test, y_pred)) # ### Linear Regression model accuracy is 92.1% # ## Training with KNN Classifier from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(n_neighbors=10) knn.fit(X_train, y_train) y_pred = knn.predict(X_test) from sklearn.metrics import confusion_matrix, accuracy_score cm = confusion_matrix(y_test, y_pred) print(cm) print(accuracy_score(y_test, y_pred)) # ### KNN Model Accuracy is 95.2% # ## Training the model with LogisticRegression from sklearn.linear_model import LogisticRegression classifier = LogisticRegression(random_state=0) classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) cm = confusion_matrix(y_test, y_pred) print(cm) print(accuracy_score(y_test, y_pred))
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session df = pd.read_csv( "/kaggle/input/online-shop-customer-sales-data/Online Shop Customer Sales Data.csv" ) print("Shape:", df.shape) print("Columns:", df.columns) df.head() # Number of Unique values for columns in df.columns: print(columns, ":", df[columns].nunique()) df.head() df.describe() df.info() df.isnull().any() category = ["Gender", "Browser", "Newsletter", "Voucher"] # Columns for columns in category: print(columns, ":", df[columns].unique()) print(columns, "value counts :\n", df[columns].value_counts(), "\n") # Number of Unique values num_list = [ "Age", "Revenue_Total", "N_Purchases", "Purchase_VALUE", "Pay_Method", "Time_Spent", ] for columns in num_list: print("Number of unique values in", columns, ":", df[columns].nunique()) # Maxminmum and minimum print("Maximum", columns, ":", df[columns].max()) print("Minmum", columns, ":", df[columns].min()) # Average print("Average", columns, ":", df[columns].mean()) # Common print("Common", columns, ":", df[columns].mode()[0], "\n") new_list = [ "Age", "Gender", "Revenue_Total", "N_Purchases", "Purchase_VALUE", "Pay_Method", "Time_Spent", ] df1 = df[new_list].sort_values(by=["Age"]) df1.head() # Max purchase by Age max_purchase = df1[["Age", "Gender", "N_Purchases", "Purchase_VALUE", "Time_Spent"]][ df1["N_Purchases"] == df1["N_Purchases"].max() ] min_purchase = df1[["Age", "Gender", "N_Purchases", "Purchase_VALUE", "Time_Spent"]][ df1["N_Purchases"] == df1["N_Purchases"].min() ] mid_purchase = df1[["Age", "Gender", "N_Purchases", "Purchase_VALUE", "Time_Spent"]][ df1["N_Purchases"] == df1["N_Purchases"].median() ] # Top 5 max purchase by age max_purchase.head(10) # Top 10 min purchase by age min_purchase.head(10) # most time spend by age group most_time_spend = df1[["Age", "Gender", "N_Purchases", "Purchase_VALUE", "Time_Spent"]][ df1["Time_Spent"] == df1["Time_Spent"].max() ] min_time_spend = df1[["Age", "Gender", "N_Purchases", "Purchase_VALUE", "Time_Spent"]][ df1["Time_Spent"] == df1["Time_Spent"].min() ] most_time_spend.head(10) min_time_spend.head(10)
# # Import Libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split import warnings import xgboost as xgb from hyperopt import Trials, STATUS_OK, tpe, hp, fmin import warnings warnings.filterwarnings("ignore") # # Read dataframe & analyzing it df = pd.read_csv( "/kaggle/input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv" ) df.head() df.columns df.shape df.describe().T # # Finding categorical columns obj_dtypes = [i for i in df.select_dtypes(include=np.object).columns] obj_dtypes # # Categorical variables encoding # Label Encoding for object to numeric conversion from sklearn.preprocessing import LabelEncoder le = LabelEncoder() for feat in obj_dtypes: df[feat] = le.fit_transform(df[feat].astype(str)) print(df.info()) df.drop(["EmployeeNumber"], axis=1) df.sample(10) # # Checking the distribution of target variable # To show imbalance data fig = plt.figure(figsize=(13, 6)) plt.subplot(121) df["Attrition"].value_counts().plot.pie( autopct="%1.0f%%", colors=["red", "yellow"], startangle=60, wedgeprops={"linewidth": 2, "edgecolor": "k"}, shadow=True, ) plt.title("Distribution of Turnover") plt.show() # **From the above graphical analysis , we can see that the data is highly imbalanced** # # Applying SMOTE for imbalance data X = df.drop(["Attrition"], axis=1) from imblearn.over_sampling import SMOTE from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split( X, df["Attrition"], test_size=0.1, random_state=0 ) # train,test = train_test_split(df , test_size = 0.10 ,random_state = 17 , stratify = df['Turnover']) print("Number transactions X_train dataset: ", X_train.shape) print("Number transactions y_train dataset: ", y_train.shape) print("Number transactions X_test dataset: ", X_test.shape) print("Number transactions y_test dataset: ", y_test.shape) print("Before OverSampling, counts of label '1': {}".format(sum(y_train == 1))) print("Before OverSampling, counts of label '0': {} \n".format(sum(y_train == 0))) sm = SMOTE(sampling_strategy="minority", random_state=2) X_train_res, y_train_res = sm.fit_resample(X_train, y_train.ravel()) print("After OverSampling, the shape of train_X: {}".format(X_train_res.shape)) print("After OverSampling, the shape of train_y: {} \n".format(y_train_res.shape)) print("After OverSampling, counts of label '1': {}".format(sum(y_train_res == 1))) print("After OverSampling, counts of label '0': {}".format(sum(y_train_res == 0))) # # Applying Logistic Regression algorithm from sklearn.model_selection import GridSearchCV from sklearn.linear_model import LogisticRegression from sklearn.metrics import ( confusion_matrix, precision_recall_curve, auc, roc_auc_score, roc_curve, recall_score, classification_report, ) parameters = { "penalty": ["l1", "l2"], "C": np.logspace(-3, 3, 7), "solver": ["newton-cg", "lbfgs", "liblinear"], } lr = LogisticRegression() clf = GridSearchCV(lr, parameters, cv=5, verbose=5, n_jobs=3) clf.fit(X_train, y_train.ravel()) print("Tuned Hyperparameters :", clf.best_params_) print("Accuracy :", clf.best_score_) logreg = LogisticRegression( C=100, penalty="l2", solver="liblinear", ) logreg.fit(X_train, y_train) y_pred = logreg.predict(X_test) print("Accuracy:", logreg.score(X_test, y_test)) import sklearn.metrics as metrics classification_report_tuned = metrics.classification_report(y_test, y_pred) print(classification_report_tuned) acc_scr_log_yuned = accuracy_score(y_test, y_pred) print("Overall accuracy of logistic regression model:", acc_scr_log_yuned) # # Applying XG Boost algorithm param_grid = { "max_depth": [3, 4, 5, 7], "learning_rate": [0.1, 0.01, 0.05], "gamma": [0, 0.25, 1], "reg_lambda": [0, 1, 10], "scale_pos_weight": [1, 3, 5], "subsample": [0.8], "colsample_bytree": [0.5], } xgb_cl = xgb.XGBClassifier(objective="binary:logistic") # Init Grid Search grid_cv = GridSearchCV(xgb_cl, param_grid, n_jobs=-1, cv=3, scoring="roc_auc") # Fit _ = grid_cv.fit(X_train, y_train) print(grid_cv.best_score_) print(grid_cv.best_params_) # Insert the new fixed values to the grid param_grid["scale_pos_weight"] = [3] param_grid["subsample"] = [0.8] param_grid["colsample_bytree"] = [0.5] # Give new value ranges to other params param_grid["gamma"] = [3, 5, 7] param_grid["max_depth"] = [9, 15, 20] param_grid["reg_lambda"] = [10, 30, 50] param_grid["learning_rate"] = [0.3, 0.5, 0.7, 1] grid_cv_2 = GridSearchCV(xgb_cl, param_grid, cv=3, scoring="roc_auc", n_jobs=-1) _ = grid_cv_2.fit(X_train, y_train) print(grid_cv_2.best_score_) print(grid_cv_2.best_params_) final_cl = xgb.XGBClassifier(**grid_cv.best_params_) _ = final_cl.fit(X_train, y_train) pred_gs = final_cl.predict(X_test) acc_scr_gs = accuracy_score(y_test, pred_gs) print("Overall accuracy of XG Boost_gs model:", acc_scr_gs)
# [Rapids](https://rapids.ai) is an open-source GPU accelerated Data Science and Machine Learning library, developed and mainatained by [Nvidia](https://www.nvidia.com). It is designed to be compatible with many existing CPU tools, such as Pandas, scikit-learn, numpy, etc. It enables **massive** acceleration of many data-science and machine learning tasks, oftentimes by a factor fo 100X, or even more. # Rapids is still undergoing developemnt, and as of right now it's not availabel in the Kaggle Docker environment. If you are interested in installing and riunning Rapids locally on your own machine, then you shoudl [refer to the followong instructions](https://rapids.ai/start.html). # The first successful install of a Rapids library on kaggle was done by [Chris Deotte](https://www.kaggle.com/cdeotte) in the follwiong [Digit Recognizer kernel](https://www.kaggle.com/cdeotte/rapids-gpu-knn-mnist-0-97). An improved install version that uses a Kaggle Dataset for install can be found [here](https://www.kaggle.com/cdeotte/rapids-data-augmentation-mnist-0-985). In this kerenl we'll follow that approach. import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. # INSTALL RAPIDS OFFLINE (FROM KAGGLE DATASET). TAKES 1 MINUTE :-) import sys sys.path = ( ["/opt/conda/envs/rapids/lib"] + ["/opt/conda/envs/rapids/lib/python3.6"] + ["/opt/conda/envs/rapids/lib/python3.6/site-packages"] + sys.path ) from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, roc_auc_score import cudf, cuml import cupy as cp from cuml.linear_model import LogisticRegression train = pd.read_csv("../input/digit-recognizer/train.csv") submission = pd.read_csv("../input/digit-recognizer/sample_submission.csv") train.head() submission.head() y = train["label"].values y train_tsne = np.load("../input/mnist-2d-t-sne-with-rapids/train_2D.npy") test_tsne = np.load("../input/mnist-2d-t-sne-with-rapids/test_2D.npy") train_x, val_x, train_y, val_y = train_test_split(train_tsne, y, test_size=0.10) clf = LogisticRegression(C=0.1) clf.fit(train_x, train_y.astype("float32")) preds = clf.predict(val_x) np.mean(cp.array(val_y) == preds.values.astype("int64")) train_umap = np.load("../input/mnist-2d-umap-with-rapids/train_2D.npy") test_umap = np.load("../input/mnist-2d-umap-with-rapids/test_2D.npy") train_x, val_x, train_y, val_y = train_test_split(train_umap, y, test_size=0.10) clf = LogisticRegression(C=12) clf.fit(train_x, train_y.astype("float64")) preds = clf.predict(val_x) np.mean(cp.array(val_y) == preds.values.astype("int64")) train_y.astype("float32") train_both = np.hstack([train_umap, train_tsne]) test_both = np.hstack([test_umap, test_tsne]) train_x, val_x, train_y, val_y = train_test_split(train_both, y, test_size=0.10) clf = LogisticRegression(C=1) clf.fit(train_x, train_y.astype("float64")) preds = clf.predict(val_x) np.mean(cp.array(val_y) == preds.values.astype("int64")) test_preds = clf.predict(test_both) submission["Label"] = test_preds submission.to_csv("submission.csv", index=False)
# # cross validation from sklearn.datasets import load_iris from sklearn.linear_model import LinearRegression from sklearn.model_selection import KFold from sklearn.metrics import mean_squared_error import numpy as np iris = load_iris() x, y = iris.data, iris.target kf = KFold(n_splits=5, shuffle=True, random_state=42) # shuffle true ise veri kümesi herbir katman için rastgele bir şekilde karıştırılacak demektir. # random state farklı çalışmalarda aynı sonuç elde etmek için kullanılır. model = LinearRegression() scores = [] for train_index, test_index in kf.split(x): x_train, x_test = x[train_index], x[test_index] y_train, y_test = y[train_index], y[test_index] model.fit(x_train, y_train) y_pred = model.predict(x_test) score = mean_squared_error(y_test, y_pred) scores.append(score) mean_score = np.mean(scores) print("k fold cross validation", scores) print("ortalama hata skoru", mean_score)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session train_twitter = pd.read_csv( "/kaggle/input/twitter-with-steming/twitter-entity-sentiment-analysis-with-stemming (1).csv" ) train_twitter train_twitter["Tweet"] = train_twitter["Tweet"].astype(str) train_twitter["Tweet"] = train_twitter["Tweet"].str.split(" ") train_twitter import gensim tokenized_tweet = train_twitter["Tweet"] model_w2v = gensim.models.Word2Vec( tokenized_tweet, window=5, min_count=2, sg=1, hs=0, negative=10, workers=32, seed=34 ) model_w2v.train(tokenized_tweet, total_examples=len(train_twitter["Tweet"]), epochs=20) len(model_w2v.wv["good"]) def word_vector(tokens, size): vec = np.zeros(size).reshape((1, size)) count = 0 for word in tokens: try: vec += model_w2v.wv[word].reshape((1, size)) count += 1 except KeyError: continue if count != 0: vec /= count return vec word2vec_arrays = np.zeros((len(tokenized_tweet), 100)) for i in range(len(tokenized_tweet)): word2vec_arrays[i, :] = word_vector(tokenized_tweet[i], 100) word2vec_df = pd.DataFrame(word2vec_arrays) word2vec_df.shape model_w2v.wv["good"] from sklearn.model_selection import train_test_split xtrain_bow, svalid_bow, ytrain, yvalid = train_test_split( train_twitter["Tweet"], train_twitter["Sentiment"], random_state=42, test_size=0.3 ) index_train_t = pd.DataFrame(ytrain.index) index_train_t.columns = ["Indice"] index_train_t index_train_t.to_csv("twitter-index-train.csv", index=False) index_test_t = pd.DataFrame(yvalid.index) index_test_t.columns = ["Indice"] index_test_t index_test_t.to_csv("twitter-index-test.csv", index=False) from sklearn import svm, datasets from sklearn.model_selection import GridSearchCV from sklearn.metrics import f1_score parameters = {"kernel": ("linear", "rbf"), "C": [1, 10]} xtrain_w2v = word2vec_df.iloc[index_train_t.Indice, :] xvalid_w2v = word2vec_df.iloc[index_test_t.Indice, :] ytrain = train_twitter.iloc[index_train_t.Indice, :]["Sentiment"] yvalid = train_twitter.iloc[index_test_t.Indice, :]["Sentiment"] svc = svm.SVC() clf = GridSearchCV(svc, parameters) clf.fit(xtrain_w2v, ytrain) print(clf.best_estimator_) predictions = clf.predict(xvalid_w2v) from sklearn import metrics from sklearn.preprocessing import LabelEncoder from sklearn.base import clone from sklearn.preprocessing import label_binarize from scipy import interp from sklearn.metrics import roc_curve, auc import concurrent.futures def get_metrics(true_labels, predicted_labels): parameters = [] parameters.append( np.round(metrics.accuracy_score(true_labels, predicted_labels), 4) ) parameters.append( np.round( metrics.precision_score(true_labels, predicted_labels, average="weighted"), 4, ) ) parameters.append( np.round( metrics.metrics.recall_score( true_labels, predicted_labels, average="weighted" ), 4, ) ) parameters.append( np.round(metrics.f1_score(true_labels, predicted_labels, average="weighted"), 4) ) print("Accuracy:", parameters[0]) print("Precision:", parameters[1]) print("Recall:", parameters[2]) print("F1 Score:", parameters[3]) return parameters def display_classification_report(true_labels, predicted_labels, classes=[1, 0]): report = metrics.classification_report( true_labels, predicted_labels, ) print(report) return report def display_confusion_matrix(true_labels, predicted_labels, classes=[1, 0]): total_classes = len(classes) level_labels = [total_classes * [0], list(range(total_classes))] cm = metrics.confusion_matrix(true_labels, predicted_labels) cm_frame = pd.DataFrame( cm, pd.MultiIndex([["Predicted:"], classes], level_labels), pd.MultiIndex([["Actual:"], classes], level_labels), ) print(cm_frame) def display_model_performance_metrics(true_labels, predicted_labels, classes=[1, 0]): print("Model Performance metrics:") print("-" * 30) parameters = get_metrics(true_labels, predicted_labels) print("\nModel Classification report:") print("-" * 30) report = display_classification_report(true_labels, predicted_labels, classes) print("\nPrediction Confusion Matrix:") print("-" * 30) display_confusion_matrix(true_labels, predicted_labels, classes) return parameters, report display_model_performance_metrics(yvalid, predictions, [0, 4])
# --- # --- # # Préparation / consignes # - Votre travail consiste à compléter ce cadre de TP. # - Vous pouvez (hmmm devez ?) ajouter des blocs de code comme des blocs d'explication. # - Les blocs d'explication sont au format Markdown : [markdown](https://www.markdownguide.org/cheat-sheet/). # - Le rendu est une version imprimée de cette ```frame```. # - Pensez à faire des ```commit``` régulièrement # - Il est posible de créer une copie locale de votre travail ```file / Download Notebook``` # --- # --- # # TP L3 ISIMA : arbres de décision # --- # Les principaux points abordés dans ce TP sont : # - La construction des ensembles à manipuler (apprentissage, test, validation) # - La visualisation des données # - Le choix des critères de séparation pour la création d'un arbre de décision # + cas où la séparation peut s'effectuer sur un unique attribut # + cas où la sépararation est linéaire, mais doit faire intervenir plusieurs attributs # - La construction de l'arbre # - Le jugement de la qualité de l'apprentissage # - Découverte de sklearn # ## Charger les librairies # - numpy # - pandas # - seaborn # - matplotlib.pyplot # Dans la suite ajouter les imports dans cette cellule. # Charger les bibliothèques demandées import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt print("Setup complete.") # ## Charger la base de données 'Iris Species' dans l'environnement # - Commencer par incorporer la BD dans le kernel : *add data* dans la 'frame' de droite # - Utiliser la commande pandas permettant de charger le fichier CSV des données # - N'oubliez pas de vérifier l'apparence du résultat en affichant les premières lignes # # Rappel : les données se trouvent dans "../input/", dont on peut lister le contenu par : # ``` # import os # print(os.listdir("../input/")) # ``` # # Charger la BD import os print(os.listdir("../input/iris")) iris_filepath = "../input/iris/Iris.csv" iris = pd.read_csv(iris_filepath, index_col="Id") # Cette base de donnée est trop bien nettoyée... A des fins pédagogiques, nous allons la déterriorer. # Exécuter la ligne suivante : ```iris[np.random.rand(150,5)<0.05]=np.nan``` iris[np.random.rand(150, 5) < 0.05] = np.nan # ## Examiner le contenu de cette base de données # - Lister les 5 premières lignes (préférer```display``` à ```print```) # - Afficher le nombre de lignes ainsi que le nombre de colonnes # - Afficher un résumé statistique simple de cette base # Réaliser les premiers affichages display(iris.head()) display(iris.shape) display(iris.describe()) # ## Vérifier qu'il n'y a pas de données absentes # - Pour chaque attribut, compter le nombre de données manquantes. # - Supprimer les lignes possédant au moins une donnée manquante (c'est la façon la plus simple de se débarrasser du problème) # - Combien d'exemples ont-ils été ainsi perdus ? # - Réfléchir à d'autres façons de traiter les données absentes (conseil : revenir à ce point à la fin du TP) # On s'intéresse aux donnés manquantes... data_number = iris.shape[0] print("Nombre de données manquantes :") print("Pour l'attribut SepalLengthCm :") display(iris[pd.isnull(iris.SepalLengthCm)].shape[0]) print("Pour l'attribut SepalWidthCm :") display(iris[pd.isnull(iris.SepalWidthCm)].shape[0]) print("Pour l'attribut PetalLengthCm :") display(iris[pd.isnull(iris.PetalLengthCm)].shape[0]) print("Pour l'attribut PetalWidthCm :") display(iris[pd.isnull(iris.PetalWidthCm)].shape[0]) print("Pour l'attribut Species :") display(iris[pd.isnull(iris.Species)].shape[0]) ##### iris = iris.dropna() display(iris.shape) print("On a perdu : ") print(data_number - iris.shape[0], " données") # Comment on aurait pu faire... # # Représentation de la distribution des attributs # ## Pour chaque attribut, représenter sa distribution (une courbe par variété) # - Histogramme # - Boîte à moustache # - Diagramme en violon # - Estimation par fonction noyau de la densité # NB : pour obtenir une présentation correcte, il peut être utile d'utiliser ```fig,ax = plt.subplots(paramètres)``` pour définir la présentation des graphiques, puis ```plt.sca(ax[i])``` afin de choisir dans quel sous graphique écrire. # Premiers graphiques # ## Les ensembles de travail # - l'ensemble d'apprentisage : iris_Train, 70% des données # - l'ensemble de validation : iris_Test, 20% des données # - l'ensemble de test : iris_Validation, 10% des données # ### Rappeler la fonction de chacun de ces ensembles # Réponse : ... # ## Créer ces ensembles # - Charger ```train_test_split``` du module ```sklearn.model_selection``` # - Séparer iris en observations (les attributs observables) et classe (la variété) # - Lire le manuel de ```train_test_split``` # - Examiner en particulier l'option stratify, la mettre en oeuvre # - Se poser la question de l'intérêt de random_state # - Par deux applications de cette fonction, créer les 6 ensembles train_X, train_Y, test_X, test_Y, validation_X, validation_Y (conseil, vérifier les tailles des ensembles obtenus) # import puis utilisation pour fabriquer les trois ensembles # --- # --- # # Mise en place manuelle d'un arbre de décision # --- # --- # # Première découpe : (travail sur **iris_Train**) # ## Représenter tous les couples d'attributs possibles # - Diagrammes points ou points # - Densité ou histogramme ou boîte à moustaches # *** (utiliser *pair*grid du module seaborn)*** # Retour sur des graphiques, mais cette fois pour réaliser l'apprentissage # ## Commenter les graphismes obtenus # - Y a-t-il une variété aisément séparable ? # - Quels attributs permettent de la séparer des deux autres ? # - Quels graphiques ont permis de choisir cet attribut ? # Réponses : # ## Choisir la racine de l'arbre de décision : # - attribut sur lequel effectuer la séparation # - valeur du seuil à utiliser # Réponse # ## Ecrire une fonction niveau0 # - Prenant en entrée une description # - Renvoyant une estimation de la variété d'iris (pour l'instant, il n'y a que deux 'variétés', celle qu'on a séparé et 'le reste' que l'on note ici ```???```) # NB : une utilisation de votre fonction peut être par exemple : ```niveau0(iris_Train_X)``` doit renvoyer ```iris_Train_Y``` si l'apprentissage est parfait (ce qui n'est en général pas bon signe...) # NB2 : vous devez renvoyer un DataFrame possédant un unique attribut que vous nommerez # NB3 : mettre en oeuvre apply de pandas # # Fonction niveau0 # # Niveau suivant de l'arbre # On devrait maintenant construire pour chacune des valeurs de sortie de *niveau0* une fonction permettant d'affiner la classification. Ici, le travail est simplifié, car une des deux classes obtenues par *niveau0* est parfaitement homogène, on ne va donc affiner que la partie corrrespondant à la réponse *???* de la sortie de *niveau0*. Dans le cas général, il faudrait suivre la même procédure sur l'autre sous-arbre. # ## Filtrer dans la base de test les éléments dont la réponse par *niveau0* est '???' # - Appeller cette base train_2 # - la séparer en train_X_2, train_Y_2 # ** Si nécessaire, faire un reset d'index : df.reset_index(drop=True, inplace = True) ** # Ne pas oublier d'effectuer les reset d'index # ## Recommencer le graphique des paires, afin de déterminer la meilleure séparation # Reprise des graphiques, en se limittant aux données du sous-arbre '???' # ## Dur Dur # Il semble ici nettement plus difficile de déterminer la meilleure façon de classer : # - aucune coupe verticale ne semble nettement meilleure que les autres # - aucune coupe diagonale ne semble résoudre le problème # - peut-être existe-il une coupe en dimension supérieure qui serait satisfaisante, mais à partir de la dimension 3, les choses deviennent difficiles à voir... # 1) Donner une situation (non présente ici) où il n'y aurait aucune coupe verticale satisfaisante mais où il y aurait une coupe oblique convenable, si possible généraliser à trois variables. # 2) Montrer dans un exemple simple en dimension 2 (sur un domaine compact) que par une infinité de coupes verticales il est possible d'obtenir une coupe oblique. # Solution : # ## Recherche de la meilleure coupe # On va rechercher parmi tous les attributs celui qui semble permettre la meilleure séparation entre les deux variétés d'iris restantes. Pour cela, on va envisager une coupe selon n'importe quel attribut, et pour n'importe quelle valeur de seuil, puis on réalisera un balayage des coupes verticales possibles, et on conservera la moins mauvaise. # ** Il existe des méthodes plus efficaces (heureusement) que celle présentée ici, cf. Séparateurs à Vastes Marges ** # Ecrire une fonctionnelle *separe* prenant comme entrées : # - un attribut 'att' # - un seuil # - une étiquette 'A' # - une étiquette 'B' # qui renvoie une fonction qui prend en entrée une situation et qui renvoie 'A' si cette situation a sont attribut *att < seuil* et 'B' sinon # ** Normalement vous devriez pouvoir prendre *niveau0* comme base de travail** # ## Choix de la 'meilleure' coupe verticale # Les mesures que vous devez connaître sont : # - la matrice de confusion # - Le taux de bonne prédiction (accuracy) $\frac{VP + VN}{VP+VN+FP+FN}$ # - Le taux de vrais positifs / rappel (recall, sensitivity) $\frac{VP }{VP+FN}$ # - Le taux de vrais négatifs (specificity) $\frac{VN}{VN+FP}$ # - La précision $\frac{VP }{VP + FP}$ # - La F_1 mesure $2 \times \frac{rappel \times précision}{rappel + précision}$ # - La courbe ROC # - Le score ROC # Si un besoin d'aide sur ces mesures se fait sentir : [Evaluating classifiers](https://www.youtube.com/watch?v=FAr2GmWNbT0) # On choisit de définir la meilleure coupe comme celle ayant le meilleur taux de prédiction. # Ecrire une fonction de balayage renvoyant le tuple *(attribut, seuil, A, B)* (ou la fonction permettant le taux de prédiction) maximisant le taux de prédiction. On nomme mc niveau1_d la fonction de classification obtenue. # NB1 : il n'est pas demandé un algo malin, mais un simple balayage... qui peut prendre un temps important :) # NB2 : penser à incorporermetrics de sklearn... # NB3 : faire attention à bien choisir l'ensemble sur lequel on travaille (apprentissage ?, test ?, validation ?) # ## Construction du classifieur chaînant les deux premier classifieurs # Créer une fonction de classification qui enchaîne les deux fonctions **niveau0** et **niveau1_d**, nommer la fonction obtenue **arbre** # --- # # Juger de la qualité du travail !! # --- # Juger de la qualité du résultat est très important, cela permet # - De choisir entre plusieurs modèles le plus adapté # - De déterminer des pistes d'amélioration d'un modèle # - D'évaluer les capacités du modèle lorsqu'il sera mis en production # ## Sur quel ensemble doit-on juger de la qualité ? # Expliquer l'intéret de mesurer la qualité sur chacun des ensembles # - Ensemble d'apprentissage : # - Ensemble de validation : # - Ensemble de test : # ## Expliquer l'intéret de chacune des mesures précédentes, et proposer un exemple pertinent pour chacune d'elles justifiant son existence # - la matrice de confusion : # - Le taux de bonne prédiction (accuracy) : # - Le taux de vrais positifs / rappel (recall, sensitivity) : # - Le taux de vrais négatifs (specificity) : # - La précision : # - La F_1 mesure : # ## A l'aide de sklearn.metric, évaluer les différentes mesures, commenter # ## Coupes en 'diagonale' # On a choisi d'effectuer des coupes sur un attribut (un côté gauche, et un côté droit). Il est possible également de découper l'espace en deux demi-espaces. Dans l'absolu, outes les découpes sont possibles. On s'intéresse ici des découpes observables par le graphique des paires. # Réobserver le graphique, et déterminer s'il existe une découpe plus efficace que celle trouvée précédement. # - Il n'est pas demandé de la réaliser (mais vous le pouvez :)) # - Exposer une situation à 3 attributs où il n'existe pas de coupe par plan sur 2 paramètres alors qu'il existe un plan séparateur parfait. (ils ne sont linéairement séparables dans aucun des graphiques 'paires' mais sont pourtant linéairement séparables) # ### Réponses : # --- # # Arbre de décision réalisés par sklearn # --- # - importer le module ```tree``` de ```sklearn``` # - Etudier la documentation de ```DecisionTreeClassifier```, en particulier la partie **Tips on practical use** # - Construire un classifieur utilisant l'indice de Gini # ## Qualification # - Calculer les scores utilisés dans ce TP # - Comparer les scores à ceux obtenus par un classifieur 'bidon' (sklearn.dummy) (à quoi cela sert-il ?) # Rq : il reste un bug dans dummy, si vous obtenez une erreur de type 'no argmax on list', un contournement de ce problème peut être obtenu en reformattant les entrées du classifieur par 'check_X_y' # # Construction du 'meilleur' arbre de décision # - Faire varier les paramètres de construction de l'arbre de décision (bien mettre en pratique les 'Tips') # - Pour chaque série de paramètres, qualifier le résultat sur l'ensemble de test # - Choisir l'arbre le 'meilleur' sur l'ensemble de test # N'oubliez pas le principe du ** rasoir d'Ockham ** pour effectuer votre choix !!!!! # jouer avec les paramètres, et à chaque fois juger de la qualité, jusqu'à obtenir votre 'meilleur arbre # ## Au fait, à quoi sert l'ensemble de validation ?? # - Utiliser l'ensemble de validation pour donner la qualification finale de votre arbre # - Pourquoi cette qualification ne peut-elle pas être obtenue à partir de l'ensemble de test ? # # Faire la qualification finale # Réponse à l'utilité de l'ensemble de validation : # ## Il est possible de représenter un arbre de décision # - Importer le module graphviz # - utiliser la fonction de ```tree.export_graphviz``` puis ```graphviz.Source``` afin de réaliser une belle représentation graphique # --- # # Random Forest # --- # - Rappeler le principe des forets d'arbres décisionnelles # - Remplacer le classifieur par arbre de décision par un classifieur par une forêt d'arbres décisionnels # # Optimisation des paramètres # - Utiliser une 'gridSearch' de sklearn afin de rechercher les meilleurs paramètres de la forêt # # Choisir les meileurs paramètres en utilisant l'ensemble de test, expliquer ce qu'est la validation croisée # Réponse : # # Merci d'être allé jusqu'à la fin du TP, j'espère que ce travail vous a aidé à approfondir votre compréhension du cours d'apprentissage artificiel. A bientôt pour la suite :) import pandas as pd Iris = pd.read_csv("../input/iris/Iris.csv")
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # **Importing Libraries** import matplotlib.pyplot as plt import seaborn as sns from sklearn.metrics import classification_report from sklearn import metrics from sklearn import tree from sklearn.model_selection import cross_val_score crop = pd.read_csv("/kaggle/input/crop-recommendation-dataset/Crop_recommendation.csv") crop.head(5) # # Data Analysis crop.isnull().sum() crop.info() crop.describe() crop.columns crop.shape crop["label"].unique() crop["label"].nunique() crop["label"].value_counts() fig, ax = plt.subplots(1, 1, figsize=(15, 9)) sns.heatmap(crop.corr(), annot=True, cmap="viridis") plt.title("Correlation between different features", fontsize=15, c="black") plt.show() crop_summary = pd.pivot_table(crop, index=["label"], aggfunc="mean") crop_summary.head() x = crop_summary.index y1 = crop_summary["N"] y2 = crop_summary["P"] y3 = crop_summary["K"] color1 = "mediumvioletred" color2 = "springgreen" color3 = "dodgerblue" fig, ax = plt.subplots(figsize=(10, 6)) ax.bar(x, y1, color=color1, label="Nitrogen") ax.bar(x, y2, color=color2, bottom=y1, label="Phosphorous") ax.bar(x, y3, color=color3, bottom=y1 + y2, label="Potash") ax.set_title("N-P-K values comparision between crops") ax.set_xlabel("Crop") ax.set_ylabel("Nutrient Value") plt.xticks(rotation=-45, ha="left", va="top") ax.legend() plt.subplots_adjust(bottom=0.2) plt.show() x = crop_summary.index y1 = crop_summary["temperature"] y2 = crop_summary["humidity"] y3 = crop_summary["rainfall"] fig, ax = plt.subplots(figsize=(10, 6)) ax.bar(x, y1, color=color1, label="Temperature") ax.bar(x, y2, color=color2, bottom=y1, label="Humidity") ax.bar(x, y3, color=color3, bottom=y1 + y2, label="Rainfall") ax.set_title("Temperature-Humidity-Rainfall values comparision between crops") ax.set_xlabel("Crop") ax.set_ylabel("Environmental Values") plt.xticks(rotation=-45, ha="left", va="top") ax.legend() plt.subplots_adjust(bottom=0.2) plt.show() # # Clustering plt.scatter(crop["humidity"], crop["rainfall"]) clst = crop.loc[:, ["humidity", "rainfall"]].values print(clst.shape) clst_data = pd.DataFrame(clst) clst_data.head() from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler() clst_scaled = scaler.fit_transform(clst_data) clst_scaled = pd.DataFrame(clst_scaled, columns=["humidity", "rainfall"]) from sklearn.cluster import KMeans wcss = [] for i in range(1, 11): km = KMeans(n_clusters=i, init="k-means++") km.fit(clst_data) wcss.append(km.inertia_) sns.set() plt.plot(range(1, 11), wcss) plt.title("The Elbow Point Graph") plt.xlabel("Number of Clusters") plt.ylabel("WCSS") plt.show() km = KMeans(n_clusters=2, init="k-means++", max_iter=300, n_init=10, random_state=0) y_means = km.fit_predict(clst_scaled) a = crop["label"] y_means = pd.DataFrame(y_means) z = pd.concat([clst_scaled["humidity"], clst_scaled["rainfall"], y_means, a], axis=1) z = z.rename(columns={0: "cluster"}) print("Crops in First Cluster:", z[z["cluster"] == 0]["label"].unique()) print("Crops in Second Cluster:", z[z["cluster"] == 1]["label"].unique()) centers = km.cluster_centers_ print(centers) c1 = z[z["cluster"] == 0] c2 = z[z["cluster"] == 1] plt.scatter(c1["humidity"], c1["rainfall"], color="green") plt.scatter(c2["humidity"], c2["rainfall"], color="red") plt.scatter( centers[:, 0], centers[:, 1], marker="x", s=200, linewidths=3, color="black" ) # # Splitting the dataset features = crop[["N", "P", "K", "temperature", "humidity", "ph", "rainfall"]] target = crop["label"] acc = [] model = [] from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split( features, target, test_size=0.2, random_state=2 ) # # KNN # from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier() knn.fit(x_train, y_train) predicted_values = knn.predict(x_test) x = metrics.accuracy_score(y_test, predicted_values) print("KNN Accuracy is: ", x) score = cross_val_score(knn, features, target, cv=5) print("Cross validation score: ", score) knn_train_accuracy = knn.score(x_train, y_train) print("knn_train_accuracy = ", knn.score(x_train, y_train)) knn_test_accuracy = knn.score(x_test, y_test) print("knn_test_accuracy = ", knn.score(x_test, y_test)) # # Hyperparameter Tuning # a = [] for i in range(1, 47, 2): a.append(i) len(a) from sklearn.model_selection import GridSearchCV grid_params = { "n_neighbors": a, "weights": ["uniform", "distance"], "metric": ["minkowski", "euclidean", "manhattan"], } gs = GridSearchCV(KNeighborsClassifier(), grid_params, verbose=1, cv=7, n_jobs=-1) g_res = gs.fit(x_train, y_train) gsresult = pd.DataFrame(g_res.cv_results_) gsresult.head() gsresult = pd.DataFrame(g_res.cv_results_) gsresult.head() gsresult[ ["param_metric", "param_weights", "param_n_neighbors", "mean_test_score"] ].head() g_res.best_score_ g_res.best_params_ best_knn = KNeighborsClassifier(n_neighbors=5, weights="distance", metric="manhattan") best_knn.fit(x_train, y_train) predicted_values = best_knn.predict(x_test) knn_train_accuracy = best_knn.score(x_train, y_train) print("knn_train_accuracy = ", best_knn.score(x_train, y_train)) knn_test_accuracy = best_knn.score(x_test, y_test) print("knn_test_accuracy = ", best_knn.score(x_test, y_test)) score = cross_val_score(best_knn, features, target, cv=5) print("Cross validation score: ", score) print(score.mean()) acc.append(score.mean()) model.append("K Nearest Neighbours") print(classification_report(y_test, predicted_values)) from sklearn.metrics import confusion_matrix cm_knn = confusion_matrix(y_test, predicted_values) f, ax = plt.subplots(figsize=(15, 10)) sns.heatmap(cm_knn, annot=True, linewidth=0.5, fmt=".0f", cmap="viridis", ax=ax) plt.xlabel("Predicted") plt.ylabel("Actual") plt.title("Predicted vs actual") plt.show() # # Naive Bayes from sklearn.naive_bayes import GaussianNB NaiveBayes = GaussianNB() NaiveBayes.fit(x_train, y_train) predicted_values = NaiveBayes.predict(x_test) x = metrics.accuracy_score(y_test, predicted_values) params_NB = {"var_smoothing": np.logspace(0, -9, num=100)} gs = GridSearchCV(GaussianNB(), params_NB, verbose=1, cv=7, n_jobs=-1) g_res = gs.fit(x_train, y_train) gsresult = pd.DataFrame(g_res.cv_results_) gsresult.head() g_res.best_score_ g_res.best_params_ NaiveBayes = GaussianNB(var_smoothing=1.873817422860383e-05) score = cross_val_score( GaussianNB(var_smoothing=1.873817422860383e-05), features, target, cv=5 ) print("Cross validation score: ", score) NaiveBayes.fit(x_train, y_train) nb_train_accuracy = NaiveBayes.score(x_train, y_train) print("Training accuracy = ", NaiveBayes.score(x_train, y_train)) nb_test_accuracy = NaiveBayes.score(x_test, y_test) print("Testing accuracy = ", NaiveBayes.score(x_test, y_test)) score = cross_val_score(NaiveBayes, features, target, cv=5) print("Cross validation score: ", score) print(score.mean()) acc.append(score.mean()) model.append("Naive Bayes") y_pred = NaiveBayes.predict(x_test) y_true = y_test from sklearn.metrics import confusion_matrix cm_nb = confusion_matrix(y_true, y_pred) f, ax = plt.subplots(figsize=(15, 10)) sns.heatmap(cm_nb, annot=True, linewidth=0.5, fmt=".0f", cmap="viridis", ax=ax) plt.xlabel("Predicted") plt.ylabel("Actual") plt.title("Predicted vs actual") plt.show() print(classification_report(y_true, y_pred)) # # Decision Tree from sklearn.tree import DecisionTreeClassifier DT = DecisionTreeClassifier(criterion="entropy", random_state=2, max_depth=5) DT.fit(x_train, y_train) predicted_values = DT.predict(x_test) x = metrics.accuracy_score(y_test, predicted_values) print("Decision Tree's Accuracy is: ", x) print(classification_report(y_test, predicted_values)) param_grid = { "max_features": ["auto", "sqrt", "log2"], "ccp_alpha": [0.1, 0.01, 0.001], "max_depth": [5, 6, 7, 8, 9], "criterion": ["gini", "entropy"], } gs = GridSearchCV( estimator=DecisionTreeClassifier(), param_grid=param_grid, cv=5, verbose=True ) gs.fit(x_train, y_train) g_res = gs.fit(x_train, y_train) gsresult = pd.DataFrame(g_res.cv_results_) gsresult.head() g_res.best_score_ g_res.best_params_ DT = DecisionTreeClassifier( ccp_alpha=0.001, criterion="entropy", max_depth=9, max_features="log2" ) score = cross_val_score(DT, features, target, cv=5) print("Cross validation score: ", score) print(score.mean()) acc.append(score.mean()) model.append("Decision Tree") DT.fit(x_train, y_train) dt_train_accuracy = DT.score(x_train, y_train) print("Training accuracy = ", DT.score(x_train, y_train)) dt_test_accuracy = DT.score(x_test, y_test) print("Testing accuracy = ", DT.score(x_test, y_test)) y_pred = DT.predict(x_test) y_true = y_test from sklearn.metrics import confusion_matrix cm_dt = confusion_matrix(y_true, y_pred) f, ax = plt.subplots(figsize=(15, 10)) sns.heatmap(cm_dt, annot=True, linewidth=0.5, fmt=".0f", cmap="viridis", ax=ax) plt.xlabel("Predicted") plt.ylabel("Actual") plt.title("Predicted vs actual") plt.show() # # Random Forest from sklearn.ensemble import RandomForestClassifier RF = RandomForestClassifier(n_estimators=20) RF.fit(x_train, y_train) predicted_values = RF.predict(x_test) x = metrics.accuracy_score(y_test, predicted_values) print("Random Forest Accuracy is: ", x) print(classification_report(y_test, predicted_values)) score = cross_val_score(RF, features, target, cv=5) print("Cross validation score: ", score) print(score.mean()) acc.append(score.mean()) model.append("Random Forest") rf_train_accuracy = RF.score(x_train, y_train) print("Training accuracy = ", RF.score(x_train, y_train)) rf_test_accuracy = RF.score(x_test, y_test) print("Testing accuracy = ", RF.score(x_test, y_test)) y_pred = RF.predict(x_test) y_true = y_test cm_rf = confusion_matrix(y_true, y_pred) f, ax = plt.subplots(figsize=(15, 10)) sns.heatmap(cm_rf, annot=True, linewidth=0.5, fmt=".0f", cmap="viridis", ax=ax) plt.xlabel("Predicted") plt.ylabel("Actual") plt.title("Predicted vs actual") plt.show() # # SVC from sklearn.svm import SVC SVM = SVC() SVM.fit(x_train, y_train) predicted_values = SVM.predict(x_test) x = metrics.accuracy_score(y_test, predicted_values) print("SVM's Accuracy is: ", x) print(classification_report(y_test, predicted_values)) from sklearn.svm import SVC from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler clf = make_pipeline(StandardScaler(), SVC()) clf.fit(x_train, y_train) param_grid = { "C": [0.1, 1, 10], "gamma": [1, 0.1, 0.01, "auto", "scale"], "kernel": ["linear", "poly", "rbf"], } gs = GridSearchCV(SVC(), param_grid, refit=True, verbose=3) gs.fit(x_train, y_train) gs.best_score_ gs.best_params_ SVM = SVC(C=10, gamma=1, kernel="linear") score = cross_val_score(SVM, features, target, cv=5) print("CV score", score) print(score.mean()) acc.append(score.mean()) model.append("SVC") SVM.fit(x_train, y_train) svc_train_accuracy = SVM.score(x_train, y_train) print("Training accuracy = ", SVM.score(x_train, y_train)) rf_test_accuracy = SVM.score(x_test, y_test) print("Testing accuracy = ", SVM.score(x_test, y_test)) y_pred = SVM.predict(x_test) y_true = y_test cm_rf = confusion_matrix(y_true, y_pred) f, ax = plt.subplots(figsize=(15, 10)) sns.heatmap(cm_rf, annot=True, linewidth=0.5, fmt=".0f", cmap="viridis", ax=ax) plt.xlabel("Predicted") plt.ylabel("Actual") plt.title("Predicted vs actual") plt.show() # # PCA from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X_scaled = scaler.fit_transform(features) pca = PCA(n_components=3) X_pca = pca.fit_transform(X_scaled) print("Explained Variance Ratio:", pca.explained_variance_ratio_) print("Transformed Data:") print(X_pca) X_pca.shape x_trainPca, x_testPca, y_train, y_test = train_test_split( X_pca, target, test_size=0.2, random_state=2 ) NaiveBayes.fit(x_trainPca, y_train) y_pred = NaiveBayes.predict(x_testPca) y_true = y_test NaiveBayes.score(x_testPca, y_test) # 29% accuracy dropped with PCA. # # Results modeldict = {"Model Name": model, "Accuracy": acc} modelDF = pd.DataFrame(modeldict) modelDF
# # Udacity weatherData project # ## Import OS and librarys import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) import numpy as np import pandas as pd import matplotlib.pyplot as plt # ## Data preparation # ### Reading in the CSV files and explore data frame dfMUC = pd.read_csv("../input/resultsMUC.csv") dfWORLD = pd.read_csv("../input/resultsWORLD.csv") dfMUC.describe() # One can observe that the count for ```year```and ```avg_temp```is inconsistent. A quick view on the ```head()```of the data frame unveils that ```avg_temp```contains several rows with ```NaN```values. This can cause problems calculating the *moving average* and therefore, need to be removed first. dfMUC_clean = dfMUC.dropna() # As explained [here](https://datatofish.com/dropna/), the ```df.dropna()```function is applied and the value count for both. # ### Read in ```resultsWORLD.csv``` and explore data frame dfWORLD.describe() # The ```dfWORLD```data frame doesn't have any inconsistencies and therefore, can be kept. # ### Cleaning and merging # ## Calculating the moving-average # Next, we're going to calculate the moving-average using panda's ```df.rolling()```function. dfWORLD["MA"] = dfWORLD.rolling(window=10)["avg_temp"].mean() dfWORLD["MA"] = dfWORLD["MA"].round(2) dfWORLD.head(10)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import os import matplotlib.pyplot as plt import seaborn as sns for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) df = pd.read_csv("/kaggle/input/country-gdp/countries.csv") df.head() print("Shape:", df.shape) print("Columns:", df.columns) df.info() df.describe() df.isnull().sum() df.duplicated().any() print("Total Rows in dataset -", df.shape[0], "Rows \n") for columns in df.columns: print("Unique values in", columns, ":", df[columns].nunique(), "\n") # Continent df["Continent"].value_counts() df["Continent"].value_counts().plot(kind="pie") # ## Population # most Populated Country in each Continent for value in df["Continent"].unique(): dfn = df[df["Continent"] == value] max_value = dfn[["Country", "Population"]][ dfn["Population"] == dfn["Population"].max() ] print(value, "\n\n", max_value.to_string(index=False), "\n") # Least Populated Country in each Continent for value in df["Continent"].unique(): dfn = df[df["Continent"] == value] max_value = dfn[["Country", "Population"]][ dfn["Population"] == dfn["Population"].min() ] print(value, "\n\n", max_value.to_string(index=False), "\n") # ## IMF GDP gdp = df[["IMF_GDP", "UN_GDP", "GDP_per_capita"]] for col in gdp: print(col, "Max:", df[col].max(), "\n") IMF_df = df.sort_values(by=["IMF_GDP"], ascending=False) # top 10 countries with highest IMF_GDP IMF_df.head() df[df["IMF_GDP"] == 26695150000000.0] df[df["UN_GDP"] == 18624475000000.0] df[df["GDP_per_capita"] == 178196.57] # Max IMF GDP Country in each Continent for value in df["Continent"].unique(): dfn = df[df["Continent"] == value] max_value = dfn[["Country", "Population", "IMF_GDP"]][ dfn["IMF_GDP"] == dfn["IMF_GDP"].max() ] print(value, "\n\n", max_value.to_string(index=False), "\n") # Min IMF_GDP Country in each Continent for value in df["Continent"].unique(): dfn = df[df["Continent"] == value] max_value = dfn[["Country", "Population", "IMF_GDP"]][ dfn["IMF_GDP"] == dfn["IMF_GDP"].min() ] print(value, "\n\n", max_value.to_string(index=False), "\n") # ## UN GDP # Max UN GDP Country in each Continent for value in df["Continent"].unique(): dfn = df[df["Continent"] == value] max_value = dfn[["Country", "Population", "UN_GDP"]][ dfn["UN_GDP"] == dfn["UN_GDP"].max() ] print(value, "\n\n", max_value.to_string(index=False), "\n") # Min UN GDP Country in each Continent for value in df["Continent"].unique(): dfn = df[df["Continent"] == value] max_value = dfn[["Country", "Population", "UN_GDP"]][ dfn["UN_GDP"] == dfn["UN_GDP"].min() ] print(value, "\n\n", max_value.to_string(index=False), "\n") # ## GDP per capita # most GDP per capita Country in each Continent for value in df["Continent"].unique(): dfn = df[df["Continent"] == value] max_value = dfn[["Country", "Population", "GDP_per_capita"]][ dfn["GDP_per_capita"] == dfn["GDP_per_capita"].max() ] print(value, "\n\n", max_value.to_string(index=False), "\n") # Min GDP per capita Country in each Continent for value in df["Continent"].unique(): dfn = df[df["Continent"] == value] max_value = dfn[["Country", "Population", "GDP_per_capita"]][ dfn["GDP_per_capita"] == dfn["GDP_per_capita"].max() ] print(value, "\n\n", max_value.to_string(index=False), "\n")
# # Fraud prediction using neural network # In this analysis, we use neural network model to do fraud prediction of credit card. # First, we plot the first 5 rows of the dataset. Features V1, V2, … V28 are the principal components obtained with PCA. Feature 'Time' contains the seconds elapsed between each transaction and the first transaction in the dataset. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-senstive learning. Feature 'Class' is the response variable and it takes value 1 in case of fraud and 0 otherwise. import numpy as np import pandas as pd df = pd.read_csv("../input/creditcardfraud/creditcard.csv") df.head() df.describe() # Check is there is NaN value in the dataframe: df.isnull().any() # Here we do a simple statistic for the number of fraud samples (class 1) and the number of non-fraud samples (class 0) to check if this dataset is balanced or not. df["Class"].value_counts()
import matplotlib.pyplot as plt import numpy as np import pandas as pd from scipy.stats import pareto plt.style.use("ggplot") #### https://www.gdv.de/de/zahlen-und-fakten/versicherungsbereiche/ueberblick-24074 beitraege = pd.read_csv( "../input/versicherungends/Beitraege.csv", header=[0, 1], sep=";", nrows=13, decimal=",", ) leistungen = pd.read_csv( "../input/versicherungends/Leistungen.csv", header=[0, 1], sep=";", nrows=13, decimal=",", ) beitraege.columns = ["VERSICHERUNGSSPARTE", "2017", "2018", "VERAENDERUNG"] leistungen.columns = ["VERSICHERUNGSSPARTE", "2017", "2018", "VERAENDERUNG"] for df in [beitraege, leistungen]: for jahr in ["2017", "2018"]: df[jahr] = df[jahr].str.replace(".", "").astype(int) df.VERAENDERUNG = ( df.VERAENDERUNG.str.replace(",", ".").str.replace("%", "").astype(float) / 100 ) df.set_index("VERSICHERUNGSSPARTE", inplace=True) beitraege leistungen leistungen["2018"] / beitraege["2018"] np.random.exponential() np.random.pareto(2) pd.Series((pareto.rvs(2, size=1_000_000) - 1) * 10).hist( bins=np.linspace(0, 200, 201), figsize=(20, 9) ) pareto.cdf(x=[0.25, 0.5], b=1) pareto.ppf(0.2, b=1) pareto.mean(2) np.mean(pareto.rvs(2, size=1_000_000))
# # Logistic Regression # - Logistic Regression is an classification algorithm comes under the supervised machine learning technique. # - Logistic Regression is used to predict the category of a dependent variable based on the value of the independent variable. # - The output of logistic regression problem can be only between 0 and 1. # ## Diagram : # ![image.png](attachment:image.png) # - In figure the S-Curve is called the Sigmoid function. # - The Sigmoid function is a mathematical function used to map the predicted values to probabilities. # - The value of the Logistic Regression must be between 0 and 1, which cannot go beyond this limit, So it forms a curve like the 'S' form. # - In Logistic Regression, we use the concept of the threshold value, which defines the probability of either 0 and 1. Such as values above the threshold value tends to 1 and a value below the threshold value tends to 0. # # Assumptions for Logistic Regression # - The dependent variable must be categorical in nature. # - The independent variable should not have multi-collinearity. # # Implementation of Logistic Regression Algorithm # # Import the necessary libraries import numpy as np import pandas as pd # # Import/Load the dataset dataset = pd.read_csv(r"/kaggle/input/diabetes-dataset/diabetes.csv") dataset # # Encoding the categorical data from sklearn.preprocessing import LabelEncoder l1 = LabelEncoder() dataset["outcome"] = l1.fit_transform(dataset["outcome"]) # # Independent Variable (X) & Dependent Variable (Y) X = dataset.iloc[:, :-1] Y = dataset.iloc[:, -1] # # Split the dataset for train and test from sklearn.model_selection import train_test_split X_train, X_test, Y_train, Y_test = train_test_split( X, Y, test_size=0.25, random_state=0 ) # # Model training from sklearn.linear_model import LogisticRegression classifier = LogisticRegression() classifier.fit(X_train, Y_train) # ### **Pickle ** in Python is primarily used in serializing and deserializing a Python object structure. In other words, it's the process of converting a Python object into a byte stream to store it in a file/database, maintain program state across sessions, or transport data over the network. # #### **Install in Windows anaconda: ** # #### conda install -c conda-forge pickle5 # data.to_csv("") # SAV (Sparse Allele Vectors) is a file format for storing very large sets of genotypes # # Model Export # save the model to disk filename = "finalized_model.sav" pickle.dump(classifier, open(filename, "wb")) # # Model Import # load the model from disk loaded_model = pickle.load(open(r"/kaggle/working/finalized_model.sav", "rb")) result = loaded_model.score(X_test, Y_test) print(result) y_pred1 = loaded_model.predict(X_test) print(y_pred1) # import os # os.chdir(r'/kaggle/working') # !tar -czf Landscapes.tar.gz images_out/Landscapes # from IPython.display import FileLink # FileLink(r'Landscapes.tar.gz') # # Model prediction y_pred = classifier.predict(X_test) print(y_pred) # # Making the Confusion Matrix from sklearn.metrics import confusion_matrix cm = confusion_matrix(Y_test, y_pred) print(cm) # # Making the Accuracy Score from sklearn.metrics import accuracy_score ac = accuracy_score(Y_test, y_pred) * 100 ac
# Importing necessary Library import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import plotly.graph_objs as go import plotly as py import calendar import re import nltk from nltk.corpus import stopwords from textblob import TextBlob from textblob import Word import string from gensim import corpora from gensim.models.ldamodel import LdaModel from gensim.parsing.preprocessing import preprocess_string from gensim.models.coherencemodel import CoherenceModel # Importing Data import pandas as pd tweets_df = pd.read_csv( "../input/elon-musks-tweets/data_elonmusk.csv", encoding="latin1" ) # Overview of Dataset tweets_df.head() # We need only "Tweet" column to do our topic modelling analysis.However, I will keep "Time" column as well to show the tweet counts by months tweets_df = tweets_df.drop(["row ID", "Retweet from", "User"], axis=1) tweets_df.head() # Converting "Time" column to datetime column tweets_df["Time"] = pd.to_datetime(tweets_df["Time"]) tweets_df["Time"] = pd.to_datetime(tweets_df["Time"], format="%y-%m-%s %H:%M:%S") # Showing date column as Year-Month combination tweets_df["Time"] = pd.to_datetime(tweets_df["Time"]).dt.to_period("M") # In next few lines, I am trying to convert the date time to year and month name just in case we need for any visualization purpose tweets_df["Time"] = pd.DataFrame(tweets_df["Time"].astype(str)) tweets_df["Month"] = tweets_df["Time"].apply(lambda x: x.split("-")[1]).astype(int) tweets_df["Year"] = tweets_df["Time"].apply(lambda x: x.split("-")[0]) tweets_df["Month"] = tweets_df["Month"].apply(lambda x: calendar.month_name[x]) tweets_df["Year_month"] = tweets_df["Year"].astype(str) + tweets_df["Month"].astype(str) tweets_df = tweets_df.drop(["Month", "Year", "Time"], axis=1) tweets_df.head() # Let's start with cleaning our Tweet Column. # We will try to remove "@",userhandle id ,emoticons,RT signs,hyperlinks HANDLE = "@\w+" LINK = "https://t\.co/\w+" def basic_clean(text): text = re.sub(HANDLE, "", text) text = re.sub(LINK, "", text) return text tweets_df["clean_tweet"] = tweets_df["Tweet"].apply(lambda x: basic_clean(x)) tweets_df.head() # splitting the "clean_tweet" columns into tokens as well as basic text preprocessing e.g. stopword removal / lemmatization/spelling correction stops = stopwords.words("english") tweets_df["clean_tweet"] = tweets_df["clean_tweet"].apply( lambda x: " ".join(word.lower() for word in x.split() if word not in stops) ) tweets_df["clean_tweet"] = tweets_df["clean_tweet"].apply( lambda x: " ".join(Word(word).lemmatize() for word in x.split()) ) retweet = ["RT", "rt", "http"] punc = [string.punctuation] + retweet tweets_df["clean_tweet"] = tweets_df["clean_tweet"].apply( lambda x: " ".join(word for word in x.split() if word not in punc) ) # Let's check our tweet column after basic cleaning tweets_df.head() # Let's implement the LDA model from Gensim tweets = tweets_df["clean_tweet"].apply(preprocess_string).tolist() tweets dictionary = corpora.Dictionary(tweets) corpus = [dictionary.doc2bow(text) for text in tweets] NUM_TOPICS = 5 lda = LdaModel(corpus, num_topics=NUM_TOPICS, id2word=dictionary, passes=15) lda.print_topics(num_words=6) # In order to decide on the correct number of topics, we will need a way to assess how well the model's topics were chosen. Gensim provides a CoherenceModel instance that you can use def calculate_coherence_score(tweets, dictionary, lda): coherence_model = CoherenceModel(model=lda, text=tweets, dictionay=dictionay) return coherence_model.get_coherence() def get_coherence_values(start, stop): for num_topics in range(start, stop): print(f"\nCalculating coherence for {num_topics} topics") lda = LdaModel(corpus, num_topics=num_topics, id2word=dictionary, passes=2) coherence = calculate_coherence_score(tweets, dictionary, lda, coherence="c_v") yield coherence min_topics, max_topics = 10, 30 coherence_score = list(get_coherence_values(min_topics, max_topics))
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. import pandas as pd import numpy as np import matplotlib.pyplot as plt test = pd.read_csv("../input/digit-recognizer/test.csv") train = pd.read_csv("../input/digit-recognizer/train.csv") # ## **KERAS**: ## # It's an open-source neural-network Python library, capable of running on top of TensorFlow, Microsoft Cognitive Toolkit, R, Theano or PlaidML, for experimentation with deep neural networks (source:Wikepedia). from keras.models import Sequential from keras.layers import ( Dense, ) # This is a linear operation where every input is connected to every output by a weight. from keras.layers import Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D from keras import backend as K from keras.preprocessing import image gen = image.ImageDataGenerator() # same as: from keras.preprocessing.image import ImageDataGenerator # **Data exploration** # test-data set excludes the label column train.head(2) test.head(2) train["label"].unique() train["label"].value_counts() # check the size of both data sources train.shape, test.shape # 2-dimensions # converts labels to integers and pixels into floats X_train = (train.iloc[:, 1:].values).astype("float32") # all pixel values y_train = train.iloc[:, 0].values.astype("int32") # Labels, column 0, target X_test = test.values.astype("float32") # Reshape by adding dimension for color channel X_train_4D = X_train.reshape(X_train.shape[0], 28, 28, 1) X_test_4D = X_test.reshape(X_test.shape[0], 28, 28, 1) X_train_4D.shape, X_test_4D.shape # **Visualize** X_trainA = X_train_4D.reshape( X_train_4D.shape[0], 28, 28 ) ##This is important for images to show properly # put labels into y_train variable # visualize number of digits classes import seaborn as sns plt.figure(figsize=(15, 7)) g = sns.countplot(y_train, palette="icefire") plt.title("Number of classes") # prints a different range (beware: range over 15 fails) for i in range(10, 14): plt.subplot(330 + (i + 1)) plt.imshow(X_trainA[i], cmap=plt.get_cmap("gray")) plt.title(y_train[i]) # prints the digits in positions 0 to 5 (not the digit image) for i in range(0, 5): plt.subplot(330 + (i + 1)) plt.imshow(X_trainA[i], cmap=plt.get_cmap("gray")) plt.title(y_train[i]) # shows the pixel values of the image plt.figure() plt.imshow(X_trainA[0]) plt.colorbar() plt.grid(False) plt.show() # ### **Logistic Regression** ### # The label data as individual dataframe Labls = train[["label"]] Labls.shape Labls.head(2) Labls["label"].unique() # label as array # The label data as individual set arrayLbl = train["label"] arrayLbl.shape # split the data from sklearn.model_selection import train_test_split train_img, test_img, train_lbl, test_lbl = train_test_split( train, arrayLbl, test_size=28000, random_state=0 ) from sklearn.linear_model import LogisticRegression Lmodel = LogisticRegression( solver="lbfgs" ) # =Limited-memory Broyden–Fletcher–Goldfarb–Shanno # solver = seeks parameter weights that minimize a cost function # lbfgs solver= approximates the second derivative matrix updates with gradient evaluations # and stores only the last few updates to save memory # Source: https://towardsdatascience.com/dont-sweat-the-solver-stuff-aea7cddc3451 # fit the model Lmodel.fit(test_img, test_lbl) # **Predictions and submission** # Make predictions on entire test data predictions = Lmodel.predict(test_img) print(predictions) predictions2 = Lmodel.predict(train_img) print(predictions2) Acc = Lmodel.score(test_img, test_lbl) print(Acc) df = pd.DataFrame(predictions, columns=["ImageId"]) df.head(2) df.shape S = pd.concat([df, Labls], axis=1) S.head(2) S.info() a = S.iloc[0:28000] # from 0 to 27999 a.head(2) a.tail(2) # verify the end rows of the table a = a.astype(int) a.head(3) a = a.rename(columns={"label": "Label"}) a.info() sorted_by_img = a.sort_values("ImageId") sorted_by_img = sorted_by_lbl.astype(int) sorted_by_img.head(3) # Submit dataframe/table a containing: # ImageId,Label # 1,0 # 2,0 a.to_csv("Subms.csv", index=False)
# # Introduction # In this notebook, we test a method that will provide the best possible tradeoff between interpretability and prediction. We first make predictions that rely on a very transparent and interpretable model. For this part, we use Microsoft's ["explanable boosting machine"](https://github.com/interpretml/interpret). We then use the xgboost library to reduce our model's error of prediction. One way to put it is that our model goes as far as it is humanly interpretable. From there, we use a model with higher predictive performances to reduce the prediction mistakes. # In short: # $$(1)\;\;\; y_i = f(X_i) $$ # Where $y_i$ is the target variable, $X_i$ the features vector and $f$ is an unknown data generating process. # $$(2)\;\;\; y_i = \hat{y}_i + \lambda_i $$ # Where $\hat{y}_i$ is estimated with a glassbox model, $\lambda_i$ the prediction's residual. # $$(3)\;\;\; y_i = \hat{y}_i + \hat{\lambda}_i + \sigma_i $$ # Where $\hat{\lambda}_i$ is estimated with a blackbox model, and $\sigma_i$ is the new residual. We hypothesize that $\sum_{i=1}^{N}\lambda_i^2 > \sum_{i=1}^{N}\sigma_i^2$. # We believe it is a better method than stacking an interpretable and blackbox models, or using ex-post sensitivity tests (like SHAP), since the additive structure sets clear boundaries between the interpretable and non-intepretable parts of each prediction. # We use the dataset on houses sale in Ames Iowa prepared by Dean De Cock (2011). It is a widely used and some high quality publicly available notebooks already did a good job at exploring it. We can thus save some time building upon them to test our method. # # Environment & loading data import os os.chdir("/kaggle/input/house-prices-advanced-regression-techniques/") import warnings warnings.simplefilter(action="ignore") import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from scipy.stats import uniform, randint, norm import xgboost as xgb from sklearn.preprocessing import OneHotEncoder, scale, StandardScaler from sklearn.pipeline import make_pipeline from sklearn.compose import make_column_transformer, TransformedTargetRegressor from sklearn.impute import SimpleImputer from sklearn.model_selection import ( cross_val_score, GridSearchCV, KFold, RandomizedSearchCV, train_test_split, ) from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, mean_absolute_error from math import sqrt # Installing Microsoft's package for "explanable boosting machine" # Set random seed np.random.seed(123) # loading data data = pd.read_csv("train.csv") # # Preprocessing # Some features of this dataset are notoriously problematic. In a real situation, we would investigate the nature of each variable, especially for the reasons behind the missing data. We would also investigate about outliers. Since we do not wish to spend too much time on this dataset, we rely on its author's remarks and the previous works in the data science community. # ## (Almost) perfect correlation between features # We drop GarageArea, since it is almost perfectly correlated with GarageCars. Same for 1stFloorSF, TotalBsmtSF and GrLivArea, TotRmsAbvGrd. We keep the later in both cases. # ## Intended missing values # Most NAs are tagged so voluntarily. For example, the data dictionnary indicates that the PoolQc variable is missing if the property has no pool. We will thus replace them by the string "no", which will not be interpreted as missing. # ## Other missing values # Looking at the remaining missing values, we find that LotFrontage, that is the "Linear feet of street connected to property" has more than 15% of NAs. For now, we do not have an explanation for this. We will thus simply remove this feature. We do the same for the variable GarageYrBlt. # The three remaining features have less than one percent of NAs. We will deal with them in the preprocessing pipeline. The two numeric NAs will be changed for the median of the respective variable and the NA for the variable Electrical will take is most frequent value. # ## Outliers # There are five points that the author of the dataset identified as outliers. Three of them are partial sales that simply are another kind of transaction. We thus follow the recommendation of the author by removing all transactions with more than 4000 square feets of total living area (above ground). There are simply not such enough cases in the dataset to properly train a model. # droping (almost) perfectly correlated variables data.drop(["GarageArea", "1stFlrSF", "GrLivArea"], axis=1) # replacing intended NAs NA_to_no = [ "Alley", "BsmtQual", "BsmtCond", "BsmtExposure", "BsmtFinType1", "BsmtFinType2", "FireplaceQu", "GarageType", "GarageFinish", "GarageQual", "GarageCond", "PoolQC", "Fence", "MiscFeature", ] for i in NA_to_no: data[i] = data[i].fillna("N") # Droping the two features with many missing values data = data.drop(["LotFrontage", "GarageYrBlt"], axis=1) # Dropping the outliers data = data[data.GrLivArea < 4000] # Splitting the features from the target, and the train and test sets X = data X = X.drop("SalePrice", axis=1) y = data.loc[:, "SalePrice"] X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.33, random_state=69 ) # identifying the categorical and numeric variables numeric = [ "LotArea", "OverallQual", "OverallCond", "YearBuilt", "YearRemodAdd", "MasVnrArea", "BsmtFinSF1", "BsmtFinSF2", "BsmtUnfSF", "TotalBsmtSF", "2ndFlrSF", "LowQualFinSF", "BsmtFullBath", "BsmtHalfBath", "FullBath", "HalfBath", "TotRmsAbvGrd", "Fireplaces", "GarageCars", "WoodDeckSF", "OpenPorchSF", "EnclosedPorch", "3SsnPorch", "ScreenPorch", "PoolArea", "MiscVal", "YrSold", ] # # Linear model # I use the log transformation for prediction def log(x): return np.log(x) def exp(x): return np.exp(x) # Setting up the preprocessor. preprocessor = make_column_transformer( ( make_pipeline( SimpleImputer(strategy="most_frequent"), OneHotEncoder(handle_unknown="ignore"), ), categorical, ), (make_pipeline(SimpleImputer(strategy="median"), StandardScaler()), numeric), ) # Instantiating the model pipeline_linear = make_pipeline( preprocessor, TransformedTargetRegressor(LinearRegression(), func=log, inverse_func=exp), ) # Fitting the model and retrieving the prediction pipeline_linear.fit(X_train, y_train) line_pred = pipeline_linear.predict(X_test) # # xgboost pipeline_xgb = make_pipeline( preprocessor, TransformedTargetRegressor( xgb.XGBRegressor(objective="reg:squarederror", nthread=-1), func=log, inverse_func=exp, ), ) # Hyperparameters distributions params = { "transformedtargetregressor__regressor__colsample_bytree": uniform(0.7, 0.3), "transformedtargetregressor__regressor__gamma": uniform(0, 0.5), "transformedtargetregressor__regressor__learning_rate": uniform(0.03, 0.3), "transformedtargetregressor__regressor__max_depth": randint(2, 6), "transformedtargetregressor__regressor__n_estimators": randint(500, 1000), "transformedtargetregressor__regressor__subsample": uniform(0.6, 0.4), } # Instantiating the xgboost model, with random-hyperparameter tuning xgb_model = RandomizedSearchCV( pipeline_xgb, param_distributions=params, random_state=123, n_iter=50, cv=5, n_jobs=-1, ) # Fitting the model and retrieving the predictions xgb_model.fit(X_train, y_train) xgb_pred = xgb_model.predict(X_test) # # ebm from interpret.glassbox import ExplainableBoostingRegressor from interpret import show from interpret.data import Marginal # Definition of the EBM preprocessor; I do not one hot encode, since EBM deals with categoricals preprocessor_ebm = make_column_transformer( (SimpleImputer(strategy="most_frequent"), categorical), (SimpleImputer(strategy="median"), numeric), ) # Instantiating the model ebm = make_pipeline( preprocessor_ebm, TransformedTargetRegressor( ExplainableBoostingRegressor(random_state=123), func=log, inverse_func=exp ), ) # Fitting the model and retrieving the predictions ebm.fit(X_train, y_train) ebm_pred = ebm.predict(X_test) # # ebm + xgboost params = { "xgbregressor__colsample_bytree": uniform(0.7, 0.3), "xgbregressor__gamma": uniform(0, 0.5), "xgbregressor__learning_rate": uniform(0.03, 0.3), "xgbregressor__max_depth": randint(2, 6), "xgbregressor__n_estimators": randint(500, 1000), "xgbregressor__subsample": uniform(0.6, 0.4), } pipeline_xgb2 = make_pipeline( preprocessor, xgb.XGBRegressor(objective="reg:squarederror", nthread=-1) ) xgb_model_2 = RandomizedSearchCV( pipeline_xgb2, param_distributions=params, random_state=123, n_iter=50, cv=5 ) # getting residual predictions from the train data ebm_pred_train = ebm.predict(X_train) ebm_residual_train = y_train - ebm_pred_train # training the xgb from the train data residual xgb_model_2.fit(X_train, ebm_residual_train) residual_predicted = xgb_model_2.predict(X_test) # then we get our boosted ebm prediction ebm_xgb_pred = ebm_pred + residual_predicted # # Comparing performances # It has been remarked in the past that ebm gives similar prediction performances than xgboost. Our method reaches performances that are in between the two. # Getting performance predict = [line_pred, xgb_pred, ebm_pred, ebm_xgb_pred] mae = [] mse = [] rmse = [] for i in predict: mae.append(mean_absolute_error(y_test, i)) mse.append(mean_squared_error(y_test, i)) rmse.append(sqrt(mean_squared_error(y_test, i))) scores = pd.DataFrame( [mae, mse, rmse], columns=["line", "xgb", "ebm", "ebm + xgb"], index=["mae", "mse", "rmse"], ) scores["ebm + xgb over ebm"] = ( round((scores["ebm"] / scores["ebm + xgb"] - 1) * 100, 2).astype(str) + " %" ) scores["xgb over ebm + xgb"] = ( round((1 - scores["xgb"] / scores["ebm + xgb"]) * 100, 2).astype(str) + " %" ) scores
import pandas as pd import numpy as np from nltk.stem import WordNetLemmatizer from nltk import word_tokenize from matplotlib import pyplot as plt from sklearn.naive_bayes import MultinomialNB, GaussianNB, BernoulliNB from sklearn.ensemble import RandomForestClassifier as RFClassi from sklearn.model_selection import ( GridSearchCV, cross_val_score, StratifiedShuffleSplit, ) from sklearn.linear_model import SGDClassifier as SGDC from sklearn.feature_extraction.text import TfidfVectorizer as TVec from sklearn.feature_extraction.text import CountVectorizer as CVec from sklearn.preprocessing import MinMaxScaler as mmScaler from sklearn.decomposition import TruncatedSVD from sklearn.metrics import classification_report as cr from sklearn.metrics import accuracy_score from keras.models import Sequential from keras.layers import LSTM, Dropout, Dense from sklearn.preprocessing import LabelEncoder from keras.utils import np_utils path = r"../input/ireland-historical-news/irishtimes-date-text.csv" df = pd.read_csv(path) category_counts = df.headline_category.value_counts() print("No of classes are: ", len(category_counts)) print(category_counts) selected_category_counts = category_counts[category_counts > 3000].index.tolist() df_small = df.loc[df["headline_category"].isin(selected_category_counts)] f, ax = plt.subplots(figsize=(30, 30)) category_counts = category_counts.sort_values(ascending=False) plt.barh(category_counts.index, category_counts) plt.show() # print(category_counts, category_counts.index) # Now, we see there are 156 classes, many of which have counts even lessser than 20 and extremely specific titles. Not only will we rarely encounter such titles as a group, they'll also make our classification very difficult. # Another thing to note is that the news tag is the most common (obviously) with 574774 samples. This might cause an imbalance in the classification later. # For making our problem easier, let's only use the classes with a count > 3000, which gives us 49 classes. stratSplit = StratifiedShuffleSplit(n_splits=3, test_size=0.25) tr_idx, te_idx = next( stratSplit.split(np.zeros(len(df_small)), df_small["headline_category"]) ) # Evaluation of any model should provide an accurate estimation of it's performance on data similar to the one used for training. While randomly splitting it in a 75%-25% ratio is very common, it might give a test set without all the classes or worse, a training set without all the classes. Moreover, the distribution of all classes might not be proportionate to the original datatset and lead to some biasing. This calls for a stratified split, which mimics the percentage of samples for each class in each split. # A better judgement of the model's accuracy can also be found out by using k folds, where k-1 folds (or subsets) of the dataset are used for training and 1 fold for testing. The process is repeated k times and an analysis of the score for each iteration, such as mean or variance, gives us an understanding of how our model will perform on unseen data and whether it is biased or not. # sklearn's StratifiedShuffleSplit provides train/test indices to split the data. With our imbalanced data, it is better to use this so as to let the model train on each class just as well. The number of folds or splits (k) can be set to create k different models and estimate behavior of the model under different scenarios. Here, I've used only 2 for the sake of simplicity but it's advisable to use more. class LemmaTokenizer(object): def __init__(self): self.wnl = WordNetLemmatizer() def __call__(self, doc): return [self.wnl.lemmatize(t) for t in word_tokenize(doc)] def getSplit(te_idx, tr_idx): vec = CVec(ngram_range=(1, 3), stop_words="english", tokenizer=LemmaTokenizer()) lsa = TruncatedSVD(20, algorithm="arpack") mmS = mmScaler(feature_range=(0, 1)) countVec = vec.fit_transform(df_small.iloc[tr_idx]["headline_text"]) countVec = countVec.astype(float) # print(len(countVec)) dtm_lsa = lsa.fit_transform(countVec) X_train = mmS.fit_transform(dtm_lsa) countVec = vec.transform(df_small.iloc[te_idx]["headline_text"]) countVec = countVec.astype(float) dtm_lsa = lsa.transform(countVec) X_test = mmS.transform(dtm_lsa) x_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) x_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) enc = LabelEncoder() enc.fit(df_small.iloc[:]["headline_category"].astype(str)) y_train = enc.transform(df_small.iloc[tr_idx]["headline_category"].astype(str)) y_test = enc.transform(df_small.iloc[te_idx]["headline_category"].astype(str)) y_train_c = np_utils.to_categorical(y_train) y_test_c = np_utils.to_categorical(y_test) return (X_train, y_train, X_test, y_test) # To extract information from the text, we use a countvectorizer that uses n_grams upto 3 words and removes all stop words. Another option for a vectorizer is the TfIdfVectorizer which uses the term frequency-inverse document frequency as a metric instead of count. A lemmatizing class is passed as an argument to the vectorizer to reduce complex words to their basic form. # Now, the countvec will create a lot of features, as we have used ngrams, for feature extraction. So, it'll be helpful to do some dimensionality reduction by using single value decomposition. TruncatedSVD is a transformer that is very helpful for latent semantic analysis (To know more about LSA, check out insert link here). # We reduce the whopping number of features () to a smaller 20. Now this is helpful for two reasons. Reducing dimensionality has not only reduced the complexity of the problem and the time taken to train the model by giving it a smaller number of features, it has also taken care of features that were correlated, hence saving the time needed for correlation analysis. # The final step is to fix the range of the fetaures using the MinMaxScaler and divide the dataset into training and test sets. Another point to keep in mind is whie transforming the input, we use fit_transform on the training and only transform on the testing set. If the entire dataset is used to transform the training set, information about the test set may leak into the training set. As for the transformation of testing set, it must rely only on the calculations of the training test, as the test rows are supposed to be unseen. rfc = RFClassi(n_estimators=20) mNB = MultinomialNB(alpha=0.5) gNB = GaussianNB() bNB = BernoulliNB(alpha=0.2) sgdC = SGDC(n_jobs=-1, max_iter=1000, eta0=0.001) gsCV_sgdClassifier = GridSearchCV( sgdC, { "loss": ["hinge", "squared_hinge", "modified_huber", "perceptron"], "class_weight": ["balanced", None], "shuffle": [True, False], "learning_rate": ["optimal", "adaptive"], }, ) models = [rfc, mNB, gNB, bNB, gsCV_sgdClassifier] # For choosing a model, there are a ton of options to choose from. While NaiveBayes is used very commonly for text classification, decision trees also offer great performance. # Here, I've used multiple models to compare and judge on accuracies. RandomForestClassifier uses a number of decision trees to create an ensemble model that controls overfitting and class imbalances. With a huge number of samples for some classes and few for others, this is a problem the model could very well run into. for model in models: print("For model: ", model) acc = 0.0 for tr_idx, te_idx in stratSplit.split( np.zeros(len(df_small)), df_small["headline_category"] ): (X_train, y_train, X_test, y_test) = getSplit(tr_idx, te_idx) model.fit(X_train, y_train) y_pred = model.predict(X_test) acc += accuracy_score(y_test, y_pred) print("Classification Report is:\n", cr(y_test, y_pred)) print( "Accuracy is: ", acc / 3.0, "\n------------------------------------------------------------------------------------\n", ) # At first glance, the BernoulliNB and MultinomialNB models seem to give great accuracies but closer inspection reveals they have actually cheated by very conveniently classifying all the samples(MultinomialNB) or most of the samples (BernoulliNB) as news, since it is the majority class and has 42% samples. The report shows that the class imbalance has got to them and affected their precision and recall scores. If we had only seen the accuracy of the model, we might not have been able to make this observation, but a classwise score calculation helps us here. The GaussianNB fares better in this aspect as it's precision and recall scores are better and it has actually classified samples into more than one class, but again 11.4% isn't a good score at all. # The RBF has done considerably better by accurately classifying 48.7% of the samples and without classifying all the samples as one class. # Choosing SGDClassifier effectively means we're choosing a linear model, and it is interesting to see how the performance will be affected when we consider this low variance model. print(gsCV_sgdClassifier.best_params_, gsCV_sgdClassifier.best_score_)
# # Reference: # https://www.kaggle.com/viveksrinivasan/eda-ensemble-model-top-10-percentile#Correlation-Analysis # https://github.com/viveksrinivasanss/blogs/blob/master/bike_sharing_demand/eda_%26_ensemble_model.ipynb # https://medium.com/analytics-vidhya/how-to-finish-top-10-percentile-in-bike-sharing-demand-competition-in-kaggle-part-2-29e854aaab7d # https://www.kaggle.com/c/bike-sharing-demand/discussion/10431 import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. # # Data Fields # * datetime - hourlydate + timestamp # * season - 1:spring, 2:summer, 3:fall, 4:winter # * holiday - whether the day is considered a holiday # * workingday - whether a day is niether weekend or a holiday # * weather- # * 1:clear, few clouds, partly cloudy # * 2: misty & cloudy, misty&broken clouds, misty&few clouds, misty # * 3: Light snow, Light Rain&thunder storm & scattered clouds, light rain & scattered clouds # * 4: Heavy Rain+ Ice pallets+thundersorm+mist, snow+fog # * temp - temperature in celsius # * atemp - "feels like" temperature in celsius # * humidity - relative humidity # * windspeed # * casual - number of non-registered user rental initiated # * registered - number of registered user rentals initiated # * count - number of total rentals(Dependant variable) import pylab import calendar import seaborn as sn from scipy import stats import missingno as msno from datetime import datetime import matplotlib.pyplot as plt import warnings pd.options.mode.chained_assignment = None warnings.filterwarnings("ignore", category=DeprecationWarning) # # Reading the Dataset dailyData = pd.read_csv("../input/bike-sharing-demand/train.csv") # # Data Summary # Next we will see more about the dataset # * Size of the data # * Glimpse of the dataset # * What of type of variables # # Size of the dataset dailyData.shape # # Sample Rows dailyData.head(10) # # Data Type dailyData.dtypes # # Feature Engineering # * The following data arecategorical, but is present in the dataset as int type. # so we need to convert these datas into categorical variables. # 1. Weather # 2. Season # 3. Holiday # 4. Working Day # * Create the following columns from datetime column # 1. date # 2. hour # 3. weekDay # 4. month # * Drop the datetime column # dailyData.datetime.apply(lambda x: x.split()[0]) # creating new columns from datetime column # apply() : apply is a function in pandas library. It helps to apply a function(lambda/userdefined/Numpy) to the rows/columns in a dataFrame. # The default value for axis in apply function is axis = 0 (column). # lambda function: it takes input as a dataframe(all/specified number rows of a df or all/specified number columns) dailyData["date"] = dailyData.datetime.apply(lambda x: x.split()[0]) dailyData["hour"] = dailyData.datetime.apply(lambda x: x.split()[1].split(":")[0]) # strptime: create a datetime object from a string # datetime.strptime(date_string, format) where datetime is an object that supplies different classes like strptime # for manipulating and formatting date ot time dailyData["weekday"] = dailyData.date.apply( lambda dateString: calendar.day_name[ datetime.strptime(dateString, "%Y-%m-%d").weekday() ] ) dailyData["month"] = dailyData.date.apply( lambda dateString: calendar.month_name[ datetime.strptime(dateString, "%Y-%m-%d").month ] ) dailyData["season"] = dailyData.season.map( {1: "Spring", 2: "Summer", 3: "Fall", 4: "winter"} ) dailyData["weather"] = dailyData.weather.map( { 1: " Clear + Few clouds + Partly cloudy + Partly cloudy", 2: " Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist ", 3: " Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered clouds", 4: " Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog ", } ) # creating category variables # A categorical variable is one that usually takes a fixed, number of possible values categoryvariables = [ "hour", "weekday", "month", "season", "weather", "holiday", "workingday", ] for var in categoryvariables: dailyData[var] = dailyData[var].astype("category") # Dropping Datetime column dailyData = dailyData.drop(["datetime"], axis=1) # # Visualizing the total number of each datatypes present in the dataset # creating the data for the plot typesCountSerie = dailyData.dtypes.value_counts() # format columns as arrays of either strings or integers # typeNames are easier to sort as array of `string` rather than an array of `dtype` typeNamesColumn = list(map(lambda t: t.name, typesCountSerie.index.values)) typeCountColumn = typesCountSerie.values # create an initial dataframe, with multiple occurences of the same "variableType" intialDataTypeDf = pd.DataFrame( {"variableType": typeNamesColumn, "count": typeCountColumn} ) # Group initial data frame by "variableType", # then reset_index to have a proper dataframe groupedDataTypeDf = ( intialDataTypeDf.groupby(["variableType"]).sum()[["count"]].reset_index() ) # dataTypeDf = pd.DataFrame(dailyData.dtypes.value_counts()).reset_index().rename(columns={"index":"variableType",0:"count"}) fig, ax = plt.subplots() fig.set_size_inches(12, 5) # plotting the barchart sn.barplot(data=groupedDataTypeDf, x="variableType", y="count", ax=ax) ax.set(xlabel="variableType", ylabel="Count", title="Count of the different Datatypes") # # Missing Value # Matrix : # Using this matrix you can very quickly find the pattern of missingness in the dataset. # Bar Chart : # This bar chart gives you an idea about how many missing values are there in each column. # No Missing values detected. # * Checking the presence of missing values by visualising using "msno" msno.matrix(dailyData, figsize=(12, 5)) msno.bar(dailyData, figsize=(12, 5)) # Now it is confirmed that there are no missing values. # # Heatmap : # Heatmap shows the correlation of missingness between every 2 columns. In our example, the correlation between AAWhiteSt-4 and SulphidityL-4 is 1 which means if one of them is present then the other one must be present. # A value near -1 means if one variable appears then the other variable is very likely to be missing. # A value near 0 means there is no dependence between the occurrence of missing values of two variables. # A value near 1 means if one variable appears then the other variable is very likely to be present. # # Detecting Outliers # Analysis using Boxplots fig, axes = plt.subplots(nrows=2, ncols=2) fig.set_size_inches(12, 10) sn.boxplot(data=dailyData, y="count", orient="v", ax=axes[0][0]) sn.boxplot(data=dailyData, y="count", x="season", orient="v", ax=axes[0][1]) sn.boxplot(data=dailyData, y="count", x="hour", orient="v", ax=axes[1][0]) sn.boxplot(data=dailyData, y="count", x="workingday", orient="v", ax=axes[1][1]) axes[0][0].set(ylabel="Count", title="Box Plot On Count") axes[0][1].set(xlabel="Season", ylabel="Count", title="Box Plot On Count across season") axes[1][0].set( xlabel="Hour of the day", ylabel="Count", title="Box Plot On Count across Hour of the day", ) axes[1][1].set( xlabel="Working Day", ylabel="Count", title="Box Plot On Count across Working day" ) # # About Box Plot # A box and whisker plot—also called a box plot—displays the five-number summary of a set of data. The five-number summary is the minimum, first quartile, median, third quartile, and maximum. In a box plot, we draw a box from the first quartile to the third quartile. A vertical line goes through the box at the median. # # Observation from the above box plot # * The count has many 'outliers' as it exceeds the outer quartile limit. # * Spring Season has got relatively lower count. # * The box plot for "Hour of the day " infer that the median values are higher at 7AM- 8AM, and 5pm-6pm. # These time indicates regular office and school hours. # * Most of the 'outliers' are contributed by 'working days' rather than 'non-working days'. # # Removing Outliers # checking how many count values are with in 3*standard deviation np.sum( np.abs(dailyData["count"] - dailyData["count"].mean()) <= (3 * dailyData["count"].std()) ) dailyDataWithoutOutliers = dailyData[ np.abs(dailyData["count"] - dailyData["count"].mean()) <= (3 * dailyData["count"].std()) ] print("shape of the data with outliers", dailyData.shape) print("shape of the data without outliers", dailyDataWithoutOutliers.shape) # # Correlation Analysis # * To determine the relationship a dependent variable is having with the numerical features. # * Below are the data types of numerical features(non-categorical)(temp, atemp, casual, registered, humidity) and dependend variable(count) dailyData[ ["temp", "atemp", "casual", "registered", "humidity", "windspeed", "count"] ].dtypes # # Plotting the corrrelation between Count and the ("temp","atemp","casual","registered","humidity","windspeed") dailyDataCorr = dailyData[ ["temp", "atemp", "casual", "registered", "humidity", "windspeed", "count"] ].corr() mask = np.array(dailyDataCorr) mask[np.tril_indices_from(mask)] = False fig, ax = plt.subplots() fig.set_size_inches(20, 10) sn.heatmap(dailyDataCorr, mask=mask, vmax=0.8, square=True, annot=True) # * temp and humidity features are showing positive and negative correlation with the count variable. Although the correlation between them are not prominent, the count has little dependency with them. # * windspeed is not really going to be useful. The correlation value with count is 0.1. # * atemp has a strong relationship with temp. So one of the variable has to be dropped during model building since they exhibit multicollinearity in the data. # * Casual and registered variables are not considered since they are leakage variables. # * casual(non registered)+registered = count # # Multicollinearity # There are certain reasons why multicollinearity occurs: # * It is caused by an inaccurate use of dummy variables. # * It is caused by the inclusion of a variable which is computed from other variables in the data set. # * Multicollinearity can also result from the repetition of the same kind of variable. # * Generally occurs when the variables are highly correlated to each other. # Multicollinearity can result in several problems. These problems are as follows: # * The partial regression coefficient due to multicollinearity may not be estimated precisely. The standard errors are likely to be high. # * Multicollinearity results in a change in the signs as well as in the magnitudes of the partial regression coefficients from one sample to another sample. # * Multicollinearity makes it tedious to assess the relative importance of the independent variables in explaining the variation caused by the dependent variable. # Partial regression coefficient # * A value indicating the effect of each independent variable on the dependent variable with the influence of all the remaining variables held constant. Each coefficient is the slope between the dependent variable and each of the independent variables # # casual(non registered)+registered = count # https://www.kaggle.com/jjuanramos/bike-sharing-demand plt.scatter(x=dailyData["casual"] + dailyData["registered"], y=dailyData["count"]) plt.show() # # Regression Plot # Regression plot in seaborn is one useful way to depict the relationship between two features. Here we consider "count" vs "temp", "humidity", "windspeed". # * a partial regression plot attempts to show the effect of adding another variable to a model that already has one or more independent variables. Partial regression plots are also referred to as added variable plots, adjusted variable plots, and individual coefficient plots. fig, (ax1, ax2, ax3) = plt.subplots(ncols=3) fig.set_size_inches(12, 5) sn.regplot(x="temp", y="count", data=dailyData, ax=ax1) sn.regplot(x="windspeed", y="count", data=dailyData, ax=ax2) sn.regplot(x="humidity", y="count", data=dailyData, ax=ax3) # # Data Distribution fig, axes = plt.subplots(ncols=2, nrows=2) fig.set_size_inches(12, 10) sn.distplot(dailyData["count"], ax=axes[0][0]) stats.probplot(dailyData["count"], dist="norm", fit=True, plot=axes[0][1]) sn.distplot(np.log(dailyDataWithoutOutliers["count"]), ax=axes[1][0]) stats.probplot( np.log1p(dailyDataWithoutOutliers["count"]), dist="norm", fit=True, plot=axes[1][1] ) # As it is visible from the below figures that "count" variable is skewed towards right. It is desirable to have Normal distribution as most of the machine learning techniques require dependent variable to be Normal. One possible solution is to take log transformation on "count" variable after removing outlier data points. After the transformation the data looks lot better but still not ideally following normal distribution. # # Visualizing Count Vs (Month,Season,Hour,Weekday,Usertype) fig, (ax1) = plt.subplots(nrows=1) fig.set_size_inches(10, 5) sortOrder = [ "January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December", ] hueOrder = [ "Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", ] monthAggregated = pd.DataFrame(dailyData.groupby("month")["count"].mean()).reset_index() monthSorted = monthAggregated.sort_values(by="count", ascending=False) sn.barplot(data=monthSorted, x="month", y="count", ax=ax1, order=sortOrder) ax1.set(xlabel="Month", ylabel="Avearage Count", title="Average Count By Month") fig, ax2 = plt.subplots(nrows=1) fig.set_size_inches(10, 5) hourAggregated = pd.DataFrame( dailyData.groupby(["hour", "season"], sort=True)["count"].mean() ).reset_index() sn.pointplot( x=hourAggregated["hour"], y=hourAggregated["count"], hue=hourAggregated["season"], data=hourAggregated, join=True, ax=ax2, ) ax2.set( xlabel="Hour Of The Day", ylabel="Users Count", title="Average Users Count By Hour Of The Day Across Season", label="big", ) fig, ax3 = plt.subplots(nrows=1) fig.set_size_inches(10, 5) hourAggregated = pd.DataFrame( dailyData.groupby(["hour", "weekday"], sort=True)["count"].mean() ).reset_index() sn.pointplot( x=hourAggregated["hour"], y=hourAggregated["count"], hue=hourAggregated["weekday"], hue_order=hueOrder, data=hourAggregated, join=True, ax=ax3, ) ax3.set( xlabel="Hour Of The Day", ylabel="Users Count", title="Average Users Count By Hour Of The Day Across Weekdays", label="big", ) fig, ax4 = plt.subplots(nrows=1) fig.set_size_inches(10, 5) hourTransformed = pd.melt( dailyData[["hour", "casual", "registered"]], id_vars=["hour"], value_vars=["casual", "registered"], ) hourAggregated = pd.DataFrame( hourTransformed.groupby(["hour", "variable"], sort=True)["value"].mean() ).reset_index() sn.pointplot( x=hourAggregated["hour"], y=hourAggregated["value"], hue=hourAggregated["variable"], hue_order=["casual", "registered"], data=hourAggregated, join=True, ax=ax4, ) ax4.set( xlabel="Hour Of The Day", ylabel="Users Count", title="Average Users Count By Hour Of The Day Across User Type", label="big", ) # * It is quiet obvious that people tend to rent bike during summer season since it is really conducive to ride bike at that season.Therefore June, July and August has got relatively higher demand for bicycle. # * On weekdays more people tend to rent bicycle around 7AM-8AM and 5PM-6PM. As we mentioned earlier this can be attributed to regular school and office commuters. # * Above pattern is not observed on "Saturday" and "Sunday".More people tend to rent bicycle between 10AM and 4PM. # * The peak user count around 7AM-8AM and 5PM-6PM is purely contributed by registered user. # # Data Modeling and predicting # Filling Zeros in windspeed using Random Forest dataTrain = pd.read_csv("../input/bike-sharing-demand/train.csv") dataTest = pd.read_csv("../input/bike-sharing-demand/test.csv") # combine test and train data data = dataTrain.append(dataTest) data.reset_index(inplace=True) data.drop("index", inplace=True, axis=1) # # Feature Engineering data["date"] = data.datetime.apply(lambda x: x.split()[0]) data["hour"] = data.datetime.apply(lambda x: x.split()[1].split(":")[0]).astype("int") data["year"] = data.datetime.apply(lambda x: x.split()[0].split("-")[0]) data["weekday"] = data.date.apply( lambda dateString: datetime.strptime(dateString, "%Y-%m-%d").weekday() ) data["month"] = data.date.apply( lambda dateString: datetime.strptime(dateString, "%Y-%m-%d").month ) dataWindspeedOriginal = data["windspeed"] fig, ax = plt.subplots(nrows=1) fig.set_size_inches(20, 5) # sortOrder = ["January","February","March","April","May","June","July","August","September","October","November","December"] # hueOrder = ["Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"] windspeed = pd.DataFrame(data.windspeed.value_counts()).reset_index() plt.xticks(rotation=45) sn.barplot(data=windspeed, x="index", y="windspeed", ax=ax) ax1.set( xlabel="windspeed Values", ylabel="Count", title="Count of windspeed values before imputing", ) # Windspeed has many zero entries which make it look suspicious. # As specified in the kaggle discussion: # * It can actually be 0 at these points. # * It is too low to be measured, for example varying from 0 to 5. # * All zeros or part of them are nothing but NAs. # Considering windspeed 0 entries as missing values, we will fill them with Random Forest Classifier model. from sklearn.ensemble import RandomForestClassifier wCol = ["season", "weather", "humidity", "month", "temp", "year", "atemp"] # dataWind0 is the entire dataset(contains cols season, weather, humidity, month, temp, year, atemp) # with windspeed value = 0 dataWind0 = data[data["windspeed"] == 0] # dataNotWind0 is the entire dataset(contains cols season, weather, humidity, month, temp, year, atemp) # without windspeed value = 0 dataWindNot0 = data[data["windspeed"] != 0] dataWindNot0["windspeed"] = dataWindNot0["windspeed"].astype("str") # predicting value for windspeed = 0 rfModel_wind = RandomForestClassifier() rfModel_wind.fit(dataWindNot0[wCol], dataWindNot0["windspeed"]) Wind0Values = rfModel_wind.predict(X=dataWind0[wCol]) dataWind0["windspeed"] = Wind0Values data = dataWindNot0.append(dataWind0) data["windspeed"] = data["windspeed"].astype("float") data.reset_index(inplace=True) data.drop("index", inplace=True, axis=1) # # After Imputing Windspeed values fig, ax = plt.subplots(nrows=1) fig.set_size_inches(20, 5) windspeed = pd.DataFrame(data.windspeed.value_counts()).reset_index() plt.xticks(rotation=45) sn.barplot(data=windspeed, x="index", y="windspeed", ax=ax) ax.set( xlabel="Windspeed Values", ylabel="Count", title="Count Of Windspeed Values After Imputing", label="big", ) # # Coercing to Categorical Type categoricalFeatureNames = [ "season", "holiday", "workingday", "weather", "weekday", "month", "year", "hour", ] numericalFeatureNames = ["temp", "humidity", "windspeed", "atemp"] dropFeatures = ["casual", "count", "datetime", "date", "registered"] for var in categoricalFeatureNames: data[var] = data[var].astype("category") data.head() # # Splitting Train and Test Data dataTrain = data[pd.notnull(data["count"])].sort_values( by=["datetime"] ) # datatime is not droppe, month, week etc are created from it. dataTest = data[~pd.notnull(data["count"])].sort_values(by=["datetime"]) datetimecol = dataTest["datetime"] yLabels = dataTrain["count"] yLabelsRegistered = dataTrain["registered"] yLabelsCasual = dataTrain["casual"] # # Splitting Train and Validator from sklearn.model_selection import train_test_split X_train, X_validate, y_train, y_validate = train_test_split( dataTrain, yLabels, test_size=0.3, random_state=42 ) dateTimeColValidate = X_validate["datetime"] # # Dropping Unnecessary Features dataTrain = dataTrain.drop(dropFeatures, axis=1) dataTest = dataTest.drop(dropFeatures, axis=1) X_train = X_train.drop(dropFeatures, axis=1) X_validate = X_validate.drop(dropFeatures, axis=1) # # RMSLE Scorer # * One common way to evaluate the regression model is through calculating MSE or RMSE. In this particular competition, the metric to evaluate our model is* Root Mean Square Logarithmic Error* (RMSLE). RMSLE is particularly helpful when you want to penalize an under-predicted estimate greater than an over-predicted estimate. # Most of the Kaggle competition where we predict sales and inventory demand especially use RMSLE as their metric to evaluate. For example competition such as grupo-bimbo-inventory-demand and sberbank-russian-housing-market use RMSLE as a metric. # ![](http://miro.medium.com/max/923/1*9P4NEvK5qYN5Bhu0yOEzhw.png) # Unfortunately, sklearn metrics do not have the direct implementation to calculate RMSLE. So let us construct a custom function to perform theRMSLE calculation. def rmsle(y, y_, convertExp=True): if convertExp: y = (np.exp(y),) y_ = np.exp(y_) log1 = np.nan_to_num(np.array([np.log(v + 1) for v in y])) log2 = np.nan_to_num(np.array([np.log(v + 1) for v in y_])) calc = (log1 - log2) ** 2 return np.sqrt(np.mean(calc)) import warnings pd.options.mode.chained_assignment = None warnings.filterwarnings("ignore", category=DeprecationWarning) # Data is prepared by filling the missing values and constructed the RMSLE scorer. So we are now good to go for our model building experimet. # # Linear Regression # * As a first step, let us start with a simple statistical technique like linear regression. It is always good to start from a simple model than to try complex machine learning algorithms at first. Because at times features will have a smooth, nearly linear dependence on the covariates. Then linear regression will model the dependence better than anrandom forest algorithm that will basically approximate a linear curve with an ugly irregular step function. A StackExchange discussion gives loads of information about it. # https://stats.stackexchange.com/questions/174806/linear-regression-performing-better-than-random-forest-in-caret from sklearn.linear_model import LinearRegression, Ridge, Lasso from sklearn.model_selection import GridSearchCV # Initialize Logistic Regression model lModel = LinearRegression() # Train the model lModel.fit(X=X_train, y=np.log1p(y_train)) # Make predictions preds = lModel.predict(X=X_validate) print( "RMSLE Value For Linear Regression In Validation: ", rmsle(np.exp(np.log1p(y_validate)), np.exp(preds), False), ) # * Before submitting our test results we will visualize the distribution of train and test results. Kaggle has a limit on the number of submissions per day. (in our case it is 5 submissions/day). So visualizing the distribution gives a good clue on how close we have predicted our test based on our training set. From the figure it visible that the distribution of the train and test set vary considerably. predsTest = lModel.predict(X=dataTest) fig, (ax1, ax2) = plt.subplots(ncols=2) fig.set_size_inches(20, 5) sn.distplot(yLabels, ax=ax1, bins=100) sn.distplot(np.exp(predsTest), ax=ax2, bins=100) ax1.set(title="Training Set Distribution") ax2.set(title="Test Set Distribution") # print ("RMSLE Value For Linear Regression In Validation: ",rmsle(np.exp(np.log1p(y_validate)),np.exp(predsTest),False)) # The RMSLE value on the test set is around 1.05 and it is definitely not on par with the best score(0.33) in theKaggle leaderboard. We can improve this score substantially in a number of ways. # * Feature Engineering # * Regularization (L1 & L2) # * Ensemble Models # 1. We have already created a few features such as weekday, month, hour from the datetime attribute. And there are many numbers of ways one can come with feature engineering steps. As a part of this blog, I am not taking that into consideration and I will leave that to the imagination of users. # # Regularization # Regularization is extremely useful in any of these cases. Multicollinearity and overfitting may pose some issues for us. # * overfitting # * A large number of variables # * Low ratio of number of observations to number of variables # * Multicollinearity # * Overfitting refers to a model that performs well on the training set by learning the detail and noise in the training data but does not generalize well on the new set of data. Let us take our example, RMSLE value on training data is around 0.98 and there is no big difference from the test set results.So far we do not have any overfitting problems but at imes it will be a nightmare while fitting the models. # >> Having a large number of variables may again result in overfitting. This is because the model becomes more complex and sometimes lowers its predicting and generalization power. ***L1 regularization(Lasso Regression)***comes in handy in these situations by reducing the coefficients to zero thereby producing simpler models. # >*** L2 Regularization***(Ridge Regression) is extremely helpful for the third case where we have the ratio of more number of attributes # to less number of observation.But in this case, we are fine with that with 12 attributes and 10886 records. Ridge regression is also when there is high multicollinearity between predictor variables. We have highly correlated variables like temp-atemp and month-season. # > So we are not getting affected much with the above problems. But to improve our score, we will build simple regularization models. # # Regularization Model - Ridge(L2) from sklearn.linear_model import Ridge from sklearn.model_selection import GridSearchCV from sklearn import metrics ridge_m_ = Ridge() ridge_params_ = { "max_iter": [3000], "alpha": [0.01, 0.05, 0.1, 1, 2, 3, 4, 10, 30, 100, 200, 300, 400, 800, 900, 1000], } rmsle_scorer = metrics.make_scorer(rmsle, greater_is_better=False) grid_ridge_m = GridSearchCV(ridge_m_, ridge_params_, scoring=rmsle_scorer, cv=5) grid_ridge_m.fit(X=X_train, y=np.log1p(y_train)) preds = grid_ridge_m.predict(X=X_validate) print(grid_ridge_m.best_params_) print( "RMSLE Value For Ridge Regression: ", rmsle(np.exp(np.log1p(y_validate)), np.exp(preds), False), ) fig, ax = plt.subplots() fig.set_size_inches(20, 5) df = pd.DataFrame(grid_ridge_m.cv_results_) df df["alpha"] = df["params"].apply(lambda x: x["alpha"]) df["rmsle"] = df["mean_test_score"].apply(lambda x: -x) sn.pointplot(data=df, x="alpha", y="rmsle", ax=ax) # # L1 Regularization(Lasso) from sklearn.linear_model import Lasso lasso_m_ = Lasso() alpha = [0.001, 0.005, 0.01, 0.3, 0.1, 0.3, 0.5, 0.7, 1] lasso_params_ = {"max_iter": [3000], "alpha": alpha} # rmsle_scorer = metrics.make_scorer(rmsle, greater_is_better=False) grid_lasso_m = GridSearchCV(lasso_m_, lasso_params_, scoring=rmsle_scorer, cv=5) grid_lasso_m.fit(X=X_train, y=np.log1p(y_train)) preds = grid_lasso_m.predict(X=X_validate) print(grid_lasso_m.best_params_) print("RMSLE Value: ", rmsle(np.exp(np.log1p(y_validate)), np.exp(preds), False)) fig, ax = plt.subplots() fig.set_size_inches(20, 5) df = pd.DataFrame(grid_lasso_m.cv_results_) df["alpha"] = df["params"].apply(lambda x: x["alpha"]) df["rmsle"] = df["mean_test_score"].apply(lambda x: -x) sn.pointplot(data=df, x="alpha", y="rmsle", ax=ax) # The optimum value of the regularization parameter (alpha-0.005) is obtained through a grid search. The chart below visualizes RMSLE values for different alpha parameters. RMSLE value on the test set is around 1.04 and has not improved from our previous. So regularization has not given any boost to our score. But let us not lose hope because when nothing goes right ensemble model always produces something out of the box for us. # # Ensemble Models # > Ensemble models are nothing but an art of combining a diverse set of individual weak learners(models) together to improve the stability and predictive capacity of the model. Ensemble Models improves the performance of the model by # * Averaging out biases. # * Reducing the variance. # * Avoiding overfitting. # >> If you are still wondering what ensemble model is all about then this series of articles can get you started with it. So that’s enough introduction about ensemble model and here is a snippet on how we fit naive Random Forest model on our dataset with default parameters. from sklearn.ensemble import RandomForestRegressor rfModel = RandomForestRegressor(n_estimators=100) rfModel.fit(X=X_train, y=np.log1p(y_train)) preds = rfModel.predict(X=X_validate) print("RMSLE Value: ", rmsle(np.exp(np.log1p(y_validate)), np.exp(preds), False)) features = pd.DataFrame() features["features"] = X_train.columns features["coefficient"] = rfModel.feature_importances_ features.sort_values(by=["coefficient"], ascending=False, inplace=True) fig, ax = plt.subplots() fig.set_size_inches(20, 5) sn.barplot(data=features, x="features", y="coefficient", ax=ax) predsTest = rfModel.predict(X=dataTest) fig, (ax1, ax2) = plt.subplots(ncols=2) fig.set_size_inches(20, 5) sn.distplot(yLabels, ax=ax1, bins=100) sn.distplot(np.exp(predsTest), ax=ax2, bins=100) ax1.set(title="Training Set Distbution") ax2.set(title="Test Set Distribution")
# Hand_Written_Digit_Classification # Objectives : # The handwritten digit recognition is the ability of computers to recognize human handwritten digits. It is a hard task for the machine because handwritten digits are not perfect and can be made with many different flavors. # Import Library import pandas as pd import numpy as np import matplotlib.pyplot as plt # Import data from sklearn.datasets import load_digits df = load_digits() print(df) _, axes = plt.subplots(nrows=1, ncols=6, figsize=(8, 4)) for ax, image, label in zip(axes, df.images, df.target): ax.set_axis_off() ax.imshow(image, cmap=plt.cm.gray_r, interpolation="nearest") ax.set_title("Training : %i" % label) # Data Processing df.images.shape df.images[0] df.images[0].shape len(df.images) n_sample = len(df.images) data = df.images.reshape(n_sample, -2) data[0] data.shape # Scalling Image data data.min() data.max() data = data / 16 data.max() data[0] # Train Test Split Data from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(data, df.target, test_size=0.3) x_train.shape, x_test.shape, y_train.shape, y_test.shape # Random Forest Model from sklearn.ensemble import RandomForestClassifier rf = RandomForestClassifier() rf.fit(x_train, y_train) # Predict test data y_pred = rf.predict(x_test) y_pred from sklearn.metrics import confusion_matrix, classification_report confusion_matrix(y_test, y_pred) print(classification_report(y_test, y_pred))
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import matplotlib.pyplot as plt from sklearn.linear_model import LogisticRegression # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. df = pd.read_csv("/kaggle/input/creditcardfraud/creditcard.csv") df.head() df.shape df.info() plt.figure(figsize=(10, 12)) sns.heatmap(df.corr()) z = df["Class"].value_counts(sort=True).sort_index() z.plot(kind="bar") from sklearn.preprocessing import StandardScaler scaler = StandardScaler() z = scaler.fit_transform(df["Amount"].values.reshape(1, -1)) df["normAmount"] = z.reshape(-1, 1) Y = df["Class"] df = df.drop(["Amount"], axis=1) X_TEST = df.drop(["Class"], axis=1) Y_TEST = df["Class"] df.head() df["Class"].value_counts() Y = df["Class"] fraud_indices = np.array(Y[Y == 1].index) normal_indices = np.array(Y[Y == 0].index) number_fraud = Y[Y == 1].count() random_normal_indices = np.random.choice(normal_indices, number_fraud, replace=True) print((random_normal_indices).reshape(1, -1)) under_sample_indices = np.concatenate([random_normal_indices, fraud_indices]) import random random.shuffle(under_sample_indices) print(under_sample_indices) df.head() X_under_sample = df.iloc[under_sample_indices] X_under_sample = X_under_sample.drop(["Class"], axis=1) Y_under_sample = df["Class"].iloc[under_sample_indices] print(Y_under_sample[:15]) # print(X_under_sample.shape,Y_under_sample.shape) Y_under_sample.value_counts() # NOW WE HAVE DONE UNDERSAMPLING # The instaces of both classes are same from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split( X_under_sample, Y_under_sample, test_size=0.33 ) print(len(x_test) / (len(x_test) + len(x_train))) from sklearn.model_selection import cross_val_score def kfold(): c_param_range = [0.001, 0.01, 0.1, 1, 10, 100, 1000] values = [] for var in c_param_range: model = LogisticRegression(C=var, penalty="l1") scores = cross_val_score( model, X_under_sample, Y_under_sample, cv=5, scoring="recall" ) print("C=", var) print("scores", scores) values.append(scores.mean()) print("Mean is ", scores.mean()) return c_param_range[values.index(max(values))] best_c = kfold() print("best_c", best_c) model = LogisticRegression(C=best_c, penalty="l1") model.fit(x_train, y_train) y_pred_undersample = model.predict(x_test) from sklearn.metrics import confusion_matrix # Compute confusion matrix cnf_matrix = confusion_matrix(y_test, y_pred_undersample) np.set_printoptions(precision=2) print( "Recall metric in the testing dataset: ", cnf_matrix[1, 1] / (cnf_matrix[1, 0] + cnf_matrix[1, 1]), ) model = LogisticRegression(C=best_c, penalty="l1") model.fit(x_train, y_train) y_pred_undersample = model.predict(X_TEST) from sklearn.metrics import confusion_matrix # Compute confusion matrix cnf_matrix = confusion_matrix(Y_TEST, y_pred_undersample) np.set_printoptions(precision=2) print( "Recall metric in the testing dataset: ", cnf_matrix[1, 1] / (cnf_matrix[1, 0] + cnf_matrix[1, 1]), ) from sklearn.linear_model import LogisticRegression from sklearn.metrics import ( confusion_matrix, precision_recall_curve, auc, roc_auc_score, roc_curve, recall_score, classification_report, ) lr = LogisticRegression(C=best_c, penalty="l1") y_pred_undersample_score = lr.fit(x_train, y_train).decision_function(x_test) fpr, tpr, thresholds = roc_curve(y_test, y_pred_undersample_score) roc_auc = auc(fpr, tpr) # Plot ROC plt.title("Receiver Operating Characteristic") plt.plot(fpr, tpr, "b", label="AUC = %0.2f" % roc_auc) plt.legend(loc="lower right") plt.plot([0, 1], [0, 1], "r--") plt.xlim([-0.1, 1.0]) plt.ylim([-0.1, 1.01]) plt.ylabel("True Positive Rate") plt.xlabel("False Positive Rate") plt.show()
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. import pandas as pd import matplotlib.pyplot as plt import numpy as np from datetime import datetime, timedelta, date import pytz import seaborn as sns import geopy.distance # importing machine learning libraries from sklearn.model_selection import KFold, cross_val_score, train_test_split # from sklearn.metrics import confusion_matrix import sklearn.metrics as metrics from sklearn.cluster import KMeans # importing regressors from sklearn.ensemble import RandomForestRegressor from xgboost.sklearn import XGBRegressor from sklearn.linear_model import LinearRegression from sklearn import svm from sklearn.neighbors import KNeighborsRegressor # ignoring warnings import warnings warnings.filterwarnings("ignore") from sklearn.model_selection import GridSearchCV import pandas as pd item_categories = pd.read_csv( "../input/competitive-data-science-predict-future-sales/item_categories.csv" ) items = pd.read_csv("../input/competitive-data-science-predict-future-sales/items.csv") sales = pd.read_csv( "..//input/competitive-data-science-predict-future-sales/sales_train.csv" ) # sample_submission = pd.read_csv("../input/competitive-data-science-predict-future-sales/sample_submission.csv") shops = pd.read_csv("../input/competitive-data-science-predict-future-sales/shops.csv") print("----------Shape of Data----------") print(sales.shape) print("----------first 5 rows----------") print(sales.head(5)) print("-----------data frame overview-----------") print(sales.info()) print("----------Missing value-----------") print(sales.isnull().sum()) print(sorted(sales.shop_id.unique())) # We should reduce the dataframe Memory which is `134.4 MB` to make it faster and more efficient. This can be done through **downcasting** the types of the columns: def downcasting(df): """ make 2 lists onc contains index of float64 columns and the other int64 or int32, then change the dtype of these column into less memory consumer data type """ float_cols = [col for col in df if df[col].dtype == "float64"] int_cols = [col for col in df if df[col].dtype in ["int64", "int32"]] df[float_cols] = df[float_cols].astype(np.float32) df[int_cols] = df[int_cols].astype(np.int16) return df sales = downcasting(sales) sales.info() # The data frame memory usage went from `134.4 MB` to `61.6 MB` which about `55.2%` reduction # ### 1) Date: # # changing the type of the column into date time, this will ease future feature engineering sales.date = pd.to_datetime(sales.date) sales.info() print("First date --> ", sales.date.min()) print("Last date --> ", sales.date.max()) # ### 2) date_block_num # # what is the number of items soled at each month ? sales_grouped_by_month = sales.groupby("date_block_num")["item_cnt_day"].sum() plt.figure(figsize=(15, 8)) plt.title("Number of items sold by each month") plt.xlabel("Date_block_num") plt.ylabel("Items_sum") sns.lineplot(data=sales_grouped_by_month) sales.item_price.max() # what is the average number of items soled at each month ? sales_grouped_by_month = sales.groupby("date_block_num")["item_cnt_day"].mean() plt.figure(figsize=(15, 8)) plt.title("Average number of items sold by each month") plt.xlabel("Date_block_num") plt.ylabel("Items_mean") sns.lineplot(data=sales_grouped_by_month) # what is the max number of items soled at each month ? sales_grouped_by_month = sales.groupby("date_block_num")["item_cnt_day"].max() plt.figure(figsize=(15, 8)) plt.title("Max number of items sold by each month") plt.xlabel("Date_block_num") plt.ylabel("Items_mean") sns.lineplot(data=sales_grouped_by_month) # ### 3) shop_id print("Nuumber of shops is : ", sales.shop_id.nunique()) # what is the number of items soled at each shop ? items_ordered_grouped_by_shop = sales.groupby("shop_id")["item_cnt_day"].mean() plt.figure(figsize=(20, 8)) plt.title("Avg number of items sold by each shop") plt.xlabel("shop_id") plt.ylabel("Items_mean") sns.barplot(x=sales.shop_id.unique(), y=items_ordered_grouped_by_shop) # There is a significant difference between the shops in terms number of ordered items. # ### 4) item_id sales.item_id.nunique() # what is the 10 most ordered items best_10_items = ( sales.groupby("item_id")["item_cnt_day"] .sum() .sort_values(ascending=False) .head(10) .index ) best_10_items_ids = list(best_10_items) print(best_10_items) best_10_items = ( sales.groupby("item_id")["item_cnt_day"].sum().sort_values(ascending=False).head(10) ) best_10_items_values = [] for i in range(0, len(best_10_items)): best_10_items_values.append(best_10_items[best_10_items_ids[i]]) # best_10_items_names = shops.shop_id.map(lambda Id : [ID ]) # best_10_items_names = [shops.shop_name_translated for Id in shops.shop_id if Id in best_10_items] best_10_items_values plt.figure(figsize=(20, 8)) plt.title("Best 10 ordered items") plt.xlabel("Item_id") plt.ylabel("Number of ordered items") sns.barplot(x=best_10_items_ids, y=best_10_items_values) # Item with id `20949` is clearly an outlier and need more investigation. # ### 5) item_price: sales.item_price.describe().round(1) # #### This is a huge price comparing to the mean and median which is considered to be an outlier so i will remove it. plt.figure(figsize=(20, 8)) sns.boxplot(sales.item_price) # ### 6) item_cnt_day (target variable): sales.item_cnt_day.describe().round() plt.figure(figsize=(20, 8)) sns.boxplot(sales.item_cnt_day) item_categories.nunique() sales.loc[1163158] items.loc[6066] # print(sales.item_price.idxmax()) best_10_items = ( sales.groupby("item_id")["item_cnt_day"] .sum() .sort_values(ascending=False) .head(10) .index ) best_10_items_ids = list(best_10_items) print(best_10_items) best_10_items = ( sales.groupby("item_id")["item_cnt_day"].sum().sort_values(ascending=False).head(10) ) best_10_items_values = [] for i in range(0, len(best_10_items)): best_10_items_values.append(best_10_items[best_10_items_ids[i]]) # best_10_items_names = shops.shop_id.map(lambda Id : [ID ]) # best_10_items_names = [shops.shop_name_translated for Id in shops.shop_id if Id in best_10_items]
import pandas as pd import numpy as np import requests import re from bs4 import BeautifulSoup as bs # Getting the request from the URL url = "https://www.soccerbase.com/" response = requests.get(url) response # Creating a BeautifulSoup object soup = bs(response.text) type(soup) # Finding the relative path for desired page on the website result_link = soup.find("a", title="Results") result_link["href"] # Creating an absolute path for the results page link = url + result_link["href"] link # Getting the request from the above link results = requests.get(link) results # Converting the HTML into the Text r_soup = bs(results.text) # Retrieving the Header of Results page r_soup.find("div", class_="pageHeader pageHeaderLatestResults").find("h1").text r_soup.find("div", class_="headlineGroop").text # creating a dataframe from the results data matches = [] for i in r_soup.find_all("tbody")[1:]: for j in i: matches.append( [ re.sub("\xa0-\xa0", "-", re.sub("ft", " ft", i.text)) for i in j.find_all("td") if i.text != "" and i.text != "N" ] ) # print(matches[1:]) df = pd.DataFrame(matches[1:], columns=["Day-Date-FT", "Team1", "Score", "Team2"]) df # Here we are checking for the rows which are redundant matches # Removing the None values from the dtatframe df = df.dropna() df # Checking the shape of the dataframe df.shape # Reseting all the indices of the dataframe which are disturbed due to dropping None values df.reset_index(inplace=True) # Finally printing the clean Dataframe df # Saving the file in CSV format df.to_csv("results.csv", index=False)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import matplotlib.pyplot as plt import xlrd # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. exportdf = pd.read_csv("/kaggle/input/india-trade-data/2018-2010_export.csv") importdf = pd.read_csv("/kaggle/input/india-trade-data/2018-2010_import.csv") importdf.drop_duplicates(inplace=True) exportdf.drop_duplicates(inplace=True) print("Export Unqiue: " + str(len(exportdf["Commodity"].unique()))) print("Import Unqiue: " + str(len(importdf["Commodity"].unique()))) print("Export Value Sum: " + str(exportdf["value"].sum())) print("Import Value Sum: " + str(importdf["value"].sum())) print( "Total Deficit of 10 year: " + str(exportdf["value"].sum() - importdf["value"].sum()) ) growthImport = importdf.groupby("year").agg({"value": sum}) sns.barplot(y=growthImport.value, x=growthImport.index) growthExport = exportdf.groupby("year").agg({"value": sum}) sns.barplot(y=growthExport.value, x=growthExport.index) commodity = ( importdf[["value", "Commodity"]] .groupby("Commodity") .agg({"value": "sum"}) .sort_values(by="value", ascending=False)[:10] ) sns.barplot(y=commodity.index, x=commodity.value) most_expensive = importdf[importdf.value > 1000] most_expensive1 = most_expensive.groupby(["country"]).agg({"value": "sum"}) most_expensive1.sort_values(by="value", ascending=False) most_expensive1 plt.figure(figsize=(15, 5)) most_expensiveHSCode = ( most_expensive.groupby(["HSCode", "country"]) .agg({"value": "sum"}) .sort_values(by="value", ascending=False)[:15] ) sns.barplot(most_expensiveHSCode.index, most_expensiveHSCode.value).set_xticklabels( sns.barplot( most_expensiveHSCode.index, most_expensiveHSCode.value ).get_xticklabels(), rotation="90", )
# # A try to the dogs vs cats dataset using a simple CNN # This has been one of my first ML projects. # I got inspired by [sentdesk](https://pythonprogramming.net/convolutional-neural-network-deep-learning-python-tensorflow-keras/), [Adrian Rosebrock](https://www.pyimagesearch.com/2018/12/24/how-to-use-keras-fit-and-fit_generator-a-hands-on-tutorial/) and [Uysim Ty](https://www.kaggle.com/uysimty/keras-cnn-dog-or-cat-classification). Thanks! # Any feedback would be great :) import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk( "/kaggle/input/dogs-vs-cats-redux-kernels-edition/" ): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. # # Import necessary packages import numpy as np import os import cv2 import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix, accuracy_score from tensorflow.keras.models import Sequential, load_model from tensorflow.keras.layers import Dense, Activation, Flatten, Dropout from tensorflow.keras.layers import Conv2D, MaxPooling2D, BatchNormalization from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.callbacks import TensorBoard, EarlyStopping import random from mlxtend.plotting import plot_confusion_matrix # # Let's have a look of where the data is for dirname, _, filenames in os.walk("/kaggle/input/"): for filename in filenames: print(os.path.join(dirname, filename)) # # So we need to extract the images in the zip files with zipfile.ZipFile("../input/dogs-vs-cats-redux-kernels-edition/train.zip") as z: z.extractall("..") with zipfile.ZipFile("../input/dogs-vs-cats-redux-kernels-edition/test.zip") as z: z.extractall("..") print(os.listdir("..")) # # Now, we have two folders containing each train and test images # # The next step is to load the training data # ## Both features (images) and labels (dog or cat) are loaded into a python list DATADIR = "../train" training_data = [] RESIZE = 100 X = [] y = [] def create_training_data(): for img in os.listdir(DATADIR): try: img_array = cv2.imread(os.path.join(DATADIR, img), cv2.IMREAD_GRAYSCALE) img2 = cv2.resize(img_array, (RESIZE, RESIZE)) img2 = (img2 - img2.mean()) / img2.std() if img[:3] == "dog": class_num = 0 else: class_num = 1 X.append(img2) y.append(class_num) except Exception as e: pass create_training_data() # ## The python list containing the loaded data is converted into two numpy arrays, one for features and one for labels X = np.array(X).reshape(-1, RESIZE, RESIZE, 1) y = np.asarray(y) # ## Now, we divide the training data into two sets, one for training and one for validation (X_train, X_val, y_train, y_val) = train_test_split( X, y, test_size=0.3, random_state=42 ) # # Now, it is time to build and train a simple CNN model # ## First, we create generators for augmentation of training data and for normalization of validation data aug_train = ImageDataGenerator( rotation_range=20, zoom_range=0.15, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.15, horizontal_flip=True, fill_mode="nearest", ) generator_val = ImageDataGenerator() # ## The ImageDataGenerator.fit method is used for feature normalization aug_train.fit(X_train) generator_val.fit(X_val) # ## We build now a CNN. Let's try with a simple one consisnting in 5 Conv layer, one dense layer and one ouput layer model = Sequential() model.add(Conv2D(64, (3, 3), input_shape=X.shape[1:])) model.add(Activation("relu")) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(64, (3, 3))) model.add(Activation("relu")) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(64, (3, 3))) model.add(Activation("relu")) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(64, (3, 3))) model.add(Activation("relu")) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(64, (3, 3))) model.add(Activation("relu")) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(256, activation="relu")) model.add(Dropout(0.5)) model.add(Dense(2, activation="softmax")) model.compile( loss="sparse_categorical_crossentropy", optimizer="rmsprop", metrics=["accuracy"] ) model.summary() # ## Ok, let's now train the model earlystop = EarlyStopping(patience=10) history = model.fit( aug_train.flow(X_train, y_train, batch_size=32), validation_data=generator_val.flow(X_val, y_val, batch_size=32), epochs=100, callbacks=[earlystop], )
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import folium # plotting library from folium import plugins from sklearn.cluster import KMeans from sklearn.decomposition import PCA import matplotlib.pyplot as plt import matplotlib.cm as cm import matplotlib.colors as colors import seaborn as sns # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. # # Introduction # ### Firstly, we will take a quick look into our data in order to understand with what we are working with! And, then, we will clean/filter it! # ### Afterwards, we will apply k-Means clustering in order to identify similar airports based on the number of occurences of weather events that had happened in that particular airport! Plus, we are going to use Principal Component Analysis in order to visualise high dimensional data, so that, we can see how our clusters are related in the original space. # ### Finally, the final result of clustered airports will be illustrated using the Seaborn library and Folium Maps # # Data Overview df = pd.read_csv("../input/us-weather-events/US_WeatherEvents_2016-2019.csv") df.head() df["Type"].value_counts() df["Severity"].value_counts() # ## Data prep for k-Means clustering # ### Let's filter our data discarding the events that has severity as 'unk' or 'other' df = df[(df["Severity"] != "UNK") & (df["Severity"] != "Other")] df.head() df_types = df[["AirportCode", "Type"]] df_types.head() # ### Here, we are going to group the occurences for each airport! types = pd.get_dummies(df_types["Type"]) types["AirportCode"] = df_types["AirportCode"] types = types.groupby("AirportCode").sum().reset_index() types.head() # # k-Means Clustering codes = types[["AirportCode"]] types.drop("AirportCode", axis=1, inplace=True) # ### In order to identify the optimal number of clusters, we need to use the Elbow Method! When the slope of the tangent line starts to be almost horizontal, that is the optimal number of cluster! distortions = [] K = range(1, 20) for k in K: kmean = KMeans(n_clusters=k, random_state=0, n_init=50, max_iter=500) kmean.fit(types) distortions.append(kmean.inertia_) plt.figure(figsize=(10, 5)) plt.plot(K, distortions, "bx-") plt.xlabel("k") plt.ylabel("Distortion") plt.title("The Elbow Method") plt.show() # ### The elbow method seems to suggest 4 or 5 clusters! # run k-means clustering kmeans = KMeans(n_clusters=4, random_state=0).fit(types) codes["cluster"] = kmeans.labels_ codes.head() # ### I am used to apply some dimensionality reduction techniques in order to visualise how our clusters are related in the original high dimensional space! Moreover, we are able to see if the features of our data are linear related among them. pca = PCA().fit(types) pca_types = pca.transform(types) print("Variance explained by each component (%): ") for i in range(len(pca.explained_variance_ratio_)): print("\n", i + 1, "º:", pca.explained_variance_ratio_[i] * 100) print("Total sum (%): ", sum(pca.explained_variance_ratio_) * 100) print( "Explained variance of the first two components (%): ", sum(pca.explained_variance_ratio_[0:1]) * 100, ) # ### Since the number of samples are larger than the number of features, we are able to solve all 5 principal components (PC), leading to 100% of the original information being explained by these PC. # ### We can see that using the first two components we are able to preserve 63,65% of the original information, therefore, reducing the dimensionality of our data. # ### Let's use these PC to visualise our clusters! c0 = [] c1 = [] c2 = [] c3 = [] for i in range(len(pca_types)): if kmeans.labels_[i] == 0: c0.append(pca_types[i]) if kmeans.labels_[i] == 1: c1.append(pca_types[i]) if kmeans.labels_[i] == 2: c2.append(pca_types[i]) if kmeans.labels_[i] == 3: c3.append(pca_types[i]) c0 = np.array(c0) c1 = np.array(c1) c2 = np.array(c2) c3 = np.array(c3) plt.figure(figsize=(7, 7)) plt.scatter(c0[:, 0], c0[:, 1], c="red", label="Cluster 0") plt.scatter(c1[:, 0], c1[:, 1], c="blue", label="Cluster 1") plt.scatter(c2[:, 0], c2[:, 1], c="green", label="Cluster 2") plt.scatter(c3[:, 0], c3[:, 1], c="black", label="Cluster 3") plt.legend() plt.xlabel("PC1") plt.ylabel("PC2") plt.title("Low dimensional visualization (PCA) - Airports") # ### We see that 4 clusters seems to be reasonable to identify similar samples within our data! # ### Let's take a look in the particularity of each cluster using seaborn library! types["cluster"] = kmeans.labels_ types.head() types.groupby("cluster").mean() sns.catplot(x="cluster", y="Cold", data=types, kind="bar") sns.catplot(x="cluster", y="Fog", data=types, kind="bar") sns.catplot(x="cluster", y="Rain", data=types, kind="bar") sns.catplot(x="cluster", y="Snow", data=types, kind="bar") sns.catplot(x="cluster", y="Storm", data=types, kind="bar") # ### Looking into these plots we can see that cluster 0 is the most affected by snow and cold! And cluster 3 is the most affected by rains! # # Folium Maps Visualisation by Number of Occurences and Clustering # ### Firstly, we need to create a map of USA # ### We are going to plot two maps: the first one will display airports by their number of weather events that occured in that airport! The size of each mark (of each airport) will vary accordingly to these numbers. The second map will show us the clusters that we had acquired through k-Means! # latitude = 38.500000 longitude = -95.665 map_USA = folium.Map(location=[latitude, longitude], zoom_start=4) map_USA airports = df[["AirportCode", "LocationLat", "LocationLng", "City", "State"]] airports.head() number_of_occurences = pd.DataFrame(airports["AirportCode"].value_counts()) number_of_occurences.reset_index(inplace=True) number_of_occurences.columns = ["AirportCode", "Count"] number_of_occurences.head() number_of_occurences = number_of_occurences.merge(airports.drop_duplicates()) number_of_occurences = number_of_occurences.merge(codes) number_of_occurences.head() occurences = folium.map.FeatureGroup() n_mean = number_of_occurences["Count"].mean() for lat, lng, number, city, state in zip( number_of_occurences["LocationLat"], number_of_occurences["LocationLng"], number_of_occurences["Count"], number_of_occurences["City"], number_of_occurences["State"], ): occurences.add_child( folium.vector_layers.CircleMarker( [lat, lng], radius=number / n_mean * 5, # define how big you want the circle markers to be color="yellow", fill=True, fill_color="blue", fill_opacity=0.6, tooltip=str(number) + "," + str(city) + "," + str(state), ) ) map_USA.add_child(occurences) # ### We can see that the airports that had registered the greatest number of occurences are in the north of the West Coast! # ### But, in general, the airports that are located far away from the coast had suffered less from weather events! However, the state of Colorado seems to be a exception to that :) # ### Finally, let's see our clusters! map_clusters = folium.Map(location=[latitude, longitude], zoom_start=4) # set color scheme for the clusters x = np.arange(4) ys = [i + x + (i * x) ** 2 for i in range(4)] colors_array = cm.rainbow(np.linspace(0, 1, len(ys))) rainbow = [colors.rgb2hex(i) for i in colors_array] # add markers to the map markers_colors = [] for lat, lng, cluster, city, state in zip( number_of_occurences["LocationLat"], number_of_occurences["LocationLng"], number_of_occurences["cluster"], number_of_occurences["City"], number_of_occurences["State"], ): # label = folium.Popup(str(city)+ ','+str(state) + '- Cluster ' + str(cluster), parse_html=True) folium.vector_layers.CircleMarker( [lat, lng], radius=5, # popup=label, tooltip=str(city) + "," + str(state) + "- Cluster " + str(cluster), color=rainbow[cluster - 1], fill=True, fill_color=rainbow[cluster - 1], fill_opacity=0.9, ).add_to(map_clusters) map_clusters
# # Indian Bird Species Classification # This notebook demonstrates how to train a deep learning model to classify images of 25 different bird species found in India. # Tags: deep learning, computer vision, image classification, PyTorch # import torch import torch.nn as nn import torch.optim as optim import torchvision.transforms as transforms import torchvision.datasets as datasets import torchvision.models as models from torch.utils.data import DataLoader from sklearn.model_selection import KFold import torch.nn.functional as F import warnings warnings.filterwarnings("ignore") # # Load and preprocess the dataset # This code loads and preprocesses a dataset of Indian bird species images using PyTorch. # To begin, the number of classes in the dataset is defined as `num_classes = 25`. This is a necessary step when training a classification model, as the model needs to know how many different classes to predict. # Next, the directory containing the image dataset is specified using the `data_dir` variable. The dataset contains images of Indian bird species, which are organized into separate folders for each class. # A series of data transformations are then defined using the `transforms.Compose()` function from PyTorch. This function takes a list of transform objects and applies them sequentially to each image. In this case, the following transformations are applied: # - `transforms.Resize((224, 224))`: This transformation resizes each image to a fixed size of 224x224 pixels. This is a common size for image classification models. # - `transforms.RandomHorizontalFlip()`: This transformation randomly flips each image horizontally with a probability of 0.5. This helps to increase the diversity of the training data and improve the model's robustness. # - `transforms.ToTensor()`: This transformation converts each image to a PyTorch tensor. Tensors are the primary data structure used by PyTorch for training deep learning models. # - `transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])`: This transformation normalizes each image with the mean and standard deviation values from the ImageNet dataset. Normalization helps to make the data more comparable across different images and can improve the convergence of the training process. # Finally, the `datasets.ImageFolder()` function from PyTorch is used to create a PyTorch dataset from the image files. This function reads the images from the directory specified by `data_dir` and applies the transformations defined in `transform` to each image. The resulting dataset can be used for training a deep learning model to classify the images based on their bird species. # Define the number of classes num_classes = 25 # Load the dataset data_dir = "/kaggle/input/25-indian-bird-species-with-226k-images" transform = transforms.Compose( [ transforms.Resize((224, 224)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ] ) dataset = datasets.ImageFolder(data_dir, transform=transform) # # Define cross-validation splits # This code uses the `KFold` function from the scikit-learn library to define cross-validation splits for the dataset. Cross-validation is a common technique used in machine learning to evaluate the performance of a model on a limited dataset. # To create the cross-validation splits, the `KFold` function is used. This function takes several parameters, including `n_splits`, which specifies the number of folds to create. In this case, `n_splits=5`, which means that the dataset will be split into 5 equal-sized parts. # The `shuffle=True` parameter indicates that the data should be shuffled before splitting. This can help to ensure that each fold contains a diverse set of data and that the model is not biased towards any particular subset of the data. # The `random_state` parameter sets the random seed for reproducibility. By setting a random seed, the splits will be generated in a consistent manner each time the code is run, which can help with debugging and comparison of different models. # # Define the cross-validation splits kf = KFold(n_splits=5, shuffle=True, random_state=123) # # Train and evaluate the model using cross-validation # This code trains and evaluates a deep learning model using cross-validation. Cross-validation is a technique used to evaluate the performance of a machine learning model on a limited dataset. It involves splitting the data into several folds, training the model on each fold, and evaluating its performance on the remaining data. # To perform cross-validation, the code uses the `KFold` function from the scikit-learn library to generate indices for the training and validation sets for each fold. The `enumerate(kf.split(dataset))` function is used to iterate over each fold of the cross-validation process. # In each fold, the code defines a ResNet-18 model with a modified fully connected layer that has `num_classes` output units. This model is then trained for 10 epochs using the `CrossEntropyLoss` loss function and the `Adam` optimizer. # After each epoch, the training loss is printed to the console. This provides a measure of how well the model is learning from the training data. # Once training is complete, the code evaluates the model on the validation set and prints the accuracy to the console. This provides a measure of how well the model generalizes to new, unseen data. The process is repeated for each fold of the cross-validation process. # By using cross-validation, the code is able to obtain a more robust estimate of the model's performance than would be possible with a single train-test split. This can be helpful for evaluating the effectiveness of different models or hyperparameter settings. # from torchvision.models import resnet18 # Train and evaluate the model using cross-validation for fold, (train_idx, test_idx) in enumerate(kf.split(dataset)): print(f"Fold {fold+1}") # Define the model and move it to the GPU device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = resnet18(pretrained=True) model.fc = nn.Linear(model.fc.in_features, num_classes) model = model.to(device) # Define the loss function and optimizer criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) train_sampler = torch.utils.data.SubsetRandomSampler(train_idx) test_sampler = torch.utils.data.SubsetRandomSampler(test_idx) train_loader = DataLoader( dataset, batch_size=64, sampler=train_sampler, num_workers=4, pin_memory=True ) test_loader = DataLoader( dataset, batch_size=64, sampler=test_sampler, num_workers=4, pin_memory=True ) for epoch in range(10): running_loss = 0.0 for i, (inputs, labels) in enumerate(train_loader, 0): inputs, labels = inputs.to(device), labels.to(device) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() print(f"Epoch {epoch+1} loss: {running_loss/len(train_loader)}") correct = 0 total = 0 with torch.no_grad(): for inputs, labels in test_loader: inputs, labels = inputs.to(device), labels.to(device) outputs = model(inputs) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print(f"Accuracy: {correct/total}") # # Save the trained model # This code saves the trained ResNet-18 model to a file specified by the `model_path` variable using the `state_dict()` function from PyTorch. This function returns a dictionary containing the parameters and persistent buffers of the model, which can be used to save and load the model's state. # The saved model can be loaded later using the `load_state_dict()` function from PyTorch. This allows you to reuse the trained model for inference or further training without having to retrain the model from scratch. # # Save the trained model model_path = "/kaggle/working/trained_resnet18.pth" torch.save(model.state_dict(), model_path)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. import seaborn as sns import matplotlib.pyplot as plt from scipy.stats import norm from sklearn.preprocessing import LabelEncoder import pandas as pd sample_submission = pd.read_csv( "../input/house-prices-advanced-regression-techniques/sample_submission.csv" ) test = pd.read_csv("../input/house-prices-advanced-regression-techniques/test.csv") train = pd.read_csv("../input/house-prices-advanced-regression-techniques/train.csv") print(train["GrLivArea"].head()) plt.scatter(x=train["GrLivArea"], y=train["SalePrice"]) plt.show() train = train.drop( train[(train["GrLivArea"] > 4000) & (train["SalePrice"] < 300000)].index ) plt.scatter(x=train["GrLivArea"], y=train["SalePrice"]) plt.show() sns.distplot(train["SalePrice"], fit=norm) train_test = pd.concat((train, test)) train_test.drop(["SalePrice"], axis=1, inplace=True) print(train_test.info()) na = 100 * train_test.isnull().sum() / (len(train_test)) na = na.drop(na[na == 0].index).sort_values(ascending=False) na = pd.DataFrame(na, columns=["percentage"]) _, _ = plt.subplots(figsize=(10, 7)) plt.xticks(rotation="90") sns.barplot(x=na.index, y=na["percentage"]) cor_map = train.corr() plt.subplots(figsize=(12, 8)) sns.heatmap(cor_map) na_col = [ "PoolQC", "MiscFeature", "Alley", "Fence", "FireplaceQu", "GarageType", "GarageFinish", "GarageQual", "GarageCond", "BsmtQual", "BsmtCond", "BsmtExposure", "BsmtFinType1", "BsmtFinType2", "MasVnrType", "MSSubClass", ] for col in na_col: train[col] = train[col].fillna("na") test[col] = test[col].fillna("na") zero_col = [ "GarageYrBlt", "GarageArea", "GarageCars", "BsmtFinSF1", "BsmtFinSF2", "BsmtUnfSF", "TotalBsmtSF", "BsmtFullBath", "BsmtHalfBath", "MasVnrArea", ] for col in zero_col: train[col] = train[col].fillna(0) test[col] = test[col].fillna(0) train["LotFrontage"] = train.groupby("Neighborhood")["LotFrontage"].transform( lambda x: x.fillna(x.median()) ) test["LotFrontage"] = test.groupby("Neighborhood")["LotFrontage"].transform( lambda x: x.fillna(x.median()) ) train = train.drop(["Utilities"], axis=1) test = test.drop(["Utilities"], axis=1) mode_col = ["MSZoning", "Electrical", "KitchenQual", "Exterior1st", "Exterior2nd"] for col in mode_col: train[col] = train[col].fillna(train[col].mode()[0]) test[col] = test[col].fillna(train[col].mode()[0]) train_test_clean = pd.concat((train, test)) train_test_clean_na = 100 * train_test_clean.isnull().sum() / len(train_test_clean) print(pd.DataFrame({"missing": train_test_clean_na})) str_col = ["MSSubClass", "OverallCond", "YrSold", "MoSold"] for col in str_col: train[col] = train[col].astype(str) test[col] = test[col].astype(str) enc_col = [ "FireplaceQu", "BsmtQual", "BsmtCond", "GarageQual", "GarageCond", "ExterQual", "ExterCond", "HeatingQC", "PoolQC", "KitchenQual", "BsmtFinType1", "BsmtFinType2", "Functional", "Fence", "BsmtExposure", "GarageFinish", "LandSlope", "LotShape", "PavedDrive", "Street", "Alley", "CentralAir", "MSSubClass", "OverallCond", "YrSold", "MoSold", ] lbl = LabelEncoder() for col in enc_col: lbl.fit train["TotalSF"] = train["TotalBsmtSF"] + train["1stFlrSF"] + train["2ndFlrSF"] test["TotalSF"] = test["TotalBsmtSF"] + test["1stFlrSF"] + test["2ndFlrSF"] numerical_col = train.dtypes[train.dtypes != "object"].index # filter numerical columns pd.DataFrame(train[numerical_col].skew().sort_values(ascending=False).head()) numerical_col_test = test.dtypes[train.dtypes != "object"].index pd.DataFrame(test[numerical_col_test].skew().sort_values(ascending=False).head())
import mxnet as mx from mxnet import nd, autograd, gluon from mxnet.gluon import nn from mxnet.gluon.data import vision from matplotlib import pyplot as plt from tqdm.notebook import tqdm from distutils.dir_util import copy_tree import os plt.style.use("seaborn") ctx = mx.gpu() fromDirectory = "../input/natural-images/data/natural_images" toDirectory = "../../training/" from distutils.dir_util import copy_tree copy_tree(fromDirectory, toDirectory) os.chdir("../../") os.listdir("./") train_root = "./training/" val_root = "./val/" test_root = "./test/" os.mkdir(val_root) os.mkdir(test_root) categories = os.listdir(train_root) categories.sort() print("Categories:", categories) print("Total Categories:", len(categories)) for category in categories: os.mkdir(os.path.join(val_root, category)) os.mkdir(os.path.join(test_root, category)) print(f"{len(os.listdir(train_root + category))} images for '{category}' category") for category in categories: print(f"Creating validation and testing dataset for '{category}' category") for _ in range(10): images = os.listdir(train_root + category) idx = int(nd.random.randint(0, len(images)).asscalar()) image = images[idx] os.rename( os.path.join(train_root, category, image), os.path.join(val_root, category, image), ) for _ in range(150): images = os.listdir(train_root + category) idx = int(nd.random.randint(0, len(images)).asscalar()) image = images[idx] os.rename( os.path.join(train_root, category, image), os.path.join(test_root, category, image), ) train_counts = [] for category in categories: train_counts.append(len(os.listdir(train_root + category))) plt.figure(figsize=(8, 8)) plt.bar(categories, train_counts) plt.title("Training images in each category") plt.xlabel("Categories") plt.ylabel("Counts") plt.show() val_counts = [] for category in categories: val_counts.append(len(os.listdir(val_root + category))) plt.figure(figsize=(8, 8)) plt.bar(categories, val_counts) plt.title("Validation images in each category") plt.xlabel("Categories") plt.ylabel("Counts") plt.show() test_counts = [] for category in categories: test_counts.append(len(os.listdir(test_root + category))) plt.figure(figsize=(8, 8)) plt.bar(categories, test_counts) plt.title("Testing images in each category") plt.xlabel("Categories") plt.ylabel("Counts") plt.show() train_transform = vision.transforms.Compose( [ vision.transforms.RandomSaturation(saturation=0.1), vision.transforms.RandomLighting(alpha=0.2), vision.transforms.RandomHue(hue=0.1), vision.transforms.RandomFlipLeftRight(), vision.transforms.RandomContrast(contrast=0.2), vision.transforms.RandomColorJitter( brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1 ), vision.transforms.Resize(128), vision.transforms.ToTensor(), ] ) transform = vision.transforms.Compose( [vision.transforms.Resize(128), vision.transforms.ToTensor()] ) batch_size = 64 train_data = gluon.data.DataLoader( vision.ImageFolderDataset(root=train_root, flag=1).transform_first(train_transform), batch_size=batch_size, shuffle=True, ) val_data = gluon.data.DataLoader( vision.ImageFolderDataset(root=val_root, flag=1).transform_first(transform), batch_size=batch_size, shuffle=False, ) test_data = gluon.data.DataLoader( vision.ImageFolderDataset(root=test_root, flag=1).transform_first(transform), batch_size=batch_size, shuffle=False, ) print(f"{len(train_data)} batches in training data") print(f"{len(val_data)} batches in validation data") print(f"{len(test_data)} batches in testing data") for features, labels in train_data: break print(f"features.shape: {features.shape}") print(f"labels.shape: {labels.shape}") print(f"features.max(): {features.max().asscalar()}") print(f"features.min(): {features.min().asscalar()}") plt.figure(figsize=(10, 12)) for i in range(25): plt.subplot(5, 5, i + 1) plt.imshow(features[i].transpose((1, 2, 0)).asnumpy()) plt.title(categories[int(labels[i].asscalar())].title()) plt.axis("off") plt.show() model = gluon.model_zoo.vision.mobilenet_v2_1_0(pretrained=True, ctx=ctx) with model.name_scope(): model.output.add(nn.Dropout(0.5)) model.output.add(nn.Dense(len(categories))) model.output.initialize(mx.init.Xavier(), ctx=ctx) print(model) model.summary(features.as_in_context(ctx)) mx.viz.plot_network(model(mx.sym.var(name="data")), node_attrs={"fixedsize": "false"}) model.hybridize() objective = gluon.loss.SoftmaxCrossEntropyLoss() optimizer = mx.optimizer.Adam(learning_rate=0.0005) trainer = gluon.Trainer(model.collect_params(), optimizer) metric = mx.metric.Accuracy() epochs = 10 batches = len(train_data) train_losses = [] train_accs = [] val_losses = [] val_accs = [] best_val = 0.0 for epoch in range(epochs): metric.reset() cum_loss = 0.0 for features, labels in tqdm( train_data, desc=f"Epoch: {epoch + 1} Completed", ncols=800 ): features = features.as_in_context(ctx) labels = labels.as_in_context(ctx) with autograd.record(): outputs = model(features) loss = objective(outputs, labels) loss.backward() trainer.step(batch_size) cum_loss += loss.mean() metric.update(labels, outputs) train_loss = cum_loss.asscalar() / batches train_acc = metric.get()[1] train_losses.append(train_loss) train_accs.append(train_acc) metric.reset() cum_loss = 0.0 for features, labels in test_data: features = features.as_in_context(ctx) labels = labels.as_in_context(ctx) outputs = model(features) metric.update(labels, outputs) cum_loss += objective(outputs, labels).mean() val_loss = cum_loss.asscalar() / batches val_acc = metric.get()[1] val_losses.append(val_loss) val_accs.append(val_acc) print(f"Training Loss:\t {train_loss:.5f} | Training Accuracy: {train_acc:.5f}") print(f"Validation Loss: {val_loss:.5f} | Validation Accuracy: {val_acc:.5f}") if val_acc > best_val: print("Saving model for best validation accuracy") model.save_parameters("model.params") best_val = val_acc plt.figure(figsize=(10, 5)) plt.plot(train_accs, label="Training Accuracy") plt.plot(val_accs, label="Validation Accuracy") plt.xlabel("Epochs") plt.ylabel("Accuracy") plt.title("Training and Validation Accuracy") plt.legend() plt.show() plt.figure(figsize=(10, 5)) plt.plot(train_losses, label="Training Loss") plt.plot(val_losses, label="Validation Loss") plt.title("Training and Validation Loss") plt.xlabel("Epochs") plt.ylabel("Loss") plt.legend() plt.show() model.load_parameters("model.params") metric.reset() for features, labels in test_data: features = features.as_in_context(ctx) labels = labels.as_in_context(ctx) outputs = model(features) metric.update(labels, outputs) print(f"Testing Accuracy: {metric.get()[1]}")
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) np.random.seed(1212) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import keras from keras.models import Model from keras.layers import * from keras import optimizers df_train = pd.read_csv("/kaggle/input/digit-recognizer/train.csv") df_test = pd.read_csv("/kaggle/input/digit-recognizer/test.csv") df_train.head() # 784 features, 1 label df_test.head() # 784 features, 1 label # Splitting into training and validation dataset df_features = df_train.iloc[:, 1:785] df_label = df_train.iloc[:, 0] X_test = df_test.iloc[:, 0:784] print(df_features.shape) from sklearn.model_selection import train_test_split X_train, X_cv, y_train, y_cv = train_test_split( df_features, df_label, test_size=0.2, random_state=1212 ) # Data cleaning, normalization and selection print((min(X_train), max(X_train))) # Feature Normalization X_train = X_train.astype("float32") X_cv = X_cv.astype("float32") X_test = X_test.astype("float32") X_train = X_train / 255 X_cv = X_cv / 255 X_test = X_test / 255 # Convert labels to One Hot Encoded num_digits = 10 y_train = keras.utils.to_categorical(y_train, num_digits) y_cv = keras.utils.to_categorical(y_cv, num_digits) # Model Fitting # Input Parameters n_input = 784 # number of features n_hidden_1 = 300 n_hidden_2 = 100 n_hidden_3 = 100 n_hidden_4 = 200 num_digits = 10 Inp = Input(shape=(784,)) x = Dense(n_hidden_1, activation="relu", name="Hidden_Layer_1")(Inp) x = Dense(n_hidden_2, activation="relu", name="Hidden_Layer_2")(x) x = Dense(n_hidden_3, activation="relu", name="Hidden_Layer_3")(x) x = Dense(n_hidden_4, activation="relu", name="Hidden_Layer_4")(x) output = Dense(num_digits, activation="softmax", name="Output_Layer")(x) # Our model would have '6' layers - input layer, 4 hidden layer and 1 output layer model = Model(Inp, output) model.summary() # We have 297,910 parameters to estimate # Insert Hyperparameters learning_rate = 0.1 training_epochs = 20 batch_size = 100 sgd = optimizers.SGD(lr=learning_rate) # We rely on the plain vanilla Stochastic Gradient Descent as our optimizing methodology model.compile(loss="categorical_crossentropy", optimizer="sgd", metrics=["accuracy"]) history1 = model.fit( X_train, y_train, batch_size=batch_size, epochs=training_epochs, verbose=2, validation_data=(X_cv, y_cv), ) Inp = Input(shape=(784,)) x = Dense(n_hidden_1, activation="relu", name="Hidden_Layer_1")(Inp) x = Dense(n_hidden_2, activation="relu", name="Hidden_Layer_2")(x) x = Dense(n_hidden_3, activation="relu", name="Hidden_Layer_3")(x) x = Dense(n_hidden_4, activation="relu", name="Hidden_Layer_4")(x) output = Dense(num_digits, activation="softmax", name="Output_Layer")(x) # We rely on ADAM as our optimizing methodology adam = keras.optimizers.Adam(lr=learning_rate) model2 = Model(Inp, output) model2.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) history2 = model2.fit( X_train, y_train, batch_size=batch_size, epochs=training_epochs, verbose=2, validation_data=(X_cv, y_cv), ) Inp = Input(shape=(784,)) x = Dense(n_hidden_1, activation="relu", name="Hidden_Layer_1")(Inp) x = Dense(n_hidden_2, activation="relu", name="Hidden_Layer_2")(x) x = Dense(n_hidden_3, activation="relu", name="Hidden_Layer_3")(x) x = Dense(n_hidden_4, activation="relu", name="Hidden_Layer_4")(x) output = Dense(num_digits, activation="softmax", name="Output_Layer")(x) learning_rate = 0.01 adam = keras.optimizers.Adam(lr=learning_rate) model2a = Model(Inp, output) model2a.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) history2a = model2a.fit( X_train, y_train, batch_size=batch_size, epochs=training_epochs, verbose=2, validation_data=(X_cv, y_cv), ) Inp = Input(shape=(784,)) x = Dense(n_hidden_1, activation="relu", name="Hidden_Layer_1")(Inp) x = Dense(n_hidden_2, activation="relu", name="Hidden_Layer_2")(x) x = Dense(n_hidden_3, activation="relu", name="Hidden_Layer_3")(x) x = Dense(n_hidden_4, activation="relu", name="Hidden_Layer_4")(x) output = Dense(num_digits, activation="softmax", name="Output_Layer")(x) learning_rate = 0.5 adam = keras.optimizers.Adam(lr=learning_rate) model2b = Model(Inp, output) model2b.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) history2b = model2b.fit( X_train, y_train, batch_size=batch_size, epochs=training_epochs, validation_data=(X_cv, y_cv), ) # Input Parameters n_input = 784 # number of features n_hidden_1 = 300 n_hidden_2 = 100 n_hidden_3 = 100 n_hidden_4 = 100 n_hidden_5 = 200 num_digits = 10 Inp = Input(shape=(784,)) x = Dense(n_hidden_1, activation="relu", name="Hidden_Layer_1")(Inp) x = Dense(n_hidden_2, activation="relu", name="Hidden_Layer_2")(x) x = Dense(n_hidden_3, activation="relu", name="Hidden_Layer_3")(x) x = Dense(n_hidden_4, activation="relu", name="Hidden_Layer_4")(x) x = Dense(n_hidden_5, activation="relu", name="Hidden_Layer_5")(x) output = Dense(num_digits, activation="softmax", name="Output_Layer")(x) # Our model would have '7' layers - input layer, 5 hidden layer and 1 output layer model3 = Model(Inp, output) model3.summary() # We have 308,010 parameters to estimate # We rely on 'Adam' as our optimizing methodology adam = keras.optimizers.Adam(lr=0.01) model3.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) history3 = model3.fit( X_train, y_train, batch_size=batch_size, epochs=training_epochs, validation_data=(X_cv, y_cv), ) # Input Parameters n_input = 784 # number of features n_hidden_1 = 300 n_hidden_2 = 100 n_hidden_3 = 100 n_hidden_4 = 200 num_digits = 10 Inp = Input(shape=(784,)) x = Dense(n_hidden_1, activation="relu", name="Hidden_Layer_1")(Inp) x = Dropout(0.3)(x) x = Dense(n_hidden_2, activation="relu", name="Hidden_Layer_2")(x) x = Dropout(0.3)(x) x = Dense(n_hidden_3, activation="relu", name="Hidden_Layer_3")(x) x = Dropout(0.3)(x) x = Dense(n_hidden_4, activation="relu", name="Hidden_Layer_4")(x) output = Dense(num_digits, activation="softmax", name="Output_Layer")(x) # Our model would have '6' layers - input layer, 4 hidden layer and 1 output layer model4 = Model(Inp, output) model4.summary() # We have 297,910 parameters to estimate model4.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) history = model4.fit( X_train, y_train, batch_size=batch_size, epochs=training_epochs, validation_data=(X_cv, y_cv), ) test_pred = pd.DataFrame(model4.predict(X_test, batch_size=200)) test_pred = pd.DataFrame(test_pred.idxmax(axis=1)) test_pred.index.name = "ImageId" test_pred = test_pred.rename(columns={0: "Label"}).reset_index() test_pred["ImageId"] = test_pred["ImageId"] + 1 test_pred.head() test_pred.to_csv("mnist_test.csv", index=False)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os # for dirname, _, filenames in os.walk('/kaggle/input'): # for filename in filenames: # print(os.path.join(dirname, filename)) PATH = "/kaggle/input/bengaliai-cv19/" # Any results you write to the current directory are saved as output. import fastai from fastai.vision import * from fastai.callbacks import SaveModelCallback # from csvlogger import * # from radam import * # from mish_activation import * import warnings warnings.filterwarnings("ignore") fastai.__version__ import cv2 import zipfile from tqdm import tqdm_notebook as tqdm import random import torchvision SEED = 42 LABELS = "train.csv" def seed_everything(seed): random.seed(seed) os.environ["PYTHONHASHSEED"] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = True seed_everything(SEED) HEIGHT = 137 WIDTH = 236 SIZE = (128, 128) BATCH = 128 TRAIN = [ PATH + "train_image_data_0.parquet", PATH + "train_image_data_1.parquet", PATH + "train_image_data_2.parquet", PATH + "train_image_data_3.parquet", ] df_label = pd.read_csv(PATH + LABELS) nunique = list(df_label.nunique())[1:-1] print(nunique) df_label["components"] = ( "r_" + df_label["grapheme_root"].astype(str) + "," + "v_" + df_label["vowel_diacritic"].astype(str) + "," + "c_" + df_label["consonant_diacritic"].astype(str) ) df_label.head() df_split = df_label[["image_id", "grapheme_root"]].astype(str).copy() df_split["total"] = df_split.groupby("grapheme_root")["grapheme_root"].transform( "count" ) df_gpd = df_split.groupby("grapheme_root").apply( lambda x: x.sample(frac=0.2, random_state=47) ) df_gpd.describe() df_merged_root = pd.merge( left=df_split, right=df_gpd, on="image_id", how="left", suffixes=("", "_y") ) df_merged_root["is_valid_root"] = df_merged_root.grapheme_root_y.isnull() != True df_merged_root.drop(["grapheme_root_y", "total_y"], axis=1, inplace=True) df_merged_root.rename({"total": "total_root"}, axis=1, inplace=True) df_merged_root.head() df_split = df_label[["image_id", "vowel_diacritic"]].astype(str).copy() df_split["total"] = df_split.groupby("vowel_diacritic")["vowel_diacritic"].transform( "count" ) df_gpd = df_split.groupby("vowel_diacritic").apply( lambda x: x.sample(frac=0.2, random_state=47) ) df_gpd.describe() df_merged_vowel = pd.merge( left=df_split, right=df_gpd, on="image_id", how="left", suffixes=("", "_y") ) df_merged_vowel["is_valid_vowel"] = df_merged_vowel.vowel_diacritic_y.isnull() != True df_merged_vowel.drop(["vowel_diacritic_y", "total_y"], axis=1, inplace=True) df_merged_vowel.rename({"total": "total_vowel"}, axis=1, inplace=True) df_merged_vowel.tail() df_split = df_label[["image_id", "consonant_diacritic"]].astype(str).copy() df_split["total"] = df_split.groupby("consonant_diacritic")[ "consonant_diacritic" ].transform("count") df_gpd = df_split.groupby("consonant_diacritic").apply( lambda x: x.sample(frac=0.2, random_state=47) ) # print(df_gpd.describe()) df_merged_conso = pd.merge( left=df_split, right=df_gpd, on="image_id", how="left", suffixes=("", "_y") ) df_merged_conso["is_valid_conso"] = ( df_merged_conso.consonant_diacritic_y.isnull() != True ) df_merged_conso.drop(["consonant_diacritic_y", "total_y"], axis=1, inplace=True) df_merged_conso.rename({"total": "total_conso"}, axis=1, inplace=True) df_merged_conso.head() dfs = [ df.set_index(["image_id"]) for df in [ df_label[["image_id", "components"]], df_merged_root, df_merged_vowel, df_merged_conso, ] ] df_ = pd.concat(dfs, axis=1).reset_index() cols = ["is_valid_root", "is_valid_vowel", "is_valid_conso"] df_["is_valid"] = np.where(df_[cols].eq(True).all(1), True, False) df_ stats128, stats137, fold, nfolds = ([0.08547], [0.22490]), ([0.06922], [0.20514]), 0, 4 FOLDER = "../input/bengali-grapheme" src = ( ImageList.from_df(df_, path=".", folder=FOLDER, suffix=".png", cols="image_id") .split_from_df(col="is_valid") .label_from_df(cols=["components"], label_delim=",") ) data = ( src.transform( get_transforms(do_flip=False, max_warp=0.1), size=SIZE, padding_mode="zeros" ) .databunch(bs=BATCH) .normalize(imagenet_stats) ) data.show_batch() # Model arch = models.resnet34 acc_02 = partial(accuracy_thresh) f_score = partial(fbeta) learn = cnn_learner(data, arch, metrics=[acc_02, f_score]) learn.lr_find() learn.recorder.plot() lr = 0.03 learn.fit_one_cycle(6, slice(lr)) learn.unfreeze() learn.lr_find() learn.recorder.plot() learn.fit_one_cycle(5, slice(1e-5, lr / 5)) learn.export(Path("/kaggle/working") / "try3-rn34-im128.pkl")
# Playground Series - Season 3, Episode 12 # Binary Classification with a Kidney Stone Prediction Dataset # # # # Table of Contents # # 1. [Introduction](#intro) # 1. [Imports and Setups](#import) # 1. [Data Loading](#loading) # 1. [Exploratory data analysis (EDA)](#eda) # 1. [Feature engineering (FE)](#fe) # 1. [Feature Importance](#importance) # 1. [Modeling](#model) # 1. [Prediction](#prediction) # ___ # # Introduction [↑](#top) # ## Dataset Description [↑](#top) # The dataset for this competition (both train and test) was generated from a deep learning model trained on the Kidney Stone Prediction based on Urine Analysis dataset. Feature distributions are close to, but not exactly the same, as the original. Feel free to use the original dataset as part of this competition, both to explore differences as well as to see whether incorporating the original in training improves model performance. # ### Files [↑](#top) # * `train.csv` - target is the likelihood of a kidney stone being present # * `test.csv` - the test dataset; your objective is to predict the probability of target # * `sample_submission.csv` - a sample submission file in the correct format # ## Features [↑](#top) # The six physical characteristics of the urine are: # * specific `gravity`, the density of the urine relative to water # * `ph`, the negative logarithm of the hydrogen ion # * osmolarity (`osmo`), a unit used in biology and medicine but not in # physical chemistry. Osmolarity is proportional to the concentration of # molecules in solution # * conductivity (mMho milliMho) `cond`. One Mho is one reciprocal Ohm # Conductivity is proportional to the concentration of charged # ions in solution # * `urea` concentration in millimoles per litre # * calcium concentration (`calc`) in millimoles llitre # [Source](https://www.kaggle.com/datasets/vuppalaadithyasairam/kidney-stone-prediction-based-on-urine-analysis) # ## Competition goal [↑](#top) # Submissions are evaluated on area under the ROC curve between the predicted probability and the observed target. # ___ # # Imports and Setups [↑](#top) import warnings warnings.filterwarnings("ignore") import os import numpy as np import pandas as pd from pathlib import Path from tqdm.notebook import trange, tqdm from IPython.display import display, Markdown from sklearn.feature_selection import mutual_info_classif from sklearn.metrics import classification_report, accuracy_score import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import colorsys plt.style.use("seaborn-whitegrid") plt.rc("figure", autolayout=True) plt.rc( "axes", labelweight="bold", labelsize="large", titleweight="bold", titlesize=14, titlepad=10, ) blues_palette = palette = sns.color_palette("Blues_r", n_colors=10) reds_palette = palette = sns.color_palette("Reds_r", n_colors=10) greys_palette = sns.color_palette("Greys", n_colors=10) blue = blues_palette[1] red = reds_palette[1] two_colors = [blue, red] sns.set() sns.set_theme(style="whitegrid", palette=blues_palette) sns.color_palette() class Cfg: INPUT_ROOT = Path("/kaggle/input/playground-series-s3e12") OUTPUT_ROOT = Path("/kaggle/working/") TRAN_FILE = INPUT_ROOT / "train.csv" TEST_FILE = INPUT_ROOT / "test.csv" SAMPLE_SUBMISSION_FILE = INPUT_ROOT / "sample_submission.csv" SUBMISSION_FILE = OUTPUT_ROOT / "submission.csv" RANDOM_STATE = 2023 NUM_MOST_IMPORTANCE_FEATURES = 20 SAMPLE_SIZE = 1.0 N_TRIALS = 5 TEST_SIZE = 0.2 TARGET = "target" INDEX = "id" # ### Helper Functions def get_feature_names(data, target=Cfg.TARGET): """Gets the feature names excluding the target name.""" return data.columns.difference([target]) def get_categorical_feature_names(data, target=Cfg.TARGET): return list( data.select_dtypes(["category", "object", "bool"]).columns.difference( [Cfg.TARGET] ) ) def get_continuous_feature_names(data, target=Cfg.TARGET): return list(train_data.select_dtypes(np.float).columns.difference([Cfg.TARGET])) def get_discrete_feature_names(data, target=Cfg.TARGET): return list(train_data.select_dtypes(np.int).columns.difference([Cfg.TARGET])) def get_numerical_feature_names(data, target=Cfg.TARGET): return get_continuous_feature_names(data, Cfg.TARGET) + get_discrete_feature_names( data, Cfg.TARGET ) def factorize(X): for colname in X.select_dtypes(["category", "object"]): X[colname], _ = X[colname].factorize() return X def make_mi_scores(X, y): """Utility functions from FE Tutorial""" X = factorize(X.copy()) # All discrete features should now have integer dtypes discrete_features = [pd.api.types.is_integer_dtype(t) for t in X.dtypes] mi_scores = mutual_info_classif( X, y, discrete_features=discrete_features, random_state=Cfg.RANDOM_STATE ) mi_scores = pd.Series(mi_scores, name="MI Scores", index=X.columns) mi_scores = mi_scores.sort_values(ascending=False) return pd.DataFrame({"feature": X.columns, "mi_score": mi_scores}).set_index( "feature" ) def plot_mi_scores(scores, ax=None): if ax == None: fig, ax = plt.subplots(1, 1) sns.barplot( data=scores, x="mi_score", y=scores.index, palette=blues_palette, orient="h", alpha=0.8, ax=ax, ) ax.set_title("Mutual Information Scores") ax.set_xlabel("Score") ax.set_ylabel("Features") return ax def plot_hist(data, feature, palette=blues_palette, ax=None, kde=True): if ax is None: ax = plt.gca() sns.histplot( data=data, x=feature, bins=20, legend=True, palette=palette, alpha=0.8, kde=kde, ax=ax, ) mean = np.mean(data[feature]) ax.vlines( mean, 0, 1, transform=ax.get_xaxis_transform(), color="k", linewidth=2, ls=":" ) return ax def plot_count(data, feature, palette=blues_palette, hue=None, ax=None): if ax is None: ax = plt.gca() sns.countplot(data=data, x=feature, hue=hue, palette=palette, alpha=0.8, ax=ax) return ax def plot_hist(data, feature, palette=blues_palette, hue=None, ax=None, kde=False): if ax is None: ax = plt.gca() sns.histplot( data=data, x=feature, hue=hue, bins=30, legend=True, palette=palette, alpha=0.8, kde=kde, ax=ax, ) mean = np.mean(data[feature]) ax.vlines(mean, 0, 1, transform=ax.get_xaxis_transform(), color=red, ls=":") return ax def plot_boxplot(data, x=None, y=None, palette=blues_palette, hue=None, ax=None): if ax is None: ax = plt.gca() sns.boxplot( data=data, x=x, y=y, hue=hue, boxprops=dict(alpha=0.8), palette=palette, ax=ax ) return ax def plot_kde( data, feature, hue=None, ax=None, palette=blues_palette, legend=True, show_mean=True ): if ax is None: ax = plt.gca() sns.kdeplot( data=data, x=feature, hue=hue, fill=True, legend=legend, palette=palette, alpha=0.8, ax=ax, ) if show_mean: mean = np.mean(data[feature]) ax.vlines(mean, 0, 1, transform=ax.get_xaxis_transform(), color=red, ls=":") return ax def plot_scatter(data, x, y, palette=blues_palette, hue=None, ax=None): if ax is None: ax = plt.gca() sns.scatterplot(data=data, x=x, y=y, hue=hue, alpha=0.8, palette=palette, ax=ax) ax.set_title(f'Scatter "{x}" vs "{y}"') return ax # ___ # # Data Loading [↑](#top) def read_train_data(file=Cfg.TRAN_FILE, index_col=Cfg.INDEX): """Reads the train data""" return pd.read_csv(file).set_index(Cfg.INDEX) def read_test_data(file=Cfg.TEST_FILE, index_col=Cfg.INDEX): """Reads the test data""" return pd.read_csv(file).set_index(Cfg.INDEX) train_data = read_train_data() test_data = read_test_data() display(train_data.head()) display(test_data.head()) print(f"Train data size: {train_data.shape[0]} rows; {train_data.shape[1]} columns") print(f"Test data size : {test_data.shape[0]} rows; {test_data.shape[1]} columns") # ___ # # Exploratory Data Analysis (EDA) [↑](#top) # ## Basic Statistics [↑](#top) display(train_data.describe().T) display(test_data.describe().T) # ## Unique Values [↑](#top) features = get_feature_names(train_data) pd.DataFrame( { "feature": features, "dytpe": train_data[features].dtypes, "unique": train_data[features].nunique(), } ) # ## Missing Values [↑](#top) features = get_feature_names(train_data) pd.DataFrame( { "feature": features, "train": train_data[features].isna().sum(), "test": test_data[features].isna().sum(), } ).set_index("feature").sort_values(by="train", ascending=False) # ## Duplicates [↑](#top) test_data.duplicated().sum(), test_data.duplicated().sum() print(f"Duplicated values in train data: {train_data.duplicated().sum()}") print(f"Duplicated values in test data: {test_data.duplicated().sum()}") # ## Outliers Detection [↑](#top) from scipy import stats z_threshold = 3 features = get_numerical_feature_names(train_data) z_sorce = np.abs(stats.zscore(train_data[features], axis=0)) pd.DataFrame( { "feature": features, "num_outlier": [ train_data[z_sorce[f] > z_threshold].shape[0] for f in features ], } ).set_index("feature") features = get_numerical_feature_names(train_data) fig, axis = plt.subplots(nrows=2, ncols=4, figsize=(15, 3)) for feature, ax in zip(features, axis.flatten()): plot_boxplot(train_data, x=feature, palette=blues_palette, ax=ax) ax.set_title("") plt.tight_layout() plt.show() # ## Target Distribution [↑](#top) fig, ax = plt.subplots(1, 1, figsize=(3, 3)) plot_count(train_data, Cfg.TARGET, palette=two_colors, ax=ax) ax.set_title(f"Target Distribution") plt.show() # ## Continous Data Distribution [↑](#top) features = get_numerical_feature_names(train_data) fig, axis = plt.subplots(2, 3, figsize=(12, 6)) for feature, ax in zip(features, axis.flatten()): plot_hist(train_data, feature, hue=Cfg.TARGET, palette=two_colors, ax=ax) ax.set_title(f'Distribution "{feature}"') plt.show() features = get_numerical_feature_names(train_data) fig, axis = plt.subplots(1, 6, figsize=(16, 4)) for feature, ax in zip(features, axis.flatten()): plot_boxplot(train_data, x=Cfg.TARGET, y=feature, palette=two_colors, ax=ax) ax.set_title(f'Boxplot "{feature}"') plt.tight_layout() plt.show() # ## Correlations [↑](#top) num_features = get_numerical_feature_names(train_data) num_corr = train_data[num_features].corr() cmap = sns.diverging_palette(245, 15, as_cmap=False) fig, ax = plt.subplots(1, 1, figsize=(6, 6)) mask = np.triu(np.ones_like(num_corr, dtype=bool)) sns.heatmap( num_corr, mask=mask, vmax=1, vmin=-1, cmap=cmap, center=0, square=True, linewidths=0.1, ax=ax, alpha=1, annot=True, fmt=".1g", cbar_kws={"shrink": 0.5}, ) plt.tight_layout() plt.show() def plot_pairplot(data, features, hue=Cfg.TARGET, height=3): grid = sns.pairplot( data=train_data[features + [Cfg.TARGET]], palette=two_colors, height=height, hue=hue, corner=True, ) grid.fig.set_size_inches(10, 8) for ax in filter(None, grid.axes.flatten()): ax.set_xlabel(ax.get_xlabel(), rotation=90) ax.set_ylabel(ax.get_ylabel(), rotation=0) ax.yaxis.get_label().set_horizontalalignment("right") fig.tight_layout() plt.show() num_features = get_numerical_feature_names(train_data) plot_pairplot(train_data, num_features, height=1) # # Feature engineering (FE) [↑](#top) from sklearn.metrics import auc from sklearn.model_selection import cross_val_score from sklearn.metrics import make_scorer from xgboost.sklearn import XGBClassifier from catboost import CatBoostClassifier xgb_params = { "seed": Cfg.RANDOM_STATE, "objective": "binary:logistic", "eval_metric": "auc", "tree_method": "hist", "max_depth": 5, "eta": 0.01, "n_estimators": 100, } cat_params = { "learning_rate": 0.04, "depth": 3, "n_estimators": 10, "eval_metric": "AUC", "random_seed": Cfg.RANDOM_STATE, "verbose": 0, } def score_dataset(X, y, prev_score=0, model=CatBoostClassifier(**cat_params)): X = X.copy() for colname in X.select_dtypes(["category", "object"]): X[colname], _ = X[colname].factorize() score = cross_val_score(model, X, y, cv=5, scoring="roc_auc").mean() diff = score - prev_score direction = "↑" if diff > 0 else "↓" return score, direction, diff X = train_data.copy() y = X.pop(Cfg.TARGET) mi_scores = make_mi_scores(X, y) fig, ax = plt.subplots(figsize=(6, 3)) plot_mi_scores(mi_scores, ax=ax) plt.show() baseline_score, _, _ = score_dataset(X, y) print(f"Baseline Score: {baseline_score}") # 0.7699112155633895 # ___ # ## Specific gravity and disease [↑](#top) # See: [Urine specific gravity](https://en.wikipedia.org/wiki/Urine_specific_gravity) # Normal value: 1.001 - 1.035 g/l def create_disease_feature(X): labels = ["hyposthenurie", "eusthenurie", "hypersthenurie"] X["disease"] = pd.cut( train_data["gravity"], bins=[0, 1.010, 1.030, 2], labels=labels, ordered=True ) return X X = create_disease_feature(X) score, direction, diff = score_dataset(X, y, prev_score=baseline_score) print(f"Score: {score} {direction} - diff = {diff}") fig, ax = plt.subplots(1, 1, figsize=(4, 4)) sns.countplot(data=X, x="disease", hue=y, palette=two_colors, alpha=0.8, ax=ax) ax.set_title(f"Specific gravity and disease") ax.set_xticklabels(ax.get_xticklabels(), rotation=45) plt.show() # sns.relplot(data=X, x="urea", y="calc", hue=y, palette=two_colors, col='disease'); # ## What is a normal urine pH? # A neutral pH is 7.0. The average urine sample tests at about 6.0, but typical urine pH may range from 4.5–8.0. # The higher the number, the more basic your urine is. The lower the number, the more acidic your urine is. # https://www.onmeda.de/krankheiten/blasensteine-id200175/ def create_ph_level_feature(X): labels = ["acidic", "normal", "basic"] X["ph_level"] = pd.cut( train_data["ph"], bins=[0, 5.5, 7.0, 12], labels=labels, ordered=True ) return X X = create_ph_level_feature(X) fig, ax = plt.subplots(1, 1, figsize=(4, 4)) sns.countplot(data=X, x="ph_level", hue=y, palette=two_colors, alpha=0.8, ax=ax) ax.set_title(f"Normal pH level") ax.set_xticklabels(ax.get_xticklabels(), rotation=45) plt.show() score, direction, diff = score_dataset(X, y, prev_score=baseline_score) print(f"Score: {score} {direction} - diff = {diff}") # sns.relplot(data=X, x="cond", y="calc", hue=y, palette=two_colors, col='ph_level'); def create_features(X): X = create_disease_feature(X) X = create_ph_level_feature(X) return X X = train_data.copy() y = train_data[Cfg.TARGET] X = create_features(X) mi_scores = make_mi_scores(X, y) fig, ax = plt.subplots(figsize=(6, 4)) plot_mi_scores(mi_scores, ax=ax) plt.show() # ___ # # Modeling [↑](#top) import optuna optuna.logging.set_verbosity(optuna.logging.CRITICAL) from sklearn.model_selection import train_test_split, cross_val_score from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, RocCurveDisplay from catboost import CatBoostClassifier, CatBoostRegressor from xgboost.sklearn import XGBClassifier from lightgbm.sklearn import LGBMClassifier from sklearn.ensemble import StackingClassifier, VotingClassifier from sklearn.metrics import roc_auc_score from sklearn.model_selection import cross_validate def plot_model_result(y_pred, y_true, y_pred_proba): fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(12, 4)) ConfusionMatrixDisplay.from_predictions( y_true, y_pred, ax=ax1, cmap="Blues", normalize="true", colorbar=False ) ax1.set_title("Confusion Matrix") sns.histplot( data=y_pred_proba, palette=two_colors, legend=True, bins=30, kde=True, ax=ax2 ) ax2.set_xlabel("Prediction Probapility") ax2.set_ylabel("Probabitity") # ROC curve RocCurveDisplay.from_predictions(y_true, y_pred, ax=ax3) ax3.set_title("ROC") plt.tight_layout() plt.show() print(classification_report(y_true, y_pred)) X = train_data.copy() y = X.pop(Cfg.TARGET) X = factorize(create_features(X)) X_train, X_val, y_train, y_val = train_test_split( X, y, test_size=Cfg.TEST_SIZE, random_state=Cfg.RANDOM_STATE ) pd.DataFrame( {"Rows": [X_train.shape[0], X_val.shape[0]], "Dataset": ["Train", "Validation"]} ).set_index("Dataset") def xgb_objective(trial): eta = trial.suggest_float("eta", 0, 1) max_depth = trial.suggest_int("max_depth", 5, 30) n_estimators = trial.suggest_int("n_estimators", 100, 300) reg_alpha = trial.suggest_float( "reg_alpha", 1e-8, 10, log=True ) # l1 regularization reg_lambda = trial.suggest_float( "reg_lambda", 1e-8, 10, log=True ) # l2 regularization model = XGBClassifier( eta=eta, n_estimators=n_estimators, max_depth=max_depth, seed=Cfg.RANDOM_STATE, eval_metric="auc", reg_alpha=reg_alpha, reg_lambda=reg_lambda, ) y_pred = model.fit(X_train, y_train).predict(X_val) score = roc_auc_score(y_val, y_pred) return score study = optuna.create_study() study.optimize(xgb_objective, Cfg.N_TRIALS) xgb_params = study.best_params.copy() xgb_params.update({"eval_metric": "auc", "seed": Cfg.RANDOM_STATE}) xgb_params def cat_objective(trial): learning_rate = trial.suggest_float("learning_rate", 0.0, 0.1) depth = trial.suggest_int("depth", 3, 5, 10) n_estimators = trial.suggest_int("n_estimators", 10, 350, 500) model = CatBoostClassifier( learning_rate=learning_rate, depth=depth, n_estimators=n_estimators, verbose=0, random_seed=Cfg.RANDOM_STATE, eval_metric="AUC", ) y_pred = model.fit(X_train, y_train).predict(X_val) score = roc_auc_score(y_val, y_pred) return score study = optuna.create_study() study.optimize(cat_objective, n_trials=Cfg.N_TRIALS) cat_params = study.best_params.copy() cat_params.update({"eval_metric": "AUC", "random_seed": Cfg.RANDOM_STATE, "verbose": 0}) cat_params def lgbm_objective(trial): learning_rate = trial.suggest_float("learning_rate", 5e-4, 0.75, log=True) n_estimators = trial.suggest_int("n_estimators", 100, 1500, log=True) max_depth = (trial.suggest_int("max_depth", 5, 30),) num_leaves = trial.suggest_int("num_leaves", 2, 128, log=True) colsample_bytree = trial.suggest_float("colsample_bytree", 0.17, 1) subsample = trial.suggest_float("colsample_bytree", 0, 1.0) reg_alpha = trial.suggest_float( "reg_alpha", 1e-8, 10, log=True ) # l1 regularization reg_lambda = trial.suggest_float( "reg_lambda", 1e-8, 10, log=True ) # l2 regularization model = LGBMClassifier( learning_rate=learning_rate, n_estimators=n_estimators, max_depth=max_depth, num_leaves=num_leaves, colsample_bytree=colsample_bytree, subsample=subsample, reg_alpha=reg_alpha, reg_lambda=reg_lambda, metric="AUC", seed=Cfg.RANDOM_STATE, ) y_pred = model.fit(X_train, y_train).predict(X_val) score = roc_auc_score(y_val, y_pred) return score study = optuna.create_study() study.optimize(lgbm_objective, n_trials=Cfg.N_TRIALS) lgbm_params = study.best_params.copy() lgbm_params.update({"metric": "AUC", "seed": Cfg.RANDOM_STATE}) lgbm_params # xgb_params = { # 'seed': Cfg.RANDOM_STATE, # 'objective': 'binary:logistic', # 'eval_metric': 'auc', # 'tree_method' : 'hist', # 'max_depth' : 5, # 'eta' : .01, # 'n_estimators' : 100 # } # lgbm_params = { # 'seed': Cfg.RANDOM_STATE, # 'objective': 'binary:logistic', # 'n_estimators' : 403 # } # cat_params = { # 'iterations': 100, # 'learning_rate': 0.1, # 'early_stopping_rounds': 10, # 'max_depth': 5, # 'eval_metric' : 'AUC', # 'random_seed': Cfg.RANDOM_STATE # } # estimators = [ # ('xgb', XGBClassifier(**xgb_params)), # ('lgbm', LGBMClassifier(verbose=-1, force_row_wise=True, **lgbm_params)), # ('cat', CatBoostClassifier(**cat_params)), # ] # model = VotingClassifier( # estimators = estimators, # verbose=False, # voting='soft', # #weights=[0.2, 0.2, 0.6] # ).fit(X_train, y_train) # model = CatBoostClassifier(**cat_params).fit(X_train, y_train) y_pred = model.predict(X_val) y_pred_proba = model.predict_proba(X_val) plot_model_result(y_pred, y_val, y_pred_proba) # ___ # # Submission [↑](#top) X = factorize(create_features(test_data)) y_pred_submission = model.predict_proba(test_data)[:, 1] submission_data = pd.DataFrame( { Cfg.INDEX: test_data.index, Cfg.TARGET: y_pred_submission, } ).set_index(Cfg.INDEX) submission_data # save submission file submission_data.to_csv(Cfg.SUBMISSION_FILE)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import torch import torchvision.transforms as transforms import torch.nn as nn import torch.nn.functional as F from sklearn.metrics import classification_report import matplotlib.pyplot as plt from PIL import Image import os import time import torchvision.models as models import json from IPython.display import FileLink, HTML DEVICE = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") # # 1. Importing and Managing Data transformToTensor = transforms.Compose( [transforms.Resize((64,)), transforms.CenterCrop((64, 64)), transforms.ToTensor()] ) f = open("/kaggle/input/eurosat-dataset/EuroSAT/label_map.json", "r") label_to_index = json.load(f) index_to_label = {label_to_index[k]: k for k in label_to_index} type_to_folder = { "valid": "/kaggle/input/eurosat-dataset/EuroSAT/validation.csv", "test": "/kaggle/input/eurosat-dataset/EuroSAT/test.csv", "train": "/kaggle/input/eurosat-dataset/EuroSAT/train.csv", } class EurosatDataManager: def __init__(self, _type): self.pd = pd.read_csv(type_to_folder[_type]) self.folder_base = "/kaggle/input/eurosat-dataset/EuroSAT/" def get_batch(self, size): ix = np.random.randint(0, len(self.pd), (size,)) X, Y = list(self.pd.iloc[ix].Filename), list(self.pd.iloc[ix].Label) return torch.stack( [self.path_to_tensor(self.folder_base + x) for x in X] ), torch.tensor(Y, dtype=torch.long) def visualize(self, plt): fig, axs = plt.subplots(4, 4, figsize=(20, 20)) X, labels = self.get_batch(16) labels = labels.tolist() for i in range(4): for j in range(4): axs[i, j].imshow(X[i * 4 + j]) axs[i, j].set_title(index_to_label[labels[i * 4 + j]]) plt.show() def path_to_tensor(self, path): img = Image.open(path) return transformToTensor(img).permute(1, 2, 0) dm_train = EurosatDataManager("train") dm_train.visualize(plt) dm_train.get_batch(23)[0].shape # N,X,Y,C dm_valid = EurosatDataManager("valid") dm_test = EurosatDataManager("test") dataset_managers = {"valid": dm_valid, "train": dm_train, "test": dm_test} print(f"Train set examples: {len(dm_train.pd)}") print(f"Validation set examples: {len(dm_valid.pd)}") print(f"Test set examples: {len(dm_test.pd)}") # ## Distribution of data # dm_train.pd["Label"].hist() # # Evaluation def getYPred(model, validX, validY): examples = validX.to("cuda") results = model(examples.permute(0, 3, 1, 2).type(torch.cuda.FloatTensor)) results = nn.functional.softmax(results, dim=1) results = torch.argmax(results, dim=1) return results def evaluate_model(model, dataset, batch_size=20): # in order to evaluate over all the images, we can't load all images at once # we must do this without running out of gpu memory, the batch size can be controlled but for now im keeping it 20 and a default param dm = dataset_managers[dataset] model.eval() batch_size = 20 Ytrue = [] Ypred = [] for i in range((len(dm.pd) + 1) // batch_size): ix = i * batch_size labels = list(dm.pd["Label"].iloc[ix : ix + batch_size]) paths = list(dm.pd["Filename"].iloc[ix : ix + batch_size]) X_path = paths arr = [] for x in X_path: x = dm_valid.path_to_tensor(dm.folder_base + x) arr.append(x) Xt = torch.stack(arr) Ytrue += labels Ypred += getYPred(model, Xt, labels).tolist() print(classification_report(Ytrue, Ypred)) del Xt del Ytrue torch.cuda.empty_cache() # ### Functions for Saving Models def get_download_link(model, filename): os.chdir(r"/kaggle/working") torch.save(model.state_dict(), filename) return FileLink(filename) # ## Train Function def train( model, steps, batch_size, dm, lr=0.05, dm_valid=None, validation_batch_size=10 ): model.train() loss_i = [] loss_val_i = [] optim = torch.optim.Adam(model.parameters(), lr=lr) for i in range(steps): start_time = time.time() xtr, ytr = dm.get_batch(batch_size) ytr.type(torch.cuda.LongTensor) ytr = ytr.to(torch.device("cuda:0")) # xtr = n,h,w, c # conv2d (input layer ) needs this shape: n, c, h, w xtr = xtr.permute(0, 3, 1, 2).type(torch.cuda.FloatTensor) xtr = xtr.to(torch.device("cuda:0")) out = model(xtr) loss = nn.CrossEntropyLoss()(out, ytr) optim.zero_grad() loss.backward() optim.step() acc = 0.0 # COMPUTE VALIDATION LOSS if dm_valid != None: with torch.no_grad(): x, y = dm_valid.get_batch(validation_batch_size) y.type(torch.cuda.LongTensor) y = y.to(torch.device("cuda:0")) x = x.permute(0, 3, 1, 2).type(torch.cuda.FloatTensor) x = x.to(torch.device("cuda:0")) out = model(x) loss_val = nn.CrossEntropyLoss()(out, y) loss_val_i.append(loss_val.item()) results = nn.functional.softmax(out, dim=1) results = torch.argmax(results, dim=1) acc = torch.mean(torch.eq(y, results).float()) del x del y del loss_val del out torch.cuda.empty_cache() loss_i.append(loss.item()) if i % 50 == 0: print(f" Step: {i+1}/{steps} Loss: {loss.item()}", end="") if dm_valid != None: print(f" ValLoss (sampled) = {loss_val_i[-1]}", end="") print(" t= {:.2f}s val_acc:{:.5f}".format(time.time() - start_time, acc)) del xtr del ytr del loss torch.cuda.empty_cache() return loss_i, loss_val_i # # Train a classifier from scratch class ResNetBlock(nn.Module): def __init__(self, in_channels, out_channels, stride=1): super(ResNetBlock, self).__init__() self.conv1 = nn.Conv2d( in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False, ) self.bn1 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU(inplace=True) self.dropout = nn.Dropout(p=0.2) self.conv2 = nn.Conv2d( out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False ) self.bn2 = nn.BatchNorm2d(out_channels) self.skip_connection = nn.Sequential() # with the skip connection, the gradients flowing back will also contribute, in a case where conv layer messes up, that will at least # be useful, so it acts as a regularization measure if stride != 1 or in_channels != out_channels: self.skip_connection = nn.Sequential( nn.Conv2d( in_channels, out_channels, kernel_size=1, stride=stride, bias=False ), nn.BatchNorm2d(out_channels), ) def forward(self, x): residual = self.skip_connection(x) x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.dropout(x) x = self.conv2(x) x = self.bn2(x) x += residual x = self.relu(x) return x class ResNet(nn.Module): def __init__(self, num_classes=100): super(ResNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.layer1 = nn.Sequential(ResNetBlock(64, 64), ResNetBlock(64, 64)) self.layer2 = nn.Sequential( ResNetBlock(64, 128, stride=2), ResNetBlock(128, 128) ) self.layer3 = nn.Sequential( ResNetBlock(128, 256, stride=2), ResNetBlock(256, 256) ) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(256, num_classes) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) # x = self.layer4(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.fc(x) return x myresnet = ResNet(10) # print(n_params(myresnet)) if torch.cuda.device_count() > 1: myresnet = nn.DataParallel(myresnet) myresnet.to(DEVICE) loss_i, loss_val_i = train( myresnet, 1500, 100, dm_train, lr=0.001, dm_valid=dm_valid, validation_batch_size=20 ) loss_i2, loss_val_i2 = train( myresnet, 1500, 100, dm_train, lr=0.0005, dm_valid=dm_valid, validation_batch_size=20, ) loss_i3, loss_val_i3 = train( myresnet, 500, 100, dm_train, lr=0.0001, dm_valid=dm_valid, validation_batch_size=20 ) plt.figure(figsize=(7, 5)) plt.plot(loss_i + loss_i2 + loss_i3, label="Train Loss") plt.plot(loss_val_i + loss_val_i2 + loss_val_i3, label="Validation loss") plt.legend() evaluate_model(myresnet, "valid") evaluate_model(myresnet, "test") get_download_link(myresnet, "eurosat_1.pt") # # Transfer Learning on a pretrained GoogLeNet pretrained_net = models.googlenet(pretrained=True) sum([param.numel() for param in pretrained_net.parameters()]) pretrained_net = nn.DataParallel(pretrained_net) pretrained_net.to(DEVICE) # ### Freeze all layers but the last for param in pretrained_net.module.parameters(): param.requires_grad = False pretrained_net.module.fc = nn.Linear(in_features=1024, out_features=10, bias=True) pretrained_net.module.fc.requires_grad = True pretrained_net.to("cuda") loss_Ti, loss_val_Ti = train( pretrained_net, 50, 100, dm_train, lr=0.005, dm_valid=dm_valid, validation_batch_size=20, ) # ### Unfreeze all the parameters for param in pretrained_net.module.parameters(): param.requries_grad = True loss_Ti2, loss_val_Ti2 = train( pretrained_net, 1000, 100, dm_train, lr=0.005, dm_valid=dm_valid, validation_batch_size=20, ) loss_Ti3, loss_val_Ti3 = train( pretrained_net, 1000, 100, dm_train, lr=0.0001, dm_valid=dm_valid, validation_batch_size=20, ) loss_Ti4, loss_val_Ti4 = train( pretrained_net, 1000, 100, dm_train, lr=0.0001, dm_valid=dm_valid, validation_batch_size=20, ) loss_Ti5, loss_val_Ti5 = train( pretrained_net, 1000, 42, dm_train, lr=0.0001, dm_valid=dm_valid, validation_batch_size=20, ) loss_Ti6, loss_val_Ti6 = train( pretrained_net, 1000, 200, dm_train, lr=0.0005, dm_valid=dm_valid, validation_batch_size=20, ) plt.figure(figsize=(7, 5)) plt.plot( loss_Ti + loss_Ti2 + loss_Ti3 + loss_Ti4 + loss_Ti5 + loss_Ti6, label="Train Loss" ) plt.plot( loss_val_Ti + loss_val_Ti2 + loss_val_Ti3 + loss_val_Ti4 + loss_val_Ti5 + loss_val_Ti6, label="Validation loss", ) plt.legend() evaluate_model(pretrained_net, "valid") get_download_link(pretrained_net, "pretrained_googLeNet.pt")
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # #### 🇰🇷 **Introduction** # *** # K-dramas are drama television series that is produced and aired in South Korea, starring Korean actors. These shows are done in the Korean language and tend to follow a certain type of structure. These dramas are mostly limited series, often completed in 1 season, that comes out twice a week during nighttime slots. # Unlike the extended and overarching plots of other drama television, K-dramas are notably compact as they tell their complete story within a limited but drama-filled, number of episodes. # While K-pop may have been the first breakthrough success in the US, Korean dramas are rapidly becoming mainstream in the country as well. Between 2019 and 2021, K-dramas have seen a 200% spike in viewership numbers. # According to a 2022 survey conducted across 26 countries around the world, about 36 percent of respondents stated that Korean dramas (K-dramas) were very popular in their countries that year. In total, around 66 percent of respondents felt that K-dramas were generally popular even outside of dedicated fan circles. # In this notebook, we analyze the top 100 korean dramas in 2023 and attempt to build a recommender system to suggest the right K-drama just for you!! # #### 🇰🇷 **Install dataset and libraries** # *** from IPython.core.display import HTML with open("./CSS.css", "r") as file: custom_css = file.read() HTML(custom_css) import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px import plotly.figure_factory as ff import plotly.graph_objects as go import warnings warnings.filterwarnings("ignore") import calendar import scipy.stats as stats import statsmodels.api as sm from statsmodels.formula.api import ols from statsmodels.stats.anova import anova_lm from scipy.stats import levene import itertools rc = { "axes.facecolor": "#FFF9ED", "figure.facecolor": "#FFF9ED", "axes.edgecolor": "#000000", "grid.color": "#EBEBE7", "font.family": "serif", "axes.labelcolor": "#000000", "xtick.color": "#000000", "ytick.color": "#000000", "grid.alpha": 0.4, } sns.set(rc=rc) from colorama import Style, Fore red = Style.BRIGHT + Fore.RED blu = Style.BRIGHT + Fore.BLUE mgt = Style.BRIGHT + Fore.MAGENTA gld = Style.BRIGHT + Fore.YELLOW res = Style.RESET_ALL df = pd.read_csv("/kaggle/input/top-100-k-drama-2023/top100_kdrama.csv") df.head() # #### 🇰🇷 **Basic EDA** # *** # 🔎 Basic information of data # - There are 15 features in the data, of which 5 are numeric (ignoring ID). # - There are 100 observations (Expected since it contains the top 100 drama). # - Only the end date column contains 12 missing values. Upon further inspection, these dramas have already finished airing. # - All dramas have a score of between 8 to 10. It is expected that the top 100 dramas should have high scores. # - The duration for each episode of the dramas are relatively short, the longest being 1 h 40 mins. # - The number of episodes for the dramas differ widely from 30 to 100. # - It is unclear what drama rank refers to. Why would a drama in the top 100 listings be rank 368? # # desc = pd.DataFrame(df.describe(include="all").transpose()) def summary_stats(df): print(f"The shape of the data is: {df.shape}") summary = pd.DataFrame(df.dtypes, columns=["data type"]) summary["Number of missing values"] = df.isnull().sum().values summary["% of missing values"] = df.isnull().sum().values / len(df) * 100 summary["min value"] = desc["min"].values summary["mean value"] = desc["mean"].values summary["max value"] = desc["max"].values return summary summary_stats(df) df[df["Rank"] == 368] df[df["End_date"].isna()] # # Most of these dramas have already finished airing. However, we will not spend the effort to fill in these missing dates as we will not be using end date column. # # Convert watchers to integer df["Watchers"] = df["Watchers"].apply(lambda x: int(x.replace(",", ""))) # #### 🇰🇷 **Visualization (Aired month)** # *** # Extract the month that the shows are aired df["Month aired"] = pd.to_datetime(df["Start_date"]).dt.month df.head() sns.countplot(x="Month aired", data=df) # # The winter season (Nov - Mar) has the most number of shows aired. # sns.barplot(x=df["Month aired"], y="Watchers", data=df, ci=None) # # - Highest viewership month: Feb and Dec # - Lowest viewership month: March, May and October # - 🤔 But why the low viewership, is it because many people are busy in those months or there aren't many good shows in those months? # # df[df["Month aired"].isin([3, 5, 10])] # # - The low viewership might not be because of a lack of good shows. There are many good shows such as Hospital Playlist and the Glory in those months. # - The fall in viewership in March might be due to the start of a new university semester. Students spend more time adjusting to study and watch lesser drama instead. # sns.barplot(x="Month aired", y="Score", data=df, ci=None) # # We see that there is no association between the month the show is aired and its score. # #### 🇰🇷 **ANOVA (Aired month and score)** # *** # - ANOVA can be used to determine if there is any association between a numeric and a categorical variable. # - $H_0$: There is no association between the two variables. # - $H_1$ : There is association between the two variables. # Assumptions for ANOVA model # - Independence of observations # - Normal distribution # - Equal variances # # stats.shapiro(df["Score"]) # # - By Shapiro wilk test, the distribution of score is not normal. Hence, ANOVA cannot be used. # - Nonetheless, the graph provides sufficient evidence that there is no association between the month the show is aired and its score. # # #### 🇰🇷 **Kruskal Wallis test (Aired month and score)** # *** # - A non-parametric statistical test used to compare the medians of two or more groups. # - An alternative to the t-test or ANOVA when the assumptions of normality or equal variances are not met and is an extension of wilcoxon rank sum test. stats.kruskal( df[df["Month aired"] == 1]["Score"], df[df["Month aired"] == 2]["Score"], df[df["Month aired"] == 3]["Score"], df[df["Month aired"] == 4]["Score"], df[df["Month aired"] == 5]["Score"], df[df["Month aired"] == 6]["Score"], df[df["Month aired"] == 7]["Score"], df[df["Month aired"] == 8]["Score"], df[df["Month aired"] == 9]["Score"], df[df["Month aired"] == 10]["Score"], df[df["Month aired"] == 11]["Score"], df[df["Month aired"] == 12]["Score"], ) # # By Kruskal Wallis test, we do not reject the null hypothesis that there is no association between month aired and score. # #### 🇰🇷 **Visualization (Day Aired)** # *** day_df = ( df["Day_aired"] .str.split(", ", expand=True) .stack() .reset_index(level=1, drop=True) .rename("actor") ) day_counts = day_df.value_counts() day_counts # # As expected, Fri - Sun has the most drama being aired since it is the weekend and people have more time to watch. # df["Day_aired"].value_counts() sns.barplot(y="Day_aired", x="Duration", data=df, ci=None) # # Dramas aired on Thursday have the longest mean duration. # sns.barplot(y="Day_aired", x="Watchers", data=df, ci=None) # # Dramas aired on both Saturday and Sunday have the highest average viewership. # sns.barplot(y="Day_aired", x="Score", data=df, ci=None) # # There is no association between days aired and score. # #### 🇰🇷 **Visualization (Main role actors)** # *** actor_df = ( df["Main Role"] .str.split(", ", expand=True) .stack() .reset_index(level=1, drop=True) .rename("actor") ) actor_counts = actor_df.value_counts() top_actors = actor_counts.head(20) # # - The above shows the top 20 actors that appeared the most as main roles in the top 100 dramas. # - The highest number of times an actor acted as main role is 5. # #### 🇰🇷 **ANOVA (Actors and viewership)** # *** # In this section, we investigate if actors appearing in the drama influence viewership. # We expect that people who are fans of certain actors (eg. IU) will watch dramas where she is casted, leading to an increase in viewership. stats.shapiro(np.log(df["Watchers"])) # # By Shapiro wilk test, we do not reject the null hypothesis that log(watchers) is normally distributed. # stats.levene(df["Main Role"], df["Watchers"]) # - There are too many groups to check for variance equality. We take only model = ols("Watchers ~ Main Role", data=df).fit() anova_table = anova_lm(model) print(anova_table)
# # # Dataviz - Data Science Specialization Program - FACENS # # Exercício 2 # * **Data de entrega:** xx/01/2020 # * **Professor:** Matheus Mota # * **Aluno:** João Vitor Bracale de Jesus # * **RA:** 191221 # ***Bibliotecas necessárias*** import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns # ***Importação\visualização do dataset*** bf = pd.read_csv("../input/dataviz-facens-20182-ex3/BlackFriday.csv", delimiter=",") bf.head(10) # ## Questão 1 # Construa um ou mais gráficos do tipo violino que permita(m) a comparação entre o valor gasto e a idade dos compradores. plt.figure(figsize=(15, 4)) plt.title("Total de Compras por grupo de idade") sns.violinplot(y=bf["Purchase"], x=bf["Age"].sort_values(ascending=True), scale="count") # ## Questão 2 # Represente graficamente os N produtos mais comprados, onde N > 8. plt.figure(figsize=(8, 5)) bf["Product_ID"].value_counts().head(8).plot( kind="bar", title="Os 8 produtos mais comprados" ) # ## Questão 3 # Represente graficamente a distribuição dos valores gastos em cada faixa etária dos compradores associados às 5 ocupações mais frequentes. # Agrupando informações gp_u = bf.groupby(["User_ID", "Age", "Occupation"]).sum().reset_index() # 5 mais frequentes freq5 = gp_u[gp_u["Occupation"].isin(gp_u["Occupation"].value_counts().head(5).index)] # 5 frequentes com base na idade freq5_idade = freq5.sort_values(by="Age") # Tamanho do gráfico plt.figure(figsize=(20, 12)) # Montagem do gráfico sns.boxplot( x=freq5_idade["Occupation"], y=freq5_idade["Purchase"], hue=freq5_idade["Age"], linewidth=5, ) # ## Questão 4 # Represente visualmente a relação entre ocupação e estado civil das compras com valor maior que nove mil. sns.catplot( x="Marital_Status", y="Purchase", hue="Marital_Status", kind="point", col="Occupation", aspect=0.4, col_wrap=7, data=bf[bf["Purchase"] > 9000], )
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. # # Bay Wheels Trip History Data in January 2020 # ### About the data # [Bay Wheels](https://www.lyft.com/bikes/bay-wheels) is a bike sharing service in the San Francisco Bay Area available on the Lyft app. The dataset includes anonymized trip history data of Bay Wheels. The data is provided by Lyft for public use. # ([Data source](https://www.lyft.com/bikes/bay-wheels/system-data)) # ### Why the data # Bikes are a fun and affordable way to explore a city or commute in short distance. Some of the research questions that I am hoping to explore in the dataset include: # * Who are the customers? # * What are the trips like in general? # * Is there any interesting pattern among the trips? # I am especially looking at certain columns to come up with findings and visualizations about: # * How many frequent members versus casual customers are there? # * How long and how far do customers bike? # * What are the most popular start and end stations? import pandas as pd baywheels = pd.read_csv("../input/202001-baywheels-tripdata.csv") baywheels.head() # ### Q1: How many frequent members versus casual customers are there? # Among 295,854 trip data, there are 58% membership subscribers and 42% casual customers. baywheels["user_type"].value_counts().sort_index().plot.barh() baywheels["user_type"].value_counts(normalize=True) # ### Q2: How long do customers bike? # On average, customers bike around 780 seconds (13 minutes) for each trip. # The longest trip went 811,077 seconds (about 9 days), it's likely a customer who forgot to return the bike. # The shortest trip went 60 seconds (1 minute), it's likely a customer who rented the bike and then decided not to. baywheels["duration_sec"].describe() # ### Q3: How far do customers bike? # On average, customers bike around 2.55 kilometers. The longest trip went 12795.17 kilometers, which is definitely an interesting case to dig deeper into how it happened. The shortest trips didn't leave their original stations at all, which reflects what we saw in the duration column - some customers rented the bike and then decided not to. Might be interesting to clean out these data to see how the rest of the dataset would look like. import mpu for i in range(len(baywheels)): baywheels.at[i, "distance"] = mpu.haversine_distance( ( baywheels.at[i, "start_station_latitude"], baywheels.at[i, "start_station_longitude"], ), ( baywheels.at[i, "end_station_latitude"], baywheels.at[i, "end_station_longitude"], ), ) baywheels["distance"].describe() # ### Q4: What are the most popular start and end stations? # Top 5 stations where most trips start are: # 1. "Market St at 10th St" # 2. "San Francisco Caltrain (Townsend St at 4th St)" # 3. "Berry St at 4th St" # 4. "Howard St at Beale St" # 5. "San Francisco Ferry Building (Harry Bridges Plaza) # Top 5 stations where most trips end are: # 1. "San Francisco Caltrain (Townsend St at 4th St)" # 2. "Montgomery St BART Station (Market St at 2nd St)" # 3. "Berry St at 4th St" # 4. "San Francisco Ferry Building (Harry Bridges Plaza)" # 5. "Market St at 10th St" # Interestingly, 4 out of 5 are the same stations. n = 5 popularstartstations = baywheels["start_station_name"].value_counts()[:n].index.tolist() popularendstations = baywheels["end_station_name"].value_counts()[:n].index.tolist() print("Popular start stations: %s" % popularstartstations) print("Popular end stations: %s" % popularendstations)
# This is a inprogress notebook. # Notebook submitted in response to task#3: # https://www.kaggle.com/bombatkarvivek/paani-foundations-satyamev-jayate-water-cup/tasks?taskId=348 # Aim is to find method that will identify the correct pair of District-Taluka-Village among different datasets. # # Pain of Entity Matching # - 'Entity Matching' is common task in most of the data engineering pipeline which joins multiple datasets. # - Complexity of this problem could escalate as dataset coming from different sources. # - While working WaterCup dataset, we realise there are quite a lot of time we have names of the places typed differently in different datasets. # - That leads us to creating a mapping of names manually, something like this: # `_df_ListOfTalukas = _df_ListOfTalukas.replace('Ahmednagar','Ahmadnagar') \ . # .replace('Buldhana','Buldana') \ # .replace('Sangli','Sangali') \ # .replace('Nashik','Nasik')` # Of course this is not way to go with bigger datasets and more granular mapping! # - In this notebook we will try to address this issue using various traditional and some non-traditional but innovative methods! import geopandas as gpd import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) df_mh_all_villages = gpd.read_file("../input/mh-villages-v2w2/MH_Villages v2W2.shp")[ ["DTNAME", "GPNAME", "VILLNAME"] ] # ['DTNAME','GPNAME','VILLNAME'] print(df_mh_all_villages.shape) df_mh_all_villages.T df_mh_all_villages["DTNAME"].unique() print(len(df_mh_all_villages["DTNAME"].unique())) df_mh_all_villages[df_mh_all_villages["DTNAME"] == "Sangali"] df_mh_all_villages[df_mh_all_villages["DTNAME"] == "Mumbai"] df_mh_all_villages[df_mh_all_villages["VILLNAME"].isnull()].shape # We need to get rid of rows with missing village name # Are the village names unique given a district? df_mh_all_villages.groupby("DTNAME")["VILLNAME"].agg(["count", "nunique"]) # ### There are a lot of duplicate village names in a district - thus we need information on Taluka for matching as we cannot simply use district and village name for matching df_ListOfTalukas = pd.read_csv( "../input/paani-foundations-satyamev-jayate-water-cup/ListOfTalukas.csv" ) print(df_ListOfTalukas.shape) df_ListOfTalukas.T df_ListOfTalukas["District"].unique() print("Number of unique districts", len(df_ListOfTalukas["District"].unique())) df_ListOfTalukas[df_ListOfTalukas["District"] == "Sangli"] # **There are different spellings for district names in both files also the number of unique districts is different** # * GPNAME - most probably refers to gram panchayat name, so cannot be matched with Taluka # * We will need to create a list of districts with ground truth spelling - let's use MH_Villages v2W2.shp for that df_StateLevelWinners = pd.read_csv( "/kaggle/input/paani-foundations-satyamev-jayate-water-cup/StateLevelWinners.csv" ) print(df_StateLevelWinners.shape) df_StateLevelWinners.T df_StateLevelWinners["District"].unique() from fuzzywuzzy import fuzz districts = df_mh_all_villages["DTNAME"].unique().tolist() def get_best_district_match(mydist, districts=districts): fuzz_ratio = [fuzz.ratio(mydist, dist) for dist in districts] max_ratio = max(fuzz_ratio) idx_max = [i for i, j in enumerate(fuzz_ratio) if j == max_ratio] # ToDo: if more than one match throw an error return districts[idx_max[0]] get_best_district_match("Sangli") df_StateLevelWinners["district_m"] = df_StateLevelWinners["District"].apply( lambda x: get_best_district_match(x) ) _idx = df_StateLevelWinners["District"] != df_StateLevelWinners["district_m"] df_StateLevelWinners.loc[_idx, ["District", "district_m"]]
# **Treino com os dados do Titanic** # Um dos naufrágios mais infames da história é o do Titanic, que afundou após colidir com um iceberg. Infelizmente, não havia botes salva-vidas suficientes para todos a bordo, resultando na morte de 1502 dos 2224 passageiros e tripulantes. # Embora houvesse algum elemento de sorte envolvido na sobrevivência, parece que alguns grupos de pessoas eram mais propensos a sobreviver do que outros. **O desafio aqui é construir um modelo preditivo que discrimine os grupos de pessoas com maiores chances de sovreviver.** # **Principais objetivos**: # - Me familiarizar com a plataforma Kaggle e suas competições. # - Desenvolver e colocar em prática técnicas de EDA # - Resolver o problema e buscar melhorar a pontuação baseando-se em metodos e ideias que vi em notebooks compartilhados por cientistas de dados da comunidade mais experientes. # **Importando dados e bibliotecas necessárias** # análise e transformação dos dados import pandas as pd import numpy as np import random as rnd # visualização import seaborn as sns import matplotlib.pyplot as plt # machine learning from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.model_selection import cross_val_score # importando os datasets import os train_df = pd.read_csv("/kaggle/input/titanic/train.csv") test_df = pd.read_csv("/kaggle/input/titanic/test.csv") all_data = train_df.append(test_df, sort=True) train_df.head(8) # **Análise exploratória** train_df.describe() train_df.describe(include=["O"]) # Número de "NaN"s em cada feature print(all_data.shape) all_data.isnull().sum().drop("Survived") # **Observações**: # - Cinco features são nominais, das quais apenas "Sex" e "Embarked" possuem poucos valores únicos e podem ser facilmente convertidas em variáveis numéricas ordinais/discretas. # - Proporção de "Missing values" encontrados: "Cabin" 77% >>> "Age" 20% >> "Embarked" apenas 2 > "Fare" apenas 1. # - A chance de sobrvivência média do conjunto de dados é de 38% e está próxima da taxa real de 32% (1-1502/2224). Também pode ser usado como parâmetro de comparação para o impacto de determinadas features. # **Especulações**: # - PassangerId, Ticket e Name provavelmente não contribuem para a sobrevivência, descartá-los logo no início é conveniente pois reduz o volume de dados, acelera o processamento do código e simplifica a análise, mas vale ressaltar que o nome também possui informações sobre o título do passageiro, extraír isso em uma nova feature pode beneficiar a acuracia do modelo. # - Uma possibilidade para haver tantos valores nulos para a cabine é que isso pode representar uma luxúria de alguns poucos passageiros, possivelmente um indicador de sua influência. Transforma-la em uma variável binária pode beneficiar o modelo. # - É importante saber quais features se correlacionam com a sobrevivência e entre sí logo no início do projeto, pois isso guia a tomada de decisão sobre quais delas manter e transformar; alguns dados como o valor da tarifa (Fare) e classe (Pclass) podem acabar dizendo a mesma coisa ficando redundantes # - Se queremos fazer correlações logo de início, é importante converter features potencialmente relevantes como "Sex" e "Embarked" para variáveis ordinais/discretas antes. # - Por fim, se a análise apontar que features incompletas como "Age" e "Embarked" impactam na sobrevivência, devem ser completadas ao invés de descartadas. # Extraindo os títulos de "Name" all_data["Title"] = all_data.Name.str.extract(" ([A-Za-z]+)\.", expand=False) pd.crosstab(all_data["Title"], all_data["Sex"]).T # Transformando a feature "Cabin" em binária all_data["Cabin"].fillna(0, inplace=True) all_data.loc[all_data["Cabin"] != 0, "Cabin"] = 1 # Descartando dados irrelevantes Id_test = test_df["PassengerId"] # necessário para submissão do projeto. all_data = all_data.drop(["PassengerId", "Ticket", "Name"], axis=1) # Criando uma variável randômica para testar algumas hipóteses np.random.seed(2020) all_data["random"] = np.random.randint(0, 2, len(all_data)) # Split train_df = all_data[: len(train_df)] test_df = all_data[len(train_df) :] # **Checando correlações com a sobrevivência** def pivota_feature_com_sobrev(feature_analisada): # Essa função cria um pequeno DataFrame com a taxa de sobrevivência # e o número de indivíduos de cada elemento de uma feature. df_pivot = pd.concat( [ train_df[feature_analisada].rename("# ind").value_counts(), train_df[[feature_analisada, "Survived"]] .groupby(feature_analisada, as_index=True) .mean(), ], axis=1, sort=True, ) df_pivot.index.name = feature_analisada return round(df_pivot, 3) display( pivota_feature_com_sobrev("Sex"), pivota_feature_com_sobrev("Embarked"), pivota_feature_com_sobrev("Pclass"), pivota_feature_com_sobrev("Cabin"), ) # Todas estas features aparentam impactar nas chances de sobrevivência; devem ser preenchidas e convertidas para variáveis numéricas. # Convertendo a feature "sex" de nominal para binária all_data["Sex"].replace(["female", "male"], [0, 1], inplace=True) # Preenchendo 2 valores nulos com o porto de embarque mais comum all_data["Embarked"].fillna("S", inplace=True) # Convertendo a feature "Embarked" de nominal para discreta all_data["Embarked"].replace(["S", "Q", "C"], [0, 1, 2], inplace=True) display( pivota_feature_com_sobrev("Title").T, pivota_feature_com_sobrev("Parch").T, pivota_feature_com_sobrev("SibSp").T, ) # Nota-se que grande parte dos indivídios que tiveram companhia para a viagem ou Títulos raros tiveram mais de 50% de chance de sobreviver. Entretanto muitos desses elementos não possuem um número de indivíduos alto o suficiente para serem representativos do todo, transformar esta feature em uma variável ordinal pode incorrer em problemas de amostragem para determiandos valores, fazendo mais sentido criar as seguintes variáveis binárias: # - "Family": 0 para indivíduos sozinhos e 1 para acompanhados. # - "Title": 1 para indivíduos com títulos raros e 0 para títulos comuns # # Transformando a feature "Title" all_data["Title"] = all_data["Title"].replace(["Mrs", "Miss", "Mr"], 0) all_data.loc[all_data["Title"] != 0, "Title"] = 1 # Criando a feature "Family" all_data["Family"] = all_data["Parch"] + all_data["SibSp"] all_data.loc[all_data["Family"] > 0, "Family"] = 1 # Descartando all_data.drop(["SibSp", "Parch"], axis=1, inplace=True) # Split train_df = all_data[: len(train_df)] test_df = all_data[len(train_df) :] display(pivota_feature_com_sobrev("Title"), pivota_feature_com_sobrev("Family")) # Checando a feature randômica pivota_feature_com_sobrev("random") # Como esperado, esta feature não ajuda a discriminar quem tem as melhores chances de sobrevivência, mas a manteremos para futuras comparações # **Matriz de correlações** # Split train_df = all_data[: len(train_df)] test_df = all_data[len(train_df) :] train_df.corr().style.background_gradient(cmap="Blues").set_precision(2) # A correlação entre a idade e a sobrevivência é baixa (-0,07), entretando, se analizamos as curvas de kde encontramos faixas estárias mais propensas a sobreviverem. Isso sugere que a feature é relevante para o modelo e deve ser completada. kde_age = sns.FacetGrid(train_df, col="Pclass", row="Sex", hue="Survived") kde_age.add_legend().set(xlim=(0, 100)) kde_age = kde_age.map(sns.kdeplot, "Age", shade=True) # Uma possibilidade para completar as informações de idade é preenche-las com a mediana das idades, mas este valor pode variar em função de diferentes grupos de pessoas. Vale checar as features "Family" e "Pclass", que são bem correlacionadas com "Age": plt.figure(figsize=(10, 7)) plt.title("Idade em função da classe e se o passageiro viajou com a familia") sns.violinplot( x="Pclass", y="Age", hue="Family", data=all_data, split=True, inner="quartile" ) plt.show() # **Preenchendo missing values** # Assim como esperado, diferentes grupos possuem diferentes distribuições de idades, e uma vez que possuimos estas informações, é melhor fazer o preenchimento de forma condicionada: matriz_de_medianas = np.zeros((2, 3)) for classe in range(1, 4): for familia in range(0, 2): matriz_de_medianas[familia, classe - 1] = all_data.loc[ (all_data["Pclass"] == classe) & (all_data["Family"] == familia) ]["Age"].median() all_data.loc[ (np.isnan(all_data["Age"])) & (all_data["Family"] == familia) & (all_data["Pclass"] == classe), "Age", ] = matriz_de_medianas[familia, classe - 1] medianas = pd.DataFrame(matriz_de_medianas, columns=[1, 2, 3]) medianas.index.name = "Family" medianas.columns.name = "Pclass" medianas # O mesmo é realizado para preencher o único valor nulo da feature "Fare": all_data.loc[np.isnan(all_data["Fare"])] # Preenchendo o valor nulo com a mediana das tarifas deste grupo de indivíduos all_data.loc[np.isnan(all_data["Fare"])] = all_data.loc[ (all_data["Pclass"] == 3) & (all_data["Sex"] == 1) & (all_data["Family"] == 0) ]["Fare"].median() # Nossos dados estão finalmente organizados, limpos e transformados: all_data.head() # **Modelagem e predição** # Split train_df = all_data[: len(train_df)] test_df = all_data[len(train_df) :] train_data = train_df.drop("Survived", axis=1) train_target = train_df["Survived"] X_test = test_df.drop("Survived", axis=1) train_data.shape, train_target.shape, X_test.shape def treina_e_testa_modelo(modelo, dados_de_treino, rotulo, cross_validation_folders): modelo.fit(dados_de_treino, rotulo) score = cross_val_score( modelo, dados_de_treino, rotulo, cv=cross_validation_folders ).mean() model_name = str(modelo).split("(")[0] print(model_name + " accuracy: " + str(round(score.mean() * 100, 2)) + "%") return score knn = KNeighborsClassifier(n_neighbors=3) knn_score = treina_e_testa_modelo(knn, train_data, train_target, 5) random_forest = RandomForestClassifier(n_estimators=100, random_state=2020) random_forest_score = treina_e_testa_modelo(random_forest, train_data, train_target, 5) logreg = LogisticRegression(solver="newton-cg", random_state=2020) logreg_score = treina_e_testa_modelo(logreg, train_data, train_target, 5) svc = SVC(gamma="scale", random_state=2020) svc_score = treina_e_testa_modelo(svc, train_data, train_target, 5) # **Compreendendo os resultados** # Random forest e logistic regression foram os modelos mais acertivos, com aproximadamente 80% de acurácia, o próximo passo é utilizar alguns métodos para tentar compreender quais são as features mais importantes para cada um e entender seu funcionamento. def importance_plot(x_name, y_name, dados, graph_title): sns.barplot( x=x_name, y=y_name, data=dados, orient="h", color="royalblue" ).set_title(graph_title, fontsize=20) plt.show() feature_importance_df = pd.DataFrame( { "Feature": train_data.columns, "feature_importance": random_forest.feature_importances_, } ).sort_values("feature_importance", ascending=False) coeff_df = pd.DataFrame( {"Feature": train_data.columns, "feature correlation": pd.Series(logreg.coef_[0])} ).sort_values("feature correlation", ascending=False) importance_plot( "feature_importance", "Feature", feature_importance_df, "RForest feature importance_defaut", ) importance_plot( "feature correlation", "Feature", coeff_df, "logistic regression feature correlation", ) # - Para o algoritmo de regressão logistica a feature 'random' foi apontada como mais correlacionada com a sobrevivência do que a idade e a tarifa, sabemos que isso não faz sentido, mas já era esperado pelo fato de que este modelo não lida com variáveis contínuas como estas. # - Já para o random forest, notamos que 'random' é apontada como mais importante que a família e o título, o que também não faz muito sentido. Frente a isso existem duas possibilidade; estas três features não contribuem muito para o modelo e devem ser descartadas, ou o método ".feature_importances_" não é muito acurado. Este último ponto é confirmado pela literatura, que o aponta como enviesado, apesar de bem direto e rápido. # - Uma possibilidade é testar métodos recursivos, que são muito mais acertivos e computacionalmente caros, o que não representa um problema para um conjunto de dados pequeno como este. rforest_clone = clone(random_forest) logreg_clone = clone(logreg) rf_impact = [] # rf = random forest lr_impact = [] # lr = logistic regression for feature in train_data.columns: rf_new_score = cross_val_score( rforest_clone, train_data.drop(feature, axis=1), train_target, cv=5 ).mean() lr_new_score = cross_val_score( logreg_clone, train_data.drop(feature, axis=1), train_target, cv=5 ).mean() rf_impact.append(random_forest_score - rf_new_score) lr_impact.append(logreg_score - lr_new_score) rforest_impact = pd.DataFrame( data={"Feature": train_data.columns, "Impact": rf_impact} ).sort_values("Impact", ascending=False) logreg_impact = pd.DataFrame( data={"Feature": train_data.columns, "Impact": lr_impact} ).sort_values("Impact", ascending=False) importance_plot("Impact", "Feature", rforest_impact, "Random Forest feature impact") importance_plot( "Impact", "Feature", logreg_impact, "Logistic Regression feature impact" ) random_forest_score = treina_e_testa_modelo( random_forest, train_data.drop(["Title", "random", "Family"], axis=1), train_target, 10, ) logreg_forest_score = treina_e_testa_modelo( logreg, train_data.drop(["Cabin", "random", "Fare"], axis=1), train_target, 10 ) predict = random_forest.predict( X_test.drop(["Title", "random", "Family"], axis=1) ).astype(int) submission = pd.DataFrame() submission["PassengerId"] = Id_test # get predictions submission["Survived"] = predict submission.head(15).T submission.to_csv("random_forest_submission.csv", index=False)
# ## Intro # This notebook is a combination of three great notebooks. # * @xhlulu [Disaster NLP: Keras BERT using TFHub](https://www.kaggle.com/xhlulu/disaster-nlp-keras-bert-using-tfhub) # * @Dieter [BERT-Embeddings + LSTM](https://www.kaggle.com/christofhenkel/bert-embeddings-lstm/notebook) # * Wojtek Rosa [Keras BERT using TFHub (modified train data)](https://www.kaggle.com/wrrosa/keras-bert-using-tfhub-modified-train-data) # Thanks to their great works. I combine the bert_model from @xhlulu, LSTM model from @Dieter and modified data from @Wojtek Rosa. # We will use the official tokenization script created by the Google team import tensorflow as tf import numpy as np import pandas as pd import tensorflow.keras.backend as K from tensorflow.keras.layers import ( Dense, Input, Bidirectional, SpatialDropout1D, Embedding, add, concatenate, ) from tensorflow.keras.layers import ( GRU, GlobalAveragePooling1D, LSTM, GlobalMaxPooling1D, ) from tensorflow.keras.optimizers import Adam from tensorflow.keras.models import Model from tensorflow.keras.callbacks import ( EarlyStopping, ModelCheckpoint, LearningRateScheduler, ) import tensorflow_hub as hub import tokenization train = pd.read_csv("../input/preprocesseddata/train.csv") test = pd.read_csv("../input/preprocesseddata/test.csv") submission = pd.read_csv("../input/nlp-getting-started/sample_submission.csv") module_url = "https://tfhub.dev/tensorflow/bert_en_uncased_L-24_H-1024_A-16/1" bert_layer = hub.KerasLayer(module_url, trainable=True) def bert_encoder(texts, tokenizer, max_len=512): all_tokens = [] all_masks = [] all_segments = [] for text in texts: text = tokenizer.tokenize(text) text = text[: max_len - 2] input_sequence = ["[CLS]"] + text + ["[SEP]"] pad_len = max_len - len(input_sequence) tokens = tokenizer.convert_tokens_to_ids(input_sequence) tokens += [0] * pad_len pad_masks = [1] * len(input_sequence) + [0] * pad_len segments_ids = [0] * max_len all_tokens.append(tokens) all_masks.append(pad_masks) all_segments.append(segments_ids) return np.array(all_tokens), np.array(all_masks), np.array(all_segments) def build_model(bert_layer, max_len=512): input_word_ids = Input(shape=(max_len,), dtype=tf.int32, name="input_word_ids") input_mask = Input(shape=(max_len,), dtype=tf.int32, name="input_mask") segment_ids = Input(shape=(max_len,), dtype=tf.int32, name="segment_ids") _, sequence_output = bert_layer([input_word_ids, input_mask, segment_ids]) x = SpatialDropout1D(0.3)(sequence_output) x = Bidirectional(GRU(LSTM_UNITS, return_sequences=True))(x) x = Bidirectional(GRU(LSTM_UNITS, return_sequences=True))(x) hidden = concatenate( [ GlobalMaxPooling1D()(x), GlobalAveragePooling1D()(x), ] ) hidden = add([hidden, Dense(DENSE_HIDDEN_UNITS, activation="relu")(hidden)]) hidden = add([hidden, Dense(DENSE_HIDDEN_UNITS, activation="relu")(hidden)]) result = Dense(1, activation="sigmoid")(hidden) model = Model(inputs=[input_word_ids, input_mask, segment_ids], outputs=result) model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"]) return model vocab_file = bert_layer.resolved_object.vocab_file.asset_path.numpy() do_lower_case = bert_layer.resolved_object.do_lower_case.numpy() tokenizer = tokenization.FullTokenizer(vocab_file, do_lower_case) train_input = bert_encoder(train.text.values, tokenizer, max_len=160) test_input = bert_encoder(test.text.values, tokenizer, max_len=160) train_labels = train.target.values import gc NUM_MODELS = 1 BATCH_SIZE = 16 LSTM_UNITS = 64 EPOCHS = 5 DENSE_HIDDEN_UNITS = 256 checkpoint_predictions = [] checkpoint_val_pred = [] weights = [] for model_idx in range(NUM_MODELS): model = build_model(bert_layer, max_len=160) for global_epoch in range(EPOCHS): model.fit( train_input, train_labels, batch_size=BATCH_SIZE, validation_split=0.25, epochs=1, verbose=1, callbacks=[ LearningRateScheduler(lambda epoch: 2e-6 * (0.6**global_epoch)) ], ) checkpoint_predictions.append( model.predict(test_input, batch_size=64).flatten() ) weights.append(2**global_epoch) del model gc.collect() test_pred = np.average(checkpoint_predictions, weights=weights, axis=0) submission["target"] = test_pred.round().astype(int) submission.to_csv("submission.csv", index=False)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # Import package here import sys import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import LabelEncoder import missingno as msno from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from pathlib import Path input_path = Path("/kaggle/input/amex-default-prediction/") # Loading dataset train_data.csv train_df_sample = pd.read_csv( "../input/amex-default-prediction/train_data.csv", nrows=100000 ) # Loading dataset train_labels.csv train_label_df = pd.read_csv("../input/amex-default-prediction/train_labels.csv") # Loading dataset test_data.csv test_df = pd.read_csv( "../input/amex-default-prediction/test_data.csv", nrows=100000, index_col="customer_ID", ) # Merge of train_df_sample and train_label_df dataframe using key as customer_ID train_df = pd.merge(train_df_sample, train_label_df, how="inner", on=["customer_ID"]) categorical_features = [ "B_30", "B_38", "D_114", "D_116", "D_117", "D_120", "D_126", "D_63", "D_64", "D_68", ] # The info method finds that there are objects in the table besides numbers, which needs to be processed. Since there are many parameters, the missing data can be visualized by visualization. # Data Summary summary = train_df.describe(include="all").T summary["missing"] = train_df.isnull().sum() summary["unique"] = train_df.nunique() summary["type"] = train_df.dtypes # Print print(summary) # Features are anonymized and normalized, and fall into the following general categories: # D_* = Delinquency variables # S_* = Spend variables # P_* = Payment variables # B_* = Balance variables # R_* = Risk variables # Show data distribution for different general categories: # Group according to prefix feature_groups = {} for feature in train_df.columns.tolist(): prefix = feature[0] if prefix not in feature_groups: feature_groups[prefix] = [] feature_groups[prefix].append(feature) # Print for prefix, group in feature_groups.items(): print(f"Feature group {prefix}: {group}") # Calculate the correlation between target and all the other columns correlations = train_df.corrwith(train_df["target"]) # Print results print("Correlations between target and other columns:") print(correlations) # Find columns with correlation greater than 0.5 high_correlations = correlations[abs(correlations) > 0.5] # Print results print("\n") print("strongly correlated values with 'target' (with correlation greater than 0.5):") print(high_correlations) # Show distribution of 'target' using histplot sns.histplot(train_df["target"], color="g", bins=100, alpha=0.4) corr = train_df.drop("target", axis=1).corr() plt.figure(figsize=(50, 50)) sns.heatmap( corr[(abs(corr) >= 0.5) | (abs(corr) <= -0.4)], cmap="viridis", vmax=1.0, vmin=-1.0, linewidths=0.1, annot=True, annot_kws={"size": 8}, square=True, ) plt.savefig("heatmap.png") plt.show() # Select numerical features num_df = train_df.select_dtypes(exclude="object") # Plot distributions of numerical features ncols = 7 nrows = 28 fig, axes = plt.subplots(nrows, ncols, figsize=(4 * ncols, 4 * nrows), sharex=False) for idx, ax in enumerate(axes.ravel()): if idx < len(num_df.columns): column = num_df.columns[idx] ax.hist(num_df[column].dropna(), bins=50) ax.set_title(column) ax.set_ylabel("Frequency") else: ax.set_axis_off() # Save the histograms as an image file plt.savefig("histograms.png") plt.show() cal_df = train_df[categorical_features] # Plot countplots for the selected features fig, axes = plt.subplots(round(len(cal_df.columns) / 3), 3, figsize=(12, 12)) for i, ax in enumerate(fig.axes): if i < len(cal_df.columns): sns.countplot(x=cal_df.columns[i], alpha=0.7, data=cal_df, ax=ax) ax.set_xticklabels(ax.get_xticklabels(), rotation=45) fig.tight_layout() # Statistical missing value: # The amount of missing values for each column missing_values = train_df.isnull().sum() # Display the first 5 rows print(missing_values.head(5)) # Display an empty line for separation print("...") # Display the last 5 rows print(missing_values.tail(5)) # Visulize missing values: # Randomly get 1919 sample data train_df_sample = train_df.sample(1919) # 随机取样1919个数据 msno.matrix(train_df_sample) # Each vertical bar represents a feature. If there is no missing value, the bar will be as black as the rightmost one. Some areas are almost all white, which means that almost all the values of this feature are missing. # Drop meaningless values: # Drop customer_ID and S_2 from train_df dataframe since they are not required for model building train_df.drop(axis=1, columns=["customer_ID", "S_2"], inplace=True) # Drop S_2 in test_df dataframe which is not required for model building test_df.drop(axis=1, columns=["S_2"], inplace=True) # Handle categorial column: label_encoder = LabelEncoder() for feature in categorical_features: train_df[feature] = label_encoder.fit_transform(train_df[feature]) # Drop columns leads to multicollinearity: features_drop_for_multicollinearity = [ "B_11", "S_7", "B_13", "B_23", "D_74", "D_75", "D_77", "B_33", "B_37", "D_110", "D_111", ] train_df.drop(columns=features_drop_for_multicollinearity) # Handle missing values: # rough_train_data = train_df.copy() fill_mean_for_missing = [ "P_2", "D_48", "D_52", "P_3", "D_55", "D_59", "D_62", "D_68", "D_70", "D_104", "D_107", "S_27", "D_115", "D_117", "D_118", "D_119", "D_121", "D_122", "D_123", "D_124", "D_130", ] fill_mode_for_missing = [ "S_3", "D_44", "D_46", "B_13", "D_61", "D_69", "D_78", "D_79", "D_83", "D_84", "D_89", "D_91", "D_102", "R_27", "D_113", "D_114", "D_116", "D_120", "D_125", "D_128", "D_129", "D_131", "D_133", "D_139", "D_140", "D_141", "D_143", "D_144", "D_145", ] drop_for_missing = [ "D_42", "D_43", "D_49", "D_50", "D_53", "D_56", "S_9", "B_17", "D_66", "D_73", "D_76", "D_77", "R_9", "D_82", "B_29", "D_87", "D_88", "D_105", "D_106", "R_26", "D_108", "D_110", "D_111", "B_39", "B_42", "D_132", "D_134", "D_135", "D_136", "D_137", "D_138", "D_142", ] # pd.options.display.max_info_columns = 300 # rough_train_data.info() for feature_name in fill_mean_for_missing: train_df[feature_name].fillna(train_df[feature_name].mean(), inplace=True) for feature_name in fill_mode_for_missing: train_df[feature_name].fillna(train_df[feature_name].mode(), inplace=True) for feature_name in drop_for_missing: train_df.drop(axis=1, columns=[feature_name], inplace=True) # rough_train_data.info() for column in train_df.columns.tolist(): CpuKiller = train_df[column].mean() # Fill in each column train_df[column] = train_df[column].fillna(CpuKiller) pd.options.display.max_info_columns = 300 # Visualize the degree of dispersion of the data train_df.boxplot() # Rank correlations # correlations = train_df.corr()['target'].abs().sort_values(ascending=False) # Select top 100 related features # top_100_features = correlations.index[1:51] # Create a new dataset # train_df_top_100 = train_df[top_100_features].copy() # Keep 'target' feature # train_df_top_100.loc[:, 'target'] = train_df['target'] # train_df = train_df_top_100 X = train_df.drop(columns="target") y = train_df["target"] print("Shape of X", X.shape) print("Shape of y", y.shape) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.25, stratify=y, random_state=42 ) from lightgbm import LGBMClassifier from sklearn.pipeline import make_pipeline from sklearn.preprocessing import RobustScaler # Create pipeline with robust scaler and LGBM classifier pipeline = make_pipeline( RobustScaler(), LGBMClassifier(random_state=45, n_estimators=5000) ) # Fit pipeline on training data pipeline.fit(X_train, y_train) # Predict on test data y_pred = pipeline.predict(X_test) # Calculate the accuracy accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) # Evaluate performance from sklearn.metrics import classification_report print(classification_report(y_test, y_pred)) # Parameter tuning: from lightgbm import LGBMClassifier from sklearn.pipeline import make_pipeline from sklearn.preprocessing import RobustScaler from sklearn.model_selection import GridSearchCV # Define Parameters Distribution # Define Parameter grid param_grid = {"n_estimators": range(5000, 10000, 1000)} model = LGBMClassifier() # Cross validation and grid search grid_search = GridSearchCV(model, param_grid, scoring="accuracy", cv=5, verbose=1) grid_search.fit(X_train, y_train) # Print best parametors print("Best parameters found:", grid_search.best_params_) # Other data normalization methods for testing: from lightgbm import LGBMClassifier from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler # Create pipeline with standard scaler and LGBM classifier pipeline = make_pipeline( StandardScaler(), LGBMClassifier(random_state=45, n_estimators=6000) ) # Fit pipeline on training data pipeline.fit(X_train, y_train) # Predict on test data y_pred = pipeline.predict(X_test) # Calculate the accuracy accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) # Evaluate performance from sklearn.metrics import classification_report print(classification_report(y_test, y_pred)) from lightgbm import LGBMClassifier from sklearn.pipeline import make_pipeline from sklearn.preprocessing import MinMaxScaler # Create pipeline with MinMaxScaler and LGBM classifier pipeline = make_pipeline( MinMaxScaler(), LGBMClassifier(random_state=45, n_estimators=6000) ) # Fit pipeline on training data pipeline.fit(X_train, y_train) # Predict on test data y_pred = pipeline.predict(X_test) # Calculate the accuracy accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) # Evaluate performance from sklearn.metrics import classification_report print(classification_report(y_test, y_pred)) from lightgbm import LGBMClassifier from sklearn.pipeline import make_pipeline from sklearn.preprocessing import Normalizer # Create pipeline with Normalizer and LGBM classifier pipeline = make_pipeline( Normalizer(), LGBMClassifier(random_state=45, n_estimators=6000) ) # Fit pipeline on training data pipeline.fit(X_train, y_train) # Predict on test data y_pred = pipeline.predict(X_test) # Calculate the accuracy accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) # Evaluate performance from sklearn.metrics import classification_report print(classification_report(y_test, y_pred))
import numpy as np import pandas as pd import pickle as pkl import datetime import time import networkx as nx import scipy.sparse as sp from scipy.sparse.linalg.eigen.arpack import eigsh import sys import re from sklearn import metrics from nltk.corpus import stopwords import nltk from nltk.wsd import lesk from nltk.corpus import wordnet as wn import os import random from math import log import torch import torch.nn as nn seed = random.randint(1, 200) np.random.seed(seed) torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed(seed) os.environ["CUDA_VISIBLE_DEVICES"] = "" path = "/kaggle/input/google-quest-challenge" train = pd.read_csv(f"{path}/train.csv") test = pd.read_csv(f"{path}/test.csv") submission = pd.read_csv(f"{path}/sample_submission.csv") X_train = train["question_body"].fillna("fillna").values X_test = test["question_body"].fillna("fillna").values # y_train = train[submission.columns[1:]].values y_train = train[submission.columns[1]].values a = np.append(X_train, X_test) print(a.shape) with open("mr_0" + ".txt", "w") as f: j = 0 for i in a: f.write(i + "\n") j += 1 x = [] c = np.array(x) with open("mr_0" + ".txt", "r") as f: lines = f.readlines() i = -1 for line in lines: i += 1 if i <= 5471: line = str(i) + "\t" + "train" + "\t" + str(y_train[i]) c = np.append(c, line) if 6078 >= i > 5471: line = str(i) + "\t" + "test" + "\t" + str(y_train[i]) c = np.append(c, line) with open("mr_1" + ".txt", "w") as f: for line in c: f.write(line + "\n") def parse_index_file(filename): """Parse index file.""" index = [] for line in open(filename): index.append(int(line.strip())) return index def sample_mask(idx, l): """Create mask.""" mask = np.zeros(l) mask[idx] = 1 return np.array(mask, dtype=np.bool) def load_corpus(dataset_str): """ Loads input corpus from gcn/data directory ind.dataset_str.x => the feature vectors of the training docs as scipy.sparse.csr.csr_matrix object; ind.dataset_str.tx => the feature vectors of the test docs as scipy.sparse.csr.csr_matrix object; ind.dataset_str.allx => the feature vectors of both labeled and unlabeled training docs/words (a superset of ind.dataset_str.x) as scipy.sparse.csr.csr_matrix object; ind.dataset_str.y => the one-hot labels of the labeled training docs as numpy.ndarray object; ind.dataset_str.ty => the one-hot labels of the test docs as numpy.ndarray object; ind.dataset_str.ally => the labels for instances in ind.dataset_str.allx as numpy.ndarray object; ind.dataset_str.adj => adjacency matrix of word/doc nodes as scipy.sparse.csr.csr_matrix object; ind.dataset_str.train.index => the indices of training docs in original doc list. All objects above must be saved using python pickle module. :param dataset_str: Dataset name :return: All data input files loaded (as well the training/test data). """ names = ["x", "y", "tx", "ty", "allx", "ally", "adj"] objects = [] for i in range(len(names)): with open("ind.{}.{}".format(dataset_str, names[i]), "rb") as f: if sys.version_info > (3, 0): objects.append(pkl.load(f, encoding="latin1")) else: objects.append(pkl.load(f)) x, y, tx, ty, allx, ally, adj = tuple(objects) # print(x.shape, y.shape, tx.shape, ty.shape, allx.shape, ally.shape) features = sp.vstack((allx, tx)).tolil() labels = np.vstack((ally, ty)) # print(len(labels)) train_idx_orig = parse_index_file("{}.train.index".format(dataset_str)) train_size = len(train_idx_orig) val_size = train_size - x.shape[0] test_size = tx.shape[0] idx_train = range(len(y)) idx_val = range(len(y), len(y) + val_size) idx_test = range(allx.shape[0], allx.shape[0] + test_size) train_mask = sample_mask(idx_train, labels.shape[0]) val_mask = sample_mask(idx_val, labels.shape[0]) test_mask = sample_mask(idx_test, labels.shape[0]) y_train = np.zeros(labels.shape) y_val = np.zeros(labels.shape) y_test = np.zeros(labels.shape) y_train[train_mask, :] = labels[train_mask, :] y_val[val_mask, :] = labels[val_mask, :] y_test[test_mask, :] = labels[test_mask, :] adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj) return ( adj, features, y_train, y_val, y_test, train_mask, val_mask, test_mask, train_size, test_size, ) def sparse_to_tuple(sparse_mx): """Convert sparse matrix to tuple representation.""" def to_tuple(mx): if not sp.isspmatrix_coo(mx): mx = mx.tocoo() coords = np.vstack((mx.row, mx.col)).transpose() values = mx.data shape = mx.shape return coords, values, shape if isinstance(sparse_mx, list): for i in range(len(sparse_mx)): sparse_mx[i] = to_tuple(sparse_mx[i]) else: sparse_mx = to_tuple(sparse_mx) return sparse_mx def preprocess_features(features): """Row-normalize feature matrix and convert to tuple representation""" rowsum = np.array(features.sum(1)) r_inv = np.power(rowsum, -1).flatten() r_inv[np.isinf(r_inv)] = 0.0 r_mat_inv = sp.diags(r_inv) features = r_mat_inv.dot(features) # return sparse_to_tuple(features) return features.A def normalize_adj(adj): """Symmetrically normalize adjacency matrix.""" adj = sp.coo_matrix(adj) rowsum = np.array(adj.sum(1)) d_inv_sqrt = np.power(rowsum, -0.5).flatten() d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0.0 d_mat_inv_sqrt = sp.diags(d_inv_sqrt) return adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt).tocoo() def preprocess_adj(adj): """Preprocessing of adjacency matrix for simple GCN model and conversion to tuple representation.""" adj_normalized = normalize_adj(adj + sp.eye(adj.shape[0])) # return sparse_to_tuple(adj_normalized) return adj_normalized.A def construct_feed_dict(features, support, labels, labels_mask, placeholders): """Construct feed dictionary.""" feed_dict = dict() feed_dict.update({placeholders["labels"]: labels}) feed_dict.update({placeholders["labels_mask"]: labels_mask}) feed_dict.update({placeholders["features"]: features}) feed_dict.update( {placeholders["support"][i]: support[i] for i in range(len(support))} ) feed_dict.update({placeholders["num_features_nonzero"]: features[1].shape}) return feed_dict def chebyshev_polynomials(adj, k): """Calculate Chebyshev polynomials up to order k. Return a list of sparse matrices (tuple representation).""" print("Calculating Chebyshev polynomials up to order {}...".format(k)) adj_normalized = normalize_adj(adj) laplacian = sp.eye(adj.shape[0]) - adj_normalized largest_eigval, _ = eigsh(laplacian, 1, which="LM") scaled_laplacian = (2.0 / largest_eigval[0]) * laplacian - sp.eye(adj.shape[0]) t_k = list() t_k.append(sp.eye(adj.shape[0])) t_k.append(scaled_laplacian) def chebyshev_recurrence(t_k_minus_one, t_k_minus_two, scaled_lap): s_lap = sp.csr_matrix(scaled_lap, copy=True) return 2 * s_lap.dot(t_k_minus_one) - t_k_minus_two for i in range(2, k + 1): t_k.append(chebyshev_recurrence(t_k[-1], t_k[-2], scaled_laplacian)) return sparse_to_tuple(t_k) def loadWord2Vec(filename): """Read Word Vectors""" vocab = [] embd = [] word_vector_map = {} file = open(filename, "r") for line in file.readlines(): row = line.strip().split(" ") if len(row) > 2: vocab.append(row[0]) vector = row[1:] length = len(vector) for i in range(length): vector[i] = float(vector[i]) embd.append(vector) word_vector_map[row[0]] = vector print("Loaded Word Vectors!") file.close() return vocab, embd, word_vector_map def clean_str(string): """ Tokenization/string cleaning for all datasets except for SST. Original taken from https://github.com/yoonkim/CNN_sentence/blob/master/process_data.py """ string = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", string) string = re.sub(r"\'s", " 's", string) string = re.sub(r"\'ve", " 've", string) string = re.sub(r"n\'t", " n't", string) string = re.sub(r"\'re", " 're", string) string = re.sub(r"\'d", " 'd", string) string = re.sub(r"\'ll", " 'll", string) string = re.sub(r",", " , ", string) string = re.sub(r"!", " ! ", string) string = re.sub(r"\(", " \( ", string) string = re.sub(r"\)", " \) ", string) string = re.sub(r"\?", " \? ", string) string = re.sub(r"\s{2,}", " ", string) return string.strip().lower() def print_log(msg="", end="\n"): now = datetime.datetime.now() t = ( str(now.year) + "/" + str(now.month) + "/" + str(now.day) + " " + str(now.hour).zfill(2) + ":" + str(now.minute).zfill(2) + ":" + str(now.second).zfill(2) ) if isinstance(msg, str): lines = msg.split("\n") else: lines = [msg] for line in lines: if line == lines[-1]: print("[" + t + "] " + str(line), end=end) else: print("[" + t + "] " + str(line)) dataset = "mr_0" nltk.download("stopwords") stop_words = set(stopwords.words("english")) print(stop_words) doc_content_list = [] with open("mr_0.txt", "rb") as f: for line in f.readlines(): doc_content_list.append(line.strip().decode("latin1")) word_freq = {} for doc_content in doc_content_list: temp = clean_str(doc_content) words = temp.split() for word in words: if word in word_freq: word_freq[word] += 1 else: word_freq[word] = 1 clean_docs = [] for doc_content in doc_content_list: temp = clean_str(doc_content) words = temp.split() doc_words = [] for word in words: if dataset == "mr_0": doc_words.append(word) elif word not in stop_words and word_freq[word] >= 5: doc_words.append(word) doc_str = " ".join(doc_words).strip() clean_docs.append(doc_str) clean_corpus_str = "\n".join(clean_docs) with open("mr_0" + ".clean.txt", "w") as f: f.write(clean_corpus_str) min_len = 10000 aver_len = 0 max_len = 0 with open("mr_0" + ".clean.txt", "r") as f: lines = f.readlines() for line in lines: line = line.strip() temp = line.split() aver_len = aver_len + len(temp) if len(temp) < min_len: min_len = len(temp) if len(temp) > max_len: max_len = len(temp) aver_len = 1.0 * aver_len / len(lines) print("Min_len : " + str(min_len)) print("Max_len : " + str(max_len)) print("Average_len : " + str(aver_len)) word_embeddings_dim = 300 word_vector_map = {} doc_name_list = [] doc_train_list = [] doc_test_list = [] with open("mr_1" + ".txt", "r") as f: lines = f.readlines() for line in lines: doc_name_list.append(line.strip()) temp = line.split("\t") if temp[1].find("test") != -1: doc_test_list.append(line.strip()) elif temp[1].find("train") != -1: doc_train_list.append(line.strip()) doc_content_list = [] with open("mr_0" + ".clean.txt", "r") as f: lines = f.readlines() for line in lines: doc_content_list.append(line.strip()) train_ids = [] for train_name in doc_train_list: train_id = doc_name_list.index(train_name) train_ids.append(train_id) random.shuffle(train_ids) train_ids_str = "\n".join(str(index) for index in train_ids) with open("mr_0" + ".train.index", "w") as f: f.write(train_ids_str) test_ids = [] for test_name in doc_test_list: test_id = doc_name_list.index(test_name) test_ids.append(test_id) random.shuffle(test_ids) test_ids_str = "\n".join(str(index) for index in test_ids) with open("mr_0" + ".test.index", "w") as f: f.write(test_ids_str) ids = train_ids + test_ids shuffle_doc_name_list = [] shuffle_doc_words_list = [] for id in ids: shuffle_doc_name_list.append(doc_name_list[int(id)]) shuffle_doc_words_list.append(doc_content_list[int(id)]) shuffle_doc_name_str = "\n".join(shuffle_doc_name_list) shuffle_doc_words_str = "\n".join(shuffle_doc_words_list) with open("mr_1" + "_shuffle.txt", "w") as f: f.write(shuffle_doc_name_str) with open("mr_0" + "_shuffle.txt", "w") as f: f.write(shuffle_doc_words_str) word_freq = {} word_set = set() for doc_words in shuffle_doc_words_list: words = doc_words.split() for word in words: word_set.add(word) if word in word_freq: word_freq[word] += 1 else: word_freq[word] = 1 vocab = list(word_set) vocab_size = len(vocab) word_doc_list = {} for i in range(len(shuffle_doc_words_list)): doc_words = shuffle_doc_words_list[i] words = doc_words.split() appeared = set() for word in words: if word in appeared: continue if word in word_doc_list: doc_list = word_doc_list[word] doc_list.append(i) word_doc_list[word] = doc_list else: word_doc_list[word] = [i] appeared.add(word) word_doc_freq = {} for word, doc_list in word_doc_list.items(): word_doc_freq[word] = len(doc_list) word_id_map = {} for i in range(vocab_size): word_id_map[vocab[i]] = i vocab_str = "\n".join(vocab) with open("mr_0" + "_vocab.txt", "w") as f: f.write(vocab_str) label_set = set() for doc_meta in shuffle_doc_name_list: temp = doc_meta.split("\t") label_set.add(temp[2]) label_list = list(label_set) label_list_str = "\n".join(label_list) with open("mr_0" + "_labels.txt", "w") as f: f.write(label_list_str) train_size = len(train_ids) val_size = int(0.1 * train_size) real_train_size = train_size - val_size real_train_doc_names = shuffle_doc_name_list[:real_train_size] real_train_doc_names_str = "\n".join(real_train_doc_names) with open("mr_1" + ".real_train.name", "w") as f: f.write(real_train_doc_names_str) row_x = [] col_x = [] data_x = [] for i in range(real_train_size): doc_vec = np.array([0.0 for k in range(word_embeddings_dim)]) doc_words = shuffle_doc_words_list[i] words = doc_words.split() doc_len = len(words) for word in words: if word in word_vector_map: word_vector = word_vector_map[word] doc_vec = doc_vec + np.array(word_vector) for j in range(word_embeddings_dim): row_x.append(i) col_x.append(j) data_x.append(doc_vec[j] / doc_len) x = sp.csr_matrix( (data_x, (row_x, col_x)), shape=(real_train_size, word_embeddings_dim) ) y = [] for i in range(real_train_size): doc_meta = shuffle_doc_name_list[i] temp = doc_meta.split("\t") label = temp[2] one_hot = [0 for l in range(len(label_list))] label_index = label_list.index(label) one_hot[label_index] = 1 y.append(one_hot) y = np.array(y) test_size = len(test_ids) row_tx = [] col_tx = [] data_tx = [] for i in range(test_size): doc_vec = np.array([0.0 for k in range(word_embeddings_dim)]) doc_words = shuffle_doc_words_list[i + train_size] words = doc_words.split() doc_len = len(words) for word in words: if word in word_vector_map: word_vector = word_vector_map[word] doc_vec = doc_vec + np.array(word_vector) for j in range(word_embeddings_dim): row_tx.append(i) col_tx.append(j) data_tx.append(doc_vec[j] / doc_len) tx = sp.csr_matrix((data_tx, (row_tx, col_tx)), shape=(test_size, word_embeddings_dim)) ty = [] for i in range(test_size): doc_meta = shuffle_doc_name_list[i + train_size] temp = doc_meta.split("\t") label = temp[2] one_hot = [0 for l in range(len(label_list))] label_index = label_list.index(label) one_hot[label_index] = 1 ty.append(one_hot) ty = np.array(ty) word_vectors = np.random.uniform(-0.01, 0.01, (vocab_size, word_embeddings_dim)) for i in range(len(vocab)): word = vocab[i] if word in word_vector_map: vector = word_vector_map[word] word_vectors[i] = vector row_allx = [] col_allx = [] data_allx = [] for i in range(train_size): doc_vec = np.array([0.0 for k in range(word_embeddings_dim)]) doc_words = shuffle_doc_words_list[i] words = doc_words.split() doc_len = len(words) for word in words: if word in word_vector_map: word_vector = word_vector_map[word] doc_vec = doc_vec + np.array(word_vector) for j in range(word_embeddings_dim): row_allx.append(int(i)) col_allx.append(j) data_allx.append(doc_vec[j] / doc_len) for i in range(vocab_size): for j in range(word_embeddings_dim): row_allx.append(int(i + train_size)) col_allx.append(j) data_allx.append(word_vectors.item((i, j))) row_allx = np.array(row_allx) col_allx = np.array(col_allx) data_allx = np.array(data_allx) allx = sp.csr_matrix( (data_allx, (row_allx, col_allx)), shape=(train_size + vocab_size, word_embeddings_dim), ) ally = [] for i in range(train_size): doc_meta = shuffle_doc_name_list[i] temp = doc_meta.split("\t") label = temp[2] one_hot = [0 for l in range(len(label_list))] label_index = label_list.index(label) one_hot[label_index] = 1 ally.append(one_hot) for i in range(vocab_size): one_hot = [0 for l in range(len(label_list))] ally.append(one_hot) ally = np.array(ally) print(x.shape, y.shape, tx.shape, ty.shape, allx.shape, ally.shape) """ Doc word heterogeneous graph """ # Word co-occurence with context windows window_size = 20 windows = [] for doc_words in shuffle_doc_words_list: words = doc_words.split() length = len(words) if length <= window_size: windows.append(words) else: for j in range(length - window_size + 1): window = words[j : j + window_size] windows.append(window) word_window_freq = {} for window in windows: appeared = set() for i in range(len(window)): if window[i] in appeared: continue if window[i] in word_window_freq: word_window_freq[window[i]] += 1 else: word_window_freq[window[i]] = 1 appeared.add(window[i]) word_pair_count = {} for window in windows: for i in range(1, len(window)): for j in range(0, i): word_i = window[i] word_i_id = word_id_map[word_i] word_j = window[j] word_j_id = word_id_map[word_j] if word_i_id == word_j_id: continue word_pair_str = str(word_i_id) + "," + str(word_j_id) if word_pair_str in word_pair_count: word_pair_count[word_pair_str] += 1 else: word_pair_count[word_pair_str] = 1 word_pair_str = str(word_j_id) + "," + str(word_i_id) if word_pair_str in word_pair_count: word_pair_count[word_pair_str] += 1 else: word_pair_count[word_pair_str] = 1 row = [] col = [] weight = [] num_window = len(windows) for key in word_pair_count: temp = key.split(",") i = int(temp[0]) j = int(temp[1]) count = word_pair_count[key] word_freq_i = word_window_freq[vocab[i]] word_freq_j = word_window_freq[vocab[j]] pmi = log( (1.0 * count / num_window) / (1.0 * word_freq_i * word_freq_j / (num_window * num_window)) ) if pmi <= 0: continue row.append(train_size + i) col.append(train_size + j) weight.append(pmi) doc_word_freq = {} for doc_id in range(len(shuffle_doc_words_list)): doc_words = shuffle_doc_words_list[doc_id] words = doc_words.split() for word in words: word_id = word_id_map[word] doc_word_str = str(doc_id) + "," + str(word_id) if doc_word_str in doc_word_freq: doc_word_freq[doc_word_str] += 1 else: doc_word_freq[doc_word_str] = 1 for i in range(len(shuffle_doc_words_list)): doc_words = shuffle_doc_words_list[i] words = doc_words.split() doc_word_set = set() for word in words: if word in doc_word_set: continue j = word_id_map[word] key = str(i) + "," + str(j) freq = doc_word_freq[key] if i < train_size: row.append(i) else: row.append(i + vocab_size) col.append(train_size + j) idf = log(1.0 * len(shuffle_doc_words_list) / word_doc_freq[vocab[j]]) weight.append(freq * idf) doc_word_set.add(word) node_size = train_size + vocab_size + test_size adj = sp.csr_matrix((weight, (row, col)), shape=(node_size, node_size)) with open("ind.{}.x".format(dataset), "wb") as f: pkl.dump(x, f) with open("ind.{}.y".format(dataset), "wb") as f: pkl.dump(y, f) with open("ind.{}.tx".format(dataset), "wb") as f: pkl.dump(tx, f) with open("ind.{}.ty".format(dataset), "wb") as f: pkl.dump(ty, f) with open("ind.{}.allx".format(dataset), "wb") as f: pkl.dump(allx, f) with open("ind.{}.ally".format(dataset), "wb") as f: pkl.dump(ally, f) with open("ind.{}.adj".format(dataset), "wb") as f: pkl.dump(adj, f) class GraphConvolution(nn.Module): def __init__( self, input_dim, output_dim, support, act_func=None, featureless=False, dropout_rate=0.0, bias=False, ): super(GraphConvolution, self).__init__() self.support = support self.featureless = featureless for i in range(len(self.support)): setattr( self, "W{}".format(i), nn.Parameter(torch.randn(input_dim, output_dim)) ) if bias: self.b = nn.Parameter(torch.zeros(1, output_dim)) self.act_func = act_func self.dropout = nn.Dropout(dropout_rate) def forward(self, x): x = self.dropout(x) for i in range(len(self.support)): if self.featureless: pre_sup = getattr(self, "W{}".format(i)) else: pre_sup = x.mm(getattr(self, "W{}".format(i))) if i == 0: out = self.support[i].mm(pre_sup) else: out += self.support[i].mm(pre_sup) if self.act_func is not None: out = self.act_func(out) return out class GCN(nn.Module): def __init__(self, input_dim, support, dropout_rate=0.0, num_classes=2): super(GCN, self).__init__() self.layer1 = GraphConvolution( input_dim, 200, support, act_func=nn.ReLU(), featureless=True, dropout_rate=dropout_rate, ) self.layer2 = GraphConvolution( 200, num_classes, support, dropout_rate=dropout_rate ) def forward(self, x): out = self.layer1(x) out = self.layer2(out) return out class CONFIG(object): """docstring for CONFIG""" def __init__(self): super(CONFIG, self).__init__() self.dataset = "mr_0" self.model = "gcn" # 'gcn', 'gcn_cheby', 'dense' self.learning_rate = 0.02 # Initial learning rate. self.epochs = 200 # Number of epochs to train. self.hidden1 = 200 # Number of units in hidden layer 1. self.dropout = 0.5 # Dropout rate (1 - keep probability). self.weight_decay = 0.0 # Weight for L2 loss on embedding matrix. self.early_stopping = 10 # Tolerance for early stopping (# of epochs). self.max_degree = 3 # Maximum Chebyshev polynomial degree. cfg = CONFIG() dataset = "mr_0" cfg.dataset = dataset # Load data ( adj, features, y_train, y_val, y_test, train_mask, val_mask, test_mask, train_size, test_size, ) = load_corpus(cfg.dataset) features = sp.identity(features.shape[0]) # Some preprocessing features = preprocess_features(features) if cfg.model == "gcn": support = [preprocess_adj(adj)] num_supports = 1 model_func = GCN elif cfg.model == "gcn_cheby": support = chebyshev_polynomials(adj, cfg.max_degree) num_supports = 1 + cfg.max_degree model_func = GCN elif cfg.model == "dense": support = [preprocess_adj(adj)] num_supports = 1 model_func = MLP else: raise ValueError("Invalid argument for model: " + str(cfg.model)) # Define placeholders t_features = torch.from_numpy(features) t_y_train = torch.from_numpy(y_train) t_y_val = torch.from_numpy(y_val) t_y_test = torch.from_numpy(y_test) t_train_mask = torch.from_numpy(train_mask.astype(np.float32)) tm_train_mask = torch.transpose(torch.unsqueeze(t_train_mask, 0), 1, 0).repeat( 1, y_train.shape[1] ) t_support = [] for i in range(len(support)): t_support.append(torch.Tensor(support[i])) model = model_func( input_dim=features.shape[0], support=t_support, num_classes=y_train.shape[1] ) # Loss and optimizer criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=cfg.learning_rate) # Define model evaluation function def evaluate(features, labels, mask): t_test = time.time() model.eval() with torch.no_grad(): logits = model(features) t_mask = torch.from_numpy(np.array(mask * 1.0, dtype=np.float32)) tm_mask = torch.transpose(torch.unsqueeze(t_mask, 0), 1, 0).repeat( 1, labels.shape[1] ) loss = criterion(logits * tm_mask, torch.max(labels, 1)[1]) pred = torch.max(logits, 1)[1] acc = ( (pred == torch.max(labels, 1)[1]).float() * t_mask ).sum().item() / t_mask.sum().item() return loss, acc, pred, labels.numpy(), (time.time() - t_test), logits val_losses = [] # Train model for epoch in range(cfg.epochs): t = time.time() # Forward pass logits = model(t_features) loss = criterion(logits * tm_train_mask, torch.max(t_y_train, 1)[1]) acc = ( (torch.max(logits, 1)[1] == torch.max(t_y_train, 1)[1]).float() * t_train_mask ).sum().item() / t_train_mask.sum().item() # Backward and optimize optimizer.zero_grad() loss.backward() optimizer.step() # Validation val_loss, val_acc, pred, labels, duration, logits = evaluate( t_features, t_y_val, val_mask ) val_losses.append(val_loss) print_log( "Epoch: {:.0f}, train_loss= {:.5f}, train_acc= {:.5f}, val_loss= {:.5f}, val_acc= {:.5f}, time= {:.5f}".format( epoch + 1, loss, acc, val_loss, val_acc, time.time() - t ) ) if epoch > cfg.early_stopping and val_losses[-1] > np.mean( val_losses[-(cfg.early_stopping + 1) : -1] ): print_log("Early stopping...") break print_log("Optimization Finished!") # Testing test_loss, test_acc, pred, labels, test_duration, logits = evaluate( t_features, t_y_test, test_mask ) print_log( "Test set results: \n\t loss= {:.5f}, accuracy= {:.5f}, time= {:.5f}".format( test_loss, test_acc, test_duration ) ) test_pred = [] test_labels = [] for i in range(len(test_mask)): if test_mask[i]: test_pred.append(pred[i]) test_labels.append(labels[i])
import gc from functools import partial from pathlib import Path from fastai.text import * from fastai.callbacks import * import numpy as np import pandas as pd home = Path(".") # Changes # V10 15 epochs, fwd + bwd # V9 500kk qrnn # V7 awd-lstm # V6 100kk SP # bs = 512 + 128 max_vocab = 15_000 data_en_wiki = load_data(home, "data_en_wiki_15000", bs=bs) data_en_wiki.show_batch() 1 / 0 learn.purge() gc.collect() config = awd_lstm_lm_config.copy() wd = 0.1 # config['qrnn'] = True # config['n_hid'] = 1550 #default 1152 # config['n_layers'] = 4 #default 3 # wd=0.01 learn = language_model_learner( data_en_wiki, AWD_LSTM, config=config, drop_mult=0.0, true_wd=True, wd=wd, pretrained=False, metrics=[accuracy, Perplexity()], ).to_fp16() # learn.lr_find() # learn.recorder.plot(skip_end=10) lr = 8e-04 lr *= bs / 48 # Scale learning rate by batch size learn.unfreeze() learn.fit_one_cycle( 10, lr, moms=(0.8, 0.7), callbacks=[ # SaveModelCallback(learn, monitor="perplexity", mode="min", name="best_model"), ShowGraph(learn) ], ) learn.fit_one_cycle(5, lr / 10, moms=(0.8, 0.7)) learn.to_fp32().save(f"learn_en_wiki_{max_vocab}", with_opt=False) learn.data.vocab.save( home / "models/learn_en_wiki_15_vocab.pkl", ) data_en_wiki = load_data(home, "data_en_wiki_15000_bwd", bs=bs, backwards=True) learn = language_model_learner( data_en_wiki, AWD_LSTM, config=config, drop_mult=0.0, true_wd=True, wd=wd, pretrained=False, metrics=[accuracy, Perplexity()], ).to_fp16() learn.unfreeze() learn.fit_one_cycle( 10, lr, moms=(0.8, 0.7), callbacks=[ # SaveModelCallback(learn, monitor="perplexity", mode="min", name="best_model"), ShowGraph(learn) ], ) learn.fit_one_cycle(5, lr / 10, moms=(0.8, 0.7)) learn.to_fp32().save(f"learn_en_wiki_{max_vocab}_bwd", with_opt=False) learn.data.vocab.save( home / "models/learn_en_wiki_15_vocab_bwd.pkl", )
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.metrics import mean_absolute_error, accuracy_score from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from xgboost import XGBClassifier # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. # retrieve data train = pd.read_csv("../input/titanic/train.csv") test = pd.read_csv("../input/titanic/test.csv") # data processing train.info() # test.info() # train.describe() test.describe() # sample data train.head(10) # encode categorical data train = train.join(pd.get_dummies(train[["Sex"]])) train = train.drop(["Sex", "Ticket", "Cabin", "Embarked"], axis=1) test = test.join(pd.get_dummies(test[["Sex"]])) test = test.drop(["Sex", "Ticket", "Cabin", "Embarked"], axis=1) train.head(5) test.head(5) # handle missing values train.Age = train.Age.fillna(train.Age.mean()) test.Age = test.Age.fillna(test.Age.mean()) test.Fare = test.Fare.fillna(test.Fare.mean()) # data processing print(train.columns) feature_columns = list(train.columns) feature_columns.remove("Name") feature_columns.remove("Survived") feature_columns.remove("PassengerId") X = train[feature_columns] y = train.Survived # split data train_X, val_X, train_y, val_y = train_test_split(X, y, random_state=1) model = RandomForestClassifier(max_leaf_nodes=200, random_state=1) model.fit(train_X, train_y) predictions = model.predict(val_X) accuracy = accuracy_score(predictions, val_y) * 100 print("Accuracy:", accuracy) xgb_model = XGBClassifier() clf = GridSearchCV(xgb_model, {"max_depth": [2, 4, 6]}, verbose=1) clf.fit(train_X, train_y) predictions = clf.predict(val_X) accuracy = accuracy_score(predictions, val_y) * 100 print("Accuracy:", accuracy) test.head() test.describe() # retrain model on all training data model.fit(train[feature_columns], y) clf.fit(train[feature_columns], y) # submit results predictions = clf.predict(test[feature_columns]) submission = pd.DataFrame({"PassengerId": test["PassengerId"], "Survived": predictions}) # Visualize the first 5 rows submission.head() filename = "Titanic Predictions 1.csv" submission.to_csv(filename, index=False) print("Saved file: " + filename)
# In this notebook I will present some of the results of my first attempts at implementing a deep learning model to solve a computer vision problem, I'm still far from being an expert of the field and my intention here is not to compete with other kernels, instead I'm just trying to break the ice with Deep Learning and the (awesome) Kaggle community while learning as much Data Science as possible. # Having little to no previous experience in this field, I followed as an example for my analysis the current top kernel for this dataset, made by the user NAIN (please check out his awesome work if you haven't already: https://www.kaggle.com/aakashnain/beating-everything-with-depthwise-convolution, thank you NAIN for all the things you taught me, hopefully one day my notebooks will be as helpful and useful to other people) so you can see some of his code here especially for mechanical things like loading the images from disk and plotting the confusion matrix, though many more things are different and I reached different results that I think are worth to be shown. # I made this notebook using Google Colab and Google Drive, I did a lot of trial and error attempts there, now I'm publishing here the final results. # load data directories dir = "/kaggle/input/chest-xray-pneumonia/chest_xray/chest_xray/train/" test = "/kaggle/input/chest-xray-pneumonia/chest_xray/test" train = "/kaggle/input/chest-xray-pneumonia/chest_xray/train" val = "/kaggle/input/chest-xray-pneumonia/chest_xray/val" norm_test = "/kaggle/input/chest-xray-pneumonia/chest_xray/test/NORMAL" pneum_test = "/kaggle/input/chest-xray-pneumonia/chest_xray/test/PNEUMONIA" norm_train = "/kaggle/input/chest-xray-pneumonia/chest_xray/train/NORMAL" pneum_train = "/kaggle/input/chest-xray-pneumonia/chest_xray/train/PNEUMONIA" norm_val = "/kaggle/input/chest-xray-pneumonia/chest_xray/val/NORMAL" pneum_val = "/kaggle/input/chest-xray-pneumonia/chest_xray/val/PNEUMONIA" import pandas as pd from pathlib import Path # Load train dataset train_data_norm = pd.DataFrame(Path(norm_train).glob("*.jpeg")) train_data_pneum = pd.DataFrame(Path(pneum_train).glob("*.jpeg")) train_data_norm[1] = 0 train_data_pneum[1] = 1 train_data = train_data_norm.append(train_data_pneum) # Load test dataset test_data_norm = pd.DataFrame(Path(norm_test).glob("*.jpeg")) test_data_pneum = pd.DataFrame(Path(pneum_test).glob("*.jpeg")) test_data_norm[1] = 0 test_data_pneum[1] = 1 test_data = test_data_norm.append(test_data_pneum) # Load validation dataset val_data_norm = pd.DataFrame(Path(norm_val).glob("*.jpeg")) val_data_pneum = pd.DataFrame(Path(pneum_val).glob("*.jpeg")) val_data_norm[1] = 0 val_data_pneum[1] = 1 val_data = val_data_norm.append(val_data_pneum) # Let's explore the data count_tr = len(train_data) count_tr_n = len(train_data[train_data[1] == 0]) count_tr_p = len(train_data[train_data[1] == 1]) count_ts = len(test_data) count_ts_n = len(test_data[test_data[1] == 0]) count_ts_p = len(test_data[test_data[1] == 1]) count_val = len(val_data) count_val_n = len(val_data[val_data[1] == 0]) count_val_p = len(val_data[val_data[1] == 1]) print("Train data") print(f"Normal cases {count_tr_n} ({round(count_tr_n/count_tr,2)*100}%)") print(f"Pneunomia cases {count_tr_p} ({round(count_tr_p/count_tr,2)*100}%)") print(f"Total cases: {count_tr} ") print("") print("Test data") print(f"Normal cases {count_ts_n} ({round(count_ts_n/count_ts,2)*100}%)") print(f"Pneunomia cases {count_ts_p} ({round(count_ts_p/count_ts,2)*100}%)") print(f"Total cases: {count_ts} ") print("") print("Validation data") print(f"Normal cases {count_val_n} ({round(count_val_n/count_val,2)*100}%)") print(f"Pneunomia cases {count_val_p} ({round(count_val_p/count_val,2)*100}%)") print(f"Total cases: {count_val} ") # Classes are not balanced, the classifier could naively learn to simply classify every image as a Pneunomia case and still get 62% precision at test time, this is a danger signal. # Images come from a folder for each class, which means they're ordered by group and in this case it's good practice to shuffle the data. # Let's shuffle the data from sklearn.utils import shuffle train_data = shuffle(train_data) test_data = shuffle(test_data) val_data = shuffle(val_data) # Let's load and resize the data: # This part was pretty much copy-pasted from NAIN's notebook (sorry about that), I do have a couple of comments to make though: # 1) I added the blackwhite_counter to see if there actually were any black and white images, and to my knowledge there were none. # Maybe this control is just a good practice that we're supposed to make on a dataset of images. # 2) It wasn't clear to me why we were converting from BGR to RGB [cv2.cvtColor(img, cv2.COLOR_BGR2RGB)], in case you're also wondering, know that it's because apparenty the cv2.imread() function automatically loads images in the BGR format and we need them to be in the RGB format. # I saved the shapes of the images just for personal curiosity, I wanted to see what were the real shapes were, I've had no real use for them in this notebook. # (you can skip them) # Let's load the images. import cv2 import numpy as np # loading train data train_img = [] train_label = [] train_shapes = [] blacwhite_counter = 0 for i, imgfile in enumerate(train_data[0]): img = cv2.imread(str(imgfile)) train_shapes.append(np.shape(img)) img = cv2.resize(img, (224, 224)) if img.shape[2] == 1: img = np.dstack([img, img, img]) blacwhite_counter = blacwhite_counter + 1 img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = img.astype(np.float32) / 255.0 train_img.append(img) train_label.append(train_data.iloc[i, 1]) # loading test data test_img = [] test_label = [] test_shapes = [] blacwhite_counter_t = 0 for i, imgfile in enumerate(test_data[0]): img = cv2.imread(str(imgfile)) test_shapes.append(np.shape(img)) img = cv2.resize(img, (224, 224)) if img.shape[2] == 1: img = np.dstack([img, img, img]) blacwhite_counter_t = blacwhite_counter_t + 1 img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = img.astype(np.float32) / 255.0 test_img.append(img) test_label.append(test_data.iloc[i, 1]) # loading val data val_img = [] val_label = [] val_shapes = [] blacwhite_counter_v = 0 for i, imgfile in enumerate(val_data[0]): img = cv2.imread(str(imgfile)) val_shapes.append(np.shape(img)) img = cv2.resize(img, (224, 224)) if img.shape[2] == 1: img = np.dstack([img, img, img]) blacwhite_counter_v = blacwhite_counter_v + 1 img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = img.astype(np.float32) / 255.0 val_img.append(img) val_label.append(val_data.iloc[i, 1]) print(blacwhite_counter, blacwhite_counter_t, blacwhite_counter_v) from keras.utils import to_categorical # I rename the datasets with easier names and turn the labels into categorical data trainX = np.array(train_img) trainY = to_categorical(np.array(train_label)) valX = np.array(val_img) valY = to_categorical(np.array(val_label)) testX = np.array(test_img) testY = to_categorical(np.array(test_label)) # You can delete the old variables to clean some ram del train_img, train_label, val_img, val_label, test_img, test_label # Now we're finally ready to build some cool Neural Networks. # I'll start with the image augmentation generator, and I'll plot some examples of the images generated so we know what input we are actually feeding to the model, since I noticed that blindly setting augmentation parameters can give very bad results and unexpected surprises. # When defining the generator, you can see the list of the most common augmentations we can apply to our images. # Of these I personally noticed that shifting and rotating actually gave very bad results, maybe if you're using fine-tuning on networks already trained on this kind of augmentation they might give better results, but from the many experiments I did with the neural networks I built from scratch I found no improvement whatsoever and they simply slowed down and disrupted the training process. # I think this might even be logical for our data since we're analyzing Xray images which usually have a fixed orientation and there's not much sense in rotating an Xray picture, they usually all have the same orientation and position. # Of the remaining augmentation options: # -brightness_range -> I had to remove it because it seemed to not function well and it broke the images. (see example below) # -horizontal_flip -> didn't seem to cause much trouble but didn't show any improvements either. # So I ended up using only zoom_range, which surprisingly seemed to be more than enough. # Just for curiosity here's what the brightness augmentation did to my data. # I tried all kinds of brightness ranges, couldn't seem to get it to generate any usable image. # I'd have to use offline augmentation and basically create a new dataset with the manually augmented images added to the original ones, maybe I could try it in the future. from keras.models import Sequential, Model from keras.applications.vgg16 import VGG16, preprocess_input from keras.preprocessing.image import ImageDataGenerator, load_img, img_to_array from keras.models import Sequential from keras.layers import ( Conv2D, MaxPooling2D, Dense, Dropout, Input, Flatten, SeparableConv2D, ) from keras.layers import GlobalMaxPooling2D from keras.layers.normalization import BatchNormalization from keras.layers.merge import Concatenate from keras.optimizers import Adam, SGD, RMSprop from keras.callbacks import ModelCheckpoint, Callback, EarlyStopping from keras.layers import GaussianNoise from keras.layers import Activation import keras.metrics from sklearn.metrics import precision_score, recall_score from mlxtend.plotting import plot_confusion_matrix from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report import matplotlib.pyplot as plt # construct the training image generator for data augmentation aug = ImageDataGenerator( # zoom_range=[0.9,1.1], brightness_range=[0.9, 1.1] # horizontal_flip=True , # rotation_range=90, # height_shift_range=0.15, # width_shift_range=[-0.125,0.125] ) aug.fit(trainX) for X_batch, y_batch in aug.flow(trainX, trainY, batch_size=9): # create a grid of 3x3 images for i in range(0, 9): plt.subplot(330 + 1 + i) plt.imshow(X_batch[i]) # show the plot plt.show() break # Sadly I can't seem to be able to make brightness augmentation work in this case. # Let's first avoid any form of augmentation: # construct the training image generator for data augmentation aug = ImageDataGenerator( # zoom_range=[0.9,1.1], # brightness_range=[0.,1.] # horizontal_flip=True , # rotation_range=90, # height_shift_range=0.15, # width_shift_range=[-0.125,0.125] ) aug.fit(trainX) for X_batch, y_batch in aug.flow(trainX, trainY, batch_size=9): # create a grid of 3x3 images for i in range(0, 9): plt.subplot(330 + 1 + i) plt.imshow(X_batch[i]) # show the plot plt.show() break # As I started this analysis my goal was to learn the basics of deep learning for computer vision, as I said earlier I was following as a reference the dataset's top Kernel, so at first I was looking for a model that could simply come close to the results of the kernel that I was following as an example, that means NAIN's kernel, I only knew that it had to be a model built from scratch because I have to get the basics straight first, and from what I've seen fine tuning has already been done by a lot of other users and it would simply mean me copy-pasting more code from other kernels. # So here are the results I was trying to reach, these are NAIN's results: # ![image.png]() # Recall of the model is 0.98 # Precision of the model is 0.79 # I started immediatly building complex models with hundreds of neurons and stacking all sorts of layers (gaussian noise, dropout, separable convs), and adding all kinds of data augmentation that would make the model take literally hours to train, that would consume all the RAM available on CoLab and make the system crash, and what's worse the results were very bad, the model would simply tend to classify most (and often even all) of the observations as "Pneunomia" and couldn't learn to recognize a healthy individual with precision. # So intead, I tried to build a very simple and basic model, that would be fast to train so I could tweak the architecture and hyperparameters more easily and see what would work and what not. EPOCHS = 50 BS = 64 def build_model(): input_img = Input(shape=(224, 224, 3), name="ImageInput") x = Conv2D(16, (3, 3), activation="relu", padding="same", name="Conv1_1")(input_img) x = Conv2D(16, (3, 3), activation="relu", padding="same", name="Conv1_2")(x) x = MaxPooling2D((2, 2), name="pool1")(x) x = Conv2D(32, (3, 3), activation="relu", padding="same", name="Conv2_1")(x) x = Conv2D(32, (3, 3), activation="relu", padding="same", name="Conv2_2")(x) x = MaxPooling2D((2, 2), name="pool2")(x) x = Flatten(name="flatten")(x) x = Dense(128, activation="relu", name="fc1")(x) x = Dense(64, activation="relu", name="fc2")(x) x = Dense(2, activation="softmax", name="fc3")(x) model = Model(inputs=input_img, output=x) return model model = build_model() model.summary() # I wasn't sure which metric was best to monitor, whether the validation loss or the validation accuracy so I monitored them both. # My models have no early stopping, so at the end of the training process for every model I'll check 3 different sets of weights on the test set: # -the weights at the end of the last epoch # -the weights with lowest validation loss # -the weights with the highest validation accuracy # Of these three, I will further inspect only the predictions of the best one. # I think this would technically be considered not legitimate in a kaggle competion, since I'm actually using the test data as validation data, but I guess I could apply the same logic if the validation set was a bit larger and/or by using k-fold cross validation. opt = Adam(lr=0.0001, decay=1e-5) chkpt = ModelCheckpoint( filepath="best_aug_model_todate2loss.h5", monitor="val_loss", save_best_only=True, save_weights_only=True, ) chkpt2 = ModelCheckpoint( filepath="best_aug_model_todate2acc.h5", monitor="val_accuracy", save_best_only=True, save_weights_only=True, ) callbacks_list = [chkpt, chkpt2] model.compile(loss="binary_crossentropy", metrics=["accuracy"], optimizer=opt) H = model.fit_generator( aug.flow(trainX, trainY, batch_size=BS), callbacks=callbacks_list, validation_data=(valX, valY), steps_per_epoch=len(trainX) // BS, epochs=EPOCHS, ) print(H.history.keys()) # "Accuracy" plt.plot(H.history["accuracy"]) plt.plot(H.history["val_accuracy"]) plt.title("model accuracy") plt.ylabel("accuracy") plt.xlabel("epoch") plt.legend(["train", "validation"], loc="upper left") plt.show() # "Loss" plt.plot(H.history["loss"]) plt.plot(H.history["val_loss"]) plt.title("model loss") plt.ylabel("loss") plt.xlabel("epoch") plt.legend(["train", "validation"], loc="upper left") plt.show() model.save_weights("last_epoch.h5") test_loss_last, test_score_last = model.evaluate(testX, testY, batch_size=32) print("Loss on test set: ", test_loss_last) print("Accuracy on test set: ", test_score_last) model.load_weights("best_aug_model_todate2loss.h5") test_loss_bestloss, test_score_bestloss = model.evaluate(testX, testY, batch_size=32) print("Loss on test set: ", test_loss_bestloss) print("Accuracy on test set: ", test_score_bestloss) model.load_weights("best_aug_model_todate2acc.h5") test_loss_bestacc, test_score_bestacc = model.evaluate(testX, testY, batch_size=32) print("Loss on test set: ", test_loss_bestacc) print("Accuracy on test set: ", test_score_bestacc) max_model = np.argmax([test_score_last, test_score_bestloss, test_score_bestacc]) max_model if max_model == 0: model.load_weights("last_epoch.h5") elif max_model == 1: model.load_weights("best_aug_model_todate2loss.h5") elif max_model == 2: model.load_weights("best_aug_model_todate2acc.h5") # Get predictions preds = model.predict(testX, batch_size=16) preds = np.argmax(preds, axis=-1) # Original labels orig_test_labels = np.argmax(testY, axis=-1) print(orig_test_labels.shape) print(preds.shape) # Get the confusion matrix cm = confusion_matrix(orig_test_labels, preds) plt.figure() plot_confusion_matrix(cm, figsize=(12, 8), hide_ticks=True, cmap=plt.cm.Blues) plt.xticks(range(2), ["Normal", "Pneumonia"], fontsize=16) plt.yticks(range(2), ["Normal", "Pneumonia"], fontsize=16) plt.show() print(classification_report(orig_test_labels, preds)) # As you can see from the confusion matrix and the precision/recall report the model catches the vast majority of the patients with pneunomia (recall), but around a quarter of those diagnosed with pneunomia are actually healthy people (precision). # This happens because the model can't precisely distinguish healthy from non-healthy individuals so it simply classifies them as "Pneunomia" whenever in doubt. # When the model encounters a healthy individual it seems to basically pick up a diagnosis at random by tossing a coin. # My model was very basic and there was no data augmentation so nobody was expecting state of the art results, I showed you this model for a reason though, next I try and apply some zoom augmentation to the data, let's see what happens. # construct the training image generator for data augmentation aug = ImageDataGenerator( zoom_range=[0.9, 1.1], # brightness_range=[0.,1.] # horizontal_flip=True , # rotation_range=90, # height_shift_range=0.15, # width_shift_range=[-0.125,0.125] ) aug.fit(trainX) for X_batch, y_batch in aug.flow(trainX, trainY, batch_size=9): # create a grid of 3x3 images for i in range(0, 9): plt.subplot(330 + 1 + i) plt.imshow(X_batch[i]) # show the plot plt.show() break EPOCHS = 50 BS = 64 def build_model(): input_img = Input(shape=(224, 224, 3), name="ImageInput") x = Conv2D(16, (3, 3), activation="relu", padding="same", name="Conv1_1")(input_img) x = Conv2D(16, (3, 3), activation="relu", padding="same", name="Conv1_2")(x) x = MaxPooling2D((2, 2), name="pool1")(x) x = Conv2D(32, (3, 3), activation="relu", padding="same", name="Conv2_1")(x) x = Conv2D(32, (3, 3), activation="relu", padding="same", name="Conv2_2")(x) x = MaxPooling2D((2, 2), name="pool2")(x) x = Flatten(name="flatten")(x) x = Dense(128, activation="relu", name="fc1")(x) x = Dense(64, activation="relu", name="fc2")(x) x = Dense(2, activation="softmax", name="fc3")(x) model = Model(inputs=input_img, output=x) return model model = build_model() model.summary() opt = Adam(lr=0.0001, decay=1e-5) chkpt = ModelCheckpoint( filepath="best_aug_model_todate2loss.h5", monitor="val_loss", save_best_only=True, save_weights_only=True, ) chkpt2 = ModelCheckpoint( filepath="best_aug_model_todate2acc.h5", monitor="val_accuracy", save_best_only=True, save_weights_only=True, ) callbacks_list = [chkpt, chkpt2] model.compile(loss="binary_crossentropy", metrics=["accuracy"], optimizer=opt) H = model.fit_generator( aug.flow(trainX, trainY, batch_size=BS), callbacks=callbacks_list, validation_data=(valX, valY), steps_per_epoch=len(trainX) // BS, epochs=EPOCHS, ) print(H.history.keys()) # "Accuracy" plt.plot(H.history["accuracy"]) plt.plot(H.history["val_accuracy"]) plt.title("model accuracy") plt.ylabel("accuracy") plt.xlabel("epoch") plt.legend(["train", "validation"], loc="upper left") plt.show() # "Loss" plt.plot(H.history["loss"]) plt.plot(H.history["val_loss"]) plt.title("model loss") plt.ylabel("loss") plt.xlabel("epoch") plt.legend(["train", "validation"], loc="upper left") plt.show() model.save_weights("last_epoch.h5") test_loss_last, test_score_last = model.evaluate(testX, testY, batch_size=32) print("Loss on test set: ", test_loss_last) print("Accuracy on test set: ", test_score_last) model.load_weights("best_aug_model_todate2loss.h5") test_loss_bestloss, test_score_bestloss = model.evaluate(testX, testY, batch_size=32) print("Loss on test set: ", test_loss_bestloss) print("Accuracy on test set: ", test_score_bestloss) model.load_weights("best_aug_model_todate2acc.h5") test_loss_bestacc, test_score_bestacc = model.evaluate(testX, testY, batch_size=32) print("Loss on test set: ", test_loss_bestacc) print("Accuracy on test set: ", test_score_bestacc) max_model = np.argmax([test_score_last, test_score_bestloss, test_score_bestacc]) max_model if max_model == 0: model.load_weights("last_epoch.h5") elif max_model == 1: model.load_weights("best_aug_model_todate2loss.h5") elif max_model == 2: model.load_weights("best_aug_model_todate2acc.h5") # Get predictions preds = model.predict(testX, batch_size=16) preds = np.argmax(preds, axis=-1) # Original labels orig_test_labels = np.argmax(testY, axis=-1) print(orig_test_labels.shape) print(preds.shape) # Get the confusion matrix cm = confusion_matrix(orig_test_labels, preds) plt.figure() plot_confusion_matrix(cm, figsize=(12, 8), hide_ticks=True, cmap=plt.cm.Blues) plt.xticks(range(2), ["Normal", "Pneumonia"], fontsize=16) plt.yticks(range(2), ["Normal", "Pneumonia"], fontsize=16) plt.show() print(classification_report(orig_test_labels, preds)) # As you can see just by randomly zooming in/out images by at most 10% has drastically improved the results. # Now the model has a clearer view of the 2 groups of data, although there are still a lot of individuals wrongfully diagnosticated with pneunomia. # I made a lot of tries and in my experience the following should be the (approximate) optimal zoom-range, adding too much zooming seemed to be disruptive. # construct the training image generator for data augmentation aug = ImageDataGenerator( zoom_range=[0.75, 1.25], # brightness_range=[0.,1.] # horizontal_flip=True , # rotation_range=90, # height_shift_range=0.15, # width_shift_range=[-0.125,0.125] ) aug.fit(trainX) for X_batch, y_batch in aug.flow(trainX, trainY, batch_size=9): # create a grid of 3x3 images for i in range(0, 9): plt.subplot(330 + 1 + i) plt.imshow(X_batch[i]) # show the plot plt.show() break # I prolong the training to 100 epochs because by experience it generally takes a bit more than 50 before it starts overfitting. EPOCHS = 100 BS = 64 def build_model(): input_img = Input(shape=(224, 224, 3), name="ImageInput") x = Conv2D(16, (3, 3), activation="relu", padding="same", name="Conv1_1")(input_img) x = Conv2D(16, (3, 3), activation="relu", padding="same", name="Conv1_2")(x) x = MaxPooling2D((2, 2), name="pool1")(x) x = Conv2D(32, (3, 3), activation="relu", padding="same", name="Conv2_1")(x) x = Conv2D(32, (3, 3), activation="relu", padding="same", name="Conv2_2")(x) x = MaxPooling2D((2, 2), name="pool2")(x) x = Flatten(name="flatten")(x) x = Dense(128, activation="relu", name="fc1")(x) x = Dense(64, activation="relu", name="fc2")(x) x = Dense(2, activation="softmax", name="fc3")(x) model = Model(inputs=input_img, output=x) return model model = build_model() model.summary() opt = Adam(lr=0.0001, decay=1e-5) chkpt = ModelCheckpoint( filepath="best_aug_model_todate2loss.h5", monitor="val_loss", save_best_only=True, save_weights_only=True, ) chkpt2 = ModelCheckpoint( filepath="best_aug_model_todate2acc.h5", monitor="val_accuracy", save_best_only=True, save_weights_only=True, ) callbacks_list = [chkpt, chkpt2] model.compile(loss="binary_crossentropy", metrics=["accuracy"], optimizer=opt) H = model.fit_generator( aug.flow(trainX, trainY, batch_size=BS), callbacks=callbacks_list, validation_data=(valX, valY), steps_per_epoch=len(trainX) // BS, epochs=EPOCHS, ) print(H.history.keys()) # "Accuracy" plt.plot(H.history["accuracy"]) plt.plot(H.history["val_accuracy"]) plt.title("model accuracy") plt.ylabel("accuracy") plt.xlabel("epoch") plt.legend(["train", "validation"], loc="upper left") plt.show() # "Loss" plt.plot(H.history["loss"]) plt.plot(H.history["val_loss"]) plt.title("model loss") plt.ylabel("loss") plt.xlabel("epoch") plt.legend(["train", "validation"], loc="upper left") plt.show() model.save_weights("last_epoch.h5") test_loss_last, test_score_last = model.evaluate(testX, testY, batch_size=32) print("Loss on test set: ", test_loss_last) print("Accuracy on test set: ", test_score_last) model.load_weights("best_aug_model_todate2loss.h5") test_loss_bestloss, test_score_bestloss = model.evaluate(testX, testY, batch_size=32) print("Loss on test set: ", test_loss_bestloss) print("Accuracy on test set: ", test_score_bestloss) model.load_weights("best_aug_model_todate2acc.h5") test_loss_bestacc, test_score_bestacc = model.evaluate(testX, testY, batch_size=32) print("Loss on test set: ", test_loss_bestacc) print("Accuracy on test set: ", test_score_bestacc) max_model = np.argmax([test_score_last, test_score_bestloss, test_score_bestacc]) max_model if max_model == 0: model.load_weights("last_epoch.h5") elif max_model == 1: model.load_weights("best_aug_model_todate2loss.h5") elif max_model == 2: model.load_weights("best_aug_model_todate2acc.h5") # Get predictions preds = model.predict(testX, batch_size=16) preds = np.argmax(preds, axis=-1) # Original labels orig_test_labels = np.argmax(testY, axis=-1) print(orig_test_labels.shape) print(preds.shape) # Get the confusion matrix cm = confusion_matrix(orig_test_labels, preds) plt.figure() plot_confusion_matrix(cm, figsize=(12, 8), hide_ticks=True, cmap=plt.cm.Blues) plt.xticks(range(2), ["Normal", "Pneumonia"], fontsize=16) plt.yticks(range(2), ["Normal", "Pneumonia"], fontsize=16) plt.show() print(classification_report(orig_test_labels, preds))
# ## Generating the training Data # ### Loading the pictures # Function to manage the input of Data import glob def data_path_from_name(name, all_names=False): L = glob.glob(f"../**/{name}", recursive=True) if len(L) > 1: print(f"All path for {name} :") print(L) if all_names: return L print(f"Data path return {L[0]}") return L[0] from PIL import Image picture_ims = [ Image.open(path) for path in data_path_from_name("Tile*.png", all_names=True) ] tile_ims = [ Image.open(path) for path in data_path_from_name("Basic*.png", all_names=True) ] from IPython.display import display # Display the example of picture we want to shatter in tiles def c_display(im, message="Size :"): print( "--------", ) display(im) print("________", message, im.size, end="\n\n") for im in picture_ims: c_display(im, message="Size of picture :") # Display the types of tiles used for shattering the picture for im in tile_ims: c_display(im, message="Size of tile :") # ### Shattering the pictures into 10x10 aeras def shatter(im=picture_ims[0]): l = [] for i in range(20): for j in range(20): box = (i * 10, j * 10, (i + 1) * 10, (j + 1) * 10) l.append(picture_ims[0].crop(box)) return l i = 0 for im in shatter(): c_display(im, message="Size of area:") i += 1 if i >= 3: break box = (190, 190, 200, 200) picture_ims[0].crop(box) # ### Set of tile & their rotations rotations = [0, 90, 180, 270] def set_tiles(imgs=tile_ims): l = [] for tile in imgs: for rotation in rotations: l.append(tile.rotate(angle=rotation)) return l for im in set_tiles(): display(im) # ### Generators of Data : import random def data_gen( im_data, max_it=10, inf_gen=False, func_encode_input=lambda x: x, func_encode_output=lambda x: x, ): n = 0 while True: if n >= max_it: return im = random.choice(im_data) yield (func_encode_input(im), func_encode_output(im)) n += 1 if inf_gen: max_it += 1 x, y = None, None for x, y in data_gen(shatter(picture_ims[0]), max_it=3): c_display(x) c_display(y) print("\n\n\n\n") import numpy as np import torch from_numpy_to_tensor_float = lambda z: torch.tensor( torch.from_numpy(z), dtype=torch.float ).T import copy def from_im_to_array(im, t_bipolar=False): data = copy.deepcopy(np.asarray(im.convert("L"), dtype="float")) data = data.reshape((100, 1)) # Encoding data as bipolar input data[data == 255] = 1 # black as 1 if t_bipolar: data[data != 1] = -1 # white as -1 else: data[data != 1] = 0 # white as 0 return data # Column vector from functools import partial # generator that iterate randomly over the areas of the picture picture_area_gen = partial( data_gen, im_data=shatter(picture_ims[0]), func_encode_input=lambda x: from_numpy_to_tensor_float( from_im_to_array(x, t_bipolar=True) ), func_encode_output=lambda y: from_numpy_to_tensor_float(from_im_to_array(y)), ) # generator that iterate randomly over the type of tile and their rotations tile_gen = partial( data_gen, im_data=set_tiles(tile_ims), func_encode_input=lambda x: from_numpy_to_tensor_float(from_im_to_array(x)), func_encode_output=lambda y: from_numpy_to_tensor_float(from_im_to_array(y)), ) for x, y in picture_area_gen(max_it=2): print("x :", x, "\ny :", y, end="\n\n") # ## Pytorch Neural Network # Let's plug our problem into a pytorch NN import torch import torch.nn as nn import torch.nn.functional as F # ### NN architecture hidden_1 = 30 hidden_2 = 20 class Net(nn.Module): def __init__(self): super(Net, self).__init__() # an affine operation: y = Wx + b self.fc1 = nn.Linear(x.size(1), hidden_1) self.fc2 = nn.Linear(hidden_1, hidden_2) self.fc3 = nn.Linear(hidden_2, y.size(1)) def forward(self, x): x = F.sigmoid(self.fc1(x)) x = F.sigmoid(self.fc2(x)) x = F.sigmoid(self.fc3(x)) return x def num_flat_features(self, x): size = x.size()[1:] # all dimensions except the batch dimension num_features = 1 for s in size: num_features *= s return num_features net = Net() print(net, end="\n\n") for ( param ) in ( net.parameters() ): # net.parameters() Function that is yielding the learnable parameters print(param.size()) # ### Learning method class NN_trainer: total = 0 def _weighted_generator(self, l_gen, l_weight=None, max_it=1000): """providing a list of generators it create a balanced or weigted generator of the data labeled with integer""" l_gen = [gen(inf_gen=True) for gen in l_gen] n = 0 if not len(l_gen) == 1: l_weight = [1 for _ in range(len(l_gen))] if l_weight is None else l_weight norm = lambda l: [e / sum(l) for e in l] pb = norm(l_weight) next_value = ( lambda i=0, s=0: (next(l_gen[i]), i) if np.random.rand() < pb[i] / (1 - s) else next_value(i + 1, s + pb[i]) ) while True: if n >= max_it: return try: yield next_value() except: # Very low pb (Theorically null probability) print( "Check if the max itteration for one gen is lower than max_it" ) yield next(l_gen[-1]), (len(l_gen) - 1) n += 1 else: while True: if n >= max_it: return yield (next(l_gen[0]), 0) n += 1 def learn( self, net, criterion, optimizer, n_epoch=10, epoch_batch=100, data_generators=[], weight_data_gens=None, ): total_bp = self.total for e in range(n_epoch): running_loss = 0 # Build a random itterator over the data data_epoch = self._weighted_generator( l_gen=data_generators, l_weight=weight_data_gens, max_it=epoch_batch ) for (x, y), indice_gen in data_epoch: # Calculate output output = net(x) # Compute the loss loss = criterion(output, y) running_loss += loss.item() # zero the parameter's gradient data optimizer.zero_grad() # Backpropagate the error loss.backward() optimizer.step() total_bp += 1 print( f"epoch : {e} loss {round(running_loss/epoch_batch,3)} total : {total_bp}" ) self.total = total_bp net = Net() trainer = NN_trainer() # Let's first begin by initializing the weights for an autoassiative network (matching the picture with itselves). Let's try to find the best architecture for it. import torch.optim as optim trainer.learn( net=net, criterion=nn.MSELoss(reduction="sum"), optimizer=optim.SGD(net.parameters(), lr=0.01, momentum=0.9), n_epoch=4, epoch_batch=5000, data_generators=[picture_area_gen], weight_data_gens=None, ) # ### Reconstruct the Image : def rounding(output_crop_data, tile_ims=tile_ims): num_of_matching_pixels = lambda c, t: c[ c == np.asarray(t.convert("L"), dtype="float") ].shape[0] tiles_and_rotations = set_tiles(tile_ims) tiles_and_rotations = sorted( tiles_and_rotations, key=lambda t: num_of_matching_pixels(output_crop_data, t) ) return np.asarray(tiles_and_rotations[-1].convert("L"), dtype="float") def reconstruct(net=net, picture_im=picture_ims[0], with_rounding=False): encode_input = lambda im: from_numpy_to_tensor_float( from_im_to_array(im, t_bipolar=True) ) decode_output = lambda t: ((t.detach().numpy() > 0.5) * 255).reshape(10, 10) # Identity net # et=lambda t : t im_data = np.zeros((200, 200), dtype="uint8") for i in range(20): for j in range(20): crop_im = picture_im.crop((i * 10, j * 10, (i + 1) * 10, (j + 1) * 10)) data = decode_output(net(encode_input(crop_im))) if with_rounding: data = rounding(data) im_data[j * 10 : (j + 1) * 10, i * 10 : (i + 1) * 10] = data num_of_matching_pixels = im_data[ im_data == np.asarray(picture_im.convert("L"), dtype="float") ].shape[0] print("total matching pixel :", num_of_matching_pixels) return im_data Image.fromarray(reconstruct()) # Let's show what we have by rounding the image with the exact tiles wanted. Image.fromarray(reconstruct(with_rounding=True)) # ### Let's define now a specific Loss to match our tiles problem min_set_loss = lambda y, set_desired_output, criterion: sorted( [criterion(t, y) for t in set_desired_output], key=lambda loss: loss.item() )[0] set_desired_output = [ from_numpy_to_tensor_float(from_im_to_array(s)) for s in set_tiles(tile_ims) ] trainer.learn( net=net, criterion=lambda y, d: min_set_loss( y, set_desired_output=set_desired_output, criterion=nn.MSELoss(reduction="sum") ), optimizer=optim.SGD(net.parameters(), lr=0.01, momentum=0.9), n_epoch=4, epoch_batch=5000, data_generators=[picture_area_gen], weight_data_gens=None, ) Image.fromarray(reconstruct())
for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # imports import os import numpy as np import pandas as pd import matplotlib.pyplot as plt from PIL import Image train = "/kaggle/input/benetech-making-graphs-accessible/train/images" # sub_class = os.listdir(src_path) labels = "/kaggle/input/benetech-making-graphs-accessible/train/annotations" test = "/kaggle/input/benetech-making-graphs-accessible/test/images" image_data = [] for image in train: image = Image.open(train + image) image = image.convert("L") # convert to greyscale image = image.resize((28, 28)) np.append(image_data, image) image_data from PIL import Image
import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn import linear_model from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.metrics import mean_squared_error, r2_score from keras import Sequential from keras.layers import Dense cols = [ "Age", "BusinessTravel", "Department", "DistanceFromHome", "Lyon_EducationTemp", "EducationField", "Gender", "JobRole", "MaritalStatus", "MonthlyIncome", "NumCompaniesWorked", "PercentSalaryHike", "StandardHours", "StockOptionLevel", "TotalWorkingYears", "TrainingTimesLastYear", "YearsAtCompany", "YearsSinceLastPromotion", "YearsWithCurrManager", "Attrition", ] dtypes = { "Age": np.int32, "BusinessTravel": np.unicode_, "Department": np.unicode_, "DistanceFromHome": np.float32, "Lyon_EducationTemp": np.float64, "EducationField": np.unicode_, "Gender": np.unicode_, "JobRole": np.unicode, "MaritalStatus": np.unicode, "MonthlyIncome": np.float64, "NumCompaniesWorked": np.float64, "PercentSalaryHike": np.float64, "StandardHours": np.float64, "StockOptionLevel": np.float64, "TotalWorkingYears": np.float64, "TrainingTimesLastYear": np.float64, "YearsAtCompany": np.float64, "YearsSinceLastPromotion": np.float64, "YearsWithCurrManager": np.float64, "Attrition": np.int32, } raw_data = pd.read_csv( "../input/train-data/training_data-2.csv", names=cols, decimal=".", sep=",", skiprows=[0], index_col=False, dtype=dtypes, ) def one_hot_encode(raw_data, categorial_columns): for categorial_column in categorial_columns: raw_data = pd.concat( [ raw_data, pd.get_dummies(raw_data[categorial_column], prefix=categorial_column), ], axis=1, ) raw_data.drop([categorial_column], axis=1, inplace=True) return raw_data categorial_columns = [ "BusinessTravel", "Department", "EducationField", "Gender", "JobRole", "MaritalStatus", ] raw_data = one_hot_encode(raw_data, categorial_columns) attrition = raw_data["Attrition"] raw_data.drop(["Attrition"], axis=1, inplace=True) raw_data = pd.concat([raw_data, attrition], axis=1) raw_data.describe(include="all") total_experience = raw_data["TotalWorkingYears"] + raw_data["TrainingTimesLastYear"] raw_data = pd.concat([raw_data, total_experience.rename("TotalExperience")], axis=1) total_experience = raw_data["TotalWorkingYears"] + raw_data["TrainingTimesLastYear"] raw_data = pd.concat([raw_data, total_experience.rename("TotalExperience")], axis=1) X = raw_data.iloc[:, 0:39] y = raw_data.iloc[:, 39] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.7) sc = StandardScaler() X = sc.fit_transform(X) from sklearn.model_selection import train_test_split # X_Train, X_Test, Y_Train, Y_Test = train_test_split(X, Y, test_size = 0.25, random_state = 0) from sklearn.preprocessing import StandardScaler sc_X = StandardScaler() X_train = sc_X.fit_transform(X_train) X_test = sc_X.transform(X_test) from sklearn.ensemble import RandomForestClassifier classifier = RandomForestClassifier( n_estimators=200, criterion="entropy", random_state=0 ) classifier.fit(X_train, y_train) Y_Pred = classifier.predict(X_test) from sklearn.metrics import roc_auc_score y_true = y_test roc_auc_score(y_true, Y_Pred) from sklearn.metrics import confusion_matrix cm = confusion_matrix(y_test, Y_Pred) from matplotlib.colors import ListedColormap X_Set, Y_Set = X_train, y_train X1, X2 = np.meshgrid( np.arange(start=X_Set[:, 0].min() - 1, stop=X_Set[:, 0].max() + 1, step=0.01), np.arange(start=X_Set[:, 1].min() - 1, stop=X_Set[:, 1].max() + 1, step=0.01), ) plt.contourf( X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), alpha=0.75, cmap=ListedColormap(("red", "green")), ) plt.xlim(X1.min(), X1.max()) plt.ylim(X2.min(), X2.max()) for i, j in enumerate(np.unique(Y_Set)): plt.scatter( X_Set[Y_Set == j, 0], X_Set[Y_Set == j, 1], c=ListedColormap(("red", "green"))(i), label=j, ) plt.title("Random Forest Classifier (Training set)") # plt.xlabel('Age') # plt.ylabel('Estimated Salary') plt.legend() plt.show() classifier = Sequential() # First Hidden Layer classifier.add( Dense(4, activation="relu", kernel_initializer="random_normal", input_dim=39) ) # Second Hidden Layer classifier.add(Dense(4, activation="relu", kernel_initializer="random_normal")) # Output Layer classifier.add(Dense(1, activation="sigmoid", kernel_initializer="random_normal")) classifier.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"]) classifier.fit(X_train, y_train, batch_size=15, epochs=100) eval_model = classifier.evaluate(X_train, y_train) eval_model cols = [ "Age", "BusinessTravel", "Department", "DistanceFromHome", "Lyon_EducationTemp", "EducationField", "Gender", "JobRole", "MaritalStatus", "MonthlyIncome", "NumCompaniesWorked", "PercentSalaryHike", "StandardHours", "StockOptionLevel", "TotalWorkingYears", "TrainingTimesLastYear", "YearsAtCompany", "YearsSinceLastPromotion", "YearsWithCurrManager", "Id", ] dtypes = { "Age": np.int32, "BusinessTravel": np.unicode_, "Department": np.unicode_, "DistanceFromHome": np.float32, "Lyon_EducationTemp": np.float64, "EducationField": np.unicode_, "Gender": np.unicode_, "JobRole": np.unicode, "MaritalStatus": np.unicode, "MonthlyIncome": np.float64, "NumCompaniesWorked": np.float64, "PercentSalaryHike": np.float64, "StandardHours": np.float64, "StockOptionLevel": np.float64, "TotalWorkingYears": np.float64, "TrainingTimesLastYear": np.float64, "YearsAtCompany": np.float64, "YearsSinceLastPromotion": np.float64, "YearsWithCurrManager": np.float64, "Id": np.int32, } test_data = pd.read_csv( "../input/test-data/test_data.csv", names=cols, decimal=".", sep=",", skiprows=[0], index_col=False, dtype=dtypes, ) test_data = one_hot_encode(test_data, categorial_columns) id_test_data = test_data["Id"] test_data.drop(["Id"], axis=1, inplace=True) test_data.head() y_pred = classifier.predict(test_data) probs = [] for pred in y_pred: # print(pred[0]) probs.append(pred[0]) plt.style.use("ggplot") s = pd.Series(probs) s.plot.kde() level_out = np.quantile(probs, 0.84) print(level_out) result = [] for prob in probs: if prob > 0.1847: result.append(1) else: result.append(0) result_csv = pd.concat([pd.DataFrame(id_test_data), pd.DataFrame(probs)], axis=1) result_csv = pd.concat([result_csv, pd.DataFrame(result)], axis=1) result_csv.to_csv("out.csv", encoding="utf-8", index=False) result_csv.describe(include="all")
# # We are using the Store Data dataset(source not available). This dataset contains a total of 7501 transaction records, where every record consists of a list of items sold in just one transaction. # **Import libraries and data** import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns data = pd.read_csv( "/kaggle/input/association-rule-learningapriori/Market_Basket_Optimisation.csv", header=None, ) data data.info() # **Converting dataframe into list of lists** transactions = [[str(data.values[i, j]) for j in range(0, 20)] for i in range(0, 7501)] from apyori import apriori rules = apriori( transactions, min_support=0.0045, min_confidence=0.2, min_lift=3, min_length=2 ) result = list(rules) result for item in result: # first index of the inner list # Contains base item and add item pair = item[0] items = [x for x in pair] print("Rule: " + items[0] + " -> " + items[1]) # second index of the inner list print("Support: " + str(item[1])) # third index of the list located at 0th # of the third index of the inner list print("Confidence: " + str(item[2][0][2])) print("Lift: " + str(item[2][0][3])) print("=====================================")
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. bottle = pd.read_csv("/kaggle/input/calcofi/bottle.csv") bottle.columns bottle.T_degC salt = bottle.Salnty data = pd.concat([degree, salt], axis=1, ignore_index=True) data.rename(columns={0: "sicaklik", 1: "tuzluluk"}, inplace=True) data data.info() data.describe().T data.isna().sum() data.dropna(inplace=True) data.corr() import matplotlib.pyplot as plt import seaborn as sns data.plot(kind="scatter", x="tuzluluk", y="sicaklik", alpha=0.5, color="blue") plt.xlabel("tuzluluk") plt.ylabel("sicaklik") plt.show() x = data[["tuzluluk"]] y = data["sicaklik"] from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split, cross_val_score, cross_val_predict x_train, x_test, y_train, y_test = train_test_split( x, y, test_size=0.33, random_state=0 ) model = LinearRegression().fit(x_train, y_train) # ornek modeli tanimliyoruz y_pred = model.predict(x_test) y_pred from sklearn.metrics import mean_squared_error, r2_score r2_score(y_test, y_pred) model.predict([[33.4400]]) f, ax = plt.subplots(figsize=(18, 18)) # resmin buyuklugunu ayarlar sns.heatmap(bottle.corr(), annot=True, linewidths=0.5, fmt=".1f", ax=ax) # annot True uzerindeki degerleri yazar # linewidth cizgilerin kalinligi # fmt virgullu degerleri ayarlar plt.show() aray = np.arange(len(y_test)) plt.plot(aray, y_pred, color="red") plt.plot(aray, y_test, color="blue", alpha=0.5) plt.show() # Plot outputs plt.plot(x_test, y_test, color="black") plt.plot(y_test, y_pred, color="blue", linewidth=3) plt.xticks(()) plt.yticks(()) plt.show() # from sklearn.preprocessing import PolynomialFeatures # polynomial_regression = PolynomialFeatures(degree = 100) # degree ust ifade eder. # x_polynomial = polynomial_regression.fit_transform(x) # linear_regression2 = LinearRegression() # linear_regression2.fit(x_polynomial,y) # y_head2 = linear_regression2.predict(x_polynomial) # plt.plot(x_polynomial, y_head2, color="red", label="poly") r2_score(y_head2, y)
import os import pandas as pd import numpy as np from sklearn.linear_model import Ridge, Lasso, LinearRegression from sklearn.model_selection import KFold, RandomizedSearchCV from sklearn.metrics import mean_squared_error, make_scorer from sklearn.ensemble import GradientBoostingRegressor from mlxtend.regressor import StackingCVRegressor from sklearn.svm import SVR from sklearn.preprocessing import RobustScaler from scipy.special import boxcox1p from scipy.stats import boxcox_normmax, zscore from multiprocessing import cpu_count from lightgbm import LGBMRegressor import matplotlib.pyplot as plt data_dir = "/kaggle/input/house-prices-advanced-regression-techniques/" p_train = pd.read_csv(os.path.join(data_dir, "train.csv"), index_col=0) p_test = pd.read_csv(os.path.join(data_dir, "test.csv"), index_col=0) p_sample = pd.read_csv(os.path.join(data_dir, "sample_submission.csv")) from scipy import stats # # Remove outliers (zscore >= 5 for GrLivArea (~4500 sqm and more)) p_train = p_train.loc[(np.abs(stats.zscore(p_train.GrLivArea)) < 5)] # Train + Test features X_train = p_train.drop("SalePrice", axis=1) X_test = p_test X = pd.concat([X_train, X_test]) # Get labels (logarithmic due to distribution) y_train = np.log(p_train.loc[:, "SalePrice"]) # Impute missing values # Categorical (big number of nans (79+)) # NaNs here indicate lack of something (no pool, no basement, etc) cols = [ "PoolQC", "MiscFeature", "Alley", "Fence", "FireplaceQu", "GarageCond", "GarageQual", "GarageFinish", "GarageType", "BsmtCond", "BsmtExposure", "BsmtQual", "BsmtFinType2", "BsmtFinType1", ] X[cols] = X[cols].fillna("None") # Impute using Neighborhoos mode (small numbers of NaNs) cols = [ "MasVnrType", "MSZoning", "Utilities", "Exterior1st", "Exterior2nd", "SaleType", "Electrical", "KitchenQual", "Functional", ] X[cols] = X.groupby("Neighborhood")[cols].transform(lambda x: x.fillna(x.mode()[0])) # Numerical cols = [ "GarageYrBlt", "MasVnrArea", "BsmtHalfBath", "BsmtFullBath", "BsmtFinSF1", "BsmtFinSF2", "BsmtUnfSF", "TotalBsmtSF", "GarageCars", ] X[cols] = X[cols].fillna(0) # Impute using Neighborhoods median cols = ["GarageArea", "LotFrontage"] X[cols] = X.groupby("Neighborhood")[cols].transform(lambda x: x.fillna(x.median())) # FE X["TotalSF"] = X["GrLivArea"] + X["TotalBsmtSF"] # Total square footage X["TotalPorchSF"] = ( X["OpenPorchSF"] + X["EnclosedPorch"] + X["3SsnPorch"] + X["ScreenPorch"] ) # Total porch square footage X["TotalBath"] = ( X["FullBath"] + X["BsmtFullBath"] + 0.5 * (X["BsmtHalfBath"] + X["HalfBath"]) ) # Total baths # Categorise categorial variables # YrSold is also categorical to provide flexibility (esp. due to 2008 financial crisis) cols = ["MSSubClass", "YrSold"] X[cols] = X[cols].astype("category") # Reprsent months as x,y coordinates on a circle to capture the seasonality better # http://blog.davidkaleko.com/feature-engineering-cyclical-features.html if "MoSold" in X: X["SinMoSold"] = np.sin(2 * np.pi * X["MoSold"] / 12) X["CosMoSold"] = np.cos(2 * np.pi * X["MoSold"] / 12) X = X.drop("MoSold", axis=1) # Transform highly skewed features using boxcox1p and boxcox_normmax, and scale features using RobustScaler. skew = X.skew(numeric_only=True).abs() cols = skew[skew > 1].index print(skew[skew > 1].sort_values(ascending=False)) for col in cols: X[col] = boxcox1p(X[col], boxcox_normmax(X[col] + 1)) cols = X.select_dtypes(np.number).columns X[cols] = RobustScaler().fit_transform(X[cols]) # Convert all categorical variables into dummy variables. X = pd.get_dummies(X) temp = X[ X.select_dtypes("object").columns ].nunique() # TODO High cardinalities to binary temp[temp > 5] for k, v in temp[temp > 5].iteritems(): print(k, ":", X[k].unique()) # Recover train/test features X_train = X.loc[p_train.index] X_test = X.loc[p_test.index] # # To remove outliers, we fit a linear model to the training data and remove examples with a studentized residual greater than 3. # residuals = y_train - LinearRegression().fit(X_train, y_train).predict(X_train) # outliers = residuals[np.abs(zscore(residuals)) > 3].index # print(f'Removed {len(outliers)} outliers') # X_train = X_train.drop(outliers) # y_train = y_train.drop(outliers) # Set up CV strategy (5-folds, RMSE) kf = KFold(n_splits=5, random_state=0, shuffle=True) rmse = lambda y, y_pred: np.sqrt(mean_squared_error(y, y_pred)) scorer = make_scorer(rmse, greater_is_better=False) # Define hyperparam optimisation using random search def random_search(model, grid, n_iter=100): n_jobs = max(cpu_count() - 2, 1) search = RandomizedSearchCV( model, grid, n_iter, scorer, n_jobs=n_jobs, cv=kf, random_state=0, verbose=True ) return search.fit(X_train, y_train) # Optimise various models (Ridge, Lasso, SVR, LGBM, GBM) print("Ridge") ridge_search = random_search(Ridge(), {"alpha": np.logspace(-1, 2, 500)}) print("Lasso") lasso_search = random_search(Lasso(), {"alpha": np.logspace(-5, -1, 500)}) print("Support Vector Machines") svr_search = random_search( SVR(), { "C": np.arange(1, 100), "gamma": np.linspace(0.00001, 0.001, 50), "epsilon": np.linspace(0.01, 0.1, 50), }, ) print("LGBM") lgbm_search = random_search( LGBMRegressor(n_estimators=2000, max_depth=3), { "colsample_bytree": np.linspace(0.2, 0.7, 6), "learning_rate": np.logspace(-3, -1, 100), }, ) print("GBM") gbm_search = random_search( GradientBoostingRegressor(n_estimators=2000, max_depth=3), { "max_features": np.linspace(0.2, 0.7, 6), "learning_rate": np.logspace(-3, -1, 100), }, ) # Optimise stacked ensemble of the best models models = [ search.best_estimator_ for search in [ridge_search, lasso_search, svr_search, lgbm_search, gbm_search] ] stack_search = random_search( StackingCVRegressor(models, Ridge(), cv=kf), {"meta_regressor__alpha": np.logspace(-3, -2, 500)}, n_iter=20, ) models.append(stack_search.best_estimator_) preds = [model.predict(X_test) for model in models] # Average all models (10% weight each) + ensemble (50% weight) preds = np.average(preds, axis=0, weights=[0.1] * 5 + [0.5] * 1) # Create submission submission = pd.DataFrame({"Id": p_sample["Id"], "SalePrice": np.exp(preds)}) submission.to_csv("submission.csv", index=False)
# Data Analysis for Business Project # Predict the House Price # Fabrizio Rocco and Diego Croci # ![hou_1982323b.jpg](attachment:hou_1982323b.jpg) # The aim of this project is to build a Machine Learning model in order to predict the appropriate price of a house given a set of features. # We decided to divide our analysis into 5 parts: # - First look at the problem and general understanding of the variables; # - Study the main variable ("SalePrice"); # - Study how the main variable is related to the other feature; # - Data Preprocessing: make some cleaning on our training data set in order to better visualize and estimate; # - Build a model in order to predict SalePrice # # *** # #### Importing Libraries and play a bit with our dataset import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from scipy.stats import norm from sklearn.model_selection import ( cross_val_score, train_test_split, KFold, cross_val_predict, ) from sklearn.preprocessing import StandardScaler, RobustScaler from sklearn.linear_model import ( LinearRegression, RidgeCV, Lasso, ElasticNetCV, BayesianRidge, LassoLarsIC, ) from sklearn.metrics import mean_squared_error, make_scorer from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor from sklearn.kernel_ridge import KernelRidge from sklearn.pipeline import make_pipeline from sklearn.base import BaseEstimator, TransformerMixin, RegressorMixin, clone import math data_train = pd.read_csv("train.csv") data_train data_test = pd.read_csv("test.csv") data_test y = data_train.SalePrice train_without_response = data_train[data_train.columns.difference(["SalePrice"])] result = pd.concat([train_without_response, data_test], ignore_index=True) result result.head() result.tail() result.info() result.shape # Numero di colonne e righe result.columns result.describe() # # Our initial considerations # Looking forward to our columns, we found some variables which can have an high correlation with our main variable SalePrice: # - __Year Built__ # - __TotalBsmtSF__ # - __GrLivArea__ # - __PoolArea__ # These are variables related to the conditions of the building, its age and some "extra luxury" features such as __PoolArea__. # In principle they are all characteristics which can rise the price of an abitation. # Another theory we suggested was to consider mainly the "inner" part of the house, such as __KitchenQual__ or __CentralAir__, but these could be too general features which mainly all the houses can have. # Now, with these prior hypotesis, let's dive into the "__SalePrice__" analysis. # # SalePrice Analysis y.describe() sns.distplot(data_train["SalePrice"]) print("Skewness coeff. is: %f" % data_train["SalePrice"].skew()) print("Kurtosis coeff. is: %f" % data_train["SalePrice"].kurt()) # These measures of symmetry are useful in order to understand the symmetry of the distribution of our main variable. # Our distribution is highly skewed and present a longer tail on the right. # The high value of kurtosis can determine an higher probability of outliers values. # # The other variables data_year_trend = pd.concat([data_train["SalePrice"], data_train["YearBuilt"]], axis=1) data_year_trend.plot.scatter(x="YearBuilt", y="SalePrice", ylim=(0, 800000)) data_bsmt_trend = pd.concat( [data_train["SalePrice"], data_train["TotalBsmtSF"]], axis=1 ) data_bsmt_trend.plot.scatter(x="TotalBsmtSF", y="SalePrice", ylim=(0, 800000)) data_GrLivArea_trend = pd.concat( [data_train["SalePrice"], data_train["GrLivArea"]], axis=1 ) data_GrLivArea_trend.plot.scatter(x="GrLivArea", y="SalePrice", ylim=(0, 800000)) data_PoolArea_trend = pd.concat( [data_train["SalePrice"], data_train["PoolArea"]], axis=1 ) data_PoolArea_trend.plot.scatter(x="PoolArea", y="SalePrice", ylim=(0, 800000)) data = pd.concat([data_train["SalePrice"], data_train["OverallQual"]], axis=1) f, ax = plt.subplots(figsize=(8, 6)) fig = sns.boxplot(x="OverallQual", y="SalePrice", data=data) fig.axis(ymin=0, ymax=800000) # By these analysis we discovered that our previsions were quite correct. # __Year Built__ seems to have a slight relation with our main variable, and people, as we thought, tend to buy newer houses. # Instead, for __TotalBsmtSF__ and __GrLivArea__ there seems be a stronger relation with __SalePrice__. # # Heatmap Correlation Matrix corr_matrix = result.corr() f, ax1 = plt.subplots(figsize=(12, 9)) ax1 = sns.heatmap(corr_matrix, vmax=0.9) # Using this kind of plot we can deduce if there's some collinearity between 2 or more variables. # In particoular, there are some white blocks which have to be analyzed: # 1. __GarageYrBlt__ and __YearBuilt__ # 2. __TotRmsAbvGrd__ and __GrLivArea__ # 3. __TotalBsmtSF__ and __X1stFlrSF__ # 4. __GarageArea__ and __GarageCars__ # # Knowing the meaning of these pairs of variables seems trivial to notice a collinearity between pairs "1", "3" and "4". # For the "2" pair the difference is slightly more subtle because the house area and the total number of rooms, not always are related. # For example two houses with the same living area can be inhabited by different number of peoples and so the actual disposition/number of the rooms can be different. # Let's restrict our matrix a bit more. corrmat = data_train.corr() top_corr_features = corrmat.index[abs(corrmat["SalePrice"]) > 0.5] plt.figure(figsize=(9, 9)) g = sns.heatmap(data_train[top_corr_features].corr(), annot=True, cmap="RdYlGn") var = data_train[data_train.columns[1:]].corr()["SalePrice"][:] var sns.set() cols = [ "SalePrice", "OverallQual", "GrLivArea", "GarageCars", "TotalBsmtSF", "FullBath", "YearBuilt", ] sns.pairplot(data_train[cols], height=2.5) plt.show() # # Number of null vallues # Now our goal is to deal with null values and try to understand for each one what can we do: maybe we can replace them or maybe we can just skip them. total_null = ( result.isnull().sum().sort_values(ascending=False) ) # First sum and order all null values for each variable percentage = (result.isnull().sum() / result.isnull().count()).sort_values( ascending=False ) # Get the percentage missing_data = pd.concat([total_null, percentage], axis=1, keys=["Total", "Percentage"]) missing_data.head(20) # We have to do some considerations. # Let's divide our null values into 2 groups: # - __PoolQC__, __MiscFeature__, __Alley__, __Fence__, __FireplaceQu__ and __LotFrontage__. # These are all variables which presents many null values. In general, by common opinion, we can discourage variables which have more than 15% of missing values. # These are not vital information for someone who wants to buy an house, such as __FireplaceQu__ or, for example, many houses doesn't have an __Alley__ access. We can drop them. # The second group: # - __GarageX__ properties # If we look carefully, all of these variables have the same number of null values! Maybe this can be a strange coincidence, or just that they all refer to the same variable Garage, in which "Na" means "There is no Garage". The same occurs for __BsmtX__ and MasVnr__, which means that we will have to deal with them afterwards. result = result.drop( (missing_data[missing_data["Percentage"] > 0.15]).index, 1 ) # Drop All Var. with null values > 1 # data_train = data_train.drop(data_train.loc[data_train['Electrical'].isnull()].index) #Delete the single null value in Electrical result.isnull().sum() # # Split categorical and numerical variables del result["KitchenAbvGr"] del result["YrSold"] del result["MoSold"] del result["MiscVal"] del result["ScreenPorch"] del result["X3SsnPorch"] del result["BsmtHalfBath"] del result["LowQualFinSF"] del result["OverallCond"] del result["EnclosedPorch"] del result["MSSubClass"] del result["X1stFlrSF"] del result["YearBuilt"] del result["YearRemodAdd"] del result["BsmtFinSF2"] # 0 variance del result["BsmtFinSF1"] # Because BsmtFinSF1 + BsmtUnfSF + BsmtFinSF2 = TotalBsmtSF del result["BsmtUnfSF"] # Because BsmtFinSF1 + BsmtUnfSF + BsmtFinSF2 = TotalBsmtSF del result["PoolArea"] # 0 variance del result[ "GarageYrBlt" ] # Dropped for the same reason of YearBuilt, it might mislead our predictions del result["GarageCond"] # 0 Variance del result["GarageArea"] # High Correlation del result["TotRmsAbvGrd"] # High Correlation result result["ExterCond"].value_counts() del result["Street"] del result["LandContour"] del result["Utilities"] del result["LandSlope"] del result["Condition2"] del result["RoofMatl"] del result["BsmtFinType2"] # 0 variance del result["Electrical"] # 0 Variance del result["Condition1"] # Too many levels versione 2 del result["BldgType"] # versione 2 del result["HouseStyle"] # versione 2 del result["Exterior1st"] # versione 2 del result["Exterior2nd"] # versione 2 del result["Foundation"] # versione 2 del result["CentralAir"] # 0 variance del result["Functional"] # 0 variance del result["SaleType"] # 0 variance del result["SaleCondition"] # 0 variance del result["RoofStyle"] # 0 variance result result.shape # Here we encode ExterQual in a rank result.loc[result["ExterQual"] == "Ex", "ExterQual"] = 5 result.loc[result["ExterQual"] == "Gd", "ExterQual"] = 4 result.loc[result["ExterQual"] == "TA", "ExterQual"] = 3 result.loc[result["ExterQual"] == "Fa", "ExterQual"] = 2 result.loc[result["ExterQual"] == "Po", "ExterQual"] = 1 result["ExterQual"] # Here we encode ExterCond in Rank result.loc[result["ExterCond"] == "Ex", "ExterCond"] = 5 result.loc[result["ExterCond"] == "Gd", "ExterCond"] = 4 result.loc[result["ExterCond"] == "TA", "ExterCond"] = 3 result.loc[result["ExterCond"] == "Fa", "ExterCond"] = 2 result.loc[result["ExterCond"] == "Po", "ExterCond"] = 1 result["ExterCond"] # Here we encode HeatingQC in Rank result.loc[result["HeatingQC"] == "Ex", "HeatingQC"] = 5 result.loc[result["HeatingQC"] == "Gd", "HeatingQC"] = 4 result.loc[result["HeatingQC"] == "TA", "HeatingQC"] = 3 result.loc[result["HeatingQC"] == "Fa", "HeatingQC"] = 2 result.loc[result["HeatingQC"] == "Po", "HeatingQC"] = 1 result["HeatingQC"] # Here we encode BsmtFinType1 in Rank result.loc[result["BsmtFinType1"] == "GLQ", "BsmtFinType1"] = 6 result.loc[result["BsmtFinType1"] == "ALQ", "BsmtFinType1"] = 5 result.loc[result["BsmtFinType1"] == "BLQ", "BsmtFinType1"] = 4 result.loc[result["BsmtFinType1"] == "Rec", "BsmtFinType1"] = 3 result.loc[result["BsmtFinType1"] == "LwQ", "BsmtFinType1"] = 2 result.loc[result["BsmtFinType1"] == "Unf", "BsmtFinType1"] = 1 result["BsmtFinType1"].fillna(0, inplace=True) result["BsmtFinType1"] # Here we encode BsmtCond in Rank result.loc[result["BsmtCond"] == "Ex", "BsmtCond"] = 5 result.loc[result["BsmtCond"] == "Gd", "BsmtCond"] = 4 result.loc[result["BsmtCond"] == "TA", "BsmtCond"] = 3 result.loc[result["BsmtCond"] == "Fa", "BsmtCond"] = 2 result.loc[result["BsmtCond"] == "Po", "BsmtCond"] = 1 result["BsmtCond"].fillna(0, inplace=True) result["BsmtCond"] # Here we encode BsmtQual in Rank result.loc[result["BsmtQual"] == "Ex", "BsmtQual"] = 5 result.loc[result["BsmtQual"] == "Gd", "BsmtQual"] = 4 result.loc[result["BsmtQual"] == "TA", "BsmtQual"] = 3 result.loc[result["BsmtQual"] == "Fa", "BsmtQual"] = 2 result.loc[result["BsmtQual"] == "Po", "BsmtQual"] = 1 result["BsmtQual"].fillna(0, inplace=True) result["BsmtQual"] # Here we encode KitchenQual in Rank result.loc[result["KitchenQual"] == "Ex", "KitchenQual"] = 4 result.loc[result["KitchenQual"] == "Gd", "KitchenQual"] = 3 result.loc[result["KitchenQual"] == "TA", "KitchenQual"] = 2 result.loc[result["KitchenQual"] == "Fa", "KitchenQual"] = 1 result["KitchenQual"] # Here we encode BsmtExposure in Rank result.loc[result["BsmtExposure"] == "Gd", "BsmtExposure"] = 4 result.loc[result["BsmtExposure"] == "Av", "BsmtExposure"] = 3 result.loc[result["BsmtExposure"] == "Mn", "BsmtExposure"] = 2 result.loc[result["BsmtExposure"] == "No", "BsmtExposure"] = 1 result["BsmtExposure"].fillna(0, inplace=True) result["BsmtExposure"] # Here we encode GarageQual in Rank result.loc[result["GarageQual"] == "Ex", "GarageQual"] = 5 result.loc[result["GarageQual"] == "Gd", "GarageQual"] = 4 result.loc[result["GarageQual"] == "TA", "GarageQual"] = 3 result.loc[result["GarageQual"] == "Fa", "GarageQual"] = 2 result.loc[result["GarageQual"] == "Po", "GarageQual"] = 1 result["GarageQual"].fillna(0, inplace=True) result["GarageQual"] del result["GarageQual"] # perchè tutti i valori sono 3 # Here we encode GarageFinish in Rank result.loc[result["GarageFinish"] == "Fin", "GarageFinish"] = 4 result.loc[result["GarageFinish"] == "RFn", "GarageFinish"] = 3 result.loc[result["GarageFinish"] == "Unf", "GarageFinish"] = 2 result["GarageFinish"].fillna(0, inplace=True) result["GarageFinish"] # HERE WE FILL THE LAST NAs IN THOSE VARIABLES WHICH WE CAN NOT RANK result["MasVnrType"].fillna("None", inplace=True) result["MasVnrArea"].fillna(0, inplace=True) result["GarageType"].fillna("No Garage", inplace=True) # Correlation matrix with new encoded variables corr_matrix = result.corr() f, ax1 = plt.subplots(figsize=(25, 25)) # Crea il sistema di riferimento ax1 = sns.heatmap(corr_matrix, vmax=0.9) # Con Seaborn fai una heatmap che ha val. max. 0.9 corrmat = data_train.corr() top_corr_features = corrmat.index[abs(corrmat["SalePrice"]) > 0.3] plt.figure(figsize=(9, 9)) g = sns.heatmap(data_train[top_corr_features].corr(), annot=True, cmap="RdYlGn") pd.set_option("display.max_columns", 70) # Near 0 variance del result["ExterCond"] del result["BsmtCond"] # Near 0 variance # # Outliers # Here we extract the numerical variables, this will come in handy later on n_features = result.select_dtypes(exclude=["object"]).columns def mod_outlier(df): df1 = df.copy() df = df._get_numeric_data() q1 = df.quantile(0.25) q3 = df.quantile(0.75) iqr = q3 - q1 lower_bound = q1 - (1.5 * iqr) upper_bound = q3 + (1.5 * iqr) for col in df.columns: for i in range(0, len(df[col])): if df[col][i] < lower_bound[col]: df[col][i] = lower_bound[col] if df[col][i] > upper_bound[col]: df[col][i] = upper_bound[col] for col in df.columns: df1[col] = df[col] return df1 result = mod_outlier(result) for i in result[n_features]: sns.boxplot(x=result[i]) plt.show() result # Here we split train and test back and we attach "SalePrice" to the train data_train_new, data_test_new = result[:1100], result[1101:] data_train_new["SalePrice"] = y data_train_new data_test_new # # Create Dummy Variables data_train_dummies = pd.get_dummies(data_train_new) data_train_dummies # # Model # ## K-Fold Cross Validation n_folds = 5 def rmsle_cv(model): kf = KFold(n_folds, shuffle=True, random_state=42).get_n_splits(X.values) rmse = np.sqrt( -cross_val_score(model, X.values, Y, scoring="neg_mean_squared_error", cv=kf) ) return rmse X = data_train_dummies[data_train_dummies.columns.difference(["SalePrice"])] Y = data_train_dummies["SalePrice"] X X_train, X_test, Y_train, Y_test = train_test_split( X, Y, test_size=0.30, random_state=40 ) # ## Linear Regression lr = LinearRegression() lr.fit(X_train, Y_train) print(lr.intercept_) print(lr.coef_) predicted = lr.predict(X_test) plt.figure(figsize=(15, 8)) plt.scatter(Y_test, predicted) plt.xlabel("Y Test") plt.ylabel("Predicted Y") plt.show() score = rmsle_cv(lr) print("\nLinear Regression score: {:.4f}\n".format(score.mean())) from sklearn import metrics print("MAE:", metrics.mean_absolute_error(Y_test, predicted)) print("MSE:", metrics.mean_squared_error(Y_test, predicted)) print("RMSE:", np.sqrt(metrics.mean_squared_error(Y_test, predicted))) # ## Lasso lasso = make_pipeline(RobustScaler(), Lasso(alpha=0.0005, random_state=1)) score = rmsle_cv(lasso) print("\nLasso score: {:.4f} ({:.4f})\n".format(score.mean(), score.std())) ##lasso = linear_model.Lasso() ### y_pred = cross_val_predict(lasso, X, y, cv=5) # ## G Boosting GBoost = GradientBoostingRegressor( n_estimators=5000, learning_rate=0.05, max_depth=4, max_features="sqrt", min_samples_leaf=15, min_samples_split=10, loss="huber", random_state=5, ) # RMSE estimated through the partition of the train set GBoost.fit(X_train, Y_train) rmse = math.sqrt(mean_squared_error(Y_test, GBoost.predict(X_test))) print("RMSE: %.4f" % rmse) score = rmsle_cv(GBoost) print("Gradient Boosting score: {:.4f} ({:.4f})\n".format(score.mean(), score.std())) # # Random Forest regressor = RandomForestRegressor(n_estimators=300, random_state=0) regressor.fit(X, Y) # Score model score = rmsle_cv(regressor) print("Random Forest score: {:.4f} ({:.4f})\n".format(score.mean(), score.std()))
# # Movie Recommender System # https://www.kaggle.com/datasets/rounakbanik/the-movies-dataset import os import pandas as pd import numpy as np from surprise.model_selection import train_test_split from surprise import * # # Loading Dataset # reader = Reader(line_format="userId movieId rating timestamp", sep=" ") # movie_df = Dataset.load_from_file("/kaggle/input/the-movies-dataset/ratings_small.csv", reader=reader) movie_df = pd.read_csv("/kaggle/input/the-movies-dataset/ratings_small.csv") movie_df reader = Reader(rating_scale=(0.5, 5.0)) data = Dataset.load_from_df(movie_df[["userId", "movieId", "rating"]], reader) trainset, testset = train_test_split(data, test_size=0.25) # **Computing the average MAE and RMSE of the Probabilistic Matrix Factorization (PMF), Userbased Collaboratice Filtering, Item based Collaborative Filtering, under the 5-fold cross-validation** user_based = KNNBasic(user_based=True) item_based = KNNBasic(user_based=False) pmf = SVD() metrics = ["rmse", "mae"] user_based_results = cross_validate(user_based, data, measures=metrics, cv=5) item_based_results = cross_validate(item_based, data, measures=metrics, cv=5) pmf_results = cross_validate(pmf, data, measures=metrics, cv=5) print("User-based CF RMSE:", user_based_results["test_rmse"].mean()) print("User-based CF MAE:", user_based_results["test_mae"].mean()) print("Item-based CF RMSE:", item_based_results["test_rmse"].mean()) print("Item-based CF MAE:", item_based_results["test_mae"].mean()) print("PMF RMSE:", pmf_results["test_rmse"].mean()) print("PMF MAE:", pmf_results["test_mae"].mean()) # # Cosine, Mean Squared Difference, and Pearson Similarites user_based_cosine = KNNBasic(user_based=True) user_based_msd = KNNBasic(user_based=True) user_based_pearson = KNNBasic(user_based=True) item_based = KNNBasic(user_based=False) pmf = SVD()
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. import tensorflow as tf from tensorflow.keras.datasets import reuters from tensorflow.keras import ( models, layers, optimizers, utils, ) # utils for one hot encode import matplotlib.pyplot as plt # ## Multi-Class Classification Problem: (train_data, train_labels), (test_data, test_labels) = reuters.load_data( num_words=10000 ) print(len(train_data)) print(len(test_data)) train_data[0] def vectorize_sequences(sequences, dimension=10000): results = np.zeros((len(sequences), dimension)) for i, sequence in enumerate(sequences): results[i, sequence] = 1.0 return results
# # Creditcard Fraud Detection # ### Context # It is important that credit card companies are able to recognize fraudulent credit card transactions so that customers are not charged for items that they did not purchase. # ### Content # The dataset contains transactions made by credit cards in September 2013 by European cardholders. # This dataset presents transactions that occurred in two days, where we have 492 frauds out of 284,807 transactions. The dataset is highly unbalanced, the positive class (frauds) account for 0.172% of all transactions. # It contains only numerical input variables which are the result of a PCA transformation. Unfortunately, due to confidentiality issues, they cannot provide the original features and more background information about the data. Features V1, V2, … V28 are the principal components obtained with PCA, the only features which have not been transformed with PCA are 'Time' and 'Amount'. Feature 'Time' contains the seconds elapsed between each transaction and the first transaction in the dataset. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. Feature 'Class' is the response variable and it takes value 1 in case of fraud and 0 otherwise. # ### Data # https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud # ### Summary # Of the 31 columns in the dataset, 29 were pre-scaled, so the remaining two columns were first scaled to make the distrubutions look like other features. The stratify method was used when dividing the data into test and train, because all fraud positive rows could be collected on one side because the data was imbalanced. Since the data was imbalanced, the oversampling method SMOTE (Synthetic Minority Oversampling Technique) was used. Base models were created with the selected algorithms. Hypertuning and ensemble techniques were applied by choosing among the base models. Since precision, recall and f1 are important metrics in Fraud detection, the priority was to keep them high. # Overview # 1) Understand the shape of the data # 2) Data Exploration # 3) Data Preprocessing for Model # 4) Basic Model Building # 5) Model Tuning # 6) Ensemble Model Building # ### 1) Understand the shape of the data import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import imblearn from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler df = pd.read_csv("creditcard.csv") df.Class.value_counts() print( "No Frauds", round(df["Class"].value_counts()[0] / len(df) * 100, 2), "% of the dataset", ) print( "Frauds", round(df["Class"].value_counts()[1] / len(df) * 100, 2), "% of the dataset", ) pd.set_option("display.max_columns", 500) df.head() df.info() df.describe() # ### 2) Data Exploration cmap = sns.color_palette("YlOrBr", as_cmap=True) sns.heatmap(df.corr(), cmap=cmap) plt.title("df") fig, axs = plt.subplots(ncols=4, nrows=8, figsize=(15, 20)) for i, col in enumerate(df.columns): row_idx = i // 4 col_idx = i % 4 axs[row_idx, col_idx].plot(df[col], color="#FF8400") axs[row_idx, col_idx].set_title(col) fig.tight_layout() plt.show() fig, ax = plt.subplots(1, 2, figsize=(16, 4)) amount_val = df.Amount time_val = df.Time sns.histplot(df.Amount, ax=ax[0], color="#AA96DA", kde=True, binwidth=200) ax[0].set_title("Distribution of Transaction Amount", fontsize=14) ax[0].set_xlim([min(df.Amount) - 500, max(df.Amount)]) sns.histplot(df.Time, ax=ax[1], color="#FCBAD3", kde=True) ax[1].set_title("Distribution of Transaction Time", fontsize=14) ax[1].set_xlim([min(df.Time), max(df.Time)]) # ### 3) Data Preprocessing for Model from sklearn.preprocessing import StandardScaler, RobustScaler # RobustScaler is less prone to outliers. std_scaler = StandardScaler() rob_scaler = RobustScaler() df["scaled_amount"] = rob_scaler.fit_transform(df.Amount.values.reshape(-1, 1)) df["scaled_time"] = rob_scaler.fit_transform(df.Time.values.reshape(-1, 1)) df.drop(["Time", "Amount"], axis=1, inplace=True) df.head() print( "The percentage of no frauds : ", round(df.Class.value_counts()[0] / len(df) * 100, 2), "%", ) print( "The percentage of frauds : ", round(df.Class.value_counts()[1] / len(df) * 100, 2), "%", ) X = df.drop("Class", axis=1) y = df["Class"] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y) from imblearn.over_sampling import SMOTE sm = SMOTE(random_state=2, sampling_strategy=0.5) X_over, y_over = sm.fit_resample(X_train, y_train) y_over.shape # ### 4) Basic Model Building # 1. Logistic Regression # 2. XGBoost # 3. KNeighborsClassifier # 4. Random Forest from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier import xgboost as xgb from sklearn.model_selection import cross_val_score from sklearn.ensemble import VotingClassifier from sklearn import metrics from sklearn.metrics import precision_recall_curve # #### 4.1) Logistic Regression logreg = LogisticRegression(max_iter=1000) rf_clf = RandomForestClassifier() xgb_clf = xgb.XGBClassifier() knn = KNeighborsClassifier() logreg.fit(X_over, y_over) y_pred = logreg.predict(X_test) logc = metrics.classification_report(y_test, y_pred) print(logc) y_pred_prob = logreg.predict_proba(X_test)[:, 1] precision, recall, thresholds = precision_recall_curve(y_test, y_pred_prob) plt.plot(precision, recall) plt.xlabel("Recall") plt.ylabel("Precision") plt.title("Precision Recall Curve") # #### 4.2) XGBoost Regression xgb_clf.fit(X_over, y_over) y_pred = xgb_clf.predict(X_test) xgbc = metrics.classification_report(y_test, y_pred) print(xgbc) y_pred_prob = xgb_clf.predict_proba(X_test)[:, 1] precision, recall, thresholds = precision_recall_curve(y_test, y_pred_prob) plt.plot(precision, recall) plt.xlabel("Recall") plt.ylabel("Precision") plt.title("Precision Recall Curve") # #### 4.3) K-Nearest Neighbours classifcation knn.fit(X_over, y_over) y_pred = knn.predict(X_test) knnc = metrics.classification_report(y_test, y_pred) print(knnc) y_pred_prob = knn.predict_proba(X_test)[:, 1] precision, recall, thresholds = precision_recall_curve(y_test, y_pred_prob) plt.plot(precision, recall) plt.xlabel("Recall") plt.ylabel("Precision") plt.title("Precision Recall Curve") # #### 4.4) Random Forest rf_clf.fit(X_over, y_over) y_pred = rf_clf.predict(X_test) rfc = metrics.classification_report(y_test, y_pred) print(rfc) y_pred_prob = rf_clf.predict_proba(X_test)[:, 1] precision, recall, thresholds = precision_recall_curve(y_test, y_pred_prob) plt.plot(precision, recall) plt.xlabel("Recall") plt.ylabel("Precision") plt.title("Precision Recall Curve") # Feature importances importances = rf_clf.feature_importances_ importances_df = pd.DataFrame({"Feature": X_train.columns, "Importance": importances}) importances_df = importances_df.sort_values(by="Importance", ascending=False) # Print feature importances with column names as index for i, row in importances_df.iterrows(): print("%s: %.3f" % (row["Feature"], row["Importance"])) # ### 5) Model Tuning from sklearn.model_selection import GridSearchCV # Logistic Regression logreg_param_grid = { "C": [0.01, 0.1, 1, 10], "max_iter": [100, 250, 500], "multi_class": ["ovr", "multinomial"], } grid_lg = GridSearchCV(logreg, logreg_param_grid, cv=5, verbose=1, n_jobs=-1) best_fit_lg = grid_lg.fit(X_over, y_over) y_pred = best_fit_lg.best_estimator_.predict(X_test) grid_lg = metrics.classification_report(y_test, y_pred) print(grid_lg) # Random Forest Classifier rf_param_grid = { "criterion": ["gini", "entropy"], "max_depth": list(range(2, 4, 1)), "min_samples_leaf": list(range(5, 7, 1)), } grid_rf = GridSearchCV(rf_clf, rf_param_grid, cv=5, verbose=1, n_jobs=-1) best_fit_rf = grid_rf.fit(X_over, y_over) y_pred = best_fit_rf.best_estimator_.predict(X_test) grid_rf = metrics.classification_report(y_test, y_pred) print(grid_rf) # XGBoost Classifier xgb_param_grid = { "n_estimators": [100, 500], "max_depth": [5, 10], "learning_rate": [0.1, 1.0], "subsample": [0.5, 0.75, 1.0], } grid_xgb = GridSearchCV(xgb_clf, xgb_param_grid, cv=2, verbose=1, n_jobs=-1) best_fit_xgb = grid_xgb.fit(X_over, y_over) y_pred = best_fit_xgb.best_estimator_.predict(X_test) grid_xgb = metrics.classification_report(y_test, y_pred) print(grid_xgb) # KNN classification knn_param_grid = { "n_neighbors": [3, 5], "weights": ["uniform", "distance"], "p": [1, 2], } grid_knn = GridSearchCV(knn, knn_param_grid, cv=5, verbose=1, n_jobs=-1) best_fit_knn = grid_knn.fit(X_over, y_over) y_pred = best_fit_knn.best_estimator_.predict(X_test) grid_knn = metrics.classification_report(y_test, y_pred) print(grid_knn) # ### 6) Ensemble Model Building vot_soft = VotingClassifier( estimators=[ ("Random Forest Classifier", best_fit_rf.best_estimator_), ("XGBoost Classifier", best_fit_xgb.best_estimator_), ], voting="soft", ) vot_soft.fit(X_over, y_over) y_pred = vot_soft.predict(X_test) score = metrics.classification_report(y_test, y_pred) print(score)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import tensorflow_decision_forests as tfdf # model import matplotlib.pyplot as plt # data visualization import tensorflow_probability as tfp import tensorflow as tf # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # Lets first load the data training = pd.read_csv("/kaggle/input/titanic/train.csv") testing = pd.read_csv("/kaggle/input/titanic/test.csv") # Lets check the headers training.head() testing.head() # Lets check the details training.info() testing.info() # Clean the data a little, remove rows with NA in Age column training = training.fillna(0) testing = testing.fillna(0) # Lets check what groups make up our sample # Lets break them into groups of # alive women, alive men, dead women and dead men # derive each group rows alive_women = training.loc[training.Sex == "female"][training.Survived == True] dead_women = training.loc[training.Sex == "female"][training.Survived == False] alive_men = training.loc[training.Sex == "male"][training.Survived == True] dead_men = training.loc[training.Sex == "male"][training.Survived == False] # calculate what percentage of the sample they make up percent_of_alive_women_in_sample = len(alive_women) / len(training) percent_of_dead_women_in_sample = len(dead_women) / len(training) percent_of_alive_men_in_sample = len(alive_men) / len(training) percent_of_dead_men_in_sample = len(dead_men) / len(training) # display data print( """ in what part did the sample consist of alive women: {0} in what part did the sample consist of alive men: {1} in what part did the sample consist of dead women: {2} in what part did the sample consist of dead men: {3}\n""".format( percent_of_alive_women_in_sample, percent_of_alive_men_in_sample, percent_of_dead_women_in_sample, percent_of_dead_men_in_sample, ) ) # Lets count the probabilities of living depending on gender # break the set depending on gender all_women = training.loc[training.Sex == "female"] all_men = training.loc[training.Sex == "male"] probability_of_living_female = len(dead_women) / len(all_women) probability_of_living_male = len(dead_men) / len(all_men) print( """ probability of dying as a woman: {0} probability of dying as a man: {1}\n (reducing to gender only)\n""".format( probability_of_living_female, probability_of_living_male ) ) # Lets clean the data a little - remove lines with NA values training = training[training["Age"].notna()] testing = testing[testing["Age"].notna()] # Lets create a model # We will choose random forest from sklearn.ensemble import RandomForestClassifier # pick interesting columns for both training and testing train_dependent_var = training["Survived"] features = ["Sex", "Age", "Pclass"] train_independent_vars = training[features] test_independent_vars = testing[features] # automatically convert categorical variables to numerical variables train_independent_vars_nums = pd.get_dummies(train_independent_vars) test_independent_vars_nums = pd.get_dummies(test_independent_vars) # create, fit and predict results predictor = RandomForestClassifier(n_estimators=100, max_depth=5, random_state=1) predictor.fit(train_independent_vars_nums, train_dependent_var) predictions = predictor.predict(test_independent_vars_nums) # create results table solution = testing.copy() solution.insert(0, "Survived?", predictions) # print solution # evaluate the model # check whether the survival rate vs gender results would be similar # Lets check what groups make up our sample # Lets break them into groups of # alive women, alive men, dead women and dead men training_alive_women = training.loc[training.Sex == "female"][training.Survived == True] training_alive_men = training.loc[training.Sex == "male"][training.Survived == True] training_dead_women = training.loc[training.Sex == "female"][training.Survived == False] training_dead_men = training.loc[training.Sex == "male"][training.Survived == False] training_percent_of_alive_women_in_sample = len(training_alive_women) / len(training) training_percent_of_alive_men_in_sample = len(training_alive_men) / len(testing) training_percent_of_dead_women_in_sample = len(training_dead_women) / len(testing) training_percent_of_dead_men_in_sample = len(training_dead_men) / len(training) print( """ in what part did the sample consist of alive women: {0} in what part did the sample consist of alive men: {1} in what part did the sample consist of dead women: {2} in what part did the sample consist of dead men: {3}\n""".format( training_percent_of_alive_women_in_sample, training_percent_of_alive_men_in_sample, training_percent_of_dead_women_in_sample, training_percent_of_dead_men_in_sample, ) ) # Lets evaluate the model once again, but now on the possibilities of living # Lets count the probabilities of living depending on gender training_all_women = training.loc[training.Sex == "female"] training_all_men = training.loc[training.Sex == "male"] training_probability_of_living_female = len(training_dead_women) / len( training_all_women ) training_probability_of_living_male = len(training_dead_men) / len(training_all_men) print( """ probability of dying as a woman: {0} probability of dying as a man: {1}\n (reducing to gender only)\n""".format( training_probability_of_living_female, training_probability_of_living_male ) ) import seaborn as sns # calculate correlation training = training.head(10) corr_matrix = training.corr() sns.heatmap(corr_matrix) # use cmap='coolwarm' to provide color map # Bend x label ticks 45 degree to avoid overlappings with each-other plt.xticks(rotation=45) plt.title("Correlations") plt.show() submission = pd.DataFrame({"PassengerId": testing.PassengerId, "Survived": predictions}) submission.to_csv("submission.csv", index=False) print("Your submission was successfully saved!") submission.head()
# This is my first Kernel on Kaggle, I might have mislinked the dataset and uploaded as my own. I have credited the original dataset contributer at Reference section. # # Summary # We started with a dataset containing 800 Pokemon game stats and a categorical variable "Type", aiming to visualize the distribution of Pokemon as well as explaining how those of the same "Type" are grouped together. Initial dataframe was treated with a column change - "Type 2" had nearly half the values missing, thus it was replaced with binary 0/1, for data analysis. # Initial data exploration shows that the distribution of types is binomial, which coincides with the distribution of the overall strength of 800 pokemons, measured by the sum of all stats (attack, defense, sp. atk, sp. def and speed). Each stat by itself shows a right-skewed normal distribution, leaving some outliers that are possibly game specials - "legendary pokemons". Having a secondary type present shows a lift in overall strength by 10.8%. # To further examine whether, and if so, which attributes might explain the type, we reduced dimensions using PCA and plotted 18 types on a 2D graph. Although the two principal components are hard to intepret, we were able to cover 74.5% of the variance. We further attempted using PCA to find a fit between features and target, by logistic regression model. The result was of low accurancy - only 20%. # This study shows that game design is sophisticated - when assigning attributes to certain characters, designers must think of whether each attribute fits the distribution, as well as overall strength within each group. Especially with special events, game companies often rewards players with special items and create special levels. These creations are the outliers in game data and must be treated with caution too. # # Introduction # In game design we often encouter character/monster stats that are inconsistent across the game - players might experience an extremely difficult starting level, for example. Each character, move and monster has at least 6 attributes (defense, attack, agility etc.) so the question is how do we design such characters whose attributes and level (being strong or weak in the game) are aligned, while all of them come together form a distribution (perhaps a normal distribution) that fits the best for the game play? # In this study I will study a dataset of 800 pokemons (out of the 809 most-up-to-date number) to understand how game developers from Nintendo and Game Freak design these infamous creatures and balance their attributes out. For simplicity, I'm using a dataset of pokemons at their beginning level. # # Data Overview # This data set includes 721 Pokemon (with some pokemons of 2 versions, total 800 rows), including their number, name, first and second type, and basic stats: HP, Attack, Defense, Special Attack, Special Defense, and Speed. The dataset was obtained from kaggle, by Alberto Barradas through public domains of pokemon.com, pokemondb and bulbapedia. Link as below to the kaggle kennel: # https://www.kaggle.com/abcsds/pokemon # import important libraries import pandas as pd from matplotlib import pyplot as plt import seaborn as sns import numpy as np # read dataset df = pd.read_csv("../input/Pokemon.csv", index_col=0) # check attributes df.head() # check types of pokemons df.groupby("Type 1").size() df.groupby("Type 2").size() plt.figure(figsize=(12, 5)) chart0 = sns.countplot(x="Type 1", data=df) plt.figure(figsize=(12, 5)) sns.countplot(x="Type 2", data=df) # Pokemons have a primary type stored in 'Type 1' column and a possible secondary type stored in 'Type 2'. Total 18 types. # We also look at the column 'Total', which represents the total strength of such pokemon - the higher the better. # Distribution of Total sns.set(color_codes=True) sns.distplot(df["Total"]) # Total seems to be binomial. # We notice there are NaN in our data. Let's take a look # checking the percentage of missing values in each variable df.isnull().sum() / len(df) * 100 # Almost half of the Pokemons do not have a Type 2. We will change this column to a binary column. # We also needs to check the variance of the attributes to see if it makes sense to keep all of them. df.var() / len(df) * 100 # Since the column 'Total' is our output, such variance is within our expectation. Major attributes include HP, Attack, Defense, Sp.ATk, Sp.Def, and Speed all within a variance between 80 - 133. We will keep them all. This is expected, given it's Nintendo... # # Data Prep # Here we convert 'Type 2' to a boleen dummy column. '0' if this Pokemon does not have a Type 2 attribue and '1' if it does. # change NaN to 0 df["Type 2"] = df["Type 2"].fillna(0) # create a new list to change non-NaN values to 1 Type_2 = [] for i in df["Type 2"]: if i == 0: Type_2.append(0) else: Type_2.append(1) # replace old column 'Type 2' with new binary column df["Type 2"] = Type_2 df.head() # Much better. Now let's take a look at the distribution of each attribute. # Histogram of attribute 'Attack' and 'Defense' sns.distplot(df["Attack"]) sns.distplot(df["Defense"]) # A right-skewed normal distribution graph for both attributes. # Similarly let's look at the distribution of other attributes: sns.distplot(df["HP"]) sns.distplot(df["Speed"]) sns.distplot(df["Sp. Atk"]) sns.distplot(df["Sp. Def"]) # It appears that all attributes follow a right-skewed pattern. We can further explore the statistical relationships between these attributes in next steps. # # Preliminary Analysis # Overviews of categorical plots, statistical estimation and 2D correlations # "wide-form" plots of the dataframe sns.catplot(data=df, kind="box") # This proves that all attributes are right skewed, so is the outcome 'Total'. The outliers here are likely the 'legendary' kinds - unfortunately not included in this dataset. # Type 1 is a categorical column that I left it untreated so far. I'm guessing the type of Pokemon has an affect on its total strength too. Let's take a look at 'Total' and 'Type 1'. df.groupby("Type 1", sort=True).mean() # Table gives the mean of each type but how much variance each type represents? plt.figure(figsize=(10, 5)) chart1 = sns.catplot(x="Type 1", y="Total", kind="bar", data=df) chart1.set_xticklabels(rotation=60) # Looks like the developers really favour Dragon-type Pokemons! # Now let's breakdown and see what makes up the 'Total' # A brief overlook of the correlations between each attribute df.corr() # Since 'Total' is our outcome and all other attritbues have high correlations with it, this proves our heuristic guess. All other attributes do not have a correlation higher than 0.5 except 'Sp.Def' and 'Sp.Atk'. We could potentially drop one of them, but we will keep them both for now. # Let's take a look at the 2D plots of 'Sp.Def' and 'Sp.Atk': sns.relplot(x="Sp. Atk", y="Sp. Def", data=df) # Overall we can see that the higher Sp. Atk a Pokemon has, the higher Sp. Def it has. # It might make more sense to see if different type would give any more clues. sns.relplot(x="Sp. Atk", y="Sp. Def", hue="Type 1", data=df) # We have 18 types... That's kinda crazy to visualize over one scatterplot. Let's take a look at whether having a secondary type would make a difference. sns.relplot(x="Sp. Atk", y="Sp. Def", hue="Type 2", data=df) # Out of curiosity... Is the strength of pokemon higher when there is a secondary type present? df.groupby("Type 2", sort=True).mean().sort_values("Total", ascending=False).Total (456.6 - 412) / 412 * 100 # The presence of 'Type 2' has an overall 10.8% lift in overall strength. Perhaps with the help of other attributes we can explain the help of secondary type better. # Which pokemon types are more likely to get a secondary type? chart2 = sns.catplot(x="Type 1", kind="count", hue="Type 2", data=df) chart2.set_xticklabels(rotation=60) # Bug, Rock and Steel types are way more likely to get a secondary type! # It is hard to cluster Pokemons based on just any of the two variables. Due to our limited dimensionality plotting, we will consider methods to lower dimensionality by grouping variables together. # # Data Analysis # Can we use a model to explain the relationship between total strength and all other attributes? # Can we explain everything with our best friend - linear regression? import statsmodels.api as sm # First let's separate the predictors and the target - in this case -- Total. df1 = df.drop(columns=["Total"]) df1 # I will use PCA to plot the 6 attribues on a dimensional data to find if they can explain the pattern of types of Pokemon. # Lower dimensionality approach using PCA # import standard scaler package from sklearn.preprocessing import StandardScaler features = ["Total", "Attack", "Defense", "Sp. Atk", "Sp. Def", "Speed"] # separating out the features x = df.loc[:, features].values y = df.loc[:, ["Type 1"]].values # standardizing the features x = StandardScaler().fit_transform(x) from sklearn.decomposition import PCA pca = PCA(n_components=2) principalComponents = pca.fit_transform(x) principalDf = pd.DataFrame( data=principalComponents, columns=["principal component 1", "principal component 2"] ) principalDf target = df.iloc[:, 1] target.index = range(800) target finalDf = pd.concat([principalDf, target], axis=1) finalDf # Perfect final PCA table! The two principal components here don't necessarily make any sense except for mapping out the classes and hopefully separating out the classes. sns.relplot( x="principal component 1", y="principal component 2", hue="Type 1", data=finalDf ) # The plot did not seem to separate out types too well. Let's see if accuracy of this model: pca.explained_variance_ratio_ # Together these two principal components contain 74.5% of the information, better than I thought! # Let's split data into test and training to test a logistic regression model using PCA. # Split dataset from sklearn.model_selection import train_test_split dat = df.loc[:, features].values dat_target = target x_train, x_test, y_train, y_test = train_test_split( dat, dat_target, test_size=0.2, random_state=0 ) # Fit on training set only scaler.fit(x_train) # Standardize using scaler x_train = scaler.transform(x_train) x_test = scaler.transform(x_test) # Make an instance of the model. This means that the minimum number of principal components chosen have 95% of the variance retained. pca = PCA(0.95) # Fit PCA on trainig set pca.fit(x_train) # Now transform the training and the test sets... aka mapping x_train = pca.transform(x_train) x_test = pca.transform(x_test) # Apply logistic regression to the transformed data from sklearn.linear_model import LogisticRegression logisticRegr = LogisticRegression(solver="lbfgs") # faster! # Train the model on the data logisticRegr.fit(x_train, y_train) # Predict for one observation logisticRegr.predict(x_test[0].reshape(1, -1)) # Unfortunately a wrong prediction...! Let's see how accurate this model is on test data. logisticRegr.score(x_test, y_test)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # # Yerleşik Veri Türleri # Programlamada veri tipi önemli bir kavramdır. # Değişkenler farklı türde verileri depolayabilir ve farklı türler farklı şeyler yapabilir. # Python, bu kategorilerde varsayılan olarak yerleşik olarak aşağıdaki veri türlerine sahiptir: # Text Type: str Numeric Types: int, float, complex Sequence Types: list, tuple, range Mapping Type: dict Set Types: set, frozenset Boolean Type: bool Binary Types: bytes, bytearray, memoryview None Type: NoneType # # Veri Türünü Öğrenme # type() işlevini kullanarak herhangi bir nesnenin veri türünü öğrenebilirsiniz. b = 55 print(type(b)) # # Setting the Data Type # Example Data Ty pe Try it x = "Hello World" str x = 20 int x = 20.5 float x = 1j complex x = ["apple", "banana", "cherry"] list x = ("apple", "banana", "cherry") tuple x = range(6) range x = {"name" : "John", "age" : 36} dict x = {"apple", "banana", "cherry"} set x = frozenset({"apple", "banana", "cherry"}) frozenset x = True bool x = b"Hello" bytes x = bytearray(5) bytearray x = memoryview(bytes(5)) memoryview x = None NoneType # # Belirli Veri Türünü Ayarlama # If you want to specify the data type, you can use the following constructor functions: # Example Data Type Try it x = str("Hello World") str x = int(20) int x = float(20.5) float x = complex(1j) complex x = list(("apple", "banana", "cherry")) list x = tuple(("apple", "banana", "cherry")) tuple x = range(6) range x = dict(name="John", age=36) dict x = set(("apple", "banana", "cherry")) set x = frozenset(("apple", "banana", "cherry")) frozenset x = bool(5) bool x = bytes(5) bytes x = bytearray(5) bytearray x = memoryview(bytes(5)) memoryview # # Python Numbers # Python'da üç sayısal tür vardır: # int float complex Sayısal tipteki değişkenler, onlara bir değer atadığınızda oluşturulur: yas = 21 # int y = 6.77 # float z = 9j # complex # Python'da herhangi bir nesnenin türünü doğrulamak için type() işlevini kullanırız. print(type(yas)) print(type(y)) print(type(z)) # # Int - Integer # Int veya tamsayı, pozitif veya negatif, ondalık basamak içermeyen, sınırsız uzunlukta bir tam sayıdır. # integers a = 555555 b = 99999 c = 8888 print(type(a)) print(type(b)) print(type(c)) # # Float # Bir veya daha fazla ondalık basamak içeren pozitif veya negatif bir sayıdır. x = 5.25 y = 5.8 z = -88.88 print(type(x)) print(type(y)) print(type(z)) # Float, 10'un kuvvetini belirtmek için "e" harfi bulunan bilimsel sayılar da olabilir. # floats s1 = 856e1 s2 = 58e4 s3 = -85.7e822 print(type(s1)) print(type(s2)) print(type(s3)) # # Complex # Karmaşık sayılar sanal kısım olarak "j" ile yazılır: z = 9 + 8j e = 8j l = -8j print(type(z)) print(type(e)) # # Tip Dönüşümü # int(), float() ve Complex() yöntemleriyle bir türden diğerine dönüştürebilirsiniz: a = 999 # int s = 2.8 # float d = 1j # complex # convert from int to float: x = float(a) # convert from float to int: y = int(s) # convert from int to complex: z = complex(d) print(x) print(y) print(z) print(type(x)) print(type(y)) print(type(z)) # Not: Karmaşık sayıları başka bir sayı türüne dönüştüremezsiniz. # # Rastgele Sayılar # Python'un rasgele bir sayı yapmak için bir random() işlevi yoktur, ancak Python'un rasgele sayılar yapmak için kullanılabilecek random adlı yerleşik bir modülü vardır: import random print(random.randrange(90, 100)) # # Bir Değişken Türü Oluşturma # Bir değişkene bir tür belirtmek istediğiniz zamanlar olabilir. Bu döküm ile yapılabilir. Python, nesne yönelimli bir dildir ve bu nedenle, ilkel türleri de dahil olmak üzere veri türlerini tanımlamak için sınıfları kullanır. # # Bir Değişken Türü Belirtin # Bir değişkene bir tür belirtmek istediğiniz zamanlar olabilir. Python, nesne yönelimli bir dildir # int() - bir tamsayı hazır bilgisinden, bir değişken değişmez bilgisinden (tüm ondalık sayıları kaldırarak) veya bir dize değişmez bilgisinden (dizgenin bir tam sayıyı temsil etmesi koşuluyla) bir tamsayı oluşturur float() - bir tamsayı hazır bilgisinden, bir değişken sabit değerden veya bir dize değişmez bilgisinden bir kayan sayı oluşturur (dizenin bir kayan nokta veya bir tamsayıyı temsil etmesi koşuluyla) str() - diziler, tamsayı sabit değerleri ve değişken sabit değerler dahil olmak üzere çok çeşitli veri türlerinden bir dize oluşturur # integers x = int(8) # x will be 8 y = int(5.10) # y will be 2 z = int("5") # z will be 5 print(x) print(y) print(z) # floats x = float(7) # x will be 7.0 y = float(2.77) # y will be 2.77 z = float("55") # z will be 55.0 w = float("48.2") # w will be 48.2 print(x) print(y) print(z) print(w) # strings x = str("iki2") # x will be 'iki2' y = str(31) # y will be '31' z = str(88.7) # z will be '388.7' print(x) print(y) print(z) # # Strings # Python'daki dizeler, tek tırnak işaretleri veya çift tırnak işaretleri içine alınır. # "merhaba", "merhaba" ile aynıdır. # print() işleviyle bir dize hazır bilgisini görüntüleyebilirsiniz: print("merhaba kanalıma hoşgeldiniz") print("merhaba kanalıma hoşgeldiniz") # # Dizeyi bir Değişkene Atama # Bir değişkene bir dize atamak, değişken adının ardından eşittir işareti ve dize ile yapılır: w = "kaybedenler klubu" print(w) # # Çok Satırlı Dizeler # Üç tırnak kullanarak bir değişkene çok satırlı bir dize atayabilirsiniz: m = """orda her kiminleysen belki sevgilinleysen soyle kumralım, için sızlamaz mı bilmem hatırlarmısın gözlerim ne renki söyle kumralım benim adım neydi.""" print(m) # Veya üç tek tırnak: m = """orda her kiminleysen belki sevgilinleysen soyle kumralım, için sızlamaz mı bilmem hatırlarmısın gözlerim ne renki söyle kumralım benim adım neydi.""" print(m) # # Sringsler Dizilerdir # Diğer birçok popüler programlama dili gibi, Python'daki dizeler de unicode karakterleri temsil eden bayt dizileridir. # Bununla birlikte, Python'un bir karakter veri türü yoktur, tek bir karakter yalnızca 1 uzunluğunda bir dizedir. # Dizenin öğelerine erişmek için köşeli parantezler kullanılabilir. # 1 konumundaki karakteri alın (ilk karakterin 0 konumunda olduğunu unutmayın): a = "ekomoni fanta!" print(a[1]) # # Bir Dizide Döngü Yapmak # Dizeler dizi olduğundan, bir dizideki karakterler arasında bir for döngüsü ile döngü yapabiliriz. # "aşk" kelimesindeki harfler arasında dolaşın: for x in "aşk": print(x) # # String Length # Bir dizenin uzunluğunu almak için len() işlevini kullanın. # len() işlevi, bir dizenin uzunluğunu döndürür: a = "anne bana bi masal anlatsana" print(len(a)) # # Dizeyi Kontrol Et # Bir dizgede belirli bir ifadenin veya karakterin olup olmadığını kontrol etmek için in anahtar kelimesini kullanabiliriz. # Aşağıdaki metinde "free" olup olmadığını kontrol edin: txt = "ödevlerim bitince rahatlicam" print("rahatlicam" in txt) # Bir if ifadesinde kullanın: txt = "ödevlerim bitince rahatlicam" if "rahatlicam" in txt: print("evet,dışarı çıkacaksın") # # OLMADIĞINI kontrol edin # Belirli bir kelime öbeğinin veya karakterin bir dizgede OLMADIĞINI kontrol etmek için not in anahtar kelimesini kullanabiliriz. # Aşağıdaki metinde "pahalı" ifadesinin OLMADIĞINI kontrol edin txt = "her şey ucuz" print("pahalı" not in txt) # Use it in an if statement: txt = "her şey ucuz" if "pahalı" not in txt: print("hayır her şey çok pahalıı")
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. # 再現性の確保 # 乱数の固定 import os import random as rn os.environ["PYTHONHASHSEED"] = "0" np.random.seed(7) rn.seed(7) from sklearn.model_selection import ( cross_validate, KFold, cross_val_score, train_test_split, cross_val_predict, ) from sklearn.metrics import make_scorer, roc_auc_score import xgboost as xgb train_df = pd.read_csv( "/kaggle/input/1056lab-diabetes-diagnosis/train.csv", index_col=0 ) test_df = pd.read_csv("/kaggle/input/1056lab-diabetes-diagnosis/test.csv", index_col=0) print(train_df.shape) print(test_df.shape) # 目的変数の確認 print(list(train_df["Diabetes"]).count(1)) print(list(train_df["Diabetes"]).count(0)) train_df["Gender"] = train_df["Gender"].map({"male": 0, "female": 1}) test_df["Gender"] = test_df["Gender"].map({"male": 0, "female": 1}) train_df["Chol/HDL ratio labels"] = 0 test_df["Chol/HDL ratio labels"] = 0 for i in range(train_df.shape[0]): if train_df["Chol/HDL ratio"].iloc[i] < 5.0: train_df["Chol/HDL ratio labels"].iloc[i] = 0 else: train_df["Chol/HDL ratio labels"].iloc[i] = 1 for i in range(test_df.shape[0]): if test_df["Chol/HDL ratio"].iloc[i] < 5.0: test_df["Chol/HDL ratio labels"].iloc[i] = 0 else: test_df["Chol/HDL ratio labels"].iloc[i] = 1 train_df X_train = train_df.drop("Diabetes", axis=1).values y_train = train_df["Diabetes"].values print(X_train.shape) print(y_train.shape) # X_learn, X_valid, y_learn, y_valid = train_test_split(X_train, y_train, test_size=0.2, random_state=0) # print('学習用データ:', X_learn.shape, y_learn.shape) # print('検証用データ:', y_valid.shape, y_valid.shape) # from sklearn.model_selection import GridSearchCV # import xgboost as xgb # reg = xgb.XGBClassifier() # params = {'random_state':[0, 1], 'n_estimators':[100, 300, 500, 1000], 'max_depth':[1, 2, 3, 4, 5, 6], # 'learning_rate':[0.5, 0.1, 0.05, 0.01]} # gscv = GridSearchCV(reg, params, cv=3) # gscv.fit(X_res, y_res) # CrossValidation from imblearn.over_sampling import SMOTE from lightgbm import LGBMClassifier from sklearn.model_selection import GridSearchCV from keras.utils.np_utils import to_categorical kf = KFold(n_splits=5, shuffle=False) score_l = [] score_v = [] for i in kf.split(X_train, y_train): X_learn_s, y_learn_s = X_train[i[0]], y_train[i[0]] X_valid_s, y_valid_s = X_train[i[1]], y_train[i[1]] # 不均衡データ対策 ros = SMOTE(random_state=0) X_res, y_res = ros.fit_sample(X_learn_s, y_learn_s) Y_learn_s = to_categorical(y_learn_s) Y_valid_s = to_categorical(y_valid_s) # オーバーサンプリング後に行う前処理 # a = np.insert(a, 2, 1, axis=1) # for n in range(X_res.shape[0]): # if X_res[n][2] < 5.0: # np.append(X_res[n], 0) # if X_res[n][2] >= 5.0: # np.append(X_res[n], 1) clf = LGBMClassifier() clf.fit(X_res, y_res) pre_l = clf.predict_proba(X_learn_s) pre_v = clf.predict_proba(X_valid_s) score_l.append(roc_auc_score(Y_learn_s[:, 1], pre_l[:, 1])) score_v.append(roc_auc_score(Y_valid_s[:, 1], pre_v[:, 1])) print("CrossValidation(learn_data) : ", sum(score_l) / len(score_l)) print("CrossValidation(val_data) : ", sum(score_v) / len(score_v)) # a = [[0,0], [1,1], [2,2]] # a = np.array(a) # a # a = np.insert(a, 2, 1, axis=1) # a X_res score_v # def auc_score(y_test,y_pred): # return roc_auc_score(y_test,y_pred) # kf = KFold(n_splits=4, shuffle=True, random_state=0) # score_func = {'auc':make_scorer(auc_score)} # scores = cross_validate(gscv, X_train, y_train, cv = kf, scoring=score_func) # print('auc:', scores['test_auc'].mean()) # from sklearn.model_selection import cross_val_score # scores = cross_val_score(gscv, X_valid, y_valid, cv=kf) # scores.mean() reg = LGBMClassifier() ros = SMOTE(random_state=0) X, y = ros.fit_sample(X_train, y_train) reg.fit(X, y) test = test_df.values p = reg.predict_proba(test) sample = pd.read_csv("/kaggle/input/1056lab-diabetes-diagnosis/sampleSubmission.csv") sample["Diabetes"] = p[:, 1] sample.to_csv("pre.csv", index=False)
import numpy as np def schaffer(p): x1, x2 = p part1 = np.square(x1) - np.square(x2) part2 = np.square(x1) + np.square(x2) return 0.5 + (np.square(np.sin(part1)) - 0.5) / np.square(1 + 0.001 * part2) from sko.GA import GA ga = GA( func=schaffer, n_dim=2, size_pop=50, max_iter=800, prob_mut=0.001, lb=[-1, -1], ub=[1, 1], precision=1e-7, ) best_x, best_y = ga.run() print("best_x:", best_x, "\n", "best_y:", best_y) # %% Plot the result import pandas as pd import matplotlib.pyplot as plt Y_history = pd.DataFrame(ga.all_history_Y) fig, ax = plt.subplots(2, 1) ax[0].plot(Y_history.index, Y_history.values, ".", color="red") Y_history.min(axis=1).cummin().plot(kind="line") plt.show() import numpy as np import torch import time def schaffer(p): """ This function has plenty of local minimum, with strong shocks global minimum at (0,0) with value 0 https://en.wikipedia.org/wiki/Test_functions_for_optimization """ x1, x2 = p part1 = np.square(x1) - np.square(x2) part2 = np.square(x1) + np.square(x2) return 0.5 + (np.square(np.sin(part1)) - 0.5) / np.square(1 + 0.001 * part2) import torch from sko.GA import GA device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") ga = GA( func=schaffer, n_dim=2, size_pop=50, max_iter=800, lb=[-1, -1], ub=[1, 1], precision=1e-7, ) ga.to(device=device) start_time = time.time() best_x, best_y = ga.run() print(time.time() - start_time) print("best_x:", best_x, "\n", "best_y:", best_y) ga = GA( func=schaffer, n_dim=2, size_pop=50, max_iter=800, lb=[-1, -1], ub=[1, 1], precision=1e-7, ) start_time = time.time() best_x, best_y = ga.run() print(time.time() - start_time) print("best_x:", best_x, "\n", "best_y:", best_y) def obj_func(p): x1, x2, x3 = p return x1**2 + x2**2 + x3**2 constraint_eq = [lambda x: 1 - x[1] - x[2]] constraint_ueq = [lambda x: 1 - x[0] * x[1], lambda x: x[0] * x[1] - 5] from sko.DE import DE de = DE( func=obj_func, n_dim=3, size_pop=50, max_iter=800, lb=[0, 0, 0], ub=[5, 5, 5], constraint_eq=constraint_eq, constraint_ueq=constraint_ueq, ) # 等式约束与不等式约束 best_x, best_y = de.run() print("best_x:", best_x, "\n", "best_y:", best_y) import numpy as np from scipy import spatial import matplotlib.pyplot as plt num_points = 50 points_coordinate = np.random.rand(num_points, 2) # generate coordinate of points distance_matrix = spatial.distance.cdist( points_coordinate, points_coordinate, metric="euclidean" ) def cal_total_distance(routine): """The objective function. input routine, return total distance. cal_total_distance(np.arange(num_points)) """ (num_points,) = routine.shape return sum( [ distance_matrix[routine[i % num_points], routine[(i + 1) % num_points]] for i in range(num_points) ] ) from sko.GA import GA_TSP ga_tsp = GA_TSP( func=cal_total_distance, n_dim=num_points, size_pop=50, max_iter=500, prob_mut=1 ) best_points, best_distance = ga_tsp.run() fig, ax = plt.subplots(1, 2) best_points_ = np.concatenate([best_points, [best_points[0]]]) best_points_coordinate = points_coordinate[best_points_, :] ax[0].plot(best_points_coordinate[:, 0], best_points_coordinate[:, 1], "o-r") ax[1].plot(ga_tsp.generation_best_Y) plt.show() def demo_func(x): x1, x2, x3 = x return x1**2 + (x2 - 0.05) ** 2 + x3**2 # %% Do PSO from sko.PSO import PSO constraint_ueq = (lambda x: (x[0] - 1) ** 2 + (x[1] - 0) ** 2 - 0.5**2,) pso = PSO( func=demo_func, n_dim=3, pop=40, max_iter=150, lb=[0, -1, 0.5], ub=[1, 1, 1], w=0.8, c1=0.5, c2=0.5, constraint_ueq=constraint_ueq, ) pso.run() print("best_x is ", pso.gbest_x, "best_y is", pso.gbest_y) # %% Plot the result import matplotlib.pyplot as plt plt.plot(pso.gbest_y_hist) plt.show() demo_func = lambda x: x[0] ** 2 + (x[1] - 0.05) ** 2 + x[2] ** 2 # %% Do SA from sko.SA import SA sa = SA(func=demo_func, x0=[1, 1, 1], T_max=1, T_min=1e-9, L=300, max_stay_counter=150) best_x, best_y = sa.run() print("best_x:", best_x, "best_y", best_y) # %% Plot the result import matplotlib.pyplot as plt import pandas as pd plt.plot(pd.DataFrame(sa.best_y_history).cummin(axis=0)) plt.show() # %% from sko.SA import SAFast sa_fast = SAFast( func=demo_func, x0=[1, 1, 1], T_max=1, T_min=1e-9, q=0.99, L=300, max_stay_counter=150, ) sa_fast.run() print( "Fast Simulated Annealing: best_x is ", sa_fast.best_x, "best_y is ", sa_fast.best_y ) # %% from sko.SA import SAFast sa_fast = SAFast( func=demo_func, x0=[1, 1, 1], T_max=1, T_min=1e-9, q=0.99, L=300, max_stay_counter=150, lb=[-1, 1, -1], ub=[2, 3, 4], ) sa_fast.run() print( "Fast Simulated Annealing with bounds: best_x is ", sa_fast.best_x, "best_y is ", sa_fast.best_y, ) # %% from sko.SA import SABoltzmann sa_boltzmann = SABoltzmann( func=demo_func, x0=[1, 1, 1], T_max=1, T_min=1e-9, q=0.99, L=300, max_stay_counter=150, ) sa_boltzmann.run() print( "Boltzmann Simulated Annealing: best_x is ", sa_boltzmann.best_x, "best_y is ", sa_boltzmann.best_y, ) # %% from sko.SA import SABoltzmann sa_boltzmann = SABoltzmann( func=demo_func, x0=[1, 1, 1], T_max=1, T_min=1e-9, q=0.99, L=300, max_stay_counter=150, lb=-1, ub=[2, 3, 4], ) sa_boltzmann.run() print( "Boltzmann Simulated Annealing with bounds: best_x is ", sa_boltzmann.best_x, "best_y is ", sa_boltzmann.best_y, ) # %% from sko.SA import SACauchy sa_cauchy = SACauchy( func=demo_func, x0=[1, 1, 1], T_max=1, T_min=1e-9, q=0.99, L=300, max_stay_counter=150, ) sa_cauchy.run() print( "Cauchy Simulated Annealing: best_x is ", sa_cauchy.best_x, "best_y is ", sa_cauchy.best_y, ) # %% from sko.SA import SACauchy sa_cauchy = SACauchy( func=demo_func, x0=[1, 1, 1], T_max=1, T_min=1e-9, q=0.99, L=300, max_stay_counter=150, lb=[-1, 1, -1], ub=[2, 3, 4], ) sa_cauchy.run() print( "Cauchy Simulated Annealing with bounds: best_x is ", sa_cauchy.best_x, "best_y is ", sa_cauchy.best_y, ) import numpy as np from sko.demo_func import function_for_TSP num_points, points_coordinate, distance_matrix, cal_total_distance = function_for_TSP( num_points=10 ) # %% from sko.IA import IA_TSP ia_tsp = IA_TSP( func=cal_total_distance, n_dim=num_points, size_pop=500, max_iter=800, prob_mut=0.2, T=0.7, alpha=0.95, ) best_points, best_distance = ia_tsp.run() print("best routine:", best_points, "best_distance:", best_distance) # %% # step3: plot import matplotlib.pyplot as plt fig, ax = plt.subplots(1, 1) best_points_ = np.concatenate([best_points, [best_points[0]]]) best_points_coordinate = points_coordinate[best_points_, :] ax.plot(best_points_coordinate[:, 0], best_points_coordinate[:, 1], "o-r") plt.show()
# ## Reading data # First we remove duplicates in this dataset. import pandas as pd import numpy as np import matplotlib.pyplot as plt df_original = pd.read_csv("../input/chemicals-in-cosmetics/chemicals-in-cosmetics.csv") df = df_original.drop_duplicates() print("The original database shape:", df_original.shape) print("Database without duplicates:", df.shape) df.head() # ## Investigating chemical counts df["ChemicalName"].value_counts().size # Overall there are 123 different chemicals that are reported. # Based on the description, each entry in column 'ChemicalCount' is the total number of current chemicals reported for a product. This number does not include chemicals that have been removed from a product. Also, this number is a calculated field based on current reporting. df["ChemicalCount"].describe() # In average, products contain at least one chemical. Notice there are products with 0 chemicals, and there are products with 9 reported chemicals. # Let's first investigate products where 'ChemicalCount'=0. df.loc[df.ChemicalCount == 0].head() # The number of chemicals being equal to zero suggests that the chemicals were removed from the product (reported in 'ChemicalDateRemoved'). This can be verified by checking if there are NaN values in this column. # when the result is False, there are no NaN values df.loc[df.ChemicalCount == 0]["ChemicalDateRemoved"].isnull().max() # In the sequel, we will focus on products that have reported at least one chemical. df_n0 = df.loc[df.ChemicalCount > 0] # The maximum number of chemicals that is reported in a product is 9. We can find these products: df_n0.loc[df.ChemicalCount == 9] # It turns out it is only one product, where each chemical is separately reported. # The following code is used to generate the bar chart showing the number of products per number of chemicals. In counting the number of products, different color, scent and/or flavor of the product are neglected (e.g. though 'Professional Eyeshadow Base' can be beige or bright, it is counted only once with 'CDPHId'=26). data = df_n0.groupby(["ChemicalCount"]).nunique()["CDPHId"] fig = plt.figure(figsize=(9, 7)) ax = plt.subplot(111) ax.bar(data.index, data.values, log=True, align="center", alpha=0.5, edgecolor="k") ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.yaxis.set_ticks_position("left") ax.xaxis.set_ticks_position("bottom") ax.set_xticks(np.arange(1, 10)) for x, y in zip(data.index, data.values): plt.annotate(y, (x, y), textcoords="offset points", xytext=(0, 4), ha="center") ax.set_title("Number of reported products containing chemicals", fontsize=15) ax.title.set_position([0.5, 1.05]) ax.set_xlabel("Number of chemicals", fontsize=12) ax.set_ylabel("Number of products (log scale)", fontsize=12) plt.show() # ## Chemicals in baby products # Baby products represent one of the primary categories in this dataset. baby_prod = df_n0.loc[df_n0["PrimaryCategory"] == "Baby Products"] baby_prod.head() # The next code is used to find all chemicals present in baby products (listed and in a graph). We look for chemicals using their name, since their identification number is not unique (e.g. 'Lead' has 6484 and 6602 as 'ChemicalId') baby_prod_chem = baby_prod["ChemicalName"].value_counts() print(baby_prod_chem) # The long name 'Retinol/retinyl esters, when in daily dosages ...' will be replaced with 'Retinol'. The long name is stored in 'long_text', and a remark is given below the graph. long_text = baby_prod_chem.index[2] print("Old chemical name: ", long_text) print() baby_prod_chem.rename({baby_prod_chem.index[2]: "Retinol *"}, inplace=True) print("New chemical name: ", baby_prod_chem.index[2]) fig = plt.figure(figsize=(10, 6)) ax = plt.subplot(111) ax.barh(baby_prod_chem.index, baby_prod_chem.values, color="red", alpha=0.6) ax.xaxis.grid(linestyle="--", linewidth=0.5) for x, y in zip(baby_prod_chem.values, baby_prod_chem.index): ax.annotate(x, (x, y), textcoords="offset points", xytext=(4, 0), va="center") ax.set_title("Chemicals in baby products", fontsize=15) ax.title.set_position([0.5, 1.02]) ax.set_xlabel("Number of baby products", fontsize=12) ax.set_xticks(np.arange(0, 22, 5)) plt.text(-0.15, -0.2, "* " + long_text, size=12, transform=ax.transAxes) plt.show() # List of all baby product names, containing at least one chemical, sorted by subcategory. reported_baby_prod = baby_prod[ ["ProductName", "CompanyName", "SubCategory"] ].sort_values("SubCategory") reported_baby_prod.columns = ["Baby product", "Company", "Type of product"] reported_baby_prod.style.hide_index()
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session df = pd.read_csv( "/kaggle/input/credit-risk-dataset/credit_risk_dataset.csv", encoding="latin" ) df.head(10) # # Applying multiple condition df[(df["person_income"] > 83000) & (df["person_emp_length"] > 4)][ "person_income" ].head() # # Applying multiple condition with loc df.loc[ (df["person_income"] > 83000) & (df["person_emp_length"] > 4), ["person_income"] ].head() # # Applying multiple condition with query function df.query("person_income > 83000 and person_emp_length > 4")["person_income"].head() df.head() # # Search with regex # ## (PERSONAL|EDUCATION|MEDICAL) is the regex applied filt_cond = df.loan_intent.str.contains(r"(PERSONAL|EDUCATION|MEDICAL)") df[filt_cond].head()
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. import seaborn as sns import matplotlib.pyplot as plt # **EDA - Data Analysis (Training data)** # **All helping functions for the program** # show function will help print data for quick testing def show(*args): for arg in args: print(arg, sep="\n") # display option for float values pd.set_option("display.float_format", lambda x: "%.3f" % x) # inline printing of matplotlib # **Importing data** train_data = pd.read_csv( "/kaggle/input/house-prices-advanced-regression-techniques/train.csv" ) show(train_data, train_data.shape) # **We have 1460 rows and 81 columns in the data** # storing all the columns of train_data all_columns = train_data.columns all_X = train_data.columns[:-1] all_y = train_data.columns[-1:] show(all_X, all_y, all_X.shape, all_y.shape) # **Data Analaysis for all independent variables and Dependent variables** # **Data Analysis - Independent Variables** # getting all the null data values in the dataset - X (independent variables) show(train_data[all_X].isnull().sum().sort_values(ascending=False)) missing_X = train_data[all_X].isnull().sum().sort_values(ascending=False) missing_X = missing_X[missing_X > 1] show(missing_X, missing_X.shape) # We have 19 columns with missing data missing_X.plot.bar() # percentage of missing data calculation missing_X_perc = ( train_data[all_X].isnull().sum() / train_data[all_X].isnull().count() ) * 100 missing_X_perc.sort_values(ascending=False) missing_X_perc[missing_X_perc > 0].sort_values(ascending=False) # **Data Analysis of SalePrice** # verifying that there are no missing data in the SalePrice train_data[all_y].isnull().sum() # **Cleaning the data** # all the columns with the highest number of missing values missing_X.index # drop the missing columns from the dataset # specifying 1 in the axis to drop the columns train_data = train_data.drop(missing_X.index, 1) # data is cleansed now show(train_data.columns, missing_X) # removing the 1 null value in the Electrical column train_data = train_data.drop(train_data[train_data["Electrical"].isnull()].index) # confirming that no null values exist in the train_data train_data.isnull().sum().max() # Analysing the SalePrice train_data["SalePrice"] train_data["LandContour"].dtype # **Splitting the data into Quantitative and Qualitative variables** quan_columns = [col for col in train_data if train_data.dtypes[col] != "object"] qual_columns = [col for col in train_data if train_data.dtypes[col] == "object"] show(quan_columns, qual_columns) show(len(quan_columns) + len(qual_columns)) show(len(quan_columns), len(qual_columns)) # removing Id, SalePrice from the Quantitative Columns quan_columns.remove("Id") quan_columns.remove("SalePrice") show(len(quan_columns), len(qual_columns)) # **Graphs - Normal Distribution Analysis for Quantitative Columns vs SalePrice** # Unpivot a DataFrame from wide to long format, optionally leaving identifiers set. f = pd.melt(train_data, value_vars=quan_columns) g = sns.FacetGrid(f, col="variable", col_wrap=3, sharex=False, sharey=False) g = g.map(sns.distplot, "value") # g.savefig('quantitative.png') quan_columns # **Analysing the Qualitative Variables for pvalue** qual_columns for i in train_data[qual_columns]: print(i, "\t", train_data[i].unique()) # **Box plot for analysing the Qualitative Data** def boxplot(x, y, **kwargs): sns.boxplot(x=x, y=y) x = plt.xticks(rotation=90) f = pd.melt(train_data, id_vars=["SalePrice"], value_vars=qual_columns) g = sns.FacetGrid(f, col="variable", col_wrap=3, sharex=False, sharey=False, height=5) g = g.map(boxplot, "value", "SalePrice") # save as fig # g.savefig('Qualitative_Data_Box_Plots.png')
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. from pyspark.sql import SparkSession from pyspark.ml import Pipeline import pyspark.sql.functions as F from pyspark.sql.types import DoubleType, StringType, StructType, StructField from pyspark.ml.feature import StringIndexer, VectorAssembler, QuantileDiscretizer from pyspark.ml.evaluation import MulticlassClassificationEvaluator from pyspark import SparkContext from pyspark.ml.classification import RandomForestClassifier from pyspark.ml.evaluation import MulticlassClassificationEvaluator # build spark session spark = SparkSession.builder.appName( "Spark on santander-customer-satisfaction" ).getOrCreate() # Loading data to spark session train_spark = spark.read.csv( "../input/santander-customer-satisfaction/train.csv", header="true", inferSchema="true", ) test_spark = spark.read.csv( "../input/santander-customer-satisfaction/test.csv", header="true", inferSchema="true", ) # Loading data panda to simplify data visuallization train = pd.read_csv("../input/santander-customer-satisfaction/train.csv") test = pd.read_csv("../input/santander-customer-satisfaction/test.csv") # # 1.Overview and understand data train_spark.printSchema() # #summary of the data # # Transfer spark to panda dataframe due to bad visibility in the kaggle Kernel. Maybe there is solution to have better display. train_spark.describe().limit(5).toPandas() train_spark.describe().toPandas() train_spark.limit(5).toPandas() # > Here I check number of rows for each ID? # * Conclusion: there is one row for one ID # from pyspark.sql.functions import col df_ID_count = train_spark.groupBy("ID").count().orderBy("count", ascending=False) # df_ID_count = train_spark.groupBy("ID").count().filter("`count` >= 10").sort(col("count").desc()) df_ID_count.show(20) # > function below will go through each column one by one to do the describe, it is really good pratic but it takes long time to process. Should not be used unless it requires to go through each parameters one by one. ##########warning take long time do not start it unless need to review each column on by one ##################### def describe_Column(df, column, target="TARGET", numRows=20): df.groupby(column).agg( F.count(column).alias("count"), F.mean(target).alias("mean"), F.stddev(target).alias("stddev"), F.min(target).alias("min"), F.max(target).alias("max"), ).orderBy("count", ascending=False).show(numRows) # for column, typ in train_spark_reduce.dtypes: # print(column) # describe_Column(train_spark_reduce, column) # please comment out lines above to use # check the type type(df_ID_count) df_Target_count = train_spark.groupBy("TARGET").count() df_Target_count.show() type(df_Target_count) # Understand the sample ratio. Balance between unsatisfied customers (1) and satisfied customers (0). import pyspark.sql.functions as f from pyspark.sql.window import Window df_Target_count = df_Target_count.withColumn( "ratio", f.col("count") / f.sum("count").over(Window.partitionBy()) ) df_Target_count.orderBy("ratio", ascending=False).show() import seaborn as sns from matplotlib import pyplot as plt print("Histogram plot ") sns.countplot("TARGET", data=train_spark.toPandas()) plt.title("Target size", fontsize=14) plt.show() print("Dataset is imbalanced") # # 2.Processing and cleaning data # # Data cleanning (remove irrelevant) # Assuming ID is not correlated with customer satisfaction so i drop it train_spark_NoID = train_spark.drop("ID") train_spark_NoID.limit(5).toPandas() # # Data cleanning (drop duplicate rows) # * maybe it is not good to drop, since different customer may have exist same profile print("Before dorp duplicate count: ", train_spark_NoID.count()) # drop duplicate train_spark_NoID_NoDupRow = train_spark_NoID.dropDuplicates() print("After dorp duplicate count: ", train_spark_NoID_NoDupRow.count()) train_spark_NoID_NoDupRow.distinct().count() # # Data cleanning (drop duplicate columns) # remove duplicated columns remove = [] cols = train.columns for i in range(len(cols) - 1): v = train[cols[i]].values for j in range(i + 1, len(cols)): if np.array_equal(v, train[cols[j]].values): remove.append(cols[j]) print("Before dorp duplicate column count: ", len(train_spark_NoID_NoDupRow.columns)) train_spark_NoID_NoDup = train_spark_NoID_NoDupRow.drop(*remove) print("After dorp duplicate column count: ", len(train_spark_NoID_NoDup.columns)) # # Data cleanning (remove distinct count =1 ) # * code below used pure spark dataframe, if it is in panda dataframe, it will be calcuate each column STD. # * Scripte is really slow, need improvement # * script below only get one distinct column therefore, I remove it from running # print("Before dorp column count: ",len(train_spark_NoID_NoDup.columns)) # #from pyspark.sql.functions import * is need for the countDistinct # from pyspark.sql.functions import * # #apply countDistinct on each column # col_counts = train_spark_NoID_NoDup.agg(*(countDistinct(col(c)).alias(c) for c in train_spark_NoID_NoDup.columns)).collect()[0].asDict() # #select the cols with Distinct count=1 in an array # cols_to_drop = [col for col in train_spark_NoID_NoDup.columns if col_counts[col] == 1 ] # #drop the selected column # train_spark_drop1Distinct = train_spark_NoID_NoDup.drop(*cols_to_drop) # print('Number of cols dropped: ',len(cols_to_drop)) # print("After dorp column count after removing distince count =1 : ",len(train_spark_drop1Distinct.columns)) train_spark_drop1Distinct = train_spark_NoID_NoDup # # Data cleanning (replace strange value in columns) # * the value -99999 looks werid/strange value, may need to replace # count name of werid number for each columns and sort by count count_series = train[train < -100000].count() df_count = count_series.to_frame().T df_count.max().sort_values(ascending=False).head() # only var3 column has the strange value -999999 # train_spark_drop1Distinct.filter(train_spark_drop1Distinct.var3 == -999999).toPandas() train_spark_drop = train_spark_drop1Distinct.withColumn( "var3", F.when( train_spark_drop1Distinct["var3"] < -100000, train["var3"].median() ).otherwise(train_spark_drop1Distinct["var3"]), ) # train_spark_drop.filter(train_spark_drop.var3 == -999999).toPandas() train_spark_drop.describe().toPandas() # # Check Null # * there is no null value columns from pyspark.sql.functions import * train_spark_drop.select( [count(when(isnan(c), c)).alias(c) for c in train_spark_drop.columns] ).toPandas() # # 3.Normalize Imbalanced data # * Most machine learning algorithms work best when the number of samples in each class are about equal. This is because most algorithms are designed to maximize accuracy and reduce error. import seaborn as sns from matplotlib import pyplot as plt print("Histogram plot after process data set") sns.countplot("TARGET", data=train_spark_drop.toPandas()) plt.title("Target size", fontsize=14) plt.show() import pyspark.sql.functions as f from pyspark.sql.window import Window df_Target_count_2 = train_spark_drop.groupBy("TARGET").count() df_Target_count_2.show() df_Target_count_2 = df_Target_count_2.withColumn( "ratio", f.col("count") / f.sum("count").over(Window.partitionBy()) ) df_Target_count_2.orderBy("ratio", ascending=False).show() # # Resampling techniques — Undersample majority class # Stratified Sampling can be used as well from time import * start_time = time() train_spark_1 = train_spark_drop.filter("TARGET =1") train_spark_0_OG = train_spark_drop.filter("TARGET =0") ratio = train_spark_1.count() / train_spark_0_OG.count() print("Before Undersample 1 and 0: ", ratio) train_spark_0, train_spark_dump = train_spark_0_OG.randomSplit([ratio, 1 - ratio]) # concate two dataframe together train_spark_Undersample = train_spark_0.union(train_spark_1) ratio_Undersample = ( train_spark_Undersample.filter("TARGET =1").count() / train_spark_Undersample.filter("TARGET =0").count() ) print("After Undersample 1 and 0: ", ratio_Undersample) end_time = time() elapsed_time = end_time - start_time print("Time for this session: %.3f seconds" % elapsed_time) import seaborn as sns from matplotlib import pyplot as plt print("After Normalize Target distribution ") sns.countplot("TARGET", data=train_spark_Undersample.toPandas()) plt.title("Target size", fontsize=14) plt.show() train_spark_Undersample.groupBy("TARGET").count().show() # # Feature Assembly feature_undersample = VectorAssembler( inputCols=train_spark_Undersample.columns[:-1], outputCol="features" ) feature_vector_undersample = feature_undersample.transform(train_spark_Undersample) # # Data split ( trainingData_undersample, testData_undersample, ) = feature_vector_undersample.randomSplit([0.8, 0.2], seed=11) # # 4.Modelling # # 4.1 Logistic Regression ## Logistic Regression from pyspark.ml.classification import LogisticRegression lr = LogisticRegression(labelCol="TARGET", featuresCol="features", maxIter=5) lrModel = lr.fit(trainingData_undersample) import matplotlib.pyplot as plt import numpy as np beta = np.sort(lrModel.coefficients) plt.plot(beta, label="LogisticRegression") plt.ylabel("Beta Coefficients") plt.legend(loc="lower right") plt.show() trainSet = lrModel.summary roc = trainSet.roc.toPandas() plt.plot(roc["FPR"], roc["TPR"], "-r", label="Logistic Regression ROC Curve") plt.legend(loc="lower right") plt.ylabel("False Positive Rate") plt.xlabel("True Positive Rate") plt.title("ROC Curve") plt.show() print("TrainSet areaUnderROC: " + str(trainSet.areaUnderROC)) # # 4.2 RandomForest # Random Forests are a group of decision trees, that uses Mojority of Votingfor each of the decision tree. This algorithm provides less risk of overfitting by combining decision trees. ## Random Forest Classifier from pyspark.ml.classification import RandomForestClassifier # Creating RandomForest model. rf = RandomForestClassifier(labelCol="TARGET", featuresCol="features", numTrees=2) ## train the model rfModel = rf.fit(trainingData_undersample) ## make predictions predictions = rfModel.transform(testData_undersample) rfPredictions = predictions.select("TARGET", "prediction", "probability") rfPredictions.show(10) # Besides Logistic Regression (like Decision Trees or Random Forest which lack a model summary), therefore I used class CurveMetrics(BinaryClassificationMetrics): from pyspark.mllib.evaluation import BinaryClassificationMetrics # Python: https://spark.apache.org/docs/latest/api/python/_modules/pyspark/mllib/common.html class CurveMetrics(BinaryClassificationMetrics): def __init__(self, *args): super(CurveMetrics, self).__init__(*args) def _to_list(self, rdd): points = [] # Note this collect could be inefficient for large datasets # considering there may be one probability per datapoint (at most) # The Scala version takes a numBins parameter, # but it doesn't seem possible to pass this from Python to Java for row in rdd.collect(): # Results are returned as type scala.Tuple2, # which doesn't appear to have a py4j mapping points += [(float(row._1()), float(row._2()))] return points def get_curve(self, method): rdd = getattr(self._java_model, method)().toJavaRDD() return self._to_list(rdd) # the probability of getting the output either as 0 or 1 # Returns as a list (false positive rate, true positive rate) preds = predictions.select("TARGET", "probability").rdd.map( lambda row: (float(row["probability"][1]), float(row["TARGET"])) ) points = CurveMetrics(preds).get_curve("roc") plt.figure() x_val = [x[0] for x in points] y_val = [x[1] for x in points] plt.title("ROC") plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") plt.plot(x_val, y_val, "-r", label="Random Forest Regression ROC Curve") plt.legend(loc="lower right") ## evaluate the Rnadom Forest Classifier from pyspark.ml.evaluation import BinaryClassificationEvaluator evaluator = BinaryClassificationEvaluator(labelCol="TARGET") evaluator.evaluate(predictions) print("Random Forest Test areaUnderROC: {}".format(evaluator.evaluate(predictions))) # # 4.3 Gradient-Boosted Tree Classifier # Gradient-Boosted Tree Classifiers are also a group of decision trees and they iteratively train decision trees in order to minimize a loss function. from pyspark.ml import Pipeline ## Gradient-Boosted Tree Classifier from pyspark.ml.classification import GBTClassifier stages = [] gbt = GBTClassifier(labelCol="TARGET", featuresCol="features", maxIter=5) pipeline = Pipeline(stages=stages + [gbt]) gbtModel = pipeline.fit(trainingData_undersample) from pyspark.ml.evaluation import MulticlassClassificationEvaluator predictions = gbtModel.transform(testData_undersample) # Show predictions predictions.select("TARGET", "prediction", "probability").show(10) # the probability of getting the output either as 0 or 1 # Returns as a list (false positive rate, true positive rate) preds_GBT = predictions.select("TARGET", "probability").rdd.map( lambda row: (float(row["probability"][1]), float(row["TARGET"])) ) points_GBT = CurveMetrics(preds_GBT).get_curve("roc") plt.figure() x_val = [x[0] for x in points_GBT] y_val = [x[1] for x in points_GBT] plt.title("ROC") plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") plt.plot(x_val, y_val, "-r", label="Gradient-Boosted Regression ROC Curve") plt.legend(loc="lower right") evaluator = BinaryClassificationEvaluator(labelCol="TARGET") print( "GBT Test Area Under ROC:" + str(evaluator.evaluate(predictions, {evaluator.metricName: "areaUnderROC"})) ) # # 5. ParamGridBuilder and CrossValidator # find the best model or parameters for a given dataset to improve the performance # # *I did run the code because it is time consuming and PC power.***** from pyspark.ml.tuning import ParamGridBuilder, CrossValidator paramGrid = ( ParamGridBuilder() .addGrid(lr.aggregationDepth, [2, 5, 10]) .addGrid(lr.elasticNetParam, [0.0, 0.5, 1.0]) .addGrid(lr.fitIntercept, [False, True]) .addGrid(lr.maxIter, [10, 100, 1000]) .addGrid(lr.regParam, [0.01, 0.5, 2.0]) .build() ) # Model tuning, it find the best model or parameters for a given dataset to improve the performance. cv = CrossValidator( estimator=lr, estimatorParamMaps=paramGrid, evaluator=evaluator, numFolds=2 ) # Run cross validations cvModel = cv.fit(trainingData_undersample) predict_train = cvModel.transform(trainingData_undersample) predict_test = cvModel.transform(testData_undersample) print( "Cross-validation areaUnderROC for train set is {}".format( evaluator.evaluate(predict_train) ) ) print( "Cross-validation areaUnderROC for test set is {}".format( evaluator.evaluate(predict_test) ) ) # # Resampling Techniques — Oversample minority class # * Oversampling can be defined as adding more copies of the minority class. Oversampling can be a good choice when you don’t have a ton of data to work with. # * panda dataframe I would use SMOTE to oversample (I used SMOTE for panda analysis which I did) # # Important Note # Always split into test and train sets BEFORE trying oversampling techniques! Oversampling before splitting the data can allow the exact same observations to be present in both the test and train sets. This can allow our model to simply memorize specific data points and cause overfitting and poor generalization to the test data. (trainingData_spark, testData_spark) = train_spark_drop.randomSplit([0.8, 0.2], seed=11) from time import * start_time = time() train_spark_1_over_OG = trainingData_spark.filter("TARGET =1") train_spark_0_over = trainingData_spark.filter("TARGET =0") ratio = train_spark_1_over_OG.count() / train_spark_0_over.count() print("Before oversample ratio 1 and 0: ", ratio) sampleRatio = train_spark_0_over.count() / trainingData_spark.count() print("sampleRatio:", sampleRatio) # duplicate the minority rows # explode_range explode_range = range(int(train_spark_0_over.count() / train_spark_1_over_OG.count())) train_spark_1_over = train_spark_1_over_OG.withColumn( "dummy", explode(array([lit(x) for x in explode_range])) ).drop("dummy") # print(train_spark_1_over.count()) # concate two dataframe together train_spark_oversample = train_spark_1_over.union(train_spark_0_over) ratio_oversample = (train_spark_oversample.filter("TARGET =1")).count() / ( train_spark_oversample.filter("TARGET =0") ).count() print("After oversample ratio 1 and 0: ", ratio_oversample) end_time = time() elapsed_time = end_time - start_time print("Time for this session: %.3f seconds" % elapsed_time) import seaborn as sns from matplotlib import pyplot as plt print("After Normalize Target distribution ") sns.countplot("TARGET", data=train_spark_oversample.toPandas()) plt.title("Target size", fontsize=14) plt.show() train_spark_oversample.groupBy("TARGET").count().show() # # Feature assembly # train_spark_oversample, testData_spark feature_oversample_train = VectorAssembler( inputCols=train_spark_oversample.columns[:-1], outputCol="features" ) trainingData_oversample = feature_oversample_train.transform(train_spark_oversample) feature_oversample_test = VectorAssembler( inputCols=testData_spark.columns[:-1], outputCol="features" ) testData_oversample = feature_oversample_test.transform(testData_spark) # trainingData_oversample, testData_oversample # # 6. Modelling # # 6.1 Logistic Regression ## Logistic Regression from pyspark.ml.classification import LogisticRegression lr = LogisticRegression(labelCol="TARGET", featuresCol="features", maxIter=5) lrModel = lr.fit(trainingData_oversample) import matplotlib.pyplot as plt import numpy as np beta = np.sort(lrModel.coefficients) plt.plot(beta, label="LogisticRegression") plt.ylabel("Beta Coefficients") plt.legend(loc="lower right") plt.show() trainSet = lrModel.summary roc = trainSet.roc.toPandas() plt.plot(roc["FPR"], roc["TPR"], "-r", label="Logistic Regression ROC Curve") plt.legend(loc="lower right") plt.ylabel("False Positive Rate") plt.xlabel("True Positive Rate") plt.title("ROC Curve") plt.show() print("TrainSet areaUnderROC: " + str(trainSet.areaUnderROC)) # # 6.2 RandomForest # trainingData_oversample, testData_oversample ## Random Forest Classifier from pyspark.ml.classification import RandomForestClassifier # Creating RandomForest model. rf = RandomForestClassifier(labelCol="TARGET", featuresCol="features", numTrees=2) ## train the model rfModel = rf.fit(trainingData_oversample) ## make predictions predictions = rfModel.transform(testData_oversample) rfPredictions = predictions.select("TARGET", "prediction", "probability") rfPredictions.show(10) # the probability of getting the output either as 0 or 1 # Returns as a list (false positive rate, true positive rate) preds = predictions.select("TARGET", "probability").rdd.map( lambda row: (float(row["probability"][1]), float(row["TARGET"])) ) points = CurveMetrics(preds).get_curve("roc") plt.figure() x_val = [x[0] for x in points] y_val = [x[1] for x in points] plt.title("ROC") plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") plt.plot(x_val, y_val, "-r", label="Random Forest Regression ROC Curve") plt.legend(loc="lower right") ## evaluate the Rnadom Forest Classifier from pyspark.ml.evaluation import BinaryClassificationEvaluator evaluator = BinaryClassificationEvaluator(labelCol="TARGET") evaluator.evaluate(predictions) print("Random Forest Test areaUnderROC: {}".format(evaluator.evaluate(predictions))) # # 6.3 Gradient-Boosted Tree Classifier # trainingData_oversample, testData_oversample from pyspark.ml import Pipeline ## Gradient-Boosted Tree Classifier from pyspark.ml.classification import GBTClassifier stages = [] gbt = GBTClassifier(labelCol="TARGET", featuresCol="features", maxIter=5) pipeline = Pipeline(stages=stages + [gbt]) gbtModel = pipeline.fit(trainingData_oversample) from pyspark.ml.evaluation import MulticlassClassificationEvaluator predictions = gbtModel.transform(testData_oversample) # Show predictions predictions.select("TARGET", "prediction", "probability").show(10) # the probability of getting the output either as 0 or 1 # Returns as a list (false positive rate, true positive rate) preds_GBT = predictions.select("TARGET", "probability").rdd.map( lambda row: (float(row["probability"][1]), float(row["TARGET"])) ) points_GBT = CurveMetrics(preds_GBT).get_curve("roc") plt.figure() x_val = [x[0] for x in points_GBT] y_val = [x[1] for x in points_GBT] plt.title("ROC") plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") plt.plot(x_val, y_val, "-r", label="Gradient-Boosted Regression ROC Curve") plt.legend(loc="lower right") evaluator = BinaryClassificationEvaluator(labelCol="TARGET") print( "GBT Test Area Under ROC:" + str(evaluator.evaluate(predictions, {evaluator.metricName: "areaUnderROC"})) ) # warning-----------------------------------------------------------------------------------------------warning # * code below is just extra things which I couldn't utilize. Could have good usage # # Feature selection Matrix (extra need bit more understanding and usage) # * find it interesting, but no time to understand optimiza the usage # * try it out with undersample data, since the data volumn is not high. # inspire from https://stackoverflow.com/questions/51831874/how-to-get-correlation-matrix-values-pyspark/51834729 from pyspark.ml.stat import Correlation from pyspark.ml.feature import VectorAssembler # drop target column corr_df = train_spark_oversample.drop("TARGET") # copying columns names column_names = corr_df.columns # get correlation matrix # matrix = Correlation.corr(feature_vector) vector_col = "corr_features" assembler = VectorAssembler( inputCols=train_spark_oversample.columns[:-1], outputCol=vector_col ) feature_vector = assembler.transform(train_spark_oversample).select(vector_col) matrix = Correlation.corr(feature_vector, vector_col) # Setting column names of datafram convert_matrix = (matrix.collect()[0][0]).toArray().tolist() df_matrix = pd.DataFrame(convert_matrix, column_names) df_matrix = pd.DataFrame(convert_matrix, column_names, column_names) df_matrix import matplotlib.ticker as ticker import matplotlib.cm as cm import matplotlib as mpl import matplotlib.pyplot as plt df_matrix_04 = df_matrix[(df_matrix[:] > 0.5) | (df_matrix[:] < -0.5)] df_matrix_04.head(20) fig, ax = plt.subplots(figsize=(10, 10)) sns.heatmap(df_matrix_04, cmap="YlGnBu") # collection of coloumns which need to be reomoved cols_to_drop_1 = [] # Looping through for col in range(len(df_matrix.columns)): for row in range(col): if (df_matrix.iloc[row, col] > 0.5 or df_matrix.iloc[row, col] < -0.5) and ( df_matrix.columns[row] not in cols_to_drop_1 ): cols_to_drop_1.append(df_matrix.columns[col]) train_spark_filter = train_spark_oversample.drop(*cols_to_drop_1) print("Number of cols dropped: ", len(cols_to_drop_1)) print("Number of cols train_spark_filter: ", len(train_spark_filter.columns)) # there is duplicate coloumn name therefore the size the big, need sometime to look into this. train_spark_filter.describe().toPandas() test_spark_filter = testData_spark.drop(*cols_to_drop_1) test_spark_filter.describe().toPandas()
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import os print(os.listdir("../input")) import fiona from datetime import datetime from ipywidgets import SelectionSlider, interact import geopandas as gpd import shapely # enable KML support which is disabled by default fiona.drvsupport.supported_drivers["kml"] = "rw" fiona.drvsupport.supported_drivers["KML"] = "rw" DEFAULT_FIGSIZE = (20, 8) DEFAULT_CRS = "EPSG3857" world = gpd.read_file(gpd.datasets.get_path("naturalearth_lowres"), crs=DEFAULT_CRS) def show_on_earth(*dfs): ax = world.plot(figsize=DEFAULT_FIGSIZE, edgecolor="gray", color="white") colors = ["blue", "green", "red", "orange", "tomato", "lime"] for color, df in zip(colors, dfs): df.plot(ax=ax, color=color) urls = [ "al052019_5day_001.zip", "al052019_5day_002.zip", "al052019_5day_003.zip", "al052019_5day_004.zip", "al052019_5day_004A.zip", "al052019_5day_005.zip", "al052019_5day_005A.zip", "al052019_5day_006.zip", "al052019_5day_006A.zip", "al052019_5day_007.zip", "al052019_5day_007A.zip", "al052019_5day_008.zip", "al052019_5day_008A.zip", "al052019_5day_009.zip", "al052019_5day_009A.zip", "al052019_5day_010.zip", "al052019_5day_010A.zip", "al052019_5day_011.zip", "al052019_5day_011A.zip", "al052019_5day_012.zip", "al052019_5day_012A.zip", "al052019_5day_013.zip", "al052019_5day_013A.zip", "al052019_5day_014.zip", "al052019_5day_014A.zip", "al052019_5day_015.zip", "al052019_5day_015A.zip", "al052019_5day_016.zip", "al052019_5day_016A.zip", "al052019_5day_017.zip", "al052019_5day_017A.zip", "al052019_5day_018.zip", "al052019_5day_018A.zip", "al052019_5day_019.zip", "al052019_5day_020.zip", "al052019_5day_021.zip", "al052019_5day_022.zip", "al052019_5day_023.zip", "al052019_5day_024.zip", "al052019_5day_024A.zip", "al052019_5day_025.zip", "al052019_5day_025A.zip", "al052019_5day_026.zip", "al052019_5day_026A.zip", "al052019_5day_027.zip", "al052019_5day_027A.zip", "al052019_5day_028.zip", "al052019_5day_028A.zip", "al052019_5day_029.zip", "al052019_5day_029A.zip", "al052019_5day_030.zip", "al052019_5day_030A.zip", "al052019_5day_031.zip", "al052019_5day_031A.zip", "al052019_5day_032.zip", "al052019_5day_032A.zip", "al052019_5day_033.zip", "al052019_5day_033A.zip", "al052019_5day_034.zip", "al052019_5day_034A.zip", "al052019_5day_035.zip", "al052019_5day_035A.zip", "al052019_5day_036.zip", "al052019_5day_036A.zip", "al052019_5day_037.zip", "al052019_5day_037A.zip", "al052019_5day_038.zip", "al052019_5day_038A.zip", "al052019_5day_039.zip", "al052019_5day_039A.zip", "al052019_5day_040.zip", "al052019_5day_040A.zip", "al052019_5day_041.zip", "al052019_5day_041A.zip", "al052019_5day_042.zip", "al052019_5day_042A.zip", "al052019_5day_043.zip", "al052019_5day_043A.zip", "al052019_5day_044.zip", "al052019_5day_044A.zip", "al052019_5day_045.zip", "al052019_5day_045A.zip", "al052019_5day_046.zip", "al052019_5day_046A.zip", "al052019_5day_047.zip", "al052019_5day_047A.zip", "al052019_5day_048.zip", "al052019_5day_048A.zip", "al052019_5day_049.zip", "al052019_5day_049A.zip", "al052019_5day_050.zip", "al052019_5day_050A.zip", "al052019_5day_051.zip", "al052019_5day_051A.zip", "al052019_5day_052.zip", "al052019_5day_052A.zip", "al052019_5day_053.zip", "al052019_5day_053A.zip", "al052019_5day_054.zip", "al052019_5day_054A.zip", "al052019_5day_055.zip", "al052019_5day_055A.zip", "al052019_5day_056.zip", "al052019_5day_056A.zip", "al052019_5day_057.zip", "al052019_5day_058.zip", "al052019_5day_059.zip", "al052019_5day_059A.zip", "al052019_5day_060.zip", "al052019_5day_060A.zip", "al052019_5day_061.zip", "al052019_5day_061A.zip", "al052019_5day_062.zip", "al052019_5day_062A.zip", "al052019_5day_063.zip", "al052019_5day_063A.zip", "al052019_5day_064.zip", ] base = "https://www.nhc.noaa.gov/gis/forecast/archive" hurrs = [gpd.read_file(f"{base}/{url}") for url in urls] hurricane_history = pd.concat(hurrs) hurricane_history.geometry = hurricane_history.geometry.apply(shapely.geometry.Polygon) hurricane_history = hurricane_history[hurricane_history["STORMTYPE"] == "HU"] hurricane_history.head() hurricane_history["date_time"] = hurricane_history["ADVDATE"].apply( lambda d: datetime.strptime( d[:1] + " " + d[1:3] + " " + " " + d[-11:], "%H %M %b %d %Y" ) ) hurricane_history = hurricane_history.set_index("date_time") hurricane_history.sort_index() hurricane_history = hurricane_history[hurricane_history["STORMTYPE"] == "HU"] hurricane_history = hurricane_history[~hurricane_history.index.duplicated(keep="first")] canada = gpd.read_file( "https://raw.githubusercontent.com/codeforamerica/click_that_hood/master/public/data/canada.geojson", crs=DEFAULT_CRS, ) states = gpd.read_file( "https://eric.clst.org/assets/wiki/uploads/Stuff/gz_2010_us_040_00_20m.json", crs=DEFAULT_CRS, ) north_pacific = pd.concat([canada, states]) north_pacific.head() show_on_earth(north_pacific) @interact(event_date=SelectionSlider(options=hurricane_history.index)) def show_timelapse(event_date): h = hurricane_history[hurricane_history.index == event_date] print(f"Calculating effected areas... {event_date}") effected_areas = north_pacific[north_pacific.intersects(h.unary_union)] print(f"{len(effected_areas)} areas effected by the hurricane") show_on_earth(h, north_pacific, effected_areas)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import librosa import librosa.display import IPython.display import matplotlib.pyplot as plt # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os # Any results you write to the current directory are saved as output. os.listdir("../input/train-test") train = pd.read_csv("../input/freesound-audio-tagging/train.csv") train audio_path = "../input/freesound-audio-tagging/audio_train/" from scipy.io import wavfile fname, label, verified = train.values[0] rate, data = wavfile.read(audio_path + fname) print(label) print("Sampling Rate:\t{}".format(rate)) print("Total Frames:\t{}".format(data.shape[0])) print(data) y, sr = librosa.load(audio_path + fname) IPython.display.Audio(data=y, rate=sr) a = np.load("../input/train-test/train_test.npy", allow_pickle=True) from tensorflow.keras.preprocessing.sequence import pad_sequences pad_audio_data = pad_sequences(a, maxlen=sr * 10, value=0, dtype="float32") pad_audio_data.shape labelEncoder = {} for i, label in enumerate(train["label"].unique()): labelEncoder[label] = i labelEncoder from tqdm import tqdm Encoding_label = np.zeros(9473, dtype=object) for i in tqdm(range(0, 9473)): fname, label, verified = train.values[i] Encoding_label[i] = labelEncoder[label] from tensorflow.keras.utils import to_categorical Encoding_label = to_categorical(Encoding_label, 41) plt.plot(data[:1024]) D = librosa.amplitude_to_db(librosa.stft(y[:1024]), ref=np.max) plt.plot(D.flatten()) plt.show() S = librosa.feature.melspectrogram(y, sr=sr) plt.figure(figsize=(12, 4)) librosa.display.specshow( librosa.power_to_db(S, ref=np.max), sr=sr, x_axis="time", y_axis="mel" ) plt.colorbar(format="%+2.0f dB") plt.tight_layout() plt.show() mfcc = librosa.feature.mfcc(y=y, sr=sr) plt.figure(figsize=(12, 4)) librosa.display.specshow(mfcc, x_axis="time") plt.colorbar(format="%+2.0f dB") plt.tight_layout() plt.show() min_level_db = -100 def _normalize(S): return np.clip( (librosa.power_to_db(S, ref=np.max) - min_level_db) / -min_level_db, 0, 1 ) norm_S = _normalize(S) plt.figure(figsize=(12, 4)) librosa.display.specshow(norm_S, sr=sr, x_axis="time", y_axis="mel") plt.title("norm mel power spectrogram") plt.colorbar(format="%+0.1f dB") plt.tight_layout() plt.show() from keras.models import Sequential from keras.layers import Conv1D, Dense, Dropout, MaxPool1D, Flatten input_length = sr * 10 n_classes = train["label"].unique().shape[0] input_audio_data = np.expand_dims(pad_audio_data, axis=2) def create_cnn(): model = Sequential() model.add( Conv1D(4, 16, activation="relu", padding="same", input_shape=(input_length, 1)) ) model.add(MaxPool1D(pool_size=5)) model.add(Dropout(0.1)) model.add(Conv1D(9, 16, activation="relu", padding="same")) model.add(MaxPool1D(pool_size=5)) model.add(Dropout(0.1)) model.add(Flatten()) model.add(Dense(units=100, activation="relu")) model.add(Dense(units=n_classes, activation="softmax")) model.compile( loss="categorical_crossentropy", metrics=["accuracy"], optimizer="adam" ) return model model = create_cnn() model.summary() history = model.fit(input_audio_data, Encoding_label, epochs=5, validation_split=1 / 6)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. # Import all required library import pandas as pd import numpy as np import os # to save model import pickle # Import visualization modules import matplotlib.pyplot as plt import seaborn as sns from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report data = pd.read_csv("/kaggle/input/glass/glass.csv") data.describe() data.head() # create new column for "Type" to "g_type" form 0 or 1. data["g_type"] = data.Type.map({1: 0, 2: 0, 3: 0, 5: 1, 6: 1, 7: 1}) data.head() # create "Glass correlation Marxix" features = ["RI", "Na", "Mg", "Al", "Si", "K", "Ca", "Ba", "Fe", "g_type"] mask = np.zeros_like(data[features].corr(), dtype=np.bool) mask[np.triu_indices_from(mask)] = True f, ax = plt.subplots(figsize=(16, 12)) plt.title("Glass Correlation Matrix", fontsize=25) sns.heatmap( data[features].corr(), linewidths=0.25, vmax=0.7, square=True, cmap="BuGn", # "BuGn_r" to reverse linecolor="b", annot=True, annot_kws={"size": 8}, mask=mask, cbar_kws={"shrink": 0.9}, ) y = data.g_type X = data.loc[:, ["Na", "Al", "Ba"]] data.Type.value_counts().sort_index() data.isnull().sum() # apply model Logistic regression model_logr = LogisticRegression() X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.3, random_state=10 ) output_model = model.fit(X_train, y_train) output_model pkl_filename = "pickle_model.pkl" with open(pkl_filename, "wb") as file: pickle.dump(model, file) # Load from file with open(pkl_filename, "rb") as file: pickle_model = pickle.load(file) # Calculate the accuracy score and predict target values score = pickle_model.score(X_test, y_test) print("Test score: {0:.2f} %".format(100 * score)) Ypredict = pickle_model.predict(X_test) model_logr.fit(X_train, y_train) y_predict = model_logr.predict(X_test) y_predict print(classification_report(y_test, y_predict)) from sklearn.metrics import confusion_matrix confusion_matrix(y_test, y_predict) plt.scatter(X, y, color="black")
# ## Let's look at the data first import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.linear_model import LogisticRegression, LogisticRegressionCV from sklearn.decomposition import PCA, TruncatedSVD from sklearn.pipeline import Pipeline from sklearn.model_selection import GridSearchCV # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) train = pd.read_csv("/kaggle/input/wy4vnuumx7y294p/train.csv") test = pd.read_csv("/kaggle/input/wy4vnuumx7y294p/test.csv") subm = pd.read_csv("/kaggle/input/wy4vnuumx7y294p/sample_submission.csv") # Any results you write to the current directory are saved as output. # subm.to_csv('/kaggle/working/submission.csv', index=False) train.head() subm.head() print(train.values[0]) print(train.isnull().values.any()) print(test.isnull().values.any()) # ### Distribution of train set (sentence 1 vs sentnece 2) s1_lens = train.sentence1.str.split().str.len() s2_lens = train.sentence2.str.split().str.len() print(len(train)) print(s1_lens.mean(), s1_lens.std(), s1_lens.min(), s1_lens.max()) print(s2_lens.mean(), s2_lens.std(), s2_lens.min(), s2_lens.max()) s1_lens.hist() s2_lens.hist() # ### Distribution of test set (sentence 1 vs sentnece 2) s1_lens = test.sentence1.str.split().str.len() s2_lens = test.sentence2.str.split().str.len() print(len(test)) print(s1_lens.mean(), s1_lens.std(), s1_lens.min(), s1_lens.max()) print(s2_lens.mean(), s2_lens.std(), s2_lens.min(), s2_lens.max()) s1_lens.hist() s2_lens.hist() # ## Create a corpus and fit TF-IDF corpus = pd.concat( [train.sentence1, train.sentence2, test.sentence1, test.sentence2], ignore_index=True, ) # corpus = [ # '17244 28497 16263', # '5464 4053 14577 8272 15775 3437 20163 8711', # '24645 8554 25911', # '14080 15907 25964 3099 26989 26797 3397 9553', # '14313 2348 4875 23364', # ] vectorizer = TfidfVectorizer( lowercase=False, strip_accents=None, tokenizer=lambda x: x.split(), preprocessor=lambda x: x, ngram_range=(1, 3), min_df=3, max_df=0.9, use_idf=1, smooth_idf=1, sublinear_tf=1, ) vectorizer.fit(corpus) vectorizer.get_feature_names() len(vectorizer.get_feature_names()) # ## Train with LR w/ and w/o PCA # Since TF-IDF creates very sparse features, let's try out with and without PCA first, before trying anything more complex like neural networks. Since the input is pair-wise there are several ways to deal with this: # - Sum/Subtract/Concatenate the inputs or their representations (we try this for LR) # - Use Siamese Networks and Contrastive Loss # ### First, without PCA train_x = vectorizer.transform(train.sentence1) + vectorizer.transform(train.sentence2) train_y = train.label.values test_x = vectorizer.transform(test.sentence1) + vectorizer.transform(test.sentence2) model = LogisticRegressionCV(dual=True, solver="liblinear", max_iter=100) # model.scores_ # model = LogisticRegression(C=1, dual=True, solver='liblinear') model.fit(train_x, train_y) train_preds = model.predict(train_x) sum(train_y == train_preds) / len(train_y) test_preds = model.predict(test_x) submid = pd.DataFrame({"id": subm["id"]}) submission = pd.concat([submid, pd.DataFrame(test_preds, columns=["label"])], axis=1) submission.to_csv("/kaggle/working/submission_cv_trigram_sub.csv", index=False) # ### Second, with PCA -> actually TruncatedSVD cuz input is sparse matrix # Define a pipeline to search for the best combination of PCA truncation and classifier regularization. pca = TruncatedSVD() logistic = LogisticRegression(dual=True, solver="liblinear", max_iter=100) pipe = Pipeline(steps=[("pca", pca), ("logistic", logistic)]) # Parameters of pipelines can be set using ‘__’ separated parameter names: param_grid = { "pca__n_components": [50, 100, 200, 300, 500, 1000], "logistic__C": [1e-4, 1e-3, 1e-2, 1e-1, 1, 1e1, 1e2, 1e3, 1e4], } search = GridSearchCV(pipe, param_grid, n_jobs=-1) search.fit(train_x, train_y) print("Best parameter (CV score=%0.3f):" % search.best_score_) print(search.best_params_)
# data analysis and wrangling import pandas as pd import numpy as np import random as rnd import csv import re from tabulate import tabulate # visualization import seaborn as sns import matplotlib.pyplot as plt # machine learning from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC, LinearSVC from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import Perceptron from sklearn.linear_model import SGDClassifier from sklearn.tree import DecisionTreeClassifier # NLP from textblob import TextBlob import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) test_df = pd.read_csv("../input/nlp-getting-started/test.csv") train_df = pd.read_csv("../input/nlp-getting-started/train.csv") combine = [train_df, test_df] print(train_df.columns.values) # preview the data train_df.head() # preview the data train_df.tail() train_df.info() print("_" * 40) test_df.info() train_df.describe() train_df.describe(include=["O"]) train_df["keyword"].unique() train_df["location"].unique() train_df[["keyword", "target"]].groupby(["keyword"], as_index=False).mean() uniqueKeys = [] keywordTarget = ( train_df[["keyword", "target"]].groupby(["keyword"], as_index=False).mean() ) for i in range(0, 221): uniqueKeys.append(keywordTarget["keyword"][i]) print(uniqueKeys) print("-" * 40) print(len(uniqueKeys)) test_df["keyword"].unique() train_df[["location", "target"]].groupby(["location"], as_index=False).mean() for dataset in combine: dataset["keyword"] = dataset["keyword"].fillna(0) train_df.head()
# Import libraries import numpy as np import pandas as pd import tensorflow as tf from tensorflow.keras import layers, models, regularizers from tensorflow.keras.utils import pad_sequences import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder from gensim.models import FastText import re import matplotlib.pyplot as plt # Read data df = pd.read_csv("/kaggle/input/human-stress-prediction/Stress.csv") df.head() df_x = df["text"] df_y = df["label"] y = df_y df_x.shape # Transform text into vectors x = df_x.tolist() x = [re.sub("^[A-Za-z0-9]", "", i).split(" ") for i in x] len(x[0]) fasttest = FastText(x, vector_size=4) x_embeds = [np.concatenate([fasttest.wv[i] for i in sent]) for sent in x] print(len(x_embeds[0])) x_embeds_padded = pad_sequences(x_embeds, padding="post", dtype="float64") x_embeds_padded[0].shape # Split into train and test sets x_train, x_test, y_train, y_test = train_test_split( x_embeds_padded, y, test_size=0.25, random_state=333 ) x_train.shape # Create 1D CNN Model n_samples, n_features = x_train.shape n_features model = models.Sequential() model.add( layers.Conv1D( 4, 32, kernel_regularizer=regularizers.l2(0.01), input_shape=(n_features, 1) ) ) model.add(layers.MaxPooling1D(pool_size=4)) model.add(layers.Flatten()) model.add(layers.Dense(256, kernel_regularizer=regularizers.l2(0.01))) model.add(layers.Dense(32, kernel_regularizer=regularizers.l2(0.01))) model.add(layers.Dense(1)) model.summary() model.compile( optimizer="adam", loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), metrics=["accuracy"], ) history = model.fit( x_train, y_train, epochs=10, validation_data=(x_test, y_test), verbose=2 ) plt.plot(history.history["loss"], label="loss") plt.plot(history.history["val_loss"], label="val_loss") plt.xlabel("Epoch") plt.ylabel("Loss") plt.ylim([0, 2]) plt.legend(loc="lower right") # Using Keras TextVectorization x_train, x_test, y_train, y_test = train_test_split( df_x, df_y, train_size=0.75, random_state=16 ) max_features = 3000 max_len = 400 vectorize_layer = layers.TextVectorization( max_tokens=max_features, output_sequence_length=max_len ) vectorize_layer.adapt(df_x) embedding_size = 8 n_filters = 16 kernel = (4, embedding_size) pool_size = (4, 1) model = models.Sequential() model.add(tf.keras.Input(shape=(1,), dtype=tf.string)) model.add(vectorize_layer) model.add(layers.Embedding(max_features, embedding_size)) model.add(layers.Reshape((max_len, embedding_size, 1))) model.add(layers.Conv2D(n_filters, kernel, kernel_regularizer=regularizers.l2(0.001))) model.add(layers.MaxPooling2D(pool_size=pool_size)) model.add(layers.Flatten()) model.add(layers.Dense(128)) model.add(layers.Dense(1, kernel_regularizer=regularizers.l2(0.001))) model.summary() weights = model.get_weights() model.compile( optimizer="adam", loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), metrics=["accuracy"], ) history = model.fit( x_train, y_train, epochs=5, validation_data=(x_test, y_test), verbose=2, callbacks=[tf.keras.callbacks.EarlyStopping(patience=1)], ) plt.plot(history.history["loss"], label="loss") plt.plot(history.history["val_loss"], label="val_loss") plt.xlabel("Epoch") plt.ylabel("Loss") plt.ylim([0, 1]) plt.legend() model.evaluate(x_test, y_test)
# # CIFAR MM # ## Initialisations # Pandas : librairie de manipulation de données # NumPy : librairie de calcul scientifique # MatPlotLib : librairie de visualisation et graphiques import pandas as pd import seaborn as sns from matplotlib import pyplot as plt import numpy as np from sklearn.metrics import * from sklearn.linear_model import * from sklearn.model_selection import * from sklearn.tree import * from sklearn.ensemble import * from sklearn.impute import KNNImputer from xgboost import * # Tensforflow : librairie de Deep Learning from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense from tensorflow.keras.utils import to_categorical # ## Lecture des images # Importation des données CIFAR10 from keras.datasets import cifar10 (X_train, y_train), (X_test, y_test) = cifar10.load_data() X_train.shape import random X_train_reduced = np.array(random.sample(list(X_train), 10000)) y_train.shape labels = [ "airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck", ] num_classes = 10 # ## Affichage des 50 premières images plt.figure(figsize=(10, 20)) for i in range(0, 49): plt.subplot(10, 5, i + 1) plt.axis("off") plt.imshow(X_test[i]) plt.title(labels[int(y_test[i])]) # ## Transformation du dataset pour machine learning # On "aplatit" les images pour obtenir un format similaire à MNIST : X_train1 = X_train.reshape(len(X_train), -1) X_test1 = X_test.reshape(len(X_test), -1) X_train_reduced = X_train.reshape(len(X_train), -1) X_train1.shape model = XGBClassifier(tree_method="gpu_hist", gpu_id=0) model.fit(X_train_reduced, y_train) y_hat = model.predict(X_test1) accuracy_score(y_test, y_hat) nb_classes = 10 model = Sequential() model.add(Dense(200, activation="relu")) model.add(Dense(100, activation="relu")) model.add(Dense(50, activation="relu")) model.add(Dense(nb_classes, activation="softmax")) X_train_reduced = X_train_reduced / 255 model.compile( loss="sparse_categorical_crossentropy", optimizer="adam", metrics=["accuracy"] ) histo = model.fit( X_train_reduced, y_train, validation_data=(X_test1, y_test), epochs=30, verbose=1 ) def plot_scores(histo): accuracies = histo.history["accuracy"] plt.plot(range(len(accuracies)), accuracies, "b") val_accuracies = histo.history["val_accuracy"] plt.plot(range(len(val_accuracies)), val_accuracies, "r") plot_scores(histo)
# # Feedback from judges # * The submission does a great job explaining hazard modelling. # * The visualizations that show the model training are easy to follow. # * The submission could have been easier to read if the model fitting output/code was hidden. # * The equation that represented the sum of player contributions could have more explanation. Locations, velocities and accelerations are mentioned, but it could be more explicit (accelerations/velocities in which direction? are they scaled in anyway?) # * The submission could benefit from having a stability test for the metric (i.e. how do players’ scores in weeks 1-4 compare to their scores in weeks 5-8). # * The results of the submission agree with intuition. # The offensive line protects the quarterback, providing time to find receivers. On the other hand, the defensive line tackles the offensive line to collapse the pocket. The interaction between these players makes the space of the pocket and also the time in the pocket until the pass result comes out (PktTime). # The time in the pocket is strongly affected by defensive and offensive formations. These formations determine what kind of interactions between players occurs, affecting the space around the quarterback. We can observe the time in the pocket, the pass result and who sacks the quarterback; however, how other players influence on this result is unclear. # To evaluate the contributions of all players, We adopt Cox proportional hazard model to express the distribution of the time in pocket. This model decomposes the hazard, the rate of the quarterback being sacked, to the sum of each player's contributions. To consider the interaction between players, we use a gated graph neural network that utilizes the Delaunay triangulation. # This notebook consists of the following topics. # * How to use hazard model for time in the pocket # * Definition of Cox proportional hazard model with gated graph neural networks # * Application 1: Model training # * Application 2: Hazard rate changes during play # * Application 3: Ranking of teams # The content of this notebook inherits my previous notebook in NFL Big Data Bowl 2022. See also https://www.kaggle.com/code/sryo188558/hazard-modeling-for-kickoff-punt-returns. # # How to use hazard model for time in pocket # Hazard modeling aims to model the duration until some events happen, given covariate information. For example, to know the efficacy of the medicine, doctors investigate how the medicine decreases the death rate. In hazard modeling, we estimate the hazard function instead of the probability density function. The hazard function is the instantaneous rate of the event occurrence. # We first split the time axis into frames and denote time until pocket is collapsed (PktTime) as the number of frames. This PktTime takes a discrete value, so we here estimate the discrete hazard function: # $h(r) = \mathrm{Pr} (r \leq R \leq r + 1)$ # # This function explains the probability of defensive line pressure collapsing the pocket at frame $r$. # After a quarterback receives a ball, the defensive line players try to sack this quarterback as soon as possible. In contrast, the offensive line players prevent the defensive line players from tackling the quarterback. In terms of the hazard function, defensive players try to increase $h(r)$, and offensive players decrease $h(r)$. # We aim to estimate how each player affects this hazard. It is not sufficient to evaluate players' contributions by simple stats like PktTime and sacks. For example, when a quarterback is sacked, how other defensive players contribute to this result is unclear. Using hazard values enables us to compare players' contributions between different positions. # # Cox proportional hazard model with gated graph neural networks # We adopt the **Cox proportional model** to express the hazard function. Cox proportional model divides the hazard function into two parts as # $$ # \begin{aligned} # h(r) = h_0(r) \cdot \exp(\phi(x)), \, \text{$x$ : covariates.} # \end{aligned} # $$ # The former indicates how the hazard function depends on time, and the latter indicates how it depends on the covariate information. The Cox model estimates the former part in a semiparametric manner without any model specification. # We define $\phi(x)$ as the summation of players' contributions. # $$ # \begin{aligned} # \phi(x) = \phi_\mathrm{R}(x_\mathrm{R} \mid x) + \sum_{i=1}^{10} \phi_\mathrm{O}(x^{(i)}_\mathrm{O} \mid x) + \sum_{j=1}^{11} \phi_\mathrm{D}(x^{(j)}_\mathrm{D} \mid x). # \end{aligned} # $$ # Here, $x_\mathrm{R}, \{x^{(i)}_\mathrm{O}\}_{i=1, \cdots, 10} \,\, , \{x^{(j)}_\mathrm{D}\}_{j=1, \cdots, 11} \, \, $ are player's information for a quarterback, offensive line players and defensive line players. Specifically, we use players' locations, velocities and accelerations as $x$. $\phi_\mathrm{R}(\cdot), \phi_\mathrm{O}(\cdot), \phi_\mathrm{D}(\cdot)$ are estimand functions that transform players' information into hazards. # Each player's contribution to the hazard is also affected by nearby players. We express these interactions as graph expressions. # First, we calculate the Delaunay diagram from players' locations and construct a graph indicating the nearby players' pairs. # Under this graph, we adopt **Gated Graph Neural Network** for expressing $\phi_\mathrm{R}(\cdot), \phi_\mathrm{O}(\cdot), \phi_\mathrm{D}(\cdot)$. # ![GNN.png](attachment:e77477c5-d4b2-48b2-8c91-ac76ee3ad49d.png) # # Application 1: Model training # First, we extract players' locations, velocities and accelerations at each frame and define the PktTime of this frame be the duration until the pocket is collapsed. Assume that censoring occurs when the pass result is "Complete" or "Incomplete"; there is a possibility that true PktTime is longer than the observed value. # We omit the details of our model, but this notebook contains its full implementation of it. For further information on gated graph neural networks, check the following paper. # * Li et al., Gated Graph Sequence Neural Networks, ICLR, 2020. import os os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" import numpy as np import tensorflow as tf import pandas as pd import networkx as nx import matplotlib.pyplot as plt import matplotlib.patches as patches from scipy.spatial import Delaunay from sklearn.model_selection import train_test_split from tqdm import tqdm import seaborn as sns import imageio from glob import glob from IPython import display import warnings warnings.filterwarnings("ignore") sns.set() sns.set_style("white") def find_adjacent(loc): n = loc.shape[0] delau = Delaunay(loc) adj = np.zeros((n, n)) ind = np.arange(n) for simplice in delau.simplices: adj[ind[simplice, np.newaxis], ind[simplice]] = 1.0 adj *= 1 - np.eye(n) return adj def extract_feature(game, play, play_detail, pff): frameId = play_detail.frameId.values event = play_detail.event.values frame_start = frameId[event == "ball_snap"][0] frame_end = frameId[ (event == "pass_forward") + (event == "qb_strip_sack") + (event == "qb_sack") ][0] frame_length = frame_end - frame_start + 1 play_detail = play_detail[(frameId >= frame_start) * (frameId <= frame_end)] homeTeam, awayTeam = game.homeTeamAbbr.values[0], game.visitorTeamAbbr.values[0] possessionTeam = play.possessionTeam.values[0] defensiveTeam = play.defensiveTeam.values[0] pff_role = pd.DataFrame( play_detail.nflId.map(dict(zip(pff.nflId.values, pff.pff_role.values))) ) pff_role.columns = ["pff_role"] play_detail = pd.concat([play_detail, pff_role], axis=1) vel = pd.concat( [ np.cos((-play_detail.dir.values + 90) / 360 * 2 * np.pi) * play_detail["s"], np.sin((-play_detail.dir.values + 90) / 360 * 2 * np.pi) * play_detail["s"], ], axis=1, ) vel.columns = ["vel_x", "vel_y"] acc = pd.concat( [ np.cos((-play_detail.o.values + 90) / 360 * 2 * np.pi) * play_detail["a"], np.sin((-play_detail.o.values + 90) / 360 * 2 * np.pi) * play_detail["a"], ], axis=1, ) acc.columns = ["acc_x", "acc_y"] play_detail = pd.concat([play_detail, vel, acc], axis=1) team = play_detail.team.values play_detail_offense, play_detail_defense = ( play_detail[team == possessionTeam], play_detail[team == defensiveTeam], ) position_offense = play_detail_offense.position position_defense = play_detail_defense.position play_detail_football = play_detail[team == "football"] play_detail_QB = play_detail_offense[position_offense == "QB"] play_detail_OL = play_detail_offense[position_offense == "OL"] play_detail_BR = play_detail_offense[position_offense == "BR"] play_detail_DL = play_detail_defense[position_defense == "DL"] play_detail_LB = play_detail_defense[position_defense == "LB"] play_detail_DB = play_detail_defense[position_defense == "DB"] dist = np.linalg.norm( play_detail_QB[["x", "y"]].values - play_detail_football[["x", "y"]].values, axis=-1, ) catch_frame = np.min(play_detail_QB.frameId.values[dist < 1]) - frame_start yardline = play.absoluteYardlineNumber.values[0] direction = 2.0 * ("left" == play_detail.playDirection.values[0]) - 1 play_detail = pd.concat( [ play_detail_QB, play_detail_OL, play_detail_BR, play_detail_DL, play_detail_LB, play_detail_DB, ], axis=0, ) loc = (play_detail[["x", "y"]].values - np.array([yardline, 53.3 / 2])) * direction vel = play_detail[["vel_x", "vel_y"]].values * direction acc = play_detail[["acc_x", "acc_y"]].values * direction x = np.hstack([loc, vel, acc]).reshape((22, -1, 6)).transpose((1, 0, 2)) loc_football = ( play_detail_football[["x", "y"]].values - np.array([yardline, 53.3 / 2]) ) * direction y = frame_length c = play.passResult.values[0] == "S" frameId = play_detail.frameId.values position = play_detail[frameId == frame_start].position.values nflId = play_detail[frameId == frame_start].nflId.values pff_role = play_detail[frameId == frame_start].pff_role.values m = np.array( (pff_role == "Pass") + (pff_role == "Pass Block") + (pff_role == "Pass Rush") ).astype(float) adj = [] for r in range(frame_length): a = np.zeros((22, 22)) a[np.ix_(m == 1, m == 1)] = find_adjacent(x[r, m == 1, :2]) adj.append(a) adj = np.stack(adj, axis=0) return ( x, m, adj, y, c, catch_frame, nflId, position, possessionTeam, defensiveTeam, loc_football, ) dirname = "/kaggle/input/nfl-big-data-bowl-2023" games = pd.read_csv(os.path.join(dirname, "games.csv")) plays = pd.read_csv(os.path.join(dirname, "plays.csv")) players = pd.read_csv(os.path.join(dirname, "players.csv")) tracking = pd.concat( [ pd.read_csv(os.path.join(dirname, "week" + str(i) + ".csv")) for i in [1, 2, 3, 4, 5, 6, 7, 8] ], axis=0, ) pffs = pd.read_csv(os.path.join(dirname, "pffScoutingData.csv")) nflId2position = dict(zip(players.nflId.values, players.officialPosition.values)) position2position = {} position2position.update(dict(zip(["QB"], ["QB"]))) position2position.update(dict(zip(["RB", "FB", "TE", "WR"], 4 * ["BR"]))) position2position.update(dict(zip(["C", "G", "T"], 3 * ["OL"]))) position2position.update(dict(zip(["LB", "ILB", "OLB", "MLB"], 4 * ["LB"]))) position2position.update(dict(zip(["DB", "CB", "FS", "SS"], 4 * ["DB"]))) position2position.update(dict(zip(["DE", "DT", "NT"], 3 * ["DL"]))) position = pd.DataFrame(tracking.nflId.map(nflId2position).map(position2position)) position.columns = ["position"] tracking = pd.concat([tracking, position], axis=1) xs, ms, adjs, ys, cs = [], [], [], [], [] catch_frames, nflIds, positions, offense_teams, defense_teams = [], [], [], [], [] gameIds = plays.gameId.values playIds = plays.playId.values ind = 0 inds = [] frame_max = 0 print("Loading Data") for gameId, playId in tqdm(zip(gameIds, playIds)): game = games[games.gameId.values == gameId] play = plays[(plays.gameId.values == gameId) * (plays.playId.values == playId)] play_detail = tracking[ (tracking.gameId.values == gameId) * (tracking.playId.values == playId) ] pff = pffs[(pffs.gameId.values == gameId) * (pffs.playId.values == playId)] try: ( x, m, adj, y, c, catch_frame, nflId, position, offense_team, defense_team, _, ) = extract_feature(game, play, play_detail, pff) if ( x.shape[1] == 22 and y > 0 and np.all(x[0, :11, 0] > 0) and np.all(x[0, 11:, 0] < 0) ): xs.append(x) ms.append(m) adjs.append(adj) ys.append(y) cs.append(c) catch_frames.append(catch_frame) nflIds.append(nflId) positions.append(position) offense_teams.append(offense_team) defense_teams.append(defense_team) if frame_max < x.shape[0]: frame_max = x.shape[0] inds.append(ind) ind += 1 except: pass extract_frames = np.arange(0, frame_max, 10) n_batch = 10 fs = np.stack( [np.hstack([np.ones(x.shape[0]), np.zeros(frame_max - x.shape[0])]) for x in xs] ) xs = np.stack( [np.pad(x, [[0, frame_max - x.shape[0]], [0, 0], [0, 0]], "constant") for x in xs] ) adjs = np.stack( [ np.pad(adj, [[0, frame_max - adj.shape[0]], [0, 0], [0, 0]], "constant") for adj in adjs ] ) ms, ys, cs = np.stack(ms), np.hstack(ys).astype(float), np.array(cs).astype(int) catch_frames, nflIds, positions, offense_teams, defense_teams = ( np.hstack(catch_frames), np.vstack(nflIds), np.vstack(positions), np.hstack(offense_teams), np.hstack(defense_teams), ) inds = np.stack(inds) ( inds_train, inds_eval, xs_train, xs_eval, adjs_train, adjs_eval, fs_train, fs_eval, ms_train, ms_eval, ys_train, ys_eval, cs_train, cs_eval, catch_frames_train, catch_frames_eval, nflIds_train, nflIds_eval, positions_train, positions_eval, offense_teams_train, offense_teams_eval, defense_teams_train, defense_teams_eval, ) = train_test_split( inds, xs, adjs, fs, ms, ys, cs, catch_frames, nflIds, positions, offense_teams, defense_teams, test_size=0.2, random_state=0, ) ( inds_test, inds_eval, xs_test, xs_eval, adjs_test, adjs_eval, fs_test, fs_eval, ms_test, ms_eval, ys_test, ys_eval, cs_test, cs_eval, catch_frames_test, catch_frames_eval, nflIds_test, nflIds_eval, positions_test, positions_eval, offense_teams_test, offense_teams_eval, defense_teams_test, defense_teams_eval, ) = train_test_split( inds_eval, xs_eval, adjs_eval, fs_eval, ms_eval, ys_eval, cs_eval, catch_frames_eval, nflIds_eval, positions_eval, offense_teams_eval, defense_teams_eval, test_size=0.5, random_state=0, ) X_orig = tf.constant( np.stack( sum( [ [x[extract_frame] for x, f in zip(xs, fs) if f[extract_frame] == 1] for extract_frame in extract_frames ], [], ) ), dtype=tf.float32, ) M_orig = tf.constant( np.vstack([ms[fs[:, extract_frame] == 1] for extract_frame in extract_frames]), dtype=tf.float32, ) A_orig = tf.constant( np.stack( sum( [ [ adj[extract_frame] for adj, f in zip(adjs, fs) if f[extract_frame] == 1 ] for extract_frame in extract_frames ], [], ) ), dtype=tf.float32, ) X_eval = tf.constant( np.stack( sum( [ [ x[extract_frame] for x, f in zip(xs_eval, fs_eval) if f[extract_frame] == 1 ] for extract_frame in extract_frames ], [], ) ), dtype=tf.float32, ) M_eval = tf.constant( np.vstack( [ms_eval[fs_eval[:, extract_frame] == 1] for extract_frame in extract_frames] ), dtype=tf.float32, ) A_eval = tf.constant( np.stack( sum( [ [ adj[extract_frame] for adj, f in zip(adjs_eval, fs_eval) if f[extract_frame] == 1 ] for extract_frame in extract_frames ], [], ) ), dtype=tf.float32, ) ys_eval = np.hstack( [ ys_eval[fs_eval[:, extract_frame] == 1] - extract_frame for extract_frame in extract_frames ] ) cs_eval = np.hstack( [cs_eval[fs_eval[:, extract_frame] == 1] for extract_frame in extract_frames] ) X_test = tf.constant( np.stack( sum( [ [ x[extract_frame] for x, f in zip(xs_test, fs_test) if f[extract_frame] == 1 ] for extract_frame in extract_frames ], [], ) ), dtype=tf.float32, ) M_test = tf.constant( np.vstack( [ms_test[fs_test[:, extract_frame] == 1] for extract_frame in extract_frames] ), dtype=tf.float32, ) A_test = tf.constant( np.stack( sum( [ [ adj[extract_frame] for adj, f in zip(adjs_test, fs_test) if f[extract_frame] == 1 ] for extract_frame in extract_frames ], [], ) ), dtype=tf.float32, ) ys_test = np.hstack( [ ys_test[fs_test[:, extract_frame] == 1] - extract_frame for extract_frame in extract_frames ] ) cs_test = np.hstack( [cs_test[fs_test[:, extract_frame] == 1] for extract_frame in extract_frames] ) xs_train = np.stack( sum( [ [ x[extract_frame] for x, f in zip(xs_train, fs_train) if f[extract_frame] == 1 ] for extract_frame in extract_frames ], [], ) ) ms_train = np.vstack( [ms_train[fs_train[:, extract_frame] == 1] for extract_frame in extract_frames] ) adjs_train = np.stack( sum( [ [ adj[extract_frame] for adj, f in zip(adjs_train, fs_train) if f[extract_frame] == 1 ] for extract_frame in extract_frames ], [], ) ) ys_train = np.hstack( [ ys_train[fs_train[:, extract_frame] == 1] - extract_frame for extract_frame in extract_frames ] ) cs_train = np.hstack( [cs_train[fs_train[:, extract_frame] == 1] for extract_frame in extract_frames] ) n = xs_train.shape[0] xs_train, ms_train, adjs_train, ys_train, cs_train = ( xs_train[: n // n_batch * n_batch], ms_train[: n // n_batch * n_batch], adjs_train[: n // n_batch * n_batch], ys_train[: n // n_batch * n_batch], cs_train[: n // n_batch * n_batch], ) xs_train, ms_train, adjs_train, ys_train, cs_train = ( np.vstack([xs_train, xs_train * np.array([1, -1, 1, -1, 1, -1])]), np.vstack([ms_train, ms_train]), np.vstack([adjs_train, adjs_train]), np.hstack([ys_train, ys_train]), np.hstack([cs_train, cs_train]), ) xs_train, ms_train, adjs_train, ys_train, cs_train = ( xs_train[np.argsort(ys_train)], ms_train[np.argsort(ys_train)], adjs_train[np.argsort(ys_train)], ys_train[np.argsort(ys_train)], cs_train[np.argsort(ys_train)], ) X, M, A = ( tf.constant(xs_train, dtype=tf.float32), tf.constant(ms_train, dtype=tf.float32), tf.constant(adjs_train, dtype=tf.float32), ) Xs, Ms, As = tf.split(X, n_batch), tf.split(M, n_batch), tf.split(A, n_batch) n = xs_train.shape[0] ys_unique, ys_index, ys_inverse, ys_count = np.unique( ys_train, return_index=True, return_inverse=True, return_counts=True ) ys_mask_index = np.arange(ys_unique[0], ys_unique[-1] + 1) ys_mask = tf.constant(ys_mask_index[:, np.newaxis] == ys_unique, dtype=tf.float32) cs_count = [] for j in ys_unique: cs_count.append(cs_train[ys_train == j].sum()) cs_count = np.array(cs_count) cs_mask = np.zeros((n, ys_unique.shape[0])) for j, index, count in zip(range(ys_unique.shape[0]), ys_index, ys_count): cs_mask[index : index + count, j] = 1.0 cs_mask = tf.constant(cs_mask, dtype=tf.float32) mask = tf.constant(ys_index <= np.arange(n)[:, np.newaxis], dtype=tf.float32) inf_array = tf.where( tf.cast(mask, tf.bool), 0, -tf.ones_like(mask, dtype=tf.float32) * np.inf ) df_true = 0.5 * (tf.sign(ys_mask_index - ys_eval[:, tf.newaxis]) + 1) m = ys_unique.shape[0] class DenseLayer(tf.keras.Model): def __init__( self, n_units, n_midlayers, dropout_rate, activation1=tf.nn.tanh, activation2=tf.nn.tanh, ): super(DenseLayer, self).__init__() self.activation1 = tf.keras.activations.get(activation1) self.activation2 = tf.keras.activations.get(activation2) self.n_midlayers = n_layers self.dense, self.dropout = [], [] for _ in range(n_layers - 1): self.dense.append(tf.keras.layers.Dense(n_units, activation=activation1)) self.dropout.append(tf.keras.layers.Dropout(dropout_rate)) self.dense.append(tf.keras.layers.Dense(n_units, activation=activation2)) def call(self, inputs, training=False, masks=None): if masks is None: generate_masks = True else: generate_masks = False masks_generate = [] for i in range(self.n_midlayers - 1): inputs = self.dense[i](inputs) if generate_masks: mask = self.dropout[i](tf.ones_like(inputs), training) else: mask = masks[i] masks_generate.append(mask) inputs = mask * inputs outputs = self.dense[i + 1](inputs) return outputs, masks_generate class GatedConvLayer(tf.keras.Model): def __init__(self, n_layerGRU, n_layers, dropout_rate): super(GatedConvLayer, self).__init__() self.n_layers = n_layers self.update_R, self.update_O, self.update_D = ( tf.keras.layers.Dense(n_layerGRU, activation=tf.nn.sigmoid), tf.keras.layers.Dense(n_layerGRU, activation=tf.nn.sigmoid), tf.keras.layers.Dense(n_layerGRU, activation=tf.nn.sigmoid), ) self.reset_R, self.reset_O, self.reset_D = ( tf.keras.layers.Dense(n_layerGRU, activation=tf.nn.sigmoid), tf.keras.layers.Dense(n_layerGRU, activation=tf.nn.sigmoid), tf.keras.layers.Dense(n_layerGRU, activation=tf.nn.sigmoid), ) self.modify_R, self.modify_O, self.modify_D = ( tf.keras.layers.Dense(n_layerGRU, activation=tf.nn.tanh), tf.keras.layers.Dense(n_layerGRU, activation=tf.nn.tanh), tf.keras.layers.Dense(n_layerGRU, activation=tf.nn.tanh), ) self.dropoutGRU_R, self.dropoutGRU_O, self.dropoutGRU_D = ( tf.keras.layers.Dropout(dropout_rate), tf.keras.layers.Dropout(dropout_rate), tf.keras.layers.Dropout(dropout_rate), ) ( self.dropoutGRU_neighbor_R, self.dropoutGRU_neighbor_O, self.dropoutGRU_neighbor_D, ) = ( tf.keras.layers.Dropout(dropout_rate), tf.keras.layers.Dropout(dropout_rate), tf.keras.layers.Dropout(dropout_rate), ) def call(self, inputs, training=False, masks=None): if masks is None: generate_masks = True else: generate_masks = False layerGRU_R, layerGRU_O, layerGRU_D, A = inputs if generate_masks: maskGRU_update_R, maskGRU_update_O, maskGRU_update_D = ( self.dropoutGRU_R(tf.ones_like(layerGRU_R), training), self.dropoutGRU_O(tf.ones_like(layerGRU_O), training), self.dropoutGRU_D(tf.ones_like(layerGRU_D), training), ) maskGRU_reset_R, maskGRU_reset_O, maskGRU_reset_D = ( self.dropoutGRU_R(tf.ones_like(layerGRU_R), training), self.dropoutGRU_O(tf.ones_like(layerGRU_O), training), self.dropoutGRU_D(tf.ones_like(layerGRU_D), training), ) maskGRU_modify_R, maskGRU_modify_O, maskGRU_modify_D = ( self.dropoutGRU_R(tf.ones_like(layerGRU_R), training), self.dropoutGRU_O(tf.ones_like(layerGRU_O), training), self.dropoutGRU_D(tf.ones_like(layerGRU_D), training), ) ( maskGRU_update_neighbor_R, maskGRU_update_neighbor_O, maskGRU_update_neighbor_D, ) = ( self.dropoutGRU_neighbor_R( tf.ones(tf.shape(layerGRU_R) * (1, 1, 2)), training ), self.dropoutGRU_neighbor_O( tf.ones(tf.shape(layerGRU_O) * (1, 1, 3)), training ), self.dropoutGRU_neighbor_D( tf.ones(tf.shape(layerGRU_D) * (1, 1, 3)), training ), ) ( maskGRU_reset_neighbor_R, maskGRU_reset_neighbor_O, maskGRU_reset_neighbor_D, ) = ( self.dropoutGRU_neighbor_R( tf.ones(tf.shape(layerGRU_R) * (1, 1, 2)), training ), self.dropoutGRU_neighbor_O( tf.ones(tf.shape(layerGRU_O) * (1, 1, 3)), training ), self.dropoutGRU_neighbor_D( tf.ones(tf.shape(layerGRU_D) * (1, 1, 3)), training ), ) ( maskGRU_modify_neighbor_R, maskGRU_modify_neighbor_O, maskGRU_modify_neighbor_D, ) = ( self.dropoutGRU_neighbor_R( tf.ones(tf.shape(layerGRU_R) * (1, 1, 2)), training ), self.dropoutGRU_neighbor_O( tf.ones(tf.shape(layerGRU_O) * (1, 1, 3)), training ), self.dropoutGRU_neighbor_D( tf.ones(tf.shape(layerGRU_D) * (1, 1, 3)), training ), ) else: ( maskGRU_update_R, maskGRU_update_O, maskGRU_update_D, maskGRU_reset_R, maskGRU_reset_O, maskGRU_reset_D, maskGRU_modify_R, maskGRU_modify_O, maskGRU_modify_D, maskGRU_update_neighbor_R, maskGRU_update_neighbor_O, maskGRU_update_neighbor_D, maskGRU_reset_neighbor_R, maskGRU_reset_neighbor_O, maskGRU_reset_neighbor_D, maskGRU_modify_neighbor_R, maskGRU_modify_neighbor_O, maskGRU_modify_neighbor_D, ) = masks masks_generate = [ maskGRU_update_R, maskGRU_update_O, maskGRU_update_D, maskGRU_reset_R, maskGRU_reset_O, maskGRU_reset_D, maskGRU_modify_R, maskGRU_modify_O, maskGRU_modify_D, maskGRU_update_neighbor_R, maskGRU_update_neighbor_O, maskGRU_update_neighbor_D, maskGRU_reset_neighbor_R, maskGRU_reset_neighbor_O, maskGRU_reset_neighbor_D, maskGRU_modify_neighbor_R, maskGRU_modify_neighbor_O, maskGRU_modify_neighbor_D, ] for l in range(self.n_layers): layerGRU_neighbor_R = tf.concat( [ tf.matmul(A[:, :1, 1:11], layerGRU_O), tf.matmul(A[:, :1, 11:], layerGRU_D), ], axis=-1, ) layerGRU_neighbor_O = tf.concat( [ tf.matmul(A[:, 1:11, :1], layerGRU_R), tf.matmul(A[:, 1:11, 1:11], layerGRU_O), tf.matmul(A[:, 1:11, 11:], layerGRU_D), ], axis=-1, ) layerGRU_neighbor_D = tf.concat( [ tf.matmul(A[:, 11:, :1], layerGRU_R), tf.matmul(A[:, 11:, 1:11], layerGRU_O), tf.matmul(A[:, 11:, 11:], layerGRU_D), ], axis=-1, ) z_R = self.update_R( tf.concat( [ layerGRU_R * maskGRU_update_R, layerGRU_neighbor_R * maskGRU_update_neighbor_R, ], 2, ) ) r_R = self.reset_R( tf.concat( [ layerGRU_R * maskGRU_reset_R, layerGRU_neighbor_R * maskGRU_reset_neighbor_R, ], 2, ) ) layerGRU_modified_R = self.modify_R( tf.concat( [ layerGRU_R * r_R * maskGRU_modify_R, layerGRU_neighbor_R * maskGRU_modify_neighbor_R, ], 2, ) ) z_O = self.update_O( tf.concat( [ layerGRU_O * maskGRU_update_O, layerGRU_neighbor_O * maskGRU_update_neighbor_O, ], 2, ) ) r_O = self.reset_O( tf.concat( [ layerGRU_O * maskGRU_reset_O, layerGRU_neighbor_O * maskGRU_reset_neighbor_O, ], 2, ) ) layerGRU_modified_O = self.modify_O( tf.concat( [ layerGRU_O * r_O * maskGRU_modify_O, layerGRU_neighbor_O * maskGRU_modify_neighbor_O, ], 2, ) ) z_D = self.update_D( tf.concat( [ layerGRU_D * maskGRU_update_D, layerGRU_neighbor_D * maskGRU_update_neighbor_D, ], 2, ) ) r_D = self.reset_D( tf.concat( [ layerGRU_D * maskGRU_reset_D, layerGRU_neighbor_D * maskGRU_reset_neighbor_D, ], 2, ) ) layerGRU_modified_D = self.modify_D( tf.concat( [ layerGRU_D * r_D * maskGRU_modify_D, layerGRU_neighbor_D * maskGRU_modify_neighbor_D, ], 2, ) ) layerGRU_R = (1.0 - z_R) * layerGRU_R + z_R * layerGRU_modified_R layerGRU_O = (1.0 - z_O) * layerGRU_O + z_O * layerGRU_modified_O layerGRU_D = (1.0 - z_D) * layerGRU_D + z_D * layerGRU_modified_D return layerGRU_R, layerGRU_O, layerGRU_D, masks_generate class GGNN(tf.keras.Model): def __init__(self, n_layerGRU, n_layers, n_blocks): super(GGNN, self).__init__() self.n_layerGRU, self.n_layers, self.n_blocks = n_layerGRU, n_layers, n_blocks self.denseGRU_R = DenseLayer(n_layerGRU, n_midlayers, dropout_rate) self.denseGRU_O = DenseLayer(n_layerGRU, n_midlayers, dropout_rate) self.denseGRU_D = DenseLayer(n_layerGRU, n_midlayers, dropout_rate) self.dense_R, self.dense_O, self.dense_D = ( tf.keras.layers.Dense(1), tf.keras.layers.Dense(1), tf.keras.layers.Dense(1), ) self.mask_R, self.mask_O, self.mask_D = ( tf.keras.layers.Dense(1, activation=tf.nn.sigmoid), tf.keras.layers.Dense(1, activation=tf.nn.sigmoid), tf.keras.layers.Dense(1, activation=tf.nn.sigmoid), ) self.gcls = [ GatedConvLayer(n_layerGRU, n_layers, dropout_rate) for _ in range(n_blocks) ] def call(self, X, A, M, training=False, masks=None): if masks is None: generate_masks = True masks_dense, masks_gcl = [], [] else: generate_masks = False masks_dense, masks_gcl = masks X_R = tf.slice(X, [0, 0, 0], [-1, 1, -1]) X_O = tf.concat( [tf.tile(X_R, (1, 10, 1)), tf.slice(X, [0, 1, 0], [-1, 10, -1])], axis=2 ) X_D = tf.concat( [tf.tile(X_R, (1, 11, 1)), tf.slice(X, [0, 11, 0], [-1, 11, -1])], axis=2 ) M_R, M_O, M_D = ( tf.slice(M, [0, 0], [-1, 1]), tf.slice(M, [0, 1], [-1, 10]), tf.slice(M, [0, 11], [-1, 11]), ) if generate_masks: layerGRU_R, masks_dense_R = self.denseGRU_R(X_R, training) layerGRU_O, masks_dense_O = self.denseGRU_O(X_O, training) layerGRU_D, masks_dense_D = self.denseGRU_D(X_D, training) masks_dense = [masks_dense_R, masks_dense_O, masks_dense_D] else: masks_dense_R, masks_dense_O, masks_dense_D = masks_dense layerGRU_R, _ = self.denseGRU_R(X_R, training, masks_dense_R) layerGRU_O, _ = self.denseGRU_O(X_O, training, masks_dense_O) layerGRU_D, _ = self.denseGRU_D(X_D, training, masks_dense_D) for i in range(self.n_blocks): if generate_masks: layerGRU_R, layerGRU_O, layerGRU_D, mask_gcl = self.gcls[i]( [layerGRU_R, layerGRU_O, layerGRU_D, A], training ) masks_gcl.append(mask_gcl) else: layerGRU_R, layerGRU_O, layerGRU_D, _ = self.gcls[i]( [layerGRU_R, layerGRU_O, layerGRU_D, A], training, masks=masks_gcl[i], ) masks_generate = [masks_dense, masks_gcl] maskGRU_R, maskGRU_O, maskGRU_D = ( self.mask_R(layerGRU_R), self.mask_O(layerGRU_O), self.mask_D(layerGRU_D), ) layerGRU_R, layerGRU_O, layerGRU_D = ( self.dense_R(layerGRU_R), self.dense_O(layerGRU_O), self.dense_D(layerGRU_D), ) out_players = tf.concat( [ M_R[:, :, tf.newaxis] * layerGRU_R * maskGRU_R, M_O[:, :, tf.newaxis] * layerGRU_O * maskGRU_O, M_D[:, :, tf.newaxis] * layerGRU_D * maskGRU_D, ], axis=1, ) out = tf.reduce_sum(out_players, 1) return out, out_players, masks_generate @tf.function(experimental_compile=True) def call_batch(X_batch, A_batch, M_batch): out_batch, _, masks_batch = model.call(X_batch, A_batch, M_batch, True) return out_batch, masks_batch @tf.function(experimental_compile=True) def compute_gradients_batch(X_batch, A_batch, M_batch, masks_batch, outs_grad_batch): with tf.GradientTape() as tape: out_batch, _, _ = model.call(X_batch, A_batch, M_batch, True, masks_batch) cost_batch = tf.reduce_sum(outs_grad_batch * out_batch) gradients_batch = tape.gradient(cost_batch, model.trainable_variables) return gradients_batch, cost_batch @tf.function def compute_gradients(model, Xs, As, Ms): outs = [] masks = [] for i in range(n_batch): out_batch, masks_batch = call_batch(Xs[i], As[i], Ms[i]) outs.append(out_batch) masks.append(masks_batch) out = tf.concat(outs, axis=0) with tf.GradientTape() as tape: tape.watch(out) out_max = tf.reduce_max(out + inf_array, 0) exp_sum = tf.reduce_sum(tf.exp(out - out_max) * mask, 0) den = (out_max + tf.math.log(exp_sum)) * cs_count cost = -tf.reduce_sum( tf.reduce_sum(out * cs_mask, 1) * cs_train ) + tf.reduce_sum(den) out_grad = tape.gradient(cost, out) outs_grad = tf.split(out_grad, n_batch) cost = 0.0 gradients = [] for i in range(n_batch): gradients_batch, cost_batch = compute_gradients_batch( Xs[i], As[i], Ms[i], masks[i], outs_grad[i] ) gradients.append(gradients_batch) cost += cost_batch gradients = [tf.reduce_sum(grads, 0) for grads in list(zip(*gradients))] return gradients, cost def apply_gradients(optimizer, gradients, variables): optimizer.apply_gradients(zip(gradients, variables)) def compute_baseline_hazard(model, X, A, M): out, _, _ = model.call(X, A, M, False) out_max = tf.reduce_max(out + inf_array, 0) exp_sum = tf.reduce_sum(tf.exp(out - out_max) * mask, 0) den = (out_max + tf.math.log(exp_sum)) * cs_count baseline_hazard = np.sum( ys_mask * tf.exp(-out_max) * exp_sum.numpy() ** -1 * cs_count, axis=1 ) return baseline_hazard def compute_hazard_ratio(model, X, A, M): out, _, _ = model.call(X, A, M, False) hazard_ratio = tf.exp(out).numpy() return hazard_ratio def compute_concordance_index(hazard_ratio_eval, ys_eval, cs_eval): n_eval = ys_eval.shape[0] permissible = 0 concordance = 0 for i in range(n_eval): for j in range(i + 1, n_eval): if ( ys_eval[i] != ys_eval[j] and not ((ys_eval[i] < ys_eval[j]) * (cs_eval[i] == 0)) and not ((ys_eval[i] > ys_eval[j]) * (cs_eval[j] == 0)) ): permissible += 1 if ( (hazard_ratio_eval[i] > hazard_ratio_eval[j]) * (ys_eval[i] < ys_eval[j]) ) or ( (hazard_ratio_eval[i] < hazard_ratio_eval[j]) * (ys_eval[i] > ys_eval[j]) ): concordance += 1 c_index = concordance / permissible return c_index def draw_field(returnerLine, direction): fig, ax = plt.subplots(figsize=(8, 8)) if direction == 1.0: ax.hlines(-53.3 / 2, -returnerLine, 120 - returnerLine, color="black") ax.hlines(53.3 / 2, -returnerLine, 120 - returnerLine, color="black") ax.vlines( np.arange(0 - returnerLine, 130 - returnerLine, 10), -53.3 / 2, 53.3 / 2, color="black", ) ax.vlines( np.arange(15 - returnerLine, 115 - returnerLine, 10), -53.3 / 2, 53.3 / 2, color="black", lw=1.0, ) ax.add_patch( plt.Rectangle((-returnerLine, -53.3 / 2), 10, 53.3, fc="black", alpha=0.1) ) ax.add_patch( plt.Rectangle( (110 - returnerLine, -53.3 / 2), 10, 53.3, fc="black", alpha=0.1 ) ) else: ax.hlines(-53.3 / 2, returnerLine - 120, returnerLine, color="black") ax.hlines(53.3 / 2, returnerLine - 120, returnerLine, color="black") ax.vlines( np.arange(returnerLine - 120, returnerLine + 10, 10), -53.3 / 2, 53.3 / 2, color="black", ) ax.vlines( np.arange(returnerLine - 105, returnerLine - 5, 10), -53.3 / 2, 53.3 / 2, color="black", lw=1.0, ) ax.add_patch( plt.Rectangle( (returnerLine - 120, -53.3 / 2), 10, 53.3, fc="black", alpha=0.1 ) ) ax.add_patch( plt.Rectangle( (returnerLine - 10, -53.3 / 2), 10, 53.3, fc="black", alpha=0.1 ) ) ax.vlines(0.0, -53.3 / 2, 53.3 / 2, color="violet") return fig, ax def draw_play(game, play, play_detail, pff, extract_frame=None): ( x, m, adj, y, c, catch_frame, nflId, position, offense_team, defense_team, loc_football, ) = extract_feature(game, play, play_detail, pff) if extract_frame is None: extract_frame = catch_frame xinit, minit, adjinit = ( tf.constant(x[extract_frame][tf.newaxis], dtype=tf.float32), tf.constant(m[tf.newaxis], dtype=tf.float32), tf.constant(adj[extract_frame][tf.newaxis], dtype=tf.float32), ) n_offense, n_defense = 11, 11 n = n_offense + n_defense yardline = play.absoluteYardlineNumber.values[0] direction = 2 * float("left" == play_detail.playDirection.values[0]) - 1 xy = (play_detail[["x", "y"]].values - np.array([yardline, 53.3 / 2])) * direction passResult = play.passResult.values[0] _, out_players, _ = model.call(xinit, adjinit, minit, False) score = (np.squeeze(out_players.numpy()) - out_players_mean) * m loc, vel = xinit[0, :, :2].numpy(), xinit[0, :, 2:4].numpy() G = nx.Graph() G.add_nodes_from(np.arange(n_offense), bipartite=0) G.add_nodes_from(np.arange(n_offense, n_offense + n_defense), bipartite=1) node_color = ["r"] node_color.extend(["b" for i in range(n_offense - 1)]) node_color.extend(["g" for i in range(n_defense)]) row, col = np.where(adjinit[0] != 0) G.add_edges_from(zip(row, col)) fig, ax = draw_field(yardline, direction) nx.draw_networkx_nodes( G, loc, node_color=node_color, node_size=1000, alpha=1.0, ax=ax ) nx.draw_networkx_edges(G, loc, alpha=0.5, style="dashed", edge_color="k", ax=ax) m_ind = np.arange(22)[m == 1] nx.draw_networkx_labels( G.subgraph(m_ind), loc, {i: np.around(np.exp(score[i]), 2) for i in m_ind}, font_weight="bold", font_color="white", ax=ax, ) for i in range(n): ax.arrow( loc[i, 0], loc[i, 1], vel[i, 0] / 2.0 + 0.01, vel[i, 1] / 2.0 + 0.01, width=0.01, head_width=0.3, head_length=0.3, length_includes_head=True, color="k", alpha=0.4, ) football = patches.Ellipse( xy=(loc_football[extract_frame, 0], loc_football[extract_frame, 1]), width=1, height=0.5, color="saddlebrown", ec="black", alpha=1.0, fill=True, angle=0, zorder=-100, ) ax.add_patch(football) xmin, ymin = loc[m == 1].min(0) xmax, ymax = loc[m == 1].max(0) xmin, ymin = -10, -10 xmax, ymax = 10, 10 ax.set_xlim(xmin - 2, xmax + 2) ax.set_ylim(ymin - 2, ymax + 2) props = dict(boxstyle="round", facecolor="wheat", alpha=1) textstr = "\n".join( ( "PASS RESULT: " + passResult, "OFFENSE: %s" % (np.around(np.exp(np.sum(score[:11])), 2),), "DEFENSE: %s" % (np.around(np.exp(np.sum(score[11:])), 2),), "TOTAL: %s" % (np.around(np.exp(np.sum(score)), 2),), ) ) ax.text(6.5, -8, textstr, verticalalignment="top", bbox=props) return fig def create_movie(gameId, playId): game = games[games.gameId.values == gameId] play = plays[(plays.gameId.values == gameId) * (plays.playId.values == playId)] play_detail = tracking[ (tracking.gameId.values == gameId) * (tracking.playId.values == playId) ] pff = pffs[(pffs.gameId.values == gameId) * (pffs.playId.values == playId)] ( x, m, adj, y, c, catch_frame, nflId, position, offense_team, defense_team, loc_football, ) = extract_feature(game, play, play_detail, pff) dirname = "images" os.makedirs(dirname, exist_ok=True) filenames = [] for extract_frame in np.arange(x.shape[0]): fig = draw_play(game, play, play_detail, pff, extract_frame=extract_frame) filename = os.path.join(dirname, str(extract_frame) + ".png") fig.savefig(filename, bbox_inches="tight") plt.close(fig) filenames.append(filename) gifname = str(gameId) + "_" + str(playId) + ".gif" with imageio.get_writer(gifname, mode="I", fps=10) as writer: for filename in filenames: image = imageio.imread(filename) writer.append_data(image) _ = [os.remove(filename) for filename in glob("*.png")] return gifname print("Training ...") learning_rate = 0.001 dropout_rate = 0.5 n_layerGRU = 32 n_midlayers = 2 n_layers = 5 n_blocks = 2 n_ties = ys_unique.shape[0] model = GGNN(n_layerGRU, n_layers, n_blocks) optimizer = tf.keras.optimizers.Adam(learning_rate) checkpoint_dir = "./training_checkpoints" checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer) traning_epochs = 1000 c_index_best = 0.0 for epoch in range(traning_epochs): gradients, cost_epoch = compute_gradients(model, Xs, As, Ms) apply_gradients(optimizer, gradients, model.variables) if (epoch + 1) % 50 == 0: hazard_ratio_eval = compute_hazard_ratio(model, X_eval, A_eval, M_eval)[:, :1] c_index = compute_concordance_index(hazard_ratio_eval, ys_eval, cs_eval) print( "epoch %s : cost %s: c-index %s" % (epoch + 1, np.around(cost_epoch.numpy(), 2), np.around(c_index, 4)) ) if c_index_best < c_index: c_index_best = c_index checkpoint.save(file_prefix=checkpoint_prefix) checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir)) hazard_ratio_test = compute_hazard_ratio(model, X_test, A_test, M_test) c_index_test = compute_concordance_index(hazard_ratio_test, ys_test, cs_test) print("c-index of test %s" % np.around(c_index_test, 4)) _, out_players, _ = model.call(X_orig, A_orig, M_orig, False) out_players_mean = tf.concat( [ tf.reduce_sum(tf.reduce_sum(out_players, -1)[:, :1] * M_orig[:, :1]) / tf.reduce_sum(M_orig[:, :1]) * tf.ones(1), tf.reduce_sum(tf.reduce_sum(out_players, -1)[:, 1:11] * M_orig[:, 1:11]) / tf.reduce_sum(M_orig[:, 1:11]) * tf.ones(10), tf.reduce_sum(tf.reduce_sum(out_players, -1)[:, 11:] * M_orig[:, 11:]) / tf.reduce_sum(M_orig[:, 11:]) * tf.ones(11), ], axis=-1, ) baseline_hazard = compute_baseline_hazard(model, X, A, M) # # Application 2: Hazard rate changes during play # The next movies show the estimation results. The value assigned to each player is the hazard ratio compared to the mean hazard. For example, if the hazard for the offensive player is 1.05, it means that this player increases the hazard by 1.05 times. # ### Pass Complete gameId, playId = 2021091200, 3110 gifname = create_movie(gameId, playId) display.HTML('<img src="{}">'.format(gifname)) # ### Pass Incomplete gameId, playId = 2021090900, 97 gifname = create_movie(gameId, playId) display.HTML('<img src="{}">'.format(gifname)) # ### Quaterback sack gameId, playId = 2021091200, 4346 gifname = create_movie(gameId, playId) display.HTML('<img src="{}">'.format(gifname)) # # Application 3: Ranking of teams # The total hazard rate indicates the performance of a formation and can be used as an indicator of a team's defense or offense. We calculate the mean hazard of each team. _, out_players, _ = model.call(X_orig, A_orig, M_orig, False) out_players_mean = tf.concat( [ tf.reduce_sum(tf.reduce_sum(out_players, -1)[:, :1] * M_orig[:, :1]) / tf.reduce_sum(M_orig[:, :1]) * tf.ones(1), tf.reduce_sum(tf.reduce_sum(out_players, -1)[:, 1:11] * M_orig[:, 1:11]) / tf.reduce_sum(M_orig[:, 1:11]) * tf.ones(10), tf.reduce_sum(tf.reduce_sum(out_players, -1)[:, 11:] * M_orig[:, 11:]) / tf.reduce_sum(M_orig[:, 11:]) * tf.ones(11), ], axis=-1, ) out_players = (out_players - out_players_mean[:, tf.newaxis]) * M_orig[:, :, tf.newaxis] offense_teams_orig = np.hstack( [offense_teams[fs[:, extract_frame] == 1] for extract_frame in extract_frames] ) defense_teams_orig = np.hstack( [defense_teams[fs[:, extract_frame] == 1] for extract_frame in extract_frames] ) offense_teams_unique = np.unique(offense_teams_orig) result = {} for offense_team in offense_teams_unique: result[offense_team] = np.mean( np.sum(out_players[:, :11, 0], -1)[offense_teams_orig == offense_team] ) offense_teams_score = pd.DataFrame.from_dict(result, orient="index") offense_teams_score.columns = ["score"] offense_teams_score = offense_teams_score.sort_values("score") defense_teams_unique = np.unique(defense_teams_orig) result = {} for defense_team in defense_teams_unique: result[defense_team] = np.mean( np.sum(out_players[:, 11:, 0], -1)[defense_teams_orig == defense_team] ) defense_teams_score = pd.DataFrame.from_dict(result, orient="index") defense_teams_score.columns = ["score"] defense_teams_score = defense_teams_score.sort_values("score", ascending=False) # This figure shows the mean hazard of the teams in offensive plays. The team on the left has the smallest hazard, meaning that this team protected its quarterback well from the opposing team's players. fig, ax = plt.subplots(figsize=(18, 4)) ax.bar( offense_teams_score.index, tf.exp(offense_teams_score["score"].values) - 1, color="b", ) ax.axhline(y=0, linewidth=1, color="k", linestyle="dashed") _ = ax.set_yticks(ax.get_yticks(), np.around(ax.get_yticks() + 1, 3)) _ = ax.set_ylabel("Hazard ratio") # This figure shows the average hazard of each team's defensive players. The team on the left has a higher hazard, meaning that it has succeeded in collapsing more of the opposing team's pockets. fig, ax = plt.subplots(figsize=(18, 4)) ax.bar( defense_teams_score.index, tf.exp(defense_teams_score["score"].values) - 1, color="g", ) ax.axhline(y=0, linewidth=1, color="k", linestyle="dashed") _ = ax.set_yticks(ax.get_yticks(), np.around(ax.get_yticks() + 1, 3)) _ = ax.set_ylabel("Hazard ratio")
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. train_data = pd.read_csv("/kaggle/input/titanic/train.csv") train_data.head(10) train_data.tail(10) train_data.query("Cabin == Cabin").shape test_data = pd.read_csv("/kaggle/input/titanic/test.csv") test_data.head() len( train_data.loc[(train_data.Sex == "female") & (train_data.Survived == 1)][ "Survived" ] ) train_data.loc[:, ["Name", "Age", "Pclass"]] train_data[["Name", "Age", "Pclass"]] women = train_data.loc[train_data.Sex == "female"]["Survived"] rate_women = sum(women) / len(women) print("% of women who survived:", rate_women) men = train_data.loc[train_data.Sex == "male"]["Survived"] rate_men = sum(men) / len(men) print("% of men who survived=", rate_men) from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score y = train_data["Survived"] features = ["Pclass", "Sex", "SibSp", "Parch"] X = pd.get_dummies(train_data[features]) X_test = pd.get_dummies(test_data[features]) model = RandomForestClassifier(n_estimators=100, max_depth=5, random_state=1) model.fit(X, y) actual = model.predict(X) predictions = model.predict(X_test) # output = pd.DataFrame({'PassengerId': test_data.PassengerId, 'Survived': predictions}) # output.to_csv('my_submission.csv', index=False) # print ( "X data accuracy: " , round(accuracy_score(y, actual) * 100, 2), "%" ) # print("Your submission was successfully saved!") predictions ############################################## ###### 변수 추가 Age Fare Cabin ######## # X data accuracy: 84.4 % # 77.5% ############################################## from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score y = train_data["Survived"] features = ["Pclass", "Sex", "SibSp", "Parch"] # class 변수 X = pd.get_dummies(train_data[features]) X_test = pd.get_dummies(test_data[features]) X["Age"] = train_data["Age"] X["Fare"] = train_data["Fare"] X["Cabin"] = np.where(train_data["Cabin"].isna() == True, 0, 1) # np.where(조건, 참값, 거짓값) X.groupby("Cabin").count() X_test["Age"] = test_data["Age"] X_test["Fare"] = test_data["Fare"] X_test["Cabin"] = np.where(test_data["Cabin"].isna() == True, 0, 1) # X.isna().sum() X["Age"] = X["Age"].fillna(X["Age"].mean()) X_test["Age"] = X_test["Age"].fillna(X_test["Age"].mean()) X_test["Fare"] = X_test["Fare"].fillna(X_test["Fare"].mean()) model = RandomForestClassifier(n_estimators=100, max_depth=6, random_state=7) model.fit(X, y) actual = model.predict(X) predictions = model.predict(X_test) output = pd.DataFrame({"PassengerId": test_data.PassengerId, "Survived": predictions}) output.to_csv("my_submission.csv", index=False) print("X data accuracy: ", round(accuracy_score(y, actual) * 100, 2), "%") print("Your submission was successfully saved!") X # [age if age > 10 else 10 for age in X['Age']] # new_age = [] # for age in X['Age']: # if age > 10: # new_age.append(age) # else: # new_age.append(10) # Logistic regression # Gradient Boosting # SVM # Deep learning ############################ ### Logistic regression ### X data accuracy: 80.36 % ## test data : 75% ############################ from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score model = LogisticRegression(C=1000.0, random_state=7) model.fit(X, y) actual = model.predict(X) predictions = model.predict(X_test) # output = pd.DataFrame({'PassengerId': test_data.PassengerId, 'Survived': predictions}) # output.to_csv('my_submission.csv', index=False) # print ( "X data accuracy: " , round(accuracy_score(y, actual) * 100, 2), "%" ) # print("Your submission was successfully saved!") ########################## ### XGBOOST ### X data accuracy: 93.71% ## test data : 73.2% ########################## from xgboost import plot_importance from xgboost import XGBClassifier model = XGBClassifier(n_estimators=500, learning_rate=0.1, max_depth=5) model.fit(X, y) actual = model.predict(X) predictions = model.predict(X_test) # output = pd.DataFrame({'PassengerId': test_data.PassengerId, 'Survived': predictions}) # output.to_csv('my_submission.csv',index=False) # print ( "X data accuracy: " , round(accuracy_score(y, actual) * 100, 2), "%" ) # print("Your submission was successfully saved!") ############################ ### SVM ### X data accuracy: 78.68 % ## test data : 76.5% ############################ from sklearn import svm from sklearn.metrics import accuracy_score # model = svm.SVC(kernel = 'linear') # model.fit(X, y) # actual = model.predict(X) # predictions = model.predict(X_test) # output = pd.DataFrame({'PassengerId': test_data.PassengerId, 'Survived': predictions}) # output.to_csv('my_submission.csv', index=False) # print ( "X data accuracy: " , round(accuracy_score(y, actual) * 100, 2), "%" ) # print("Your submission was successfully saved!") ###################################### ### Deep Learning ### X data accuracy: 78.68 % ## test data : ###################################### import tensorflow as tf import keras from keras.models import Sequential from keras.layers.core import Dense np.random.seed(7) # model = Sequential() # model.add(Dense(255, input_shape=(8,), activation='relu')) # model.add(Dense((1), activation='sigmoid')) # model.compile(loss='binary_crossentropy', optimizer='Adam', metrics=['accuracy']) # model.summary() from IPython.display import SVG from keras.utils.vis_utils import model_to_dot # SVG(model_to_dot(model, show_shapes=True).create(prog='dot', format='svg')) # hist = model.fit(X, y,epochs=100) import matplotlib.pyplot as plt # predictions = model.predict(X_test) # output = pd.DataFrame({'PassengerId': test_data.PassengerId, 'Survived': predictions.ravel()}) # output.to_csv('my_submission.csv', index=False) # print ( "X data accuracy: " , round(accuracy_score(y, actual) * 100, 2), "%" ) # print("Your submission was successfully saved!") # output # 확률값을 1 - 0 으로 변환 # 앙상블
import tensorflow as tf import matplotlib.pyplot as plt import numpy as np import glob from lxml import etree from matplotlib.patches import Rectangle # 画矩形框的方法 import os gpu = tf.config.experimental.list_physical_devices(device_type="GPU") tf.config.experimental.set_memory_growth(gpu[0], True) print(os.listdir("../input/the-oxfordiiit-pet-dataset/images/images")[:3]) image = tf.io.read_file( "../input/the-oxfordiiit-pet-dataset/images/images/Abyssinian_1.jpg" ) image = tf.image.decode_jpeg(image) plt.imshow(image) xml = open( "../input/the-oxfordiiit-pet-dataset/annotations/annotations/xmls/Abyssinian_1.xml" ).read() sel = etree.HTML(xml) int(sel.xpath("//name/text()")[0] == "cat") # cat=1.dog=0 label = int(sel.xpath("//name/text()")[0] == "cat") width = int(sel.xpath("//width/text()")[0]) height = int(sel.xpath("//height/text()")[0]) xmin = int(sel.xpath("//xmin/text()")[0]) ymin = int(sel.xpath("//ymin/text()")[0]) xmax = int(sel.xpath("//xmax/text()")[0]) ymax = int(sel.xpath("//ymax/text()")[0]) plt.imshow(image) rect = Rectangle((xmin, ymin), (xmax - xmin), (ymax - ymin), fill=False, color="red") ax = plt.gca() ax.axes.add_patch(rect) b1 = xmin / width b2 = xmax / width b3 = ymin / height b4 = ymax / height b1, b2, b3, b4 image.shape image = tf.image.resize(image, (256, 256)) image = image / 255 xmin = b1 * 256 xmax = b2 * 256 ymin = b3 * 256 ymax = b4 * 256 plt.imshow(image) rect = Rectangle((xmin, ymin), (xmax - xmin), (ymax - ymin), fill=False, color="red") ax = plt.gca() ax.axes.add_patch(rect) print(image) image.shape # 数据预处理 images = glob.glob("../input/the-oxfordiiit-pet-dataset/images/images/*.jpg") xmls = glob.glob( "../input/the-oxfordiiit-pet-dataset/annotations/annotations/xmls/*.xml" ) images[:3] xmls[:3] names = [x.split("/")[-1].split(".")[0] for x in xmls] names[:3] train_images = [ image for image in images if (image.split("/")[-1].split(".")[0]) in names ] test_images = [ image for image in images if (image.split("/")[-1].split(".")[0]) not in names ] len(train_images), len(test_images) train_images.sort(key=lambda x: x.split("/")[-1].split(".")[0]) xmls.sort(key=lambda x: x.split("/")[-1].split(".")[0]) t = 0 for i in range(3686): if ( train_images[i].split("/")[-1].split(".")[0] == xmls[i].split("/")[-1].split(".")[0] ): t += 1 print(t) def load_label(path): xml = open(path).read() sel = etree.HTML(xml) pet_label = int(sel.xpath("//name/text()")[0] == "cat") width = int(sel.xpath("//width/text()")[0]) height = int(sel.xpath("//height/text()")[0]) xmin = int(sel.xpath("//xmin/text()")[0]) ymin = int(sel.xpath("//ymin/text()")[0]) xmax = int(sel.xpath("//xmax/text()")[0]) ymax = int(sel.xpath("//ymax/text()")[0]) return [pet_label, xmin / width, ymin / height, xmax / width, ymax / height] labels = [load_label(path) for path in xmls] pet_label, out1, out2, out3, out4 = list(zip(*labels)) pet_label = np.array(pet_label) out1 = np.array(out1) out2 = np.array(out2) out3 = np.array(out3) out4 = np.array(out4) labels_ds = tf.data.Dataset.from_tensor_slices((pet_label, out1, out2, out3, out4)) labels_ds # 处理图片 def load_image(path): image = tf.io.read_file(path) image = tf.image.decode_jpeg(image, channels=3) image = tf.image.resize(image, [224, 224]) image = image / 127.5 - 1 return image image_ds = tf.data.Dataset.from_tensor_slices(train_images) image_test_ds = tf.data.Dataset.from_tensor_slices(test_images) image_ds = image_ds.map(load_image) image_test_ds = image_test_ds.map(load_image) image_ds image_test_ds # 测试集数据 dataset = tf.data.Dataset.zip((image_ds, labels_ds)) dataset BATCH_SIZE = 32 dataset = dataset.shuffle(len(train_images)).batch(BATCH_SIZE).repeat() test_dataset = image_test_ds.batch(BATCH_SIZE) dataset test_dataset test_count = (int)(0.2 * len(xmls)) # 验证集 train_count = len(xmls) - test_count test_count, train_count test_ds = dataset.skip(test_count) test_ds train_ds = dataset.take(train_count) train_ds # 检查一下 for img, label in train_ds.take(1): plt.imshow(tf.keras.preprocessing.image.array_to_img(img[0])) pet_label, out1, out2, out3, out4 = label plt.title("cat" if pet_label[0] == 1 else "dog") xmin = out1[0].numpy() * 224 ymin = out2[0].numpy() * 224 xmax = out3[0].numpy() * 224 ymax = out4[0].numpy() * 224 rect = Rectangle( (xmin, ymin), (xmax - xmin), (ymax - ymin), fill=False, color="red" ) ax = plt.gca() ax.axes.add_patch(rect) # # 创建图像定位模型 xception = tf.keras.applications.Xception( weights="imagenet", include_top=False, input_shape=(224, 224, 3) ) xception.summary() inputs = tf.keras.layers.Input(shape=(224, 224, 3)) x = xception(inputs) x = tf.keras.layers.GlobalAveragePooling2D()(x) x.get_shape() x = tf.keras.layers.Dense(2048, activation="relu")(x) x = tf.keras.layers.Dense(256, activation="relu")(x) # 输出宠物类别 out_pet = tf.keras.layers.Dense(1, activation="sigmoid", name="out_pet")(x) out_pet.get_shape() # 输出四个值,不需要激活了 out1 = tf.keras.layers.Dense(1, name="out1")(x) out2 = tf.keras.layers.Dense(1, name="out2")(x) out3 = tf.keras.layers.Dense(1, name="out3")(x) out4 = tf.keras.layers.Dense(1, name="out4")(x) prediction = [out_pet, out1, out2, out3, out4] model = tf.keras.models.Model(inputs=inputs, outputs=prediction) model.summary() tf.keras.utils.plot_model(model, show_shapes=True) # 编译 model.compile( optimizer=tf.keras.optimizers.Adam(lr=0.0001), loss={ "out_pet": "binary_crossentropy", "out1": "mse", "out2": "mse", "out3": "mse", "out4": "mse", }, metrics=["acc", ["mse"], ["mse"], ["mse"], ["mse"]], # mae平均绝对误差 ) EPOCH = 15 history = model.fit( dataset, steps_per_epoch=train_count // BATCH_SIZE, epochs=EPOCH, validation_data=test_ds, validation_steps=test_count // BATCH_SIZE, ) loss = history.history["loss"] val_loss = history.history["val_loss"] epochs = range(EPOCH) plt.figure() plt.plot(epochs, loss, "r", label="Training loss") plt.plot(epochs, val_loss, "bo", label="Validation loss") plt.title("Training and Validation Loss") plt.xlabel("Epoch") plt.ylabel("Loss Value") plt.legend() plt.show() model.save("detect_v2.h5") # 加载训练好的模型 new_model = tf.keras.models.load_model("../input/ximing-object-detect/detect_v2.h5") # 创建一个画布 放三个图片 plt.figure(figsize=(8, 48)) for img in test_dataset.take(1): pet, out1, out2, out3, out4 = new_model.predict(img) # 画三个 for i in range(6): plt.subplot(6, 1, i + 1) plt.imshow(tf.keras.preprocessing.image.array_to_img(img[i])) plt.title("cat" if pet[0][0] >= 0.5 else "dog") xmin, ymin, xmax, ymax = ( out1[i] * 224, out2[0] * 224, out3[0] * 224, out4[0] * 224, ) rect = Rectangle( (xmin, ymin), (xmax - xmin), (ymax - ymin), fill=False, color="red" ) ax = plt.gca() ax.axes.add_patch(rect)
li = ["abc", 34, 4.34, 23] print(li) st = "Hello World" print(st) st = "Hello World" print(st) st = """This is a multi-line string that uses triple quotes. """ print(st) tu = (23, "abc", 4.56, (2, 3), "def") print(tu[1]) print(tu[-1]) # # Iterating Through a List # Using a for loop we can iterate though each item in a list. # for fruit in ["apple", "banana", "mango"]: print("I like", fruit) # # Numpy Arrays # ### Creating 2D Numpy Array import numpy as np np_2d = np.array([[1.73, 1.68, 1.71, 1.89, 1.79], [65.4, 59.2, 63.6, 88.4, 68.7]]) np_2d.shape # ### Calculating BMI import numpy as np np_height = np.array([1.73, 1.68, 1.71, 1.89, 1.79]) np_weight = np.array([65.4, 59.2, 63.6, 88.4, 68.7]) bmi = np_weight / np_height**2 print(" BMI : ", bmi) # # Basic Statistical Analysis # import numpy as np np_city = np.array( [ [1.64, 71.78], [1.37, 63.35], [1.6, 55.09], [2.04, 74.85], [2.04, 68.72], [2.01, 73.57], ] ) print(np_city) print(type(np_city)) print("Mean Height : ", np.mean(np_city[:, 0])) print("Median Height : ", np.median(np_city[:, 0])) np.corrcoef(np_city[:, 0], np_city[:, 1]) np.std(np_city[:, 0]) fam = [1.73, 1.68, 1.71, 1.89] tallest = max(fam) print("Tallest : ", tallest) # ## Data Generation and Statistics height = np.round(np.random.normal(1.75, 0.20, 5000), 2) weight = np.round(np.random.normal(60.32, 15, 5000), 2) np_city = np.column_stack((height, weight)) print(np_city)
import pandas as pd import numpy as np def number_to_filename(number): filename = f"{number:06d}.png" path = "/kaggle/input/spr-x-ray-gender/kaggle/kaggle/train/" filename = path + filename return filename train_gender_df = pd.read_csv("/kaggle/input/spr-x-ray-gender/train_gender.csv") train_gender_df["filepath"] = train_gender_df["imageId"].apply(number_to_filename) train_gender_df.head(10) train_gender_df["gender"].hist() from matplotlib import pyplot as plt import cv2 img = cv2.imread(train_gender_df["filepath"][0], 0) plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) plt.title(str(train_gender_df["gender"][0])) img = cv2.imread(train_gender_df["filepath"][0], 0) plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) plt.title(str(train_gender_df["gender"][1])) import requests import math import matplotlib.pyplot as plt import shutil from getpass import getpass from PIL import Image, UnidentifiedImageError from requests.exceptions import HTTPError from io import BytesIO from pathlib import Path import torch import pytorch_lightning as pl from huggingface_hub import HfApi, HfFolder, Repository, notebook_login from torch.utils.data import DataLoader from torchmetrics import Accuracy from torchvision.datasets import ImageFolder import torchvision.transforms as transforms from transformers import ViTFeatureExtractor, ViTForImageClassification import cv2 from sklearn.model_selection import train_test_split train_sampled_gender_df = ( train_gender_df.groupby("gender") .apply(lambda x: x.sample(frac=0.9, replace=False)) .reset_index(drop=True) ) filenames = train_sampled_gender_df["filepath"].tolist() target = train_sampled_gender_df["gender"].tolist() train_x, val_x, train_y, val_y = train_test_split( filenames, target, stratify=target, test_size=0.1, random_state=0 ) test_df = pd.read_csv("/kaggle/input/spr-x-ray-gender/sample_submission_gender.csv") def testnumber_to_filename(number): filename = f"{number:06d}.png" path = "/kaggle/input/spr-x-ray-gender/kaggle/kaggle/test/" filename = path + filename return filename test_df["filepath"] = test_df["imageId"].apply(testnumber_to_filename) test_x = test_df["filepath"].tolist() test_y = test_df["gender"].tolist() class ImageClassificationCollator: def __init__(self, feature_extractor): self.feature_extractor = feature_extractor def __call__(self, batch): encodings = self.feature_extractor([x[0] for x in batch], return_tensors="pt") encodings["labels"] = torch.tensor([x[1] for x in batch], dtype=torch.long) return encodings label2id = {} id2label = {} label2id["0"] = str(0) id2label[str(0)] = "0" label2id["1"] = str(1) id2label[str(1)] = "1" feature_extractor = ViTFeatureExtractor.from_pretrained( "google/vit-base-patch16-224-in21k" ) model = ViTForImageClassification.from_pretrained( "google/vit-base-patch16-224-in21k", num_labels=len(label2id), label2id=label2id, id2label=id2label, ) collator = ImageClassificationCollator(feature_extractor) IMG_SIZE = 224 transforms_train = transforms.Compose( [ transforms.Resize((IMG_SIZE, IMG_SIZE)), transforms.RandomHorizontalFlip(p=0.1), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), ] ) transforms_val = transforms.Compose( [ transforms.Resize((IMG_SIZE, IMG_SIZE)), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), ] ) class SPRXrayGenderDataset(torch.utils.data.Dataset): def __init__(self, image_files, labels, transforms): self.image_files = image_files self.labels = labels self.transforms = transforms def __len__(self): return len(self.image_files) def __getitem__(self, index): image_filepath = self.image_files[index] image = cv2.imread(image_filepath) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) return self.transforms(image), self.labels[index] train_ds = SPRXrayGenderDataset(train_x, train_y, transforms_train) train_loader = DataLoader( train_ds, batch_size=32, collate_fn=collator, num_workers=2, shuffle=True ) val_ds = SPRXrayGenderDataset(val_x, val_y, transforms_val) val_loader = DataLoader(val_ds, batch_size=32, collate_fn=collator, num_workers=2) test_ds = SPRXrayGenderDataset(test_x, test_y, transforms_val) test_loader = DataLoader(test_ds, batch_size=32, collate_fn=collator, num_workers=2) class Classifier(pl.LightningModule): def __init__(self, model, lr: float = 2e-5, **kwargs): super().__init__() self.save_hyperparameters("lr", *list(kwargs)) self.model = model self.forward = self.model.forward self.val_acc = Accuracy(task="binary") def training_step(self, batch, batch_idx): outputs = self(**batch) self.log(f"train_loss", outputs.loss) return outputs.loss def validation_step(self, batch, batch_idx): outputs = self(**batch) self.log(f"val_loss", outputs.loss) acc = self.val_acc(outputs.logits.argmax(1), batch["labels"]) self.log(f"val_acc", acc, prog_bar=True) return outputs.loss def configure_optimizers(self): return torch.optim.Adam(self.parameters(), lr=self.hparams.lr) pl.seed_everything(42) classifier = Classifier(model, lr=1e-4) trainer = pl.Trainer(gpus=1, precision=16, max_epochs=20) trainer.fit(classifier, train_loader, val_loader) y_pred = [] device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(device) with torch.no_grad(): for test_data in test_loader: test_data.to(device) pred = model(**test_data) outputs = pred.logits.softmax(1).argmax(1) for i in outputs: y_pred.append(i.item()) # print(y_pred) test_df["gender"] = y_pred test_df[["imageId", "gender"]].to_csv("submission.csv", index=False)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. from sklearn.model_selection import train_test_split from tensorflow import keras from keras.utils.np_utils import to_categorical from tensorflow.keras.applications.resnet50 import preprocess_input from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Flatten, Conv2D, Dropout, MaxPool2D # **Prendere un dataset di immagini a bassa risoluzione, 28x28 pixel (784). Al momento si inserisce il numero statico, ma si dovrebbe dare in input. Stabilire il numero di classi di appartenenza finale (10).** righe, colonne = 28, 28 n_classi = 10 test = pd.read_csv("../input/digit-recognizer/test.csv") train = pd.read_csv("../input/digit-recognizer/train.csv") y_train = train["label"] X_train = train.drop(labels=["label"], axis=1) # ------Normalizzazione-----# X_train = X_train / 255.0 test = test / 255.0 # -----Ridimensionamento----# X_train = X_train.values.reshape(-1, righe, colonne, 1) test = test.values.reshape(-1, righe, colonne, 1) # -------Label encoding-------# y_train = to_categorical(y_train, num_classes=n_classi) # -------Split---------------# X_train, X_val, y_train, y_val = train_test_split( X_train, y_train, test_size=0.1, random_state=2 ) # **Creazione e Compilazione del modello** model = Sequential() model.add( Conv2D( filters=32, kernel_size=(5, 5), padding="Same", activation="relu", input_shape=(righe, colonne, 1), ) ) model.add(Conv2D(filters=32, kernel_size=(5, 5), padding="Same", activation="relu")) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(filters=64, kernel_size=(3, 3), padding="Same", activation="relu")) model.add(Conv2D(filters=64, kernel_size=(3, 3), padding="Same", activation="relu")) model.add(MaxPool2D(pool_size=(2, 2), strides=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(256, activation="relu")) model.add(Dropout(0.5)) model.add(Dense(n_classi, activation="softmax")) model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) # **Adattamento del modello del training set** from keras.callbacks import ReduceLROnPlateau batch = 100 epochs = 3 learning_rate = ReduceLROnPlateau( monitor="val_accuracy", patience=3, verbose=1, factor=0.5, min_lr=0.00001 ) datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=10, zoom_range=0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False, ) datagen.fit(X_train) resoconto = model.fit_generator( datagen.flow(X_train, y_train, batch_size=batch), epochs=epochs, validation_data=(X_val, y_val), steps_per_epoch=100, callbacks=[learning_rate], ) model.history.history["val_acc"] = model.history.history["val_accuracy"] ris = model.predict(test) ris = np.argmax(ris, axis=1) ris = pd.Series(ris, name="Label") sub = pd.concat([pd.Series(range(1, 28001), name="ImageId"), ris], axis=1) sub.to_csv("submission.csv", index=False)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import pandas as pd import numpy as np import seaborn as sns import warnings warnings.simplefilter("ignore") df = sns.load_dataset("titanic") df.head(1) df = df[df["age"].notnull()] # # Single Sample t-test # Used to check if a sample mean is d/f from the population mean # H0 -> The mean age is 35 # H1 -> The mean is less than 35 # # Assumption of single sample t-test are: # 1.Random Sampling # 2. Normality # 3. Unknown Population std (Here we are considering we dont know the population std) # 4. Independence sample_age = df["age"].sample(25).values sample_age # check for normality using Shapiro Wilk test sns.distplot(sample_age) # if p_value is greater than 0.5 then we can say data is normally Distributed from scipy.stats import shapiro shapiro_tips = shapiro(sample_age) print(shapiro_tips) pop_mean = 35 import scipy.stats as stats # Here we are performing 1 tail test. So we have divide the p_value by 2 t_statistic, p_value = stats.ttest_1samp(sample_age, pop_mean) print("t-statistic:", t_statistic) print("p-value:", p_value / 2) alpha = 0.05 if p_value < alpha: print("Reject the null hypothesis.") else: print("Fail to reject the null hypothesis.") # # Independent 2 sample t-test # This test is used to compare the mean of two independent variables/groups to determine is there is a significant difference between them # Ho= There is no df btw male and female age # H1= There is a d/f btw male and female age # The Assumptions for this test is: # 1. Variance(Homoscedcity) Should be same (we can use F-test to check the variance) # 2. Indepence of Observation # 3. Normality # 4. Random Sampling male_population = df[df["sex"] == "male"]["age"] female_population = df[df["sex"] == "female"]["age"] male_sample = male_population.sample(25).values female_sample = female_population.sample(25).values male_sample_mean = male_sample.mean() female_sample_mean = female_population.mean() # Similar Variance from scipy.stats import levene levene_test = levene(male_sample, female_sample) print(levene_test) t_stast, p_value = stats.ttest_ind(male_sample, female_sample) print("t-stast", t_stast) print("p value", p_value / 2) alpha = 0.05 if p_value < alpha: print("Reject the null hypothesis.") else: print("Fail to reject the null hypothesis.")
# # Setup and helper functions import os import re import csv import cv2 import random import shutil import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.patches import Rectangle import pydicom as dicom import nibabel as nib rsna_root = "/kaggle/input/rsna-2022-cervical-spine-fracture-detection" # Helper functions def load_img_from_dcm(path): img = dicom.dcmread(path) img.PhotometricInterpretation = "YBR_FULL" data = img.pixel_array data = data - np.min(data) if np.max(data != 0): data = data / np.max(data) data = (data * 255).astype(np.uint8) return cv2.cvtColor(data, cv2.COLOR_GRAY2RGB) def CT_path_to_3D_arr( folder_path, l=None ): # folder_path is for folder of dcm files constituting one CT scan if l == None: l = os.listdir(folder_path) # list of 2D slices of the CT scan l.sort() l = sorted(l, key=len) CT_arr = [] # the full 3D CT for dcm in l: dcm_path = os.path.join(folder_path, dcm) dcm_arr = load_img_from_dcm(dcm_path) CT_arr.append(dcm_arr) CT_arr = np.asarray(CT_arr) return CT_arr # # Bounding boxes around vertebrae # can be obtained from the segmentations data. First I will visualize the segmentation slices side-by-side with their corresponding CT slices. patient_id = "1.2.826.0.1.3680043.780" segm_path = os.path.join(rsna_root, "segmentations", patient_id + ".nii") segm_arr = nib.load(segm_path).get_fdata() segm_arr = np.transpose(segm_arr, (2, 0, 1)) CT_path = os.path.join(rsna_root, "train_images", patient_id) CT_arr = CT_path_to_3D_arr(CT_path) fig, ax = plt.subplots(1, 2, figsize=(12, 6)) slice_num = 80 # from 0 to len(array)-1 segm_slice = segm_arr[len(segm_arr) - 1 - slice_num] segm_slice = np.rot90(segm_slice) CT_slice = CT_arr[slice_num] ax[0].imshow(CT_slice, cmap=plt.get_cmap("bone")) ax[1].imshow(segm_slice, cmap=plt.get_cmap("bone")) # We can draw a bounding box (bbox) around the vertebrae by using the segmentation slice like this: rows = np.any(segm_slice, axis=1) cols = np.any(segm_slice, axis=0) rmin, rmax = np.where(rows)[0][[0, -1]] cmin, cmax = np.where(cols)[0][[0, -1]] width = cmax - cmin height = rmax - rmin fig, ax = plt.subplots(1, 1, figsize=(6, 6)) ax.imshow(segm_slice) rect = Rectangle( (cmin, rmin), width, height, linewidth=1, edgecolor="r", facecolor="none" ) ax.add_patch(rect) # Drawing the bbox on the original CT scan: fig, ax = plt.subplots(1, 1, figsize=(6, 6)) ax.imshow(CT_slice, cmap=plt.get_cmap("bone")) rect = Rectangle( (cmin, rmin), width, height, linewidth=1, edgecolor="r", facecolor="none" ) ax.add_patch(rect) print(cmin, rmin, width, height) # # Save labels (bboxes) in YOLOv5 format to use for training # I used [Ultralytics YOLOv5](https://docs.ultralytics.com/quick-start/), which I found super easy to use. The specifics are well-documented on their website, but here is the gist: # - one txt file per image # - one row per object/bbox # - each row in 'class_number, xcentre, ycentre, width, height' format (here, we only have one class '0: vertebra') # - bbox coordinates are normalized, ie divided by width/height in length # - (0,0) is top-left def save_yolo_coord(pt_num, slice_num, slice_, destination_folder): """ Saves the yolov5 coord txt file for a single slice segmentation mask pt_num: number that follows 1.2.826.0.1.3680043. slice_num: which slice arr: 2D array of slice destination_folder: where to save the txt files """ rows = np.any(slice_, axis=1) cols = np.any(slice_, axis=0) rmin, rmax = np.where(rows)[0][[0, -1]] cmin, cmax = np.where(cols)[0][[0, -1]] xcentre = int((cmin + cmax) / 2) ycentre = int((rmin + rmax) / 2) width = cmax - cmin height = rmax - rmin img_width = slice_.shape[1] img_height = slice_.shape[0] # yolo coordiates: class, xcentre, ycentre, width, height (normalized by width/hegith of image) yolo_coord = [ 0, xcentre / img_width, ycentre / img_height, width / img_width, height / img_height, ] filename = os.path.join( destination_folder, str(pt_num) + "_" + str(slice_num) + ".txt" ) with open(filename, "w") as file: writer = csv.writer(file, delimiter=" ") writer.writerow(yolo_coord) def save_bboxes_from_nii(pt_num, nii_folder, dest_folder_name): """ Saves yolov5 coord txt files for one patient's segmentation masks (ie, one nii file) """ destination_folder = os.path.join(os.getcwd(), dest_folder_name) if not os.path.exists(destination_folder): print(f"Creating destination folder in current directory: {dest_folder_name}") os.mkdir(destination_folder) arr = nib.load( os.path.join(nii_folder, "1.2.826.0.1.3680043." + str(pt_num) + ".nii") ).get_fdata() arr = np.transpose(arr, (2, 0, 1)) arr = np.flip(arr, axis=0) for slice_num, slice_ in enumerate(arr): if not slice_.any(): continue slice_ = np.rot90(slice_) save_yolo_coord(pt_num, slice_num, slice_, destination_folder) # List of patient numbers in segmentations folder niis = os.listdir( "/kaggle/input/rsna-2022-cervical-spine-fracture-detection/segmentations" ) pts = [ re.search("(?<=1.2.826.0.1.3680043.)([0-9]*)(?=.nii)", filename).group(0) for filename in niis ] pts = [int(s) for s in pts] print("List of pts with segmentations: ", pts) dest_folder_name = "yolo_coords" nii_folder = "/kaggle/input/rsna-2022-cervical-spine-fracture-detection/segmentations" for pt_num in pts: save_bboxes_from_nii(pt_num, nii_folder, dest_folder_name) # Test to see if saved coords are correct l = os.listdir("/kaggle/working/yolo_coords") l = sorted(l) l.sort(key=len) f = np.random.choice(l) print(f) pt_num = re.search("^([0-9]*)(?=_)", f).group(0) slice_num = re.search("(?<=_)([0-9]*)(?=.txt)", f).group(0) CT_path = os.path.join(rsna_root, "train_images", "1.2.826.0.1.3680043." + pt_num) CT_arr = CT_path_to_3D_arr(CT_path) CT_slice = CT_arr[int(slice_num)] img_width = CT_slice.shape[1] img_height = CT_slice.shape[0] fig, ax = plt.subplots(1, 1, figsize=(6, 6)) ax.imshow(CT_slice, cmap=plt.get_cmap("bone")) p = "/kaggle/working/yolo_coords/" + f with open(p, "r") as txt_file: reader = csv.reader(txt_file) row = next(reader) row = [float(num) for num in row[0].split()] bbox_xcentre = img_width * row[1] bbox_ycentre = img_height * row[2] bbox_width = img_width * row[3] bbox_height = img_height * row[4] rect = Rectangle( (bbox_xcentre - int(bbox_width / 2), bbox_ycentre - int(bbox_height / 2)), bbox_width, bbox_height, linewidth=1, edgecolor="r", facecolor="none", ) ax.add_patch(rect) # # Save Images for YOLOv5 training # I found it easier to save the CT slices as jpegs for training Ultralytics YOLO. # yolo coord txt files for all patients txt_files = os.listdir("/kaggle/working/yolo_coords") # patients with segmentation data niis = os.listdir( "/kaggle/input/rsna-2022-cervical-spine-fracture-detection/segmentations" ) pts = [ re.search("(?<=1.2.826.0.1.3680043.)([0-9]*)(?=.nii)", filename).group(0) for filename in niis ] pts = [int(s) for s in pts] # Save slices corresponding to each yolo_coord txt file train_images = "/kaggle/input/rsna-2022-cervical-spine-fracture-detection/train_images" yolo_slices = os.path.join(os.getcwd(), "yolo_slices") if not os.path.exists(yolo_slices): os.mkdir(yolo_slices) for pt in pts: slice_nums = [] for txt_file in txt_files: if re.search("^([0-9]*)(?=_)", txt_file).group(0) == str( pt ): # txt files for pt slice_num = int(re.search("(?<=_)([0-9]*)(?=.txt)", txt_file).group(0)) slice_nums.append(slice_num) pt_CT = os.path.join(train_images, f"1.2.826.0.1.3680043.{str(pt)}") pt_slices_all = os.listdir(pt_CT) # list of dcms pt_slices_all = sorted(pt_slices_all) pt_slices_all.sort(key=len) pt_slices = [pt_slices_all[slice_num] for slice_num in sorted(slice_nums)] if min(pt_slices_all, key=len) == "2.dcm": # scans that are missing 1.dcm for slice_ in pt_slices: img_path = os.path.join( train_images, "1.2.826.0.1.3680043." + str(pt), slice_ ) img = load_img_from_dcm(img_path) imgs_savepath = os.path.join( yolo_slices, f"{str(pt)}_{int(slice_[:-4])-2}.jpg" ) cv2.imwrite(imgs_savepath, img) else: # normal scans that start from 1.dcm for slice_ in pt_slices: img_path = os.path.join( train_images, "1.2.826.0.1.3680043." + str(pt), slice_ ) img = load_img_from_dcm(img_path) imgs_savepath = os.path.join( yolo_slices, f"{str(pt)}_{int(slice_[:-4])-1}.jpg" ) cv2.imwrite(imgs_savepath, img) # # Organize images and labels into directories # Split into train and valid set all_images = os.listdir("/kaggle/working/yolo_slices") all_images = [f[:-4] for f in all_images] random.shuffle(all_images) SPLIT_POINT = int(len(all_images) * 0.9) train_set = all_images[:SPLIT_POINT] valid_set = all_images[SPLIT_POINT:] # Put each image/label into right directory folders = ["train/images", "train/labels", "valid/images", "valid/labels"] for folder in folders: if not os.path.exists(folder): os.makedirs(folder) for idx in train_set: jpg_file = f"/kaggle/working/yolo_slices/{idx}.jpg" txt_file = f"/kaggle/working/yolo_coords/{idx}.txt" shutil.move(jpg_file, "/kaggle/working/train/images") shutil.move(txt_file, "/kaggle/working/train/labels") for idx in valid_set: jpg_file = f"/kaggle/working/yolo_slices/{idx}.jpg" txt_file = f"/kaggle/working/yolo_coords/{idx}.txt" shutil.move(jpg_file, "/kaggle/working/valid/images") shutil.move(txt_file, "/kaggle/working/valid/labels")
# !pip install scipy # !pip install plotly # !pip install statsmodels # !pip install scikit-learn # !pip install matplotlib import pandas as pd from datetime import datetime import plotly.graph_objects as go from plotly.subplots import make_subplots import matplotlib.pyplot as plt import plotly.figure_factory as ff import numpy as np from sklearn import linear_model import statsmodels.api as sm from statsmodels.tsa.stattools import adfuller from statsmodels.tsa.seasonal import seasonal_decompose from statsmodels.tsa.arima_model import ARIMA from sklearn.preprocessing import PolynomialFeatures import math import os for dirpath, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirpath, filename)) DATEPARSER = lambda x: datetime.strptime(x, "%d/%m/%Y") def get_cryptcncy(ticker="BTC", start_date=None): # problem: how to compare a datetimeindex with a datetime if ticker == "BTC": df_crptcncy = pd.read_csv( "/kaggle/input/cryptocurrency/{}.csv".format(ticker), parse_dates=["Date"], date_parser=DATEPARSER, ) else: df_crptcncy = pd.read_csv( "/kaggle/input/cryptocurrency/{}.csv".format(ticker), parse_dates=["Date"] ).iloc[::-1] if start_date is not None: start_date = datetime.strptime(start_date, "%Y-%m-%d") df_crptcncy = df_crptcncy.loc[df_crptcncy["Date"] >= start_date] df_crptcncy.set_index("Date", inplace=True) df_crptcncy.index.freq = "-1D" return df_crptcncy def get_data(ticker="BTC", diff=None, shift=None, start_date=None): df_cryptcncy = get_cryptcncy("BTC", start_date=start_date) # external determinants df_gold = pd.read_csv( "/kaggle/input/external/gold.csv", parse_dates=["Date"], index_col="Date" ) df_tre = pd.read_csv( "/kaggle/input/external/treasury_bill.csv", parse_dates=["Date"], index_col="Date", ) df_oil = pd.read_csv( "/kaggle/input/external/crude_oil.csv", parse_dates=["Date"], index_col="Date" ).iloc[::-1] df_inf = pd.read_csv( "/kaggle/input/external/inflation_rate.csv", parse_dates=["Date"], index_col="Date", ) df_ue = pd.read_csv( "/kaggle/input/external/USD_EUR.csv", parse_dates=["Date"], index_col="Date" ) df_uj = pd.read_csv( "/kaggle/input/external/USD_JPY.csv", parse_dates=["Date"], index_col="Date" ) df_uc = pd.read_csv( "/kaggle/input/external/USD_CNY.csv", parse_dates=["Date"], index_col="Date" ) # construct a df contains crypto and its factors if diff is None: df_ex = df_cryptcncy["Close"] columns = [ticker] else: df_ex = df_cryptcncy["Close"].diff(diff) columns = [ticker + "_diff {}".format(diff)] df_ex = pd.concat( [ df_ex, df_gold["USD (PM)"], df_oil["value"], df_tre["1 MO"], df_ue["close"], df_uj["close"], df_uc["close"], ], axis=1, ).reindex(df_ex.index) columns.extend(["Gold", "Crude Oil", "T-bill", "USD/EUR", "USD/JPY", "USD/CNY"]) df_ex.columns = columns df_ex = df_ex.iloc[::-1] df_ex.dropna(axis=0, how="any", inplace=True) # df_ex.fillna(0, inplace=True) # internal determinants df_vl = pd.read_csv( "/kaggle/input/internal/volume.csv", parse_dates=["Date"], index_col="Date" ) df_bs = pd.read_csv( "/kaggle/input/internal/block_speed.csv", parse_dates=["Date"], index_col="Date" ) df_dff = pd.read_csv( "/kaggle/input/internal/difficulty.csv", parse_dates=["Date"], index_col="Date" ) df_fee = pd.read_csv( "/kaggle/input/internal/fees.csv", parse_dates=["Date"], index_col="Date" ) df_hr = pd.read_csv( "/kaggle/input/internal/hash_rate.csv", parse_dates=["Date"], index_col="Date" ) df_supply = pd.read_csv( "/kaggle/input/internal/supply.csv", parse_dates=["Date"], index_col="Date" ) # construct a df contains crypto and its factors if diff is None: df_in = df_cryptcncy["Close"] columns = [ticker] else: df_in = df_cryptcncy["Close"].diff(diff) columns = [ticker + "_diff {}".format(diff)] df_in = pd.concat( [ df_in, df_vl["volume"], df_bs["Block Speed"], df_dff["Difficulty"], df_fee["Average"], df_fee["Fees Per Block"], df_hr["Hash Rate"], df_supply["Total Supply"], ], axis=1, ).reindex(df_ex.index) columns.extend( [ "Volume", "Block Speed", "Difficulty", "Average", "Fees Per Block", "Hash Rate", "Total Supply", ] ) df_in.columns = columns df_in.dropna(axis=0, how="any", inplace=True) # cryptocurrency makret columns = ["BTC", "ADA", "BCH", "DASH", "EOS", "ETH", "LTC", "IOTA", "XMR", "XRP"] columns.remove(ticker) crypto_list = [] crypto_list.append(df_cryptcncy["Close"]) for t in columns: crypto_list.append(get_cryptcncy(t)["Close"]) df_mkt = pd.concat(crypto_list, axis=1).reindex(df_cryptcncy["Close"].index) columns.insert(0, ticker) df_mkt.columns = columns df_mkt.dropna(axis=0, how="any", inplace=True) df_mkt["CMI10"] = ( 0.25 * df_mkt["BTC"] + 0.25 * df_mkt["ETH"] + 0.1788 * df_mkt["XRP"] + 0.1118 * df_mkt["BCH"] + 0.0667 * df_mkt["EOS"] + 0.0457 * df_mkt["LTC"] + 0.0266 * df_mkt["XMR"] + 0.0254 * df_mkt["ADA"] + 0.0220 * df_mkt["IOTA"] + 0.0229 * df_mkt["DASH"] ) df_event = pd.read_csv( "/kaggle/input/events/events.csv", parse_dates=["Date"], date_parser=DATEPARSER, sep=";", ) return df_cryptcncy, df_ex, df_in, df_mkt, df_event def corr_cof(df, transform=None): if transform == "log": df = np.log(df) df_corr = df.corr(method="pearson") z_text = np.around(df_corr.values, decimals=3) fig = ff.create_annotated_heatmap( z=df_corr.values, x=list(df_corr.columns.values), y=list(df_corr.columns.values), annotation_text=z_text, showscale=True, ) fig.show() columns = df.columns rows_num = math.ceil(len(columns) / 2) fig = make_subplots(rows=rows_num, cols=2, subplot_titles=columns) for index, value in enumerate(columns): if index == 0: fig.add_trace( go.Scatter(y=df[value], x=df.index, mode="markers", name=columns[0]), row=1, col=1, ) else: fig.add_trace( go.Scatter(y=df[columns[0]], x=df[value], mode="markers", name=value), row=int(index / 2 + 1), col=int(index % 2 + 1), ) fig.show() def linear_analysis(df, determinants=[], transform=None, degree=None): if transform == "polynomial" and degree is not None: "You should set a degree for your polynomial regression" X = df[determinants] Y = df[df.columns[0]] if transform == "log": X = np.log(X) Y = np.log(Y) elif transform == "square": X = np.square(X) Y = np.square(Y) elif transform == "polynomial": polynomial_features = PolynomialFeatures(degree=degree) X = polynomial_features.fit_transform(X) regr = linear_model.LinearRegression() regr.fit(X, Y) print("Intercept: \n", regr.intercept_) print("Coefficients: \n", regr.coef_) X = sm.add_constant(X) # adding a constant model = sm.OLS(Y, X).fit() print(model.summary()) def differential_transform(timeseries, diff): timeseries_diff = timeseries.diff(periods=diff) timeseries_diff.fillna(0, inplace=True) return timeseries_diff def unit_root_test(timeseries, method="ADF", diff=None, name=None): print("Name: {0}, Unit root test, Method:{1}, diff={2}".format(name, method, diff)) if diff is not None: timeseries = differential_transform(timeseries, diff) if method == "ADF": timeseries_adf = adfuller(timeseries) print("ADF Statistic: %f" % timeseries_adf[0]) print("p-value: %f" % timeseries_adf[1]) print("Critical Values:") for key, value in timeseries_adf[4].items(): print("\t%s: %.3f" % (key, value)) def ACF_PFC(timeseries, lags): fig = plt.figure() ax1 = fig.add_subplot(211) sm.graphics.tsa.plot_acf(timeseries, lags=lags, ax=ax1) ax2 = fig.add_subplot(212) sm.graphics.tsa.plot_pacf(timeseries, lags=lags, ax=ax2) plt.show() def decomposing(timeseries): decomposition = seasonal_decompose(timeseries) trend = decomposition.trend seasonal = decomposition.seasonal residual = decomposition.resid plt.figure() plt.subplot(411) plt.plot(timeseries, label="Original") plt.legend(loc="best") plt.subplot(412) plt.plot(trend, label="Trend") plt.legend(loc="best") plt.subplot(413) plt.plot(seasonal, label="Seasonarity") plt.legend(loc="best") plt.subplot(414) plt.plot(residual, label="Residual") plt.legend(loc="best") plt.show() # problem: when to dropna and when to fillna trend = trend.fillna(0) seasonal = seasonal.fillna(0) residual = residual.fillna(0) # trend.dropna(inplace=True) # seasonal.dropna(inplace=True) # residual.dropna(inplace=True) return timeseries, trend, seasonal, residual def AIC_BIC(timeseries): trend_evaluate = sm.tsa.arma_order_select_ic( timeseries, ic=["aic", "bic"], trend="nc", max_ar=4, max_ma=4 ) print("trend AIC", trend_evaluate.aic_min_order) print("trend BIC", trend_evaluate.bic_min_order) def ARIMA_Model(df_close, order): # check stationary unit_root_test(df_close, diff=1) # ACF and PACF df_close_diff = differential_transform(df_close, diff=1) ACF_PFC(df_close_diff, lags=20) # decomposing original, trend, seasonal, residual = decomposing(df_close) unit_root_test(trend, diff=1, name="trend") unit_root_test(residual, name="residual") trend_diff = differential_transform(trend, diff=1) ACF_PFC(trend_diff, lags=20) ACF_PFC(residual, lags=20) AIC_BIC(trend_diff) AIC_BIC(residual) trend_model = ARIMA(trend, order=(1, 1, 1)) residual_model = ARIMA(residual, (0, 0, 4)) trend_model.fit(disp=0) residual_model.fit(disp=0) print(trend_model.summary()) print(residual_model.summary()) return def draw_candlestick(df_crycency, events=None): fig = go.Figure() df_crycency = df_crycency.reset_index() fig.add_trace( go.Candlestick( x=df_crycency["Date"], open=df_crycency["Open"], high=df_crycency["High"], low=df_crycency["Low"], close=df_crycency["Close"], # increasing=dict(line=dict(color='#17BECF')), # decreasing=dict(line=dict(color='#7F7F7F')) ) ) for event in events.values: date = event[0] content = event[1] fig.add_annotation( x=date, y=df_crycency[df_crycency["Date"] == date]["Close"].values[0], text=content, arrowhead=3, ) fig.update_layout(height=700, showlegend=False) fig.show() ticker = "BTC" df_cryptcncy, df_ex, df_in, df_mkt, df_event = get_data("BTC", start_date="2017-05-01") # external-factors df_ex_deter = ["Gold", "Crude Oil", "USD/CNY"] corr_cof(df_ex) linear_analysis(df_ex, df_ex_deter, "log") # internal-factors # ["Block Speed", "Difficulty", "Average", "Fees Per Block", "Hash Rate", "Total Supply"] df_in_deter = ["Block Speed", "Fees Per Block", "Volume"] corr_cof(df_in) linear_analysis(df_in, df_in_deter) # crypto market factors ["BTC", "ADA", "BCH", "DASH", "EOS", "ETH", "LTC", "IOTA", "XMR", "XRP"] corr_cof(df_mkt, "log") df_mkt_deter = ["ETH", "XRP", "CMI10"] linear_analysis(df_mkt, df_mkt_deter, "log") # autocorrelation analysis unit_root_test(df_cryptcncy["Close"], name="price") unit_root_test(df_cryptcncy["Close"], name="price_diff", diff=1) df_diff = differential_transform(df_cryptcncy["Close"], diff=1) ACF_PFC(df_diff, lags=100) # event draw_candlestick(df_cryptcncy, events=df_event)
# ## Generating the training Data # ### Loading the pictures # Function to manage the input of Data import glob def data_path_from_name(name, all_names=False): L = glob.glob(f"../**/{name}", recursive=True) if len(L) > 1: print(f"All path for {name} :") print(L) if all_names: return L print(f"Data path return {L[0]}") return L[0] from PIL import Image picture_ims = [ Image.open(path) for path in data_path_from_name("Tile*.png", all_names=True) ] tile_ims = [ Image.open(path) for path in data_path_from_name("Basic*.png", all_names=True) ] from IPython.display import display # Display the example of picture we want to shatter in tiles def c_display(im, message="Size :"): print( "--------", ) display(im) print("________", message, im.size, end="\n\n") for im in picture_ims: c_display(im, message="Size of picture :") # Display the types of tiles used for shattering the picture for im in tile_ims: c_display(im, message="Size of tile :") # ### Shattering the pictures into 10x10 aeras def shatter(im=picture_ims[0]): l = [] for i in range(10): for j in range(10): l.append(im.crop((j * 10, i * 10, (j + 1) * 10, (i + 1) * 10))) return l i = 0 for im in shatter(): c_display(im, message="Size of area:") i += 1 if i >= 3: break # ### Set of tile & their rotations rotations = [0, 90, 180, 270] def set_tiles(imgs=tile_ims): l = [] for tile in imgs: for rotation in rotations: l.append(tile.rotate(angle=rotation)) return l for im in set_tiles(): display(im) # ### Generators of Data : import random def data_gen( im_data, max_it=10, inf_gen=False, func_encode_input=lambda x: x, func_encode_output=lambda x: x, ): n = 0 while True: if n >= max_it: return im = random.choice(im_data) yield (func_encode_input(im), func_encode_output(im)) n += 1 if inf_gen: max_it += 1 x, y = None, None for x, y in data_gen(shatter(picture_ims[0]), max_it=3): c_display(x) c_display(y) print("\n\n\n\n") import numpy as np import torch from_numpy_to_tensor_float = lambda z: torch.tensor( torch.from_numpy(z), dtype=torch.float ).T import copy def from_im_to_array(im): data = copy.deepcopy(np.asarray(im.convert("L"), dtype="float")) data = data.reshape((100, 1)) # Encoding data as bipolar input data[data == 255] = 1 # black as 1 data[data != 1] = -1 # white as -1 return data # Column vector from functools import partial # generator that iterate randomly over the areas of the picture picture_area_gen = partial( data_gen, im_data=shatter(picture_ims[0]), func_encode_input=lambda x: from_numpy_to_tensor_float(from_im_to_array(x)), func_encode_output=lambda y: from_numpy_to_tensor_float(from_im_to_array(y)), ) # generator that iterate randomly over the type of tile and their rotations tile_gen = partial( data_gen, im_data=set_tiles(tile_ims), func_encode_input=lambda x: from_numpy_to_tensor_float(from_im_to_array(x)), func_encode_output=lambda y: from_numpy_to_tensor_float(from_im_to_array(y)), ) for x, y in picture_area_gen(max_it=2): print("x :", x, "\ny :", y, end="\n\n") # ## Pytorch Neural Network # Let's plug our problem into a pytorch NN import torch import torch.nn as nn import torch.nn.functional as F # ### NN architecture hidden_1 = 20 class Net(nn.Module): def __init__(self): super(Net, self).__init__() # an affine operation: y = Wx + b self.fc1 = nn.Linear(x.size(1), hidden_1) self.fc2 = nn.Linear(hidden_1, y.size(1)) def forward(self, x): x = F.sigmoid(self.fc1(x)) x = F.sigmoid(self.fc2(x)) return x def num_flat_features(self, x): size = x.size()[1:] # all dimensions except the batch dimension num_features = 1 for s in size: num_features *= s return num_features net = Net() print(net, end="\n\n") for ( param ) in ( net.parameters() ): # net.parameters() Function that is yielding the learnable parameters print(param.size()) # ### Learning method class NN_trainer: total = 0 def _weighted_generator(self, l_gen, l_weight=None, max_it=1000): """providing a list of generators it create a balanced or weigted generator of the data labeled with integer""" l_gen = [gen(inf_gen=True) for gen in l_gen] n = 0 if not len(l_gen) == 1: l_weight = [1 for _ in range(len(l_gen))] if l_weight is None else l_weight norm = lambda l: [e / sum(l) for e in l] pb = norm(l_weight) next_value = ( lambda i=0, s=0: (next(l_gen[i]), i) if np.random.rand() < pb[i] / (1 - s) else next_value(i + 1, s + pb[i]) ) while True: if n >= max_it: return try: yield next_value() except: # Very low pb (Theorically null probability) print( "Check if the max itteration for one gen is lower than max_it" ) yield next(l_gen[-1]), (len(l_gen) - 1) n += 1 else: while True: if n >= max_it: return yield (next(l_gen[0]), 0) n += 1 def learn( self, net, criterion, optimizer, n_epoch=10, epoch_batch=100, data_generators=[], weight_data_gens=None, ): total_bp = self.total for e in range(n_epoch): running_loss = 0 # Build a random itterator over the data data_epoch = self._weighted_generator( l_gen=data_generators, l_weight=weight_data_gens, max_it=epoch_batch ) for (x, y), indice_gen in data_epoch: # Calculate output output = net(x) # zero the parameter's gradient data optimizer.zero_grad() # Compute the loss loss = criterion(output, y) running_loss += loss.item() # Backpropagate the error loss.backward() optimizer.step() total_bp += 1 print( f"epoch : {e} loss {round(running_loss/epoch_batch,3)} total : {total_bp}" ) self.total = total_bp net = Net() trainer = NN_trainer() import torch.optim as optim trainer.learn( net=net, criterion=nn.MSELoss(reduction="sum"), optimizer=optim.SGD(net.parameters(), lr=0.001, momentum=0.9), n_epoch=10, epoch_batch=1000, data_generators=[picture_area_gen, tile_gen], weight_data_gens=None, )
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. # Ignore warnings import warnings warnings.filterwarnings("ignore") from IPython.core.debugger import set_trace # import base packages into the namespace for this program import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import time import os import subprocess import sklearn assert sklearn.__version__ >= "0.20" import seaborn as sns import pandas as pd # SKlearn from sklearn.datasets import fetch_openml from sklearn.decomposition import PCA from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import cross_val_predict, cross_val_score from sklearn.metrics import confusion_matrix from sklearn.metrics import f1_score, classification_report from sklearn.model_selection import train_test_split # seed value for random number generators to obtain reproducible results RANDOM_SEED = 85 # # ### Kaggle version with different train and test dataset for submission # ### the Kaggle train dataset is only 42K long, so the flawed experiment will be eliminated (cannot split 42K to 60K and 10K) # ### # Get MNIST Data Set ( https://github.com/ageron/handson-ml/issues/301#issuecomment-448853256 ) # The issue of obtaining MNIST data is solved by following "https://github.com/ageron/handson-ml/issues/143". # from sklearn.datasets import fetch_openml # mnist = fetch_openml('mnist_784', version=1, cache=True) for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) os.getcwd() print(os.getcwd()) # Validate Current Path and create Path to data from pathlib import Path INPUT = Path("../input/digit-recognizer") os.listdir(INPUT) X_test = pd.read_csv(INPUT / "test.csv") train = pd.read_csv(INPUT / "train.csv") X_train = train.drop(["label"], axis="columns", inplace=False) y_train = train["label"] print(X_train.shape) print(y_train.shape) # rerun the experiment, using 70/30 split and two part PCA, train and test separately # First Random Forest # RANDOM FOREST on Dimension Reduced Data (PCA:95% variability) RF_clf = RandomForestClassifier( bootstrap=True, n_estimators=10, max_features="sqrt", random_state=RANDOM_SEED ) start_RF = time.clock() RF_clf.fit(X_train, y_train) RF_CrossVal = cross_val_score(RF_clf, X_train, y_train, cv=10, scoring="f1_macro") print(RF_CrossVal) y_pred = cross_val_predict(RF_clf, X_train, y_train, cv=10) print(classification_report(y_train, y_pred)) RF_clf_score = RF_clf.score(X_train, y_train) print("Accuracy Score for Random Forest: {:.3f}".format(RF_clf_score)) f1score_RF_clf = f1_score(y_train, y_pred, average="macro") print("F1 Score for Random Forest: {:.3f}".format(f1score_RF_clf)) stop_RF = time.clock() time_RF = stop_RF - start_RF print("Start time for Random Forest: {:.3f}".format(start_RF)) print("End_time for Random Forest: {:.3f}".format(stop_RF)) print("Runtime for Random Forest: {:.3f}".format(time_RF)) column_names = ["ImageId", "Label"] results = pd.DataFrame(columns=column_names) results["Label"] = pd.Series(RF_clf.predict(X_test)) IDdata = pd.DataFrame(X_test) results["ImageId"] = X_test.index + 1 # sub = results[['ImageId','Label']] sub = results[["ImageId", "Label"]] sub.to_csv("submissionRF_noPCA.csv", index=False) # Now Random Forest with reduced data start_RF_reduced = time.clock() rnd_pca = PCA(n_components=0.95) X_train_reduced = rnd_pca.fit_transform(X_train) X_test_reduced = rnd_pca.transform(X_test) # RANDOM FOREST on Dimension Reduced Data (PCA:95% variability) RF_clf_reduced = RandomForestClassifier( bootstrap=True, n_estimators=10, max_features="sqrt", random_state=RANDOM_SEED ) RF_clf_reduced.fit(X_train_reduced, y_train) RFReducedCrossVal = cross_val_score( RF_clf_reduced, X_train_reduced, y_train, cv=10, scoring="f1_macro" ) print(RFReducedCrossVal) y_pred_reduced = cross_val_predict(RF_clf_reduced, X_train_reduced, y_train, cv=10) print(classification_report(y_train, y_pred_reduced)) RF_clf_reduced_score = RF_clf_reduced.score(X_train_reduced, y_train) print("Accuracy Score for Random Forest Reduced: {:.3f}".format(RF_clf_reduced_score)) f1score_RF_clf_reduced = f1_score(y_train, y_pred_reduced, average="macro") print("F1 Score for Random Forest Reduced: {:.3f}".format(f1score_RF_clf_reduced)) stop_RF_reduced = time.clock() time_RF_reduced = stop_RF_reduced - start_RF_reduced print("Start time for Random Forest PCA Compressed: {:.3f}".format(start_RF_reduced)) print("End_time for Random Forest PCA Compressed: {:.3f}".format(stop_RF_reduced)) print("Runtime for Random Forest PCA Compressed: {:.3f}".format(time_RF_reduced)) column_names = ["ImageId", "Label"] results = pd.DataFrame(columns=column_names) results["Label"] = pd.Series(RF_clf_reduced.predict(X_test_reduced)) IDdata = pd.DataFrame(X_test_reduced) results["ImageId"] = X_test.index + 1 # sub = results[['ImageId','Label']] sub = results[["ImageId", "Label"]] sub.to_csv("submissionRF_PCA.csv", index=False) # Compare the results of the test print("Compare the time:") print("Random Forest Time no PCA: {:.3f}".format(time_RF)) print("Random Forest Time including PCA: {:.3f}".format(time_RF_reduced)) print(" ") print("Compare the accuracy scores:") print("Random Forest Accuracy Score no PCA: {:.3f}".format(RF_clf_score)) print("Random Forest Accuracy Score with PCA: {:.3f}".format(RF_clf_reduced_score)) print(" ") print("Compare the F1 scores:") print("Random Forest F1 Score no PCA: {:.3f}".format(f1score_RF_clf)) print("Random Forest F1 Score with PCA: {:.3f}".format(f1score_RF_clf_reduced)) # Graph the cross val scores pred = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] plt.figure() plt.plot(pred, RF_CrossVal, "r", label="RF_CrossVal") plt.plot(pred, RFReducedCrossVal, "b", label="RF_ReducedCrossVal") plt.xlabel("Predicted Values") plt.ylabel("Cross Validation Score") plt.title("Cross Validation Comparison") plt.legend(loc="center right") plt.show()
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. import pandas as pd train = pd.read_csv("/kaggle/input/titanic/train.csv") test = pd.read_csv("/kaggle/input/titanic/test.csv") train.head() # 12 fields test.head() # 11 fields train.shape test.shape train.info() test.info() train.isnull().sum() test.isnull().sum() import matplotlib.pyplot as plt import seaborn as sns sns.set() # setting seaborn default for plots def bar_chart(feature): survived = train[train["Survived"] == 1][feature].value_counts() dead = train[train["Survived"] == 0][feature].value_counts() df = pd.DataFrame([survived, dead]) df.index = ["Survived", "Dead"] df.plot(kind="bar", stacked=True, figsize=(10, 5)) bar_chart("Sex") bar_chart("Pclass") bar_chart("SibSp") bar_chart("Parch") bar_chart("Embarked") # Feature Engineering # TItanic-Survival-Infographic train.head(10) train_test_data = [train, test] # combining train and test dataset for dataset in train_test_data: dataset["Title"] = dataset["Name"].str.extract(" ([A-Za-z]+)\.", expand=False) train["Title"].value_counts() test["Title"].value_counts() """ Title map Mr : 0 Miss : 1 Mrs: 2 Others: 3""" title_mapping = { "Mr": 0, "Miss": 1, "Mrs": 2, "Master": 3, "Dr": 3, "Rev": 3, "Col": 3, "Major": 3, "Mlle": 3, "Countess": 3, "Ms": 3, "Lady": 3, "Jonkheer": 3, "Don": 3, "Dona": 3, "Mme": 3, "Capt": 3, "Sir": 3, } for dataset in train_test_data: dataset["Title"] = dataset["Title"].map(title_mapping) train.head() test.head() bar_chart("Title") # delete unnecessary feature from dataset train.drop("Name", axis=1, inplace=True) test.drop("Name", axis=1, inplace=True) train.head() test.head() """male: 0 female: 1""" sex_mapping = {"male": 0, "female": 1} for dataset in train_test_data: dataset["Sex"] = dataset["Sex"].map(sex_mapping) bar_chart("Sex") """some age is missing Let's use Title's median age for missing Age """ train.head(100) # fill missing age with median age for each title (Mr, Mrs, Miss, Others) train["Age"].fillna(train.groupby("Title")["Age"].transform("median"), inplace=True) test["Age"].fillna(test.groupby("Title")["Age"].transform("median"), inplace=True) train.head(30) train.groupby("Title")["Age"].transform("median") facet = sns.FacetGrid(train, hue="Survived", aspect=4) facet.map(sns.kdeplot, "Age", shade=True) facet.set(xlim=(0, train["Age"].max())) facet.add_legend() plt.show() facet = sns.FacetGrid(train, hue="Survived", aspect=4) facet.map(sns.kdeplot, "Age", shade=True) facet.set(xlim=(0, train["Age"].max())) facet.add_legend() plt.xlim(0, 20) facet = sns.FacetGrid(train, hue="Survived", aspect=4) facet.map(sns.kdeplot, "Age", shade=True) facet.set(xlim=(0, train["Age"].max())) facet.add_legend() plt.xlim(20, 30) facet = sns.FacetGrid(train, hue="Survived", aspect=4) facet.map(sns.kdeplot, "Age", shade=True) facet.set(xlim=(0, train["Age"].max())) facet.add_legend() plt.xlim(30, 40) facet = sns.FacetGrid(train, hue="Survived", aspect=4) facet.map(sns.kdeplot, "Age", shade=True) facet.set(xlim=(0, train["Age"].max())) facet.add_legend() plt.xlim(40, 60) facet = sns.FacetGrid(train, hue="Survived", aspect=4) facet.map(sns.kdeplot, "Age", shade=True) facet.set(xlim=(0, train["Age"].max())) facet.add_legend() plt.xlim(40, 60) facet = sns.FacetGrid(train, hue="Survived", aspect=4) facet.map(sns.kdeplot, "Age", shade=True) facet.set(xlim=(0, train["Age"].max())) facet.add_legend() plt.xlim(60) train.info() test.info() """Binning Binning/Converting Numerical Age to Categorical Variable feature vector map: child: 0 young: 1 adult: 2 mid-age: 3 senior: 4 """ for dataset in train_test_data: dataset.loc[dataset["Age"] <= 16, "Age"] = 0 dataset.loc[(dataset["Age"] > 16) & (dataset["Age"] <= 26), "Age"] = 1 dataset.loc[(dataset["Age"] > 26) & (dataset["Age"] <= 36), "Age"] = 2 dataset.loc[(dataset["Age"] > 36) & (dataset["Age"] <= 62), "Age"] = 3 dataset.loc[dataset["Age"] > 62, "Age"] = 4 train.head(10) bar_chart("Age")
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns import xgboost as xgb from sklearn.metrics import mean_squared_error as mse from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # /kaggle/input/new-york-city-taxi-fare-prediction/sample_submission.csv # /kaggle/input/new-york-city-taxi-fare-prediction/GCP-Coupons-Instructions.rtf # /kaggle/input/new-york-city-taxi-fare-prediction/train.csv # /kaggle/input/new-york-city-taxi-fare-prediction/test.csv train_df = pd.read_csv("../input/date-timw/train.csv", nrows=10_000_000) test_df = pd.read_csv("../input/nyctaxis2020/test.csv") train_df.drop("key", axis=1, inplace=True) train_df.head() test_df.head() test_df.describe() train_df.dtypes train_df.isna().sum() pd.set_option("display.float_format", lambda x: "%.5f" % x) train_df.describe() (train_df["fare_amount"] < 0).sum() ((train_df["pickup_longitude"] < -180) | (train_df["pickup_longitude"] > 180)).sum() ((train_df["pickup_latitude"] < -90) | (train_df["pickup_latitude"] > 90)).sum() ((train_df["passenger_count"] == 0) | (train_df["passenger_count"] > 6)).sum() (train_df["passenger_count"] > 6).sum() print("Train Passenger count equals 0: ", (train_df["passenger_count"] == 0).sum()) print("Test Passenger count equals 0: ", (test_df["passenger_count"] == 0).sum()) plt.figure(figsize=(10, 6)) sns.histplot(train_df["fare_amount"]) plt.title("Distribution of Fare Amount") def clean_df(df): new_df = df[ ((df["fare_amount"] > 0) & (df["fare_amount"] <= 200)) & ((df["pickup_longitude"] > -75) & (df["pickup_longitude"] < -73)) & ((df["pickup_latitude"] > 40) & (df["pickup_latitude"] < 42)) & ((df["dropoff_longitude"] > -75) & (df["dropoff_longitude"] < -73)) & ((df["dropoff_latitude"] > 40 & (df["dropoff_latitude"] < 42))) & ((df["passenger_count"] > 0) & (df["passenger_count"] <= 6)) ] return new_df plt.figure(figsize=(12, 8)) sns.scatterplot(x=train_df["pickup_longitude"], y=train_df["pickup_latitude"]) print("Before:", len(train_df)) train_df = clean_df(train_df) print("After:", len(train_df)) plt.figure(figsize=(12, 8)) sns.scatterplot(x=train_df["pickup_longitude"], y=train_df["pickup_latitude"]) plt.figure(figsize=(10, 6)) sns.scatterplot(x=train_df["passenger_count"], y=train_df["fare_amount"]) plt.xlabel("Number of Passengers") plt.ylabel("Fare Amount") train_df.describe() def manhattan_dist(lat_p, long_p, lat_d, long_d): distance = np.abs(lat_d - lat_p) + np.abs(long_d - long_p) return distance def add_datetime_info(df, transform_datetime=False): if transform_datetime: df["pickup_datetime"] = pd.to_datetime( df["pickup_datetime"], format="%Y-%m-%d %H:%M:%S UTC" ) df["hour"] = df["pickup_datetime"].dt.hour df["day"] = df["pickup_datetime"].dt.day df["month"] = df["pickup_datetime"].dt.month df["year"] = df["pickup_datetime"].dt.year # df['weekday'] = df['pickup_datetime'].dt.weekday # removing this since it's the least important feature df.drop("pickup_datetime", axis=1, inplace=True) def add_airport_info(df): # nyc = (40.7141667, -74.0063889) # jfk = (-73.7822222222, 40.6441666667) # ewr = (-74.175, 40.69) # lgr = (-73.87, 40.77) nyc = (-74.0063889, 40.7141667) jfk = (40.6441666667, -73.7822222222) ewr = (40.69, -74.175) lgr = (40.77, -73.87) df["distance_to_center"] = manhattan_dist( nyc[0], nyc[1], df["pickup_latitude"], df["pickup_longitude"] ) df["pickup_distance_to_jfk"] = manhattan_dist( jfk[0], jfk[1], df["pickup_latitude"], df["pickup_longitude"] ) df["dropoff_distance_to_jfk"] = manhattan_dist( jfk[0], jfk[1], df["dropoff_latitude"], df["dropoff_longitude"] ) df["pickup_distance_to_ewr"] = manhattan_dist( ewr[0], ewr[1], df["pickup_latitude"], df["pickup_longitude"] ) df["dropoff_distance_to_ewr"] = manhattan_dist( ewr[0], ewr[1], df["dropoff_latitude"], df["dropoff_longitude"] ) df["pickup_distance_to_lgr"] = manhattan_dist( lgr[0], lgr[1], df["pickup_latitude"], df["pickup_longitude"] ) df["dropoff_distance_to_lgr"] = manhattan_dist( lgr[0], lgr[1], df["dropoff_latitude"], df["dropoff_longitude"] ) df["long_diff"] = df.dropoff_longitude - df.pickup_longitude df["lat_diff"] = df.dropoff_latitude - df.pickup_latitude def transform(df, transform_datetime): add_datetime_info(df, transform_datetime) add_airport_info(df) df["manhattan_dist"] = manhattan_dist( df["pickup_latitude"], df["pickup_longitude"], df["dropoff_latitude"], df["dropoff_longitude"], ) return df # train_df['pickup_datetime'] = pd.to_datetime(train_df['pickup_datetime'], format="%Y-%m-%d %H:%M:%S UTC") train_df = transform(train_df, transform_datetime=True) train_df.head() def visualize_date_fare(df): # date_objects = ['hour', 'day', 'weekday', 'month', 'year'] date_objects = ["hour", "day", "month", "year"] for idx, obj in enumerate(date_objects): # print("IDX", idx) # print("OBJ", obj) plt.figure(figsize=(10, 6)) sns.barplot( x=df[obj], y=df["fare_amount"], ci=None ) # setting ci=None dramatically decreases the time for plotting print(plt.get_cmap()) plt.title("Average Fare Amount by " + obj) plt.ylabel("Fare Amount") plt.show() visualize_date_fare(train_df) def visualize_date_counts(df): # date_objects = ['hour', 'day', 'weekday', 'month', 'year'] date_objects = ["hour", "day", "month", "year"] # fig, axes = plt.subplots(1, 5) for obj in date_objects: plt.figure(figsize=(10, 6)) sns.countplot(x=df[obj]) plt.ylabel("Count") plt.title("Taxi Rides Count by " + obj) plt.show() visualize_date_counts(train_df) train_df.head() X = train_df.drop(["fare_amount"], axis=1) y = train_df["fare_amount"] X_train, X_val, y_train, y_val = train_test_split(X, y, random_state=42, test_size=0.05) X_train.head() del X del y def XGBoost(X_train, X_test, y_train, y_test): dtrain = xgb.DMatrix(X_train, label=y_train) dtest = xgb.DMatrix(X_test, label=y_test) return xgb.train( params={ "objective": "reg:linear", "eval_metric": "rmse", "max_depth": 7, "colsample_bytree": 0.9, "gamma": 1, }, dtrain=dtrain, num_boost_round=400, early_stopping_rounds=30, evals=[(dtest, "test")], ) xgb_model = XGBoost(X_train, X_val, y_train, y_val) y_train_pred = xgb_model.predict( xgb.DMatrix(X_train), ntree_limit=xgb_model.best_iteration ) y_val_pred = xgb_model.predict(xgb.DMatrix(X_val), ntree_limit=xgb_model.best_iteration) print("Train set error: ", np.sqrt(mse(y_train, y_train_pred))) print("Validation set error: ", np.sqrt(mse(y_val, y_val_pred))) # Read and preprocess test set test_df = pd.read_csv("../input/nyctaxis2020/test.csv") # test_df['pickup_datetime'] = pd.to_datetime(test_df['pickup_datetime'], format="%Y-%m-%d %H:%M:%S UTC") test_df = transform(test_df, transform_datetime=True) # test_df['manhattan_dist'] = manhattan_dist(test_df['pickup_latitude'], test_df['pickup_longitude'], # test_df['dropoff_latitude'] , test_df['dropoff_longitude']) test_key = test_df["key"] # x_pred = test_df.drop(columns=['key', 'passenger_count']) x_pred = test_df.drop(columns=["key"]) # Predict from test set prediction = xgb_model.predict(xgb.DMatrix(x_pred)) test_df.head() train_df.head() len(x_pred) prediction = prediction.round(2) submission = pd.DataFrame({"key": test_key, "fare_amount": prediction}) # submission.to_csv('/kaggle/working/XGBSubmission.csv',index=False) submission.to_csv("submission.csv", index=False) pd.read_csv("submission.csv").head() print("Plotting Feature Importance") fig, ax = plt.subplots(figsize=(12, 16)) xgb.plot_importance(xgb_model, height=0.7, ax=ax) ax.grid(False) plt.title("XGBoost - Feature Importance", fontsize=14) plt.show()
# Importing this libraries (modules) will make it possible to use certain packages (more like a formula) import numpy as np # This is used used to perform a wide variety of mathematical operations on arrays import pandas as pd # used for data science/data analysis and machine learning tasks. import matplotlib.pyplot as plt # Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python from sklearn import preprocessing from xgboost import XGBRegressor import sklearn.metrics as metrics import math from scipy.special import boxcox1p from scipy.stats import boxcox_normmax from scipy.stats import norm, skew import seaborn as sns import warnings from scipy import stats warnings.filterwarnings("ignore") from scipy.stats import norm from sklearn.preprocessing import StandardScaler from sklearn.metrics import mean_absolute_error from sklearn.linear_model import ElasticNetCV, LassoCV, RidgeCV from sklearn.ensemble import GradientBoostingRegressor from sklearn.svm import SVR from sklearn.pipeline import make_pipeline from sklearn.preprocessing import RobustScaler from sklearn.model_selection import KFold, cross_val_score from sklearn.metrics import mean_squared_error from mlxtend.regressor import StackingCVRegressor from xgboost import XGBRegressor from lightgbm import LGBMRegressor from datetime import datetime from scipy.stats import skew # for some statistics # **Gathering Data From the Source** # I want it to be that once I display the data it should showm be 10 rows and 20 columns pd.options.display.max_rows = 1000 pd.options.display.max_columns = 1000 train = pd.read_csv( "../input/regression-technique-eda/House Price Regression Tecnique/train.csv" ) test = pd.read_csv( "../input/regression-technique-eda/House Price Regression Tecnique/test.csv" ) # #**Carrying out EDA to proper understand and clean the data**# # Checking the size of test file and train file train.shape, test.shape # From the above output it interpretes that the exist 1,460 rows and 81 column in train file, while test file has 1,459 rows and 80 columns # train.head() # The reason I made it 30 rows is so that I can observer variety of data that exist in each column(Variable) train.info() """This gives some insight about the data e.g Class, numbers of rows and columns, number of non-null rows in each column(Variable), the array datatype(Dtype) and the memory size""" # Descrption of the the data train.describe() # Since the data is wide, So let's see it transposed display(train.describe().transpose()) train["SalePrice"].describe() # This gives insight that the 'SalePrice' variable does not have zero which makes it fit for modelling """There are several ways to perform exploratory data analysis on data but for this particular data I want to distinguish it into Qualitative and Quantitative data""" quantitative = [f for f in train.columns if train.dtypes[f] != "object"] quantitative.remove("SalePrice") quantitative.remove("Id") qualitative = [f for f in train.columns if train.dtypes[f] == "object"] # Note that I removed salesprice and ID ; this is cause 'Id' is not useful (not Qualitative and quantitative) and 'Salesprice' is the target variable # histogram sns.distplot(train["SalePrice"]) # Trying to explore our target variable I noticed the graph deviate from normal distribution (the column is positively skewed) and showed peakedness # checking the value for skewness and kurtosis print("Skewness: %f" % train["SalePrice"].skew()) print("Kurtosis: %f" % train["SalePrice"].kurt()) # Since skewness > 1 then it is positive skewness # and Kurtosis > 3 shows excess peakedness. # **Using Correlation analysis to get the best features** # Display a Heapmap to easily identify the best correlations corrmat = train.corr() f, ax = plt.subplots(figsize=(12, 9)) sns.heatmap(corrmat, vmax=0.8, square=True) corr = train.corr() highest_corr_features = corr.index[abs(corr["SalePrice"]) > 0.5] plt.figure(figsize=(10, 10)) g = sns.heatmap(train[highest_corr_features].corr(), annot=True, cmap="RdYlGn") # Note that there are cretain viraibles with the same correlation score; e.g TotalBsmtSF and 1stFlrSF, GrLivArea and TotRmsAbvGrd, GarageArea and GarageCars. # In conclusion we can choose 1stFlrSF (has the same correlation with 1stFlrSF ), GrLivArea (More correlated to 'SalePrice') a # **Correlation Analysis** # Trying to check which features best correlate with 'SalePrice' # Let's check which features are the most corelated train.corr()["SalePrice"].sort_values(ascending=False)[1:] import scipy.stats as st y = train["SalePrice"] plt.figure(1) plt.title("Johnson SU") sns.distplot(y, kde=False, fit=st.johnsonsu) plt.figure(2) plt.title("Normal") sns.distplot(y, kde=False, fit=st.norm) plt.figure(3) plt.title("Log Normal") sns.distplot(y, kde=False, fit=st.lognorm) # It is apparent that SalePrice doesn't follow normal distribution, so before performing regression it has to be transformed. While log transformation does pretty good job, best fit is unbounded Johnson distribution. f = pd.melt(train, value_vars=quantitative) g = sns.FacetGrid(f, col="variable", col_wrap=4, sharex=False, sharey=False) g = g.map(sns.distplot, "value") # **Categorical Data** for c in qualitative: train[c] = train[c].astype("category") if rain[c].isnull().any(): train[c] = train[c].cat.add_categories(["MISSING"]) train[c] = train[c].fillna("MISSING") def boxplot(x, y, **kwargs): sns.boxplot(x=x, y=y) x = plt.xticks(rotation=90) f = pd.melt(train, id_vars=["SalePrice"], value_vars=qualitative) g = sns.FacetGrid(f, col="variable", col_wrap=2, sharex=False, sharey=False, size=5) g = g.map(boxplot, "value", "SalePrice") """def encode(frame, feature): ordering = pd.DataFrame() ordering['val'] = frame[feature].unique() ordering.index = ordering.val ordering['spmean'] = frame[[feature, 'SalePrice']].groupby(feature).mean()['SalePrice'] ordering = ordering.sort_values('spmean') ordering['ordering'] = range(1, ordering.shape[0]+1) ordering = ordering['ordering'].to_dict() for cat, o in ordering.items(): frame.loc[frame[feature] == cat, feature+'_E'] = o qual_encoded = [] for q in qualitative: encode(train, q) qual_encoded.append(q+'_E') print(qual_encoded)""" # I want to calculate the Spearman correlation between the features and the target variable (SalePrice), and to visualize the correlations in a barplot. def spearman(frame, features): spr = pd.DataFrame() spr["feature"] = features spr["spearman"] = [frame[f].corr(frame["SalePrice"], "spearman") for f in features] spr = spr.sort_values("spearman") plt.figure(figsize=(6, 0.25 * len(features))) sns.barplot(data=spr, y="feature", x="spearman", orient="h") features = quantitative + qual_encoded spearman(train, features) # In the above,spearman correllation was used the evaluate relationships involving ordinal variables (Against the vatiable SalePrice) """def pairplot(x, y, **kwargs): ax = plt.gca() ts = pd.DataFrame({'time': x, 'val': y}) ts = ts.groupby('time').mean() ts.plot(ax=ax) plt.xticks(rotation=90) f = pd.melt(train, id_vars=['SalePrice'], value_vars=quantitative+qual_encoded) g = sns.FacetGrid(f, col="variable", col_wrap=2, sharex=False, sharey=False, size=5) g = g.map(pairplot, "value", "SalePrice")""" # **Data Processing** test.head() train.columns train["SalePrice"].hist(bins=40) # **SalePrice is not uniformly distributed and is skewed towards the left . Therefore , we use log1p to remove the skewness . # We take log as logs are used to respond to skewness towards large values; i.e., cases in which one or a few points are much larger than the bulk of the data.** # 4500 is used to remove every outliers that may negatively impact the model and np.log1p, this is done to make the distribution of the target variable more symmetric and improve model performance. train = train[train.GrLivArea < 4500] train.reset_index(drop=True, inplace=True) train["SalePrice"] = np.log1p(train["SalePrice"]) y = train["SalePrice"].reset_index(drop=True) # **As you can see below , the data is now more balanced , suitable for training and prediction purposes** train["SalePrice"].hist(bins=40) # **Data Cleaning** # Removing missing data # **Storing SalePrice column seperately , as it is the 'Y' label / target that our model will learn to predict. Not to be stored in 'X' or features** train_features = train.drop(["SalePrice"], axis=1) test_features = test features = pd.concat([train_features, test_features]).reset_index(drop=True) # **Now , we are merging train and test datasets , so that we can handle 'noise' and missing data in the dataset ** features.shape # Since these column are actually a category , using a numerical number will lead the model to assume # that it is numerical , so we convert to string . features["MSSubClass"] = features["MSSubClass"].apply(str) features["YrSold"] = features["YrSold"].astype(str) features["MoSold"] = features["MoSold"].astype(str) ## Filling these columns With most suitable value for these columns features["Functional"] = features["Functional"].fillna("Typ") features["Electrical"] = features["Electrical"].fillna("SBrkr") features["KitchenQual"] = features["KitchenQual"].fillna("TA") features["PoolQC"] = features["PoolQC"].fillna("None") ## Filling these with MODE , i.e. , the most frequent value in these columns . features["Exterior1st"] = features["Exterior1st"].fillna( features["Exterior1st"].mode()[0] ) features["Exterior2nd"] = features["Exterior2nd"].fillna( features["Exterior2nd"].mode()[0] ) features["SaleType"] = features["SaleType"].fillna(features["SaleType"].mode()[0]) ### Missing data in GarageYrBit most probably means missing Garage , so replace NaN with zero . for col in ("GarageYrBlt", "GarageArea", "GarageCars"): features[col] = features[col].fillna(0) for col in ["GarageType", "GarageFinish", "GarageQual", "GarageCond"]: features[col] = features[col].fillna("None") ### Same with basement for col in ("BsmtQual", "BsmtCond", "BsmtExposure", "BsmtFinType1", "BsmtFinType2"): features[col] = features[col].fillna("None") features["MSZoning"] = features.groupby("MSSubClass")["MSZoning"].transform( lambda x: x.fillna(x.mode()[0]) ) # **Fill the remaining columns as None** objects = [] for i in features.columns: if features[i].dtype == object: objects.append(i) features.update(features[objects].fillna("None")) print(objects) # **For missing values in numerical cols , we fillNa with 0.** # We are still filling up missing values features["LotFrontage"] = features.groupby("Neighborhood")["LotFrontage"].transform( lambda x: x.fillna(x.median()) ) numeric_dtypes = ["int16", "int32", "int64", "float16", "float32", "float64"] numerics = [] for i in features.columns: if features[i].dtype in numeric_dtypes: numerics.append(i) features.update(features[numerics].fillna(0)) numerics[1:10] numeric_dtypes = ["int16", "int32", "int64", "float16", "float32", "float64"] numerics2 = [] for i in features.columns: if features[i].dtype in numeric_dtypes: numerics2.append(i) skew_features = ( features[numerics2].apply(lambda x: skew(x)).sort_values(ascending=False) ) high_skew = skew_features[skew_features > 0.5] skew_index = high_skew.index for i in skew_index: features[i] = boxcox1p(features[i], boxcox_normmax(features[i] + 1)) features.shape # Get_dummies converts Categorical data to numerical , as models don't work with Text data . each category gets its different columns , mostly binary. final_features = pd.get_dummies(features).reset_index(drop=True) final_features.shape # **Understandably so , no. of columns is increased . # Here , Again train and test are spilt back seperately , as now all data processing is done . # Y is taget and its length is used to split** X = final_features.iloc[: len(y), :] X_sub = final_features.iloc[len(y) :, :] X.shape, y.shape, X_sub.shape # Removing outliers . Read other Kernels to understand how they were found out. # A few were already stated by the dataset provider , others can be seen by plotting them in a graph outliers = [30, 88, 462, 631, 1322] X = X.drop(X.index[outliers]) y = y.drop(y.index[outliers]) overfit = [] for i in X.columns: counts = X[i].value_counts() zeros = counts.iloc[0] if zeros / len(X) * 100 > 99.94: overfit.append(i) overfit = list(overfit) X = X.drop(overfit, axis=1) X_sub = X_sub.drop(overfit, axis=1) overfit X.shape, y.shape, X_sub.shape # **Final Step : # Now , we are getting started with the process of modelling # K-Folds cross-validator # Provides train/test indices to split data in train/test sets. Split dataset into k consecutive folds (without shuffling by default). # Each fold is then used once as a validation while the k - 1 remaining folds form the training set.** # defining error functions for handy use. kfolds = KFold(n_splits=10, shuffle=True, random_state=42) def rmsle(y, y_pred): return np.sqrt(mean_squared_error(y, y_pred)) def cv_rmse(model, X=X): rmse = np.sqrt( -cross_val_score(model, X, y, scoring="neg_mean_squared_error", cv=kfolds) ) return rmse alphas_alt = [14.5, 14.6, 14.7, 14.8, 14.9, 15, 15.1, 15.2, 15.3, 15.4, 15.5] alphas2 = [5e-05, 0.0001, 0.0002, 0.0003, 0.0004, 0.0005, 0.0006, 0.0007, 0.0008] e_alphas = [0.0001, 0.0002, 0.0003, 0.0004, 0.0005, 0.0006, 0.0007] e_l1ratio = [0.8, 0.85, 0.9, 0.95, 0.99, 1] ridge = make_pipeline(RobustScaler(), RidgeCV(alphas=alphas_alt, cv=kfolds)) lasso = make_pipeline( RobustScaler(), LassoCV(max_iter=1e7, alphas=alphas2, random_state=42, cv=kfolds) ) elasticnet = make_pipeline( RobustScaler(), ElasticNetCV(max_iter=1e7, alphas=e_alphas, cv=kfolds, l1_ratio=e_l1ratio), ) svr = make_pipeline( RobustScaler(), SVR( C=20, epsilon=0.008, gamma=0.0003, ), ) # **Final Step : # Now , we are getting started with the process of modelling** gbr = GradientBoostingRegressor( n_estimators=3000, learning_rate=0.05, max_depth=4, max_features="sqrt", min_samples_leaf=15, min_samples_split=10, loss="huber", random_state=42, ) lightgbm = LGBMRegressor( objective="regression", num_leaves=4, learning_rate=0.01, n_estimators=5000, max_bin=200, bagging_fraction=0.75, bagging_freq=5, bagging_seed=7, feature_fraction=0.2, feature_fraction_seed=7, verbose=-1, ) xgboost = XGBRegressor( learning_rate=0.01, n_estimators=3460, max_depth=3, min_child_weight=0, gamma=0, subsample=0.7, colsample_bytree=0.7, objective="reg:linear", nthread=-1, scale_pos_weight=1, seed=27, reg_alpha=0.00006, ) # **In simple words , Stacking helps avoid fitting on the same data twice , and is effective in reducing overfitting.** stack_gen = StackingCVRegressor( regressors=(ridge, lasso, elasticnet, gbr, xgboost, lightgbm), meta_regressor=xgboost, use_features_in_secondary=True, ) # **Here , we compare the various models that we just created..** # Using various prediction models that we just created score = cv_rmse(ridge, X) score = cv_rmse(lasso, X) print( "LASSO: {:.4f} ({:.4f})\n".format(score.mean(), score.std()), datetime.now(), ) score = cv_rmse(elasticnet) print( "elastic net: {:.4f} ({:.4f})\n".format(score.mean(), score.std()), datetime.now(), ) score = cv_rmse(svr) print( "SVR: {:.4f} ({:.4f})\n".format(score.mean(), score.std()), datetime.now(), ) score = cv_rmse(lightgbm) print( "lightgbm: {:.4f} ({:.4f})\n".format(score.mean(), score.std()), datetime.now(), ) score = cv_rmse(gbr) print( "gbr: {:.4f} ({:.4f})\n".format(score.mean(), score.std()), datetime.now(), ) score = cv_rmse(xgboost) print( "xgboost: {:.4f} ({:.4f})\n".format(score.mean(), score.std()), datetime.now(), ) print("START Fit") print("stack_gen") stack_gen_model = stack_gen.fit(np.array(X), np.array(y)) print("elasticnet") elastic_model_full_data = elasticnet.fit(X, y) print("Lasso") lasso_model_full_data = lasso.fit(X, y) print("Ridge") ridge_model_full_data = ridge.fit(X, y) print("Svr") svr_model_full_data = svr.fit(X, y) print("GradientBoosting") gbr_model_full_data = gbr.fit(X, y) print("xgboost") xgb_model_full_data = xgboost.fit(X, y) print("lightgbm") lgb_model_full_data = lightgbm.fit(X, y) # **Blending Models / 'Ensembling' # Notice that we are using a few percent from different models to get our final answer , all decimals add up to 1** def blend_models_predict(X): return ( (0.1 * elastic_model_full_data.predict(X)) + (0.05 * lasso_model_full_data.predict(X)) + (0.1 * ridge_model_full_data.predict(X)) + (0.1 * svr_model_full_data.predict(X)) + (0.1 * gbr_model_full_data.predict(X)) + (0.15 * xgb_model_full_data.predict(X)) + (0.1 * lgb_model_full_data.predict(X)) + (0.3 * stack_gen_model.predict(np.array(X))) ) print("RMSLE score on train data:") print(rmsle(y, blend_models_predict(X)))
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns sns.set_style("whitegrid") train_df = pd.read_csv("/kaggle/input/titanic/train.csv") test_df = pd.read_csv("/kaggle/input/titanic/test.csv") train_df.head() test_df.head() # ![](http://)> **Data Cleaning: Train Dataset** train_df.info() # There are some missing entries in the 'Age', 'Cabin', 'Embarked', column. # >1. We will remove the 'Cabin' column completely. # >2. We will use the dropna method to delete the row in the 'Embarked' column which will not impact the Data Frame as only 2 entries are null, # >3. For the 'Embarked' column we will create a function to impute the age based on the mean age with the 'Pclass' column. train_df = train_df.drop("Cabin", axis=1) train_df.head() plt.figure(figsize=(12, 7)) sns.boxplot(x="Pclass", y="Age", data=train_df, palette="rainbow") # We can see from the plot above that the average age of any given person depends on the class of cabin they are in. So we can infer as below. # * >Class 1 = 37 # * >Class 2 = 28 # * >Class 3 = 24 def impute_age(cols): Age = cols[0] Pclass = cols[1] if pd.isnull(Age): if Pclass == 1: return 37 elif Pclass == 2: return 28 else: return 24 else: return Age train_df["Age"] = train_df[["Age", "Pclass"]].apply(impute_age, axis=1) train_df.dropna(inplace=True) train_df.head() # >we will remove all the non numerical columns and then use pd.get_dummies to get the dummy values of the Pclass & Sex column sex = pd.get_dummies(train_df["Sex"], drop_first=True) embarked = pd.get_dummies(train_df["Embarked"], drop_first=True) train_df.drop(train_df[["Name", "Sex", "Ticket", "Embarked"]], axis=1, inplace=True) train_df.head() train_df = pd.concat([train_df, sex, embarked], axis=1) train_df.info() # # Test Dataset Cleaning # > we will do the same cleaning as we did in train dataset test_df.head() test_df.info() test_df["Age"] = test_df[["Age", "Pclass"]].apply(impute_age, axis=1) test_df["Fare"].fillna(test_df["Fare"].mean(), inplace=True) test_df.head() sex_test = pd.get_dummies(test_df["Sex"], drop_first=True) embarked_test = pd.get_dummies(test_df["Embarked"], drop_first=True) test_df.drop(["Name", "Sex", "Embarked", "Ticket", "Cabin"], axis=1, inplace=True) test_df = pd.concat([test_df, sex_test, embarked_test], axis=1) test_df.head() train_df.head() # # Predictions : Finding the best model # > we will create a train test split of the Train_df dataset in order to find the best Classification Model. # > we will then select the best model based on our findings and then apply the same on Test Dataset ## Need to create train and test data based on the proper dataframe # ## 1) Logistic Regression from sklearn.linear_model import LogisticRegression from sklearn.metrics import classification_report, accuracy_score log_reg = LogisticRegression() log_reg.fit(X_train, y_train) log_pred = log_reg.predict(X_test) print(classification_report(y_test, log_pred))
# 1. xsquad: https://raw.githubusercontent.com/deepmind/xquad/master/xquad.vi.json # 2. bert-vietnamese-question-answering: https://raw.githubusercontent.com/mailong25/bert-vietnamese-question-answering/master/dataset/train-v2.0.json # 3. Zalo 2022: https://www.kaggle.com/datasets/ducnh279/nlp-data # # Zalo import pandas as pd from tqdm.notebook import tqdm train_df = pd.read_json("/kaggle/input/nlp-data/zac2022_train_merged_final.json") def get_keys(data): return [k for k, _ in data.items()] def has_answer(df): return df[df.data.apply(get_keys).apply(lambda x: "answer" in x)] def get_context(data): return data["text"] def get_question(data): return data["question"] def get_answer_position(data): return data["short_candidate_start"] def get_answer(data): return data["short_candidate"] def question_context(df, i): question = df.data.apply(get_question)[i] text = test_df.context[i] print(f"- Question: {question}\n" f"- Context: {text}") questions = has_answer(train_df).data.apply(get_question).reset_index(drop=True) contexts = has_answer(train_df).data.apply(get_context).reset_index(drop=True) answers = has_answer(train_df).data.apply(get_answer).reset_index(drop=True) answer_starts = ( has_answer(train_df).data.apply(get_answer_position).reset_index(drop=True) ) zalo = pd.DataFrame( { "question": questions, "context": contexts, "answer": answers, "answer_start": answer_starts, } ) # # Xsquad df = pd.read_json( "https://raw.githubusercontent.com/deepmind/xquad/master/xquad.vi.json" ) df.drop("version", axis=1, inplace=True) def get_paragraph(df): return df.data.apply(lambda x: x["paragraphs"]) para = get_paragraph(df) dfs = [] for p in para: p_df = pd.DataFrame(p) question_df = p_df["qas"].apply(lambda x: x[0]["question"]).to_frame("question") start_pos_and_text_df = ( p_df["qas"].apply(lambda x: x[0]["answers"][0]).apply(pd.Series) ) final_p_df = pd.concat([question_df, p_df, start_pos_and_text_df], axis=1) final_p_df.drop("qas", axis=1, inplace=True) final_p_df.columns = ["question", "context", "answer_start", "answer"] dfs.append(final_p_df) xsquad = pd.concat(dfs, axis=0, ignore_index=True) xsquad # # Bert QA df = pd.read_json( "https://raw.githubusercontent.com/mailong25/bert-vietnamese-question-answering/master/dataset/train-v2.0.json" ) para = get_paragraph(df) dfs = [] for p in tqdm(para): p_df = pd.DataFrame(p) p_df = p_df[p_df.qas.apply(lambda x: x[0]["answers"] != [])].reset_index(drop=True) if p_df.values.tolist() == []: continue question_df = p_df["qas"].apply(lambda x: x[0]["question"]).to_frame("question") start_pos_and_text_df = ( p_df["qas"].apply(lambda x: x[0]["answers"][0]).apply(pd.Series) ) final_p_df = pd.concat([question_df, p_df, start_pos_and_text_df], axis=1) final_p_df.drop("qas", axis=1, inplace=True) final_p_df.columns = ["question", "context", "answer_start", "answer"] dfs.append(final_p_df) bert_qa = pd.concat(dfs, axis=0, ignore_index=True) # # Merge QA datasets qa_dataset = pd.concat([zalo, xsquad, bert_qa], axis=0, ignore_index=True) qa_dataset.to_json("qa_dataset.json")
x = 2 t = 5.7 k = 9j print(type(x)) print(type(t)) print(type(k)) r = 8 # int s = 5.7 # float t = 2 # comlpex # int'den float'a dönüştür: o = float(r) # floattan int'e dönüştür: p = int(s) # int'den comlpex'e dönüştür: q = complex(r) print(o) print(p) print(q) print(type(o)) print(type(p)) print(type(q)) # # Rastgele Sayılar import random print(random.randrange(55, 100)) str1 = "43" str1 = int((str1)) print(type(str1)) str1 str1 = "4" str2 = str((str1)) print(str1 + str2) str1 = int(str1) str2 = int(str2) print(str1 + str2) # # Python Dizileri x = "Müzik seviyorum." print(x[3]) araba1 = "Ford" araba2 = "Marcedes" araba3 = "BMW" print([araba2]) z = "Müzik seviyorum." len(z) # # Dizeyi Kontrol Et myTxt = "Yarın akşam sinemaya gideceğim." print("akşam" in myTxt) myTxt = "Yarın akşam sinemaya gideceğim." if "Yarın" in myTxt: print("Evet metinde Yarın kelimesi var.") myTxt = "Yarın akşam sinemaya gideceğim." if "Sabah" not in myTxt: print("Hayır, Sabah kelimesi mevcut DEĞİLDİR")
"chart full-width" import requests import lxml.html as lh import pandas as pd df = pd.read_html("https://www.imdb.com/chart/top/?ref_=nv_mv_250")[0] df[0]
import pandas as pd from matplotlib import pyplot as plt # load Social_Network_Ads csv file df = pd.read_csv("/kaggle/input/logistic-regression/Social_Network_Ads.csv") df # convert categorical gender to coded data df["Gender"] = df["Gender"].astype("category").cat.codes df # divide the dataset into train and test data from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split( df[["Age"]], df.Purchased, test_size=0.2, random_state=21 ) x_train, x_test, y_train, y_test from sklearn.linear_model import LogisticRegression # call regression function model = LogisticRegression() # fit the model according to train data model.fit(x_train, y_train) # score the model by test data model.score(x_test, y_test) predictions = model.predict(x_test) model.predict([[23]]) # evaluate the model from sklearn.metrics import classification_report, confusion_matrix print(classification_report(y_test, predictions))
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. import pandas as pd TSLA = pd.read_csv("../input/tesla-stock-data-from-2010-to-2020/TSLA.csv") TSLA.head() # # library & dataset # import seaborn as sns # plt.figure( figsize = (20,10)) # sns.boxplot( x=TSLA["Close"] ) # plt.show() from scipy import stats pearson_coef, p_value = stats.pearsonr(TSLA["Open"], TSLA["Close"]) # Pearson coefficient / correlation coefficient - how much are the two columns correlated? print(pearson_coef) # P-value - how sure are we about this correlation? print(p_value) # libraries import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns # plot plt.plot("Open", "High", data=TSLA, linestyle="-", marker="*") plt.show() TSLA.corr() import seaborn as sns import matplotlib.pyplot as plt plt.figure(figsize=(20, 10)) # use the function regplot to make a scatterplot sns.regplot(x=TSLA["High"], y=TSLA["Low"], marker=".") plt.show() # Without regression fit: # sns.regplot(x=top50["Energy"], y=top50["Loudness..dB.."], fit_reg=False) # plt.show() slope, intercept, r_value, p_value, std_err = stats.linregress( TSLA["Open"], TSLA["Close"] ) print("y = " + str(slope) + "x + " + str(intercept)) # Same as (Pearson) correlation coefficient print(r_value) TSLA.describe() import seaborn as sns import matplotlib.pyplot as plt # Servery_Data = sns.load_dataset('Servery_Data') # use the function regplot to make a scatterplot sns.regplot(x=TSLA["Open"], y=TSLA["Close"], fit_reg=False) plt.show() # Without regression fit: # sns.regplot(x=df["sepal_length"], y=df["sepal_width"], fit_reg=False) # sns.plt.show() # libraries import matplotlib.pyplot as plt import numpy as np # create data plt.figure(figsize=(20, 10)) x = TSLA["Open"] y = TSLA["Close"] z = 0.5 plt.ylabel("Close", fontsize=20) plt.xlabel("Open", fontsize=20) plt.title("Tesla stock data from 2010 - 2020", fontsize=20) # use the scatter function plt.scatter(x, y, s=z * 1000, alpha=0.5) plt.show()
# codes from Rodrigo Lima @rodrigolima82 from IPython.display import Image Image( url="https://encrypted-tbn0.gstatic.com/images?q=tbn%3AANd9GcT_KKoimUiX1Z_QrC0ev_sXbb1Mr7qWnUsFv8kUnMOxLKML6Be3", width=400, height=400, ) # Image quoteparrot.com - I couldn't agree more with you Idris Elba. It's just James Bond , not black James Bond. import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. # codes from Rodrigo Lima @rodrigolima82 from IPython.display import Image Image(url="", width=400, height=400) nRowsRead = 1000 # specify 'None' if want to read whole file # bond.csv may have more rows in reality, but we are only loading/previewing the first 1000 rows df = pd.read_csv( "/kaggle/input/can-james-bond-be-black/bond.csv", delimiter=",", nrows=nRowsRead ) df.dataframeName = "bond.csv" nRow, nCol = df.shape print(f"There are {nRow} rows and {nCol} columns") df.head() df.dtypes df["Remain"].plot.hist() plt.show() df["Leave"].plot.box() plt.show() sns.pairplot(df, x_vars=["Remain"], y_vars="Leave", markers="+", size=4) plt.show() dfcorr = df.corr() dfcorr sns.heatmap(dfcorr, annot=True, cmap="winter_r") plt.show() fig, axes = plt.subplots(1, 1, figsize=(14, 6)) sns.boxplot(x="Remain", y="Leave", data=df, showfliers=False) # Codes from Binu @biphili import matplotlib.style import matplotlib as mpl mpl.style.use("classic") sns.jointplot(df["Remain"], df["Leave"], data=df, kind="scatter") fig = plt.gcf() fig.set_size_inches(10, 7) fig = sns.violinplot(x="Remain", y="Leave", data=df) # Only one ridiculous violin and flying saucers! sns.set(style="darkgrid") fig = plt.gcf() fig.set_size_inches(10, 7) fig = sns.swarmplot(x="Remain", y="Leave", data=df) # Not a swarm, just plot. fig = sns.lmplot(x="Remain", y="Leave", data=df) df.plot.area(y=["Remain", "Leave"], alpha=0.4, figsize=(12, 6)) sns.factorplot("Remain", "Leave", hue="Response", data=df) plt.show() pd.crosstab([df.Remain], df.Leave).style.background_gradient(cmap="summer_r") # word cloud from wordcloud import WordCloud, ImageColorGenerator text = " ".join(str(each) for each in df.Response) # Create and generate a word cloud image: wordcloud = WordCloud( max_words=200, colormap="Set3", background_color="black" ).generate(text) plt.figure(figsize=(10, 6)) plt.figure(figsize=(15, 10)) # Display the generated image: plt.imshow(wordcloud, interpolation="Bilinear") plt.axis("off") plt.figure(1, figsize=(12, 12)) plt.show() # word cloud from wordcloud import WordCloud, ImageColorGenerator text = " ".join(str(each) for each in df.Group) # Create and generate a word cloud image: wordcloud = WordCloud( max_words=200, colormap="Set3", background_color="black" ).generate(text) plt.figure(figsize=(10, 6)) plt.figure(figsize=(15, 10)) # Display the generated image: plt.imshow(wordcloud, interpolation="Bilinear") plt.axis("off") plt.figure(1, figsize=(12, 12)) plt.show() # How about a black female Jane Bond? Instead of just another Bond Girl? Think about that Kaggle community. # codes from Rodrigo Lima @rodrigolima82 from IPython.display import Image
import os import urllib.request import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np # linear algebra import matplotlib.pyplot as plt # plotting import seaborn as sns # sstatistical data visualisation from sklearn.preprocessing import OneHotEncoder, LabelEncoder from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from sklearn.pipeline import Pipeline from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from xgboost import XGBRegressor from sklearn.neighbors import KNeighborsRegressor from sklearn.model_selection import cross_val_score from sklearn.metrics import mean_squared_error from sklearn import metrics train_df = pd.read_csv("/kaggle/input/shai-club/train.csv") test_df = pd.read_csv("/kaggle/input/shai-club/test.csv") train_df.head() test_df.head() # remove ID column df = train_df.drop("Id", axis=1) df.head() df.info() df.describe() df.isnull().any() df.duplicated() df.duplicated().sum() df.drop_duplicates(keep="first", inplace=True) df.duplicated().sum() df.dtypes # one_hot_encoded_training_predictors = pd.get_dummies(df) # one_hot_encoded_training_predictors.head() # Get list of categorical variables s = df.dtypes == "object" object_cols = list(s[s].index) print("Categorical variables:", object_cols) # Apply label encoder to each column with categorical data label_encoder = LabelEncoder() for col in object_cols: df[col] = label_encoder.fit_transform(df[col]) df.head() df.shape plt.boxplot(df.depth) fig = plt.figure(figsize=(10, 7)) plt.show() # Dropping the outliers. df = df[(df["depth"] < 75) & (df["depth"] > 45)] df = df[(df["table"] < 80) & (df["table"] > 40)] df = df[(df["x"] < 30)] df = df[(df["y"] < 30)] df = df[(df["z"] < 30) & (df["z"] > 2)] df.shape plt.figure(figsize=(10, 10)) heatmap = sns.heatmap(df.corr(), annot=True) heatmap.set_title("Correlation Heatmap", fontdict={"fontsize": 12}, pad=12) # Assigning the featurs as X and trarget as y X = df.drop(["price"], axis=1) y = df["price"] X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.25, random_state=7 ) # Building pipelins of standard scaler and model for varios regressors. pipeline_lr = Pipeline( [("scalar1", StandardScaler()), ("lr_classifier", LinearRegression())] ) pipeline_dt = Pipeline( [("scalar2", StandardScaler()), ("dt_classifier", DecisionTreeRegressor())] ) pipeline_rf = Pipeline( [("scalar3", StandardScaler()), ("rf_classifier", RandomForestRegressor())] ) pipeline_kn = Pipeline( [("scalar4", StandardScaler()), ("rf_classifier", KNeighborsRegressor())] ) pipeline_xgb = Pipeline( [("scalar5", StandardScaler()), ("rf_classifier", XGBRegressor())] ) # List of all the pipelines pipelines = [pipeline_lr, pipeline_dt, pipeline_rf, pipeline_kn, pipeline_xgb] # Dictionary of pipelines and model types for ease of reference pipe_dict = { 0: "LinearRegression", 1: "DecisionTree", 2: "RandomForest", 3: "KNeighbors", 4: "XGBRegressor", } # Fit the pipelines for pipe in pipelines: pipe.fit(X_train, y_train) cv_results_rms = [] for i, model in enumerate(pipelines): cv_score = cross_val_score( model, X_train, y_train, scoring="neg_root_mean_squared_error", cv=10 ) cv_results_rms.append(cv_score) print("%s: %f " % (pipe_dict[i], cv_score.mean())) # Model prediction on test data pred = pipeline_xgb.predict(X_test) # Model Evaluation print("R^2:", metrics.r2_score(y_test, pred)) print( "Adjusted R^2:", 1 - (1 - metrics.r2_score(y_test, pred)) * (len(y_test) - 1) / (len(y_test) - X_test.shape[1] - 1), ) print("MAE:", metrics.mean_absolute_error(y_test, pred)) print("MSE:", metrics.mean_squared_error(y_test, pred)) print("RMSE:", np.sqrt(metrics.mean_squared_error(y_test, pred))) # Get list of categorical variables s2 = test_df.dtypes == "object" object_cols_test = list(s2[s2].index) print("Categorical variables:", object_cols_test) # Apply label encoder to each column with categorical data label_encoder = LabelEncoder() for col in object_cols_test: test_df[col] = label_encoder.fit_transform(test_df[col]) test_df.head() # remove ID column test = test_df.drop("Id", axis=1) test.head() predictions = pd.Series(pipeline_xgb.predict(test)) pred = pd.DataFrame({"Id": test_df["Id"], "price": predictions}) pred.to_csv("submission.csv", index=False) pred_df = pd.read_csv("./submission.csv") pred_df.head()
from mpl_toolkits.mplot3d import Axes3D from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt # plotting import numpy as np # linear algebra import os # accessing directory structure import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # There is 1 csv file in the current version of the dataset: # for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # The next hidden code cells define functions for plotting data. Click on the "Code" button in the published kernel to reveal the hidden code. # Distribution graphs (histogram/bar graph) of column data def plotPerColumnDistribution(df, nGraphShown, nGraphPerRow): nunique = df.nunique() df = df[ [col for col in df if nunique[col] > 1 and nunique[col] < 50] ] # For displaying purposes, pick columns that have between 1 and 50 unique values nRow, nCol = df.shape columnNames = list(df) nGraphRow = (nCol + nGraphPerRow - 1) / nGraphPerRow plt.figure( num=None, figsize=(6 * nGraphPerRow, 8 * nGraphRow), dpi=80, facecolor="w", edgecolor="k", ) for i in range(min(nCol, nGraphShown)): plt.subplot(nGraphRow, nGraphPerRow, i + 1) columnDf = df.iloc[:, i] if not np.issubdtype(type(columnDf.iloc[0]), np.number): valueCounts = columnDf.value_counts() valueCounts.plot.bar() else: columnDf.hist() plt.ylabel("counts") plt.xticks(rotation=90) plt.title(f"{columnNames[i]} (column {i})") plt.tight_layout(pad=1.0, w_pad=1.0, h_pad=1.0) plt.show() # Correlation matrix def plotCorrelationMatrix(df, graphWidth): filename = df.dataframeName df = df.dropna("columns") # drop columns with NaN df = df[ [col for col in df if df[col].nunique() > 1] ] # keep columns where there are more than 1 unique values if df.shape[1] < 2: print( f"No correlation plots shown: The number of non-NaN or constant columns ({df.shape[1]}) is less than 2" ) return corr = df.corr() plt.figure( num=None, figsize=(graphWidth, graphWidth), dpi=80, facecolor="w", edgecolor="k" ) corrMat = plt.matshow(corr, fignum=1) plt.xticks(range(len(corr.columns)), corr.columns, rotation=90) plt.yticks(range(len(corr.columns)), corr.columns) plt.gca().xaxis.tick_bottom() plt.colorbar(corrMat) plt.title(f"Correlation Matrix for {filename}", fontsize=15) plt.show() # Scatter and density plots def plotScatterMatrix(df, plotSize, textSize): df = df.select_dtypes(include=[np.number]) # keep only numerical columns # Remove rows and columns that would lead to df being singular df = df.dropna("columns") df = df[ [col for col in df if df[col].nunique() > 1] ] # keep columns where there are more than 1 unique values columnNames = list(df) if ( len(columnNames) > 10 ): # reduce the number of columns for matrix inversion of kernel density plots columnNames = columnNames[:10] df = df[columnNames] ax = pd.plotting.scatter_matrix( df, alpha=0.75, figsize=[plotSize, plotSize], diagonal="kde" ) corrs = df.corr().values for i, j in zip(*plt.np.triu_indices_from(ax, k=1)): ax[i, j].annotate( "Corr. coef = %.3f" % corrs[i, j], (0.8, 0.2), xycoords="axes fraction", ha="center", va="center", size=textSize, ) plt.suptitle("Scatter and Density Plot") plt.show() # Now you're ready to read in the data and use the plotting functions to visualize the data. # ### Let's check 1st file: /kaggle/input/listings.csv nRowsRead = 1000 # specify 'None' if want to read whole file # listings.csv may have more rows in reality, but we are only loading/previewing the first 1000 rows df1 = pd.read_csv("/kaggle/input/listings.csv", delimiter=",", nrows=nRowsRead) df1.dataframeName = "listings.csv" nRow, nCol = df1.shape print(f"There are {nRow} rows and {nCol} columns") # Let's take a quick look at what the data looks like: df1.head(20) # Distribution graphs (histogram/bar graph) of sampled columns: plotPerColumnDistribution(df1, 10, 5) # Correlation matrix: plotCorrelationMatrix(df1, 8) # Scatter and density plots: plotScatterMatrix(df1, 20, 10) # ## Conclusion # This concludes your starter analysis! To go forward from here, click the blue "Edit Notebook" button at the top of the kernel. This will create a copy of the code and environment for you to edit. Delete, modify, and add code as you please. Happy Kaggling! # starting on my manipulations of the AirBnB data set. I want to know which listings get the most action and in what area. # First off, I want to browse the names of all the columns to see what I'm working with. # This is a pretty cool data set to me, because it gives me a sense of what it would be like to possibly one day become a AirBnB host. # I've stayed at many an AirBnB, so getting some data on Seattle's landscape is a cool deep dive into the scene print(df1.columns.values) # my abbreviated data set will have the listing will have: #'name' #'host_location' #'smart_location' #'number_of_reviews' #'review_scores_rating' #'review_scores_location' #'reviews_per_month' #'calculated_host_listings_count' df2 = df1[ [ "host_name", "host_since", "name", "number_of_reviews", "reviews_per_month", "calculated_host_listings_count", ] ] df2.head(10) # reviews per month look like they could be correlated with number of reviews. That's not that interesting. # this is a good start. # now I want to see what's the most listings from a single host. Let's sort by calc_host_listings_count. # I also want to see the host name, because I want to see who's running that Seattle AirBnB game. df2.sort_values("calculated_host_listings_count", ascending=False) # WOW, corp condos and Apts are running the game apparently. I wonder why it only shows 4 of theirs. # Does that mean the rest of their 342 listings aren't in Seattle? Huh import matplotlib.pyplot as plt # the average of the list is 7.622 df2["calculated_host_listings_count"].mean() # as expected, the number of reviews are highly correlated with reviews per month. I'mc df2.plot(kind="scatter", x="reviews_per_month", y="number_of_reviews", s=10, alpha=0.5)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. import matplotlib.pyplot as plt import seaborn as sns # ## Import data # ### Training data train = pd.read_csv("/kaggle/input/titanic/train.csv") train.head() train.columns = train.columns.str.lower() train.info() # ### Test data test = pd.read_csv("/kaggle/input/titanic/test.csv") # ### Create a copy of test data test_data_copy = test.copy() test.head() test.columns = test.columns.str.lower() test.info() test_data_copy.info() # ## Exploratory Data Analysis # ### Missing values in training data train.isnull().sum() plt.figure(figsize=(14, 8)) plt.title("Missing values in Training", {"fontsize": 25}, pad=20) sns.heatmap(train.isnull(), cmap="viridis") plt.figure(figsize=(14, 8)) plt.title("Age distribution in training data", {"fontsize": 25}, pad=20) sns.boxplot(x="pclass", y="age", data=train, palette="rainbow") train.groupby("pclass")["age"].median() train["age"] = train["age"].fillna( train.groupby(["sex", "pclass"])["age"].transform("median") ) plt.figure(figsize=(14, 8)) sns.heatmap(train.isnull(), cmap="viridis") train.drop("cabin", axis=1, inplace=True) train.dropna(inplace=True) plt.figure(figsize=(14, 8)) sns.heatmap(train.isnull(), cmap="viridis") # ### Missing values in training test.isnull().sum() plt.figure(figsize=(14, 8)) plt.title("Missing values in test data", {"fontsize": 25}, pad=20) sns.heatmap(test.isnull(), cmap="viridis") plt.figure(figsize=(14, 8)) plt.title("Age distribution in test data", {"fontsize": 25}, pad=20) sns.boxplot(x="pclass", y="age", data=test, palette="rainbow") test.groupby("pclass")["age"].median() test["age"] = test["age"].fillna( test.groupby(["sex", "pclass"])["age"].transform("median") ) test.groupby("pclass")["fare"].median() test["fare"] = test["fare"].fillna( test.groupby(["sex", "pclass"])["fare"].transform("median") ) test.drop("cabin", axis=1, inplace=True) test.dropna(inplace=True) plt.figure(figsize=(14, 8)) plt.title("Missing values in test data", {"fontsize": 25}, pad=20) sns.heatmap(test.isnull(), cmap="viridis") # ## Handling Categorical Features train.info() train_data_sex = pd.get_dummies(train["sex"], drop_first=True) test_data_sex = pd.get_dummies(test["sex"], drop_first=True) train_data_embark = pd.get_dummies(train["embarked"], drop_first=True) test_data_embark = pd.get_dummies(test["embarked"], drop_first=True) train.drop(["sex", "embarked", "name", "ticket", "passengerid"], axis=1, inplace=True) test.drop(["sex", "embarked", "name", "ticket", "passengerid"], axis=1, inplace=True) train.info() test.info() train = pd.concat([train, train_data_sex, train_data_embark], axis=1) test = pd.concat([test, test_data_sex, test_data_embark], axis=1) # ## Logistic Regression model # ### Create X and Y arrays for training data X_train = train.drop("survived", axis=1) y_train = train["survived"] X_train.shape, y_train.shape # ### Create X array for test data X_test = test X_test.shape # ## Fit the model from sklearn.linear_model import LogisticRegression logmodel = LogisticRegression(C=0.001) logmodel.fit(X_train, y_train) y_pred = logmodel.predict(X_test) submission = pd.DataFrame( {"PassengerId": test_data_copy["PassengerId"], "Survived": y_pred} ) submission.to_csv("titanic.csv", index=False) print("My First Kaggle Submission") # ## Implementing XG Boost import xgboost as xgb xg_cls = xgb.XGBClassifier() xg_cls.fit(X_train, y_train) xg_preds = xg_cls.predict(X_test) submission = pd.DataFrame( {"PassengerId": test_data_copy["PassengerId"], "Survived": xg_preds} ) submission.to_csv("xgmodel.csv", index=False)
import keras from PIL import Image from keras import backend as k from keras.models import Sequential from keras.layers import Activation from keras.layers.core import Dense, Flatten from keras.optimizers import Adam from keras.preprocessing.image import ImageDataGenerator from keras.metrics import categorical_crossentropy from keras.layers.normalization import BatchNormalization from keras.layers.convolutional import * from matplotlib import pyplot as plt from sklearn.metrics import confusion_matrix import itertools import matplotlib.pyplot as plt from matplotlib.pyplot import imshow from keras.applications.vgg16 import decode_predictions from keras.layers import Dense, Activation, Dropout, Flatten, Conv2D, MaxPooling2D from keras.applications.vgg16 import VGG16 vgg_16Model = VGG16() vgg_16Model.summary() type(vgg_16Model) model = Sequential() i = 0 for layer in vgg_16Model.layers: if i < len(vgg_16Model.layers) - 1: model.add(layer) i = i + 1 model.summary() for layer in model.layers: layer.trainable = False model.add(Dense(4, activation="softmax")) model.summary()
# **Different types of run time exceptions** # **1. Index Error** marks = [53, 76, 43, 86, 33] marks[5] # we don'T have a index 5 thus index error will occured # **2. Key Error** d = {"India": 63740938, "USA": 92307140, "China": 6316978309} d["Russia"] # we don't have russia in the dictionary thus key error # **3. Module Not Found Error** import panda # no library called panda its pandas # **4. Type Error** a = 56 b = "6" c = a + b # we can't add int to a string # **5. Name Error** print(g) # we haven't defined g yet thus name error # **6. Zero Division Error** a = 45 / 0 # denominator is 0 thus zero division error # **Exception Handling** try: a = int(input("Enter the first no")) b = int(input("Enter the second no")) c = (a + b) / 2 print(c) except: # this will get executed if we have a exception in try block print("this is some code which needs to get executed") print("The next lines of code will get executed") try: a = int(input("Enter the first no")) b = int(input("Enter the second no")) c = a / b print(c) except ( Exception ) as e: # this will find the reason of exception and will print in the output print("the value entered is not correct") print(e) print("The next lines of code will get executed") try: a = int(input("Enter the first no")) b = int(input("Enter the second no")) c = a + b print(c) except ( Exception ) as e: # this will find the reason of exception and will print in the output print("the value entered is not correct") print(e) print("The next lines of code will get executed") try: a = int(input("Enter the first no")) b = int(input("Enter the second no")) c = a / b print(ch) # name error except ZeroDivisionError: print("The Denominator can't be Zero") except NameError: print("We need to initialize the variable first") print("The next lines of code will get executed") try: a = int(input("Enter the first no")) b = int(input("Enter the second no")) c = a / b print(c) except ZeroDivisionError: print("The Denominator can't be Zero") except NameError: print("We need to initialize the variable first") else: # else will only work if we don't have a exceptional error print("Your input is perfectly fine") print("Now let's move on to next set of code") try: a = int(input("Enter the first no")) b = int(input("Enter the second no")) c = a / b print(c) except ZeroDivisionError: print("The Denominator can't be Zero") except NameError: print("We need to initialize the variable first") else: # else will only work if we don't have a exceptional error print("Your input is perfectly fine") finally: # it will work no matter what if we have a error or not it will work print("This will always get executed") print("Now let's move on to next set of code")
# # Hacker News Submission Score Predictor w/ Keras and TensorFlow # by Max Woolf ([@minimaxir](https://minimaxir.com)) # A model of a Hacker News post predictor, using a large number of Keras tricks with a TensorFlow backend. # This notebook requires a GPU instance. (for the very-fast `CuDNNLSTM` to handle text data) import pandas as pd import numpy as np import keras from google.cloud import bigquery # BigQuery: # ```sql # #standardSQL # SELECT # id, # title, # REGEXP_REPLACE(NET.HOST(url), 'www.', '') AS domain, # FORMAT_TIMESTAMP("%Y-%m-%d %H:%M:%S", timestamp, "America/New_York") AS created_at, # score, # TIMESTAMP_DIFF(LEAD(timestamp, 30) OVER (ORDER BY timestamp), timestamp, SECOND) as time_on_new # FROM # `bigquery-public-data.hacker_news.full` # WHERE # DATETIME(timestamp, "America/New_York") BETWEEN '2017-01-01 00:00:00' AND '2018-12-01 00:00:00' # AND type = "story" # AND url != '' # AND deleted IS NULL # AND dead IS NULL # ORDER BY # created_at DESC # ``` # Use the query above to get it from BigQuery. (via Kaggle tutorial: https://www.kaggle.com/mrisdal/mentions-of-kaggle-on-hacker-news) Outside of Kaggle, you can get the data using `pandas-gbq`. # The return data is also randomized; this allows us to use the last 20% as a test set without introducing temporal dependencies. query = """ #standardSQL SELECT id, title, REGEXP_REPLACE(NET.HOST(url), 'www.', '') AS domain, FORMAT_TIMESTAMP("%Y-%m-%d %H:%M:%S", timestamp, "America/New_York") AS created_at, score, TIMESTAMP_DIFF(LEAD(timestamp, 30) OVER (ORDER BY timestamp), timestamp, SECOND) as time_on_new FROM `bigquery-public-data.hacker_news.full` WHERE DATETIME(timestamp, "America/New_York") BETWEEN '2017-01-01 00:00:00' AND '2018-12-01 00:00:00' AND type = "story" AND url != '' AND deleted IS NULL AND dead IS NULL ORDER BY created_at DESC """ client = bigquery.Client() query_job = client.query(query) iterator = query_job.result(timeout=30) rows = list(iterator) df = pd.DataFrame(data=[list(x.values()) for x in rows], columns=list(rows[0].keys())) df = df.sample(frac=1, random_state=123).dropna().reset_index(drop=True) df.head(10) # ## Feature Engineering # * Text, w/ sequences of length 15 (HN titles can be from 3 - 80 characters; since words are 5-6 characters) # * Post domain (if in Top 100 by count; 0 otherwise) # * Day of Week of Submission # * Hour of Submission # Other features I tried but did not use (since using them prevents forecasting, and they did not help improve the model): # * Trend (time from first submission, scaled to `[0-1]`) # * Time on `/new` page (scaled to `[0-1]`) # Score is unmodified. Normally you'd `log` transform a skewed independent variable for a OLS, but that's not necessary for deep learning. # ### Text # Use a RNN to encode the title. Since we'll be using an unmasked RNN, length of the submission can be implied from the number of padding characters. from keras.preprocessing import sequence from keras.preprocessing.text import text_to_word_sequence, Tokenizer num_words = 25000 tokenizer = Tokenizer(num_words=num_words) tokenizer.fit_on_texts(df["title"].values) maxlen = 15 titles = tokenizer.texts_to_sequences(df["title"].values) titles = sequence.pad_sequences(titles, maxlen=maxlen) print(titles[0:5,]) # ### Top Domains # Identify the top *n* domains by count (in this case *n* = 100), then transform it to a *n*D vector for each post. # * modify for smaller amount ,due to embeddings num_domains = 300 domain_counts = df["domain"].value_counts()[0:num_domains] print(domain_counts) from sklearn.preprocessing import LabelBinarizer top_domains = np.array(domain_counts.index, dtype=object) domain_encoder = LabelBinarizer() domain_encoder.fit(top_domains) domains = domain_encoder.transform(df["domain"].values.astype(str)) domains[0] # ### Day-of-Week and Hour # Convert day-of-week to a 7D vector and hours to a 24D vector. Both pandas and keras have useful functions for this workflow. from keras.utils import to_categorical dayofweeks = to_categorical(pd.to_datetime(df["created_at"]).dt.dayofweek) hours = to_categorical(pd.to_datetime(df["created_at"]).dt.hour) print(dayofweeks[0:5]) print(hours[0:5]) # ## Sample Weights # Weight `score=1` samples lower so model places a higher importance on atypical submissions. weights = np.where(df["score"].values == 1, 0.5, 1.0) print(weights[0:5]) # ## Trend and Time on New # Unused in final model, but kept here for reference. from sklearn.preprocessing import MinMaxScaler trend_encoder = MinMaxScaler() trends = trend_encoder.fit_transform( pd.to_datetime(df["created_at"]).values.reshape(-1, 1) ) trends[0:5] newtime_encoder = MinMaxScaler() newtimes = trend_encoder.fit_transform(df["time_on_new"].values.reshape(-1, 1)) newtimes[0:5] # ## Build the Model Prototype # Add R^2 as a performance metric: https://jmlb.github.io/ml/2017/03/20/CoeffDetermination_CustomMetric4Keras/ from keras import backend as K def r_2(y_true, y_pred): SS_res = K.sum(K.square(y_true - y_pred)) SS_tot = K.sum(K.square(y_true - K.mean(y_true))) return 1 - SS_res / (SS_tot + K.epsilon()) # Minimizing `mse` loss as typical for regression problems will not work, as the model will realize that selecting 1 unilaterally accomplishes this task the best. # Instead, create a hybrid loss of `mae`, `msle`, and `poisson` (see Keras's docs for more info: https://github.com/keras-team/keras/blob/master/keras/losses.py) The latter two losses can account for very high values much better; perfect for the hyper-skewed data. def hybrid_loss(y_true, y_pred): weight_mae = 0.1 weight_msle = 1.0 weight_poisson = 0.1 mae_loss = weight_mae * K.mean(K.abs(y_pred - y_true), axis=-1) first_log = K.log(K.clip(y_pred, K.epsilon(), None) + 1.0) second_log = K.log(K.clip(y_true, K.epsilon(), None) + 1.0) msle_loss = weight_msle * K.mean(K.square(first_log - second_log), axis=-1) poisson_loss = weight_poisson * K.mean( y_pred - y_true * K.log(y_pred + K.epsilon()), axis=-1 ) return mae_loss + msle_loss + poisson_loss from keras.models import Input, Model from keras.layers import ( Dense, Embedding, CuDNNGRU, CuDNNLSTM, LSTM, concatenate, Activation, BatchNormalization, ) from keras.layers.core import Masking, Dropout, Reshape, SpatialDropout1D from keras.regularizers import l1, l2 input_titles = Input(shape=(maxlen,), name="input_titles") input_domains = Input(shape=(num_domains,), name="input_domains") input_dayofweeks = Input(shape=(7,), name="input_dayofweeks") input_hours = Input(shape=(24,), name="input_hours") # input_trend = Input(shape=(1,), name='input_trend') # input_newtime = Input(shape=(1,), name='input_newtime') embedding_titles = Embedding( num_words + 1, 100, name="embedding_titles", mask_zero=False )(input_titles) spatial_dropout = SpatialDropout1D(0.15, name="spatial_dropout")( embedding_titles ) # changed from 0.2 sp.dropout rnn_titles = CuDNNLSTM(128, name="rnn_titles")(spatial_dropout) # new embedding_domain = Embedding( num_domains + 1, 40, name="embedding_titles", mask_zero=False )(input_domains) concat = concatenate( [rnn_titles, input_domains, input_dayofweeks, input_hours], name="concat" ) num_hidden_layers = 3 hidden = Dense(128, activation="relu", name="hidden_1", kernel_regularizer=l2(1e-2))( concat ) hidden = BatchNormalization(name="bn_1")(hidden) hidden = Dropout(0.4, name="dropout_1")(hidden) for i in range(num_hidden_layers - 1): hidden = Dense( 256, activation="relu", name="hidden_{}".format(i + 2), kernel_regularizer=l2(1e-2), )(hidden) hidden = BatchNormalization(name="bn_{}".format(i + 2))(hidden) hidden = Dropout(0.4, name="dropout_{}".format(i + 2))(hidden) output = Dense(1, activation="relu", name="output", kernel_regularizer=l2(1e-2))(hidden) model = Model( inputs=[input_titles, input_domains, input_dayofweeks, input_hours], outputs=[output], ) model.compile(loss=hybrid_loss, optimizer="adam", metrics=["mse", "mae", r_2]) model.summary() # The model uses a linear learning rate decay to allow it to learn better once it starts converging. # Note: in this Kaggle Notebook, the training times out after 33 epochs when committing, so I set it to 25 here. You should probably train for longer. (50+ epochs) from keras.callbacks import LearningRateScheduler, Callback base_lr = 1e-3 num_epochs = 20 split_prop = 0.2 def lr_linear_decay(epoch): return base_lr * (1 - (epoch / num_epochs)) model.fit( [titles, domains, dayofweeks, hours], [df["score"].values], batch_size=1024, epochs=num_epochs, validation_split=split_prop, callbacks=[LearningRateScheduler(lr_linear_decay)], sample_weight=weights, ) # ## Check Predictions Against Validation Set # Predicting against data that was not trained in the model: the model does this poorly. :( val_size = int(split_prop * df.shape[0]) predictions = model.predict( [titles[-val_size:], domains[-val_size:], dayofweeks[-val_size:], hours[-val_size:]] )[:, 0] predictions df_preds = pd.concat( [ pd.Series(df["title"].values[-val_size:]), pd.Series(df["score"].values[-val_size:]), pd.Series(predictions), ], axis=1, ) df_preds.columns = ["title", "actual", "predicted"] # df_preds.to_csv('hn_val.csv', index=False) df_preds.head(50) # ## Check Predictions Against Training Set # The model should be able to predict these better. train_size = int((1 - split_prop) * df.shape[0]) predictions = model.predict( [ titles[:train_size], domains[:train_size], dayofweeks[:train_size], hours[:train_size], ] )[:, 0] df_preds = pd.concat( [ pd.Series(df["title"].values[:train_size]), pd.Series(df["score"].values[:train_size]), pd.Series(predictions), ], axis=1, ) df_preds.columns = ["title", "actual", "predicted"] # df_preds.to_csv('hn_train.csv', index=False) df_preds.head(50)
import os import numpy as np import pandas as pd from skimage.io import imread import matplotlib.pyplot as plt import gc gc.enable() print(os.listdir("../input/airbus-ship-detection")) masks = pd.read_csv( os.path.join("../input/airbus-ship-detection", "train_ship_segmentations_v2.csv") ) not_empty = pd.notna(masks.EncodedPixels) print( not_empty.sum(), "masks in", masks[not_empty].ImageId.nunique(), "images" ) # 非空图片中的mask数量 print( (~not_empty).sum(), "empty images in", masks.ImageId.nunique(), "total images" ) # 所有图片中非空图片 masks.head() masks["ships"] = masks["EncodedPixels"].map( lambda c_row: 1 if isinstance(c_row, str) else 0 ) masks.head() unique_img_ids = masks.groupby("ImageId").agg({"ships": "sum"}).reset_index() unique_img_ids.head() unique_img_ids["has_ship"] = unique_img_ids["ships"].map( lambda x: 1.0 if x > 0 else 0.0 ) unique_img_ids.head() ship_dir = "../input/airbus-ship-detection" train_image_dir = os.path.join(ship_dir, "train_v2") test_image_dir = os.path.join(ship_dir, "test_v2") unique_img_ids["has_ship_vec"] = unique_img_ids["has_ship"].map(lambda x: [x]) unique_img_ids["file_size_kb"] = unique_img_ids["ImageId"].map( lambda c_img_id: os.stat(os.path.join(train_image_dir, c_img_id)).st_size / 1024 ) unique_img_ids.head() unique_img_ids = unique_img_ids[ unique_img_ids["file_size_kb"] > 50 ] # keep only +50kb files plt.hist( x=unique_img_ids["file_size_kb"], # 指定绘图数据 bins=6, # 指定直方图中条块的个数 color="steelblue", # 指定直方图的填充色 edgecolor="black", # 指定直方图的边框色 ) plt.xticks([50, 100, 150, 200, 250, 300, 350, 400, 450, 500]) plt.ylabel("number") plt.xlabel("file_size_kb") # unique_img_ids['file_size_kb'].hist()#绘制直方图 masks.drop(["ships"], axis=1, inplace=True) unique_img_ids.sample(7) plt.title("Number of images of each size") SAMPLES_PER_GROUP = 1500 balanced_train_df = unique_img_ids.groupby("ships").apply( lambda x: x.sample(SAMPLES_PER_GROUP) if len(x) > SAMPLES_PER_GROUP else x ) # 图片有相同船舶数量,但超出2000的不要 rect = plt.hist( x=balanced_train_df["ships"], # 指定绘图数据 bins=16, # 指定直方图中条块的个数 color="steelblue", # 指定直方图的填充色 edgecolor="black", # 指定直方图的边框色 ) plt.yticks(range(0, 1800, 300)) plt.xticks(range(0, 15)) plt.ylabel("Number of images") plt.xlabel("Number of ships") plt.title("Number of images containing different number of vessels") # balanced_train_df['ships'].hist(bins=balanced_train_df['ships'].max()+1) print(balanced_train_df.shape[0], "images", balanced_train_df.shape) # 取出1万张图片 from PIL import Image x = np.empty(shape=(10680, 256, 256, 3), dtype=np.uint8) y = np.empty(shape=10680, dtype=np.uint8) for index, image in enumerate(balanced_train_df["ImageId"]): image_array = ( Image.open("../input/airbus-ship-detection/train_v2/" + image) .resize((256, 256)) .convert("RGB") ) x[index] = image_array y[index] = balanced_train_df[balanced_train_df["ImageId"] == image][ "has_ship" ].iloc[0] print(x.shape) print(y.shape) # Set target to one hot target for classification problem # 为分类问题将目标设置为一个热目标 from sklearn.preprocessing import OneHotEncoder y_targets = y.reshape(len(y), -1) enc = OneHotEncoder() enc.fit(y_targets) y = enc.transform(y_targets).toarray() print(y.shape) from sklearn.model_selection import train_test_split x_train, x_val, y_train, y_val = train_test_split(x, y, test_size=0.2) x_train.shape, x_val.shape, y_train.shape, y_val.shape import keras.applications print(dir(keras.applications)) from keras.applications.vgg16 import VGG16 as PTModel # from keras.applications.resnet50 import ResNet50 as PTModel # from keras.applications.inception_v3 import InceptionV3 as PTModel # from keras.applications.xception import Xception as PTModel # from keras.applications.densenet import DenseNet169 as PTModel # from keras.applications.densenet import DenseNet121 as PTModel # from keras.applications.resnet50 import ResNet50 as PTModel img_width, img_height = 256, 256 model = PTModel(weights=None, include_top=False, input_shape=(img_width, img_height, 3)) # weights=None,‘imagenet’表示不加载权重 from keras.layers import Dropout, Flatten, Dense, GlobalAveragePooling2D from keras.models import Sequential, Model from keras import backend as K for layer in model.layers: layer.trainable = False x = model.output x = Flatten()(x) x = Dense(1024, activation="relu")(x) x = Dropout(0.5)(x) x = Dense(1024, activation="relu")(x) predictions = Dense(2, activation="softmax")(x) # creating the final model创建最终模型 model_final = Model(input=model.input, output=predictions) def recall(y_true, y_pred): # Calculates the recall召回率 true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) possible_positives = K.sum(K.round(K.clip(y_true, 0, 1))) recall = true_positives / (possible_positives + K.epsilon()) return recall def precision(y_true, y_pred): # """精确率""" tp = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) # true positives pp = K.sum(K.round(K.clip(y_pred, 0, 1))) # predicted positives precision = tp / (pp + K.epsilon()) return precision def f1_score(y_true, y_pred): p = precision(y_true, y_pred) r = recall(y_true, y_pred) f1_score = 2 * (p * r) / (p + r + K.epsilon()) return f1_score import tensorflow as tf def precision(y_true, y_pred): TP = tf.reduce_sum(y_true * tf.round(y_pred)) TN = tf.reduce_sum((1 - y_true) * (1 - tf.round(y_pred))) FP = tf.reduce_sum((1 - y_true) * tf.round(y_pred)) FN = tf.reduce_sum(y_true * (1 - tf.round(y_pred))) precision = TP / (TP + FP) return precision # 召回率评价指标 def recall(y_true, y_pred): TP = tf.reduce_sum(y_true * tf.round(y_pred)) TN = tf.reduce_sum((1 - y_true) * (1 - tf.round(y_pred))) FP = tf.reduce_sum((1 - y_true) * tf.round(y_pred)) FN = tf.reduce_sum(y_true * (1 - tf.round(y_pred))) recall = TP / (TP + FN) return recall # F1-score评价指标 def f1_score(y_true, y_pred): TP = tf.reduce_sum(y_true * tf.round(y_pred)) TN = tf.reduce_sum((1 - y_true) * (1 - tf.round(y_pred))) FP = tf.reduce_sum((1 - y_true) * tf.round(y_pred)) FN = tf.reduce_sum(y_true * (1 - tf.round(y_pred))) precision = TP / (TP + FP) recall = TP / (TP + FN) F1score = 2 * precision * recall / (precision + recall) return F1score from keras import optimizers epochs = 10 lrate = 0.001 decay = lrate / epochs # adam = optimizers.Adam(lr=lrate,beta_1=0.9, beta_2=0.999, decay=decay) sgd = optimizers.SGD(lr=lrate, momentum=0.9, decay=decay, nesterov=False) model_final.compile( loss="categorical_crossentropy", optimizer=sgd, metrics=["accuracy"] ) # categorical_crossentropy # binary_crossentropy model_final.summary() model_final.fit( x_train, y_train, validation_data=(x_val, y_val), epochs=1, batch_size=50 ) # score = model_final.evaluate(test_X, test_Y, batch_size=50) model_final.save("ResNet_transfer_ship.h5") # #收集测试集 # from sklearn.model_selection import train_test_split # train_ids, valid_ids = train_test_split(balanced_train_df, # test_size = 0.2, # stratify = balanced_train_df['ships']) # #stratify使训练和测试的ships比例一样 # train_df = pd.merge(masks, train_ids)#merge往里面train_ids添加EncodedPixels面罩信息 # valid_df = pd.merge(masks, valid_ids) # print(train_df.shape[0], 'training masks') # print(valid_df.shape[0], 'validation masks') # BATCH_SIZE=48 # IMG_SCALING=(3, 3) # #把rle解码为图像 # def make_image_gen(in_df, batch_size = BATCH_SIZE): # all_batches = list(in_df.groupby('ImageId')) # out_rgb = [] # out_mask = [] # while True: # np.random.shuffle(all_batches) #打乱顺序 # for c_img_id, c_masks in all_batches: # rgb_path = os.path.join(train_image_dir, c_img_id) # c_img = imread(rgb_path) # c_mask = np.expand_dims(masks_as_image(c_masks['EncodedPixels'].values), -1) # if IMG_SCALING is not None: # c_img = c_img[::IMG_SCALING[0], ::IMG_SCALING[1]] # c_mask = c_mask[::IMG_SCALING[0], ::IMG_SCALING[1]] # out_rgb += [c_img] # out_mask += [c_mask] # #im = Image.fromarray(out_rgb) # #im.save('../code/input/trainmask_v2/'+c_img_id.split('.')[0] + '.png') # # # # if len(out_rgb)>=batch_size: # # yield np.stack(out_rgb, 0)/255.0, np.stack(out_mask, 0) # # out_rgb, out_mask=[], [] # def masks_as_image(in_mask_list): # # Take the individual ship masks and create a single mask array for all ships # #获取单个舰船面罩,并为所有舰船创建单个面罩阵列 # all_masks = np.zeros((768, 768), dtype = np.uint8) # for mask in in_mask_list: # if isinstance(mask, str): # all_masks |= rle_decode(mask) # return all_masks # def rle_decode(mask_rle, shape=(768, 768)): # ''' # mask_rle: run-length as string formated (start length) # shape: (height,width) of array to return # Returns numpy array, 1 - mask, 0 - background # ''' # s = mask_rle.split() # starts, lengths = [np.asarray(x, dtype=int) for x in (s[0:][::2], s[1:][::2])] # starts -= 1 # ends = starts + lengths # img = np.zeros(shape[0]*shape[1], dtype=np.uint8) # for lo, hi in zip(starts, ends): # img[lo:hi] = 1 # return img.reshape(shape).T # Needed to align to RLE direction需要与RLE方向对齐 # #得到原图和罩子图 # train_gen = make_image_gen(train_df) # train_x, train_y = next(train_gen) #返回迭代器的下一个项目。 # print('x', train_x.shape, train_x.min(), train_x.max()) # print('y', train_y.shape, train_y.min(), train_y.max())
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list the files in the input directory import os print(os.listdir("../input")) # Any results you write to the current directory are saved as output. # # Data Preprocessing data = pd.read_csv("../input/chronicKidney.csv") print(data) X = np.array(data.iloc[:, 1:25].values) Y = np.array(data.iloc[:, 25].values) print(Y) val = [5, 6, 7, 8, 18, 19, 20, 21, 22, 23] from sklearn.preprocessing import LabelEncoder, OneHotEncoder labelencoder_X = LabelEncoder() for v in val: X[:, v] = labelencoder_X.fit_transform(X[:, v]) labelencoder_y = LabelEncoder() Y = labelencoder_y.fit_transform(Y) print(X) print(Y) from sklearn.preprocessing import Imputer miss = [1, 2, 3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 17] print(X[:2]) calcul = X[:, v].reshape(-1, 1) imputer = Imputer(missing_values="NaN", strategy="mean", axis=0) imputer = imputer.fit(X[:, 1:5]) z = np.array(X[:, 1:3]) X[:, 1:5] = imputer.transform(X[:, 1:5]) z1 = np.array(X[:, 1:5]) imputer = Imputer(missing_values="NaN", strategy="mean", axis=0) imputer = imputer.fit(X[:, 9:18]) z = np.array(X[:, 9:18]) X[:, 9:18] = imputer.transform(X[:, 9:18]) z1 = np.array(X[:, 9:18]) print(X[:2]) from sklearn.preprocessing import Imputer imp = Imputer(missing_values="NaN", strategy="mean", axis=0) X[:, [0]] = imp.fit_transform(X[:, [0]]) print(X) X.shape Y.shape np.unique(Y) # # Train-Test Split from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split( X, Y, random_state=104, test_size=0.3 ) # # Regular SVC from sklearn.svm import SVC model_svc = SVC(C=0.1, gamma=10, max_iter=10000, class_weight="balanced") model_svc.fit(X_train, y_train.ravel()) y_pred_regular_svc = model_svc.predict(X_test) from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix from sklearn.metrics import f1_score from sklearn.metrics import classification_report from sklearn.metrics import recall_score from sklearn.metrics import precision_score acc_regular_svc = accuracy_score(y_test, y_pred_regular_svc) print(acc_regular_svc) y_pred_regular_svc prec_regular_svc = precision_score(y_test, y_pred_regular_svc) print(prec_regular_svc) recall_regular_svc = recall_score(y_test, y_pred_regular_svc) print(recall_regular_svc) classification_report(y_test, y_pred_regular_svc) confusion_matrix(y_test, y_pred_regular_svc) f1_regular_svc = f1_score(y_test, y_pred_regular_svc) print(f1_regular_svc) # # Regular Logistic Regression from sklearn.linear_model import LogisticRegression lgr = LogisticRegression() lgr.fit(X_train, y_train.ravel()) y_pred_regular_lgr = lgr.predict(X_test) acc_regular_lgr = accuracy_score(y_test, y_pred_regular_lgr) print(acc_regular_lgr) prec_regular_lgr = precision_score(y_test, y_pred_regular_lgr) print(prec_regular_lgr) recall_regular_lgr = recall_score(y_test, y_pred_regular_lgr) print(recall_regular_lgr) classification_report(y_test, y_pred_regular_lgr) confusion_matrix(y_test, y_pred_regular_lgr) f1_regular_lgr = f1_score(y_test, y_pred_regular_lgr) print(f1_regular_lgr) # # Regular SGDClassifier from sklearn.linear_model import SGDClassifier sgd_regular = SGDClassifier() sgd_regular = sgd_regular.fit(X_train, y_train.ravel()) y_pred_regular_sgd = sgd_regular.predict(X_test) acc_regular_sgd = accuracy_score(y_test, y_pred_regular_sgd) print(acc_regular_sgd) precision_regular_sgd = precision_score(y_test, y_pred_regular_sgd) print(precision_regular_sgd) recall_regular_sgd = recall_score(y_test, y_pred_regular_sgd) print(recall_regular_sgd) f1_regular_sgd = f1_score(y_test, y_pred_regular_sgd) print(f1_regular_sgd) classification_report(y_test, y_pred_regular_sgd) confusion_matrix(y_test, y_pred_regular_sgd) # # Regular Random Forest from sklearn.ensemble import RandomForestClassifier rf_regular = RandomForestClassifier(n_estimators=20, max_depth=10, random_state=104) rf_regular.fit(X_train, y_train.ravel()) y_pred_regular_rf = rf_regular.predict(X_test) acc_regular_rf = accuracy_score(y_test, y_pred_regular_rf) print(acc_regular_rf) # # Perceptron Regular from sklearn.linear_model import Perceptron prc_regular = Perceptron() prc_regular.fit(X_train, y_train.ravel()) y_pred_regular_prc = prc_regular.predict(X_test) acc_regular_prc = accuracy_score(y_test, y_pred_regular_prc) print(acc_regular_prc) # # MultiLayer Perceptron Regular from sklearn.neural_network import MLPClassifier mlprc_regular = MLPClassifier() mlprc_regular.fit(X_train, y_train.ravel()) y_pred_regular_mlprc = mlprc_regular.predict(X_test) acc_regular_mlprc = accuracy_score(y_test, y_pred_regular_mlprc) print(acc_regular_mlprc) # # SMOTE Data Preprocessing from imblearn.over_sampling import SMOTE sm = SMOTE(random_state=2) X_train_res, y_train_res = sm.fit_sample(X_train, y_train.ravel()) # # Resampled, Smotted Random forest from sklearn.ensemble import RandomForestClassifier rfs = RandomForestClassifier(n_estimators=20, max_depth=10, random_state=104) rfs.fit(X_train_res, y_train_res.ravel()) y_pred_rfs = rfs.predict(X_test) acc_rfs = accuracy_score(y_test, y_pred_rfs) print(acc_rfs) confusion_matrix(y_test, y_pred_rfs) from sklearn.metrics import f1_score, recall_score f1_rfs = f1_score(y_test, y_pred_rfs) print(f1_rfs) rfs_rec = recall_score(y_test, y_pred_rfs) print(rfs_rec) # # smotted svc svms = SVC(C=0.1, gamma=100, kernel="linear") svms.fit(X_train_res, y_train_res.ravel()) y_pred_svms = svms.predict(X_test) acc_svms = accuracy_score(y_test, y_pred_svms) print(acc_svms) confusion_matrix(y_test, y_pred_svms) X_train_res.shape # # Smotted Logistic regression from sklearn.linear_model import LogisticRegression lgs = LogisticRegression() lgs.fit(X_train_res, y_train_res.ravel()) y_pred_lgs = lgs.predict(X_test) acc_lgs = accuracy_score(y_test, y_pred_lgs) print(acc_lgs) confusion_matrix(y_test, y_pred_lgs) classification_report(y_test, y_pred_lgs) f1_lgs = f1_score(y_test, y_pred_lgs) print(f1_lgs) recall_lgs = recall_score(y_test, y_pred_lgs) print(recall_lgs) precision_lgs = precision_score(y_test, y_pred_lgs) print(precision_lgs) # # Smotted perceptron from sklearn.linear_model import Perceptron ps = Perceptron() ps.fit(X_train_res, y_train_res.ravel()) y_pred_ps = ps.predict(X_test) acc_ps = accuracy_score(y_test, y_pred_ps) print(acc_ps) confusion_matrix(y_test, y_pred_ps) classification_report(y_test, y_pred_ps) # # stocastic gradient descent from sklearn.linear_model import SGDClassifier sgds = SGDClassifier() sgds.fit(X_train_res, y_train_res.ravel()) y_pred_sgds = sgds.predict(X_test) acc_sgds = accuracy_score(y_test, y_pred_sgds) print(acc_sgds) confusion_matrix(y_test, y_pred_sgds) classification_report(y_test, y_pred_sgds) # # Multilayer perceptron from sklearn.neural_network import MLPClassifier mlps = MLPClassifier() mlps.fit(X_train_res, y_train_res.ravel()) y_pred_mlps = mlps.predict(X_test) acc_mlps = accuracy_score(y_test, y_pred_mlps) print(acc_mlps) confusion_matrix(y_test, y_pred_mlps) classification_report(y_test, y_pred_mlps) # # ADASYN Data Preprocessing from imblearn.over_sampling import ADASYN ada = ADASYN() X_train_res, y_train_res = sm.fit_sample(X_train, y_train.ravel()) # # Adasyn Random Forest rfa = RandomForestClassifier(n_estimators=20, max_depth=10, random_state=104) rfa.fit(X_train_res, y_train_res.ravel()) y_pred_rfa = rfa.predict(X_test) acc_rfa = accuracy_score(y_test, y_pred_rfa) print(acc_rfa) f1_rfa = f1_score(y_test, y_pred_rfa) print(f1_rfa) confusion_matrix(y_test, y_pred_rfa) classification_report(y_test, y_pred_rfa) precision_rfa = precision_score(y_test, y_pred_rfa) print(precision_rfa) recall_rfa = recall_score(y_test, y_pred_rfa) print(recall_rfa) # # Adasyn SVM svca = SVC(C=0.1, gamma=100, kernel="linear") svca.fit(X_train_res, y_train_res.ravel()) y_pred_svca = svca.predict(X_test) acc_svca = accuracy_score(y_test, y_pred_svca) print(acc_svca) f1_svca = f1_score(y_test, y_pred_svca) print(f1_svca) confusion_matrix(y_test, y_pred_svca) # # Adasyn Passive agressive classifier from sklearn.linear_model import PassiveAggressiveClassifier pac_model = PassiveAggressiveClassifier() pac_model.fit(X_train_res, y_train_res.ravel()) y_pred_pac = pac_model.predict(X_test) acc_pac = accuracy_score(y_test, y_pred_pac) print(acc_pac) confusion_matrix(y_test, y_pred_pac) # # Adasyn Logistic regression lra = LogisticRegression() lra.fit(X_train_res, y_train_res.ravel()) y_pred_lra = lra.predict(X_test) acc_lra = accuracy_score(y_test, y_pred_lra) print(acc_lra) classification_report(y_test, y_pred_lra) confusion_matrix(y_test, y_pred_lra) # # Random Over Sampler from imblearn.over_sampling import RandomOverSampler ros = RandomOverSampler() X_train_res, y_train_res = sm.fit_sample(X_train, y_train.ravel()) # # ROS SVM svcros = SVC(C=0.1, gamma=100, kernel="linear") svcros.fit(X_train_res, y_train_res.ravel()) y_pred_svcros = svcros.predict(X_test) acc_svcros = accuracy_score(y_test, y_pred_svcros) print(acc_svcros) f1_svcros = f1_score(y_test, y_pred_svcros) print(f1_svcros) classification_report(y_test, y_pred_svcros) # # ROS Logistic regression lrros = LogisticRegression() lrros.fit(X_train_res, y_train_res.ravel()) y_pred_lrros = lrros.predict(X_test) acc_lrros = accuracy_score(y_test, y_pred_lrros) print(acc_lrros) classification_report(y_test, y_pred_lrros) confusion_matrix(y_test, y_pred_lrros) # # ROS Random Forest rfros = RandomForestClassifier(n_estimators=20, max_depth=10, random_state=104) rfros.fit(X_train_res, y_train_res.ravel()) y_pred_rfros = rfros.predict(X_test) acc_rfros = accuracy_score(y_test, y_pred_rfros) print(acc_rfros) classification_report(y_test, y_pred_rfros) confusion_matrix(y_test, y_pred_rfros) f1_rfros = f1_score(y_test, y_pred_rfros) print(f1_rfros)
# # Multivariate Time Series with RNN import pandas as pd import numpy as np import matplotlib.pyplot as plt # IGNORE THE CONTENT OF THIS CELL # import tensorflow as tf # tf.compat.v1.disable_eager_execution() # ## Data # Let's read in the data set: df = pd.read_csv( "/kaggle/input/energydata_complete.csv", index_col="date", infer_datetime_format=True, ) df.head() df.info() df["Windspeed"].plot(figsize=(12, 8)) df["Appliances"].plot(figsize=(12, 8)) # ## Train Test Split len(df) df.head(3) df.tail(5) # Let's imagine we want to predict just 24 hours into the future, we don't need 3 months of data for that, so let's save some training time and only select the last months data. df.loc["2016-05-01":] df = df.loc["2016-05-01":] # Let's also round off the data, to one decimal point precision, otherwise this may cause issues with our network (we will also normalize the data anyways, so this level of precision isn't useful to us) df = df.round(2) len(df) # How many rows per day? We know its every 10 min 24 * 60 / 10 test_days = 2 test_ind = test_days * 144 test_ind # Notice the minus sign in our indexing train = df.iloc[:-test_ind] test = df.iloc[-test_ind:] train test # ## Scale Data from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler() # IGNORE WARNING ITS JUST CONVERTING TO FLOATS # WE ONLY FIT TO TRAININ DATA, OTHERWISE WE ARE CHEATING ASSUMING INFO ABOUT TEST SET scaler.fit(train) scaled_train = scaler.transform(train) scaled_test = scaler.transform(test) # # Time Series Generator # This class takes in a sequence of data-points gathered at # equal intervals, along with time series parameters such as # stride, length of history, etc., to produce batches for # training/validation. # #### Arguments # data: Indexable generator (such as list or Numpy array) # containing consecutive data points (timesteps). # The data should be at 2D, and axis 0 is expected # to be the time dimension. # targets: Targets corresponding to timesteps in `data`. # It should have same length as `data`. # length: Length of the output sequences (in number of timesteps). # sampling_rate: Period between successive individual timesteps # within sequences. For rate `r`, timesteps # `data[i]`, `data[i-r]`, ... `data[i - length]` # are used for create a sample sequence. # stride: Period between successive output sequences. # For stride `s`, consecutive output samples would # be centered around `data[i]`, `data[i+s]`, `data[i+2*s]`, etc. # start_index: Data points earlier than `start_index` will not be used # in the output sequences. This is useful to reserve part of the # data for test or validation. # end_index: Data points later than `end_index` will not be used # in the output sequences. This is useful to reserve part of the # data for test or validation. # shuffle: Whether to shuffle output samples, # or instead draw them in chronological order. # reverse: Boolean: if `true`, timesteps in each output sample will be # in reverse chronological order. # batch_size: Number of timeseries samples in each batch # (except maybe the last one). from tensorflow.keras.preprocessing.sequence import TimeseriesGenerator # scaled_train # define generator length = 144 # Length of the output sequences (in number of timesteps) batch_size = 1 # Number of timeseries samples in each batch generator = TimeseriesGenerator( scaled_train, scaled_train, length=length, batch_size=batch_size ) len(scaled_train) len(generator) # scaled_train # What does the first batch look like? X, y = generator[0] print(f"Given the Array: \n{X.flatten()}") print(f"Predict this y: \n {y}") # Now you will be able to edit the length so that it makes sense for your time series! # ### Create the Model from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, LSTM scaled_train.shape # define model model = Sequential() # Simple RNN layer model.add(LSTM(100, input_shape=(length, scaled_train.shape[1]))) # Final Prediction (one neuron per feature) model.add(Dense(scaled_train.shape[1])) model.compile(optimizer="adam", loss="mse") model.summary() # ## EarlyStopping from tensorflow.keras.callbacks import EarlyStopping early_stop = EarlyStopping(monitor="val_loss", patience=1) validation_generator = TimeseriesGenerator( scaled_test, scaled_test, length=length, batch_size=batch_size ) model.fit_generator( generator, epochs=10, validation_data=validation_generator, callbacks=[early_stop] ) model.history.history.keys() losses = pd.DataFrame(model.history.history) losses.plot() # ## Evaluate on Test Data first_eval_batch = scaled_train[-length:] first_eval_batch first_eval_batch = first_eval_batch.reshape((1, length, scaled_train.shape[1])) model.predict(first_eval_batch) scaled_test[0] # Now let's put this logic in a for loop to predict into the future for the entire test range. # ---- # **NOTE: PAY CLOSE ATTENTION HERE TO WHAT IS BEING OUTPUTED AND IN WHAT DIMENSIONS. ADD YOUR OWN PRINT() STATEMENTS TO SEE WHAT IS TRULY GOING ON!!** n_features = scaled_train.shape[1] test_predictions = [] first_eval_batch = scaled_train[-length:] current_batch = first_eval_batch.reshape((1, length, n_features)) for i in range(len(test)): # get prediction 1 time stamp ahead ([0] is for grabbing just the number instead of [array]) current_pred = model.predict(current_batch)[0] # store prediction test_predictions.append(current_pred) # update batch to now include prediction and drop first value current_batch = np.append(current_batch[:, 1:, :], [[current_pred]], axis=1) test_predictions scaled_test # ## Inverse Transformations and Compare true_predictions = scaler.inverse_transform(test_predictions) true_predictions test true_predictions = pd.DataFrame(data=true_predictions, columns=test.columns) true_predictions # ### Lets save our model from tensorflow.keras.models import load_model model.save("multivariate.h5")
import os import sys import cv2 import numpy as np from keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization from keras.layers.merge import concatenate from keras.models import Model, load_model from keras.callbacks import LearningRateScheduler import matplotlib.pyplot as plt from keras import backend as K import tensorflow as tf train_image_path = sorted(os.listdir("../input/street/train/train")) train_label_path = sorted(os.listdir("../input/street/train_labels/train_labels")) val_image_path = sorted(os.listdir("../input/street/val/val")) val_label_path = sorted(os.listdir("../input/street/val_labels/val_labels")) test_image_path = sorted(os.listdir("../input/street/test/test")) test_label_path = sorted(os.listdir("../input/street/test_labels/test_labels")) def load_images(inputdir, inputpath, imagesize): imglist = [] for i in range(len(inputpath)): img = cv2.imread(inputdir + inputpath[i], cv2.IMREAD_COLOR) img = cv2.resize(img, (imagesize, imagesize), interpolation=cv2.INTER_AREA) # img = img[::-1] imglist.append(img) return imglist IMAGE_SIZE = 128 train_image = load_images("../input/street/train/train/", train_image_path, IMAGE_SIZE) train_label = load_images( "../input/street/train_labels/train_labels/", train_label_path, IMAGE_SIZE ) val_image = load_images("../input/street/val/val/", val_image_path, IMAGE_SIZE) val_label = load_images( "../input/street/val_labels/val_labels/", val_label_path, IMAGE_SIZE ) test_image = load_images("../input/street/test/test/", test_image_path, IMAGE_SIZE) test_label = load_images( "../input/street/test_labels/test_labels/", test_label_path, IMAGE_SIZE ) train_image /= np.max(train_image) train_label /= np.max(train_label) val_image /= np.max(val_image) val_label /= np.max(val_label) test_image /= np.max(test_image) test_label /= np.max(test_label) num = 64 plt.figure(figsize=(14, 7)) ax = plt.subplot(1, 2, 1) plt.imshow(np.squeeze(train_image[num])) ax = plt.subplot(1, 2, 2) plt.imshow(np.squeeze(train_label[num])) def Unet(): input_img = Input(shape=(IMAGE_SIZE, IMAGE_SIZE, 3)) enc1 = Conv2D(128, kernel_size=3, strides=1, activation="relu", padding="same")( input_img ) enc1 = BatchNormalization()(enc1) enc1 = Conv2D(128, kernel_size=3, strides=1, activation="relu", padding="same")( enc1 ) enc1 = BatchNormalization()(enc1) down1 = MaxPooling2D(pool_size=2, strides=2)(enc1) enc2 = Conv2D(256, kernel_size=3, strides=1, activation="relu", padding="same")( down1 ) enc2 = BatchNormalization()(enc2) enc2 = Conv2D(256, kernel_size=3, strides=1, activation="relu", padding="same")( enc2 ) enc2 = BatchNormalization()(enc2) down2 = MaxPooling2D(pool_size=2, strides=2)(enc2) enc3 = Conv2D(512, kernel_size=3, strides=1, activation="relu", padding="same")( down2 ) enc3 = BatchNormalization()(enc3) enc3 = Conv2D(512, kernel_size=3, strides=1, activation="relu", padding="same")( enc3 ) enc3 = BatchNormalization()(enc3) down3 = MaxPooling2D(pool_size=2, strides=2)(enc3) enc4 = Conv2D(1024, kernel_size=3, strides=1, activation="relu", padding="same")( down3 ) enc4 = BatchNormalization()(enc4) enc4 = Conv2D(1024, kernel_size=3, strides=1, activation="relu", padding="same")( enc4 ) enc4 = BatchNormalization()(enc4) down4 = MaxPooling2D(pool_size=2, strides=2)(enc4) enc5 = Conv2D(2048, kernel_size=3, strides=1, activation="relu", padding="same")( down4 ) enc5 = BatchNormalization()(enc5) enc5 = Conv2D(2048, kernel_size=3, strides=1, activation="relu", padding="same")( enc5 ) enc5 = BatchNormalization()(enc5) up4 = UpSampling2D(size=2)(enc5) dec4 = concatenate([up4, enc4], axis=-1) dec4 = Conv2D(1024, kernel_size=3, strides=1, activation="relu", padding="same")( dec4 ) dec4 = BatchNormalization()(dec4) dec4 = Conv2D(1024, kernel_size=3, strides=1, activation="relu", padding="same")( dec4 ) dec4 = BatchNormalization()(dec4) up3 = UpSampling2D(size=2)(dec4) dec3 = concatenate([up3, enc3], axis=-1) dec3 = Conv2D(512, kernel_size=3, strides=1, activation="relu", padding="same")( dec3 ) dec3 = BatchNormalization()(dec3) dec3 = Conv2D(512, kernel_size=3, strides=1, activation="relu", padding="same")( dec3 ) dec3 = BatchNormalization()(dec3) up2 = UpSampling2D(size=2)(dec3) dec2 = concatenate([up2, enc2], axis=-1) dec2 = Conv2D(256, kernel_size=3, strides=1, activation="relu", padding="same")( dec2 ) dec2 = BatchNormalization()(dec2) dec2 = Conv2D(256, kernel_size=3, strides=1, activation="relu", padding="same")( dec2 ) dec2 = BatchNormalization()(dec2) up1 = UpSampling2D(size=2)(dec2) dec1 = concatenate([up1, enc1], axis=-1) dec1 = Conv2D(128, kernel_size=3, strides=1, activation="relu", padding="same")( dec1 ) dec1 = BatchNormalization()(dec1) dec1 = Conv2D(128, kernel_size=3, strides=1, activation="relu", padding="same")( dec1 ) dec1 = BatchNormalization()(dec1) dec1 = Conv2D(3, kernel_size=1, strides=1, activation="sigmoid", padding="same")( dec1 ) model = Model(input=input_img, output=dec1) return model model = Unet() model.summary() def castF(x): return K.cast(x, K.floatx()) def castB(x): return K.cast(x, bool) def iou_loss_core(true, pred): # this can be used as a loss if you make it negative intersection = true * pred notTrue = 1 - true union = true + (notTrue * pred) return (K.sum(intersection, axis=-1) + K.epsilon()) / ( K.sum(union, axis=-1) + K.epsilon() ) def competitionMetric2(true, pred): # any shape can go - can't be a loss function tresholds = [0.5 + (i * 0.05) for i in range(10)] # flattened images (batch, pixels) true = K.batch_flatten(true) pred = K.batch_flatten(pred) pred = castF(K.greater(pred, 0.5)) # total white pixels - (batch,) trueSum = K.sum(true, axis=-1) predSum = K.sum(pred, axis=-1) # has mask or not per image - (batch,) true1 = castF(K.greater(trueSum, 1)) pred1 = castF(K.greater(predSum, 1)) # to get images that have mask in both true and pred truePositiveMask = castB(true1 * pred1) # separating only the possible true positives to check iou testTrue = tf.boolean_mask(true, truePositiveMask) testPred = tf.boolean_mask(pred, truePositiveMask) # getting iou and threshold comparisons iou = iou_loss_core(testTrue, testPred) truePositives = [castF(K.greater(iou, tres)) for tres in tresholds] # mean of thressholds for true positives and total sum truePositives = K.mean(K.stack(truePositives, axis=-1), axis=-1) truePositives = K.sum(truePositives) # to get images that don't have mask in both true and pred trueNegatives = (1 - true1) * (1 - pred1) # = 1 -true1 - pred1 + true1*pred1 trueNegatives = K.sum(trueNegatives) return (truePositives + trueNegatives) / castF(K.shape(true)[0]) def dice_coef(y_true, y_pred, smooth=1): y_true_f = K.flatten(y_true) y_pred_f = K.flatten(y_pred) intersection = K.sum(y_true_f * y_pred_f) return (2.0 * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth) model.compile(loss="binary_crossentropy", optimizer="adam", metrics=[dice_coef]) initial_learningrate = 2e-3 def lr_decay(epoch): if epoch < 5: return initial_learningrate else: return initial_learningrate * 0.99**epoch training = model.fit( train_image, train_label, epochs=30, batch_size=32, shuffle=True, validation_data=(val_image, val_label), verbose=1, callbacks=[LearningRateScheduler(lr_decay, verbose=1)], ) results = model.predict(test_image, verbose=1) n = 20 plt.figure(figsize=(140, 14)) for i in range(3): # 原画像 ax = plt.subplot(2, n, i + 1) plt.imshow(test_image[i]) plt.gray() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) # 推定結果画像 ax = plt.subplot(2, n, i + 1 + n) plt.imshow(results[i]) plt.gray() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) plt.show()