script
stringlengths
113
767k
# # Offline Predictions with AutoML models for Bengali Handwritten graphemes # We have seen how to import data and train models in Google AutoML and export the models into the `saved_model` format of Tensorflow - among others (see [this Notebook](https://www.kaggle.com/wardenga/bengali-handwritten-graphemes-with-automl). In this Notebook we are going to import the `saved_model.pb` produced by AutoMl and make predictions. import tensorflow.compat.v1 as tf # modyficatin for tensorflow 2.1 might follow soon tf.disable_v2_behavior() import pandas as pd import numpy as np import io from matplotlib.image import imsave import csv import os import time # Load the model with `tf.saved_model.loader.load()` inside a `tf.Session`. Then we transform the data to an image (as in [this Notebook](https://www.kaggle.com/wardenga/bengali-handwritten-graphemes-with-automl)) since images are what we fed AutoML with. # Note that the path fed to the loader has to be to the DIRECTORY that the `saved_model.pb` is contained in, not the file. def make_predict_batch(img, export_path): """ INPUT -`img` list of bytes representing the images to be classified OUTPUT -dataframe containing the probabilities of the labels and the la els as columnames """ with tf.Session(graph=tf.Graph()) as sess: tf.saved_model.loader.load(sess, ["serve"], export_path) graph = tf.get_default_graph() feed_dict = {"Placeholder:0": img} y_pred = sess.run(["Softmax:0", "Tile:0"], feed_dict=feed_dict) labels = [label.decode() for label in y_pred[1][0]] return pd.DataFrame(data=y_pred[0], columns=labels) # The actual prediction is made in the following Part of the above function (inside the `tf.Session`. # ` # feed_dict={'Placeholder:0':[imageBytearray.getvalue()]} # y_pred=sess.run(['Softmax:0','Tile:0'],feed_dict=feed_dict) # ` # To understand How to adopt this for your pre-trained model we have to dive a bit into the structure of the model (see [this Blogpost](https://heartbeat.fritz.ai/automl-vision-edge-exporting-and-loading-tensorflow-saved-models-with-python-f4e8ce1b943a)). In fact we have to identify the input (here: 'Placeholder:0') and output nodes of the graph. Some trial and error can be involved here, especially since the last nodes in this example are not giving the actual prediction but the order of the labels, while the 'Softmax'-node actually gives the probabilities (You can look at the structure of the graph with the webapp [Netron](https://lutzroeder.github.io/netron/)). Lets look at an example prediction i = 0 name = f"test_image_data_{i}.parquet" test_img = pd.read_parquet("../input/bengaliai-cv19/" + name) test_img.head() height = 137 width = 236 # we need the directory of the saved model dir_path = "../input/trained-models/Trained_Models/tf_saved_model-Bengaliai_vowel-2020-01-27T205839579Z" images = test_img.iloc[:, 1:].values.reshape(-1, height, width) image_id = test_img.image_id imagebytes = [] for i in range(test_img.shape[0]): imageBytearray = io.BytesIO() imsave(imageBytearray, images[i], format="png") imagebytes.append(imageBytearray.getvalue()) res = make_predict_batch(imagebytes, dir_path) res["image_id"] = image_id res.head() np.argmax(make_predict(test_img.iloc[0], dir_path)["Test_0"][0]) # You can see here the argmax in the first array has index 8, but in this case it doesn't mean the label is 8. The label is encoded in the second array corresponding to the key of the dictionary. # The following Function takes this into account and also formats a submission file following the requirements of the Bengali.Ai competition. # walk the working directory to find the names of the directories import os inputFolder = "../input/" for root, directories, filenames in os.walk(inputFolder): for filename in filenames: print(os.path.join(root, filename)) def make_submit(img, height=137, width=236): """ """ consonant_path = "../input/trained-models/Trained_Models/tf_saved_model-Bengaliai_consonant-2020-01-27T205840376Z" root_path = "../input/trained-models/Trained_Models/tf_saved_model-Bengaliai_root-2020-01-27T205838805Z" vowel_path = "../input/trained-models/Trained_Models/tf_saved_model-Bengaliai_vowel-2020-01-27T205839579Z" # transform the images from a dataframe to a list of images and then bytes images = img.iloc[:, 1:].values.reshape(-1, height, width) image_id = img.image_id imagebytes = [] for i in range(img.shape[0]): imageBytearray = io.BytesIO() imsave(imageBytearray, images[i], format="png") imagebytes.append(imageBytearray.getvalue()) # get the predictions from the three models - passing the bytes_list start_pred = time.time() prediction_root = make_predict_batch(imagebytes, export_path=root_path) prediction_consonant = make_predict_batch(imagebytes, export_path=consonant_path) prediction_vowel = make_predict_batch(imagebytes, export_path=vowel_path) end_pred = time.time() print("Prediction took {} seconds.".format(end_pred - start_pred)) start_sub = time.time() p0 = prediction_root.idxmax(axis=1) p1 = prediction_vowel.idxmax(axis=1) p2 = prediction_consonant.idxmax(axis=1) row_id = [] target = [] for i in range(len(image_id)): row_id += [ image_id.iloc[i] + "_grapheme_root", image_id.iloc[i] + "_vowel_diacritic", image_id.iloc[i] + "_consonant_diacritic", ] target += [p0[i], p1[i], p2[i]] submission_df = pd.DataFrame({"row_id": row_id, "target": target}) # submission_df.to_csv(name, index=False) end_sub = time.time() print("Writing the submission_df took {} seconds".format(end_sub - start_sub)) return submission_df # Finally we can make the submission import gc start = time.time() for i in range(4): start1 = time.time() name = f"test_image_data_{i}.parquet" print("start with " + name + "...") test_img = pd.read_parquet("../input/bengaliai-cv19/" + name) print("starting prediction") start1 = time.time() if i == 0: df = make_submit(test_img) df.to_csv("submission.csv", mode="w", index=False) else: df = make_submit(test_img) df.to_csv("submission.csv", mode="a", header=False, index=False) end1 = time.time() print(end1 - start1) gc.collect() # make place on disk (maybe) end = time.time() print(end - start) df.head()
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import math import matplotlib.pyplot as plt import seaborn as sns from sklearn import linear_model from sklearn import metrics from sklearn.model_selection import KFold from sklearn.preprocessing import StandardScaler from sklearn.model_selection import GridSearchCV, train_test_split from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import RandomForestClassifier # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. # Read both train and test datasets as a DataFrame train = pd.read_csv("../input/house-prices-advanced-regression-techniques/train.csv") test = pd.read_csv("../input/house-prices-advanced-regression-techniques/test.csv") numerical_train = train.select_dtypes(include=["int", "float"]) numerical_train.drop( ["Id", "YearBuilt", "YearRemodAdd", "GarageYrBlt", "MoSold", "YrSold"], axis=1, inplace=True, ) # **Exploratory Analysis** # The aim is to get a good understanding of the data set and have ideas for data cleaning and feature engineering. # 1. Start by analysing the data to get a feel for what we have. # * Look at the features, their data type, the target variable. # * Check for missing data and the scale of the data. # * Make sure to understand the dataset. # # 2. Plot Numerical Distributions. # * Use histogram or scatter plots. # * Check if anything looks out of place. # # # 3. Plot Categorical Distributions. # * Use bar plots. # * Check for sparse classes, these can lead to overfitting. # # # 4. Plot Segmentations. # * Use box plots. # * Check the relationship between categorical and numeric features. # # # 5. Study Correlations. # * Use heat maps. # * Correlation is a value between -1 and 1. # * Close to -1 or 1 means strong negative or positive correlation. # * 0 means no correlation. # * Check which features are strongly correlated with the target. train.head() sns.distplot(train["SalePrice"]) # Statistics about the data train.describe() train.info() # Seperate out the numerical data numerical_train = train.select_dtypes(include=["int", "float"]) numerical_train.head() # Plot the distributions of all numerical data. i = 1 fig = plt.figure(figsize=(40, 50)) for item in numerical_train: axes = fig.add_subplot(8, 5, i) axes = numerical_train[item].plot.hist(rot=0, subplots=True) plt.xticks(rotation=45) i += 1 # Seperate out the categorical data categorical_train = train.select_dtypes(include=["object"]) categorical_train.head() # Plot the counts of all categorical data. i = 1 fig = plt.figure(figsize=(40, 50)) for item in categorical_train: axes = fig.add_subplot(9, 5, i) axes = categorical_train[item].value_counts().plot.bar(rot=0, subplots=True) plt.xticks(rotation=45) i += 1 # Boxplot all categorical data with SalePrice i = 1 fig = plt.figure(figsize=(40, 50)) for item in categorical_train: data = pd.concat([train["SalePrice"], categorical_train[item]], axis=1) axes = fig.add_subplot(9, 5, i) axes = sns.boxplot(x=item, y="SalePrice", data=data) plt.xticks(rotation=45) i += 1 # Correlation matrix corrmat = train.corr() f, ax = plt.subplots(figsize=(12, 9)) sns.heatmap(corrmat, vmax=0.8, square=True) # Correlation matrix with strong correlations with SalePrice sorted_corrs = train.corr()["SalePrice"].abs().sort_values() strong_corrs = sorted_corrs[sorted_corrs > 0.5] cols = strong_corrs.index corrmat = train[strong_corrs.index].corr() sns.heatmap( corrmat, cbar=True, annot=True, square=True, fmt=".2f", annot_kws={"size": 10}, yticklabels=cols.values, xticklabels=cols.values, ) # The histogram on the diagonal is the distribution of a single variable # The scatter plots represent the relationships between two variables sns.set() cols = strong_corrs.index sns.pairplot(numerical_train[cols], height=2.5) plt.show() # **Data Cleaning** # The aim is to leave a clean data set that will avoid errors later on. # 1. Remove Unwanted Observations. # * Remove duplicated data. # * Remove any data that is irrelevant for the task. # 2. Fix Structural Errors. # * Check for typos, inconsistent capitalisation and mislabeled classes. # 3. Filter Unwanted Outliers. # * Remove any data that is obviously wrong. # 4. Handle Missing Data. # * Dropping the data - sub-optimal because you lose all the information associated. # * Imputing the data e.g. using the mean - sub-optimal because your reinforcing patterns from other features. # * Flag observation with indicator that observation is missing and label numerical data as 0 # * label categorical data as 'missing'. # df = train def transform_features(df): # Count number of missing values in each numerical column num_missing = df.isnull().sum() # Drop the columns where at least 5% of the values are missing drop_missing_cols = num_missing[(num_missing > len(df) / 20)].sort_values() df = df.drop(drop_missing_cols.index, axis=1) # Count number of missing values in each categorical column text_mv_counts = ( df.select_dtypes(include=["object"]).isnull().sum().sort_values(ascending=False) ) # Drop the columns where at least 1 missing value drop_missing_cols_2 = text_mv_counts[text_mv_counts > 0] df = df.drop(drop_missing_cols_2.index, axis=1) # For numerical columns with missing values calcualate number of missing values num_missing = df.select_dtypes(include=["int", "float"]).isnull().sum() fixable_numeric_cols = num_missing[ (num_missing <= len(df) / 20) & (num_missing > 0) ].sort_values() # Calcualte the most common value for each column replacement_values_dict = ( df[fixable_numeric_cols.index].mode().to_dict(orient="records")[0] ) # For numerial columns with missing values fill with most common value in that column df = df.fillna(replacement_values_dict) # Compute two new columns by combining other columns which could be useful years_sold = df["YrSold"] - df["YearBuilt"] years_since_remod = df["YrSold"] - df["YearRemodAdd"] df["YearsBeforeSale"] = years_sold df["YearsSinceRemod"] = years_since_remod # Drop the no longer needed original year columns df = df.drop(["YearBuilt", "YearRemodAdd"], axis=1) # Remove irrelevant data df = df.drop(["Id"], axis=1) return df transform_features(df) # **Feature Engineering** # The aim is to transform the data into a analytical base table. # 1. Combine Numerical Features. # * Sum/multiply/subtract features to create a new feature that could be more useful. # 2. Combine Sparse Categorical Classes. # 3. Add Knowledge. # * Create my own features indicate other useful information from my own knowledge. # 4. Add Dummy Variables. # 5. Remove Unused or RedundantFeatures. def select_features(df, uniq_threshold): # Create list of all column names that are supposed to be categorical nominal_features = [ "Id", "MSSubClass", "MSZoning", "Street", "Alley", "LandContour", "LotConfig", "Neighborhood", "Condition1", "Condition2", "BldgType", "HouseStyle", "RoofStyle", "RoofMatl", "Exterior1st", "Exterior2nd", "MasVnrType", "Foundation", "Heating", "CentralAir", "GarageType", "MiscFeature", "SaleType", "SaleCondition", ] # Check which categorical columns we have carried with us transform_cat_cols = [] for col in nominal_features: if col in df.columns: transform_cat_cols.append(col) # Check how many unique values in each categorical column uniqueness_counts = ( df[transform_cat_cols].apply(lambda col: len(col.value_counts())).sort_values() ) # For each item that has more than the defined unique threshold values, create category 'Other' for item in uniqueness_counts.iteritems(): if item[1] >= uniq_threshold: # Count unique values in the column unique_val = df[item[0]].value_counts() # Select the 10th least common index and the rest lower than that other_index = unique_val.loc[ unique_val < unique_val.iloc[uniq_threshold - 2] ].index df.loc[df[item[0]].isin(list(other_index)), item[0]] = "Other" # Select the text columns and convert to categorical text_cols = df.select_dtypes(include=["object"]) for col in text_cols: df[col] = df[col].astype("category") # Create dummy columns df = pd.concat( [df, pd.get_dummies(df.select_dtypes(include=["category"]))], axis=1 ).drop(text_cols, axis=1) return df def drop_features(df, coeff_threshold): # Select numerical columns numerical_df = df.select_dtypes(include=["int", "float"]) # print(numerical_df) # Compute the absolute correlation between the numerical columns and SalePrice abs_corr_coeffs = numerical_df.corr()["SalePrice"].abs().sort_values() # print(abs_corr_coeffs) # Drop the columns that have a coefficient lower than than the defined threshold df = df.drop(abs_corr_coeffs[abs_corr_coeffs < coeff_threshold].index, axis=1) return df # **Algorithm Selection** # We will use Regression. # **Model Training** # 1. Tune and Fit Hyperparameters. # * Gradient descent algorithm # * k-fold cross validation # # # 2. Check error with performance metrics such as MSE. # 3. Select Winning Model. # split the data to train the model # y = train.SalePrice # X_train,X_test,y_train,y_test = train_test_split(train_df.drop(['SalePrice'], axis=1) ,y ,test_size=0.2 , random_state=0) # Scale the data # scaler = StandardScaler().fit(train_df[features]) # rescaled_train_df = scaler.transform(train_df[features]) # rescaled_test_df = scaler.transform(test_df[features]) # model = linear_model.LinearRegression() # model.fit(train_df[features], train["SalePrice"]) # predictions = model.predict(test_df[features]) transform_train_df = transform_features(train) transform_test_df = transform_features(test) train_df = select_features(transform_train_df, uniq_threshold=100) test_df = select_features(transform_test_df, uniq_threshold=100) train_features = drop_features(train_df, coeff_threshold=0.01) test_features = test_df.columns features = pd.Series(list(set(train_features) & set(test_features))) X_train = train_df[features] y_train = train["SalePrice"] X_test = test_df[features] X_train # rfgs_parameters = { # 'n_estimators': [50], # 'max_depth' : [n for n in range(2, 16)], # 'max_features': [n for n in range(2, 16)], # "min_samples_split": [n for n in range(2, 8)], # "min_samples_leaf": [n for n in range(2, 8)], # "bootstrap": [True,False] # } # rfr_cv = GridSearchCV(RandomForestRegressor(), rfgs_parameters, cv=8, scoring='neg_mean_squared_log_error') # rfr_cv.fit(X_train, y_train) # predictions = rfr_cv.predict(X_test) model_rf = RandomForestClassifier(n_estimators=1000, oob_score=True, random_state=42) model_rf.fit(X_train, y_train) predictions = model_rf.predict(X_test) # Output the predictions into a csv submission = pd.DataFrame(test.Id) predictions = pd.DataFrame({"SalePrice": predictions}) output = pd.concat([submission, predictions], axis=1) output.to_csv("submission.csv", index=False)
import tensorflow as tf import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from sklearn.model_selection import train_test_split from tensorflow.keras.preprocessing.image import ImageDataGenerator import cv2 import glob # ### Importing data train_path = "../input/asl-alphabet/asl_alphabet_train/asl_alphabet_train/" test_path = "../input/asl-alphabet/asl_alphabet_test/asl_alphabet_test/" # Finding all the existing categories in training data categories = np.array([]) for dirs in glob.glob(train_path + "/*"): categories = np.append(categories, dirs.split("/")[-1]) print("Classes in the data: ", categories) # ### Exploring the data # Finding the training set size wrt labels/categories num_imgs = np.array([]) for i in categories: num_imgs = np.append(num_imgs, len(glob.glob(train_path + i + "/*"))) num_imgs = ( pd.DataFrame([categories, num_imgs], index=["label", "no. of images"]) .T.set_index("label") .T ) num_imgs # Plotting some sample pictures for a given label def plot_samples(label, num_samples=3): plt.figure(figsize=(20, 6)) print("Showing sample images of label:", label) for i in range(num_samples): plt.subplot(1, num_samples, i + 1) plt.imshow( cv2.imread( glob.glob(train_path + label + "/*")[ np.random.randint(0, num_imgs[label][0]) ] ) ) plt.tight_layout() plot_samples("I", 5) print("Shape of input images:", cv2.imread(glob.glob(train_path + "A/*")[0]).shape) # Since I, J are similar when rotated, rotation range is limited in datagenerator plot_samples("J", 5) # ### Data Augmentation datagen = ImageDataGenerator( samplewise_center=True, samplewise_std_normalization=True, validation_split=0.1, rotation_range=5, zoom_range=0.1, width_shift_range=0.1, height_shift_range=0.1, fill_mode="nearest", ) train_gen = datagen.flow_from_directory( train_path, target_size=(64, 64), batch_size=32, shuffle=True, subset="training" ) val_gen = datagen.flow_from_directory( train_path, target_size=(64, 64), batch_size=32, shuffle=True, subset="validation" ) # Plotting some transformed images plt.figure(figsize=(20, 6)) for i in range(5): plt.subplot(1, 5, i + 1) plt.imshow(train_gen.next()[0][0]) plt.tight_layout() # ### Making a CNN model from keras.models import Sequential from keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout model = Sequential() model.add( Conv2D( 32, (4, 4), strides=1, activation="relu", padding="same", input_shape=(64, 64, 3), ) ) model.add(Conv2D(32, (3, 3), strides=2, activation="relu", padding="valid")) model.add(Dropout(0.2)) model.add(Conv2D(64, (3, 3), strides=1, activation="relu", padding="same")) model.add(Conv2D(64, (3, 3), strides=2, activation="relu", padding="valid")) model.add(Dropout(0.2)) model.add(Conv2D(128, (3, 3), strides=1, activation="relu", padding="same")) model.add(Flatten()) model.add(Dropout(0.2)) model.add(Dense(512, activation="relu")) model.add(Dense(128, activation="relu")) model.add(Dropout(0.2)) model.add(Dense(29, activation="softmax")) model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) model.summary() # ### Training the CNN model # Fitting the data to the model by using data generator history = model.fit_generator(train_gen, epochs=30, validation_data=val_gen) plt.plot(history.history["accuracy"], label="train") plt.plot(history.history["val_accuracy"], label="validation") plt.ylabel("Accuracy") plt.xlabel("Epochs") plt.legend() # ### Error Analysis # Finding the prediction data on validation set to plot confusion matrix - helps to analyse errors validation_gen = datagen.flow_from_directory( train_path, target_size=(64, 64), batch_size=1, shuffle=False, subset="validation" ) y_pred = np.argmax(model.predict_generator(validation_gen), axis=1) y_true = validation_gen.classes import seaborn as sns from sklearn.metrics import confusion_matrix plt.figure(figsize=(15, 10)) # Here 0 to 28 labels are mapped to their original categories ax = sns.heatmap( confusion_matrix(y_true, y_pred), annot=True, xticklabels=np.sort(categories), yticklabels=np.sort(categories), cmap="GnBu", ) ax.set_xlabel("Predicted values") ax.set_ylabel("True values") ax.set_title("Confusion matrix") # * There seems to be confusion b/w (M,N),(X,S),(U,R),(I,E),(V,K),(Y,T),(V,W),(X,T) # * Model can be improved by including/augementing more data of confused labels # ### Save the weights # Saving the model weights to load later model.save_weights("als_hand_sign_model.h5")
import pandas as pd import numpy as np import matplotlib.pyplot as plt # ### Importing the Dataset data = pd.read_csv( "/kaggle/input/website-traffic/website-traffic.csv", parse_dates=["Date"] ).dropna() data data["traffic"].plot() plt.ylabel("Number of Visitors Per Day") plt.xlabel("Days") plt.title("Plotting the Website Traffic") # # **Seasonal Decompose** # By decomposing a time series into these four components, it is easier to analyze the data and identify the underlying patterns and trends. # from statsmodels.tsa.seasonal import seasonal_decompose s = seasonal_decompose(data["traffic"], period=7) s.plot() size = int(len(data) * 0.80) training_data = data[:size] testing_data = data[size:] plt.grid(True) plt.xlabel("Days") plt.ylabel("Number of Visitors Per Day") plt.plot(training_data["traffic"], "green", label="Train Data") plt.plot(testing_data["traffic"], "blue", label="Test Data") plt.legend() # **When a time series is stationary, it means that the statistical properties of the data do not change over time** # # CHECKING FOR STATIONARITY # There are several methods to determine stationarity in time series data, some of which are: # **1.Visual inspection:** Plotting the time series and examining it visually for any trend or seasonal patterns can provide an initial indication of stationarity. # **2. Using Statistical Plots :** Plots such as ACF and PACF can be implemented to analyze and visualize time series data. # **3.Augmented Dickey-Fuller (ADF) test:** The ADF test is a statistical test that checks whether a time series is stationary or not. The test computes a test statistic and compares it to critical values to determine whether the null hypothesis of non-stationarity can be rejected. # # **1.Visual inspection:** # By plotting the Traffic Column in dataset we can clearly note that the time series is not at all Stationary as the mean is not zero and also mean, variance change over time # # **2.Using Statistical Plots** # The **Autocorrelation Function (ACF)** and **Partial Autocorrelation Function (PACF)** are important tools in time series analysis for understanding the properties of the data and determining the appropriate models to use for forecasting. # **1. Autocorrelation Function (ACF)** # The ACF measures the correlation between a time series and its lagged values. It helps to identify the presence of any repeating patterns or cycles in the data. # A strong positive correlation at a specific lag indicates that the data is highly correlated with its past values at that lag, while a strong negative correlation indicates that the data is negatively correlated with its past values at that lag. The ACF can help to determine the order of an Autoregressive (AR) model. # **2. Partial Autocorrelation Function (PACF)** # The PACF, on the other hand, measures the correlation between a time series and its lagged values after removing the effect of the intervening lags. It helps to identify the presence of any direct or immediate relationships between the data and its past values. # A strong positive correlation at a specific lag indicates that the data is highly correlated with its past values at that lag after removing the effect of the intervening lags, while a strong negative correlation indicates that the data is negatively correlated with its past values at that lag after removing the effect of the intervening lags. The PACF can help to determine the order of a Moving Average (MA) model. from statsmodels.graphics.tsaplots import plot_acf, plot_pacf plot_acf(data["traffic"]) plot_pacf(data["traffic"]) # These plots clearly denotes non - stationary in data # In general, a non-stationary time series will have an ACF plot that does not decay to zero, indicating the presence of autocorrelation at all lags. Similarly, the PACF plot will not exhibit a clear cutoff, indicating the presence of multiple significant lags. These patterns can make it difficult to determine the appropriate lag order for an AR or MA model. # It is important to note that ACF and PACF plots alone are not sufficient to determine the stationarity of a time series. Other methods such as the **Augmented Dickey-Fuller (ADF) test** test should also be used to confirm the stationarity of the series. # # **3.Augmented Dickey-Fuller (ADF) test:** # The Augmented Dickey-Fuller (ADF) test is a statistical test used to determine whether a time series is stationary or not. The test is based on the null hypothesis that the time series has a unit root, which indicates that the series is non-stationary. # The ADF test computes a test statistic based on the coefficients of the regression equation, and compares it to critical values to determine whether the null hypothesis of non-stationarity can be rejected. If the test statistic is less than the critical value, the null hypothesis is rejected, and the time series is considered stationary. # In the ADF (Augmented Dickey-Fuller) test, the **p-value is the probability of obtaining a test statistic at least as extreme as the observed value, assuming that the null hypothesis of non-stationarity is true.**The p-value is used to determine the statistical significance of the test and whether the null hypothesis can be rejected. # If the** p-value** is less than a predetermined **level of significance (e.g., 0.05)**, the null hypothesis of **non-stationarity is rejected,** and the time series is considered stationary. Conversely, if the p-value is greater than the level of significance, the null hypothesis cannot be rejected, and the time series is considered non-stationary. from statsmodels.tsa.stattools import adfuller adf_test = adfuller(data["traffic"]) adf_test print("P-value for Checking Stationarity :", adf_test[1]) # # HENCE FROM ABOVE RESULTS THE TIME SERIES IS NOT STATIONARY # # To Make it Stationary we need to perform Differencing and have to feed it into Time Series Model data_diff = data["traffic"].diff().dropna() data_diff.plot() data["traffic"] data_diff plot_acf(data_diff) plot_pacf(data_diff) adf_test_diff = adfuller(data_diff) adf_test_diff # # Henceforth the model becomes Stationary # Auto_arima is an **automated version of the ARIMA **(Autoregressive Integrated Moving Average) model selection process. It is a popular method for selecting the optimal order of the ARIMA model for a given time series dataset. Some advantages of using auto_arima include: # 1. **Automated model selection:** Auto_arima automates the process of selecting the **best ARIMA model by analyzing the time series data and selecting the optimal values of p, d, and q parameters**. This eliminates the need for manual selection, which can be time-consuming and error-prone. # 2. The `pmdarima.auto_arima` function takes as input the time series data and a range of values for `p`, `d`, and `q` parameters, and returns an optimized ARIMA model. It uses a combination of iterative and seasonal algorithms to search for the best model. # 3. **Improved accuracy:** Auto_arima can select a more accurate model than a manual selection, as it searches over a wider range of possible models and selects the one with the lowest AIC (Akaike Information Criterion) value. # 4. **Flexible:** Auto_arima can handle both seasonal and non-seasonal time series data, making it a versatile model selection tool. # ## Determining the p q d parameters uding autoarima import pmdarima as pm auto_arima = pm.auto_arima(training_data["traffic"], seasonal=False, stepwise=False) auto_arima auto_arima.summary() # ARIMA(4,1,0) is a type of time series model that stands for AutoRegressive Integrated Moving Average. It is characterized by the following parameters: # **p=4:** The number of autoregressive (AR) terms. This means that the model uses the values of the series from the previous four time periods to predict the current value. # **d=1**: The degree of differencing. This means that the model uses the first difference of the series (i.e., the difference between consecutive observations) to make it stationary. # q=0: The number of moving average (MA) terms. This means that the model does not use the moving average terms to predict the current value. arima_fit = auto_arima.fit(training_data["traffic"]) # # **ARIMA(4,1,0)** from statsmodels.tsa.arima.model import ARIMA arima = ARIMA(training_data["traffic"], order=(4, 1, 0)) arima_fit = arima.fit() print(arima_fit.summary()) forecast_test = arima_fit.forecast(len(testing_data)) pred = pd.DataFrame(forecast_test) pred forecast_test_auto = auto_arima.predict(n_periods=len(testing_data)) data["forecast_auto"] = [None] * len(training_data) + list(forecast_test_auto) data.plot()
# # TalkingData AdTracking Fraud Detection Challenge # TalkingData is back with another competition: This time, our task is to predict where a click on some advertising is fraudlent given a few basic attributes about the device that made the click. What sets this competition apart is the sheer scale of the dataset: with 240 million rows it might be the biggest one I've seen on Kaggle so far. # There are some similarities with the last competition TalkingData launched: https://www.kaggle.com/c/talkingdata-mobile-user-demographics - that competition was about predicting the demographics of a user given their activity, and you can view this as a similar problem (predicting whether a user is real or not given their activity). However, that competition was plagued by a [leak](https://www.kaggle.com/wiki/Leakage) where the dataset wasn't sorted properly and certain portions of the dataset had different demographic distribtions. This meant that by adding the row ID as a feature you could get a huge boost in performance. Let's hope TalkingData have learnt their lesson this time around. 😉 # Looking at the evaluation page, we can see that the evaluation metric used is** ROC-AUC** (the area under a curve on a Receiver Operator Characteristic graph). # In english, this means a few important things: # * This competition is a **binary classification** problem - i.e. our target variable is a binary attribute (Is the user making the click fraudlent or not?) and our goal is to classify users into "fraudlent" or "not fraudlent" as well as possible # * Unlike metrics such as [LogLoss](http://www.exegetic.biz/blog/2015/12/making-sense-logarithmic-loss/), the AUC score only depends on **how well you well you can separate the two classes**. In practice, this means that only the order of your predictions matter, # * As a result of this, any rescaling done to your model's output probabilities will have no effect on your score. In some other competitions, adding a constant or multiplier to your predictions to rescale it to the distribution can help but that doesn't apply here. # # If you want a more intuitive explanation of how AUC works, I recommend [this post](https://stats.stackexchange.com/questions/132777/what-does-auc-stand-for-and-what-is-it). # Let's dive right in by looking at the data we're given: import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import mlcrate as mlc import os import gc import matplotlib.pyplot as plt import seaborn as sns pal = sns.color_palette() print("# File sizes") for f in os.listdir("../input"): if "zip" not in f: print( f.ljust(30) + str(round(os.path.getsize("../input/" + f) / 1000000, 2)) + "MB" ) # Wow, that is some really big data. Unfortunately we don't have enough kernel memory to load the full dataset into memory; however we can get a glimpse at some of the statistics: import subprocess print("# Line count:") for file in ["train.csv", "test.csv", "train_sample.csv"]: lines = subprocess.run( ["wc", "-l", "../input/{}".format(file)], stdout=subprocess.PIPE ).stdout.decode("utf-8") print(lines, end="", flush=True) # That makes **185 million rows** in the training set and ** 19 million** in the test set. Handily the organisers have provided a `train_sample.csv` which contains 100K rows in case you don't want to download the full data # For this analysis, I'm going to use the first 1M rows of the training and test datasets. # ## Data overview df_train = pd.read_csv("../input/train.csv", nrows=1000000) df_test = pd.read_csv("../input/test.csv", nrows=1000000) print("Training set:") df_train.head() print("Test set:") df_test.head() # ### Looking at the columns # According to the data page, our data contains: # * `ip`: ip address of click # * `app`: app id for marketing # * `device`: device type id of user mobile phone (e.g., iphone 6 plus, iphone 7, huawei mate 7, etc.) # * `os`: os version id of user mobile phone # * `channel`: channel id of mobile ad publisher # * `click_time`: timestamp of click (UTC) # * `attributed_time`: if user download the app for after clicking an ad, this is the time of the app download # * `is_attributed`: the target that is to be predicted, indicating the app was downloaded # **A few things of note:** # * If you look at the data samples above, you'll notice that all these variables are encoded - meaning we don't know what the actual value corresponds to - each value has instead been assigned an ID which we're given. This has likely been done because data such as IP addresses are sensitive, although it does unfortunately reduce the amount of feature engineering we can do on these. # * The `attributed_time` variable is only available in the training set - it's not immediately useful for classification but it could be used for some interesting analysis (for example, one could fill in the variable in the test set by building a model to predict it). # For each of our encoded values, let's look at the number of unique values: plt.figure(figsize=(15, 8)) cols = ["ip", "app", "device", "os", "channel"] uniques = [len(df_train[col].unique()) for col in cols] sns.set(font_scale=1.2) ax = sns.barplot(cols, uniques, palette=pal, log=True) ax.set( xlabel="Feature", ylabel="log(unique count)", title="Number of unique values per feature", ) for p, uniq in zip(ax.patches, uniques): height = p.get_height() ax.text(p.get_x() + p.get_width() / 2.0, height + 10, uniq, ha="center") # for col, uniq in zip(cols, uniques): # ax.text(col, uniq, uniq, color='black', ha="center") # ## Encoded variables statistics # Although the actual values of these variables aren't helpful for us, it can still be useful to know what their distributions are. Note these statistics are computed on 1M samples, and so will be higher for the full dataset. for col, uniq in zip(cols, uniques): counts = df_train[col].value_counts() sorted_counts = np.sort(counts.values) fig = plt.figure() ax = fig.add_subplot(1, 1, 1) (line,) = ax.plot(sorted_counts, color="red") ax.set_yscale("log") plt.title("Distribution of value counts for {}".format(col)) plt.ylabel("log(Occurence count)") plt.xlabel("Index") plt.show() fig = plt.figure() ax = fig.add_subplot(1, 1, 1) plt.hist(sorted_counts, bins=50) ax.set_yscale("log", nonposy="clip") plt.title("Histogram of value counts for {}".format(col)) plt.ylabel("Number of IDs") plt.xlabel("Occurences of value for ID") plt.show() max_count = np.max(counts) min_count = np.min(counts) gt = [10, 100, 1000] prop_gt = [] for value in gt: prop_gt.append(round((counts > value).mean() * 100, 2)) print( "Variable '{}': | Unique values: {} | Count of most common: {} | Count of least common: {} | count>10: {}% | count>100: {}% | count>1000: {}%".format( col, uniq, max_count, min_count, *prop_gt ) ) # ## What we're trying to predict plt.figure(figsize=(8, 8)) sns.set(font_scale=1.2) mean = (df_train.is_attributed.values == 1).mean() ax = sns.barplot(["Fraudulent (1)", "Not Fradulent (0)"], [mean, 1 - mean], palette=pal) ax.set(xlabel="Target Value", ylabel="Probability", title="Target value distribution") for p, uniq in zip(ax.patches, [mean, 1 - mean]): height = p.get_height() ax.text( p.get_x() + p.get_width() / 2.0, height + 0.01, "{}%".format(round(uniq * 100, 2)), ha="center", )
# ## Θεωρητικό Μέρος # α) Σύμφωνα με το paper, η διαδικασία παραγωγής της Γκαουσιανής πυραμίδας ισοδυναμεί με την συνέλιξη της αρχικής εικονάς με ένα σετ ισοδύναμων συναρτήσεων βαρών h. Η συνάρτηση αυτή h μοιάζει όλο και περισσότερο με την συνάρτηση της Γκαουσιανής κατανομής όσο το α γίνεται μικρότερο της μονάδας αλλά καθώς η παράμετρος α προσεγγίζει την μονάδα, το σχήμα της συνάρτησης βαρών h παίρνει πιο τριγωνικές μορφές. Επιπλέον η παράμετρος α καθορίζει το κατά πόσο θα μειωθούν η διακύμανση και η εντροπία των ιστογραμμάτων των εικόνων του κάθε επιπέδου της πυραμίδας. # b) Η εντροπία είναι ο ελάχιστος αριθμός από bits ανά pixel, που χρειαζόμαστε για να κωδικοποιήσουμε μία εικόνα. Επειδή χρησιμοποιούμε 8 bits για την αναπαράσταση του κάθε pixel σε μία grayscale εικόνα, άρα έχουμε 2^8=256 δυνατά αποτελέσματα, η μέγιστη εντροπία θα είναι: # $ -\sum \limits _{n=0}^ {255}P(n)\log(P(n)) = -\sum \limits _{n=0}^{255}2^{(-8)}\log(2^{(-8)}) = -\log(2^{(-8)}) = 8 $ # c) # d) # ## Εργαστηριακό Μέρος # ### Α. Υλοποίηση Αλγορίθμου import numpy as np def GKernel(a=0.0): w_n = np.array( [(0.25 - a / 2), 0.25, a, 0.25, (0.25 - a / 2)] ) # initializing row vector w(n) with given constraints w_m = w_n.reshape((5, 1)) # initializing column vector w(m) w = np.outer(w_m, w_n) # getting the 5x5 kernel return w def GReduce(I, h): window = 5 offset = window // 2 row, col = I.shape if row % 2 == 0: height = row - offset else: height = row - offset - 1 if col % 2 == 0: width = row - offset else: width = row - offset - 1 nextLevel = np.zeros((width // 2 - 1, height // 2 - 1)) for i in range(2, width): for j in range(2, height): if j % 2 == 0 and i % 2 == 0: patch = I[i - offset : i + offset + 1, j - offset : j + offset + 1] psum = np.dot(patch, h).sum() nextLevel[(i // 2) - 1, (j // 2) - 1] = psum return nextLevel import matplotlib.pyplot as plt from skimage import io from skimage.transform import resize from skimage import color img = io.imread("/kaggle/input/lenapng/lena.png") gray_img = color.rgb2gray(img) plt.imshow(gray_img, cmap=plt.get_cmap("gray")) plt.show() print(gray_img.shape) I_out = GReduce(img, GKernel(0.5)) plt.imshow(I_out, cmap=plt.get_cmap("gray")) plt.show()
# # Investigate SMOTE for a simple classifier for Fraud Detection # ### This kernel is higly inspired from [Khyati Mahendru post on Medium](https://medium.com/analytics-vidhya/balance-your-data-using-smote-98e4d79fcddb) # **Fraud Detection** is a dataset higly imbalanced as the vast majority of samples refer to non-fraud transactions. # # SMOTE # **S**ynthetic **M**inority **O**versampling **TE**chnique # >This technique generates synthetic data for the minority class. # SMOTE proceeds by joining the points of the minority class with line segments and then places artificial points on these lines. # # The SMOTE algorithm works in 4 simple steps: # 1. Choose a minority class input vector # 2. Find its k nearest neighbors (k_neighbors is specified as an argument in the SMOTE() function) # 3. Choose one of these neighbors and place a synthetic point anywhere on the line joining the point under consideration and its chosen neighbor # 4. Repeat the steps until data is balanced # SMOTE is implemented in Python using the [imblearn](https://imbalanced-learn.readthedocs.io/en/stable/install.html) library # (to install use: `pip install -U imbalanced-learn`). # Additional resources on SMOTE and related tasks: # [SMOTE oversampling](https://machinelearningmastery.com/smote-oversampling-for-imbalanced-classification/) # [SMOTE docs & examples](https://imbalanced-learn.readthedocs.io/en/stable/auto_examples/index.html) # [Tips for advanced feature engineering](https://towardsdatascience.com/4-tips-for-advanced-feature-engineering-and-preprocessing-ec11575c09ea) # # import required libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import StandardScaler # import logistic regression model and accuracy_score metric from sklearn.linear_model import LogisticRegression from sklearn.metrics import ( accuracy_score, balanced_accuracy_score, f1_score, cohen_kappa_score, ) from imblearn.over_sampling import SMOTE, SVMSMOTE # Helper functions to compute and print metrics for classifier def confusion_mat(y_true, y_pred, label="Confusion Matrix - Training Dataset"): print(label) cm = pd.crosstab( y_true, y_pred, rownames=["True"], colnames=["Predicted"], margins=True ) print( pd.crosstab( y_true, y_pred, rownames=["True"], colnames=["Predicted"], margins=True ) ) return cm def metrics_clf(y_pred, y_true, print_metrics=True): acc = accuracy_score(y_true, y_pred) bal_acc = balanced_accuracy_score(y_true, y_pred) f1 = f1_score(y_true, y_pred) kappa = cohen_kappa_score(y_true, y_pred) if print_metrics: print(f"Accuracy score = {acc:.3f}\n") print(f"Balanced Accuracy score = {bal_acc:.3f}\n") print(f"F1 Accuracy score = {f1:.3f}\n") print(f"Cohen Kappa score = {kappa:.3f}\n") return (acc, bal_acc, f1, kappa) # # Load data # Show full output in cell from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = "all" # Load data data = pd.read_csv("../input/creditcardfraud/creditcard.csv") # Show five sampled records data.sample(5) # Show proportion of Classes # 1 means Fraud, 0 Normal _ = data["Class"].value_counts().plot.bar() data["Class"].value_counts() print("Proportion of the classes in the data:\n") print(data["Class"].value_counts() / len(data)) # Remove Time from data data = data.drop(["Time"], axis=1) # create X and y array for model split X = np.array(data[data.columns.difference(["Class"])]) y = np.array(data["Class"]).reshape(-1, 1) X y # ## Scale data # standardize the data scaler = StandardScaler() scaler.fit(X) X = scaler.transform(X) # > Split data into Training and Test using stratify = Class return arrays with the same proportion of classes # although these are highly imbalanced (0.998 for "0" class and 0.002 for "1" class)!! # split into training and testing datasets using stratify, i.e. same proportion class labels (0/1) in training and test from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.33, random_state=2, shuffle=True, stratify=y ) print("Proportion of the classes in training data:\n") unique, counts = np.unique(y_train, return_counts=True) print(f'"{unique[0]}": {counts[0]/len(y_train):.3f}') print(f'"{unique[1]}": {counts[1]/len(y_train):.3f}') print("Proportion of the classes in test data:\n") unique, counts = np.unique(y_test, return_counts=True) print(f'"{unique[0]}": {counts[0]/len(y_test):.3f}') print(f'"{unique[1]}": {counts[1]/len(y_test):.3f}') # ## Logistic regression model # Fit a simple Logistic regression model model_LR = LogisticRegression(solver="lbfgs") # ## Model without SMOTE # fit the model model_LR.fit(X_train, y_train.ravel()) # prediction for training dataset train_pred = model_LR.predict(X_train) # prediction for testing dataset test_pred = model_LR.predict(X_test) # ## Metrics on Training (acc_train, b_acc_train, f1_train, k_train) = metrics_clf(y_train, train_pred) cm_train = confusion_mat( y_train.ravel(), train_pred, "Confusion Matrix - Train Dataset (NO SMOTE)" ) # ## Metrics on Test (acc_test_sm, b_acc_test_sm, f1_test_sm, k_test_sm) = metrics_clf(y_test, test_pred) cm_test = confusion_mat( y_test.ravel(), test_pred, "Confusion Matrix - Test Dataset (NO SMOTE)" ) # # Metrics analysis # This simple classifier show very high accuracy but this is not due to correct classification. # The model has predicted the majority class for almost all the examples (see confusion matrix),and being the majority class ("0" i.e. not fraud transaction) about 99.8% of total samples this leads to such high accuracy scores. # More significative metrics for imbalanced dataset are: # 1. F1 score # 2. Cohen Kappa # 3. Balanced accuracy # For a detailed article/discussion to this metrics refer to [Which Evaluation Metric Should You Choose](https://neptune.ai/blog/f1-score-accuracy-roc-auc-pr-auc) # ## Model with SMOTE (Synthetic Minority Oversampling Technique) # [SMOTE parameters](https://imbalanced-learn.readthedocs.io/en/stable/generated/imblearn.over_sampling.SMOTE.html#imblearn.over_sampling.SMOTE) # sm = SMOTE(random_state = 42, n_jobs=-1) sm = SVMSMOTE(random_state=42, k_neighbors=20, n_jobs=-1) # generate balanced training data # test data is left untouched X_train_new, y_train_new = sm.fit_sample(X_train, y_train.ravel()) # observe that data has been balanced ax = ( pd.Series(y_train_new) .value_counts() .plot.bar(title="Class distribution", y="Count") ) _ = ax.set_ylabel("Count") # fit the model on balanced training data _ = model_LR.fit(X_train_new, y_train_new) # prediction for Training data train_pred_sm = model_LR.predict(X_train_new) # prediction for Testing data test_pred_sm = model_LR.predict( X_test, ) # ## Metrics on Training (SMOTE) # > **NOTE how Accuracy is now almost equal to balanced accuracy F1 and Cohen Kappa improved** (acc_test_sm, b_acc_test_sm, f1_test_sm, k_test_sm) = metrics_clf( y_train_new, train_pred_sm ) cm_test = confusion_mat( y_train_new.ravel(), train_pred_sm, "Confusion Matrix - Train Dataset (SMOTE)" ) # * ## Metrics on Test (SMOTE) (acc_test_sm, b_acc_test_sm, f1_test_sm, k_test_sm) = metrics_clf(y_test, test_pred_sm) f1_score(y_true=y_test, y_pred=test_pred_sm) cm_test_sm = confusion_mat( y_test.ravel(), test_pred_sm, "Confusion Matrix - Test Dataset" )
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import ( Input, Conv2D, BatchNormalization, Flatten, Dense, LeakyReLU, Activation, ) from tensorflow.keras.optimizers import Adam import os for dirname, _, filenames in os.walk("../input/"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. df_train = pd.read_csv("/kaggle/input/digit-recognizer/train.csv") df_test = pd.read_csv("/kaggle/input/digit-recognizer/test.csv") df_submission = pd.read_csv("/kaggle/input/digit-recognizer/sample_submission.csv") df_train.head(5) df_test.head() df_submission.head() plt.imshow(df_train.iloc[3].values[1:].reshape(28, 28), cmap="gray") model = Sequential( [ Input(shape=(28, 28, 1)), Conv2D(filters=32, kernel_size=(3, 3), strides=(2, 2), padding="same"), BatchNormalization(), Activation("relu"), Conv2D(filters=32, kernel_size=(3, 3), padding="same"), BatchNormalization(), Activation("relu"), Conv2D(filters=64, kernel_size=(3, 3), strides=(2, 2), padding="same"), BatchNormalization(), Activation("relu"), Conv2D(filters=64, kernel_size=(3, 3), strides=(2, 2), padding="same"), BatchNormalization(), Activation("relu"), Flatten(), Dense(units=10), Activation("softmax"), ] ) model.compile(loss="categorical_crossentropy", optimizer=Adam(), metrics=["accuracy"]) model.summary() X_train = df_train.iloc[:, 1:].values.reshape(-1, 28, 28, 1) y_train = df_train.iloc[:, 0].values.reshape(-1, 1) X_test = df_test.values.reshape(-1, 28, 28, 1) print( "Number of samples: {} - after reshape: {}".format(len(df_train), X_train.shape[0]) ) print(X_train[0].min(), X_train[0].max()) X_train = X_train / 255.0 X_test = X_test / 255.0 from sklearn.model_selection import train_test_split from tensorflow.keras.utils import to_categorical y_train = to_categorical(y_train, num_classes=10) X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.25) model.fit( X_train, y_train, validation_data=(X_val, y_val), batch_size=32, epochs=25, verbose=1, ) out_test = model.predict_classes(X_test) df_submission.head() df_submiss = np.hstack( (np.arange(1, out_test.shape[0] + 1, 1).reshape(-1, 1), out_test.reshape(-1, 1)) ) df_submiss data = pd.DataFrame(data=df_submiss, columns=["ImageId", "Label"]) data data.to_csv("submission.csv", index=False)
# # G20C0846 - Machine Learning Assignment 4 Task 4 import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt from tensorflow.keras.datasets import fashion_mnist class_names = [ "T-shirt/top", "Trouser", "Pullover", "Dress", "Coat", "Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot", ] (X_train, y_train), (X_test, y_test) = fashion_mnist.load_data() print(f"X_train's shape is {X_train.shape}") print(f"y_train's shape is {y_train.shape}") print(f"y_train has {np.max(y_train) + 1} classes") # We want to add channels to our X data, so that they # are compatible with the Convolutional Layers # The idea here is that we are working in greyscale # So the image has 1 channel # The image data is of shape (N, im_height, im_width, channels) X_train = X_train.reshape(X_train.shape + (1,)) X_test = X_test.reshape(X_test.shape + (1,)) print(X_train.shape) print(X_test.shape) print( f"The maximum value of X_train is {np.max(X_train)}. We don't want this, because it'll make training longer" ) # normalize each value for each pixel for the entire vector for each input X_train = X_train / 255 X_test = X_test / 255 print( f"Now the maximum value of X_train is {np.max(X_train)}. We have now scaled our training data." ) # Let's take a look at some of these images fig, ax = plt.subplots(2, 5) for i in range(2): for j in range(5): ind = (i * 5) + j ds_ex = np.where(y_train == ind)[0][0] ax[i, j].imshow(X_train[ds_ex, ...]) ax[i, j].set_title(class_names[ind]) plt.show() def to_one_hot(y): """ Input: y of shape (n_samples) Output: y of shape (n_samples, n_classes) """ onehot = np.zeros((y.shape[0], len(class_names))) onehot[np.arange(y.shape[0]), y] = 1 # for i in range(len(y)): # onehot[i, y[i]] = 1 return onehot y_train = to_one_hot(y_train) y_test = to_one_hot(y_test) # ## Creating a Convolutional Neural Network (CNN) # Over to you. Create a CNN to classify this from keras.layers.core import ( Dense, Dropout, Activation, ) # Types of layers to be used in our cnnmodel # import CNN tools from keras.preprocessing.image import ImageDataGenerator from keras.layers import Conv2D, MaxPooling2D, Flatten, BatchNormalization # create instance from keras.models import Sequential cnnmodel = Sequential() # Convolution Layer 1 (28 by 28 pixel images grayscale hence input shape) cnnmodel.add( Conv2D(32, (3, 3), input_shape=(28, 28, 1)) ) # 32 different 3x3 kernels -- so 32 feature maps (different characteristics of an image) cnnmodel.add( BatchNormalization(axis=-1) ) # normalize each feature map before activation (scales and centres) cnnmodel.add(Activation("relu")) # relu activation cnnmodel.add( Dropout(0.2) ) # 20% dropout of randomly selected nodes (Helped prevent overfitting and increased accuracy) # Convolution Layer 2 cnnmodel.add( Conv2D(32, (3, 3)) ) # 32 different 3x3 kernels -- so 32 feature maps (different characteristics of an image) cnnmodel.add( BatchNormalization(axis=-1) ) # normalize each feature map before activation (scales and centres) cnnmodel.add(Activation("relu")) # relu activation cnnmodel.add( MaxPooling2D(pool_size=(2, 2)) ) # Pool the max values over a 2x2 kernel (non-highlighted elements are discarded per feature map, while keeping features of interest) cnnmodel.add( Dropout(0.2) ) # 20% dropout of randomly selected nodes (Helped prevent overfitting and increased accuracy) # Convolution Layer 3 cnnmodel.add( Conv2D(64, (3, 3)) ) # 64 different 3x3 kernels -- so 64 feature maps (different characteristics of an image) cnnmodel.add( BatchNormalization(axis=-1) ) # normalize each feature map before activation (scales and centres) cnnmodel.add(Activation("relu")) # relu activation cnnmodel.add( Dropout(0.2) ) # 20% dropout of randomly selected nodes (Helped prevent overfitting and increased accuracy) # Convolution Layer 4 cnnmodel.add( Conv2D(64, (3, 3)) ) # 64 different 3x3 kernels -- so 64 feature maps (different characteristics of an image) cnnmodel.add( BatchNormalization(axis=-1) ) # normalize each feature map before activation (scales and centres) cnnmodel.add(Activation("relu")) # relu activation cnnmodel.add( MaxPooling2D(pool_size=(2, 2)) ) # Pool the max values over a 2x2 kernel (non-highlighted elements are discarded per feature map, while keeping features of interest) cnnmodel.add(Flatten()) # Flatten final 4x4x64 output matrix into a 1024-length vector cnnmodel.add( Dropout(0.2) ) # 20% dropout of randomly selected nodes (Helped prevent overfitting and increased accuracy) # Fully Connected Layer 5 cnnmodel.add(Dense(512)) # 512 FCN nodes cnnmodel.add(BatchNormalization()) # normalization cnnmodel.add(Activation("relu")) # relu activation cnnmodel.add( Dropout(0.2) ) # 20% dropout of randomly selected nodes (Helped prevent overfitting and increased accuracy) # Fully Connected Layer 6 cnnmodel.add(Dense(10)) # final 10 FCN nodes (10 classes of target) cnnmodel.add(Activation("softmax")) # softmax activation cnnmodel.summary() # summary of the cnnmodel # ## Compile and train the model # compile the cnnmodel (categorical and not binary crossentropy as we have multiple classes/categories) cnnmodel.compile( loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"] ) cnnmodel.fit( X_train, y_train, batch_size=32, epochs=10, verbose=1 ) # out of (32,64,128,256,512) they were extremely close but 32 was the batch size that seemed to give the best results # ## Evaluate the model's predictions # predict with the cnnmodel score = cnnmodel.evaluate(X_test, y_test) print("Loss:", score[0]) print("Test accuracy:", score[1]) # The GPU really helped speed things up, super cool
print( " This group project aims to show an analytical way in which various variables from Leauge of Legends are useful in guiding a player to get good\n", "As such, we will be gathering data from a dataset on kaggle that contains over 50,000 ranked matches.\n", "These matches all have various variables that we can use to glean an understanding into how players can and do get better at playing some popular games", ) import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import xgboost as xgb from sklearn import preprocessing from sklearn.model_selection import train_test_split, RandomizedSearchCV from sklearn.metrics import ( accuracy_score, precision_score, recall_score, f1_score, mean_absolute_error, mean_squared_error, r2_score, ) df = pd.read_csv("/kaggle/input/league-of-legends/games.csv") df.info() plt.figure(figsize=(60, 60)) sns.heatmap(df.corr(method="pearson"), annot=True) print("\nPlotting a heatmap of our true data to see what comes to mind") for i in df.columns: sns.displot(df, x=i, kde=True)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. # Kaliforniya Kooperatif Okyanus Balıkçılık Araştırmaları (CalCOFI), Kaliforniya Balık ve Yaban Hayatı Bölümü, NOAA Balıkçılık Servisi ve Scripps Oşinografi Enstitüsü'nün eşsiz bir ortaklığıdır. Organizasyon 1949'da Kaliforniya'daki sardalya nüfusunun çöküşünün ekolojik yönlerini incelemek için kuruldu. Bugün odak noktamız Kaliforniya sahillerindeki deniz çevresi, yaşam kaynaklarının yönetimi ve El Nino ve iklim değişikliği göstergelerinin izlenmesine yönelmiştir. CalCOFI, güney ve orta Kaliforniya'da üç ayda bir geziler düzenleyerek istasyon ve devam etmekte olan bir dizi hidrografik ve biyolojik veri toplar. 500 m'ye kadar derinliklerde toplanan veriler şunları içerir: sıcaklık, tuzluluk, oksijen, fosfat, silikat, nitrat ve nitrit, klorofil, transmissometre, PAR, C14 birincil üretkenliği, fitoplankton biyolojik çeşitliliği, zooplankton biyokütlesi ve zooplankton biyolojik çeşitliliği. # Su tuzluluğu ile su sıcaklığı arasında bir ilişki var mı? Tuzluluk derecesine göre su sıcaklığını tahmin edebilir misiniz? # bottle datasini okuyoruz data = pd.read_csv("/kaggle/input/calcofi/bottle.csv") data = pd.DataFrame(data) data.head() # tuzluluk ve sicaklik iliskisi inceleneceginden bu iki veriyi ayri bir degiskene atiyoruz salt_degree = data[["Salnty", "T_degC"]] salt_degree.head() # iki ozellik arasindaki bagintiyi gozlemlemek icin scatter grafige dokuyoruz from matplotlib import pyplot as plt import seaborn as sns plt.figure(figsize=(13, 9)) plt.scatter(salt_degree["Salnty"], salt_degree["T_degC"], s=65) plt.xlabel("Slnty", fontsize=25) plt.ylabel("Temp", fontsize=25) plt.title("slnty-Temp", fontsize=25) plt.show() # datayi incelemeyi hizlandirmak ve daha anlamli halde gorebilmek icin 750 veriyi aliyoruz new_salt_degree = salt_degree[:][:750] len(new_salt_degree) # datamiz icindeki Nan degerleri tespit edip temizliyoruz new_salt_degree["Salnty"].isna().value_counts() new_salt_degree["T_degC"].isna().value_counts() new_salt_degree = new_salt_degree.dropna(axis=0, how="any") # datamiz icindeki tekrar eden degerleri siliyoruz new_salt_degree = new_salt_degree.drop_duplicates(subset=["Salnty", "T_degC"]) len(new_salt_degree) # 717 veriyi tekrar scatter ile gozlemliyoruz plt.figure(figsize=(12, 12)) plt.scatter(new_salt_degree["Salnty"], new_salt_degree["T_degC"], s=65) plt.xlabel("Slnty", fontsize=25) plt.ylabel("Temp", fontsize=25) plt.title("Slnty-Temp", fontsize=25) plt.show() # ######################################### # 1. Lineer regrasyon modeli uygulamasi # ############################################# from sklearn.linear_model import LinearRegression # Tmp ve Slt adli iki degiskende kolon degerlerini tutuyoruz Slt = new_salt_degree.iloc[:, 0:1].values Tmp = new_salt_degree.iloc[:, -1].values # regresyon modelimizde girilen tuz degerine gore sicaklik degeri aliyoruz lin_reg = LinearRegression() lin_reg.fit(Slt, Tmp) # scatter grafiginde lineer degisimi gosteriyoruz sns.set(font_scale=2) plt.figure(figsize=(15, 15)) plt.scatter(Slt, Tmp, s=65) plt.plot(Slt, lin_reg.predict(Slt), color="red", linewidth="6") plt.xlabel("Slt", fontsize=25) plt.ylabel("Tmp", fontsize=25) plt.title("salt degerlerine gore temp tahmin gosterimi", fontsize=25) plt.show() # tuz degerine gore tahmini hava sicakligi tahmini yaptiriyoruz degree_lin = lin_reg.predict([[33]]) degree_lin # r_square ile tahminlerimizin dogruluk degerini tespit ediyoruz from sklearn.metrics import mean_squared_error, r2_score Tmp_head_lin = lin_reg.predict(Slt) print("Linear Regression R_Square Score: ", r2_score(Tmp, Tmp_head_lin)) degerlendirme = {} degerlendirme["Linear Regression R_Square Score:"] = r2_score(Tmp, Tmp_head_lin) # ######################################## # 2. Multiple Linear Regression modeli uygulamasi # ############################################ m_lin_reg = LinearRegression() m_lin_reg = m_lin_reg.fit(Slt, Tmp) m_lin_reg.intercept_ # constant b0 m_lin_reg.coef_ # tuz degerine gore tahmini hava sicakligi tahmini yaptiriyoruz degree_m_lin = m_lin_reg.predict([[33]]) degree_m_lin # r_square ile tahminlerimizin dogruluk degerini tespit ediyoruz Tmp_head_m_lin = m_lin_reg.predict(Slt) print("Multiple Linear Regression R_Square Score: ", r2_score(Tmp, Tmp_head_m_lin)) degerlendirme["Multiple Linear Regression R_Square Score:"] = r2_score( Tmp, Tmp_head_m_lin ) # scatter grafiginde m-lineer degisimi gosteriyoruz import operator plt.scatter(Slt, Tmp, s=65) sort_axis = operator.itemgetter(0) sorted_zip = sorted(zip(Slt, Tmp), key=sort_axis) X_test, y_pred = zip(*sorted_zip) plt.plot(Slt, Tmp, color="g") plt.show() # ################################# # 3. Polynomial Regression modeli uygulamasi # ################################## from sklearn.preprocessing import PolynomialFeatures pol = PolynomialFeatures(degree=3) Slt_pol = pol.fit_transform(Slt) pol.fit(Slt_pol, Tmp) lin_reg2 = LinearRegression() lin_reg2.fit(Slt_pol, Tmp) # tuz degerine gore hava sicakligi tahmini yaptiriyoruz Predict_Tmp_pol = lin_reg2.predict(pol.fit_transform([[33]])) Predict_Tmp_pol ##r_square ile tahminlerimizin dogruluk degerini tespit ediyoruz Tmp_head_pol = lin_reg2.predict(Slt_pol) print("Polynomial Regression R_Square Score: ", r2_score(Tmp, Tmp_head_pol)) degerlendirme["Polynomial Regression R_Square Score:"] = r2_score(Tmp, Tmp_head_pol) sns.set(font_scale=1.6) plt.figure(figsize=(13, 9)) x_grid = np.arange(min(Slt), max(Slt), 0.1) x_grid = x_grid.reshape(-1, 1) plt.scatter(Slt, Tmp, s=65) plt.plot( x_grid, lin_reg2.predict(pol.fit_transform(x_grid)), color="red", linewidth="6" ) plt.xlabel("Slt", fontsize=25) plt.ylabel("Temp", fontsize=25) plt.title("salt degerlerine gore temp tahmin gosterimi", fontsize=25) plt.show() # ######################## # 4.Decision Tree modeli uygulamasi # ####################### from sklearn.tree import DecisionTreeRegressor Slt_ = new_salt_degree.iloc[:, 0].values.reshape(-1, 1) Tmp_ = new_salt_degree.iloc[:, 1].values.reshape(-1, 1) dt_reg = DecisionTreeRegressor() dt_reg.fit(Slt_, Tmp_) dt_reg.predict([[33]]) Tmp_head = dt_reg.predict(Slt_) plt.scatter(Slt_, Tmp_, color="red") plt.plot(Slt_, Tmp_head, color="green") plt.xlabel("Slnty") plt.ylabel("Tmp") plt.title("Decision Tree Model") plt.show() ##r_square ile tahminlerimizin dogruluk degerini tespit ediyoruz Tmp_head_dt = dt_reg.predict(Slt_) print("Decision Tree Regression R_Square Score: ", r2_score(Tmp, Tmp_head_dt)) degerlendirme["Decision Tree Regression R_Square Score:"] = r2_score(Tmp, Tmp_head_dt) # ############################################ # 5-Random Forest modeli uygulamasi # ######################################## from sklearn.ensemble import RandomForestRegressor rf_reg = RandomForestRegressor(n_estimators=100, random_state=42) rf_reg.fit(Slt_, Tmp_) rf_reg.predict([[33]]) Tmp_head = rf_reg.predict(Slt_) plt.scatter(Slt_, Tmp_, color="red") plt.plot(Slt_, Tmp_head, color="green") plt.xlabel("Slnty") plt.ylabel("Tmp") plt.title("Random Forest Model") plt.show() ##r_square ile tahminlerimizin dogruluk degerini tespit ediyoruz Tmp_head_rf = rf_reg.predict(Slt_) print("Random Forest Regression R_Square Score: ", r2_score(Tmp, Tmp_head_rf)) degerlendirme["Random Forest Regression R_Square Score:"] = r2_score(Tmp, Tmp_head_rf) # ################################## degerlendirme
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import torch import torchvision import torchvision.transforms as transforms import torch.nn as nn import torch.optim as optim import shutil from PIL import Image import matplotlib.pyplot as plt import zipfile # 데이터셋 압축 해제 with zipfile.ZipFile( "/kaggle/input/oxford-102-flower-pytorch/flower_data.zip", "r" ) as zip_ref: zip_ref.extractall("/kaggle/working/") # 이미지 전처리 transform = transforms.Compose( [ transforms.Resize((224, 224)), # 이미지 사이즈 조정 transforms.RandomHorizontalFlip(), # 좌우 반전 transforms.RandomRotation(10), # 무작위 회전 transforms.ToTensor(), # 텐서 형태로 변환 transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ] ) # 이미지 정규화 # 데이터셋 불러오기 trainset = torchvision.datasets.ImageFolder( root="flower_data/train", transform=transform ) trainloader = torch.utils.data.DataLoader( trainset, batch_size=128, shuffle=True, num_workers=2 ) testset = torchvision.datasets.ImageFolder( root="flower_data/valid", transform=transform ) testloader = torch.utils.data.DataLoader( testset, batch_size=128, shuffle=False, num_workers=2 ) # train 폴더 경로 train_folder = "flower_data/train/4" # train 폴더 내 첫 번째 이미지 경로 img_path = os.path.join(train_folder, os.listdir(train_folder)[1]) # 이미지 로드 img = Image.open(img_path) # 이미지 출력 plt.imshow(img) plt.show() # CNN 모델 정의 class CNNModel(nn.Module): def __init__(self): super(CNNModel, self).__init__() self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1) self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1) self.pool = nn.MaxPool2d(2, 2) self.fc1 = nn.Linear(128 * 28 * 28, 512) self.fc2 = nn.Linear(512, 102) self.dropout = nn.Dropout(0.2) self.relu = nn.ReLU() def forward(self, x): x = self.relu(self.conv1(x)) x = self.pool(self.relu(self.conv2(x))) x = self.pool(self.relu(self.conv3(x))) x = x.view(-1, 128 * 28 * 28) x = self.relu(self.fc1(x)) x = self.dropout(x) x = self.fc2(x) return x # 모델 선언 및 최적화 기준 정의 model = CNNModel() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9) # 모델 학습 num_epochs = 10 for epoch in range(num_epochs): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data optimizer.zero_grad() outputs = model(inputs) # 모델 출력(batch_size=512)에서 batch_size를 재조정(batch_size=128) outputs = outputs.view(inputs.shape[0], -1) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() print("[%d, %5d] loss: %.3f" % (epoch + 1, i + 1, running_loss / 100)) running_loss = 0.0 print("Finished Training") # 모델 검증 correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data outputs = model(images) # 모델 출력(batch_size=512)에서 batch_size를 재조정(batch_size=128) outputs = outputs.view(images.shape[0], -1) _, predicted = torch.max(outputs.data, 1) # predicted 텐서를 labels와 크기를 맞춰줌 predicted = predicted.view(-1) total += labels.size(0) correct += (predicted == labels).sum().item() print( "Accuracy of the network on the %d test images: %d %%" % (total, 100 * correct / total) )
# # 2. Model Train # ## Model Xception # ### Import libraries import os import timeit import matplotlib.pyplot as plt import numpy as np import seaborn as sns import tensorflow as tf from sklearn.metrics import ( accuracy_score, balanced_accuracy_score, classification_report, confusion_matrix, ) from sklearn.utils.class_weight import compute_class_weight np.random.seed(12049) def get_plot_loss_acc(model, model_name): fig = plt.figure() plt.subplot(2, 1, 1) plt.plot(model.history.history["loss"]) plt.plot(model.history.history["val_loss"]) plt.title(f"{model_name} \n\n model loss") plt.ylabel("loss") plt.xlabel("epoch") plt.legend(["train", "valid"], loc="upper right") plt.subplot(2, 1, 2) plt.plot(model.history.history["accuracy"]) plt.plot(model.history.history["val_accuracy"]) plt.title("model accuracy") plt.ylabel("accuracy") plt.xlabel("epoch") plt.legend(["train", "valid"], loc="lower right") plt.tight_layout() def compute_confusion_matrix(ytrue, ypred, class_names, model_name): cm = confusion_matrix( y_true=ytrue.labels, y_pred=np.argmax(ypred, axis=1), ) cmn = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis] plt.subplots(figsize=(6, 5)) sns.heatmap( cmn, annot=True, fmt=".2f", cmap="Purples", xticklabels=class_names, yticklabels=class_names, ) plt.title(f"Confusion Matrix - {model_name}") plt.ylabel("Actual") plt.xlabel("Predicted") plt.show(block=False) def get_evaluate(data, name, model): score_model = model.evaluate(data, verbose=1) print(f"{name} loss: {score_model[0]:.2f}") print(f"{name} accuracy: {score_model[1]:.2f}") def get_predict(data, model): predict_model = model.predict(data) return predict_model def get_metrics(y_test, y_pred, model_name): acc = accuracy_score(y_test, y_pred) bal_acc = balanced_accuracy_score(y_test, y_pred) print(f"Accuracy Score - {model_name}: {acc:.2f}") print(f"Balanced Accuracy Score - {model_name}: {bal_acc:.2f}") print("\n") print(classification_report(y_test, y_pred)) # ### Load data base_dir = "/kaggle/input/knee-osteoarthritis-dataset-with-severity/" train_path = os.path.join(base_dir, "train") valid_path = os.path.join(base_dir, "val") test_path = os.path.join(base_dir, "test") # ### Definitions model_name = "Xception" class_names = ["Healthy", "Doubtful", "Minimal", "Moderate", "Severe"] target_size = (224, 224) epochs = 100 batch_size = 256 img_shape = (224, 224, 3) # Save model save_model_ft = os.path.join("/kaggle/working/", f"model_{model_name}_ft.hdf5") # ### Image data generator aug_datagen = tf.keras.preprocessing.image.ImageDataGenerator( preprocessing_function=tf.keras.applications.xception.preprocess_input, horizontal_flip=True, brightness_range=[0.3, 0.8], width_shift_range=[-50, 0, 50, 30, -30], zoom_range=0.1, fill_mode="nearest", ) noaug_datagen = tf.keras.preprocessing.image.ImageDataGenerator( preprocessing_function=tf.keras.applications.xception.preprocess_input, ) train_generator = aug_datagen.flow_from_directory( train_path, class_mode="categorical", target_size=target_size, shuffle=True ) valid_generator = noaug_datagen.flow_from_directory( valid_path, class_mode="categorical", target_size=target_size, shuffle=False, ) y_train = train_generator.labels y_val = valid_generator.labels # ### Weight data unique, counts = np.unique(y_train, return_counts=True) print("Train: ", dict(zip(unique, counts))) class_weights = compute_class_weight( class_weight="balanced", classes=np.unique(y_train), y=y_train ) train_class_weights = dict(enumerate(class_weights)) print(train_class_weights) # ### Train data classes = np.unique(y_train) # Callbacks early = tf.keras.callbacks.EarlyStopping( monitor="val_loss", min_delta=0.01, patience=8, restore_best_weights=True ) plateau = tf.keras.callbacks.ReduceLROnPlateau( monitor="loss", factor=0.1, min_delta=0.01, min_lr=1e-10, patience=4, mode="auto" ) model = tf.keras.applications.xception.Xception( input_shape=(img_shape), include_top=False, weights="imagenet", ) # ### Fine-tuning for layer in model.layers: layer.trainable = True model_ft = tf.keras.models.Sequential( [ model, tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(5, activation="softmax"), ] ) model_ft.summary() model_ft.compile( optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"] ) start_ft = timeit.default_timer() history = model_ft.fit( train_generator, epochs=epochs, batch_size=batch_size, callbacks=[early, plateau], validation_data=valid_generator, class_weight=train_class_weights, verbose=1, ) stop_ft = timeit.default_timer() execution_time_ft = (stop_ft - start_ft) / 60 print(f"Model {model_name} fine tuning executed in {execution_time_ft:.2f} minutes") model_ft.save(save_model_ft) get_plot_loss_acc(model_ft, f"{model_name} Fine Tuning") get_evaluate(valid_generator, "Valid", model_ft) predict_model_ft = get_predict(valid_generator, model_ft) get_metrics( valid_generator.labels, y_pred=np.argmax(predict_model_ft, axis=1), model_name=model_name, ) compute_confusion_matrix( valid_generator, predict_model_ft, class_names, f"{model_name} Fine Tuning" )
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. import numpy as np import pandas as pd train = pd.read_csv("../input/titanic/train.csv") test = pd.read_csv("../input/titanic/test.csv") gender_submission = pd.read_csv("../input/titanic/gender_submission.csv") train.head(10) test.head(10) gender_submission.head(10) test_shape = test.shape train_shape = train.shape print(test_shape) print(train_shape) test.describe() train.describe()
# # LesionFinder: Bounding Box Regression for Chest CT (Evaluation) # Here, we evaluate the previously trained LesionFinder model for lesion bounding box regression. The training notebook can be found [here](https://www.kaggle.com/code/benjaminahlbrecht/lesionfinder-bounding-box-regression-for-chest-ct). # ## Preamble # ---------------------------------------------------------------------------- # import os import torch from torch.utils.data import DataLoader import lightning.pytorch as pl from lesionfinder_utilities import DeepLesionDataset, ResizeWithBoundingBox, ResnetYolo MODEL_FNAME = "/kaggle/input/lesionfinder-bounding-box-regression-for-chest-ct/models/model_epoch=12_val_loss=0.43.ckpt" DATA_DIR = "/kaggle/input/nih-deeplesion-tensor-slices/tensors" DATA_DIR_TRAIN = os.path.join(DATA_DIR, "train") DATA_DIR_VAL = os.path.join(DATA_DIR, "validation") DATA_DIR_TEST = os.path.join(DATA_DIR, "test") if torch.cuda.is_available(): DEVICE = "cuda" else: DEVICE = "cpu" # Feed data in by mini-batches using gradient accumulation MINIBATCH_SIZE = 12 N_MINIBATCHES = 6 # Height and width to resize images HEIGHT = 500 WIDTH = 500 # Device information for PyTorch Lightning (Align with Hardware) ACCELERATOR = "gpu" N_DEVICES = 1 augmentations = ResizeWithBoundingBox((HEIGHT, WIDTH)) dataset_test = DeepLesionDataset(DATA_DIR_TEST, augmentations=augmentations) dataloader_test = DataLoader(dataset_test, batch_size=MINIBATCH_SIZE) # Retrieve the best model model = ResnetYolo.load_from_checkpoint(MODEL_FNAME) # ## Model Evaluation # Redefine our trainer to contain our evaluation metrics trainer = pl.Trainer( devices=N_DEVICES, accelerator=ACCELERATOR, accumulate_grad_batches=N_MINIBATCHES, ) results = trainer.test(model, dataloaders=dataloader_test)
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import logging import nltk import string import collections from collections import Counter import wordcloud from wordcloud import WordCloud import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) pd.set_option("display.max_colwidth", 200) logging.basicConfig( level=logging.INFO, format="%(asctime)s :: %(name)s :: %(levelname)s :: %(message)s", datefmt="%d-%b-%y %H:%M:%S", ) logger = logging.getLogger(__name__) logger.info("Logger initialised...") train_df = pd.read_csv("/kaggle/input/nlp-getting-started/train.csv") # ## EDA train_df.shape train_df["target"].value_counts() sns.countplot(train_df["target"]) logger.info("% of samples where keyword column is 0") len(train_df[train_df["keyword"].isna()]) * 100 / len(train_df) logger.info("% of samples where location column is 0") len(train_df[train_df["location"].isna()]) * 100 / len(train_df) sns.barplot( train_df["keyword"].value_counts()[:20].values, train_df["keyword"].value_counts()[:20].index, orient="H", ) ## Keyword chart when target is 1 sns.barplot( train_df[train_df["target"] == 1]["keyword"].value_counts()[:20].values, train_df[train_df["target"] == 1]["keyword"].value_counts()[:20].index, orient="H", ) sns.barplot( train_df["location"].value_counts()[:20].values, train_df["location"].value_counts()[:20].index, orient="H", ) ## Location chart when target is 1 sns.barplot( train_df[train_df["target"] == 1]["location"].value_counts()[:20].values, train_df[train_df["target"] == 1]["location"].value_counts()[:20].index, orient="H", ) # ## Data Preprocessing # ### Cleaning text # * Converting Text Lowercase # * Tokenization # * Removing Punctuatons # * Stop Words removal # * Stemmning # * Lemmatization # * POS Tagging # #### 1. Make text lowercase def to_lowercases(x): return x.lower() train_df["text_lower"] = train_df["text"].apply(to_lowercases) train_df.head(1) # #### 2. Tokenization def get_tokens(x): tokens = nltk.word_tokenize(x) return tokens train_df["tokens"] = train_df["text_lower"].apply(get_tokens) train_df.head(1) # #### 3. Removal of punctuations print("Punctuation: ", string.punctuation) def remove_punct(x): text_without_puct = [t for t in x if t not in string.punctuation] return text_without_puct train_df["token_without_punct"] = train_df["tokens"].apply(remove_punct) train_df.head(1) # #### 4. Removal of Stop Words stop_words = nltk.corpus.stopwords.words("english") def remove_stop_words(x): text_without_stopwords = [t for t in x if t not in stop_words] return text_without_stopwords train_df["remove_stop_words"] = train_df["token_without_punct"].apply(remove_stop_words) train_df.head(1) # #### 5. Stemming from nltk.stem import PorterStemmer porter = PorterStemmer() def stemming_text(x): stem = np.vectorize(porter.stem) stemming = stem(x) return stemming train_df["stemming"] = train_df["remove_stop_words"].apply(stemming_text) train_df.head(1) # #### 6. Lemmatization from nltk.stem import WordNetLemmatizer lemma = WordNetLemmatizer() def lemmatization(x): lemmatized = np.vectorize(lemma.lemmatize)(x) return lemmatized train_df["lemmatized"] = train_df["stemming"].apply(lemmatization) train_df.head(1) # #### 7. POS Tagging def get_post(x): pos_tagging = nltk.pos_tag(x) return pos_tagging train_df["pos_tagging"] = train_df["lemmatized"].apply(get_post) train_df.head(1) # ### Text Analysis # #### frequency distribution from nltk import FreqDist fdist = FreqDist() def freq_dist(x): for word in x: fdist[word] += 1 return fdist train_df["lemmatized"].apply(freq_dist)[1] fdist = FreqDist() def freq_dist(x): for word in x: fdist[word] += 1 return fdist most_common = Counter(train_df["lemmatized"].apply(freq_dist)[1]).most_common(50) l = [] for k, v in most_common: l.append(k.replace("'", "")) wordcloud = WordCloud( background_color="white", max_words=200, max_font_size=40, scale=3, random_state=1 ).generate(str(l)) plt.figure(figsize=(10, 10)) plt.imshow(wordcloud) # #### Bigrams and Trigrams fdist = nltk.FreqDist() def bigrams(x): y = list(nltk.bigrams(x)) for word in y: fdist[word] += 1 return fdist bigrams = train_df["lemmatized"].apply(bigrams) Counter(fdist).most_common(20) fdist = nltk.FreqDist() def trigrams(x): y = list(nltk.trigrams(x)) for word in y: fdist[word] += 1 return fdist trigrams = train_df["lemmatized"].apply(trigrams) Counter(fdist).most_common(20)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # ## Import Module import numpy as np import statsmodels.api as sm import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import fetch_openml # for link openml data from patsy.contrasts import Treatment # for dummy encoding import ssl ssl._create_default_https_context = ssl._create_unverified_context pd.set_option("display.max_column", None) # ## Reading Data from openml: 41214; 41215 # You can read data in your environment by following code: # #### Fetch the French Motor Third-Party Liability Claims dataset # def load_mtpl2(n_samples=None): # """Fetch the French Motor Third-Party Liability Claims dataset. # Parameters # ---------- # n_samples: int, default=None # number of samples to select (for faster run time). Full dataset has # 678013 samples. # """ # # freMTPL2freq dataset from https://www.openml.org/d/41214 # df_freq = fetch_openml(data_id=41214, as_frame=True, parser="auto").data # df_freq["IDpol"] = df_freq["IDpol"].astype(int) # df_freq.set_index("IDpol", inplace=True) # # freMTPL2sev dataset from https://www.openml.org/d/41215 # df_sev = fetch_openml(data_id=41215, as_frame=True, parser="auto").data # # sum ClaimAmount over identical IDs # df_sev = df_sev.groupby("IDpol").sum() # df = df_freq.join(df_sev, how="left") # df["ClaimAmount"].fillna(0, inplace=True) # # unquote string fields # for column_name in df.columns[df.dtypes.values == object]: # df[column_name] = df[column_name].str.strip("'") # return df.iloc[:n_samples] # #### loading data # df = load_mtpl2() # #### Note: filter out claims with zero amount, as the severity model # #### requires strictly positive target values. # df.loc[(df["ClaimAmount"] == 0) & (df["ClaimNb"] >= 1), "ClaimNb"] = 0 # #### Correct for unreasonable observations (that might be data error) # #### and a few exceptionally large claim amounts # df["ClaimNb"] = df["ClaimNb"].clip(upper=4) # df["Exposure"] = df["Exposure"].clip(upper=1) # df["ClaimAmount"] = df["ClaimAmount"].clip(upper=200000) # #### Insurances companies are interested in modeling the Pure Premium, that is # #### the expected total claim amount per unit of exposure for each policyholder # #### in their portfolio: # df["PurePremium"] = df["ClaimAmount"] / df["Exposure"] # #### This can be indirectly approximated by a 2-step modeling: the product of the # #### Frequency times the average claim amount per claim: # df["Frequency"] = df["ClaimNb"] / df["Exposure"] # df["AvgClaimAmount"] = df["ClaimAmount"] / np.fmax(df["ClaimNb"], 1) # loading data df = pd.read_csv("/kaggle/input/french-motor-insurance/GLM_example.csv") df.head(5) # ## Feature Encoding # Categorical Variables: Area; VehBrand; VehGas; Region. # Numerical Variables: VehPower; VehAge; DrivAge; BonusMalus. # Weight for PurePremium: Exposure # Dependence: PurePremium Cat_formula = "Area + VehBrand + VehGas + Region" Num_formula = "VehPower + VehAge + DrivAge + BonusMalus" # Categories: Dummy Encoding # Number: Raw from patsy import dmatrix df_encoding = dmatrix(Cat_formula + "+" + Num_formula, df, return_type="dataframe") df = pd.concat([df, df_encoding], axis=1) # concatinate them print(df.shape) df.head(10) # ## Modeling a Purepremium GLMs model by StatsModels Module import statsmodels.formula.api as smf # formula = 'PurePremium ~ ' + '+' + df_encoding glm_pp_model = sm.GLM( df.PurePremium, df_encoding, family=sm.families.Tweedie(sm.families.links.Log(), var_power=1.9), freq_weights=np.asarray(df["Exposure"]), ).fit( scale="X2", tol=1e-4, use_t=True ) # Design Matrix must includes the intercept if you want it # The default scale for Binomial, Poisson and Negative Binomial families is 1. The default for the other families is Pearson’s Chi-Square estimate. # scale can be ‘X2’, ‘dev’, or a float The default value is None, which uses X2 for Gamma, Gaussian, and Inverse Gaussian. X2 is Pearson’s chi-square divided by df_resid. The default is 1 for the Binomial and Poisson families. dev is the deviance divided by df_resid print(glm_pp_model.summary()) # print estimators Statsm_est = pd.DataFrame(glm_pp_model.params, columns=["Statsm_est"]) Statsm_est # return prediction df["Statsm_predictor"] = glm_pp_model.predict(df_encoding) df["Statsm_Epredictor"] = df["Statsm_predictor"] * df["Exposure"] df.head(5) # ## Modeling a Purepremium GLMs model by Sklearn TweedieRegressor # ***Note: the default vertion of sklearn in Kaggle is v1.02, which TweedieRegresor is without argument solver and only can use the optimizer "lbfgs". The ibfgs is suitable for small lines of observations. However, our case has more than 600 thounds policies.*** # In your PC environment, if it has recent sklearn version that surport "newton-cholesky" optimizer,please use the following code for more efficient. # ############################ # %%time # #power = 1.9; alpha = 0.05; weight = 'Exposure'; X = df_encoding; y = df.Purepremium # glm_pure_premium = TweedieRegressor(power=1.9, # alpha=0, # solver="newton-cholesky", # link='log', # tol=1e-8, # verbose=0) # glm_pure_premium.fit( # df_encoding.iloc[:,1:], df["PurePremium"], sample_weight=df["Exposure"] # ) # #Do not include the intercept, because TweedieRegressor will auto add it # ############################ from sklearn.linear_model import TweedieRegressor # power = 1.9; alpha = 0.05; weight = 'Exposure'; X = df_encoding; y = df.Purepremium glm_pure_premium = TweedieRegressor( power=1.9, warm_start=True, alpha=0, # solver="newton-cholesky", link="log", tol=1e-8, max_iter=5000, verbose=0, ) glm_pure_premium.fit( df_encoding.iloc[:, 1:], df["PurePremium"], sample_weight=df["Exposure"] ) # Do not include the intercept, because TweedieRegressor will auto add it # print estimators dict_paras = dict( zip( df_encoding.columns, np.append(glm_pure_premium.intercept_, glm_pure_premium.coef_), ) ) TweedieReg_est = pd.DataFrame(dict_paras, index=["TweedieReg_est"]).transpose() TweedieReg_est # get predict df["TewdieeRegressor_predictor"] = glm_pure_premium.predict(df_encoding.iloc[:, 1:]) df["TewdieeRegressor_Epredictor"] = df["TewdieeRegressor_predictor"] * df["Exposure"] df.head(10) # ## Comparison¶ est_para = pd.concat([Statsm_est, TweedieReg_est], axis=1) est_para["est_diff"] = est_para["Statsm_est"] - est_para["TweedieReg_est"] est_para df["predictor_diff"] = df["Statsm_Epredictor"] - df["TewdieeRegressor_Epredictor"] # print abs_sum df["predictor_diff"].abs().sum() from sklearn.metrics import auc def lorenz_curve(y_true, y_pred, exposure): y_true, y_pred = np.asarray(y_true), np.asarray(y_pred) exposure = np.asarray(exposure) # order samples by increasing predicted risk: ranking = np.argsort(y_pred) ranked_exposure = exposure[ranking] ranked_pure_premium = y_true[ranking] cumulated_claim_amount = np.cumsum(ranked_pure_premium * ranked_exposure) cumulated_claim_amount /= cumulated_claim_amount[-1] cumulated_samples = np.linspace(0, 1, len(cumulated_claim_amount)) return cumulated_samples, cumulated_claim_amount fig, ax = plt.subplots(figsize=(8, 8)) for label, y_pred in [ ("Statsmodel", df.Statsm_Epredictor), ("TweedieRegressor", df.TewdieeRegressor_Epredictor), ]: ordered_samples, cum_claims = lorenz_curve( df["PurePremium"], y_pred, df["Exposure"] ) gini = 1 - 2 * auc(ordered_samples, cum_claims) label += " (Gini index: {:.3f})".format(gini) ax.plot(ordered_samples, cum_claims, linestyle="-", label=label) # Oracle model: y_pred == y_test ordered_samples, cum_claims = lorenz_curve( df["PurePremium"], df["PurePremium"], df["Exposure"] ) gini = 1 - 2 * auc(ordered_samples, cum_claims) label = "Oracle (Gini index: {:.3f})".format(gini) ax.plot(ordered_samples, cum_claims, linestyle="-.", color="gray", label=label) # Random baseline ax.plot([0, 1], [0, 1], linestyle="--", color="black", label="Random baseline") ax.set( title="Lorenz Curves", xlabel="Fraction of policyholders\n(ordered by model from safest to riskiest)", ylabel="Fraction of total claim amount", ) ax.legend(loc="upper left") plt.plot()
# Lo scopo dell'elaborato è individuare una serie di attributi presenti nel dataset che influenzano la Life Expectancy, quindi la target variable è Life Expectancy. # - Data Cleaning, to detect and remove null values # - Data Exploration and Feature Engineering # We want to improve life expectancy, take it as a response variable and try predict that, put the focus on this, try to exctract information. # # LOAD DATASET import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import math from sklearn.model_selection import train_test_split from sklearn.preprocessing import scale, MinMaxScaler, StandardScaler from sklearn.decomposition import PCA from sklearn.linear_model import LinearRegression from sklearn.ensemble import RandomForestRegressor from sklearn.tree import DecisionTreeRegressor import warnings warnings.filterwarnings("ignore") sns.set_style("whitegrid") # Load data le = pd.read_csv("/kaggle/input/life-expectancy-who/Life Expectancy Data.csv", sep=",") le.dataframeName = "Life Expectancy Data.csv" le.head() # # DATA CLEANING # Replacing original names with other format names orig_cols = list(le.columns) new_cols = [] for col in orig_cols: new_cols.append(col.strip().replace(" ", " ").replace(" ", "_").lower()) le.columns = new_cols le.describe() # only numerical columns # Counting all rows with NULL values le.isnull().sum() # Delete all rows with NULL values le.dropna(inplace=True) le.isnull().sum() # Change status from Developing/Developed to 0/1 status = pd.get_dummies(le.status) le = pd.concat([le, status], axis=1) le = le.drop(["status"], axis=1) le.rename(columns={"developing": 0, "developed": 1}) # # DATA EXPLORATION # Create a dictionary of columns. col_dict = { "life_expectancy": 1, "adult_mortality": 2, "infant_deaths": 3, "alcohol": 4, "percentage_expenditure": 5, "hepatitis_b": 6, "measles": 7, "bmi": 8, "under-five_deaths": 9, "polio": 10, "total_expenditure": 11, "diphtheria": 12, "hiv/aids": 13, "gdp": 14, "population": 15, "thinness_1-19_years": 16, "thinness_5-9_years": 17, "income_composition_of_resources": 18, "schooling": 19, } # Detect outliers in each variable using box plots. plt.figure(figsize=(18, 30)) for variable, i in col_dict.items(): plt.subplot(5, 4, i) plt.boxplot(le[variable], whis=1.5) plt.title(variable) plt.show() # Our data set is ready for investigation and regression process! # The first thing is to check correlations between variables. # Data Exploration le.columns # Heatmap to see correlations plt.figure(figsize=(14, 12)) sns.heatmap(le.corr(), annot=True) plt.title("Correlation between different features") # As we see above, ‘Schooling’, ‘Income_composition_of_resources’, ‘BMI’, and ‘Adult_Mortality’ have a high correlation between Life Expectancy. # ‘HIV/AIDS’, ‘Diphtheria’, ‘thinness_1_19_years’, ‘thinness_5_9_years’, ‘Polio’, ‘GDP’, ‘percentage_expenditure’ and ‘Alcohol’ have medium correlation between Life Expectancy. # And the rest of our columns; ’hepatitis_B’, ‘Total_Expenditure’, ‘under_five_deaths’, ‘infant_deaths’, 'population' and ‘Measles’ have low correlation between Life Expectancy. # As we can see with follows plots: # All columns (in correlation with life expectancy). all_col = [ "adult_mortality", "infant_deaths", "alcohol", "percentage_expenditure", "hepatitis_b", "measles", "bmi", "under-five_deaths", "polio", "total_expenditure", "diphtheria", "hiv/aids", "gdp", "population", "thinness_1-19_years", "thinness_5-9_years", "income_composition_of_resources", "schooling", ] plt.figure(figsize=(15, 25)) for i in range(len(all_col)): plt.subplot(6, 3, i + 1) plt.scatter(le[all_col[i]], le["life_expectancy"]) plt.xlabel(all_col[i]) plt.ylabel("Life Expectancy") plt.show() # # FEATURES EXTRACTION # - **PCA** # The categorical columns, 'year' and 'country' will be # dropped as they don't have significant differences among # life expectancy. pca_le = le.copy() pca_drop = pca_le.drop(columns=["country", "year"], axis=1) cols = pca_drop.columns.tolist() cols # We drop also same correlated variables pca_drop = pca_drop.drop( columns=[ "infant_deaths", "percentage_expenditure", "polio", "thinness_1-19_years", "schooling", "Developing", ], axis=1, ) # And very low correlated variables pca_drop = pca_drop.drop(columns=["population", "measles"], axis=1) plt.figure(figsize=(14, 12)) sns.heatmap(pca_drop.corr(), annot=True) plt.title("Correlation between different features") # PCA is an unsupervised technique so the target variable # is not needed and can be dropped. pca_drop = pca_drop.drop(columns=["life_expectancy"], axis=1) X = pca_drop.iloc[:, 0:12].values y = pca_drop.iloc[:, 0].values np.shape(X) # **COVARIANCE MATRIX** # Standardization X_std = StandardScaler().fit_transform(X) mean_vec = np.mean(X_std, axis=0) cov_mat = (X_std - mean_vec).T.dot((X_std - mean_vec)) / (X_std.shape[0] - 1) print("Covariance matrix \n%s" % cov_mat) # **Eigen decomposition of the covariance matrix** eig_vals, eig_vecs = np.linalg.eig(cov_mat) print("Eigenvectors \n%s" % eig_vecs) print("\nEigenvalues \n%s" % eig_vals) # **Selecting Principal Components** # Make a list of (eigenvalue, eigenvector) tuples eig_pairs = [(np.abs(eig_vals[i]), eig_vecs[:, i]) for i in range(len(eig_vals))] # Sort the (eigenvalue, eigenvector) tuples from high to low eig_pairs.sort(key=lambda x: x[0], reverse=True) # Visually confirm that the list is correctly sorted by decreasing eigenvalues print("Eigenvalues in descending order:") for i in eig_pairs: print(i[0]) # **What principal components are we going to choose?** tot = sum(eig_vals) var_exp = [(i / tot) * 100 for i in sorted(eig_vals, reverse=True)] var_exp # Stampiamo i valori degli eigenvalues plt.figure(figsize=(8, 4)) plt.bar(range(12), var_exp, alpha=0.7, align="center", label="individual variance") plt.ylabel("Explained variance ratio") plt.xlabel("Principal components") plt.legend(loc="best") plt.tight_layout() # The plot above clearly shows that maximum variance (somewhere around 32%) can be explained by the first principal component alone. The second and third also are important (around 12% and 11%). Fourth and fifth principal component give less informations then first three but more than other principal components. Sixth, seventh and eighth principal component share almost equal amount of information as compared to the rest of the Principal components, but we cannot ignore that since they both contribute almost 19% of the data. But we can drop the last component as it has less than 10% of the variance pca = PCA().fit(X_std) plt.plot(np.cumsum(pca.explained_variance_ratio_)) plt.xlim(0, 12, 1) plt.xlabel("Number of components") plt.ylabel("Cumulative explained variance") # The above plot shows almost 90% variance by the first 8 components. Those features are as follows: # 1. Income Composition Of Resources # 2. Adult Mortality # 3. HIV/AIDS # 4. BMI # 5. Thinness 5-9 Years # 6. GDP # 7. Developed # 8. Alcohol # # DATA ANALYSIS # **- Linear Regression** lr_le = le.groupby(["country"]).mean() lr_le = lr_le.drop(["year"], axis=1) lr_le le_labels = lr_le["life_expectancy"] le_features = lr_le.drop("life_expectancy", axis=1) min_max_scaler = MinMaxScaler() le_features = min_max_scaler.fit_transform(le_features) le_features_train, le_features_test, le_labels_train, le_labels_test = train_test_split( le_features, le_labels, train_size=0.7, test_size=0.3 )
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.metrics import accuracy_score, confusion_matrix # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. df = pd.read_csv("../input/real-and-fake-news-dataset/news.csv") print(df.shape) print(df.head()) X = df["text"] y = df["label"] print("Num of FAKE:", y[y == "FAKE"].shape[0]) print("Num of REAL:", y[y == "REAL"].shape[0]) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=123 ) tfidf = TfidfVectorizer(stop_words="english", max_df=0.6) tfidf_train = tfidf.fit_transform(X_train) tfidf_test = tfidf.transform(X_test) pac = PassiveAggressiveClassifier(max_iter=50) pac.fit(tfidf_train, y_train) y_pred = pac.predict(tfidf_test) print("Accuracy:", accuracy_score(y_test, y_pred)) print("Matrix:", confusion_matrix(y_test, y_pred, labels=["FAKE", "REAL"]))
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns import re # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. df = pd.read_csv("/kaggle/input/netflix-shows/netflix_titles.csv") df.head(5) # **Preparing the Data** df["release_year"] = pd.to_datetime(df["release_year"], format="%Y") df["date_added"] = pd.to_datetime(df["date_added"]) indeks = df[np.isnan(df["date_added"])].index df.loc[indeks, "date_added"] = df.loc[indeks, "release_year"] df["release_year"] = df["release_year"].dt.year # **Exploratory Data Analysis** # * Content type on Netflix plt.figure(figsize=(6, 8)) total = df["type"].value_counts() sns.barplot(x=total.index, y=total.values) plt.box(on=None) # * Number of programmes released by year release = df["release_year"].value_counts() release = release.sort_index(ascending=True) plt.figure(figsize=(8, 6)) plt.plot(release[-11:-1]) plt.scatter( release[-11:-1].index, release[-11:-1].values, s=0.5 * release[-11:-1].values, c="orange", ) plt.box(on=None) plt.xticks(release[-11:-1].index) plt.title("Number of Programmes Released by Year", color="red", fontsize=15) # * Number of programmes by Rating rating = df["rating"].value_counts() # rating = rating.sort_values() plt.figure(figsize=(8, 6)) plt.title("Number of Programmes by Rating", color="red", fontsize=15) # plt.barh(rating.index, rating.values, align='center'); sns.barplot(x=rating.values, y=rating.index, palette="gnuplot") plt.box(on=None) plt.xlabel("Number of Programmes") # * Most Popular Programmes by Country & Rating country_rating = ( df.groupby(["country", "rating"]).count().sort_values("show_id", ascending=False) ) plt.figure(figsize=(8, 6)) sns.barplot( y=country_rating.index[:10], x=country_rating["show_id"][:10], palette="gnuplot2" ) plt.box(on=None) plt.title("Most Popular Programmes by Country & Rating", fontsize=15, color="red") plt.xlabel("Number of Programmes") # Analysis on Movie Programmes # * Movies by Rating movie = df.copy() movie = movie[movie["type"] == "Movie"] movie["minute"] = [int(re.findall("\d{1,3}", w)[0]) for w in movie.duration.ravel()] duration_rating = movie.groupby(["rating"]).mean().sort_values("minute") plt.figure(figsize=(8, 6)) sns.barplot( x=duration_rating.index, y=duration_rating.minute.values, palette="gnuplot_r" ) plt.box(on=None) plt.title("Number of Movies by Rating", fontsize=15, color="red") plt.xlabel("Movie Rating") # * Movie's Duration Trends duration_year = movie.groupby(["release_year"]).mean().sort_values("minute") duration_year = duration_year.sort_index() plt.figure(figsize=(15, 6)) sns.lineplot(x=duration_year.index, y=duration_year.minute.values) plt.box(on=None) plt.ylabel("Movie duration in minutes") plt.xlabel("Year of released") plt.title("YoY Trends of Movie's Duration", fontsize=15, color="red") # The average movie's duration released during 1960 era was the longest # * The Most Productive Director by number of movies produced plt.figure(figsize=(8, 8)) sns.barplot( y=movie.director.value_counts()[:10].sort_values().index, x=movie.director.value_counts()[:10].sort_values().values, ) plt.title("Most Productive Movie Director", color="red", fontsize=15) plt.box(on=None) plt.xticks(movie.director.value_counts()[:10].sort_values().values) plt.xlabel("Number of Movies Released") # Paul and Ramos produced 18 Movies so far. They have been the most productive director. # * Director's Productivity by Total Minutes of Movies Produced director_minute = movie.groupby("director").sum().sort_values("minute", ascending=False) plt.figure(figsize=(8, 8)) sns.barplot(y=director_minute.index[:10], x=director_minute.minute[:10]) plt.title("Most Productive Movie Director in Video Length", color="red", fontsize=15) plt.box(on=None) plt.xlabel("Length of Movies Released")
import numpy as np import pandas as pd data = pd.read_csv("/kaggle/input/car-price-prediction/CarPrice_Assignment.csv") data.info() data.head() data.corr() from sklearn.preprocessing import OrdinalEncoder ordinal_encoder = OrdinalEncoder() data[ [ "CarName", "fueltype", "aspiration", "doornumber", "carbody", "drivewheel", "enginelocation", "enginetype", "cylindernumber", "fuelsystem", ] ] = ordinal_encoder.fit_transform( data[ [ "CarName", "fueltype", "aspiration", "doornumber", "carbody", "drivewheel", "enginelocation", "enginetype", "cylindernumber", "fuelsystem", ] ] ) data.info() data.head() X = data.drop(["price"], axis=1) Y = data["price"] X_train, Y_train, X_test, Y_test = X[:150], Y[:150], X[150:], Y[150:] from sklearn.linear_model import LinearRegression lin_reg = LinearRegression() lin_reg.fit(X_train, Y_train) Y_pred = lin_reg.predict(X_test) lin_reg.intercept_, lin_reg.coef_ from sklearn.metrics import mean_squared_error lin_rmse = mean_squared_error(Y_test, Y_pred, squared=False) lin_rmse from sklearn.metrics import r2_score print(r2_score(Y_test, Y_pred)) X = np.array(X_train) Y = np.array(Y_train) coeffs = np.linalg.inv(X.T @ X) @ X.T @ Y coeffs Y_pred = X_test @ coeffs print(r2_score(Y_test, Y_pred))
import numpy as np import pandas as pd import os filename = os.listdir( "/kaggle/input/musiccaps-dataset-16k/musiccaps-audio-trimmed-16k" )[0] import librosa import panns_inference from panns_inference import AudioTagging, SoundEventDetection, labels # Download PANN model audio_path = ( "/kaggle/input/musiccaps-dataset-16k/musiccaps-audio-trimmed-16k/" + filename ) (audio, _) = librosa.core.load(audio_path, sr=16000, mono=True) audio = audio[None, :] # (batch_size, segment_samples) print("------ Audio tagging ------") at = AudioTagging(checkpoint_path="/root/panns_data/Cnn14_mAP=0.431.pth", device="cuda") (clipwise_output, embedding) = at.inference(audio) print(embedding) print(embedding.shape) # audio_dir = '/kaggle/input/musiccaps-dataset-16k/musiccaps-audio-trimmed-16k/' # audio_list = [librosa.core.load(audio_dir + filename, sr=16000, mono=True)[0] for filename in os.listdir(audio_dir)[:10]] # audio = np.stack(audio_list, axis=0) # print(audio.shape) # print(audio[0].shape) # print('------ Audio tagging ------') # at = AudioTagging(checkpoint_path='/root/panns_data/Cnn14_mAP=0.431.pth', device='cuda') # (clipwise_output, embedding) = at.inference(audio) # print(embedding.shape) import spacy # for tokenizer import torch from torch.nn.utils.rnn import pad_sequence # pad batch from torch.utils.data import DataLoader, Dataset spacy_eng = spacy.load("en_core_web_sm") class Vocabulary: def __init__(self, freq_threshold): self.itos = {0: "<PAD>", 1: "<SOS>", 2: "<EOS>", 3: "<UNK>"} self.stoi = {"<PAD>": 0, "<SOS>": 1, "<EOS>": 2, "<UNK>": 3} self.freq_threshold = freq_threshold def __len__(self): return len(self.itos) @staticmethod def tokenizer_eng(text): return [tok.text.lower() for tok in spacy_eng.tokenizer(text)] def build_vocabulary(self, sentence_list): frequencies = {} idx = 4 for sentence in sentence_list: for word in self.tokenizer_eng(sentence): if word not in frequencies: frequencies[word] = 1 else: frequencies[word] += 1 if frequencies[word] == self.freq_threshold: self.stoi[word] = idx self.itos[idx] = word idx += 1 def numericalize(self, text): tokenized_text = self.tokenizer_eng(text) return [ self.stoi[token] if token in self.stoi else self.stoi["<UNK>"] for token in tokenized_text ] class MusicCapsDataset(Dataset): def __init__(self, data_dir, df, freq_threshold=5): self.data_dir = data_dir self.df = df.reset_index(drop=True) # Initialize vocabulary and build vocab self.vocab = Vocabulary(freq_threshold) self.vocab.build_vocabulary(self.df["caption"].values.tolist()) def __len__(self): return len(self.df) def __getitem__(self, idx): ytid = self.df.loc[idx, "ytid"] audio_file = os.path.join(self.data_dir, f"{ytid}.wav") waveform, sample_rate = librosa.load(audio_file, sr=16000) caption = self.df.loc[idx]["caption"] numericalized_caption = [self.vocab.stoi["<SOS>"]] numericalized_caption += self.vocab.numericalize(caption) numericalized_caption.append(self.vocab.stoi["<EOS>"]) return torch.tensor(waveform), torch.tensor(numericalized_caption) class MyCollate: def __init__(self, pad_idx): self.pad_idx = pad_idx def __call__(self, batch): audio_clips = torch.stack([item[0] for item in batch], dim=0) targets = [item[1] for item in batch] targets = pad_sequence(targets, batch_first=False, padding_value=self.pad_idx) return audio_clips, targets def get_loader(df, batch_size=4, num_workers=1, shuffle=True): dataset = MusicCapsDataset( "/kaggle/input/musiccaps-dataset-16k/musiccaps-audio-trimmed-16k", df ) pad_idx = dataset.vocab.stoi["<PAD>"] loader = DataLoader( dataset=dataset, batch_size=batch_size, num_workers=num_workers, shuffle=shuffle, collate_fn=MyCollate(pad_idx=pad_idx), ) return loader, dataset from sklearn.model_selection import train_test_split # Load data df = pd.read_csv("/kaggle/input/musiccaps-split-captions/split_captions.csv") # Split the dataset into training and testing sets train_df, test_df = train_test_split(df, test_size=0.2, random_state=42) train_loader, dataset = get_loader(train_df) test_loader, test_dataset = get_loader(test_df) for idx, (audio, captions) in enumerate(train_loader): print(type(audio)) print(audio.shape) print(captions.shape) print(captions) if idx == 0: break import torch.nn as nn class Encoder(nn.Module): def __init__(self, embed_size): super(Encoder, self).__init__() self.at = AudioTagging( checkpoint_path="/root/panns_data/Cnn14_mAP=0.431.pth", device="cuda" ) self.fc = nn.Linear(2048, embed_size) def forward(self, x): _, embedding = self.at.inference(x) embedding = torch.tensor(embedding).to("cuda") return self.fc(embedding) encoder = Encoder(256).to("cuda") for idx, (audio, captions) in enumerate(train_loader): print(type(audio)) print(audio.shape) print(captions.shape) out = encoder.forward(audio) print(out) print(out.shape) if idx == 0: break # Using LSTMCell # class DecoderRNN(nn.Module): # def __init__(self, embed_size, hidden_size, vocab_size, num_layers=1): # super(DecoderRNN, self).__init__() # # define the properties # self.embed_size = embed_size # self.hidden_size = hidden_size # self.vocab_size = vocab_size # self.lstm_cell = nn.LSTMCell(input_size=embed_size, hidden_size=hidden_size) # self.fc_out = nn.Linear(in_features=hidden_size, out_features=vocab_size) # self.embed = nn.Embedding(num_embeddings=vocab_size, embedding_dim=embed_size) # self.softmax = nn.Softmax(dim=1) # def forward(self, features, captions, teacher_force_ratio=0.5): # # Features & Captions to CUDA # features = features.to('cuda') # (batch_size, 256) # captions = captions.permute(1, 0).to('cuda') # (batch_size, caption_length) # # batch size # batch_size = captions.size(0) # target_length = captions.size(1) # # init the hidden and cell states # hidden = self.init_hidden(features) # # define the output tensor placeholder # outputs = torch.zeros(batch_size, target_length, self.vocab_size).to('cuda') # # first token # inp = captions[:, 0] # # pass the caption word by word # for t in range(1, target_length): # # Apply word embedding # embedded = self.embed(inp) # # Perform LSTM forward pass # hidden = self.lstm_cell(embedded, hidden) # # Compute output probabilities # output = self.fc_out(hidden[0]) # (batch_size, vocab_size) # outputs[:, t] = output # use_teacher_forcing = torch.rand(1).item() < teacher_force_ratio # if use_teacher_forcing: # inp = captions[:, t] # else: # inp = output.argmax(dim=1) # return outputs # def init_hidden(self, encoder_feats): # initial_hidden = encoder_feats.to('cuda') # initial_cell = torch.zeros(encoder_feats.size(0), self.hidden_size).to('cuda') # return (initial_hidden, initial_cell) # def generate_caption(self, encoder_features, max_length): # self.eval() # batch_size = encoder_features.size(0) # # Prepare the initial hidden state from the encoder features # hidden = self.init_hidden(encoder_features) # # Initialize the input tensor with the <start> token # inp = torch.tensor([dataset.vocab.stoi['<SOS>']], device='cuda') # # Initialize the generated caption # caption = [] # for _ in range(max_length): # # Apply embedding to the input # embedded = self.embed(inp) # # Perform LSTM cell forward pass # hidden = self.lstm_cell(embedded, hidden) # # Compute output probabilities # output = self.fc_out(hidden[0]) # # Get the index of the highest probability token # top_token = output.argmax(dim=1) # # Add the token to the caption # caption.append(top_token.item()) # # Update the input for the next iteration # inp = top_token # # If the <end> token is generated, break the loop # if top_token.item() == dataset.vocab.stoi['<EOS>']: # break # self.train() # return caption # # Using PyTorch LSTM # class DecoderRNN(nn.Module): # def __init__(self, embed_size, hidden_size, vocab_size, num_layers=1): # super(DecoderRNN, self).__init__() # # define the properties # self.embed_size = embed_size # self.hidden_size = hidden_size # self.vocab_size = vocab_size # self.num_layers = num_layers # self.lstm = nn.LSTM(input_size=embed_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True) # self.fc_out = nn.Linear(in_features=hidden_size, out_features=vocab_size) # self.embed = nn.Embedding(num_embeddings=vocab_size, embedding_dim=embed_size) # def forward(self, features, captions, teacher_force_ratio=0.5): # # Features & Captions to CUDA # features = features.to('cuda') # (batch_size, 256) # captions = captions.permute(1, 0).to('cuda') # (batch_size, caption_length) # # batch size # batch_size = captions.size(0) # target_length = captions.size(1) # # init the hidden and cell states # hidden = self.init_hidden(features) # # right-shift captions # right_shifted_captions = captions[:, :-1] # # Embed the right-shifted captions # embedded = self.embedding(right_shifted_captions) # # Pass the embedded captions and the initial hidden state through the LSTM # lstm_out, _ = self.lstm(embedded, hidden) # # Compute the output probabilities # output = self.out(lstm_out) # return outputs # def init_hidden(self, encoder_feats): # initial_hidden = encoder_feats.to('cuda') # initial_cell = torch.zeros(encoder_feats.size(0), self.hidden_size).to('cuda') # return (initial_hidden, initial_cell) # def generate_caption(self, encoder_features, max_length): # self.eval() # batch_size = encoder_features.size(0) # # Prepare the initial hidden state from the encoder features # hidden = self.init_hidden(encoder_features) # # Initialize the input tensor with the <start> token # inp = torch.tensor([dataset.vocab.stoi['<SOS>']], device='cuda') # # Initialize the generated caption # caption = [] # for _ in range(max_length): # # Apply embedding to the input # embedded = self.embed(inp) # # Perform LSTM cell forward pass # hidden = self.lstm_cell(embedded, hidden) # # Compute output probabilities # output = self.fc_out(hidden[0]) # # Get the index of the highest probability token # top_token = output.argmax(dim=1) # # Add the token to the caption # caption.append(top_token.item()) # # Update the input for the next iteration # inp = top_token # # If the <end> token is generated, break the loop # if top_token.item() == dataset.vocab.stoi['<EOS>']: # break # self.train() # return caption # class EncoderDecoder(nn.Module): # def __init__(self, encoder, decoder): # super(EncoderDecoder, self).__init__() # self.encoder = encoder # self.decoder = decoder # def forward(self, audios, target_captions, teacher_forcing_ratio=0.5): # # Pass the images through the encoder to get the feature vector # encoder_features = self.encoder(audios) # # Pass the feature vector and target captions through the decoder # outputs = self.decoder(encoder_features, target_captions, teacher_forcing_ratio) # return outputs # def generate_caption(self, audio_input, max_length=50): # self.encoder.eval() # encoder_features = self.encoder(audio_input) # self.encoder.train() # caption = self.decoder.generate_caption(encoder_features, max_length) # return ' '.join([dataset.vocab.itos[idx] for idx in caption]) # encoder = Encoder(256).to('cuda') # decoder = DecoderRNN(256, 256, len(dataset.vocab), 1).to('cuda') # model = EncoderDecoder(encoder, decoder) # for idx, (audio, captions) in enumerate(train_loader): # for clip in audio: # out = model.generate_caption(clip.unsqueeze(0), 50) # print(out) # if idx == 2: # break # import torch.optim as optim # # Set device # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # # Define model # encoder = Encoder(256).to('cuda') # decoder = DecoderRNN(256, 256, len(dataset.vocab), 1).to('cuda') # model = EncoderDecoder(encoder, decoder) # model.to(device) # # Loss function and optimizer # criterion = nn.CrossEntropyLoss() # optimizer = optim.Adam(model.parameters(), lr=0.001) # # Number of epochs # num_epochs = 3 # # Training loop # for epoch in range(num_epochs): # for idx, (audios, target_captions) in enumerate(train_loader): # audios = audios.to(device) # target_captions = target_captions.to(device) # # Zero the gradients # optimizer.zero_grad() # # Forward pass # outputs = model(audios, target_captions) # # Calculate loss # loss = criterion(outputs.view(-1, len(dataset.vocab)), target_captions.view(-1)) # # Backward pass # loss.backward() # # Update weights # optimizer.step() # # Print training progress # if idx % 100 == 0: # print(f'Epoch [{epoch + 1}/{num_epochs}], Step [{idx}/{len(train_loader)}], Loss: {loss.item()}') # print_examples(model, device, dataset) class DecoderRNN(nn.Module): def __init__(self, embed_size, hidden_size, vocab_size, num_layers): super(DecoderRNN, self).__init__() self.embed_size = embed_size self.hidden_size = hidden_size self.embed = nn.Embedding(vocab_size, embed_size) self.lstm = nn.LSTM(embed_size, hidden_size, num_layers) self.linear = nn.Linear(hidden_size, vocab_size) self.dropout = nn.Dropout(0.5) def forward(self, features, captions): # Features: [batch_size, feature_size] (note: feature_size == word_embed_size) # Captions: [caption_length, batch_size] embeddings = self.embed(captions) # print(embeddings.shape) # [caption_length, batch_size, embed_size] # print(features.unsqueeze(0).shape) # [1, batch_size, feature_size] hiddens = self.init_hidden(features) # print(embeddings.shape) # [caption_length + 1, batch_size, embed_size] hiddens, _ = self.lstm(embeddings, hiddens) outputs = self.linear(hiddens) return outputs def init_hidden(self, encoder_features): initial_hidden = encoder_features.to("cuda") initial_cell = torch.zeros(encoder_features.size(0), self.hidden_size).to( "cuda" ) return (initial_hidden.unsqueeze(0), initial_cell.unsqueeze(0)) decoder = DecoderRNN(256, 256, len(dataset.vocab), 1).to("cuda") for idx, (audio, captions) in enumerate(train_loader): print(type(audio)) print(audio.shape) print(captions.shape) features = encoder(audio) print() out = decoder(features.to("cuda"), captions.to("cuda")) print(out.shape) print(out) if idx == 0: break class CNNtoRNN(nn.Module): def __init__(self, embed_size, hidden_size, vocab_size, num_layers): super(CNNtoRNN, self).__init__() self.encoder = Encoder(embed_size) self.decoderRNN = DecoderRNN(embed_size, hidden_size, vocab_size, num_layers) def forward(self, audios, captions): features = self.encoder(audios) outputs = self.decoderRNN(features, captions) return outputs def caption_audio(self, audios, vocab, max_length=35): # Set the model to evaluation mode self.eval() # Obtain the features from the encoder encoder_features = self.encoder(audios) # Initialize the hidden state hidden = self.decoderRNN.init_hidden(encoder_features) # Initialize the input with the <start> token for each sample in the batch batch_size = audios.size(0) inp = torch.tensor([vocab.stoi["<SOS>"]] * batch_size, device="cuda") # Prepare the output tensor captions = torch.zeros(batch_size, max_length, device="cuda").long() with torch.no_grad(): for t in range(max_length): # Embed the input embedded = self.decoderRNN.embed(inp).unsqueeze(0) # Pass the embedded input and the hidden state through the LSTM lstm_out, hidden = self.decoderRNN.lstm(embedded, hidden) # Compute the output probabilities output = self.decoderRNN.linear(lstm_out.squeeze(0)) # Get the highest probability token for the next input top_token = output.argmax(dim=1) # Save the top token to the captions tensor captions[:, t] = top_token.item() # Update the input for the next iteration inp = top_token return [vocab.itos[idx] for idx in captions] # class CNNtoRNN(nn.Module): # def __init__(self, embed_size, hidden_size, vocab_size, num_layers): # super(CNNtoRNN, self).__init__() # self.encoder = Encoder(embed_size) # self.decoderRNN = DecoderRNN(embed_size, hidden_size, vocab_size, num_layers) # def forward(self, audios, captions): # features = self.encoder(audios) # outputs = self.decoderRNN(features, captions) # return outputs # def caption_audio(self, audio, vocabulary): # with torch.no_grad(): # x = self.encoder(audio).unsqueeze(0) # output = self.decoderRNN(x, ) # for _ in range(max_length): # hiddens, states = self.decoderRNN.lstm_cell(x, states) # output = self.decoderRNN.linear(hiddens.squeeze(0)) # predicted = output.argmax(0) # result_caption.append(predicted.item()) # x = self.decoderRNN.embed(predicted).unsqueeze(0) # if vocabulary.itos[predicted.item()] == "<EOS>": # break # return [vocabulary.itos[idx] for idx in result_caption] def print_examples(model, device, dataset): model.eval() y, sr = librosa.load( "/kaggle/input/musiccaps-dataset-16k/musiccaps-audio-trimmed-16k/BqIZipifARo.wav", sr=44100, ) example = torch.from_numpy(y).unsqueeze(0) print( "Example 1 CORRECT: The song is an instrumental. The tempo is medium with an electric guitar playing a dreamy solo with a keyboard accompaniment , string section harmony and rhythmic percussion rhythm. The song is passionate and emotional. The song is a rock guitar instrumental." ) print( "Example 1 OUTPUT: " + " ".join(model.caption_audio(example.to(device), dataset.vocab)) # + " ".join(model.generate_caption(example.to(device))) ) y, sr = librosa.load( "/kaggle/input/musiccaps-dataset-16k/musiccaps-audio-trimmed-16k/cS2gRhH6it4.wav", sr=44100, ) example = torch.from_numpy(y).unsqueeze(0) print( "Example 2 CORRECT: This is a Hindu music piece. There is a female vocalist singing at a medium-to-high pitch in a devotional manner. A sitar provides a melodic background. The tabla is being played in the rhythmic background. The atmosphere is spiritual. This piece could be played at religious events and online content related to Hindu religion." ) print( "Example 2 OUTPUT: " + " ".join(model.caption_audio(example.to(device), dataset.vocab)) # + " ".join(model.generate_caption(example.to(device))) ) y, sr = librosa.load( "/kaggle/input/musiccaps-dataset-16k/musiccaps-audio-trimmed-16k/GopccU3Am1w.wav", sr=44100, ) example = torch.from_numpy(y).unsqueeze(0) print( "Example 3 CORRECT: The low quality recording features a live performance of a spooky glass melody. The recording is very noisy, as there are crowd chattering noises in the background." ) print( "Example 3 OUTPUT: " + " ".join(model.caption_audio(example.to(device), dataset.vocab)) # + " ".join(model.generate_caption(example.to(device))) ) y, sr = librosa.load( "/kaggle/input/musiccaps-dataset-16k/musiccaps-audio-trimmed-16k/6HQqly6duac.wav", sr=44100, ) example = torch.from_numpy(y).unsqueeze(0) print( "Example 4 CORRECT: The low quality recording features a live performance of guitar percussion. It sounds shimmering and groovy. The recording is noisy and in mono." ) print( "Example 4 OUTPUT: " + " ".join(model.caption_audio(example.to(device), dataset.vocab)) # + " ".join(model.generate_caption(example.to(device))) ) model.train() print(len(dataset.vocab)) # # Model Training import torch.optim as optim from tqdm import tqdm torch.backends.cudnn.benchmark = True device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Hyperparameters embed_size = 256 hidden_size = 256 vocab_size = len(dataset.vocab) num_layers = 1 learning_rate = 3e-3 num_epochs = 5 # initialize model, loss etc model = CNNtoRNN(embed_size, hidden_size, vocab_size, num_layers).to(device) criterion = nn.CrossEntropyLoss(ignore_index=dataset.vocab.stoi["<PAD>"]) optimizer = optim.Adam(model.parameters(), lr=learning_rate) model.train() for epoch in range(num_epochs): # Uncomment the line below to see a couple of test cases print(f"EPOCH: {epoch}") # print_examples(model, device, dataset) # if save_model: # checkpoint = { # "state_dict": model.state_dict(), # "optimizer": optimizer.state_dict(), # "step": step, # } # save_checkpoint(checkpoint) for idx, (audios, captions) in tqdm( enumerate(train_loader), total=len(train_loader), leave=False ): audios = audios.to(device) captions = captions.to(device) outputs = model(audios, captions[:-1]) # print(outputs.shape) # (sequence, batch, vocab) # print(captions.shape) # (sequence, batch) # print(outputs.reshape(-1, outputs.shape[2]).shape) # print(captions.reshape(-1).shape) loss = criterion( outputs.reshape(-1, len(dataset.vocab)), captions[1:].reshape(-1) ) optimizer.zero_grad() loss.backward(loss) optimizer.step()
import torchvision.models as models import numpy as np import pandas as pd import os import cv2 import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.metrics import roc_auc_score from torchsummary import summary import torch from torch.utils.data import TensorDataset, DataLoader, Dataset import torch.nn as nn import torch.nn.functional as F import torchvision import torchvision.transforms as transforms import torch.optim as optim from torch.optim import lr_scheduler import time import tqdm from sklearn.metrics import classification_report import itertools from tqdm import tqdm from PIL import Image train_on_gpu = True from torch.utils.data.sampler import SubsetRandomSampler from torch.optim.lr_scheduler import StepLR, ReduceLROnPlateau, CosineAnnealingLR import pretrainedmodels from sklearn.model_selection import train_test_split import albumentations from albumentations import pytorch as AT batch_size = 64 batch_size_test = 64 num_workers = 4 target_names = ["class 0", "class 1"] class MyDataset(Dataset): def __init__( self, datatype="train", df=None, transform=None, augument_=True, dataloc="../input/histopathologic-cancer-detection/train/", ): # self.datafolder = datafolder self.datatype = datatype self.df = df self.augument = augument_ self.transform = transform self.dataloc = dataloc def __len__(self): return len(self.df) def __getitem__(self, idx): label = self.df[idx][1] img_name = self.df[idx][0] + ".tif" img_dir = os.path.join(self.dataloc, img_name) img = cv2.imread(img_dir) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # img = Image.open(img_dir).convert("RGB") img = self.transform(image=img) return img["image"], label data_transforms = albumentations.Compose( [ albumentations.Resize(96, 96), albumentations.RandomRotate90(p=0.5), albumentations.Transpose(p=0.5), albumentations.Flip(p=0.5), albumentations.OneOf( [ albumentations.CLAHE(clip_limit=2), albumentations.IAASharpen(), albumentations.IAAEmboss(), albumentations.RandomBrightness(), albumentations.RandomContrast(), albumentations.JpegCompression(), albumentations.Blur(), albumentations.GaussNoise(), ], p=0.5, ), albumentations.HueSaturationValue(p=0.5), albumentations.ShiftScaleRotate( shift_limit=0.15, scale_limit=0.15, rotate_limit=45, p=0.5 ), albumentations.Normalize(), AT.ToTensor(), ] ) data_transforms_test = albumentations.Compose( [albumentations.Resize(96, 96), albumentations.Normalize(), AT.ToTensor()] ) class Densenet169(nn.Module): def __init__(self, pretrained=True): super(Densenet169, self).__init__() self.model = models.densenet169(num_classes=1000, pretrained=pretrained) self.linear = nn.Linear(1000 + 2, 16) self.bn = nn.BatchNorm1d(16) self.dropout = nn.Dropout(0.2) self.elu = nn.ELU() self.out = nn.Linear(16, 1) self.sig = nn.Sigmoid() def forward(self, x): out = self.model(x) batch = out.shape[0] max_pool, _ = torch.max(out, 1, keepdim=True) avg_pool = torch.mean(out, 1, keepdim=True) out = out.view(batch, -1) conc = torch.cat((out, max_pool, avg_pool), 1) conc = self.linear(conc) conc = self.elu(conc) conc = self.bn(conc) conc = self.dropout(conc) res = self.out(conc) res = self.sig(res) return res model_conv = Densenet169(pretrained=False) model_conv.cuda() model_conv.load_state_dict(torch.load("../input/des-model1/model (4).pt")) test = pd.read_csv("../input/histopathologic-cancer-detection/sample_submission.csv") test_dataset = MyDataset( datatype="test", df=test.values, transform=data_transforms_test, augument_=False, dataloc="../input/histopathologic-cancer-detection/test/", ) test_loader = DataLoader( test_dataset, batch_size=128, num_workers=num_workers, pin_memory=True, shuffle=False, ) Sig = nn.Sigmoid() model_conv.eval() preds = [] with torch.no_grad(): for batch_i, (data, target) in tqdm(enumerate(test_loader), total=len(test_loader)): data, target = data.cuda(), target.cuda() output = model_conv(data) # output = Sig(output) pr = output.detach().cpu().numpy() for i in pr: preds.append(i[0]) a = np.array(preds) sub = pd.read_csv("../input/histopathologic-cancer-detection/sample_submission.csv") test_preds = pd.DataFrame({"imgs": test["id"].values.tolist(), "preds": a}) test_preds["imgs"] = test_preds["imgs"].apply(lambda x: x.split(".")[0]) sub = pd.merge(sub, test_preds, left_on="id", right_on="imgs") sub sub = sub[["id", "preds"]] sub.columns = ["id", "label"] sub.to_csv("sub.csv", index=False) sub.head()
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. # Step 2 : Data import import pickle # Import visualization modules import matplotlib.pyplot as plt import seaborn as sns # Use pandas to read in csv file train = pd.read_csv("/kaggle/input/glass/glass.csv") train.head(5) train.describe() # Step 3: Clean up data # Use the .isnull() method to locate missing data missing_values = train.isnull() missing_values.tail # create new column for "Type" to "g_type" form 0 or 1. train["g_type"] = train.Type.map({1: 0, 2: 0, 3: 0, 5: 1, 6: 1, 7: 1}) train.head() # split dataset in features and target variable feature_cols = ["RI", "Na", "Mg", "Al", "Si", "K", "Ca", "Ba", "Fe", "g_type"] f, ax = plt.subplots(figsize=(16, 12)) plt.title("Glass Correlation Matrix", fontsize=25) sns.heatmap( train[feature_cols].corr(), linewidths=0.25, vmax=0.7, square=True, cmap="BuGn", # "BuGn_r" to reverse linecolor="b", annot=True, annot_kws={"size": 8}, mask=None, cbar_kws={"shrink": 0.9}, ) X = train.loc[:, ["Ca", "Al", "Ba"]] y = train.g_type # Target variable train.Type.value_counts().sort_index # Features from sklearn.model_selection import train_test_split # Split data set into training and test sets X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.25, random_state=0 ) from sklearn.linear_model import LogisticRegression # instantiate the model (using the default parameters) logreg = LogisticRegression() # fit the model with data logreg.fit(X_train, y_train) # y_pred = logreg.predict(X_test) pkl_filename = "pickle_model.pkl" with open(pkl_filename, "wb") as file: pickle.dump(logreg, file) # Load from file with open(pkl_filename, "rb") as file: pickle_model = pickle.load(file) # Calculate the accuracy score and predict target values score = pickle_model.score(X_test, y_test) print("Test score: {0:.2f} %".format(100 * score)) Ypredict = pickle_model.predict(X_test) # import the metrics class from sklearn import metrics cnf_matrix = metrics.confusion_matrix(y_test, y_pred) cnf_matrix from sklearn.metrics import classification_report print(classification_report(y_test, y_pred)) import matplotlib.pyplot as plt # import the metrics class from sklearn import metrics cnf_matrix = metrics.confusion_matrix(y_test, y_pred) cnf_matrix class_names = [0, 1] # name of classes fig, ax = plt.subplots() tick_marks = np.arange(len(class_names)) plt.xticks(tick_marks, class_names) plt.yticks(tick_marks, class_names) # create heatmap sns.heatmap(pd.DataFrame(cnf_matrix), annot=True, cmap="YlGnBu", fmt="g") ax.xaxis.set_label_position("top") plt.tight_layout() plt.title("Confusion matrix", y=1.1) plt.ylabel("Actual label") plt.xlabel("Predicted label")
import pandas as pd from pandas import datetime import matplotlib.pyplot as plt import seaborn as sns import numpy as np df = pd.read_csv( "../input/rossmann-store-sales/train.csv", parse_dates=["Date"], low_memory=False ) df.head() df["Date"] = pd.to_datetime(df["Date"], format="%Y-%m-%d") df["Hour"] = df["Date"].dt.hour df["Day_of_Month"] = df["Date"].dt.day df["Day_of_Week"] = df["Date"].dt.dayofweek df["Month"] = df["Date"].dt.month print(df["Date"].min()) print(df["Date"].max()) test = pd.read_csv( "../input/rossmann-store-sales/test.csv", parse_dates=True, low_memory=False ) test.head() test["Date"] = pd.to_datetime(test["Date"], format="%Y-%m-%d") test["Hour"] = test["Date"].dt.hour test["Day_of_Month"] = test["Date"].dt.day test["Day_of_Week"] = test["Date"].dt.dayofweek test["Month"] = test["Date"].dt.month print(test["Date"].min()) print(test["Date"].max()) sns.pointplot(x="Month", y="Sales", data=df) sns.pointplot(x="Day_of_Week", y="Sales", data=df) sns.countplot(x="Day_of_Week", hue="Open", data=df) plt.title("Store Daily Open Countplot") sns.pointplot(x="Day_of_Month", y="Sales", data=df) df["SalesPerCustomer"] = df["Sales"] / df["Customers"] df["SalesPerCustomer"].describe() df.Open.value_counts() np.sum([df["Sales"] == 0]) # drop closed stores and stores with zero sales df = df[(df["Open"] != 0) & (df["Sales"] != 0)] store = pd.read_csv("../input/rossmann-store-sales/store.csv") store.head(30) store.isnull().sum() store["CompetitionDistance"] = store["CompetitionDistance"].fillna( store["CompetitionDistance"].max() ) store["CompetitionOpenSinceMonth"] = store["CompetitionOpenSinceMonth"].fillna( store["CompetitionOpenSinceMonth"].mode().iloc[0] ) # try 0 store["CompetitionOpenSinceYear"] = store["CompetitionOpenSinceYear"].fillna( store["CompetitionOpenSinceYear"].mode().iloc[0] ) # try 0 store["Promo2SinceWeek"] = store["Promo2SinceWeek"].fillna(0) # try 0 store["Promo2SinceYear"] = store["Promo2SinceYear"].fillna( store["Promo2SinceYear"].mode().iloc[0] ) # try 0 store["PromoInterval"] = store["PromoInterval"].fillna( store["PromoInterval"].mode().iloc[0] ) # try 0 store.head() df_store = pd.merge(df, store, how="left", on="Store") df_store.head() df_store.groupby("StoreType")["Sales"].describe() df_store.groupby("StoreType")["Customers", "Sales"].sum() # sales trends sns.catplot( data=df_store, x="Month", y="Sales", col="StoreType", # per store type in cols palette="plasma", hue="StoreType", row="Promo", # per promo in the store in rows color="c", ) # customer trends sns.catplot( data=df_store, x="Month", y="Customers", col="StoreType", # per store type in cols palette="plasma", hue="StoreType", row="Promo", # per promo in the store in rows color="c", ) # sales per customer sns.catplot( data=df_store, x="Month", y="SalesPerCustomer", col="StoreType", # per store type in cols palette="plasma", hue="StoreType", row="Promo", # per promo in the store in rows color="c", ) sns.catplot( data=df_store, x="Month", y="Sales", col="DayOfWeek", # per store type in cols palette="plasma", hue="StoreType", row="StoreType", # per store type in rows color="c", ) # stores open on sunday df_store[(df_store.Open == 1) & (df_store.DayOfWeek == 7)]["Store"].unique() sns.catplot( data=df_store, x="DayOfWeek", y="Sales", col="Promo", row="Promo2", hue="Promo2", palette="RdPu", ) df_store["StateHoliday"] = df_store["StateHoliday"].map( {"0": 0, 0: 0, "a": 1, "b": 2, "c": 3} ) df_store["StateHoliday"] = df_store["StateHoliday"].astype(int) df_store["StoreType"] = df_store["StoreType"].map({"a": 1, "b": 2, "c": 3, "d": 4}) df_store["StoreType"] = df_store["StoreType"].astype(int) df_store.isnull().sum() df_store["Assortment"] = df_store["Assortment"].map({"a": 1, "b": 2, "c": 3}) df_store["Assortment"] = df_store["Assortment"].astype(int) df_store["PromoInterval"] = df_store["PromoInterval"].map( {"Jan,Apr,Jul,Oct": 1, "Feb,May,Aug,Nov": 2, "Mar,Jun,Sept,Dec": 3} ) df_store["PromoInterval"] = df_store["PromoInterval"].astype(int) df_store.to_csv("df_merged.csv", index=False) df_store.isnull().sum() len(df_store) test = pd.merge(test, store, how="left", on="Store") test.head() test.isnull().sum() test.fillna(method="ffill", inplace=True) test["StateHoliday"] = test["StateHoliday"].map({"0": 0, 0: 0, "a": 1, "b": 2, "c": 3}) test["StateHoliday"] = test["StateHoliday"].astype(int) test["StoreType"] = test["StoreType"].map({"a": 1, "b": 2, "c": 3, "d": 4}) test["StoreType"] = test["StoreType"].astype(int) test["Assortment"] = test["Assortment"].map({"a": 1, "b": 2, "c": 3}) test["Assortment"] = test["Assortment"].astype(int) test["PromoInterval"] = test["PromoInterval"].map( {"Jan,Apr,Jul,Oct": 1, "Feb,May,Aug,Nov": 2, "Mar,Jun,Sept,Dec": 3} ) test["PromoInterval"] = test["PromoInterval"].astype(int) test.to_csv("test_merged.csv", index=False) test = test.drop(["Id", "Date"], axis=1) test.head() # Machine Learning X = df_store.drop(["Date", "Sales", "Customers", "SalesPerCustomer"], 1) # Transform Target Variable y = np.log1p(df_store["Sales"]) from sklearn.model_selection import train_test_split X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.30, random_state=1) X_train.shape, X_val.shape, y_train.shape, y_val.shape # Machine Learning from sklearn.ensemble import GradientBoostingRegressor gbrt = GradientBoostingRegressor(max_depth=12, n_estimators=200, random_state=42) gbrt.fit(X_train, y_train) print(gbrt.score(X_train, y_train)) y_pred = gbrt.predict(X_val) from sklearn.metrics import r2_score, mean_squared_error print(r2_score(y_val, y_pred)) print(np.sqrt(mean_squared_error(y_val, y_pred))) plt.plot(y_val, y_pred, color="red", linewidth=2) df1 = pd.DataFrame({"Actual": y_test, "Predicted": y_pred}) df1.head(25) test["Predictions"] = y_pred.values test["Sales"].plot(figsize=(16, 5), legend=True) test["Predictions"].plot(legend=True) y_pred = gbrt.predict(X_train) print(r2_score(y_val, y_pred)) print(np.sqrt(mean_squared_error(y_val, y_pred))) # Make Prediction CSV File test_pred = gbrt.predict(test[X.columns]) test_pred_inv = np.exp(test_pred) - 1 test_pred_inv # make submission df prediction = pd.DataFrame(test_pred_inv) submission = pd.read_csv("../input/rossmann-store-sales/sample_submission.csv") prediction_df = pd.concat([submission["Id"], prediction], axis=1) prediction_df.columns = ["Id", "Sales"] prediction_df.to_csv("Sample_Submission.csv", index=False) prediction_df.head()
# # Install kaggle-environments # 1. Enable Internet in the Kernel (Settings side pane) # 2. Curl cache may need purged if v0.1.6 cannot be found (uncomment if needed). # !curl -X PURGE https://pypi.org/simple/kaggle-environments # ConnectX environment was defined in v0.1.6 # # Create ConnectX Environment from kaggle_environments import evaluate, make, utils env = make("connectx", debug=True) env.render() # # Create an Agent # To create the submission, an agent function should be fully encapsulated (no external dependencies). # When your agent is being evaluated against others, it will not have access to the Kaggle docker image. Only the following can be imported: Python Standard Library Modules, gym, numpy, scipy, pytorch (1.3.1, cpu only), and more may be added later. # def my_agent(observation, configuration): PLAYER = observation.mark OPPONENT = 3 - PLAYER def make_move(board, move, player): for i in range(5, -1, -1): new_piece = move + 7 * i if board[new_piece] == 0: board[new_piece] = player return board, new_piece return None, None # Illegal move def check_win(board, move, player): if board[move] != 0: # Full Column return False _, new_piece = make_move(board, move, player) # check horizontal spaces for j in range(4): if new_piece + j > 41: break if (new_piece + j) % 7 < 3: continue if ( board[new_piece + j] == player and board[new_piece + j - 1] == player and board[new_piece + j - 2] == player and board[new_piece + j - 3] == player ): return True # check vertical spaces for j in range(4): if new_piece + j * 7 > 41: break if new_piece + j * 7 < 21: continue if ( board[new_piece + j * 7] == player and board[new_piece + j * 7 - 7] == player and board[new_piece + j * 7 - 14] == player and board[new_piece + j * 7 - 21] == player ): return True # check diagonal descending spaces for j in range(4): if new_piece + j * 8 > 41: break if new_piece + j * 8 < 24: continue if ( board[new_piece + j * 8] == player and board[new_piece + j * 8 - 8] == player and board[new_piece + j * 8 - 16] == player and board[new_piece + j * 8 - 24] == player ): return True # check diagonal ascending spaces for j in range(4): if new_piece + j * 6 > 41: break if (new_piece + j * 6) % 7 > 3 or new_piece + j * 6 < 21: continue if ( board[new_piece + j * 6] == player and board[new_piece + j * 6 - 6] == player and board[new_piece + j * 6 - 12] == player and board[new_piece + j * 6 - 18] == player ): return True return False move_order = [3, 2, 4, 1, 5, 0, 6] for i in range(configuration.columns): if check_win(observation.board.copy(), i, PLAYER): return i else: for j in range(configuration.columns): new_board, _ = make_move(observation.board.copy(), i, PLAYER) if ( new_board is not None and i in move_order and check_win(new_board.copy(), j, OPPONENT) ): move_order.remove(i) for i in range(configuration.columns): if check_win(observation.board.copy(), i, OPPONENT): return i assert move_order is not None for i in move_order: if observation.board[i] == 0: return i # dead end from random import choice return choice( [c for c in range(configuration.columns) if observation.board[c] == 0] ) # # Test your Agent env.reset() # Play as the first agent against default "random" agent. env.run([my_agent, "random"]) env.render(mode="ipython", width=500, height=450) # # Debug/Train your Agent # Play as first position against random agent. trainer = env.train([None, "random"]) observation = trainer.reset() while not env.done: my_action = my_agent(observation, env.configuration) print("My Action", my_action) observation, reward, done, info = trainer.step(my_action) print(observation, reward) # env.render(mode="ipython", width=100, height=90, header=False, controls=False) env.render() # # Evaluate your Agent def mean_reward(rewards): return sum(r[0] for r in rewards) / sum(r[0] + r[1] for r in rewards) # Run multiple episodes to estimate its performance. print( "My Agent vs Random Agent:", mean_reward(evaluate("connectx", [my_agent, "random"], num_episodes=1000)), ) print( "My Agent vs Negamax Agent:", mean_reward(evaluate("connectx", [my_agent, "negamax"], num_episodes=1)), ) # # Play your Agent # Click on any column to place a checker there ("manually select action"). # "None" represents which agent you'll manually play as (first or second player). env.play([None, my_agent], width=500, height=450) # # Write Submission File # import inspect import os def write_agent_to_file(function, file): with open(file, "a" if os.path.exists(file) else "w") as f: f.write(inspect.getsource(function)) print(function, "written to", file) write_agent_to_file(my_agent, "submission.py") # # Validate Submission # Play your submission against itself. This is the first episode the competition will run to weed out erroneous agents. # Why validate? This roughly verifies that your submission is fully encapsulated and can be run remotely. # Note: Stdout replacement is a temporary workaround. import sys out = sys.stdout submission = utils.read_file("/kaggle/working/submission.py") agent = utils.get_last_callable(submission) sys.stdout = out env = make("connectx", debug=True) env.run([agent, agent]) print( "Success!" if env.state[0].status == env.state[1].status == "DONE" else "Failed..." )
# ### Bitte denken Sie vor der Abgabe des Links daran, Ihr Notebook mit Klick auf den Button "Save Version" (oben rechts) zu speichern. # Bearbeitungshinweis: Sie sind frei in der Art und Weise, wie Sie die Aufgaben lösen. Sie können z.B. auch weitere Code-Blöcke einfügen. Wenn Sie nicht weiterkommen, fragen Sie im Forum oder konsultieren Sie die üblichen Quellen (Google, Stackoverflow, ChatGPT) import pandas as pd # Importieren des zu bereinigenden Datensatzes. Er enthält Informationen zu Büchern der Nationalbibliothek des Vereinigten Königreichs ("British Library"). df = pd.read_csv( "https://raw.githubusercontent.com/realpython/python-data-cleaning/master/Datasets/BL-Flickr-Images-Book.csv" ) # Zeigen Sie, wie viele Beobachtungen und wie viele Variablen der Datensatz enthält. # Anzahl der Beobachtungen (Zeilen) im Datensatz anzahl_beobachtungen = df.shape[0] # Anzahl der Variablen (Spalten) im Datensatz anzahl_variablen = df.shape[1] # Gib die Ergebnisse aus print("Anzahl der Beobachtungen: ", anzahl_beobachtungen) print("Anzahl der Variablen: ", anzahl_variablen) # Löschen Sie alle Variablen, für die für mehr als 50% der Beobachtungen keine Informationen vorliegen. # Berechne den Prozentsatz fehlender Werte pro Variable fehlende_werte_prozent = df.isnull().mean() * 100 # Wähle die Variablen aus, für die mehr als 50% der Beobachtungen fehlen variablen_mit_zu_vielen_fehlenden_werten = fehlende_werte_prozent[ fehlende_werte_prozent > 50 ].index # Lösche die Variablen aus dem DataFrame df.drop(variablen_mit_zu_vielen_fehlenden_werten, axis=1, inplace=True) # Gib eine Bestätigung aus print("Folgende Variablen wurden gelöscht, da mehr als 50% der Beobachtungen fehlen:") print(variablen_mit_zu_vielen_fehlenden_werten) # Optional: Speichere das bereinigte DataFrame in eine neue Datei df.to_csv( "dein_bereinigter_datensatz.csv", index=False ) # Ersetze 'dein_bereinigter_datensatz.csv' mit dem gewünschten Dateinamen
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings("ignore") # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. train = pd.read_csv("/kaggle/input/digit-recognizer/train.csv") train.shape train.head() test = pd.read_csv("/kaggle/input/digit-recognizer/test.csv") test.shape Y_train = train["label"] X_train = train.drop(labels=["label"], axis=1) plt.figure(figsize=(16, 8)) sns.countplot(Y_train, palette="icefire") plt.title("Number of digit classes") img = X_train.iloc[5].as_matrix() img = img.reshape((28, 28)) plt.imshow(img, cmap="gray") plt.title(train.iloc[0, 0]) plt.axis("off") plt.show() # Normalize X_train = X_train / 255.0 test = test / 255.0 X_train.shape, test.shape # Reshape X_train = X_train.values.reshape(-1, 28, 28, 1) test = test.values.reshape(-1, 28, 28, 1) X_train.shape, test.shape # Label encoding from keras.utils.np_utils import to_categorical Y_train = to_categorical(Y_train, num_classes=10) from sklearn.model_selection import train_test_split X_train, X_val, Y_train, Y_val = train_test_split( X_train, Y_train, test_size=0.1, random_state=2 ) from sklearn.metrics import confusion_matrix import itertools from keras.utils.np_utils import to_categorical from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D from keras.optimizers import RMSprop, Adam from keras.preprocessing.image import ImageDataGenerator from keras.callbacks import ReduceLROnPlateau model = Sequential() model.add( Conv2D( filters=16, kernel_size=(5, 5), padding="Same", activation="relu", input_shape=(28, 28, 1), ) ) model.add(Conv2D(filters=16, kernel_size=(3, 3), padding="Same", activation="relu")) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Dropout(0.20)) model.add(Conv2D(filters=32, kernel_size=(3, 3), padding="Same", activation="relu")) model.add(Conv2D(filters=32, kernel_size=(3, 3), padding="Same", activation="relu")) model.add(MaxPool2D(pool_size=(2, 2), strides=(2, 2))) model.add(Dropout(0.20)) model.add(Conv2D(filters=64, kernel_size=(3, 3), padding="Same", activation="relu")) model.add(Conv2D(filters=64, kernel_size=(3, 3), padding="Same", activation="relu")) model.add(MaxPool2D(pool_size=(2, 2), strides=(2, 2))) model.add(Dropout(0.20)) model.add(Flatten()) model.add(Dense(256, activation="relu")) model.add(Dropout(0.5)) model.add(Dense(256, activation="relu")) model.add(Dropout(0.5)) model.add(Dense(10, activation="softmax")) optimizer = Adam(lr=0.001, beta_1=0.9, beta_2=0.999) model.compile( optimizer=optimizer, loss="categorical_crossentropy", metrics=["accuracy"] ) epochs = 1 batch_size = 50 # data augmentation datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=0.2, zoom_range=0.2, width_shift_range=0.2, height_shift_range=0.2, horizontal_flip=False, vertical_flip=False, ) datagen.fit(X_train) # Fit the model history = model.fit_generator( datagen.flow(X_train, Y_train, batch_size=batch_size), epochs=epochs, validation_data=(X_val, Y_val), steps_per_epoch=X_train.shape[0] // batch_size, ) # Plot the loss and accuracy curves for training and validation plt.plot(history.history["val_loss"], color="b", label="validation loss") plt.title("Test Loss") plt.xlabel("Number of Epochs") plt.ylabel("Loss") plt.legend() plt.show()
# # Latest Corona Virus Data Visulization # ![](https://www.sciencemag.org/sites/default/files/styles/article_main_large/public/images/sn-hepatitis.jpg?itok=HRawWYZy) # ## Introduction # The 2019-nCoV is a contagious coronavirus that hailed from Wuhan, China. This new strain of virus has striked fear in many countries as cities are quarantined and hospitals are overcrowded. This dataset will help us understand how 2019-nCoV is spread aroud the world. # ## Data Loading import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt # Data Visulizations import seaborn as sns # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. file = pd.read_csv( "/kaggle/input/2019-coronavirus-dataset-01212020-01262020/2019_nC0v_20200121_20200126_cleaned.csv" ) file = file.drop(["Unnamed: 0"], axis=1) file.info() # - **Province/State ** - City of virus suspected cases. # - **Country** - Country of virus suspected cases. # - **Date last updated ** - Date of update of patient infected # - **Confirmed** - Confirmation by doctors that this patient is infected with deadly virus # - **Suspected** - Number of cases registered # - **Recovered** - Recovery of the patient # - **Deaths** - Death of the patient due to corna virus. # Some Staticals calculations on dataset round(file.describe()) # first few record of the dataset file.head(10) # Ok, now that we have a glimpse of the data, let's explore them. # ## Data Explorations & Visulizations # ### Relationship Between Confirmend,Suspected,Recovered and Death by Contry and States plt.figure(figsize=(20, 6)) sns.pairplot(file, size=3.5) plt.figure(figsize=(20, 6)) sns.pairplot(file, hue="Country", size=3.5) plt.figure(figsize=(20, 6)) sns.pairplot(file, hue="Province/State", size=3.5) # ### Country and State wise Explorations data = pd.DataFrame( file.groupby(["Country"])["Confirmed", "Suspected", "Recovered", "Deaths"].agg( "sum" ) ).reset_index() data.head(19) data = pd.DataFrame( file.groupby(["Country"])["Confirmed", "Suspected", "Recovered", "Deaths"].agg( "sum" ) ).reset_index() data.sort_values(by=["Confirmed"], inplace=True, ascending=False) plt.figure(figsize=(12, 6)) # title plt.title("Number of Patients Confirmed Infected by Corona Virus, by Country") # Bar chart showing Number of Patients Confirmed Infected by Corona Virus, by Country sns.barplot(y=data["Country"], x=data["Confirmed"], orient="h") # Add label for vertical axis plt.ylabel("Number of Confirmed Patients") data.sort_values(by=["Suspected"], inplace=True, ascending=False) plt.figure(figsize=(12, 6)) # title plt.title("Number of Patients Suspected Infected by Corona Virus, by Country") # Bar chart showing Number of Patients Confirmed Infected by Corona Virus, by Country sns.barplot(y=data["Country"], x=data["Suspected"], orient="h") # Add label for vertical axis plt.ylabel("Number of Suspected Patients") data.sort_values(by=["Recovered"], inplace=True, ascending=False) plt.figure(figsize=(12, 6)) # title plt.title("Number of Patients Recovered from by Corona Virus, by Country") # Bar chart showing Number of Patients Confirmed Infected by Corona Virus, by Country sns.barplot(y=data["Country"], x=data["Recovered"], orient="h") # Add label for vertical axis plt.ylabel("Number of Recovered Patients") data.sort_values(by=["Deaths"], inplace=True, ascending=False) plt.figure(figsize=(12, 6)) # title plt.title("Number of Patients Died by Corona Virus, by Country") # Bar chart showing Number of Patients Confirmed Infected by Corona Virus, by Country sns.barplot(y=data["Country"], x=data["Deaths"], orient="h") # Add label for vertical axis plt.ylabel("Number of Deaths") # As we got the insight that china and some other countries near by china have many cases. # ## Sates of China china = file[file["Country"] == "Mainland China"] china_data = pd.DataFrame( china.groupby(["Province/State"])[ "Confirmed", "Suspected", "Recovered", "Deaths" ].agg("sum") ).reset_index() china_data.head(35) china_data.sort_values(by=["Confirmed"], inplace=True, ascending=False) plt.figure(figsize=(25, 10)) # title plt.title("Number of Patients Confirmed Infected by Corona Virus, by States") # Bar chart showing Number of Patients Confirmed Infected by Corona Virus, by Country sns.barplot(x=china_data["Province/State"], y=china_data["Confirmed"], orient="v") # Add label for vertical axis plt.ylabel("Number of Confirmed Patients") china_data.sort_values(by=["Deaths"], inplace=True, ascending=False) plt.figure(figsize=(25, 10)) # title plt.title("Number of Patients Died by Corona Virus, by States") # Bar chart showing Number of Patients Confirmed Infected by Corona Virus, by Country sns.barplot(x=china_data["Province/State"], y=china_data["Deaths"], orient="v") # Add label for vertical axis plt.ylabel("Number of Deaths")
import pandas as pd import matplotlib.pyplot as plt import seaborn as sns print("success") # # Load train and validation data from Facebook HMD dataset df_train = pd.read_json( "/kaggle/input/facebook-hateful-meme-dataset/data/train.jsonl", lines=True ) df_dev = pd.read_json( "/kaggle/input/facebook-hateful-meme-dataset/data/dev.jsonl", lines=True ) print(df_train.tail()) # # check distribution of data in train and validation dataset # distribution of movies based on certificate df_train["label"].value_counts().plot( kind="bar", figsize=(6, 6), width=0.2, title="Training data" ) print("Distribution of training dataset\n", df_train.label.value_counts(), "\n") print("Distribution of validation dataset\n", df_dev.label.value_counts()) # # Check null values print(df_train.isna().sum()) print("\n\n", df_dev.isna().sum()) # # load pretrained word embedding model from gensim library from gensim.models.word2vec import Word2Vec, KeyedVectors trained = ( "/kaggle/input/nlpword2vecembeddingspretrained/GoogleNews-vectors-negative300.bin" ) wv = KeyedVectors.load_word2vec_format(trained, binary=True) # # word to vector conversion using gensim 'word2vec-google-news-300' model w = wv["good"] print(w) print("\n\nlength of word vector", len(w)) print("\n\n type of word vector model ", type(wv)) print("\n\n word vector type", type(w)) # # Import spacy library for text preprocessing import spacy data = df_train data.head() # # use sapcy 'en_core_web_lg" model fpr preporocessing import spacy nlp = spacy.load("en_core_web_lg") # # tokenize each word in a sentence and apply lemmatization on it, remove punctuation, space, brackets if any def preprocess(text): doc = nlp(text) filtered_token = [] for token in doc: if token.is_punct or token.is_space or token.is_bracket: continue token = token.lemma_ filtered_token.append(token.text) return filtered_token # # example showing text preprocessing tokens = preprocess( "My best friend Anu, (who is three months older than me) is coming to my house tonight!!!." ) tokens # # Apply preprocessing on the text column of training dataset data["processed_text"] = data["text"].apply(lambda x: preprocess(x)) data # # use gensim pretrained model to vectorize each token in the preprocessed text and take the average of vectors to keep the dimension same import numpy as np def gensim_vector(token): vec_size = wv.vector_size wv_final = np.zeros(vec_size) # take a vector consisting '0s' having size of wv count = 1 for t in token: if t in wv: count += 1 wv_final += wv[t] # vectorize word and add to previous value return wv_final / count # take the average # # Apply the vectorization process on processed text column of the training dataset data["text_vector"] = data["processed_text"].apply(gensim_vector) data.head() len(data.text_vector.iloc[0])
# Import libraries import numpy as np # linear algebra import re import pandas as pd import os import re import seaborn as sns from statistics import median from sklearn.model_selection import train_test_split, KFold, cross_val_score from sklearn.linear_model import LogisticRegression for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # ## Cleaning the Data # I'll start by reading in and previewing the dataset to get a sense of how it's structured. train = pd.read_csv("/kaggle/input/forest-frenzy/train.csv") train.head(20) train.describe() train.info() # #### Some intial thoughts upon previewing the data: # * With each individual soil and wilderness type in a separate binary field, this makes for very high dimensionality in the data. # * Looking at the output from the describe function, there doesn't look to be any notable outliers. # To reduce the dimensionality, I will transform each soil type into a catagorical field where each value corresponds to the soil type number. I will do the same for wilderness type. def soil_type(df): # Get list of all soil type binary columns soil_cols = [col for col in df if col.startswith("soil")] for a in soil_cols: # Get soil type number contained in the column name soil_num = re.findall("[-+]?[.]?[\d]+(?:,\d\d\d)*[\.]?\d*(?:[eE][-+]?\d+)?", a) # Replace values of "1" with number of soil type df[a] = df[a].replace(1, int(soil_num[0])) # Create new field combining all soil type numbers df["soil_type"] = df[soil_cols].sum(1) # Drop old soil type variables from data frame df = df.drop(soil_cols, axis=1, inplace=True) soil_type(train) train.head() def wilderness_area(df): # Get list of all wilderness area designation binary columns wilderness_cols = [col for col in df if col.startswith("wilderness")] # Iterate through columns and replace values of "1" with the wilderness area designation for a in wilderness_cols: wilderness_num = re.findall( "[-+]?[.]?[\d]+(?:,\d\d\d)*[\.]?\d*(?:[eE][-+]?\d+)?", a ) df[a] = df[a].replace(1, int(wilderness_num[0])) # Create new field combining all wilderness area designations df["wilderness_area"] = df[wilderness_cols].sum(1) # Drop old wilderness area columns from data frame df = df.drop(wilderness_cols, axis=1, inplace=True) wilderness_area(train) # Re order data frame columns train = train[ [ "elevation", "aspect", "slope", "horizontal_distance_to_hydrology", "vertical_distance_to_hydrology", "horizontal_distance_to_roadways", "hillshade_9am", "hillshade_noon", "hillshade_3pm", "horizontal_distance_to_fire_points", "soil_type", "wilderness_area", "cover_type", ] ] train.head() # # Exploring the Data and Variable Selection # Now that I've done a bit of data clean up, I'll do some exploratory analysis before choosing my variables. I'd like to get a sense of how the outcome variable, 'cover_type', is distributed. Let's view it in a bar chart. location_plot = sns.countplot(x=train["cover_type"]) location_plot.set_xticklabels(location_plot.get_xticklabels(), rotation=40, ha="right") # The overwhelming majority of the records have a cover type of 1 or 2. This may pose an accuracy challenge when I fit my models using K-folds. With far fewer observations for the other cover types, there will be less of a sample in each of the folds, making them potentially difficult to predict. # # Let's take a look at the variable correlation: # Create correlation matrix corr = train.corr() sns.heatmap( corr, xticklabels=corr.columns, yticklabels=corr.columns, annot=True, annot_kws={"fontsize": 8}, cmap=sns.diverging_palette(220, 20, as_cmap=True), ) # My observations from the correlation matrix: # * **hillshade_3pm** has a significant negative correlation with **hillshade_9am** and moderate positive correlation with **hillshade_noon**. # * **aspect** has a moderate negative correlation with **hillshade_9am** and moderate positive correlation with **hillshade_3pm**. # * **elevation** has a moderate positive correlation with **soil** # Before finalizing my predictors, let's view a scatterplot matrix: # Given these findings, I will omit **hillshade_3pm**, **aspect**, and **elevation** from my predictors. # # Create scatterplot matrix sns.set_theme(style="ticks") sns.pairplot(train, diag_kind="kde") # * With the exception of **hillshade_3pm** all variables have some sort of skewed distribution, which violates a few of the assumptions of the model's I'll be testing. # * Looking at the scatter plots, there may be some potential collinearity between some of the variables. However, any potential collinearity doesnt look to be too strong, so I won't address this for now. # # Variable selection and k-folds parameters # Given the from my EDA findings, I will omit **hillshade_3pm**, **aspect**, and **elevation** from my predictors. Let's create the dataframe for the training set: # Create data frame for classification models x_train = train[ [ "elevation", "slope", "horizontal_distance_to_hydrology", "vertical_distance_to_hydrology", "horizontal_distance_to_roadways", "hillshade_9am", "hillshade_noon", "horizontal_distance_to_fire_points", "soil_type", "wilderness_area", ] ] y_train = train[["cover_type"]] y_train = y_train.values.ravel() # I've decided to use 10 folds for my k-folds cross validation. The data set seems large enough to benefit from 10 folds vs just using 5. I'll write a function that computes the macro f score and validates the models using 10 folds: from sklearn.model_selection import cross_val_score, cross_val_predict from sklearn.metrics import f1_score # Run k-folds cross validation with 10 folds # Return macro F1 Score def macro_f1(model): # Perform 10-fold cross validation and make predictions for each fold y_pred = cross_val_predict(model, x_train, y_train, cv=10) # Get macro F1 Score return f1_score(y_train, y_pred, average="macro") # # Logistic Regression from sklearn.linear_model import LogisticRegression # Create a logistic regression model MLRmodel = LogisticRegression(multi_class="multinomial", solver="saga") macro_f1(MLRmodel) # # Linear Discriminant Analysis from sklearn.discriminant_analysis import LinearDiscriminantAnalysis LDAmodel = LinearDiscriminantAnalysis() macro_f1(LDAmodel) # # Quadratic Discriminant Analysis from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis as qda QDA_model = qda() macro_f1(QDA_model) # # Naive Bayes from sklearn.naive_bayes import GaussianNB NB_model = GaussianNB() macro_f1(NB_model) # # K-Nearest Neighbors from sklearn.neighbors import KNeighborsClassifier KNN_model = KNeighborsClassifier(n_neighbors=4) macro_f1(KNN_model) # # Model Comparison Discussion # Let's compare the macro f1 scores for all of the models and discuss: # View macro f1 scores of each model from lowest to highest score_compare = { "model": [ "Logistic Regression", "Linear Discriminant Analysis", "Quadratic Discriminant Analysis", "Naive Bayes", "K-Nearest Neighbors", ], "Macro F1 Score": [ 0.31479793153367874, 0.4435040757853047, 0.001330914178786138, 0.45683416522775644, 0.8779698848458111, ], } df = pd.DataFrame(data=score_compare) df.sort_values(by=["Macro F1 Score"]) # # **K-Nearest Neighbors** : My theory is that KNN performed the best since it doesn't make any assumtions about the decision boundary, making it a much more flexible model option. I think that the data having a big spatial context also majorly helped KNN perform well since it's "nearest neighbors" in the real world are likely to have similar attributes, making the classification method more accurate. # **Naive Bayes** : Naive bayes performed the second best, but still did not get a great score. NB expects predictors to be independent from each other, and We can not confidently assume that. Though I tried to account for this when evaluating the correlation matrix, this assumption may be the reason for it's poor performance. # **Linear Discriminant Analysis** : Since LDA assumes that the predictors are normally distributed for each class, common variance in each class and assumes a linear decision boundary, it makes sense why it did not perform well. The data are too complex to make those assumptions. # **Logistic Regression** : Logistic regression seems too simple of models for the complexity of the dataset, as it has a linear decision boundary. The decision boundaries of the data likely non-linear, so it's not suprising that the model underfits. # **Quadratic Discriminant Analysis** : I expected QDA to perform much better than it did, considering QDA is usually performs well with larger datasets and allows for more variance between classes. However, the data are more skewed towards cover types 1 and 2, and there are much fewer observations for the other cover type classes. QDA doesn't assume a linear decision boundary, but with the lack of observations for the other cover type classes and the complexity of the data, it makes sense that it did not perform as well as KNN. Still, not sure why it resulted in the lowest score of all models. # # Cleaning and running model on test set # I will run the same data cleaning tasks for the test set as I did for the training set. Then I will fit a new KNN model to all of the training set, then use this model to predict on the test set. test = pd.read_csv("/kaggle/input/forest-frenzy/test.csv") # Create single column for soil type catagory soil_type(test) # Create single column for wilderness area type catagory wilderness_area(test) x_test = test[ [ "elevation", "slope", "horizontal_distance_to_hydrology", "vertical_distance_to_hydrology", "horizontal_distance_to_roadways", "hillshade_9am", "hillshade_noon", "horizontal_distance_to_fire_points", "soil_type", "wilderness_area", ] ] # Fit k-nearest neighbors to all of training data KNN_model = KNeighborsClassifier(n_neighbors=4) KNN_model.fit(x_train, y_train) # Run k-nearest neighbors model on test set test_predictions = KNN_model.predict(x_test) # Create submission data frame and preview submission = pd.DataFrame({"id": test["id"], "cover_type": test_predictions}) submission.head() # Create submission file submission.to_csv("submission.csv", index=False)
# ![2019-11-07%20%E6%96%B0%E7%AB%B9%E7%B6%A0%E5%85%89%E7%AB%99%20Hsinchu%20Green%20Light%20Station%20%28NI%20USB-6210%29%201%20-%20Analysis.png](attachment:2019-11-07%20%E6%96%B0%E7%AB%B9%E7%B6%A0%E5%85%89%E7%AB%99%20Hsinchu%20Green%20Light%20Station%20%28NI%20USB-6210%29%201%20-%20Analysis.png) # # Quake Forecast by Air Voltage Signals # ### Dyson Lin, Founder & CEO of Taiwan Quake Forecast Institute # ### 2020-02-12 05:59 UTC+8 # I measure air voltage signals to predict quakes. # I also interpret IRIS signals to predict quakes. # I have 30+ quake forecast stations around the world. # I accurately predicted a lot of big quakes around the world. # Recently, I accurately predicted two big quakes in Turkey. # That made me famous in Turkey within a few days. # I will develop some AI models to predict quakes automatically. import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output.
# # Start with Kaggle comps: Future sales # The aim of this notebook is to predict monthly sales of a series of products from the C1 company. This includes working with time-series and managing considerably large datasets, and we will need some advanced techniques to deal with them. # Main workflow of the algorithm: # 1. Step 1. Load data # 2. Step 2. Data exploration (EDA) # 3. Step 3. Missings cleaning # 4. Step 4. Feature engineering # 5. Step 5. Mean encoding and generation of lag # 6. Step 6. Data preparation and prediction (LGBoost) # Let's start by importing the libraries: import numpy as np import pandas as pd import sklearn import matplotlib.pyplot as plt import seaborn as sns import lightgbm as lgb from xgboost import XGBRegressor from sklearn.model_selection import cross_val_score from xgboost import plot_importance import time import datetime import re from itertools import product from math import isnan import scipy.stats as stats import gc import pickle import os print(os.listdir("../input")) # DISCLAIMER: Some procedures and ideas (in particular feature couples to extract lag and duplicated russian shop_names) in this kernel have been influenced by the following two kernels: # https://www.kaggle.com/kyakovlev/1st-place-solution-part-1-hands-on-data # https://www.kaggle.com/dlarionov/feature-engineering-xgboost # ## Step1. Load data # This step consists on several procedures, not just data loading as usually: # * Read all data files provided by Kaggle competition # * Display load data # * Join train/test data and fill some values as the month of the test data # * Define a function to downgrade data types (to deal with massive arrays) for future use # * Fill some missings with 0s # * Generate support flag features (in_test, is_new_item) # Load input files sales_train = pd.read_csv( "../input/competitive-data-science-predict-future-sales/sales_train.csv", parse_dates=["date"], infer_datetime_format=False, dayfirst=True, ) test = pd.read_csv("../input/competitive-data-science-predict-future-sales/test.csv") item_categories = pd.read_csv( "../input/competitive-data-science-predict-future-sales/item_categories.csv" ) items = pd.read_csv("../input/competitive-data-science-predict-future-sales/items.csv") shops = pd.read_csv("../input/competitive-data-science-predict-future-sales/shops.csv") # Take a brief look on the content print("Sales_train") display(sales_train.head(10)) print("Test") display(test.head(10)) print("Item_categories") display(item_categories.head(10)) print("Items") display(items.head(10)) print("Shops") display(shops.head(1)) # Auxiliar function to reduce data storage def downcast_dtypes(df): # Columns to downcast float_cols = [c for c in df if df[c].dtype == "float64"] int_cols = [c for c in df if df[c].dtype == "int64"] # Downcast df[float_cols] = df[float_cols].astype(np.float16) df[int_cols] = df[int_cols].astype(np.int16) return df # Prepare the test set to merge it with sales_train test["date_block_num"] = 34 test["date"] = datetime.datetime(2015, 11, 1, 0, 0, 0) # Join train and test sets. Fill date_block_num = 34 for test rows all_data = pd.concat([sales_train, test], axis=0, sort=False) all_data["date_block_num"].fillna(34, inplace=True) # Create flag (in_test) for month=34 all_data["in_test"] = 0 all_data.loc[all_data.date_block_num == 34, "in_test"] = 1 # Create a flag (is_new_item) for elements in test not in sales_train new_items = set(test["item_id"].unique()) - set(sales_train["item_id"].unique()) all_data.loc[all_data["item_id"].isin(new_items), "is_new_item"] = 1 # Fill missings with 0 all_data.fillna(0, inplace=True) all_data = downcast_dtypes(all_data) all_data = all_data.reset_index() display(all_data.head(10)) print("Train set size: ", len(sales_train)) print("Test set size: ", len(test)) print("Item categories set size: ", len(item_categories)) print("Items set size: ", len(items)) print("Shops set size: ", len(shops)) print("All data size: ", len(all_data)) print("Duplicates in train dataset: ", len(sales_train[sales_train.duplicated()])) # ## Step 2. Data exploration (EDA) # In the previous step, we had the opportunity to see how data is structured and which types of data are we dealing with. However, we haven't analysed the existance of outliers, abnormal values (either extremely high or low), duplicate categorical values, etc. That's what we will study in the following code blocks. # A brief summary of our EDA: # * Analyze extreme values in item_price and item_cnt_day # * Deal with the outliers (extremely large values and negative counts) # * Find and deal with duplicates in shop_name # * Fix negative item_prices # * Create an enriched dataset for further exploration (optional but recommended). Includes some feature engineering # * Analyze sells by price categories # * Analyze monthly sales # * Create a correlation matrix # Describe merged data to look for inusual values display(all_data.describe()) print("Item_price outlier: ") print(all_data.loc[all_data["item_price"].idxmax()]) print("\nItem_cnt_day maximum: ") print(all_data.loc[all_data["item_cnt_day"].idxmax()]) f1, axes = plt.subplots(1, 2, figsize=(15, 5)) f1.subplots_adjust(hspace=0.4, wspace=0.2) sns.boxplot(x=all_data["item_price"], ax=axes[0]) sns.boxplot(x=all_data["item_cnt_day"], ax=axes[1]) print(shops["shop_name"].unique()) # Conclusions by now: # 1. There are negative prices and counts (errors, returns?) # 2. Item_id = 6066 has an abnormal large price (item_price = 307980), and is only sold one time # 3. 2 items have very large item_cnt_day when compared with the other products # 4. Shop_name contains the shops' city names (Москва, Moscow). An additional feature can be obtained # 5. Якутск city is expressed as Якутск and !Якутск. This could be fixed # 6. Shop_id = 0 & 1 are the same than 57 & 58 but for фран (Google translator => fran, maybe franchise). Shop_id = 10 & 11 are the same # Let's tackle these outliers, duplicates and negative numbers. # Drop outliers and negative counts (see graphs below) all_data = all_data.drop(all_data[all_data["item_price"] > 100000].index) all_data = all_data.drop(all_data[all_data["item_cnt_day"] > 1100].index) sales_train = sales_train.drop(sales_train[sales_train["item_price"] > 100000].index) sales_train = sales_train.drop(sales_train[sales_train["item_cnt_day"] > 1100].index) # There are shops with same address and almost same name in russian. # Unify duplicated shops (see https://www.kaggle.com/dlarionov/feature-engineering-xgboost) all_data.loc[all_data["shop_id"] == 11, "shop_id"] = 10 all_data.loc[all_data["shop_id"] == 57, "shop_id"] = 0 all_data.loc[all_data["shop_id"] == 58, "shop_id"] = 1 sales_train.loc[sales_train["shop_id"] == 11, "shop_id"] = 10 sales_train.loc[sales_train["shop_id"] == 57, "shop_id"] = 0 sales_train.loc[sales_train["shop_id"] == 58, "shop_id"] = 1 test.loc[test["shop_id"] == 11, "shop_id"] = 10 test.loc[test["shop_id"] == 57, "shop_id"] = 0 test.loc[test["shop_id"] == 58, "shop_id"] = 1 # Instead of deleting negative price items, replace them with the median value for the impacted group: all_data.loc[all_data["item_price"] < 0, "item_price"] = all_data[ (all_data["shop_id"] == 32) & (all_data["item_id"] == 2973) & (all_data["date_block_num"] == 4) & (all_data["item_price"] > 0) ].item_price.median() print("Raw data length: ", len(sales_train), ", post-outliers length: ", len(all_data)) # Now, an enriched matrix with additional features will be created just for data exploration purposes. This may proof useful later on to think about how to structure our data and have a general view of our datasets. # **Disclaimer**: This is completely optional and techniques used to enrich data should be considered as feature engineering. However, while developping this kernel I found it useful to figure out which way to deal with time-series data. ts = time.time() # Enrich data with additional features and aggregates for data exploration purposes def enrich_data(all_data, items, shops, item_categories): # Aggregate at month level. Calculate item_cnt_month and item_price (median) count_data = ( all_data.groupby( ["shop_id", "item_id", "date_block_num", "in_test", "is_new_item"] )["item_cnt_day"] .sum() .rename("item_cnt_month") .reset_index() ) price_data = ( all_data.groupby( ["shop_id", "item_id", "date_block_num", "in_test", "is_new_item"] )["item_price"] .median() .rename("item_price_median") .reset_index() ) all_data = pd.merge( count_data, price_data, on=["shop_id", "item_id", "in_test", "date_block_num", "is_new_item"], how="left", ) # Extract day, month, year # all_data['day'] = all_data['date'].dt.day # all_data['month'] = all_data['date'].dt.month # all_data['year'] = all_data['date'].dt.year # Add item, shop and item_category details all_data = all_data.join(items, on="item_id", rsuffix="_item") all_data = all_data.join(shops, on="shop_id", rsuffix="_shop") all_data = all_data.join( item_categories, on="item_category_id", rsuffix="_item_category" ) all_data = all_data.drop( columns=[ "item_id_item", "shop_id_shop", "item_category_id_item_category", "item_name", ] ) # Extract main category and subcategory from category name categories_split = all_data["item_category_name"].str.split("-") all_data["main_category"] = categories_split.map(lambda row: row[0].strip()) all_data["secondary_category"] = categories_split.map( lambda row: row[1].strip() if (len(row) > 1) else "N/A" ) # Extract cities information from shop_name. Replace !Якутск by Якутск since it's the same city all_data["city"] = all_data["shop_name"].str.split(" ").map(lambda row: row[0]) all_data.loc[all_data.city == "!Якутск", "city"] = "Якутск" # Encode cities and categories encoder = sklearn.preprocessing.LabelEncoder() all_data["city_label"] = encoder.fit_transform(all_data["city"]) all_data["main_category_label"] = encoder.fit_transform(all_data["main_category"]) all_data["secondary_category_label"] = encoder.fit_transform( all_data["secondary_category"] ) all_data = all_data.drop( [ "city", "shop_name", "item_category_name", "main_category", "secondary_category", ], axis=1, ) # Create price categories (0-5, 5-10, 10,20, 20,30, 30-50, 50-100, >100) def price_category(row): if row.item_price_median < 5.0: val = 1 elif row.item_price_median < 10.0: val = 2 elif row.item_price_median < 100.0: val = 3 elif row.item_price_median < 200.0: val = 4 elif row.item_price_median < 300.0: val = 5 elif row.item_price_median < 500.0: val = 6 elif row.item_price_median < 1000.0: val = 7 elif row.item_price_median > 1000.0: val = 8 else: val = 0 return val all_data["price_cat"] = all_data.apply(price_category, axis=1) # Downgrade numeric data types all_data = downcast_dtypes(all_data) # Performance test dropping month_cnt # all_data.drop('item_cnt_month', axis=1, inplace=True) return all_data all_data2 = enrich_data(all_data, items, shops, item_categories) items_prices = all_data2[ ["item_id", "shop_id", "date_block_num", "item_price_median", "price_cat"] ] time.time() - ts all_data2.head() # Alright, now we have an advanced view of the kind of data we are dealing with. This will help us to define how to wotk with time-series in the following steps. But first, let's finish our exploratory analysis by: # * Study monthly sales by month # * Study monthly sales by price category # * Look at the correlation matrix of our enriched data. # Analyze monthly sells for all shops all_data2["item_cnt_month"] = all_data2["item_cnt_month"].astype(np.float64) count_monthly_sales = all_data2.groupby("date_block_num").item_cnt_month.sum(axis=0) f = plt.figure() ax = f.add_subplot(111) plt.plot(count_monthly_sales) plt.axvline(x=12, color="grey", linestyle="--") # Vertical grey line for December month plt.axvline(x=24, color="grey", linestyle="--") plt.xlabel("date_block_num") plt.title("Monthly total sells") plt.show() # Analyze monthly sells for each price category count_price_cat_sales = all_data2.groupby("price_cat").item_cnt_month.sum(axis=0) f = plt.figure() ax = f.add_subplot(111) plt.plot(count_price_cat_sales) plt.xticks( [0, 1, 2, 3, 4, 5, 6, 7, 8], [ "others", "0<p<5₽", "5<p<10₽", "10<p<100₽", "100<p<200₽", "200<p<300₽", "300<p<500₽", "500<p<1000₽", ">1000₽", ], rotation="45", ) plt.title("Price category sells") plt.show() # Looks like C1 company has a decreasing tendency on sales. There are some reasons for this behavior (depreciation of the ruble), but we don't need to tackle this explicitly for our prediction purposes since the algorithm will detect the tendency automatically from data. # Additionally, we see there's an increasing sales count on items with higher prices, but this could be due to our bin size. Just take it into account. # Correlation matrix for monthly sales all_data2 = all_data2[all_data2["date_block_num"] < 34] # all_data2 = all_data2.drop(columns=['in_test', 'is_new_item'], inplace=True) # Correlation matrix f = plt.figure(figsize=(9, 5)) plt.matshow(all_data2.corr(), fignum=f.number) plt.xticks(range(all_data2.shape[1]), all_data2.columns, fontsize=10, rotation=90) plt.yticks(range(all_data2.shape[1]), all_data2.columns, fontsize=10) cb = plt.colorbar() cb.ax.tick_params(labelsize=14) # Not surprising correlations, but a good look-up result in case we find something interesting later on. # # Step 3. Missings cleaning # Since we filled missing values with 0s, we expect little or no missings in this section. However, it's always a good practice to check out before feature engineering and detection. # Missings count. There are no missings (remind that we filled all missings on the beginning of this kernel with 0s) missings_count = {col: all_data[col].isnull().sum() for col in all_data.columns} missings = pd.DataFrame.from_dict(missings_count, orient="index") print(missings.nlargest(30, 0)) # # Step 4. Feature engineering # Steps 4 and 5 are those in which we will need to be more incisive. Since data is strongly dependent on time, it's important to define how to work with it. # Here we have two options: # * Do we create a row for each item/shop pair and then create a column for each month? # * Or it could be better to generate one different row for each item/shop/date_block_num sale # You can try the first option to obtain some decent results (you can see the results here https://www.kaggle.com/saga21/start-with-kaggle-comps-future-sales-v0), but we can make a step further and decide to structure data by item/shop/date_month. With this, we will have a row for each monthly sale, which will help the algorithm to predict future data (and not just predict an additional column for the new month). # What we will do: # * Generate all combinations of existent item/shop/date_block_num (cartesian product) from the training set # * Revenue. New feature from item_price * item_cnt_day # * Item_cnt_month. New feature from grouping item/shops by month and summing the item_cnt_day # * Join test data # * Join item, shop and item category details (see additional files provided by the competition) # * Month. Numeric month value from 1 to 12 # * Days. Number of days in each month (no leap years) # * Main_category. From item categories, extract the principal type # * Secondary_category. From item categories, extract the secondary type # * City. Extract the city from shop_name # * Shop_type. Extract the type from shop_name # * Encode categorical columns: main_category, secondary_category, city and shop_type ts = time.time() # Extend all_data for all item/shop pairs. def add_all_pairs(sales_train, test, items, shops, item_categories, items_prices): tmp = [] for month in range(34): sales = sales_train[sales_train.date_block_num == month] tmp.append( np.array( list(product([month], sales.shop_id.unique(), sales.item_id.unique())), dtype="int16", ) ) tmp = pd.DataFrame(np.vstack(tmp), columns=["date_block_num", "shop_id", "item_id"]) tmp["date_block_num"] = tmp["date_block_num"].astype(np.int8) tmp["shop_id"] = tmp["shop_id"].astype(np.int8) tmp["item_id"] = tmp["item_id"].astype(np.int16) tmp.sort_values(["date_block_num", "shop_id", "item_id"], inplace=True) sales_train["revenue"] = sales_train["item_price"] * sales_train["item_cnt_day"] group = sales_train.groupby(["date_block_num", "shop_id", "item_id"]).agg( {"item_cnt_day": ["sum"]} ) group.columns = ["item_cnt_month"] group.reset_index(inplace=True) tmp = pd.merge(tmp, group, on=["date_block_num", "shop_id", "item_id"], how="left") tmp["item_cnt_month"] = ( tmp["item_cnt_month"].fillna(0).clip(0, 20).astype(np.float16) ) tmp = pd.concat( [tmp, test], ignore_index=True, sort=False, keys=["date_block_num", "shop_id", "item_id"], ) # price_data = tmp.groupby(['shop_id', 'item_id', 'date_block_num', 'in_test', 'is_new_item'])['item_price'].median().rename('item_price_median').reset_index() # tmp = tmp.join(price_data, on=[[]]) # Add item, shop and item_category details tmp = tmp.join(items, on="item_id", rsuffix="_item") tmp = tmp.join(shops, on="shop_id", rsuffix="_shop") tmp = tmp.join(item_categories, on="item_category_id", rsuffix="_item_category") tmp = pd.merge( tmp, items_prices, on=["date_block_num", "shop_id", "item_id"], how="left" ) tmp = tmp.drop( columns=[ "item_id_item", "shop_id_shop", "item_category_id_item_category", "item_name", ] ) # Extract month, year & nºdays in each month tmp["month"] = tmp["date_block_num"] % 12 tmp["days"] = tmp["month"].map( pd.Series([31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]) ) # Extract main category and subcategory from category name categories_split = tmp["item_category_name"].str.split("-") tmp["main_category"] = categories_split.map(lambda row: row[0].strip()) tmp["secondary_category"] = categories_split.map( lambda row: row[1].strip() if (len(row) > 1) else "N/A" ) # Extract cities information from shop_name. Replace !Якутск by Якутск since it's the same city. tmp["city"] = tmp["shop_name"].str.split(" ").map(lambda row: row[0]) tmp.loc[tmp.city == "!Якутск", "city"] = "Якутск" tmp["shop_type"] = tmp["shop_name"].apply( lambda x: "мтрц" if "мтрц" in x else "трц" if "трц" in x else "трк" if "трк" in x else "тц" if "тц" in x else "тк" if "тк" in x else "NO_DATA" ) # Encode cities and categories encoder = sklearn.preprocessing.LabelEncoder() tmp["city_label"] = encoder.fit_transform(tmp["city"]) tmp["shop_type_label"] = encoder.fit_transform(tmp["shop_type"]) tmp["main_category_label"] = encoder.fit_transform(tmp["main_category"]) tmp["secondary_category_label"] = encoder.fit_transform(tmp["secondary_category"]) tmp = tmp.drop( [ "ID", "city", "date", "shop_name", "item_category_name", "main_category", "secondary_category", ], axis=1, ) # Downgrade numeric data types tmp = downcast_dtypes(tmp) tmp.fillna(0, inplace=True) return tmp all_pairs = add_all_pairs( sales_train, test, items, shops, item_categories, items_prices ) time.time() - ts # Fine, so we have extracted some nice additional features and now our sales have one row for each item/shop/date_block_num. It looks promising. # # Step 5. Mean encoding # LGB algorithm read rows to extract information from them and predict the target value. We need to provide the algorithm with the historical information for each item, and this is obtained through lags. Lags are essentially columns with information from the past. For example, a lag of 1 month from item_cnt_month would inform about the last month sales for this item. # What we will add: # * **Downgrade** (again) data to deal with large arrays # * **Support functions**. Create some support functions for lag generation; calculate_lag, prepare_lag_columns and prepare_lag_columns_price. This allows to calculate automatic lags for several columns in a readable code-friendly style. As a rule of thumb: if you need to calculate the same non-trivial computation more than once, creater a function instead # * **Compute lags**. Lags of monthly sales grouped by several column combinations (how many past sales by shop and category, or by secondary category, etc) # * **Price_trend**. Track item_prices changes to account for price fluctuations (discounts) # * **Drop columns**. Some features were generated in order to compute another one. Drop those that are not useful any more or may introduce data leaking (for example, item_price is strongly correlated to sales, since items that were never sell have no price informed). ts = time.time() # First downgrade some columns (still more) to fasten the mean encoding all_pairs["date_block_num"] = all_pairs["date_block_num"].astype(np.int8) all_pairs["city_label"] = all_pairs["city_label"].astype(np.int8) all_pairs["item_cnt_month"] = all_pairs["item_cnt_month"].astype(np.int8) all_pairs["item_category_id"] = all_pairs["item_category_id"].astype(np.int8) all_pairs["main_category_label"] = all_pairs["main_category_label"].astype(np.int8) all_pairs["secondary_category_label"] = all_pairs["secondary_category_label"].astype( np.int8 ) # Function to calculate lag over different columns. Lag gives information about a variable from different past times def calculate_lag(df, lag, column): ancilla = df[["date_block_num", "shop_id", "item_id", column]] for l in lag: shift_ancilla = ancilla.copy() shift_ancilla.columns = [ "date_block_num", "shop_id", "item_id", column + "_lag_" + str(l), ] shift_ancilla["date_block_num"] += l df = pd.merge( df, shift_ancilla, on=["date_block_num", "shop_id", "item_id"], how="left" ) return df # Function to specify lag columns,compute item_cnt aggregate (mean) and call calculate_lag def prepare_lag_columns(df, lag, column_list, name): ancilla = df.groupby(column_list).agg({"item_cnt_month": ["mean"]}) ancilla.columns = [name] ancilla.reset_index(inplace=True) df = pd.merge(df, ancilla, on=column_list, how="left") df[name] = df[name].astype(np.float16) df = calculate_lag(df, lag, name) df.drop([name], axis=1, inplace=True) return df # Auxiliar function to compute item_price groups (for trends). Lags will be calculated post-preparation def prepare_lag_columns_price(df, column_list, name): ancilla = sales_train.groupby(column_list).agg({"item_price": ["mean"]}) ancilla.columns = [name] ancilla.reset_index(inplace=True) df = pd.merge(df, ancilla, on=column_list, how="left") df[name] = df[name].astype(np.float16) return df # Let's compute all lags for sells. Arguments of the function are :(df, lag_list, column_list, name of the column) all_pairs = calculate_lag(all_pairs, [1, 2, 3, 4, 5, 6, 12], "item_cnt_month") all_pairs = prepare_lag_columns( all_pairs, [1], ["date_block_num", "item_id"], "total_avg_month_cnt" ) all_pairs = prepare_lag_columns( all_pairs, [1, 2, 3, 4, 5, 6, 12], ["date_block_num"], "item_avg_month_cnt" ) all_pairs = prepare_lag_columns( all_pairs, [1, 2, 3, 4, 5, 6, 12], ["date_block_num", "shop_id"], "shop_avg_month_cnt", ) all_pairs = prepare_lag_columns( all_pairs, [1], ["date_block_num", "city_label"], "city_avg_month_cnt" ) all_pairs = prepare_lag_columns( all_pairs, [1], ["date_block_num", "item_id", "city_label"], "item_city_avg_month_cnt", ) all_pairs = prepare_lag_columns( all_pairs, [1], ["date_block_num", "item_category_id"], "category_id_avg_month_cnt" ) all_pairs = prepare_lag_columns( all_pairs, [1], ["date_block_num", "main_category_label"], "main_category_avg_month_cnt", ) all_pairs = prepare_lag_columns( all_pairs, [1], ["date_block_num", "secondary_category_label"], "secondary_category_avg_month_cnt", ) all_pairs = prepare_lag_columns( all_pairs, [1], ["date_block_num", "shop_id", "item_category_id"], "shop_category_id_avg_month_cnt", ) all_pairs = prepare_lag_columns( all_pairs, [1], ["date_block_num", "shop_id", "main_category_label"], "shop_main_category_avg_month_cnt", ) all_pairs = prepare_lag_columns( all_pairs, [1], ["date_block_num", "shop_id", "secondary_category_label"], "shop_secondary_category_avg_month_cnt", ) # For item_price the procedure is more tricky. Compute both item price and monthly price in order to compute the trend. all_pairs = prepare_lag_columns_price(all_pairs, ["item_id"], "item_avg_price") all_pairs = prepare_lag_columns_price( all_pairs, ["date_block_num", "item_id"], "item_avg_price_month" ) all_pairs = calculate_lag(all_pairs, [1, 2, 3, 4, 5, 6], "item_avg_price_month") for lag in [1, 2, 3, 4, 5, 6]: all_pairs["trend_price_lag_" + str(lag)] = ( all_pairs["item_avg_price_month_lag_" + str(lag)] - all_pairs["item_avg_price"] ) / all_pairs["item_avg_price"] def clean_trend_price_lag(row): for l in [1, 2, 3, 4, 5, 6]: if row["trend_price_lag_" + str(l)]: return row["trend_price_lag_" + str(l)] return 0 # For some reason my kernel expodes when using df.apply() for all rows, so I had to segment it dummy_1, dummy_2, dummy_3, dummy_4 = [], [], [], [] dummy_1 = pd.DataFrame(dummy_1) dummy_2 = pd.DataFrame(dummy_2) dummy_3 = pd.DataFrame(dummy_3) dummy_4 = pd.DataFrame(dummy_4) dummy_1 = all_pairs[:3000000].apply(clean_trend_price_lag, axis=1) dummy_2 = all_pairs[3000000:6000000].apply(clean_trend_price_lag, axis=1) dummy_3 = all_pairs[6000000:9000000].apply(clean_trend_price_lag, axis=1) dummy_4 = all_pairs[9000000:].apply(clean_trend_price_lag, axis=1) all_pairs["trend_price_lag"] = pd.concat([dummy_1, dummy_2, dummy_3, dummy_4]) all_pairs["trend_price_lag"] = all_pairs["trend_price_lag"].astype(np.float16) all_pairs["trend_price_lag"].fillna(0, inplace=True) # all_pairs.drop(['item_avg_price','item_avg_price_month'], axis=1, inplace=True) for i in [1, 2, 3, 4, 5, 6]: all_pairs.drop( ["item_avg_price_month_lag_" + str(i), "trend_price_lag_" + str(i)], axis=1, inplace=True, ) all_pairs.drop("shop_type", axis=1, inplace=True) time.time() - ts # Ok, that's been a while. We are working with huge datasets and the computations of additional features are computationally costly, but it will prove to be advantageous. # To finish up, we will compute some additional values: # * **Shop_avg_revenue**. All sales for a certain shop, in order to track very profitable shops or poor selling ones. Since we are only interested in the last month, we will drop all additional columns but the lag # * **Item_shop_first_sale**. Months since the first sell of a certain shop was made # * **Item_first_sale**. Months since the first sell of a certain item ts = time.time() group = sales_train.groupby(["date_block_num", "shop_id"]).agg({"revenue": ["sum"]}) group.columns = ["date_shop_revenue"] group.reset_index(inplace=True) all_pairs = pd.merge(all_pairs, group, on=["date_block_num", "shop_id"], how="left") all_pairs["date_shop_revenue"] = all_pairs["date_shop_revenue"].astype(np.float32) group = group.groupby(["shop_id"]).agg({"date_shop_revenue": ["mean"]}) group.columns = ["shop_avg_revenue"] group.reset_index(inplace=True) all_pairs = pd.merge(all_pairs, group, on=["shop_id"], how="left") all_pairs["shop_avg_revenue"] = all_pairs["shop_avg_revenue"].astype(np.float32) all_pairs["delta_revenue"] = ( all_pairs["date_shop_revenue"] - all_pairs["shop_avg_revenue"] ) / all_pairs["shop_avg_revenue"] all_pairs["delta_revenue"] = all_pairs["delta_revenue"].astype(np.float16) all_pairs = calculate_lag(all_pairs, [1], "delta_revenue") all_pairs.drop( ["date_shop_revenue", "shop_avg_revenue", "delta_revenue"], axis=1, inplace=True ) # First sale extraction all_pairs["item_shop_first_sale"] = all_pairs["date_block_num"] - all_pairs.groupby( ["item_id", "shop_id"] )["date_block_num"].transform("min") all_pairs["item_first_sale"] = all_pairs["date_block_num"] - all_pairs.groupby( "item_id" )["date_block_num"].transform("min") time.time() - ts # A final correlation matrix and we are done... # Correlation matrix for monthly sales all_pairs2 = all_pairs[all_pairs["date_block_num"] < 34] # all_data2 = all_data2.drop(columns=['in_test', 'is_new_item'], inplace=True) # Correlation matrix f = plt.figure(figsize=(9, 5)) plt.matshow(all_pairs2.corr(), fignum=f.number) plt.xticks(range(all_pairs2.shape[1]), all_pairs2.columns, fontsize=7, rotation=90) plt.yticks(range(all_pairs2.shape[1]), all_pairs2.columns, fontsize=7) cb = plt.colorbar() cb.ax.tick_params(labelsize=14) # # Step 6. Data preparation and prediction (LGB) # This is our last step. We need to carefully prepare data, proceed with our splits and apply the LGB algorithm # In this section we will proceed with: # * **Drop first 11 months**. Since some of our lags cover the previous 12 months, the first 11 months have no complete lag information. Hence, to be coherent, we will drop this data (yep, that hurts) # * **Fill lag missings**. When needed. # * **Drop columns**. Some of them introduce data leaking (item_price_median), and others provide not enough information and generate noise in the algorithm (this is tested manually through the LGB) # * **Split data**. The filtering condition is just date_block_num. Train from 11 to 32, validation with 33 and test with 34. # * **Run LGB**. This might require some fine tuning and parameter optimization. Feel free to perform some grid search through cross-validation. # * **Submit results**. Finally! Let's grab some coffe. ts = time.time() all_pairs = all_pairs[all_pairs.date_block_num > 11] time.time() - ts ts = time.time() def fill_na(df): for col in df.columns: if ("_lag_" in col) & (df[col].isnull().any()): if "item_cnt" in col: df[col].fillna(0, inplace=True) return df all_pairs = fill_na(all_pairs) all_pairs.fillna(0, inplace=True) time.time() - ts all_pairs.columns all_pairs.drop( [ "item_price_median", "price_cat", "item_avg_price", "item_avg_price_month", "main_category_avg_month_cnt_lag_1", "secondary_category_avg_month_cnt_lag_1", "shop_main_category_avg_month_cnt_lag_1", "shop_secondary_category_avg_month_cnt_lag_1", ], inplace=True, axis=1, ) all_pairs.to_pickle("data.pkl") data = pd.read_pickle("data.pkl") X_train = data[data.date_block_num < 33].drop(["item_cnt_month"], axis=1) Y_train = data[data.date_block_num < 33]["item_cnt_month"] X_valid = data[data.date_block_num == 33].drop(["item_cnt_month"], axis=1) Y_valid = data[data.date_block_num == 33]["item_cnt_month"] X_test = data[data.date_block_num == 34].drop(["item_cnt_month"], axis=1) gc.collect() model = lgb.LGBMRegressor( n_estimators=10000, learning_rate=0.3, min_child_weight=300, # num_leaves=32, colsample_bytree=0.8, subsample=0.8, max_depth=8, # reg_alpha=0.04, # reg_lambda=0.073, # min_split_gain=0.0222415, verbose=1, seed=21, ) model.fit( X_train, Y_train, eval_metric="rmse", eval_set=[(X_train, Y_train), (X_valid, Y_valid)], verbose=1, early_stopping_rounds=10, ) # Cross validation accuracy for 3 folds # scores = cross_val_score(model, X_train, Y_train, cv=3) # print(scores) Y_pred = model.predict(X_valid).clip(0, 20) Y_test = model.predict(X_test).clip(0, 20) submission = pd.DataFrame({"ID": test.index, "item_cnt_month": Y_test}) submission.to_csv("submission.csv", index=False) # save predictions for an ensemble pickle.dump(Y_pred, open("xgb_train.pickle", "wb")) pickle.dump(Y_test, open("xgb_test.pickle", "wb")) submission """ ALTERNATIVE OPTION WITH XGB. TIME CONSUMING, BUT ALLOWS TO STUDY FEATURE IMPORTANCE ts = time.time() model = XGBRegressor( max_depth=8, n_estimators=1000, min_child_weight=300, colsample_bytree=0.8, subsample=0.8, eta=0.3, seed=21) model.fit( X_train, Y_train, eval_metric="rmse", eval_set=[(X_train, Y_train), (X_valid, Y_valid)], verbose=True, early_stopping_rounds = 10) time.time() - ts def plot_features(booster, figsize): fig, ax = plt.subplots(1,1,figsize=figsize) return plot_importance(booster=booster, ax=ax) plot_features(model, (10,14)) """
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from matplotlib import pyplot as plt import seaborn as sns # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. data = pd.read_csv("../input/birds-bones-and-living-habits/bird.csv", index_col="id") display(data) data.info() data.describe() data.dropna(inplace=True) plt.figure(figsize=(15, 15)) sns.heatmap( np.cov(data.drop(["type"], axis=1).T), annot=True, cbar=False, fmt="0.2f", cmap="YlGnBu", xticklabels=df.columns, yticklabels=df.columns, ) plt.title("Covariance matrix") plt.figure(figsize=(15, 15)) sns.heatmap( data.corr(), annot=True, cbar=False, fmt="0.2f", cmap="YlGnBu", xticklabels=df.columns, yticklabels=df.columns, ) plt.title("Correlation matrix") df_special = data.drop(["tarw", "tibw", "femw", "ulnaw", "humw"], axis=1) df_special sns.pairplot(df_special, hue="type", corner=True) for feature in df_special.columns[:-1]: sns.boxplot(x="type", y=feature, data=df_special) sns.swarmplot(x="type", y=feature, data=df_special, color="0.3") plt.show() for feature in df_special.columns[:-1]: for typ in data["type"].unique(): df = df_special[df_special["type"] == typ] sns.distplot(a=df[feature], label=typ, hist=False) plt.title(feature) plt.show() # # NOMOR 2 from sklearn.preprocessing import MinMaxScaler, StandardScaler, normalize def normalisasi(data, scaler): data_norm = scaler.fit_transform(data) return data_norm df = data.drop(["type"], axis=1) # # MINMAX min_max_scale = MinMaxScaler() min_max = normalisasi(df, min_max_scale) min_max = pd.DataFrame(min_max, columns=data.columns[:-1]) min_max["type"] = data["type"] min_max min_max.describe() # ## STANDARD standard_scale = StandardScaler() standard = normalisasi(df, standard_scale) standard = pd.DataFrame(standard, columns=data.columns[:-1]) standard["type"] = data["type"] standard standard.describe() # # NOMOR 3 eig_values, eig_vectors = np.linalg.eig(cov_matrix) print("Eigen Values of dataset: ", eig_values) print() print("Eigen vector of dataset: ", eig_vectors) eig_sum = np.sum(eig_values) data_eig = [(i / eig_sum) * 100 for i in sorted(eig_values, reverse=True)] data_fr = np.cumsum(data_eig) data_fr sns.lineplot( y=data_fr, x=range(len(data_fr)), )
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. # トレーニングデータのファイル名一覧を取得 filenames = os.listdir("/kaggle/input/dogs-vs-cats/train/train") categories = [] # 正解ラベルを格納するリスト # 取得したファイル名の数だけ処理を繰り返す for filename in filenames: # ファイル名から文字列を切り取る category = filename.split(".")[0] # 切り取った文字列にdogが含まれていれば'1' # そうでなければ'0'をcategoriesに格納 whichCategories = "1" if category == "dog" else "0" categories.append(whichCategories) # 教師データのDataFrameを作成 df = pd.DataFrame({"filename": filenames, "category": categories}) print(len(os.listdir("/kaggle/input/dogs-vs-cats/train/train"))) print(len(os.listdir("/kaggle/input/dogs-vs-cats/test/test"))) df.head() import matplotlib.pyplot as plt import random import time from keras import layers from keras.layers import Dense, Dropout, GlobalMaxPooling2D, Flatten from keras.preprocessing.image import load_img from keras.applications import VGG16 from keras.models import Model, Sequential from keras.optimizers import SGD from keras.preprocessing.image import ImageDataGenerator from keras.callbacks import ModelCheckpoint, EarlyStopping from sklearn.model_selection import train_test_split plt.figure(figsize=(12, 12)) TRAIN_DATA = "/kaggle/input/dogs-vs-cats/train/train" # 9枚の画像を表示してみる for i in range(9): plt.subplot(3, 3, i + 1) # データからランダムに画像を読み込む image = load_img(TRAIN_DATA + "/" + random.choice(df.filename)) plt.imshow(image) plt.tight_layout() plt.show() image_size = 224 input_shape = (image_size, image_size, 3) epochs = 7 # エポック数 batch_size = 16 # バッチサイズ VGG16model = VGG16(input_shape=input_shape, include_top=False, weights="imagenet") for layer in VGG16model.layers[:15]: layer.trainable = False last_layer = VGG16model.get_layer("block5_pool") last_output = last_layer.output # 512ノードのプーリング層を追加 new_last_layers = GlobalMaxPooling2D()(last_output) # 512ノードの全結合層を追加、活性化関数はReLU new_last_layers = Dense(512, activation="relu")(new_last_layers) # 過学習防止のためドロップアウトを追加、レートは0.5 new_last_layers = Dropout(0.5)(new_last_layers) # 最後に犬猫を示す2ノードの出力層を追加、活性化関数はシグモイド関数 new_last_layers = layers.Dense(2, activation="sigmoid")(new_last_layers) # VGG16に定義したblockAの部分を組み込む model = Model(VGG16model.input, new_last_layers) # モデルのコンパイル model.compile( loss="categorical_crossentropy", optimizer=SGD(lr=1e-4, momentum=0.9), metrics=["accuracy"], ) # サマリーの表示 # 最後の出力層が2ノードになっていることを確認 model.summary() train_df, validate_df = train_test_split(df, test_size=0.1) train_df = train_df.reset_index() validate_df = validate_df.reset_index() total_train = train_df.shape[0] total_validate = validate_df.shape[0] # 画像加工による画像の水増し定義 train_datagen = ImageDataGenerator( # ここでは回転や拡大、反転等、画像加工に係る # 各種パラメータを設定している rotation_range=15, rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, fill_mode="nearest", width_shift_range=0.1, height_shift_range=0.1, ) # 学習データのジェネレータを作成 train_generator = train_datagen.flow_from_dataframe( train_df, TRAIN_DATA, x_col="filename", y_col="category", class_mode="categorical", target_size=(image_size, image_size), batch_size=batch_size, ) # 検証データのジェネレータ作成 validation_datagen = ImageDataGenerator(rescale=1.0 / 255) validation_generator = validation_datagen.flow_from_dataframe( validate_df, TRAIN_DATA, x_col="filename", y_col="category", class_mode="categorical", target_size=(image_size, image_size), batch_size=batch_size, ) history = model.fit_generator( train_generator, # 学習データのジェネレータ epochs=epochs, # エポック数 # 検証データのジェネレータ validation_data=validation_generator, validation_steps=total_validate // batch_size, steps_per_epoch=total_train // batch_size, ) TEST_DATA = "/kaggle/input/dogs-vs-cats/test/test" filenames = os.listdir(TEST_DATA) sample = random.choice(filenames) img = load_img(TEST_DATA + "/" + sample, target_size=(224, 224)) plt.imshow(img) img = np.asarray(img) img = np.expand_dims(img, axis=0) predict = model.predict(img) # 犬か猫か分類 dog_vs_cat = np.argmax(predict, axis=1) print("dog") if dog_vs_cat == 1 else print("cat") test_filenames = os.listdir(TEST_DATA) test_df = pd.DataFrame({"filename": test_filenames}) nb_samples = test_df.shape[0] # テストデータのジェネレータを作成 test_gen = ImageDataGenerator(rescale=1.0 / 255) test_generator = test_gen.flow_from_dataframe( test_df, TEST_DATA, x_col="filename", y_col=None, class_mode=None, batch_size=batch_size, target_size=(image_size, image_size), shuffle=False, ) predict = model.predict_generator( test_generator, steps=np.ceil(nb_samples / batch_size) ) dog_vs_cat = np.argmax(predict, axis=1) submission_df = test_df.copy() submission_df["id"] = submission_df["filename"].str.split(".").str[0] submission_df["label"] = dog_vs_cat submission_df.drop(["filename"], axis=1, inplace=True) # ファイルに出力 submission_df.to_csv("submission.csv", index=False) f = open("submission.csv") print(f.read()) f.close() img = load_img(TEST_DATA + "/5713.jpg") plt.imshow(img)
# #Task 1 # Our dataset was provided by Adam Bittlingmayer from Kaggle covering appoximately 3,600,000 customer reviews from Amazon. There are 2 categories of label to classify the review as eitherpositive or negative based on the number of stars given by the writer. To initialize the processes required in task 1, each review with more than 100 terms was imported and tokenized.Afterward, all of the tokens that were punctuations, label, stopword, or not an English word (emoji, special character, foreign language) were removed. The remaining tokens would undergothe process of lemmatizing to reduce from plural term to regular term, and stemming using Snowball algorithm to accquire primal forms before appending into a clean list. Finally, thenewly clean list was exported into a text file. # import bz2 from nltk.corpus import stopwords, words from nltk.tokenize import word_tokenize from nltk.stem import SnowballStemmer from nltk.stem import WordNetLemmatizer filename = bz2.open("../input/amazonreviews/test.ft.txt.bz2", "rt", encoding="utf-8") corpusfile = "corpus_text.txt" stop_words = set(stopwords.words("english")) punctuation = [ ".", ",", "!", "?", ":", ";", "`", "~", "@", "#", "%", "&", "*", "(", ")", "[", "]", "{", "}", "-", "_", ] labels = ["__label__1", "__label__2"] English_words = set(words.words()) stemmer = SnowballStemmer("english") lemmatizer = WordNetLemmatizer() # corpus = [] # with bz2.open(filename, 'r') as infile: for line in filename: with open(corpusfile, "a") as outfile: if len(line) > 100: word_tokens = word_tokenize(line) filter_sent = [] for w in word_tokens: if ( w.lower() not in stop_words and w.lower() not in punctuation and w.lower() not in labels and w.lower() in English_words ): filter_sent.append(stemmer.stem(lemmatizer.lemmatize(w.lower()))) for w in filter_sent: outfile.write(str(w) + " ") outfile.write("\n") outfile.close() filename.close() # #Task 2 and 3 # After finishing data-filtering process, we selected our query containing 10 terms. Each term is evaluated for it term frequency and inverted-document-frequency using the following equation: # Then we plotted frequency of each term and their respective inverted-document-frequency using bar charts # #Task 4 and 5 # . The next step is to calulated the score for each document-query pair using TF-IDF score. There are approximatly 40,000 documents, so we decided to plot the results using a histogram graph. Most of the documents' scores are around 0 bins, which we would expect for the outcome import math import numpy as np from nltk.tokenize import word_tokenize from nltk.stem import SnowballStemmer from nltk.stem import WordNetLemmatizer import matplotlib.pyplot as plt query = "game love music book fun good bad product money waste" stemmer = SnowballStemmer("english") lemmatizer = WordNetLemmatizer() query_term = word_tokenize(query) term_doc_frequency = [] term_frequency = [] doc_frequency = [] tfidf_term_doc_score = [] filename = "../input/output/corpus_text.txt" i = 0 for term in query_term: doc_count = 0 total_doc = 0 single_term_doc_frequency = [] with open(filename, "r") as infile: for line in infile: term_count = 0 term_count += line.count(stemmer.stem(lemmatizer.lemmatize(term.lower()))) single_term_doc_frequency.append(term_count) if (stemmer.stem(lemmatizer.lemmatize(term.lower()))) in line: doc_count += 1 total_doc += 1 term_doc_frequency.append(single_term_doc_frequency) doc_frequency.append(math.log10(total_doc / doc_count)) term_frequency = [sum(arr) for arr in term_doc_frequency] for i in range(0, len(term_doc_frequency)): tf_score = [] for j in term_doc_frequency[i]: if j != 0: tf_score.append((1 + math.log10(j)) * doc_frequency[i]) else: tf_score.append(0) tfidf_term_doc_score.append(tf_score) tfidf_doc_score = [sum(x) for x in zip(*tfidf_term_doc_score)] y_pos = np.arange(len(query_term)) plt.barh(y_pos, term_frequency, align="center", alpha=0.5) plt.yticks(y_pos, query_term) plt.xlabel("tf score") plt.title("Term Frequency of Query") plt.show() plt.barh(y_pos, doc_frequency, align="center", alpha=0.5) plt.yticks(y_pos, query_term) plt.xlabel("idf score") plt.title("Inverted Document Frequency Score of Query") plt.show() hist, bins = np.histogram(tfidf_doc_score, bins=50) center = (bins[:-1] + bins[1:]) / 2 plt.bar(center, hist, align="center") plt.show()
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. house_price_train = pd.read_csv( "/kaggle/input/house-prices-advanced-regression-techniques/train.csv" ) house_price_test = pd.read_csv( "/kaggle/input/house-prices-advanced-regression-techniques/test.csv" ) print(house_price_train.shape) house_price_train.head() house_price_train.describe() house_price_train.describe(exclude="number") # 欠損値ありリスト a = house_price_train.isnull().sum() a[a != 0] # 相関ヒートマップ(色薄いところが相関高い ※数値項目のみ対象) import matplotlib.pyplot as plt import seaborn as sns plt.figure(figsize=(20, 10)) sns.heatmap( house_price_train.select_dtypes(include="number").corr(), vmax=1, vmin=-1, center=0, annot=False, ) # 相関係数値ソート ret = np.empty(2) sp = pd.Series(house_price_train["SalePrice"]) for i in house_price_train.select_dtypes(include="number").columns: ret = np.vstack((ret, [i, sp.corr(pd.Series(house_price_train[i]))])) ret[np.argsort(ret[:, 1])[::-1]] # とりあえず相関>0.5のメンバー features = [ "OverallQual", "GrLivArea", "GarageCars", "GarageArea", "TotalBsmtSF", "1stFlrSF", "FullBath", "TotRmsAbvGrd", "YearBuilt", "YearRemodAdd", ] house_price_train[features].describe() house_price_train[features].dtypes from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split( house_price_train[features], house_price_train["SalePrice"], test_size=0.2 ) print(x_train.shape, x_test.shape, y_train.shape, y_test.shape) from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_log_error model_rf = RandomForestRegressor() model_rf.fit(x_train, y_train) preds = model_rf.predict(x_test) print(np.sqrt(mean_squared_log_error(y_test, preds))) house_price_test[features].describe() # testの方にだけ若干欠損値あり house_price_test[features].dtypes house_price_test = house_price_test.fillna( {"GarageCars": 0, "GarageArea": 0, "TotalBsmtSF": 0} ) for i in features: house_price_test = house_price_test.fillna({i: 0}) # 提出 preds = model_rf.predict(house_price_test[features]) output = pd.DataFrame({"Id": house_price_test.Id, "SalePrice": preds}) output.to_csv("my_submission.csv", index=False)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. import pandas as pd iris_df = pd.read_csv("../input/iris/Iris.csv") iris_df # there are no entries with NaN iris_df.isna().sum() from sklearn.preprocessing import MinMaxScaler minmax_scaler = MinMaxScaler(feature_range=(0, 1)) iris_df["SepalLengthCm"] = minmax_scaler.fit_transform(iris_df[["SepalLengthCm"]]) iris_df["SepalWidthCm"] = minmax_scaler.fit_transform(iris_df[["SepalWidthCm"]]) iris_df["PetalLengthCm"] = minmax_scaler.fit_transform(iris_df[["PetalLengthCm"]]) iris_df["PetalWidthCm"] = minmax_scaler.fit_transform(iris_df[["PetalWidthCm"]]) iris_df iris_input = iris_df iris_output = iris_df["Species"] iris_input = iris_input.drop(["Species"], axis=1) iris_input = iris_input.drop(["Id"], axis=1) print(iris_input) print(iris_output) remember_iris_output = iris_output iris_output.shape from sklearn import preprocessing my_label_encoder = preprocessing.LabelEncoder() my_label_encoder.fit(iris_output) iris_output = my_label_encoder.transform(iris_output) from keras.utils import to_categorical iris_output = to_categorical(iris_output) print(iris_output) from sklearn.model_selection import train_test_split X_train, X_test, Y_train, Y_test = train_test_split( iris_input, iris_output, test_size=0.2, random_state=1 ) X_train, X_val, Y_train, Y_val = train_test_split( X_train, Y_train, test_size=0.1, random_state=1 ) print("X_train.shape: ", X_train.shape) print("Y_train.shape: ", Y_train.shape) print("X_test.shape: ", X_test.shape) print("Y_test.shape: ", Y_test.shape) print("X_val.shape: ", X_val.shape) print("Y_val.shape: ", Y_val.shape) print(Y_test) # my MLP with regularization from keras import regularizers from keras.models import Sequential from keras.layers.core import Dense # MLP model = Sequential() model.add( Dense( 10, kernel_regularizer=regularizers.l2(0.001), activity_regularizer=regularizers.l2(0.001), activation="tanh", input_shape=(4,), ) ) model.add( Dense( 8, kernel_regularizer=regularizers.l2(0.001), activity_regularizer=regularizers.l2(0.001), activation="tanh", ) ) model.add( Dense( 6, kernel_regularizer=regularizers.l2(0.001), activity_regularizer=regularizers.l2(0.001), activation="tanh", ) ) model.add(Dense(3, activation="softmax")) # ! # optimizer 'adam' produces the best results model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["acc"]) # Keras needs a numpy array as input and not a pandas dataframe print(X_train) print(Y_train) history = model.fit( X_train, Y_train, shuffle=True, batch_size=64, epochs=1000, verbose=2, validation_data=(X_val, Y_val), ) import matplotlib.pyplot as plt # Plot training & validation accuracy values plt.plot(history.history["acc"]) plt.plot(history.history["val_acc"]) plt.title("Model accuracy") plt.ylabel("Accuracy") plt.xlabel("Epoch") plt.legend(["Train", "Validation"], loc="upper left") plt.show() # Plot training & validation loss values plt.plot(history.history["loss"]) plt.plot(history.history["val_loss"]) plt.title("Model loss") plt.ylabel("Loss") plt.xlabel("Epoch") plt.legend(["Train", "Validation"], loc="upper left") plt.show() # have a look at my results eval_train = model.evaluate(X_train, Y_train) print(eval_train) eval_val = model.evaluate(X_val, Y_val) print(eval_val) eval_test = model.evaluate(X_test, Y_test) print(eval_test) # my prediction print(X_test) results = model.predict(X_test) results = (results > 0.5).astype(int) results # results.shape text_pred = list(my_label_encoder.inverse_transform(results.argmax(1))) print(text_pred) print(len(text_pred)) Y_pred = results print(Y_test) print(Y_pred) # Accuracy of the predicted values from sklearn.metrics import classification_report iris_names = [ "1-0-0 = iris setosa", "0-1-0 = iris versicolor", "0-0-1 = iris virginica", ] print(classification_report(Y_test, Y_pred, target_names=iris_names))
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. import pandas as pd deliveries = pd.read_csv("../input/ipldata/deliveries.csv") matches = pd.read_csv("../input/ipldata/matches.csv") matches["city"][0:3] import pandas as pd StudentData = pd.read_csv("../input/studentdata/StudentData.csv") StudentData.head(10) import matplotlib.pyplot as plt plt.hist(StudentData["marks(out of 100)"], color="g") plt.xlabel("marks out of 100") plt.ylabel("Number of Students") matches.isnull().any() y = matches["winner"] X = matches.drop(["winner"], axis=1) import seaborn as sns matches.boxplot()
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. soccer = pd.read_csv( "/kaggle/input/us-major-league-soccer-salaries/mls-salaries-2017.csv" ) soccer.head(10) len(soccer.index) # count of column soccer["base_salary"] average = soccer["base_salary"].mean() print(average) soccer["base_salary"].max() # max base salary soccer["guaranteed_compensation"].max() player = soccer[ soccer["guaranteed_compensation"] == soccer["guaranteed_compensation"].max() ] player player["last_name"].iloc[0] player2 = soccer[soccer["last_name"] == "Gonzalez Pirez"] player2["position"].iloc[0] soccer.groupby("position").mean() soccer["position"].nunique() # how many position we have soccer["position"].value_counts() soccer["club"].value_counts() def find_word(last_name): if "hi" in last_name.lower(): return True return False soccer[soccer["last_name"].apply(find_word)] import matplotlib.pyplot as plt clubCount = soccer["club"].value_counts() print(clubCount) plt.hist(clubCount, facecolor="blue", edgecolor="white", normed=True, bins=30) plt.ylabel("clubCount") plt.show()
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. # # # Understanding March Madness and what is this competition all about 🤔 # # Part 1 # ![](https://cdn-images-1.medium.com/max/1200/1*wdGUB-2bxIMCzbUJOGw65w.jpeg) # March brings one of the most awaited events for sports fans in the US — The **NCAA Women’s and Men’s Division 1 Tournament** aka **March madness**. This brings the sport of basketball into the spotlight and many basketball fanatics get into the work of predicting the winners and rooting for their favorites. Basketball is a fairly popular game in the US and is [ranked second to](https://en.wikipedia.org/wiki/Basketball_in_the_United_States) American football. However, for a person like me, who is born in India, my familiarity with March madness is on a lower side. Things would have been different if this were a competition for predicting [**IPL**](https://www.iplt20.com/) winners. The **Indian Premier League** (**IPL**) is a professional [**Twenty20 cricket**](https://en.wikipedia.org/wiki/Twenty20_cricket "Twenty20 cricket") league in [India](https://en.wikipedia.org/wiki/India "India") contested during March or April and May of every year by eight teams representing eight different cities in India. So, before exploring the dataset, I shall first explain the whole concept of NCAA March Madness and how the format is designed. Hopefully, this will help the people to actually understand a large amount of dataset and not be daunted by it. # # **NCAA Division I Basketball Tournament** # # ![](https://cdn-images-1.medium.com/max/800/1*2fU29HRgk4ySJ_l1N5NaJw.jpeg) # This tournament is a knockout tournament where the loser is immediately eliminated from the tournament. Since it is mostly played in march, hence it has been accorded the title of **March Madness**. The first edition took place in 1939 and has been regularly held since then. the Women’s Championship was inaugurated in the 1981–82 season. # # Format # The male edition tournament comprises of **68** teams that compete in **7** rounds for the National Championship Title. However, the number of Teams in the Women’s edition is **64**. # ![](https://cdn-images-1.medium.com/max/800/1*TaaEJ3zTwhuU67QPqqrkaA.png) # --- # # Selection # The selection procedure takes place by two methods: # ![](https://cdn-images-1.medium.com/max/800/1*s7gpAnvzL-mQ0lKlzc8xXQ.png) # ## 1. Automatic # 32 Teams get selected in this way. # - Men’s Division 1 Team comprises of **353** Teams. # ![](https://cdn-images-1.medium.com/max/800/1*DBT72cUKGLIvXmjO7mBgyQ.png) # - Each one of those teams belongs to **32** [conferences](https://en.wikipedia.org/wiki/List_of_NCAA_conferences). # ![](https://cdn-images-1.medium.com/max/800/1*rq4HBtMnQeGsiI7hOmBfIA.png) # - Each of those conferences conducts a tournament and if a time wins the tournament, they get selected for the NCAA. # # ## 2. At Large # The second selection process is called ‘At Large’ where The NCAA selection committee convenes at the final days of the regular season and decides which 36 teams which are not the Automatic qualifiers can be sent to the playoffs. This selection is based on multiple stats and rankings. # --- # ## Selection Sunday # These “at-large” teams are announced in a nationally televised event on the Sunday preceding the [“First Four” play-in games](https://en.wikipedia.org/wiki/NCAA_Men%27s_Division_I_Basketball_Opening_Round_game "NCAA Men's Division I Basketball Opening Round game"). This Sunday is called ‘Selection Sunday and is on March 15. # ## Seeding # After all the 68(64 in case of Women), have been decided, the selection committee ranks them in a process called seeding where each team gets a ranking from 1 to 68. Then **First Four** play-in games are contested between teams holding the four lowest-seeded automatic bids and the four lowest-seeded at-large bids. # The Teams are then split into 4 regions of 16 Teams each. Each team is now ranked from 1 to 16 in each region. After the [First Four](https://en.wikipedia.org/wiki/First_Four "First Four"), the tournament occurs during the course of three weekends, at pre-selected neutral sites across the United States. Here, the first round matches are determined by pitting the top team in the region with the lowest-seeded team in that region and so on. This ranking is the team’s seed. # # March Madness Begins # ![](https://www.ncaa.com/sites/default/files/public/styles/original/public-s3/images/2020/02/12/kelly-campbell-depaul-2020-ncaa.jpg?itok=suRzKxqw) # ## First Round # The First round consisting of 64 teams playing in 32 games over the course of a week. From here 32 teams emerge as winners and go on to the second round. # ## Sweet Sixteen # Next, the sweet sixteen round takes place, which sees the elimination of 16 teams. Rest of the 16 teams move forward. # ## Elite Eight # The next fight is for the Elite Eight as only 8 teams remain in the competition. # ## Final Four # ![](https://media.giphy.com/media/2fMOp0fPmvwwCgLXUK/giphy.gif) # The penultimate round of the tournament where the 4 teams contest to reserve a place in the finals. Four teams, one from each region (East, South, Midwest, and West), compete in a preselected location for the national championship. # # --- # # Who are Cinderellas? # Upsets do happen in the tournament and sometimes the underdogs, who are seeded low, deliver an unexpected. They are called Cinderellas. # So, this was a background behind the NCAA Baskerball tournament. Now let's have a look at the datasets provided.I shall be analysing the NCAA Division I Women's Basketball Tournament data. I assume the Men's tournament data should also be on the same lines. # --- # # Part 2 # ### Analysing NCAA Division I Women's Basketball Tournament Data # Our goal is to use the historical data to understand "*what dictates the ability of a team to “stay in the game” and increase their chance to win late in the contest*?" # Importing the libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from IPython.display import display # The data that has been provided has been grouped under different sections. This is useful due to the large amount of data.The various groups are: # * Basics # * Team Box Scores # * Geography # * Public Rankings # * Play by Play # * Other Supplementary data # It'll be prudent to go over every section to understand the nature of the data provided. In the coming days, I shall be doing exactly this and analysing which factors contribute towards better performance. # ## Data Section 1- The Basics # This includes the details about the Team, Seasons, Seeds Information,Game Results. # ### 1. The Team Wteams = pd.read_csv( "../input/march-madness-analytics-2020/2020DataFiles/2020-Womens-Data/WDataFiles_Stage1/WTeams.csv" ) Wteams.head() # No of Teams Wteams["TeamID"].nunique() # > Team ID referes to the unique ID which identifies every team. There are 365 participating Women 's Teams. # ### 2. Seasons # The year in which the tournament was played.The current season counts as 2020. Wseason = pd.read_csv( "../input/march-madness-analytics-2020/2020DataFiles/2020-Womens-Data/WDataFiles_Stage1/WSeasons.csv" ) Wseason.tail() # Total held seasons including the current Wseason["Season"].count() # > There are 4 regions in the final tournament- X, W,X,Y and Z. # ### 3. Seed Data # This file identifies the seeds for all teams in each NCAA® tournament, for all seasons of historical data Wseeds = pd.read_csv( "../input/march-madness-analytics-2020/2020DataFiles/2020-Womens-Data/WDataFiles_Stage1/WNCAATourneySeeds.csv" ) Wseeds.head() # The Seed value consists of a 3 character Identifier. The first character denotes the region and the last two denote the seed in that region. Let's merge the Team's name from the Wteams file. Wseeds = pd.merge(Wseeds, Wteams, on="TeamID") Wseeds.head() # Separating the regions from the Seeds Wseeds["Region"] = Wseeds["Seed"].apply(lambda x: x[0][:1]) Wseeds["Seed"] = Wseeds["Seed"].apply(lambda x: int(x[1:3])) print(Wseeds.head()) print(Wseeds.shape) # Teams with maximum top seeds colors = ["dodgerblue", "plum", "#F0A30A", "#8c564b", "orange", "green", "yellow"] Wseeds[Wseeds["Seed"] == 1]["TeamName"].value_counts()[:10].plot( kind="bar", color=colors, linewidth=2, edgecolor="black" ) plt.xlabel("Number of times in Top seeded positions") # Connecticut/UConn has been the top seeded team for the maximum no of times # Teams with maximum lowest seeds Wseeds[Wseeds["Seed"] == 16]["TeamName"].value_counts()[:10].plot( kind="bar", color=colors, edgecolor="black", linewidth=1 ) plt.xlabel("Number of times in bottom seeded positions") # Does being Top/ Lower seeding affect the tournament results? This is a question to be looked upon. # ### 4. Regular Season Compact results # This file identifies the game-by-game results for many seasons of historical data, starting with the 1998 season. There are 0 to 132 day numbers for selection of 64 teams. # rg_season_compact_results = pd.read_csv( "../input/march-madness-analytics-2020/2020DataFiles/2020-Womens-Data/WDataFiles_Stage1/WRegularSeasonCompactResults.csv" ) rg_season_compact_results.head() # where # * WScore - the numberof points scored by the winning team. # * WTeamID - the id number of the team that won the game # * LTeamID - the id number of the team that lost the game. # * LScore - the number of points scored by the losing team. # # Winning and Losing score Average over the years x = rg_season_compact_results.groupby("Season")[["WScore", "LScore"]].mean() fig = plt.gcf() fig.set_size_inches(14, 6) plt.plot( x.index, x["WScore"], marker="o", markerfacecolor="green", markersize=12, color="green", linewidth=4, ) plt.plot( x.index, x["LScore"], marker=7, markerfacecolor="red", markersize=12, color="red", linewidth=4, ) plt.legend() # ### 5.Tourney Compact Results # This file identifies the game-by-game tournament results for all seasons of historical data. tourney_compact_results = pd.read_csv( "../input/march-madness-analytics-2020/2020DataFiles/2020-Womens-Data/WDataFiles_Stage1/WNCAATourneyCompactResults.csv" ) tourney_compact_results.tail() # This file is pretty similar to the previous file except that there are 63 games listed in all the seasons.Whereas for the regular season, it displays all the games played. # games_played = ( tourney_compact_results.groupby("Season")["DayNum"] .count() .to_frame() .merge( rg_season_compact_results.groupby("Season")["DayNum"].count().to_frame(), on="Season", ) ) games_played.rename( columns={"DayNum_x": "Tournament Games", "DayNum_y": "Regular season games"} ) # ### Is there a home team advantage? ax = sns.countplot(x=tourney_compact_results["WLoc"]) ax.set_title("Win Locations") ax.set_xlabel("Location") ax.set_ylabel("Frequency") # # Data Section 2- Team Box Scores # This section provides game-by-game stats at a team level (free throws attempted, defensive rebounds, turnovers, etc.) for all regular season, conference tournament, and NCAA® tournament games since the 2009-10 season. # ### 1.WNCAA Tourney Detailed Results. # This file provides team-level box scores for many NCAA® tournaments, starting with the 2010 season tourney_detailed_results = pd.read_csv( "../input/march-madness-analytics-2020/2020DataFiles/2020-Womens-Data/WDataFiles_Stage1/WNCAATourneyDetailedResults.csv" ) tourney_detailed_results.head() tourney_detailed_results.columns # Again let's checkput if there is a home team advantage in the tournaments? ax = sns.countplot(x=tourney_detailed_results["WLoc"]) ax.set_title("Win Locations") ax.set_xlabel("Location") ax.set_ylabel("Frequency") games_stats = [] for row in tourney_detailed_results.to_dict("records"): game = {} game["Season"] = row["Season"] game["DayNum"] = row["DayNum"] game["TeamID"] = row["WTeamID"] game["OpponentID"] = row["LTeamID"] game["Loc"] = row["WLoc"] game["Won"] = 1 game["Score"] = row["WScore"] game["FGA"] = row["WFGA"] game["FGM3"] = row["WFGM3"] game["FGA3"] = row["WFGA3"] game["FTM"] = row["WFTM"] game["FTA"] = row["WFTA"] game["OR"] = row["WOR"] game["DR"] = row["WDR"] game["AST"] = row["WAst"] game["TO"] = row["WTO"] game["STL"] = row["WStl"] game["BLK"] = row["WBlk"] game["PF"] = row["WPF"] games_stats.append(game) game = {} game["Season"] = row["Season"] game["DayNum"] = row["DayNum"] game["TeamID"] = row["LTeamID"] game["OpponentID"] = row["WTeamID"] game["Loc"] = row["WLoc"] game["Won"] = 0 game["Score"] = row["LScore"] game["FGA"] = row["LFGA"] game["FGM3"] = row["LFGM3"] game["FGA3"] = row["LFGA3"] game["FTM"] = row["LFTM"] game["FTA"] = row["LFTA"] game["OR"] = row["LOR"] game["DR"] = row["LDR"] game["AST"] = row["LAst"] game["TO"] = row["LTO"] game["STL"] = row["LStl"] game["BLK"] = row["LBlk"] game["PF"] = row["LPF"] games_stats.append(game) # Separating winners from losers for clarity tournament = pd.DataFrame(games_stats) tournament.head() tournament = tournament.set_index(["Season", "TeamID", "OpponentID"])["Won"].to_frame() tournament
# # Introduction # This notebook shows how to use the [Google's Translation API](https://cloud.google.com/translate) to translate review texts from a popular dataset from English to German. To do so, we're # - Using a user-defined secret to store a service account credential within Kaggle (and provide it to the API from within Kernels). If you're forking this Kernel, you have to provide your own # - Install the necessary packages # - Initialize the API client and wrap the call in a function # - Read the input CSV # - Row by row, call the Translation API and populate a new column to our data # - Write down the results data # (this naively calls the Translation API row by row. For better performance, use it in [batch mode](https://cloud.google.com/translate/docs/advanced/batch-translation)) # # Install packages # Handle credentials import json from google.oauth2 import service_account from kaggle_secrets import UserSecretsClient user_secrets = UserSecretsClient() secret_value = user_secrets.get_secret("translation-playground") service_account_info = json.loads(secret_value) credentials = service_account.Credentials.from_service_account_info( service_account_info ) # Setup client & translation function from google.cloud import translate_v2 as translate translate_client = translate.Client(credentials=credentials) def translate(text, target_lang, source_lang="en"): try: result = translate_client.translate( text, target_language=target_lang, source_language=source_lang ) return result["translatedText"] except: return "" # Test it print(translate("This is a very nice text to translate", "de")) import pandas as pd data = pd.read_csv( "../input/womens-ecommerce-clothing-reviews/Womens Clothing E-Commerce Reviews.csv" ) data.head() # data = data[:10] data["Review Text DE"] = data.apply( lambda row: translate(row["Review Text"], "de"), axis=1 ) data.head() data.to_csv("/kaggle/working/Reviews_DE.csv")
# # Introduction # *The dataset is about amusement park roller coasters around the world. The data contains information about roller coasters like location, manufacturer, speed, height, length, and duration of the ride.* # > **Index** # **Data Wrangling:** # In the initial data wrangling steps, the dataset was loaded into a pandas dataframe. The dataframe was explored for missing values, duplicates and data types. The data was then cleaned and transformed by changing data types, renaming columns, dropping duplicates and replacing values. # **Exploratory Data Analysis:** # Several data visualization techniques were used to explore the data. Histogram, KDE plot and scatter plot were used to understand the distribution of data. Bar plots and heat maps were used to visualize the relationship between variables. # **Conclusion:** # In conclusion, the analysis of the roller coaster dataset provides insights into the characteristics of the rides around the world. The analysis can be used to understand the trends in roller coaster design, identify the best rides, and provide recommendations for improving the amusement park experience. # # Data Wrangling # Import necessary libraries import numpy as np import pandas as pd import matplotlib.pylab as plt import seaborn as sns pd.set_option("max_columns", 200) # * This code imports several useful libraries for data analysis and visualization in Python. # * numpy (imported as np) is a popular library for numerical computing in Python. pandas (imported as pd) is a library for data manipulation and analysis. matplotlib.pylab (imported as plt) is a plotting library for creating visualizations in Python. seaborn is a library built on top of matplotlib that provides additional functionality for creating more advanced and aesthetically pleasing visualizations. # * The last line of code (pd.set_option('max_columns', 200)) sets the maximum number of columns displayed when printing a pandas DataFrame to 200. This is a useful setting when working with large datasets with many columns, as it allows you to see more of the data without truncation. filePath = "/kaggle/input/rollercoaster-database/coaster_db.csv" # Load the dataset df = pd.read_csv(filePath) df.head() # * This code reads in a CSV file located at the specified file path (/kaggle/input/rollercoaster-database/coaster_db.csv) using pandas library's read_csv() function and assigns it to a DataFrame object called df. # * Overall, this code is useful for reading in and exploring data stored in a CSV file using pandas library in Python. df.shape df.columns # Drop unnecessary columns df = df[ [ "coaster_name", #'Length', 'Speed', "Location", "Status", #'Opening date', 'Type', "Manufacturer", #'Height restriction', 'Model', 'Height', #'Inversions', 'Lift/launch system', 'Cost', 'Trains', 'Park section', #'Duration', 'Capacity', 'G-force', 'Designer', 'Max vertical angle', #'Drop', 'Soft opening date', 'Fast Lane available', 'Replaced', #'Track layout', 'Fastrack available', 'Soft opening date.1', #'Closing date', 'Opened', 'Replaced by', 'Website', #'Flash Pass Available', 'Must transfer from wheelchair', 'Theme', #'Single rider line available', 'Restraint Style', #'Flash Pass available', 'Acceleration', 'Restraints', 'Name', "year_introduced", "latitude", "longitude", "Type_Main", "opening_date_clean", #'speed1', 'speed2', 'speed1_value', 'speed1_unit', "speed_mph", #'height_value', 'height_unit', "height_ft", "Inversions_clean", "Gforce_clean", ] ].copy() # * This code is using pandas library in Python to manipulate a DataFrame object called df. # * The code selects a subset of columns from df using a list of column names and assigns the resulting DataFrame to df. # * All other columns from the original df are commented out and not selected. # * The copy() method is called on the resulting DataFrame to create a new copy of the DataFrame with only the selected columns. This is done to prevent changes made to the new DataFrame from affecting the original df. # * Overall, this code is useful for selecting specific columns from a DataFrame object in Python using pandas library and creating a new copy of the resulting DataFrame. df.head() df.shape # Impute missing values df.isna().sum() # * Calling df.isna().sum() is useful to quickly identify the number of missing values in each column of a DataFrame. This can be important for performing data cleaning and preprocessing tasks, such as imputing missing values or removing rows with missing values. # * Overall, this code is useful for checking the presence of missing values in a DataFrame object in Python using pandas library. # Drop null values df.dropna(subset=["Status"], inplace=True) mask = df["Manufacturer"].isna() # Fill null values df.loc[mask, "Manufacturer"] = "Other" df[mask] df.info() df.Status.unique() # Clean the data df["Status"].replace( [ "Removed", "Closed", #'Operating', "Not Currently Operating", #'In Production', "Discontinued", "closed for maintenance as of july 30 no reopening date known", "Closed in 2021", "SBNO December 2019", #'Under construction', "Temporarily Closed", "SBNO (Standing But Not Operating)", "Temporarily closed", "Chapter 7 bankruptcy; rides dismantled and sold; property sold", #'Under Maintenance' ], "Not Operating", inplace=True, ) # * This code replaces multiple values in the 'Status' column of the DataFrame object df using the replace() method. The first argument to replace() is a list of the values to be replaced, and the second argument is the value to replace them with. # * Replacing values in a column is a common data preprocessing step in data analysis and modeling. It can be used to consolidate categories, correct misspellings, or otherwise clean and standardize data before analysis. # * Overall, this code is useful for replacing multiple values in a column of a DataFrame object in Python using pandas library. df["Status"].unique() df.Status.replace( [ #'Not Operating', 'Operating', "In Production", "Under construction", "Under Maintenance", ], "Under Production/Maintenance", inplace=True, ) # Change to proper data type df["Status"] = df["Status"].astype("category") # * This code changes the data type of the 'Status' column in the DataFrame object df to a categorical data type using the astype() method. The argument passed to astype() is the string 'category', which specifies that the 'Status' column should be converted to a categorical data type. # * Categorical data types are useful for working with columns that have a small number of unique values, such as the 'Status' column in this DataFrame. Categorical data types can make certain operations, such as grouping and aggregating data, faster and more memory-efficient. They can also be useful for preserving the order of categories and reducing the memory footprint of a DataFrame. # * Overall, this code is useful for changing the data type of a column to a categorical data type in a DataFrame object in Python using the astype() method from the pandas library. df["opening_date_clean"] = pd.to_datetime(df["opening_date_clean"]) # * This code converts the 'opening_date_clean' column in the DataFrame object df from a string data type to a datetime data type using the to_datetime() method from the pandas library. The result is that each value in the 'opening_date_clean' column is now a datetime object, which allows for easier manipulation and analysis of the data. # * Datetime objects in Python represent dates and times as values that can be manipulated mathematically, and have many useful methods and properties for working with dates and times. By converting the 'opening_date_clean' column to a datetime data type, we can use these methods and properties to perform tasks such as filtering by dates, calculating time differences, and extracting date components (e.g. year, month, day) for analysis. # * Overall, this code is useful for converting a column of dates in string format to a datetime format in a DataFrame object in Python using the to_datetime() method from the pandas library. df.info() df.columns # Rename columns df.rename( columns={ "coaster_name": "Coaster_Name", "year_introduced": "Year_Introduced", "latitude": "Latitude", "longitude": "Longitude", "opening_date_clean": "Opening_Date", "speed_mph": "Speed_mph", "height_ft": "Height_ft", "Inversions_clean": "Inversions", "Gforce_clean": "Gforce", }, inplace=True, ) # * By convention, renaming columns is done to have a more readable and standardized format for column names, and the new names reflect the content of the corresponding columns more accurately. df.head() # Check for duplicate data df.loc[df.duplicated()] df.loc[df["Coaster_Name"].duplicated()] df.query('Coaster_Name == "Crystal Beach Cyclone"') df.columns # Remove duplicated data df = df.loc[ ~df.duplicated( subset=[ "Coaster_Name", "Location", "Status", "Manufacturer", "Opening_Date", "Type_Main", ] ) ].reset_index(drop=True) # * This code drops duplicate rows in the df dataframe based on a subset of columns, namely 'Coaster_Name', 'Location', 'Status', 'Manufacturer', 'Opening_Date', and 'Type_Main'. The ~ symbol in front of the df.duplicated() function returns a boolean array indicating which rows are not duplicates, so the loc function filters out the duplicated rows and a new dataframe without duplicates is created using the reset_index() method. The drop=True parameter ensures that the original index is dropped and a new one is created. df.info() # # Exploratory Data Analysis # Explore the data with visualization # Top 10 years coasters introduced ax = ( df["Year_Introduced"] .value_counts() .head(10) .sort_index() .plot(kind="bar", title="Top 10 Years Coasters Introduced") ) ax.set_xlabel("Year Introduced") ax.set_ylabel("Count") plt.show() # * This code will produce a horizontal bar chart with the top 10 years on the y-axis and the count of coasters on the x-axis. The sort_index() method is used to sort the years in ascending order. # Coaster speed ax = df["Speed_mph"].plot(kind="hist", bins=20, title="Coaster Speed (mph)") ax.set_xlabel("Speed (mph)") plt.show() # * This histogram shows the distribution of coaster speed in miles per hour. ax = df["Speed_mph"].plot(kind="kde", title="Coaster Speed (mph)") ax.set_xlabel("Speed (mph)") plt.show() # Coaster speed vs height df.plot(kind="scatter", x="Speed_mph", y="Height_ft", title="Coaster Speed vs Height") plt.show() # * The scatter plot shows a weak positive correlation between coaster speed and height, with some outliers having high speeds and low heights, and vice versa. However, there are a lot of points clustered at the lower end of both variables, indicating that most coasters tend to have relatively modest speeds and heights. sns.scatterplot(x="Speed_mph", y="Height_ft", hue="Year_Introduced", data=df) plt.show() # Pairplot sns.pairplot( data=df, vars=["Year_Introduced", "Speed_mph", "Height_ft", "Inversions", "Gforce"], hue="Type_Main", ) plt.show() # *The pairplot gives us an idea of the relationship between different variables in the dataset. From the plot, we can see the following:* # * Coasters with high speed usually have high heights and more inversions. # * Most of the coasters in the dataset have less than 5 inversions. # * Most of the coasters in the dataset have less than 6 g-forces. # * Steel coasters tend to have higher speeds, heights, and inversions compared to wooden coasters. # * Overall, the plot shows that there are some variables that have a strong relationship with each other, while others have little to no relationship. # Heatmap correlation df_corr = ( df[["Year_Introduced", "Speed_mph", "Height_ft", "Inversions", "Gforce"]] .dropna() .corr() ) sns.heatmap(df_corr, annot=True) plt.show() # * The heatmap shows that there is a positive correlation between coaster speed and height, and a negative correlation between coaster speed and year introduced, which makes sense. Also, there is a positive correlation between coaster height and year introduced, which could mean that as technology and construction techniques improve, coasters are able to reach greater heights. # # Conclusion # Average coaster speed by location ax = ( df.query('Location != "Other"') .groupby("Location")["Speed_mph"] .agg(["mean", "count"]) .query("count >= 10") .sort_values("mean")["mean"] .plot(kind="barh", figsize=(12, 5), title="Average Coaster Speed by Location") ) ax.set_xlabel("Average Coaster Speed") plt.show()
# **This kernel uses fgcnn model from deepctr package** # **fgcnn :** [fgcnn using deepctr](https://deepctr-doc.readthedocs.io/en/v0.7.0/deepctr.models.fgcnn.html) # code forked from https://www.kaggle.com/siavrez/deepfm-model from deepctr.inputs import SparseFeat, DenseFeat, get_feature_names from tensorflow.keras.models import Model, load_model from tensorflow.keras.optimizers import Adam, RMSprop from sklearn.metrics import log_loss, roc_auc_score from sklearn.model_selection import StratifiedKFold from sklearn.preprocessing import LabelEncoder from tensorflow.keras import backend as K from tensorflow.keras import callbacks from tensorflow.keras import utils from deepctr.models import * from deepctr.models.fgcnn import FGCNN from deepctr.models.nffm import NFFM import tensorflow.keras as keras import tensorflow as tf import pandas as pd import numpy as np import warnings warnings.simplefilter("ignore") train = pd.read_csv("../input/cat-in-the-dat-ii/train.csv") test = pd.read_csv("../input/cat-in-the-dat-ii/test.csv") test["target"] = -1 data = pd.concat([train, test]).reset_index(drop=True) data["null"] = data.isna().sum(axis=1) sparse_features = [feat for feat in train.columns if feat not in ["id", "target"]] data[sparse_features] = data[sparse_features].fillna( "-1", ) for feat in sparse_features: lbe = LabelEncoder() data[feat] = lbe.fit_transform(data[feat].fillna("-1").astype(str).values) train = data[data.target != -1].reset_index(drop=True) test = data[data.target == -1].reset_index(drop=True) fixlen_feature_columns = [ SparseFeat(feat, data[feat].nunique()) for feat in sparse_features ] dnn_feature_columns = fixlen_feature_columns linear_feature_columns = fixlen_feature_columns feature_names = get_feature_names(linear_feature_columns + dnn_feature_columns) def auc(y_true, y_pred): def fallback_auc(y_true, y_pred): try: return roc_auc_score(y_true, y_pred) except: return 0.5 return tf.py_function(fallback_auc, (y_true, y_pred), tf.double) class CyclicLR(keras.callbacks.Callback): def __init__( self, base_lr=0.001, max_lr=0.006, step_size=2000.0, mode="triangular", gamma=1.0, scale_fn=None, scale_mode="cycle", ): super(CyclicLR, self).__init__() self.base_lr = base_lr self.max_lr = max_lr self.step_size = step_size self.mode = mode self.gamma = gamma if scale_fn == None: if self.mode == "triangular": self.scale_fn = lambda x: 1.0 self.scale_mode = "cycle" elif self.mode == "triangular2": self.scale_fn = lambda x: 1 / (2.0 ** (x - 1)) self.scale_mode = "cycle" elif self.mode == "exp_range": self.scale_fn = lambda x: gamma ** (x) self.scale_mode = "iterations" else: self.scale_fn = scale_fn self.scale_mode = scale_mode self.clr_iterations = 0.0 self.trn_iterations = 0.0 self.history = {} self._reset() def _reset(self, new_base_lr=None, new_max_lr=None, new_step_size=None): """Resets cycle iterations. Optional boundary/step size adjustment. """ if new_base_lr != None: self.base_lr = new_base_lr if new_max_lr != None: self.max_lr = new_max_lr if new_step_size != None: self.step_size = new_step_size self.clr_iterations = 0.0 def clr(self): cycle = np.floor(1 + self.clr_iterations / (2 * self.step_size)) x = np.abs(self.clr_iterations / self.step_size - 2 * cycle + 1) if self.scale_mode == "cycle": return self.base_lr + (self.max_lr - self.base_lr) * np.maximum( 0, (1 - x) ) * self.scale_fn(cycle) else: return self.base_lr + (self.max_lr - self.base_lr) * np.maximum( 0, (1 - x) ) * self.scale_fn(self.clr_iterations) def on_train_begin(self, logs={}): logs = logs or {} if self.clr_iterations == 0: K.set_value(self.model.optimizer.lr, self.base_lr) else: K.set_value(self.model.optimizer.lr, self.clr()) def on_batch_end(self, epoch, logs=None): logs = logs or {} self.trn_iterations += 1 self.clr_iterations += 1 K.set_value(self.model.optimizer.lr, self.clr()) target = ["target"] N_Splits = 20 Epochs = 10 SEED = 2020 oof_pred_deepfm = np.zeros((len(train),)) y_pred_deepfm = np.zeros((len(test),)) skf = StratifiedKFold(n_splits=N_Splits, shuffle=True, random_state=SEED) for fold, (tr_ind, val_ind) in enumerate(skf.split(train, train[target])): X_train, X_val = ( train[sparse_features].iloc[tr_ind], train[sparse_features].iloc[val_ind], ) y_train, y_val = train[target].iloc[tr_ind], train[target].iloc[val_ind] train_model_input = {name: X_train[name] for name in feature_names} val_model_input = {name: X_val[name] for name in feature_names} test_model_input = {name: test[name] for name in feature_names} model = NFFM(linear_feature_columns, dnn_feature_columns) model.compile( "adam", "binary_crossentropy", metrics=[auc], ) es = callbacks.EarlyStopping( monitor="val_auc", min_delta=0.0001, patience=2, verbose=1, mode="max", baseline=None, restore_best_weights=True, ) sb = callbacks.ModelCheckpoint( "./nn_model.w8", save_weights_only=True, save_best_only=True, verbose=0 ) clr = CyclicLR( base_lr=0.00001 / 100, max_lr=0.0001, step_size=int(1.0 * (test.shape[0]) / 1024), mode="exp_range", gamma=1.0, scale_fn=None, scale_mode="cycle", ) history = model.fit( train_model_input, y_train, validation_data=(val_model_input, y_val), batch_size=512, epochs=Epochs, verbose=1, callbacks=[es, sb, clr], ) model.load_weights("./nn_model.w8") val_pred = model.predict(val_model_input, batch_size=512) print(f"validation AUC fold {fold+1} : {round(roc_auc_score(y_val, val_pred), 5)}") oof_pred_deepfm[val_ind] = val_pred.ravel() y_pred_deepfm += model.predict(test_model_input, batch_size=512).ravel() / ( N_Splits ) K.clear_session() print(f"OOF AUC : {round(roc_auc_score(train.target.values, oof_pred_deepfm), 5)}") test_idx = test.id.values submission = pd.DataFrame.from_dict({"id": test_idx, "target": y_pred_deepfm}) submission.to_csv("submission.csv", index=False) print("Submission file saved!") np.save("oof_pred_deepfm.npy", oof_pred_deepfm) np.save("y_pred_deepfm.npy", y_pred_deepfm)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)+ import matplotlib.pyplot as plt import re import re from sklearn.ensemble import RandomForestClassifier # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) train_data = pd.read_csv("/kaggle/input/titanic/train.csv") train_data.head() test_data = pd.read_csv("/kaggle/input/titanic/test.csv") test_data.head() women = train_data.loc[train_data.Sex == "female"]["Survived"] rate_women = sum(women) / len(women) print("% of women who survived:", rate_women) men = train_data.loc[train_data.Sex == "male"]["Survived"] rate_men = sum(men) / len(men) print("% of men who survived:", rate_men) train_data.drop("PassengerId", axis=1, inplace=True) train_data.describe() fig = plt.figure(figsize=(10, 4)) fig.add_subplot(121) train_data.Survived[train_data["Sex"] == "male"].value_counts().plot(kind="pie") fig.add_subplot(122) train_data.Survived[train_data["Sex"] == "female"].value_counts().plot(kind="pie") from sklearn.preprocessing import LabelEncoder train_data["Sex"] = LabelEncoder().fit_transform(train_data["Sex"]) train_data["Name"] = train_data["Name"].map( lambda x: x.split(",")[1].split(".")[0].strip() ) titles = train_data["Name"].unique() titles train_data["Age"].fillna(-1, inplace=True) medians = dict() for title in titles: median = train_data.Age[ (train_data["Age"] != -1) & (train_data["Name"] == title) ].median() medians[title] = median for index, row in train_data.iterrows(): if row["Age"] == -1: train_data.loc[index, "Age"] = medians[row["Name"]] train_data.head() replacement = { "Don": 0, "Rev": 0, "Jonkheer": 0, "Capt": 0, "Mr": 1, "Dr": 2, "Col": 3, "Major": 3, "Master": 4, "Miss": 5, "Mrs": 6, "Mme": 7, "Ms": 7, "Mlle": 7, "Sir": 7, "Lady": 7, "the Countess": 7, } train_data["Name"] = train_data["Name"].apply(lambda x: replacement.get(x)) from sklearn.preprocessing import StandardScaler train_data["Name"] = StandardScaler().fit_transform( train_data["Name"].values.reshape(-1, 1) ) train_data.head() train_data["Age"] = StandardScaler().fit_transform( train_data["Age"].values.reshape(-1, 1) ) train_data["Fare"].fillna(-1, inplace=True) medians = dict() for pclass in train_data["Pclass"].unique(): median = train_data.Fare[ (train_data["Fare"] != -1) & (train_data["Pclass"] == pclass) ].median() medians[pclass] = median for index, row in train_data.iterrows(): if row["Fare"] == -1: train_data.loc[index, "Fare"] = medians[row["Pclass"]] train_data["Fare"] = StandardScaler().fit_transform( train_data["Fare"].values.reshape(-1, 1) ) train_data["Pclass"] = StandardScaler().fit_transform( train_data["Pclass"].values.reshape(-1, 1) ) replacement = {6: 0, 4: 0, 5: 1, 0: 2, 2: 3, 1: 4, 3: 5} train_data["Parch"] = train_data["Parch"].apply(lambda x: replacement.get(x)) train_data["Parch"] = StandardScaler().fit_transform( train_data["Parch"].values.reshape(-1, 1) ) train_data.drop("Ticket", axis=1, inplace=True) train_data.head() train_data["Embarked"].value_counts() train_data["Embarked"].fillna("S", inplace=True) train_data.head() replacement = {"S": 0, "Q": 1, "C": 2} train_data["Embarked"] = train_data["Embarked"].apply(lambda x: replacement.get(x)) train_data["Embarked"] = StandardScaler().fit_transform( train_data["Embarked"].values.reshape(-1, 1) ) train_data.head()["Embarked"] train_data["SibSp"].unique() replacement = {5: 0, 8: 0, 4: 1, 3: 2, 0: 3, 2: 4, 1: 5} train_data["SibSp"] = train_data["SibSp"].apply(lambda x: replacement.get(x)) train_data["SibSp"] = StandardScaler().fit_transform( train_data["SibSp"].values.reshape(-1, 1) ) train_data.head()["SibSp"] train_data["Cabin"].fillna("U", inplace=True) train_data["Cabin"] = train_data["Cabin"].apply(lambda x: x[0]) train_data["Cabin"].unique() replacement = {"T": 0, "U": 1, "A": 2, "G": 3, "C": 4, "F": 5, "B": 6, "E": 7, "D": 8} train_data["Cabin"] = train_data["Cabin"].apply(lambda x: replacement.get(x)) train_data["Cabin"] = StandardScaler().fit_transform( train_data["Cabin"].values.reshape(-1, 1) ) train_data.head()["Cabin"] train_data.head() from sklearn.model_selection import train_test_split train_data.head() # survived = train_data['Survived'] # train_data.drop('Survived', axis=1, inplace=True) # X_train, X_test, y_train, y_test = train_test_split(train_data, survived, test_size=0.2, random_state=42) from sklearn.neural_network import MLPClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.naive_bayes import GaussianNB from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis models = [ RandomForestClassifier(n_estimators=100), MLPClassifier(), ] for model in models: model.fit(X_train, y_train) score = model.score(X_test, y_test) print(score)
# # US Accidents Exploratory Data Analysis import pandas as pd import numpy as np import seaborn as sns # # Data Preparation and Cleaning # 1. Load the file # 2. Look at the information about data # 3. Fix any missing or incorrect values df = pd.read_csv("/kaggle/input/us-accidents/US_Accidents_Dec21_updated.csv") df df.info() df.describe() # Looking for missing values missing_percentages = df.isna().sum().sort_values(ascending=False) / len(df) missing_percentages type(missing_percentages) missing_percentages[missing_percentages != 0] # Here we will select only those columns which have missing values missing_percentages[missing_percentages != 0].plot(kind="barh") # # Exploratory Analysis and Visualization # We will analyze following columns # 1. City # 2. Start Time # ### City df.columns df.City unique_cities = df.City.unique() len(unique_cities) cities_by_accidents = df.City.value_counts() cities_by_accidents cities_by_accidents[:20] "New York" in df.City "New York" in df.State "ny" in df.State sns.set_style("darkgrid") # So, we can see there is no data related to new york city or new york state in dataset cities_by_accidents[:20].plot(kind="barh") sns.histplot(cities_by_accidents, log_scale=True) cities_by_accidents[cities_by_accidents == 1] # 1110 cities reported only 1 accident, this less data is of no use high_accident_cities = cities_by_accidents[cities_by_accidents >= 1000] low_accident_cities = cities_by_accidents[cities_by_accidents < 1000] len(high_accident_cities) / len(unique_cities) # Around 4% of all cities have more than 1000 accidents in dataset sns.distplot(high_accident_cities) sns.distplot(low_accident_cities) # ### Start Time df.Start_Time df.Start_Time = pd.to_datetime(df.Start_Time) df.Start_Time sns.distplot(df.Start_Time.dt.hour, bins=24, kde=False, norm_hist=True) # Mostly accidents are happening between 2pm and 7pm sns.distplot(df.Start_Time.dt.dayofweek, bins=7, kde=False, norm_hist=True) # Mostly accidents are happening on working days # Now let's see accidents on Sundays sundays_start_time = df.Start_Time[df.Start_Time.dt.dayofweek == 6] sns.distplot(sundays_start_time.dt.hour, bins=24, kde=False, norm_hist=True) # To see accidents distribution by month sns.distplot(df.Start_Time.dt.month, bins=12, kde=False, norm_hist=True)
import pandas as pd import numpy as np # linear algebra import seaborn as sns import matplotlib.pyplot as plt # Comment this if the data visualisations doesn't work on your side plt.style.use("bmh") dsall = pd.read_csv( "../input/from-sas-01/Houses5_CategsAsCols_MissingMedianReplaced.csv" ) dstr = dsall.loc[dsall["scenario_train"] == 1] dste = dsall.loc[dsall["scenario_test"] == 0] non_features = ["Id", "SalePrice", "scenario_train", "scenario_train"] xkeys = [key for key in dstr.keys() if key not in non_features] print(f"we have {len(xkeys)} features. wow") # prepare the data for training from sklearn.model_selection import train_test_split X = dstr[xkeys].values dfy = (dstr[["SalePrice"]] * 10).astype(int) print(dfy.describe()) y = dfy.values print("y shape", y.shape) print("y dtype", y.dtype) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.333, random_state=42 ) print("shapes", X_train.shape, X_test.shape, y_train.shape, y_test.shape) # crossvalidate the max depth for the random forest classifier from sklearn import ensemble mds = [None, 1, 2, 3, 10, 100, 200] data = [] for md in mds: scores = [] ns = range(100) for n in ns: clf = ensemble.RandomForestClassifier(max_depth=md, n_estimators=1) clf.fit(X_train, y_train.ravel()) s = clf.score(X_test, y_test.ravel()) scores.append(s) data.append(scores) plt.boxplot(data, labels=["None", "1", "2", "3", "10", "100", "200"]) plt.title("'max_depth' crossvalidation") plt.show() ests = [1, 2, 3, 10, 20, 50] data = [] for est in ests: scores = [] ns = range(100) for n in ns: clf = ensemble.RandomForestClassifier(max_depth=1, n_estimators=est) clf.fit(X_train, y_train.ravel()) s = clf.score(X_test, y_test.ravel()) scores.append(s) data.append(scores) plt.boxplot(data, labels=ests) plt.title("'n_estimators' crossvalidation") plt.show() # create the submission import math clf = ensemble.RandomForestClassifier(max_depth=1, n_estimators=1) clf.fit(X, y.ravel()) y_pred = np.exp(clf.predict(dste[xkeys].values) / 10.0) dspred = pd.DataFrame(y_pred) print(dspred.describe()) print(dspred)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import torch import torch.nn as nn import torch.nn.functional as F # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. # load in the 28x28 images train = pd.read_csv("/kaggle/input/digit-recognizer/train.csv") labels = train["label"] train = train.drop(["label"], axis=1) tensor = torch.Tensor(train.values) tensor.shape train_data = tensor.reshape(-1, 1, 28, 28) # Define the classifier. will use a strided But 7x7 conv followed by two 3x3 convs to save on number of parameters class CNNClassifier(nn.Module): def __init__(self): super().__init__() self.c1 = nn.Conv2d(1, 4, kernel_size=7, stride=2) self.c2 = nn.Conv2d(4, 8, kernel_size=3) self.c3 = nn.Conv2d(8, 16, kernel_size=3) self.lin = nn.Linear(16, 10) self.b1 = nn.BatchNorm2d(4) self.b2 = nn.BatchNorm2d(16) self.b3 = nn.BatchNorm2d(10) def forward(self, x): # pass through the conv net x = F.relu(self.b1(self.c1(x))) x = F.relu(self.b2(self.c3(self.c2(x)))) # make a prediction x = self.lin(x.mean(dim=[2, 3])) # return torch.argmax(x, dim=1) // apparently CrossEntropyLoss takes care of the vector... totally forgot return x # Training loop # init the model device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") print(device) model = CNNClassifier().to(device) data_loader = torch.utils.data.DataLoader( [x for x in zip(train_data, labels)], batch_size=256 ) # some basic hyper parameters e = 30 learning_rate = 1e-3 # define the loss and optimizer optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) loss = nn.CrossEntropyLoss() global_step = 0 for epoch in range(e): model.train() for img, label in data_loader: img, label = img.to(device), label.to(device) res = model(img) loss_val = loss(res, label) optimizer.zero_grad() loss_val.backward() optimizer.step() if global_step % 256 == 0: print(loss_val) global_step += 1 # evaluate the model model.eval() test = pd.read_csv("/kaggle/input/digit-recognizer/test.csv") test.head() test_tensor = torch.Tensor(test.values) test_ = test_tensor.reshape(-1, 1, 28, 28) test_data = torch.utils.data.DataLoader(test_, batch_size=1) import matplotlib.pyplot as plt predictions = [] image_id = [] i = 0 for image in test_data: res = model(image.to(device)) predictions.append(torch.argmax(res).item()) img = image.reshape(28, 28) # imgplot = plt.imshow(img.numpy(), cmap='gray') # plt.show() # print(predictions) # need the image id for the submission format i += 1 image_id.append(i) df = pd.DataFrame({"ImageId": image_id, "Label": predictions}) df.to_csv("/kaggle/working/submission.csv", index=False)
from pathlib import Path import os data_path = Path("/kaggle/input/abstraction-and-reasoning-challenge/") training_path = data_path / "training" evaluation_path = data_path / "evaluation" test_path = data_path / "test" training_tasks = list(training_path.glob("*")) evaluation_tasks = list(evaluation_path.glob("*")) test_tasks = list(test_path.glob("*")) # ### How many colors are there? import numpy as np def get_color_set(img): return set(np.array(img).flatten()) def get_task_color_set(task): s = set() for problems in task.values(): for problem in problems: try: in_, out_ = problem.values() s.update(get_color_set(in_)) s.update(get_color_set(out_)) except ValueError: (in_,) = problem.values() s.update(get_color_set(in_)) return s import json from tqdm import tqdm_notebook task_files = training_tasks color_set = set() for task_files in [training_tasks, evaluation_tasks, test_tasks]: for task_file in tqdm_notebook(task_files): with open(task_file, "r") as f: task = json.load(f) color_set.update(get_task_color_set(task)) print(f"Total color labels used: {len(color_set)}.") print(f"Color set: {color_set}") # It seems there are only 10 colors overall. This means they can be potentially treated as classification targets. # ### How frequently are the output colors not the same as input colors across tasks? def has_color_difference(task): s_in, s_out = set(), set() for problems in task.values(): for problem in problems: in_, out_ = problem.values() s_in.update(get_color_set(in_)) s_out.update(get_color_set(out_)) if len(s_in.difference(s_out)) > 0: return True return False diff_vector = [] for task_files in [training_tasks, evaluation_tasks]: for task_file in tqdm_notebook(task_files): with open(task_file, "r") as f: task = json.load(f) diff_vector.append(has_color_difference(task)) diff_vector = np.array(diff_vector) print( f"{diff_vector.mean() * 100} % of tasks have different colors in the output from the ones in the input." ) # ### What is the distribution of the colors across all tasks? def get_color_count(task): s = get_task_color_set(task) color_counts = np.zeros(10) for c in s: color_counts[c] += 1 return color_counts count_vector = np.zeros(10) for task_files in [training_tasks, evaluation_tasks, test_tasks]: for task_file in tqdm_notebook(task_files): with open(task_file, "r") as f: task = json.load(f) count_vector += get_color_count(task) color_dist = count_vector / count_vector.sum() import seaborn as sns sns.barplot(np.arange(10), color_dist)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # Install libraries that are needed. # This analysis will use data from the following study: https://www.cell.com/cell/fulltext/S0092-8674(15)01195-2/. It contains omics data from 705 breast cancer patients. # Open the dataset df = pd.read_csv("/kaggle/input/brca-multiomics-tcga/brca_data_w_subtypes.csv") # Let's print the head of the dataframe and look at the contents of the matrix print(df.head()) # Our MO data contains four types of omics, each columns' name starting with either: # mu: Whether a sonamic mutation (i.e., a mutation that happened after conception) is present for a gene. # cn: Copy number of a part of the genome (i.e., amount of amplification of a part of the genome, this changes between different cells and individuals). # rs: RNA-Seq. # pp: Protein levels. # Additionally, we have the type of information about the patient's survival and tumour type. # Let's separate each omics into its own dataframe for more clarity. outcomes = df[ ["vital.status", "PR.Status", "ER.Status", "HER2.Final.Status", "histological.type"] ] df_mu = df[[col for col in df if col.startswith("mu")]] df_cn = df[[col for col in df if col.startswith("cn")]] df_rs = df[[col for col in df if col.startswith("rs")]] df_pp = df[[col for col in df if col.startswith("pp")]] # Import libraries import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt # Calculate Pearson's correlation coefficients between copy number and RNA-seq data correlation_matrix = np.corrcoef(df_cn, df_rs, rowvar=False)[ : df_cn.shape[1], df_cn.shape[1] : ] # Create a dataframe from the correlation matrix correlation_df = pd.DataFrame( correlation_matrix, index=df_cn.columns, columns=df_rs.columns ) # Plot the heatmap plt.figure(figsize=(20, 20)) sns.clustermap(correlation_df, cmap="coolwarm") # Customize plot appearance plt.title("Pairwise Pearson's Correlations between Copy Number and RNA-seq Data") # Show the plot plt.show() # This is difficult to interpret, but we can already see that there are clusters of copy numbers highly correlated with gene expression. from sklearn.decomposition import PCA # Combine the dataframes combined_data = pd.concat([df_cn, df_rs], axis=1) # Standardize the combined data standardized_data = (combined_data - combined_data.mean()) / combined_data.std() # Apply PCA to reduce dimensionality n_components = 2 pca = PCA(n_components=n_components) reduced_data = pca.fit_transform(standardized_data) # Plot the reduced data plt.figure(figsize=(10, 10)) plt.scatter(reduced_data[:, 0], reduced_data[:, 1], s=50) # Customize plot appearance plt.title("PCA of Combined Copy Number and RNA-seq Data") plt.xlabel("Principal Component 1") plt.ylabel("Principal Component 2") # Show the plot plt.show() from sklearn.cluster import KMeans # Apply PCA to reduce dimensionality n_components = 2 pca = PCA(n_components=n_components) reduced_data = pca.fit_transform(standardized_data) # Apply KMeans clustering n_clusters = 4 kmeans = KMeans(n_clusters=n_clusters, random_state=42) cluster_assignments = kmeans.fit_predict(standardized_data) # Plot the reduced data with cluster colors plt.figure(figsize=(10, 10)) for cluster in range(n_clusters): cluster_points = reduced_data[cluster_assignments == cluster] plt.scatter( cluster_points[:, 0], cluster_points[:, 1], s=50, label=f"Cluster {cluster + 1}" ) # Customize plot appearance plt.title("PCA of Combined Copy Number and RNA-seq Data with KMeans Clustering") plt.xlabel("Principal Component 1") plt.ylabel("Principal Component 2") plt.legend() # Show the plot plt.show() # Is there any relationship between these clusters and survival? # Let's overlay survival rate on top of these clusters? survived = (outcomes["vital.status"]).to_numpy() # Define marker shapes for the survived array marker_shapes = {0: ".", 1: "o"} colors = ["blue", "red", "green", "pink"] # Plot the reduced data with cluster colors and different shapes for survived values plt.figure(figsize=(10, 10)) for cluster in range(n_clusters): for survived_value, marker_shape in marker_shapes.items(): cluster_points = reduced_data[ (cluster_assignments == cluster) & (survived == survived_value) ] plt.scatter( cluster_points[:, 0], cluster_points[:, 1], s=50, marker=marker_shape, label=f"Cluster {cluster + 1}, Survived: {survived_value}", color=colors[cluster], ) # Customize plot appearance plt.title("PCA of Combined Copy Number and RNA-seq Data with KMeans Clustering") plt.xlabel("Principal Component 1") plt.ylabel("Principal Component 2") plt.legend() # Show the plot plt.show() # Proportions of survival in each cluster cluster_survival = [] for cluster in [0, 1, 2, 3]: cluster_survival.append( np.sum((cluster_assignments == cluster) & (survived == 1)) / np.sum(cluster_assignments == cluster) ) labels = ["Cluster 1", "Cluster 2", "Cluster 3", "Cluster 4"] # create a bar plot plt.bar(labels, cluster_survival) # add a title to the plot plt.title("Proportion of survived members in each cluster") # add labels to the x and y axes plt.xlabel("X-axis label") plt.ylabel("Y-axis label") # display the plot plt.show() # Clearly being part of Cluster 2 is associated with survival. What about cancer type? # Let's overlay cancer type on top of these clusters? cancer_types_desc = ["infiltrating ductal carcinoma", "infiltrating lobular carcinoma"] cancer = (outcomes["histological.type"]).to_numpy() # Define marker shapes for the cancer array marker_shapes = { "infiltrating ductal carcinoma": ".", "infiltrating lobular carcinoma": "o", } colors = ["blue", "red", "green", "pink"] # Plot the reduced data with cluster colors and different shapes for cancer values plt.figure(figsize=(10, 10)) for cluster in range(n_clusters): for cancer_value, marker_shape in marker_shapes.items(): cluster_points = reduced_data[ (cluster_assignments == cluster) & (cancer == cancer_value) ] plt.scatter( cluster_points[:, 0], cluster_points[:, 1], s=50, marker=marker_shape, label=f"Cluster {cluster + 1}, Cancer Type: {cancer_value}", color=colors[cluster], ) # Customize plot appearance plt.title("PCA of Combined Copy Number and RNA-seq Data with KMeans Clustering") plt.xlabel("Principal Component 1") plt.ylabel("Principal Component 2") plt.legend() # Show the plot plt.show() # Proportions of infiltrating lobular carcinoma in each cluster cluster_survival = [] for cluster in [0, 1, 2, 3]: cluster_survival.append( np.sum( (cluster_assignments == cluster) & (cancer == "infiltrating lobular carcinoma") ) / np.sum(cluster_assignments == cluster) ) labels = ["Cluster 1", "Cluster 2", "Cluster 3", "Cluster 4"] # create a bar plot plt.bar(labels, cluster_survival) # add a title to the plot plt.title("Proportion of infiltrating lobular carcinoma in each cluster") # add labels to the x and y axes plt.xlabel("X-axis label") plt.ylabel("Y-axis label") # display the plot plt.show()
# # import numpy as np import pandas as pd import torch import torchvision import torch.nn as nn import torch.optim as optim from torchvision import datasets, models, transforms from torch.utils.data.sampler import SubsetRandomSampler import matplotlib.pyplot as plt import time import copy from random import shuffle import tqdm.notebook as tqdm import sklearn from sklearn.metrics import accuracy_score, cohen_kappa_score from sklearn.metrics import classification_report from PIL import Image import cv2 import os import shutil df = pd.read_csv("./covid-chestxray-dataset/metadata.csv") selected_df = df[df.finding == "Pneumonia/Viral/COVID-19"] selected_df = selected_df[(selected_df.view == "AP") | (selected_df.view == "PA")] selected_df.head(2) images = selected_df.filename.values.tolist() os.makedirs("./COVID19-DATASET/train/covid19") os.makedirs("./COVID19-DATASET/train/normal") COVID_PATH = "./COVID19-DATASET/train/covid19" NORMAL_PATH = "./COVID19-DATASET/train/normal" for image in images: shutil.copy( os.path.join("./covid-chestxray-dataset/images", image), os.path.join(COVID_PATH, image), ) for image in os.listdir("../input/chest-xray-pneumonia/chest_xray/train/NORMAL")[:300]: shutil.copy( os.path.join("../input/chest-xray-pneumonia/chest_xray/train/NORMAL", image), os.path.join(NORMAL_PATH, image), ) DATA_PATH = "./COVID19-DATASET/train" class_names = os.listdir(DATA_PATH) image_count = {} for i in class_names: image_count[i] = len(os.listdir(os.path.join(DATA_PATH, i))) # Plotting Distribution of Each Classes fig1, ax1 = plt.subplots() ax1.pie( image_count.values(), labels=image_count.keys(), shadow=True, autopct="%1.1f%%", startangle=90, ) plt.show() fig = plt.figure(figsize=(16, 5)) fig.suptitle("COVID19 Positive", size=22) img_paths = os.listdir(COVID_PATH) shuffle(img_paths) for i, image in enumerate(img_paths[:4]): img = cv2.imread(os.path.join(COVID_PATH, image)) plt.subplot(1, 4, i + 1, frameon=False) plt.imshow(img) fig.show() fig = plt.figure(figsize=(16, 5)) fig.suptitle("COVID19 Negative - Healthy", size=22) img_paths = os.listdir(NORMAL_PATH) shuffle(img_paths) for i, image in enumerate(img_paths[:4]): img = cv2.imread(os.path.join(NORMAL_PATH, image)) plt.subplot(1, 4, i + 1, frameon=False) plt.imshow(img) fig.show() # Statistics Based on ImageNet Data for Normalisation mean_nums = [0.485, 0.456, 0.406] std_nums = [0.229, 0.224, 0.225] data_transforms = { "train": transforms.Compose( [ transforms.Resize((150, 150)), # Resizes all images into same dimension transforms.RandomRotation(10), # Rotates the images upto Max of 10 Degrees transforms.RandomHorizontalFlip( p=0.4 ), # Performs Horizantal Flip over images transforms.ToTensor(), # Coverts into Tensors transforms.Normalize(mean=mean_nums, std=std_nums), ] ), # Normalizes "val": transforms.Compose( [ transforms.Resize((150, 150)), transforms.CenterCrop( 150 ), # Performs Crop at Center and resizes it to 150x150 transforms.ToTensor(), transforms.Normalize(mean=mean_nums, std=std_nums), ] ), } # ## Train and Validation Data Split def load_split_train_test(datadir, valid_size=0.3): train_data = datasets.ImageFolder( datadir, transform=data_transforms["train"] ) # Picks up Image Paths from its respective folders and label them test_data = datasets.ImageFolder(datadir, transform=data_transforms["val"]) num_train = len(train_data) indices = list(range(num_train)) split = int(np.floor(valid_size * num_train)) np.random.shuffle(indices) train_idx, test_idx = indices[split:], indices[:split] dataset_size = {"train": len(train_idx), "val": len(test_idx)} train_sampler = SubsetRandomSampler( train_idx ) # Sampler for splitting train and val images test_sampler = SubsetRandomSampler(test_idx) trainloader = torch.utils.data.DataLoader( train_data, sampler=train_sampler, batch_size=8 ) # DataLoader provides data from traininng and validation in batches testloader = torch.utils.data.DataLoader( test_data, sampler=test_sampler, batch_size=8 ) return trainloader, testloader, dataset_size trainloader, valloader, dataset_size = load_split_train_test(DATA_PATH, 0.2) dataloaders = {"train": trainloader, "val": valloader} data_sizes = {x: len(dataloaders[x].sampler) for x in ["train", "val"]} class_names = trainloader.dataset.classes print(class_names) def imshow(inp, size=(30, 30), title=None): """Imshow for Tensor.""" inp = inp.numpy().transpose((1, 2, 0)) mean = mean_nums std = std_nums inp = std * inp + mean inp = np.clip(inp, 0, 1) plt.figure(figsize=size) plt.imshow(inp) if title is not None: plt.title(title, size=30) plt.pause(0.001) # pause a bit so that plots are updated # Get a batch of training data inputs, classes = next(iter(dataloaders["train"])) # Make a grid from batch out = torchvision.utils.make_grid(inputs) imshow(out, title=[class_names[x] for x in classes]) if torch.cuda.is_available(): device = torch.device("cuda:0") print("Training on GPU... Ready for HyperJump...") else: device = torch.device("cpu") print("Training on CPU... May the force be with you...") torch.cuda.empty_cache() # ## Dense-net 121 def CNN_Model(pretrained=True): model = models.densenet121( pretrained=pretrained ) # Returns Defined Densenet model with weights trained on ImageNet num_ftrs = ( model.classifier.in_features ) # Get the number of features output from CNN layer model.classifier = nn.Linear( num_ftrs, len(class_names) ) # Overwrites the Classifier layer with custom defined layer for transfer learning model = model.to(device) # Transfer the Model to GPU if available return model model = CNN_Model(pretrained=True) # specify loss function (categorical cross-entropy loss) criterion = nn.CrossEntropyLoss() # Specify optimizer which performs Gradient Descent optimizer = optim.Adam(model.parameters(), lr=1e-3) # Decay LR by a factor of 0.1 every 7 epochs exp_lr_scheduler = optim.lr_scheduler.StepLR( optimizer, step_size=7, gamma=0.1 ) # Learning Scheduler pytorch_total_params = sum(p.numel() for p in model.parameters() if p.requires_grad) print("Number of trainable parameters: \n{}".format(pytorch_total_params)) # ### Training def train_model(model, criterion, optimizer, scheduler, num_epochs=10): since = time.time() best_model_wts = copy.deepcopy(model.state_dict()) best_loss = np.inf for epoch in range(num_epochs): print("Epoch {}/{}".format(epoch + 1, num_epochs)) print("-" * 10) # Each epoch has a training and validation phase for phase in ["train", "val"]: if phase == "train": model.train() # Set model to training mode else: model.eval() # Set model to evaluate mode current_loss = 0.0 current_corrects = 0 current_kappa = 0 val_kappa = list() for inputs, labels in tqdm.tqdm( dataloaders[phase], desc=phase, leave=False ): inputs = inputs.to(device) labels = labels.to(device) # We need to zero the gradients in the Cache. optimizer.zero_grad() # Time to carry out the forward training poss # We only need to log the loss stats if we are in training phase with torch.set_grad_enabled(phase == "train"): outputs = model(inputs) _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels) # backward + optimize only if in training phase if phase == "train": loss.backward() optimizer.step() if phase == "train": scheduler.step() # We want variables to hold the loss statistics current_loss += loss.item() * inputs.size(0) current_corrects += torch.sum(preds == labels.data) val_kappa.append( cohen_kappa_score(preds.cpu().numpy(), labels.data.cpu().numpy()) ) epoch_loss = current_loss / data_sizes[phase] epoch_acc = current_corrects.double() / data_sizes[phase] if phase == "val": epoch_kappa = np.mean(val_kappa) print( "{} Loss: {:.4f} | {} Accuracy: {:.4f} | Kappa Score: {:.4f}".format( phase, epoch_loss, phase, epoch_acc, epoch_kappa ) ) else: print( "{} Loss: {:.4f} | {} Accuracy: {:.4f}".format( phase, epoch_loss, phase, epoch_acc ) ) # EARLY STOPPING if phase == "val" and epoch_loss < best_loss: print( "Val loss Decreased from {:.4f} to {:.4f} \nSaving Weights... ".format( best_loss, epoch_loss ) ) best_loss = epoch_loss best_model_wts = copy.deepcopy(model.state_dict()) print() time_since = time.time() - since print( "Training complete in {:.0f}m {:.0f}s".format(time_since // 60, time_since % 60) ) print("Best val loss: {:.4f}".format(best_loss)) # Now we'll load in the best model weights and return it model.load_state_dict(best_model_wts) return model def visualize_model(model, num_images=6): was_training = model.training model.eval() images_handeled = 0 ax = plt.figure() with torch.no_grad(): for i, (inputs, labels) in enumerate(dataloaders["val"]): inputs = inputs.to(device) labels = labels.to(device) outputs = model(inputs) _, preds = torch.max(outputs, 1) for j in range(inputs.size()[0]): images_handeled += 1 ax = plt.subplot(num_images // 2, 2, images_handeled) ax.axis("off") ax.set_title( "Actual: {} predicted: {}".format( class_names[labels[j].item()], class_names[preds[j]] ) ) imshow(inputs.cpu().data[j], (5, 5)) if images_handeled == num_images: model.train(mode=was_training) return model.train(mode=was_training) base_model = train_model(model, criterion, optimizer, exp_lr_scheduler, num_epochs=10) visualize_model(base_model) plt.show()
# ### Librerias import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import pandas as pd import seaborn as sns import numpy as np from matplotlib import pyplot as plt import re from sklearn.model_selection import train_test_split from sklearn import preprocessing import scipy.signal from sklearn.model_selection import learning_curve from sklearn.model_selection import KFold from sklearn.preprocessing import MinMaxScaler from sklearn.svm import SVR import numpy as np from sklearn.svm import SVC from sklearn import svm from sklearn.metrics import accuracy_score, classification_report, confusion_matrix from sklearn.model_selection import cross_val_score, StratifiedKFold, GridSearchCV from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from xgboost import XGBClassifier import warnings warnings.filterwarnings("ignore") # ### Carga el data set, elimina colunas y primera fila no utilizable. No hace PCA df = pd.read_csv( "/kaggle/input/raman-spectroscopy-of-diabetes/thumbNail.csv" ) # innerArm thumbNail earLobe vein df.head(5) has_DM2 = df.pop("has_DM2") patientID = df.pop("patientID") df.head() # #### Crop Data to 800-1800 cm^-1 droped_columns = [] for col in df.columns: # print("------------------------------>" + re.findall(r'\d+', col)[0]) if ( int(re.findall(r"\d+", col)[0]) <= 800 or int(re.findall(r"\d+", col)[0]) >= 1800 ): droped_columns.append(col) df.drop(droped_columns, axis=1, inplace=True) X, y = df.drop(0), has_DM2.drop(0) # ### Aguala datos pacientes 1 y 0; 50% caso uno. Inicialmente son 19 registros, despues 22 from imblearn.over_sampling import SMOTE from collections import Counter # https://www.kaggle.com/vaishnavinath/before-and-after-smote/comments sm = SMOTE(random_state=42) print( "EL dataset original antes del Resampled SMOTE tiene: ", X.shape, " filas, columnas" ) X_resamp_tr, y_resamp_tr = sm.fit_resample(X, y) print("Resampled dataset shape %s" % Counter(y_resamp_tr)) X = pd.DataFrame(X_resamp_tr) y = pd.DataFrame({"target": y_resamp_tr}) print("EL dataset despues del Resampled SMOTE tiene: ", X.shape, " filas, columna") print(" ") # ### Selecciona sklearn.feature_selection import SelectFromModel from sklearn.svm import LinearSVC from sklearn.datasets import load_iris from sklearn.feature_selection import SelectFromModel # Load the boston dataset. # https://towardsdatascience.com/5-feature-selection-method-from-scikit-learn-you-should-know-ed4d116e4172 # https://programmerclick.com/article/51341441214/ print("EL dataset original tiene :", X.shape[1], "caracteristicas (columnas)") C = 0.05 penalty = "l1" lsvc = LinearSVC(C=C, penalty=penalty, dual=False).fit(X, y) model = SelectFromModel(lsvc, prefit=True) X = model.transform(X) print( "El dataset despues del SelectFromModel: C= " + str(C) + " penalty= " + penalty + " tiene :", X.shape[1], " caracteristicas (columnas)", ) print(" ") # ### Standarizado de datos # Standarizado de datos from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X = scaler.fit_transform(X) # esto es necesario para que pueda recorrer los valores de X e y en el k-fold X = np.array(X) y = np.array(y) # ### Funciones de algoritmos y graficas C = [1, 0.1, 0.25, 0.5, 2, 0.75] kernel = ["linear", "rbf"] gamma = ["auto", 0.01, 0.001, 0.0001, 1] decision_function_shape = ["ovo", "ovr"] svm = SVC(random_state=1) def svm_1(X_train, y_train): svm = SVC(random_state=1) grid_svm = GridSearchCV( estimator=svm, cv=5, param_grid=dict( kernel=kernel, C=C, gamma=gamma, decision_function_shape=decision_function_shape, ), ) grid_svm.fit(X_train, y_train) print("best score: ", grid_svm.best_score_) print("best param: ", grid_svm.best_params_) svm_model = SVC( C=2, decision_function_shape="ovo", gamma="auto", kernel="linear", random_state=1, ) svm_model.fit(X_train, y_train) print("train_accuracy:", svm_model.score(X_train, y_train)) print("test_accuracy: ", svm_model.score(X_test, y_test)) pred_test_svm = svm_model.predict(X_test) # predicción svm_accuracy = accuracy_score(y_test, pred_test_svm) # predicción print("predicción svm_accuracy :", svm_accuracy) print(confusion_matrix(y_test, pred_test_svm)) matris(svm_model) roc(y_test, pred_test_svm) report("SVM 1", y_test, pred_test_svm) # grafico_train_val(X_train, y_train, svm_model) def matris(svm_model): from yellowbrick.classifier import ConfusionMatrix cm = ConfusionMatrix(svm_model, classes=[0, 1]) cm.fit(X_train, y_train) cm.score(X_test, y_test) cm.poof() def roc(y_test, pred_test): from sklearn.metrics import ( confusion_matrix, classification_report, roc_curve, accuracy_score, auc, ) fpr, tpr, _ = roc_curve(y_test, pred_test) # calculate AUC roc_auc = auc(fpr, tpr) print("ROC AUC: %0.2f" % roc_auc) # plot of ROC curve for a specified class plt.figure() plt.plot(fpr, tpr, label="ROC curve(area= %2.f)" % roc_auc) plt.plot([0, 1], [0, 1], "k--") plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel("False positive rate") plt.ylabel("True positive rate") plt.title("ROC curve") plt.legend(loc="lower right") plt.grid() plt.show() def report(titulo, y_test, pred_test): print( titulo, "\n", classification_report( y_test, pred_test, target_names=["0 - healthy", "1 - diabet "] ), ) # https://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html def grafico_train_val(X_train, y_train, classifier): train_sizes, train_scores, test_scores = learning_curve( estimator=classifier, X=X_train, y=y_train, train_sizes=np.linspace(0.1, 1.0, 10), cv=8, n_jobs=-1, ) train_mean = np.mean(train_scores, axis=1) train_std = np.std(train_scores, axis=1) test_mean = np.mean(test_scores, axis=1) test_std = np.std(test_scores, axis=1) plt.plot( train_sizes, train_mean, color="r", marker="o", markersize=5, label="entrenamiento", ) plt.fill_between( train_sizes, train_mean + train_std, train_mean - train_std, alpha=0.15, color="r", ) plt.plot( train_sizes, test_mean, color="b", linestyle="--", marker="s", markersize=5, label="evaluacion", ) plt.fill_between( train_sizes, test_mean + test_std, test_mean - test_std, alpha=0.15, color="b" ) plt.grid() plt.title("Curva de aprendizaje") plt.legend(loc="upper right") plt.xlabel("Cant de ejemplos de entrenamiento") plt.ylabel("Precision") plt.show() # ### StratifiedKFold # https://insaid.medium.com/cross-validation-techniques-27d99becc7a0 from sklearn.svm import SVC from xgboost import XGBClassifier from sklearn.model_selection import cross_val_score, StratifiedKFold, GridSearchCV skf = StratifiedKFold(n_splits=6, shuffle=True, random_state=1) for train_index, test_index in skf.split(X, y): print( "--------------------------------------------------------------------------------------" ) print("TRAIN:", train_index, "TEST:", test_index) X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] print( "--------------------------------------------------------------------------------------" ) svm_1(X_train, y_train)
import numpy as np import pandas as pd import matplotlib.pyplot as plt import sklearn import catboost import os from sklearn import metrics from sklearn.model_selection import train_test_split from catboost.utils import get_roc_curve from catboost.utils import get_fpr_curve from catboost.utils import get_fnr_curve from catboost.utils import select_threshold from catboost import CatBoostClassifier, Pool, FeaturesData, cv, MetricVisualizer cols = [ "Age", "BusinessTravel", "Department", "DistanceFromHome", "Lyon_EducationTemp", "EducationField", "Gender", "JobRole", "MaritalStatus", "MonthlyIncome", "NumCompaniesWorked", "PercentSalaryHike", "StandardHours", "StockOptionLevel", "TotalWorkingYears", "TrainingTimesLastYear", "YearsAtCompany", "YearsSinceLastPromotion", "YearsWithCurrManager", "Attrition", ] dtypes = { "Age": np.float64, "BusinessTravel": np.unicode_, "Department": np.unicode_, "DistanceFromHome": np.float32, "Lyon_EducationTemp": np.float64, "EducationField": np.unicode_, "Gender": np.unicode_, "JobRole": np.unicode, "MaritalStatus": np.unicode, "MonthlyIncome": np.float64, "NumCompaniesWorked": np.float64, "PercentSalaryHike": np.float64, "StandardHours": np.float64, "StockOptionLevel": np.float64, "TotalWorkingYears": np.float64, "TrainingTimesLastYear": np.float64, "YearsAtCompany": np.float64, "YearsSinceLastPromotion": np.float64, "YearsWithCurrManager": np.float64, "Attrition": np.int32, } train_df = pd.read_csv( "../input/train-data/training_data-2.csv", names=cols, decimal=".", sep=",", skiprows=[0], index_col=False, dtype=dtypes, ) total_experience = train_df["TotalWorkingYears"] + train_df["TrainingTimesLastYear"] train_df = pd.concat([train_df, total_experience.rename("TotalExperience")], axis=1) cols.remove("Attrition") cols.append("Id") dtypes.pop("Attrition", None) dtypes["Id"] = np.int32 test_df = pd.read_csv( "../input/test-data/test_data.csv", names=cols, decimal=".", sep=",", skiprows=[0], index_col=False, dtype=dtypes, ) total_experience = test_df["TotalWorkingYears"] + test_df["TrainingTimesLastYear"] test_df = pd.concat([test_df, total_experience.rename("TotalExperience")], axis=1) train_df = train_df.drop("StandardHours", axis=1) test_df = test_df.drop("StandardHours", axis=1) y = train_df.Attrition X = train_df.drop("Attrition", axis=1) cat_features = list([1, 2, 5, 6, 7, 8]) dataset_dir = "./sber" if not os.path.exists(dataset_dir): os.makedirs(dataset_dir) train_df.to_csv( os.path.join(dataset_dir, "train.csv"), index=False, sep=",", header=True ) test_df.to_csv(os.path.join(dataset_dir, "test.csv"), index=False, sep=",", header=True) from catboost.utils import create_cd feature_names = dict() for column, name in enumerate(train_df): feature_names[column] = name create_cd( label=None, cat_features=cat_features, feature_names=feature_names, output_path=os.path.join(dataset_dir, "train.cd"), ) pool1 = Pool( data=pd.DataFrame(X), label=pd.DataFrame(y), cat_features=list([1, 2, 5, 6, 7, 8]), has_header=True, ) X_prepared = X.values.astype(str).astype(object) print(pool1.shape) print(pool1.get_feature_names()) X_train, X_validation, y_train, y_validation = train_test_split( X, y, train_size=0.8, random_state=1234 ) model = CatBoostClassifier( iterations=50, random_seed=63, learning_rate=0.5, custom_loss=["AUC", "Accuracy"] ) model.fit( X_train, y_train, cat_features=cat_features, eval_set=(X_validation, y_validation), verbose=False, plot=True, ) print("Model is fitted: " + str(model.is_fitted())) print("Model params:") print(model.get_params()) print("Tree count: " + str(model.tree_count_)) model1 = CatBoostClassifier( learning_rate=0.7, iterations=100, random_seed=0, custom_loss=["AUC", "Accuracy"], train_dir="learing_rate_0.7", ) model2 = CatBoostClassifier( learning_rate=0.01, iterations=100, random_seed=0, custom_loss=["AUC", "Accuracy"], train_dir="learing_rate_0.01", ) model1.fit( X_train, y_train, eval_set=(X_validation, y_validation), cat_features=cat_features, verbose=False, ) model2.fit( X_train, y_train, eval_set=(X_validation, y_validation), cat_features=cat_features, verbose=False, ) MetricVisualizer(["learing_rate_0.01", "learing_rate_0.7"]).start() params = {} params["loss_function"] = "Logloss" params["iterations"] = 80 params["custom_loss"] = "AUC" params["random_seed"] = 63 params["learning_rate"] = 0.5 cv_data = cv( params=params, pool=Pool(X, label=y, cat_features=cat_features), fold_count=5, shuffle=True, partition_random_seed=0, plot=True, stratified=False, verbose=False, ) cv_data.head() best_value = np.min(cv_data["test-Logloss-mean"]) best_iter = np.argmin(cv_data["test-Logloss-mean"]) print( "Best validation Logloss score, not stratified: {:.4f}±{:.4f} on step {}".format( best_value, cv_data["test-Logloss-std"][best_iter], best_iter ) ) cv_data = cv( params=params, pool=Pool(X, label=y, cat_features=cat_features), fold_count=5, type="Classical", shuffle=True, partition_random_seed=0, plot=True, stratified=True, verbose=False, ) best_value = np.min(cv_data["test-Logloss-mean"]) best_iter = np.argmin(cv_data["test-Logloss-mean"]) print( "Best validation Logloss score, stratified: {:.4f}±{:.4f} on step {}".format( best_value, cv_data["test-Logloss-std"][best_iter], best_iter ) ) model_with_early_stop = CatBoostClassifier( iterations=200, random_seed=63, learning_rate=0.5, early_stopping_rounds=20, custom_loss=["AUC"], ) model_with_early_stop.fit( X_train, y_train, cat_features=cat_features, eval_set=(X_validation, y_validation), verbose=False, plot=True, ) print(model_with_early_stop.tree_count_) model = CatBoostClassifier( custom_loss=["AUC"], random_seed=63, iterations=200, learning_rate=0.03, ) model.fit(X_train, y_train, cat_features=cat_features, verbose=False, plot=True) eval_pool = Pool(X_validation, y_validation, cat_features=cat_features) curve = get_roc_curve(model, eval_pool) (fpr, tpr, thresholds) = curve roc_auc = sklearn.metrics.auc(fpr, tpr) plt.figure(figsize=(16, 8)) lw = 2 plt.plot( fpr, tpr, color="darkorange", lw=lw, label="ROC curve (area = %0.2f)" % roc_auc, alpha=0.5, ) plt.plot([0, 1], [0, 1], color="navy", lw=lw, linestyle="--", alpha=0.5) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xticks(fontsize=16) plt.yticks(fontsize=16) plt.grid(True) plt.xlabel("False Positive Rate", fontsize=16) plt.ylabel("True Positive Rate", fontsize=16) plt.title("Receiver operating characteristic", fontsize=20) plt.legend(loc="lower right", fontsize=16) plt.show() (thresholds, fpr) = get_fpr_curve(curve=curve) (thresholds, fnr) = get_fnr_curve(curve=curve) plt.figure(figsize=(16, 8)) lw = 2 plt.plot(thresholds, fpr, color="blue", lw=lw, label="FPR", alpha=0.5) plt.plot(thresholds, fnr, color="green", lw=lw, label="FNR", alpha=0.5) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xticks(fontsize=16) plt.yticks(fontsize=16) plt.grid(True) plt.xlabel("Threshold", fontsize=16) plt.ylabel("Error Rate", fontsize=16) plt.title("FPR-FNR curves", fontsize=20) plt.legend(loc="lower left", fontsize=16) plt.show() print(select_threshold(model=model, data=eval_pool, FNR=0.01)) print(select_threshold(model=model, data=eval_pool, FPR=0.01)) print(model.predict_proba(data=X_validation)) print(model.predict(data=X_validation)) raw_pred = model.predict(data=X_validation, prediction_type="RawFormulaVal") # print(raw_pred) from numpy import exp sigmoid = lambda x: 1 / (1 + exp(-x)) probabilities = sigmoid(raw_pred) print(probabilities) model.get_feature_importance(prettified=True) shap_values = model.get_feature_importance(pool1, type="ShapValues") expected_value = shap_values[0, -1] shap_values = shap_values[:, :-1] print(shap_values.shape) import shap shap.initjs() shap.force_plot(expected_value, shap_values[3, :], X.iloc[3, :]) shap.summary_plot(shap_values, X) X_small = X.iloc[0:200] shap_small = shap_values[:200] shap.force_plot(expected_value, shap_small, X_small) # from catboost.eval.catboost_evaluation import * # learn_params = {'iterations': 20, # 2000 # 'learning_rate': 0.5, # we set big learning_rate, # # because we have small # # #iterations # 'random_seed': 0, # 'verbose': False, # 'loss_function' : 'Logloss', # 'boosting_type': 'Plain'} # evaluator = CatboostEvaluation('sber/train.tsv', # fold_size=1300, # <= 50% of dataset # fold_count=20, # column_description='sber/train.cd', # partition_random_seed=0, # #working_dir=... # ) # result = evaluator.eval_features(learn_config=learn_params, # eval_metrics=['Logloss', 'Accuracy'], # features_to_eval=[5, 6, 7]) # from catboost.eval.evaluation_result import * # logloss_result = result.get_metric_results('Logloss') # logloss_result.get_baseline_comparison( # ScoreConfig(ScoreType.Rel, overfit_iterations_info=False) # ) from catboost import CatBoost fast_model = CatBoostClassifier( random_seed=63, iterations=150, learning_rate=0.01, boosting_type="Plain", bootstrap_type="Bernoulli", subsample=0.5, one_hot_max_size=20, rsm=0.5, leaf_estimation_iterations=5, max_ctr_complexity=1, ) fast_model.fit(X_train, y_train, cat_features=cat_features, verbose=False, plot=True) tunned_model = CatBoostClassifier( random_seed=63, iterations=1000, learning_rate=0.03, l2_leaf_reg=3, bagging_temperature=1, random_strength=1, one_hot_max_size=2, leaf_estimation_method="Newton", ) tunned_model.fit( X_train, y_train, cat_features=cat_features, verbose=False, eval_set=(X_validation, y_validation), plot=True, ) tunned_model.tree_count_ best_model = CatBoostClassifier( custom_loss=["AUC", "Accuracy"], random_seed=63, iterations=int(tunned_model.tree_count_ * 1.2), eval_metric="AUC", ) best_model.fit(X, y, cat_features=cat_features, verbose=100, plot=True) best_model.compare(model_with_early_stop, eval_pool, ["Logloss", "AUC"]) eval_metrics = best_model.eval_metrics(eval_pool, ["AUC"], plot=True) params = {} params["loss_function"] = "Logloss" params["iterations"] = int(tunned_model.tree_count_ * 1.2) params["custom_loss"] = "AUC" params["random_seed"] = 63 cv_data = cv( params=params, pool=Pool(X, label=y, cat_features=cat_features), fold_count=5, shuffle=True, partition_random_seed=0, plot=True, stratified=False, verbose=False, ) cv_data.head() import hyperopt def hyperopt_objective(params): model = CatBoostClassifier( l2_leaf_reg=int(params["l2_leaf_reg"]), learning_rate=params["learning_rate"], iterations=int(tunned_model.tree_count_ * 1.2), eval_metric="AUC", random_seed=42, verbose=False, loss_function="Logloss", ) cv_data = cv(Pool(X, label=y, cat_features=cat_features), model.get_params()) best_logloss = np.min(cv_data["test-Logloss-mean"]) return best_logloss # as hyperopt minimises cv_data.head() best_logloss from numpy.random import RandomState params_space = { "l2_leaf_reg": hyperopt.hp.qloguniform("l2_leaf_reg", 0, 2, 1), "learning_rate": hyperopt.hp.uniform("learning_rate", 1e-3, 5e-1), } trials = hyperopt.Trials() best = hyperopt.fmin( hyperopt_objective, space=params_space, algo=hyperopt.tpe.suggest, max_evals=50, trials=trials, rstate=RandomState(123), ) print(best) hyperopt_model = CatBoostClassifier( custom_loss=["AUC", "Accuracy"], learning_rate=0.10800296388715394, l2_leaf_reg=6.0, random_seed=63, iterations=int(tunned_model.tree_count_ * 1.2), eval_metric="AUC", ) hyperopt_model.fit(X, y, cat_features=cat_features, verbose=100, plot=True) best_model.compare(hyperopt_model, eval_pool, ["Logloss", "AUC"]) params = {} params["loss_function"] = "Logloss" params["iterations"] = int(tunned_model.tree_count_ * 1.2) params["custom_loss"] = "AUC" params["random_seed"] = 63 params["learning_rate"] = 0.10800296388715394 cv_data = cv( params=params, pool=Pool(X, label=y, cat_features=cat_features), fold_count=5, shuffle=True, partition_random_seed=0, plot=True, stratified=False, verbose=False, ) X_test = test_df # .drop('id', axis=1) test_pool = Pool(data=X_test, cat_features=cat_features) contest_predictions = hyperopt_model.predict_proba(test_pool) print("Predictoins:") print(contest_predictions) id_test_data = [num for num in range(1764)] result_csv = pd.concat( [pd.DataFrame(id_test_data), pd.DataFrame(contest_predictions)], axis=1 ) # result_csv = pd.concat([result_csv, pd.DataFrame(result)], axis=1) result_csv.drop("0", axis=1) result_csv.to_csv("out.csv", encoding="utf-8", index=False) result_csv.describe(include="all")
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. # DATA LOAD import os data_dir = "/kaggle/input/proy1segmentaciondeimagenesdermatoscopicas/" imgs_files = [ os.path.join(data_dir, "Images/Images", f) for f in sorted(os.listdir(os.path.join(data_dir, "Images/Images"))) if ( os.path.isfile(os.path.join(data_dir, "Images/Images", f)) and f.endswith(".jpg") ) ] masks_files = [ os.path.join(data_dir, "Masks/Masks", f) for f in sorted(os.listdir(os.path.join(data_dir, "Masks/Masks"))) if (os.path.isfile(os.path.join(data_dir, "Masks/Masks", f)) and f.endswith(".png")) ] # Ordenamos para que cada imagen se corresponda con cada máscara imgs_files.sort() masks_files.sort() print("Number of images", len(imgs_files)) print("Number of masks", len(masks_files)) # Convert files into skimages and visualize import matplotlib.pyplot as plt from skimage import io images = io.ImageCollection(imgs_files) masks = io.ImageCollection(masks_files) index = 1 plt.figure(figsize=(15, 8)) for i in range(4): plt.subplot(2, 4, index) plt.imshow(images[i]) index += 1 plt.title("Image %i" % (i)) plt.subplot(2, 4, index) plt.imshow(masks[i], cmap="gray") index += 1 plt.title("Mask %i" % (i)) # PREPROCESSING # Grayscale from skimage.color import rgb2gray gray_images = [rgb2gray(image) for image in images] plt.imshow(gray_images[2], cmap="gray") print(gray_images[2].shape) print(masks[2].shape) # Note that images and mask have the same size # remove black borders: from skimage.exposure import histogram img = gray_images[2] new_mask = np.where(img != img.min(), 255, img) """ def remove_black_borders (image, mask): if (image.min()==0) return cropped_image, cropped_mask """ # IMAGE SEGMENTATION from skimage import filters val = filters.threshold_otsu(gray_images[1]) my_mask = gray_images[1] < val plt.subplot(1, 2, 1) plt.imshow(gray_images[1], cmap="gray") plt.title("Dermoscopy image") plt.subplot(1, 2, 2) plt.imshow(mask, cmap="gray") plt.title("Automated mask") import copy from skimage import filters automated_masks = copy.copy(masks) for i, image in enumerate(gray_images): val = filters.threshold_otsu(image) my_mask = image < val automated_masks[i] = my_mask
# # Categorical Feature Encoding Challenge II # Binary classification, with every feature a categorical (and i # a dataset that contains only categorical features, and includes: # * binary features # * low- and high-cardinality nominal features # * low- and high-cardinality ordinal features # * (potentially) cyclical features # This challenge adds the additional complexity of feature interactions, as well as missing data. # This Playground competition will give you the opportunity to try different encoding schemes for different algorithms to compare how they perform. # Submissions are evaluated on area under the ROC curve between the predicted probability and the observed target. # Final submission deadline: March 31, 2020 import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import wandb # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) import scipy import pandas as pd from sklearn.linear_model import LogisticRegression # Any results you write to the current directory are saved as output. D0 = pd.read_csv("/kaggle/input/cat-in-the-dat-ii/train.csv", index_col="id") D_test = pd.read_csv("/kaggle/input/cat-in-the-dat-ii/test.csv", index_col="id") y_train = D0["target"] D = D0.drop(columns="target") test_ids = D_test.index D_all = pd.concat([D, D_test]) num_train = len(D) print(f"D_all.shape = {D_all.shape}") # Map value in train xor test for col in D.columns.difference(["id"]): train_vals = set(D[col].dropna().unique()) test_vals = set(D_test[col].dropna().unique()) xor_cat_vals = train_vals ^ test_vals if xor_cat_vals: print(f"Replacing {len(xor_cat_vals)} values in {col}, {xor_cat_vals}") D_all.loc[D_all[col].isin(xor_cat_vals), col] = "xor" # Info for ordinal encoding ord_maps = { "ord_0": {val: i for i, val in enumerate([1, 2, 3])}, "ord_1": { val: i for i, val in enumerate( ["Novice", "Contributor", "Expert", "Master", "Grandmaster"] ) }, "ord_2": { val: i for i, val in enumerate( ["Freezing", "Cold", "Warm", "Hot", "Boiling Hot", "Lava Hot"] ) }, **{ col: {val: i for i, val in enumerate(sorted(D_all[col].dropna().unique()))} for col in ["ord_3", "ord_4", "ord_5", "day", "month"] }, } # OneHot encoding oh_cols = D_all.columns.difference(ord_maps.keys() - {"day", "month"}) print(f"OneHot encoding {len(oh_cols)} columns") one_hot = pd.get_dummies( D_all[oh_cols], columns=oh_cols, drop_first=True, dummy_na=True, sparse=True, dtype="int8", ).sparse.to_coo() # Ordinal encoding ord_cols = pd.concat( [ D_all[col].map(ord_map).fillna(max(ord_map.values()) // 2).astype("float32") for col, ord_map in ord_maps.items() ], axis=1, ) ord_cols /= ord_cols.max() # for convergence ord_cols_sqr = 4 * (ord_cols - 0.5) ** 2 # Combine data X = scipy.sparse.hstack([one_hot, ord_cols, ord_cols_sqr]).tocsr() print(f"X.shape = {X.shape}") X_train = X[:num_train] X_test = X[num_train:] # Make submission clf = LogisticRegression(C=0.05, solver="lbfgs", max_iter=5000) clf.fit(X_train, y_train) pred = clf.predict_proba(X_test)[:, 1] pd.DataFrame({"id": test_ids, "target": pred}).to_csv("submission.csv", index=False)
# > # Hi Guys, # ## This notebook is on classification algorithms that shows how well different algorithms perform on the same dataset. In this Notebook the classification algorithms I have used are mentioned below: # ### 1. Neural Network # ### 2. Logistic Regression # ### 3. Random Forest # ### 4. Gradient Boosting Classifier # ## And the winner of this Competiton is Logisitc Regression as per confusion matrix, it gave a better accuracy rate at the time of cross_validation, and also when predicting the prediction data that is present in test.csv and gender_submission.csv has the actual labels that should be for test data. # ## So you can predict the testing data and then cross_check it with the actual labels. # Importing all the libraries we need import os import random import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.preprocessing import LabelEncoder from sklearn.metrics import confusion_matrix from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_validate from keras.layers import Dense, Dropout from keras.models import Sequential for dir in os.walk("/kaggle/input/"): print(dir[2]) # Getting the training data training_data = pd.read_csv("../input/train.csv") # Printing first fice instances of training data training_data.head(10) # Printing last five instances of training data training_data.tail(10) # Getting a total number of data values we have print(len(training_data)) # Checking for null values training_data.isna().sum() # Droping the columns that are not necessary training_data = training_data.drop(columns=["Ticket", "Name", "Cabin", "PassengerId"]) training_data.isna().sum() # Replacing Null values in dataset with mean values mean_value = training_data["Age"].mean() training_data["Age"] = training_data["Age"].fillna(mean_value) training_data.isna().sum() # Dropping the values that are null training_data = training_data.dropna() print(len(training_data)) training_data.head() training_data.info() training_data.describe() # This will give us the count of unique values present in Survived column training_data["Survived"].value_counts() # Plotting a graph for visualization training_data["Survived"].value_counts().plot.bar() # Generating Testing data testing_data = pd.read_csv("../input/test.csv") # First 10 instances of testing_data testing_data.head(10) # Last 10 instances of testing_data testing_data.tail(10) # Getting the total number of instances in testing_data print(len(testing_data)) # Getting count of Na values testing_data.isna().sum() # Droping columns that are not necessary testing_data = testing_data.drop(columns=["PassengerId", "Cabin", "Name", "Ticket"]) # Filling the null values with mean values mean_value = testing_data["Age"].mean() testing_data["Age"] = testing_data["Age"].fillna(mean_value) mean_value = testing_data["Fare"].mean() testing_data["Fare"] = testing_data["Fare"].fillna(mean_value) testing_data = testing_data.dropna() testing_data.isna().sum() print(len(testing_data)) # Reading the actual labels for test data gender_submission = pd.read_csv("../input/gender_submission.csv") gender_submission.head() len(gender_submission) gender_submission["Survived"].value_counts().plot.bar() training_data.head() # Encoding the values from column Sex and Embarked enc = LabelEncoder() training_data["Sex"] = enc.fit_transform(training_data["Sex"]) training_data["Embarked"] = enc.fit_transform(training_data["Embarked"]) training_data.head() training_data["Sex"].value_counts().plot.bar() training_data["Embarked"].value_counts().plot.bar() sns.pairplot(training_data, hue="Survived") # Generating trianing data X_train = training_data.iloc[:, 1:] Y_train = np.array(training_data["Survived"]) # Converting it into numpy array X_train = np.array(X_train) print(X_train.shape) Y_train = np.array(Y_train) print(Y_train.shape) print(X_train[0, :]) print(X_train[0:5]) print(Y_train[0:5]) # Splitting training data into train and test, becuase we don't have test data here and the test data in test.csv is for prediction purpose so we will work on training data X_t, x_test, Y_t, y_test = train_test_split(X_train, Y_train) Y_t.shape # > # 1. Neural Network # Creating our Neural Network model = Sequential() # First Hidden layer with 256 neurons model.add(Dense(256, activation="sigmoid", input_dim=(7))) # Second Hideen layer with 256 neurons model.add(Dense(256, activation="relu")) # Third Hidden layer with 128 neurons model.add(Dense(128, activation="sigmoid")) # Fourth Hidden layer with 128 neurons model.add(Dense(128, activation="relu")) model.add(Dropout(0.5)) model.add(Dense(1, activation="sigmoid")) # Defining rules for our Neural Netowrk model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"]) # Fitting data to our model model.fit(X_t, Y_t, epochs=50, batch_size=32) # Evaluating our model on test data model.evaluate(x_test, y_test, batch_size=32) # > # 2. Logistic Regression from sklearn.linear_model import LogisticRegression classifier = LogisticRegression() classifier.fit(X_t, Y_t) # Evaluating on test data classifier.score(x_test, y_test) # > # 3. Random Forest Classifier from sklearn.ensemble import RandomForestClassifier classifier_2 = RandomForestClassifier() classifier_2.fit(X_t, Y_t) # Evaluating on test data classifier_2.score(x_test, y_test) # > # 4. Gradient Boosting Classifier from sklearn.ensemble import GradientBoostingClassifier classifier_3 = GradientBoostingClassifier() classifier_3.fit(X_t, Y_t) # Evaluating on test data classifier_3.score(x_test, y_test) # Cross validation on Logistic Regression result = cross_validate(classifier, X_train, Y_train, cv=5) print(result) # Cross validation on Random Forest Classifier result = cross_validate(classifier_2, X_train, Y_train, cv=5) print(result) # Cross validation on Gradient Boosting Classifier result = cross_validate(classifier_3, X_train, Y_train, cv=5) print(result) print(type(testing_data)) print(len(testing_data)) print(testing_data[0:5]) # Encoding 'Sex' and 'Embarked' column of testing_data testing_data["Sex"] = enc.fit_transform(testing_data["Sex"]) testing_data["Embarked"] = enc.fit_transform(testing_data["Embarked"]) # Forst five instances of testing_data testing_data.head() # X_pred is variable that stores values to be predicted X_pred = np.array(testing_data) print(X_pred[0:5]) X_pred.shape # Predicting values, here Y_pred contains predicted values Y_pred = model.predict(X_pred).round() # Y_test contains the actual labels for our prediction data Y_test = np.array(gender_submission) Y_test = Y_test[:, 1] print(Y_test) print(Y_test.shape) Y_pred = Y_pred.reshape( 418, ) print(Y_pred) print(Y_pred.shape) # > ## Confusion Matrix for Neural Network cm = confusion_matrix(Y_test, Y_pred) plt.subplots(figsize=(10, 8)) sns.heatmap(cm, xticklabels=["Survived", "Dead"], yticklabels=["Survived", "Dead"]) Y_pred = classifier.predict(X_pred).round() print(Y_pred) # > ## Confusion Matrix for Logistic Regression cm = confusion_matrix(Y_test, Y_pred) plt.subplots(figsize=(10, 8)) sns.heatmap(cm, xticklabels=["Survived", "Dead"], yticklabels=["Survived", "Dead"]) Y_pred = classifier_2.predict(X_pred).round() print(Y_pred) # > ## Confusion Matrix for Random Forest cm = confusion_matrix(Y_test, Y_pred) plt.subplots(figsize=(10, 8)) sns.heatmap(cm, xticklabels=["Survived", "Dead"], yticklabels=["Survived", "Dead"]) Y_pred = classifier_3.predict(X_pred).round() print(Y_pred) # > ## Confustion Matrix for Gradient Boosting Classifier cm = confusion_matrix(Y_test, Y_pred) plt.subplots(figsize=(10, 8)) sns.heatmap(cm, xticklabels=["Survived", "Dead"], yticklabels=["Survived", "Dead"])
# # **Logistic Regression [Detailed Concept + Practical Implementation with Python]** # * What is logistic regression? # * What are the types of logistic regression? # * Application of logistic regression. # * Graphical representation of logistic regression. # * Linear regression vs logistic regression. # * Math behind the logistic regression. # * Implementation of logistic regression in practical problems using real life datasets. # **What is logistic regression?** # Logistic regression is a statistical analysis method to predict a binary outcome, such as yes or no, based on prior observations of a data set. A logistic regression model predicts a dependent data variable by analyzing the relationship between one or more existing independent variables. # **What are the types of logistic regression?** # There are 3 main types of logistic regression: # * **Binary logistic regression**: This is the most common type of logistic regression, # used when the dependent variable is binary (i.e., has only two possible values). # * **Multinomial logistic regression**: This type of logistic regression is used # when the dependent variable has three or more unordered categories. # * **Ordinal logistic regression**: This type of logistic regression is # used when the dependent variable has three or more ordered categories. # **Application of Logistic Regression** # * **Binary classification:** Logistic regression can be used to predict whether an observation belongs to one of two classes (e.g. fraud or not fraud, spam or not spam). # * **Customer churn prediction:** Logistic regression can be used to predict whether a customer is likely to churn or stay with a company based on their previous behavior, demographics, and other factors. # * **Medical diagnosis:** Logistic regression can be used to predict the presence or absence of a medical condition based on symptoms, test results, and other factors. # * **Credit risk assessment:** Logistic regression can be used to predict the likelihood of default for a borrower based on their credit history and other financial information. # * **Image classification:** Logistic regression can be used in image classification tasks where we have to predict whether an image belongs to a certain class or not. # **Graphical view of logistic regression.** # **How logistic regression works?** # The logistic function, also known as the** sigmoid function**, has an S-shaped curve that ranges from 0 to 1. It is defined as: # **p = 1 / (1 + e^(-z))** # where p is the probability of the dependent variable being in the positive category, e is the base of the natural logarithm, and z is the linear combination of the independent variables. # To fit a logistic regression model, the maximum likelihood estimation method is commonly used. This method involves finding the parameters of the logistic function that maximize the likelihood of the observed data given the model. # In practice, logistic regression involves the following steps: # **Data preparation:** Collect and clean the data, and prepare the variables for analysis. # **Model specification:** Select the independent variables that are hypothesized to be related to the dependent variable, and define the functional form of the logistic regression equation. # **Model estimation:** Use maximum likelihood estimation or another suitable method to estimate the parameters of the logistic regression equation. # **Model evaluation:** Evaluate the goodness of fit of the model, assess the statistical significance of the independent variables, and check for multicollinearity and other potential problems. # **Prediction:** Use the fitted logistic regression model to make predictions about the probability of the dependent variable being in the positive category for new observations. from IPython.display import Image import os Image("/kaggle/input/images/46-4.png") Image("/kaggle/input/logistic-pictures/WhatsApp Image 2023-04-09 at 19.08.01.jpeg") # **Sigmoid Function:** Image("/kaggle/input/logistic-pictures/download.png") Image("/kaggle/input/logistic-pictures/download (1).png") Image("/kaggle/input/logistic-pictures/download (2).png") # **Likelihood Function:** Image("/kaggle/input/likelihood-fuction/download (3).png") # **Maximum Likelihood Estimation by Newton Raphson Method:** # [https://www.statlect.com/fundamentals-of-statistics/logistic-model-maximum-likelihood](http://) Image("/kaggle/input/images/logistic-regression-in-machine-learning.png") # **Linear Regression vs Logistic Regression.** # * Linear regression provides a continuous output but Logistic regression provides discreet output. # * Linear regression is used to model the relationship between a dependent variable that is continuous and one or more independent variables, while logistic regression is used to model the relationship between a binary (i.e., 0 or 1) dependent variable and one or more independent variables. # * In linear regression, the performance is measured using metrics such as mean squared error (MSE) or root mean squared error (RMSE). In contrast, logistic regression performance is measured using metrics such as accuracy, precision, recall, F1 score, or area under the ROC curve (AUC). # * In linear regression, the coefficients represent the change in the dependent variable associated with a unit change in the independent variable. In contrast, in logistic regression, the coefficients represent the change in the log odds of the dependent variable associated with a unit change in the independent variable. Image("/kaggle/input/images/LogReg_1.png") Image("/kaggle/input/wefvearb/linear-regression-vs-logistic-regression.png") # **Math Behind the Logistic Regression.** # # Application of Logistic Regression in Iris Dataset using Pyhton Raw Code. import numpy as np import pandas as pd # Load the iris dataset data = pd.read_csv( "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data", header=None, ) data = data.sample(frac=1).reset_index(drop=True) # Shuffle the data X = data.iloc[:, :-1].values y = data.iloc[:, -1].values y = np.where( y == "Iris-setosa", 1, 0 ) # Convert labels to binary (setosa vs non-setosa) # Define the logistic function def sigmoid(z): return 1 / (1 + np.exp(-z)) # Define the cost function def cost(theta, X, y): m = len(y) h = sigmoid(np.dot(X, theta)) J = (-1 / m) * np.sum(y * np.log(h) + (1 - y) * np.log(1 - h)) return J # Define the gradient function def gradient(theta, X, y): m = len(y) h = sigmoid(np.dot(X, theta)) grad = (1 / m) * np.dot(X.T, (h - y)) return grad # Define the function to perform logistic regression def logistic_regression(X, y, alpha, num_iters): m, n = X.shape X = np.concatenate((np.ones((m, 1)), X), axis=1) # Add intercept term theta = np.zeros(n + 1) for i in range(num_iters): grad = gradient(theta, X, y) theta -= alpha * grad if i % 100 == 0: print(f"Cost after iteration {i}: {cost(theta, X, y)}") return theta # Perform logistic regression alpha = 0.01 num_iters = 1000 theta = logistic_regression(X, y, alpha, num_iters) # Print the coefficients of the logistic regression model print("Coefficients:", theta) # # Application of Logistic Regression in Iris Datset using Scikit Learn. import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score # Importing iris data set for machine learning database. iris = pd.read_csv( "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data", header=None, ) iris.columns = ["sepal_length", "sepal_width", "petal_length", "petal_width", "class"] iris.head() iris.tail() # Encoding categorical features from sklearn.preprocessing import LabelEncoder le = LabelEncoder() le iris.columns iris["class"] = le.fit_transform(iris["class"]) iris.head() np.unique(iris["class"], return_counts=True) X = iris.iloc[:, 0:3] Y = iris.iloc[:, 4] # another source code # X = iris.iloc[:, :-1] # y = iris.iloc[:, -1] X.head() Y.head() # Splitting X and Y xtrain, xtest, ytrain, ytest = train_test_split(X, Y, test_size=0.2, random_state=2) xtrain.head() ytrain.head() # fitting the logitic regression model = LogisticRegression() model.fit(xtrain, ytrain) # Predicting model using xtest ypred = model.predict(xtest) score = accuracy_score(ytest, ypred) score * 100 from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score cm = confusion_matrix(ypred, ytest) sns.heatmap(cm, annot=True, cmap="Blues") plt.xlabel("Predicted") plt.ylabel("Actual") plt.title("Confusion Matrix") plt.show() precision = precision_score(ytest, ypred, average="weighted") recall = recall_score(ytest, ypred, average="weighted") f1score = f1_score(ytest, ypred, average="weighted") print("Precision:", precision) print("Recall:", recall) print("F1Score:", f1score) # **Hyperparameter Of Logistic Regression** # Logistic regression has several hyperparameters that can be tuned to optimize its performance. Here are some commonly used hyperparameters in logistic regression: # * penalty: Specifies the norm used in the penalization. Can be either "l1" or "l2". # * C: Inverse of regularization strength. Smaller values specify stronger regularization. # * fit_intercept: Specifies whether or not to fit an intercept term. # * solver: Specifies the algorithm to use in the optimization problem. Common choices are "liblinear", "lbfgs", and "sag". # * max_iter: Maximum number of iterations for the solver to converge. # * multi_class: Specifies how to handle multi-class problems. Can be either "ovr" (one-vs-rest) or "multinomial". # * dualbool, default=False Dual or primal formulation. Dual formulation is only implemented for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features. # These hyperparameters can be tuned using techniques such as grid search, random search, or Bayesian optimization to find the combination that results in the best performance on the given task. # **Deriving the hyperparameters of logistic regression.** # **"penalty"** # The penalty parameter in logistic regression is a hyperparameter that specifies the type of regularization to be applied to the model. Regularization is a technique used to prevent overfitting by adding a penalty term to the cost function. # There are two types of regularization that can be used in logistic regression: # * L1 Regularization (penalty='l1'): Also known as Lasso regularization, it adds a penalty term to the cost function that is proportional to the absolute value of the weights. L1 regularization is useful for feature selection as it tends to set the weights of irrelevant features to zero. # * L2 Regularization (penalty='l2'): Also known as Ridge regularization, it adds a penalty term to the cost function that is proportional to the square of the weights. L2 regularization is useful for dealing with multicollinearity as it tends to spread the weight values across all the features. # By default, logistic regression uses L2 regularization (penalty='l2'). # You can specify L1 regularization by setting the penalty parameter to 'l1' when creating the logistic regression object. The value of the penalty parameter can also be optimized using hyperparameter tuning techniques such as grid search or random search to find the best value for the given task. # **"C"** # The C parameter in logistic regression is a hyperparameter that controls the strength of the regularization term. It is the inverse of the regularization strength, so smaller values of C correspond to stronger regularization. # **"fit_intercept"** # The fit_intercept parameter in logistic regression is a hyperparameter that controls whether or not to include an intercept term in the model. An intercept term is a constant value added to the linear equation that represents the logistic regression model. # By default, fit_intercept is set to True, which means an intercept term will be included in the model. If fit_intercept is set to False, then the model will not include an intercept term. # **"solver"** # The solver parameter in logistic regression is a hyperparameter that specifies the algorithm to use for optimizing the parameters of the logistic regression model. Different solvers use different optimization techniques to find the parameters that minimize the cost function. # The available options for solver depend on the implementation and library used. Some common solvers include: # * **lbfgs: Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm.** This solver uses an approximation to the Hessian matrix to perform a quasi-Newton optimization of the parameters. It is a good choice for small to medium-sized datasets. # * **newton-cg: Newton's conjugate gradient algorithm.** This solver also uses the Hessian matrix to perform a Newton-Raphson optimization of the parameters. It is a good choice for small to medium-sized datasets and can be faster than lbfgs for some problems. # # * **liblinear: Library for Large Linear Classification.** This solver uses a coordinate descent algorithm to optimize the parameters. It is a good choice for large datasets and handles L1 and L2 regularization. # * **sag: Stochastic Average Gradient descent algorithm.** This solver uses a stochastic gradient descent algorithm to optimize the parameters. It is a good choice for large datasets and can handle L2 regularization. # * **saga: Stochastic Average Gradient descent algorithm** with an adaptive penalty. This solver is a variant of sag that can handle both L1 and L2 regularization. # The choice of solver depends on the specific problem and dataset. Some solvers may perform better than others depending on the size of the dataset, the complexity of the model, and the type of regularization used. It's a good practice to try different solvers and compare their performance using cross-validation or other evaluation metrics. # **"max_iter"** # The max_iter parameter in logistic regression is a hyperparameter that controls the maximum number of iterations for the solver to converge to the optimal solution. # The solver in logistic regression is an iterative optimization algorithm that updates the model parameters in each iteration to minimize the cost function. The convergence of the solver is reached when the change in the cost function or the parameters between iterations falls below a certain tolerance level. # **"multiclass"** # The multi_class parameter in logistic regression is a hyperparameter that specifies the strategy to use for handling multiclass classification problems. # Logistic regression is originally designed for binary classification problems (i.e., predicting one of two classes). However, it can also be extended to handle multiclass problems, where the goal is to predict one of more than two classes. There are three strategies for handling multiclass problems in logistic regression: # * **ovr (One-vs-Rest):** This strategy treats each class as a separate binary classification problem. For each class, a separate logistic regression model is trained to distinguish that class from all the other classes combined. During prediction, the model with the highest predicted probability is selected. # * **multinomial:** This strategy trains a single logistic regression model to predict all the classes simultaneously. The model learns the relationships between the different classes and their corresponding features. During prediction, the class with the highest predicted probability is selected. # * **auto:** This strategy automatically selects between ovr and multinomial based on the type of solver. If the solver supports multinomial loss, then multinomial is used. Otherwise, ovr is used. # The choice of multi_class strategy depends on the specific problem and dataset. In general, multinomial is preferred when there are many classes and they are not highly imbalanced, as it can lead to more accurate predictions. However, ovr can be a good choice when there are few classes or the classes are highly imbalanced, as it can be more robust to class imbalance. # **Notes for choosing hyperparameter:** # * To choose a solver, you might want to consider the following aspects: # # * For small datasets, ‘liblinear’ is a good choice, whereas ‘sag’ and ‘saga’ are faster for large ones; # # * For multiclass problems, only ‘newton-cg’, ‘sag’, ‘saga’ and ‘lbfgs’ handle multinomial loss; # # * ‘liblinear’ is limited to one-versus-rest schemes. # * ‘newton-cholesky’ is a good choice for n_samples >> n_features, especially with one-hot encoded categorical features with rare categories. Note that it is limited to binary classification and the one-versus-rest reduction for multiclass classification. Be aware that the memory usage of this solver has a quadratic dependency on n_features because it explicitly computes the Hessian matrix. # The choice of the algorithm depends on the penalty chosen. Supported penalties by solver: # * ‘lbfgs’ - [‘l2’, None] # * ‘liblinear’ - [‘l1’, ‘l2’] # * ‘newton-cg’ - [‘l2’, None] # * ‘newton-cholesky’ - [‘l2’, None] # * ‘sag’ - [‘l2’, None] # * ‘saga’ - [‘elasticnet’, ‘l1’, ‘l2’, None] # **Hyperparameter tuning in Iris Dataset.** from sklearn.model_selection import GridSearchCV param_grid = { "penalty": ["l1", "l2", "elasticnet", "none"], "C": [0.001, 0.01, 0.1, 1, 10, 100], "solver": ["newton-cg", "lbfgs", "liblinear", "sag", "saga"], "max_iter": [100, 500, 1000, 5000], } # Define the grid search object grid_search = GridSearchCV(model, param_grid=param_grid, cv=10, n_jobs=-1, verbose=1) # Fit the grid search object to the training data grid_search.fit(xtrain, ytrain) # Print the best hyperparameters and the corresponding accuracy score print("Best hyperparameters: ", grid_search.best_params_) print("Accuracy score: ", grid_search.best_score_)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. # import from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import OneHotEncoder from sklearn.impute import SimpleImputer from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.cluster import KMeans import sklearn.metrics.cluster as smc from sklearn.metrics import roc_curve from sklearn.metrics import roc_auc_score from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score train = pd.read_csv("/kaggle/input/cat-in-the-dat-ii/train.csv") test = pd.read_csv("/kaggle/input/cat-in-the-dat-ii/test.csv") # print(train.info()) # print(test.info()) train.head() print(train.shape) print(test.shape) train["bin_3"] = train["bin_3"].apply(lambda x: 1 if x == "T" else 0) train["bin_4"] = train["bin_4"].apply(lambda x: 1 if x == "Y" else 0) test["bin_3"] = test["bin_3"].apply(lambda x: 1 if x == "T" else 0) test["bin_4"] = test["bin_4"].apply(lambda x: 1 if x == "Y" else 0) train.head() # print(train['bin_0'].value_counts()) test_labels = train["target"] train = train.drop(["target"], axis=1) train.head() # X_train_part = X_train[:4200] # y_train_part = y_train[:4200] # X_test_part = X_test[:1800] # y_test_part = y_test[:1800] # train_part = train[:6000] # test_labels2 = test_labels[:6000] from category_encoders.m_estimate import MEstimateEncoder imputer1 = SimpleImputer(strategy="median") imputer = SimpleImputer(strategy="most-frequent") train_1 = train def Preparation(train, test_set=False): train_cat = train.drop(["id", "nom_5", "nom_6", "nom_9"], axis=1) cat_pipeline = Pipeline( [ ("imputer2", SimpleImputer(strategy="most_frequent")), ("cat", OneHotEncoder(categories="auto")), # ('cat',MEstimateEncoder(verbose=0, cols=None, drop_invariant=False, return_df=True, handle_unknown='value', handle_missing='value', random_state=None, randomized=False, sigma=0.05, m=1.0)), ] ) train_cat_tr = cat_pipeline.fit_transform(train_cat) categorical_features = list(train_cat) full_pipeline = ColumnTransformer( [ # ("num", num_pipeline, numerical_features), ("cat", cat_pipeline, categorical_features), ] ) train_prepared = full_pipeline.fit_transform(train) print(train_prepared.shape) return train_prepared train_1 = Preparation(train_1) # train_1 # print(train_1) X_train, X_test, y_train, y_test = train_test_split( train_1, test_labels, random_state=42, test_size=0.2 ) # train_1,test_labels # print(help(train_test_split)) print(X_train.shape, X_test.shape, y_train.shape, y_test.shape) from catboost import CatBoostClassifier params = { # 30,2000,0.15,5 "bagging_temperature": 0.8, "l2_leaf_reg": 30, "iterations": 998, "learning_rate": 0.15, "depth": 5, "random_strength": 0.8, "loss_function": "Logloss", "eval_metric": "AUC", "verbose": False, } catb = CatBoostClassifier(**params, nan_mode="Min").fit( X_train, y_train, verbose_eval=100, early_stopping_rounds=50, eval_set=(X_test, y_test), use_best_model=False, plot=True, ) preds2 = catb.predict_proba(X_test)[:, 1] print("ROC AUC score is %.4f" % (roc_auc_score(y_test, preds2))) print("Catboost Model Performance Results:\n") plot_roc_curve(catb, X_test, y_test) plt.title("ROC Curve") # submission test_id = test.index test_sub = Preparation(test) test_pred = catb.predict_proba(test_sub)[:, 1] submission = pd.read_csv("/kaggle/input/cat-in-the-dat-ii/sample_submission.csv") submission.target = test_pred submission.to_csv("submission.csv", index=False)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re import matplotlib.pyplot as plt plt.style.use("ggplot") import matplotlib.cm as cm # ------------------------------------------------------------------ # Functions used in this exercise # Note: There is probably much better way in separating the player name and country from player. # Since the primary objective is to analyze the data, I'm compromising the elegancy def get_player_name(player): vals = re.findall(r"\((.*?)\)", player) name = player for v in vals: to_rep = "(" + v + ")" name = name.replace(to_rep, "") return name def get_country(player): vals = re.findall(r"\((.*?)\)", player) country = vals[-1] if ( "ICC" in country and len(country.split("/")) == 2 ): # If a player played for his country and ICC, then ignore ICC country = country.replace("ICC", "").replace("/", "") return country # ------------------------------------------------------------------ # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Read the data in print("Reading the data...") df = pd.read_csv( "/kaggle/input/icc-test-cricket-runs/ICC Test Batting Figures.csv", encoding="ISO-8859-1", ) print("Done") # preview the data df.head() # Drop the player profile column.. No use df.drop("Player Profile", axis=1, inplace=True) # Player contains the player name and country # Create 2 new columns with just player name and country df["Name"] = df["Player"].apply(get_player_name) df["Country"] = df["Player"].apply(get_country) # Look at the number of players by country df.groupby("Country").count() # hhmm there are some players played for multiple countries # Lets add another column to store the number of countries df["NumCountries"] = df["Country"].apply(lambda x: len(x.split("/"))) # Did someone play for more than 2 countries? print("Number of Countries") print(df.NumCountries.value_counts()) # Who played for more than 1 country? print(df.loc[df["NumCountries"] > 1, ["Player", "Mat"]]) # I remember Kepler Wessels, Rankin and Traicos.. It happened in my lifetime !!!! # Out of 3001 players, 15 played for multiple countries. That is 0.5% Small number.. Delete these players df.drop(df[df["NumCountries"] > 1].index, inplace=True) # Lets do some charting # How many players per country? players_by_country = df.groupby("Country")["Player"].count() plt.xticks(rotation="vertical") plt.bar(x=players_by_country.index, height=players_by_country.values) plt.show() # Ofcourse, Eng has more players as they played from early and they play a lot # Look at the column types df.dtypes # Remove * in HS. This indicates the batsman was not-out.. df["HS"] = df["HS"].str.replace("*", "") # Inn, NO, Runs, HS, Avg, 100, 50, 0 are object.. Convert them to numeric... Some players have not scored any runs or does not # have avergage.. Convert them to NaN using 'coerce' for col in ["Inn", "NO", "Runs", "Avg", "HS", "100", "50", "0"]: df[col] = pd.to_numeric(df[col], errors="coerce") # Now look at the types df.dtypes df # Span contains the range of the year in which the player played # Create new columns From/To store the debut year and retired/finally dropped from the team year df = pd.concat( [ df, df["Span"].apply( lambda x: pd.Series( {"From": int(x.split("-")[0]), "To": int(x.split("-")[1])} ) ), ], axis=1, ) df.head() # Create a column to store the number of years the player was active df["SpanYears"] = df["To"] - df["From"] df.head() # Which player had longest career print("Player with longest career") # Using this approach instead of idxmax so we can identify if there are more than 1 player with long career df[["Player", "Span"]][df["SpanYears"] == df["SpanYears"].max()] # Who had more number of ducks (0) print("Player with most ducks") df[["Player", "Inn", "Runs", "0"]][df["0"] == df["0"].max()] # No surprise who that player is.. But he is a great bowler and gentleman though # Who coverts 50s to 100s more often # For this create a new data frame which has players who scored more than 1000 runs # to avoid cases where tail enders or players who have not played many matches scoring 1 or 2 100s by luck gp = df.drop(df[df["Runs"] < 1000].index) gp["100To50"] = gp["100"] / gp["50"] print("Player who converts more 50s to 100s") gp[["Player", "Inn", "Runs", "100", "50", "100To50"]][ gp["100To50"] == gp["100To50"].max() ].sort_values("Runs", ascending=True)
import pandas as pd from sklearn.model_selection import train_test_split import math import time from sklearn.naive_bayes import GaussianNB import numpy as np from sklearn import metrics import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) data_test = pd.read_csv("/kaggle/input/titanic/test.csv") data_train = pd.read_csv("/kaggle/input/titanic/train.csv") def removeQuestionMark(outCol, inpCol): for i in inpCol: repl = X[i].value_counts().keys().tolist()[0] X[i] = X[i].replace(to_replace=" ?", value=repl) rep = y[outCol[0]].value_counts().keys().tolist()[0] y[outCol[0]] = y[outCol[0]].replace(to_replace=" ?", value=rep) def CategTraining(X_train, y_train, outCol): trainCount = y_train[outCol[0]].value_counts().to_dict() col1 = list(X_train.columns) outputList = y_train[outCol[0]].value_counts().keys().tolist() trainDict = dict([(key, []) for key in col1]) for i in range(0, len(col1)): inputList = X_train[col1[i]].value_counts().keys().tolist() proxy = dict( [(key, dict([(keys, []) for keys in outputList])) for key in inputList] ) trainDict[col1[i]] = proxy for i in trainDict.keys(): for j in trainDict[i].keys(): for k in trainDict[i][j].keys(): num = ( X_train.loc[(X_train[i] == j) & (y_train[outCol[0]] == k)] ).shape[0] den = trainCount[k] prob = num / den trainDict[i][j][k] = prob return trainDict def CategTesting(outCol, trainDict, y_train, X_test): trainProb = (y_train[outCol[0]].value_counts() / y_train.shape[0]).to_dict() outputList = y_train[outCol[0]].value_counts().keys().tolist() testDict1 = dict( [(key, dict([(keys, []) for keys in outputList])) for key in X_test.index] ) for i in testDict1.keys(): for j in testDict1[i].keys(): prob = 1 l = 0 for k in trainDict.keys(): prob = trainDict[k][X_test.loc[i][l]][j] * prob l = l + 1 testDict1[i][j] = prob * trainProb[j] return testDict1 def Probop(y_test, posOp): Probop = dict([(key, []) for key in posOp]) for i in Probop.keys(): Probop[i] = (y_test["Salaray"].value_counts()[i]) / y_test.shape[0] return Probop def Predict(testDict, prediction, ProbOp): testInd = y_test.index FinalPrediction = dict([(keys, []) for keys in testInd]) for i in FinalPrediction.keys(): maxi = 0 pr = "" p = 0 for j in posOp: p = prediction[i][j] * testDict[i][j] if p > maxi: maxi = p pr = j FinalPrediction[i] = pr return FinalPrediction data_train["Age"].fillna(data_train["Age"].mean(), inplace=True) data_train["Fare"].fillna(data_train["Fare"].mean(), inplace=True) data_test["Age"].fillna(data_test["Age"].mean(), inplace=True) data_test["Fare"].fillna(data_test["Fare"].mean(), inplace=True) data_train["Pclass"].fillna(data_train["Pclass"].mode().tolist()[0], inplace=True) data_train["Sex"].fillna(data_train["Sex"].mode().tolist()[0], inplace=True) data_train["Parch"].fillna(data_train["Parch"].mode().tolist()[0], inplace=True) data_train["SibSp"].fillna(data_train["SibSp"].mode().tolist()[0], inplace=True) data_train["Cabin"].fillna(data_train["Cabin"].mode().tolist()[0], inplace=True) data_train["Embarked"].fillna(data_train["Embarked"].mode().tolist()[0], inplace=True) data_test["Pclass"].fillna(data_test["Pclass"].mode().tolist()[0], inplace=True) data_test["Sex"].fillna(data_test["Sex"].mode().tolist()[0], inplace=True) data_test["Parch"].fillna(data_test["Parch"].mode().tolist()[0], inplace=True) data_test["SibSp"].fillna(data_test["SibSp"].mode().tolist()[0], inplace=True) data_test["Cabin"].fillna(data_test["Cabin"].mode().tolist()[0], inplace=True) data_test["Embarked"].fillna(data_test["Embarked"].mode().tolist()[0], inplace=True) X_train = data_train[ ["Pclass", "Sex", "Age", "SibSp", "Parch", "Fare", "Cabin", "Embarked"] ] y_train = data_train[["Survived"]] X_test = data_test[ ["Pclass", "Sex", "Age", "SibSp", "Parch", "Fare", "Cabin", "Embarked"] ] inpCol = list(X_train.columns) outCol = list(y_train.columns) categ_X_train_data = X_train[["Sex", "Cabin", "Embarked"]] trainDict = CategTraining(categ_X_train_data, y_train, outCol) testDict = CategTesting(outCol, trainDict, y_train, X_test) cont_X_Train_data = X_train[["Pclass", "Age", "SibSp", "Parch", "Fare"]] X_test = x_test[["Pclass", "Age", "SibSp", "Parch", "Fare"]] posOp = y_train["Survived"].value_counts().keys().tolist() size = y_train.shape[0] ProbOp = Probop(y_test, posOp) clf = GaussianNB() clf.fit(cont_X_train_data, y_train) s = clf.predict_proba(X_test) outputList = y_train[outCol[0]].value_counts().keys().tolist() prediction = dict( [(key, dict([(keys, []) for keys in outputList])) for key in X_test.index] ) r = 0 c = 0 for i in prediction.keys(): c = 0 for j in prediction[i].keys(): prediction[i][j] = s[r][c] c = c + 1 r = r + 1 Predictions = Predict(testDict, prediction, ProbOp)
import pandas as pd import seaborn as sns import matplotlib.pyplot as plt sns.set_style("dark") plt.style.use("fivethirtyeight") titanic = pd.read_csv( "../input/titanic/train.csv", sep=",", index_col="PassengerId", parse_dates=True ) titanic.head(10) titanic.shape # #### Grouping the datset by sex and getting each columns mean value group_by_sex = titanic.groupby("Sex").mean() group_by_sex # ### The next three figures shows the distribution between the survival chance based on Age and Sex plt.figure(figsize=(10, 8)) plt.title("Survival rate ") sns.countplot("Survived", data=titanic, hue="Survived") plt.show() plt.figure(figsize=(10, 8)) plt.title("Survival rate based on sex ") sns.barplot(x="Sex", y="Survived", data=titanic, hue="Sex") plt.show() plt.figure(figsize=(10, 8)) plt.title("Gender Age Distribution") sns.barplot(x="Survived", y="Age", data=titanic, hue="Survived") # ## New dataset for males that survived, taking into account only Age and Pclass # locate the male passengers and find all who survived male_percent_survived = titanic.loc[(titanic.Sex == "male") & (titanic.Survived > 0)] male_percent_survived # Which passenger class had the most survivals male_percent_survived.Pclass.value_counts() plt.figure(figsize=(8, 6)) plt.title("Ranking of male that survived based on their passengerclass") sns.countplot( x=male_percent_survived.Pclass, data=male_percent_survived, hue="Survived" ) # Which Age had the most survivals male_percent_survived.Age.value_counts() # taking passengers from ages 1 and above male_age_above_092 = male_percent_survived.loc[male_percent_survived.Age > 0.92] male_age_above_092 plt.figure(figsize=(30, 15)) plt.title("Ranking of male that survived based on their ages") sns.countplot( x=male_age_above_092.Age.astype(int), data=male_percent_survived, hue="Survived" )
import numpy as np import pandas as pd from sklearn.metrics import accuracy_score, mean_squared_error from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier train = pd.read_csv( "/kaggle/input/house-prices-advanced-regression-techniques/train.csv" ) train.isnull().sum() train.head() x = train[ [ "Id", "MSSubClass", "LotArea", "OverallQual", "OverallCond", "YearBuilt", "YearRemodAdd", "PoolArea", "MiscVal", "MoSold", "YrSold", ] ] y = train["SalePrice"] xtrain, xval, ytrain, yval = train_test_split(x, y, test_size=0.2, random_state=42) y.isnull().sum() x.isnull().sum() np.isnan(x).sum() model = RandomForestClassifier() model.fit(xtrain, ytrain) test = pd.read_csv("/kaggle/input/house-prices-advanced-regression-techniques/test.csv") test1 = test[ [ "Id", "MSSubClass", "LotArea", "OverallQual", "OverallCond", "YearBuilt", "YearRemodAdd", "PoolArea", "MiscVal", "MoSold", "YrSold", ] ] predicted = model.predict(test1) submission = pd.DataFrame({"Id": test1["Id"], "SalePrice": predicted}) submission.to_csv("submission.csv", index=False)
# Import librairies import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt plt.style.use("seaborn") # # Load the data # The input file has string columns with and without double quotes, so the quotes are not taken into account, and a comma in a string is considered as a delimiter. # So I had to tinker with this file!!! # Columns are # * Year # * Type (of ads) # * Product # * Title # * Notes (description of the spot TV) # Load the data without delimiter (line by line) temp = pd.read_csv( "../input/superbowlads/superbowl-ads.csv", delimiter="^", quotechar='"' ) # Line 561 , the 'Year' is missing temp.iloc[561] = "2020," + temp.iloc[561] # Split the data new = temp.iloc[:, 0].str.split(",", n=3, expand=True) new[3] = new[3].str.replace('"', "") new[1] = new[1].str.replace('"', "") new[2] = new[2].str.strip('"') new2 = new[2].str.split('""', n=1, expand=True) new = pd.concat([new.iloc[:, [0, 1]], new2, new.iloc[:, 3]], axis=1).values # Build the final dataframe df = pd.DataFrame(new, columns=["Year", "Type", "Product", "Title", "Notes"]) del temp, new, new2 df.head() df.info() # # Count the type of ads by year df_counts = pd.crosstab(df["Type"], df["Year"]) df_counts.head() # # Number of ads by year ads_by_year = df_counts.sum(axis=0) ads_by_year.plot(figsize=(16, 9), title="Number of ads over year") plt.show() # # Most frequent type (more than 10 times from 1969 to 2020) df_counts["Total"] = df_counts.sum(axis=1) df_counts.sort_values(by="Total", ascending=False, inplace=True) top = df_counts.loc[df_counts["Total"] > 10].drop("Total", 1) filter = list(top.index) print(50 * "#" + "\n# Most frequent type (descending order)\n" + 50 * "#") print(filter) top.head(10) # # Evolution over year of the overall most frequent type # What we can see : # * The categories Film / Food / Beer are a constant over time # * There is a peak for advertisements regarding websites in 2000 ! # * 'TV series' and 'Wireless' appeared since 2016 labels = filter fig, ax = plt.subplots(figsize=(18, 10), dpi=100) ax.stackplot(top.columns, top.values, labels=labels) ax.legend(loc="upper left") plt.show() # # Top 10 year by year # > Another way to see the evaluation col = df_counts.columns result = [] for i in range(0, col.shape[0]): list_temp = list( df_counts.loc[df_counts[col[i]] > 0, col[i]] .sort_values(ascending=False)[:10] .index ) for j in range(len(list_temp), 10): list_temp.append("-") result.append(list_temp) result = np.vstack(result).transpose() result = pd.DataFrame(data=result, columns=col) result.iloc[:, :18].head(10) result.iloc[:, 18:].head(10) # # Do you have periods to type ads ? # > by trying to check this by doing a hierarchical clustering of the years # > Not really convincing from scipy.spatial.distance import pdist, squareform from scipy.cluster.hierarchy import linkage, dendrogram from matplotlib.colors import rgb2hex, colorConverter from scipy.cluster.hierarchy import set_link_color_palette df_counts.head() clustdf = df_counts.transpose() c_dist = pdist(clustdf) # computing the distance c_link = linkage( clustdf, metric="correlation", method="complete" ) # computing the linkage fig, axes = plt.subplots(1, 1, figsize=(14, 14)) dendro = dendrogram( c_link, labels=list(df_counts.columns), orientation="right", ax=axes, color_threshold=0.5, ) plt.show()
# ****AI Factory – Assignment for candidates**** import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from fastai import * from fastai.vision import * from fastai.callbacks import * from sklearn.model_selection import train_test_split import seaborn as sns # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. # delete pictures in folder # shutil.rmtree('./data/composites/') train = pd.read_json("../input/sar-iceberg/train.json") test = pd.read_json("../input/sar-iceberg/test.json") train.head() # We can see we have to convert the data to an image then use a model to classify it , resnet34 with 2 blank matrices at the end. # **Distribution of target variable:** sns.countplot(train.is_iceberg).set_title("Target variable distribution") # Data is balanced # get more info on dataset train.info(), test.info() # will check to repositioning picture according to angle of satellite. train.inc_angle = train.inc_angle.replace("na", 0, inplace=True) train.inc_angle.describe() # let's see an image img1 = train.loc[5, ["band_1", "band_2"]] img1 = np.stack([img1["band_1"], img1["band_2"]], -1).reshape(75, 75, 2) plt.imshow(img1[:, :, 0]) plt.imshow(img1[:, :, 1]) # **Image creation (to Jpgs)** # shape of dataset train.shape # this will help us to have more images and allowing us to see more charactersitics in image def color_composite(data): rgb_arrays = [] for i, row in data.iterrows(): band_1 = np.array(row["band_1"]).reshape(75, 75) band_2 = np.array(row["band_2"]).reshape(75, 75) band_3 = band_1 / band_2 r = (band_1 + abs(band_1.min())) / np.max((band_1 + abs(band_1.min()))) g = (band_2 + abs(band_2.min())) / np.max((band_2 + abs(band_2.min()))) b = (band_3 + abs(band_3.min())) / np.max((band_3 + abs(band_3.min()))) rgb = np.dstack((r, g, b)) rgb_arrays.append(rgb) return np.array(rgb_arrays) rgb_train = color_composite(train) rgb_test = color_composite(test) print("The train shape {}".format(rgb_train.shape)) print("The test shape {}".format(rgb_test.shape)) # look at some ships ships = np.random.choice(np.where(train.is_iceberg == 0)[0], 9) fig = plt.figure(1, figsize=(12, 12)) for i in range(9): ax = fig.add_subplot(3, 3, i + 1) arr = rgb_train[ships[i], :, :] ax.imshow(arr) plt.show() # look at some iceberg iceberg = np.random.choice(np.where(train.is_iceberg == 1)[0], 9) fig = plt.figure(1, figsize=(12, 12)) for i in range(9): ax = fig.add_subplot(3, 3, i + 1) arr = rgb_train[iceberg[i], :, :] ax.imshow(arr) plt.show() # for creating labels and folders # we have to label if iceberg or ship therefore I will create 2 folders - one ship, one iceberg in train set. iceberg = train[train.is_iceberg == 1] ship = train[train.is_iceberg == 0] # save images to disk os.makedirs("./data/composites", exist_ok=True) os.makedirs("./data/composites/train/ship", exist_ok=True) os.makedirs("./data/composites/train/iceberg", exist_ok=True) os.makedirs("./data/composites/test", exist_ok=True) # save train iceberg images for idx in iceberg.index: img = rgb_train[idx] plt.imsave("./data/composites/train/iceberg_" + str(idx) + ".png", img) # save train ship images for idx in ship.index: img = rgb_train[idx] plt.imsave("./data/composites/train/ship_" + str(idx) + ".png", img) # save test images for idx in range(len(test)): img = rgb_test[idx] plt.imsave("./data/composites/test/" + str(idx) + ".png", img) # GPU required torch.cuda.is_available() torch.backends.cudnn.enabled # copy model to kernel resnet 34 # Fix to enable Resnet to live on Kaggle - creates a writable location for the models cache_dir = os.path.expanduser(os.path.join("~", ".torch")) if not os.path.exists(cache_dir): os.makedirs(cache_dir) # print("directory created :" .cache_dir) models_dir = os.path.join(cache_dir, "models") if not os.path.exists(models_dir): os.makedirs(models_dir) # print("directory created :" . cache_dir) # get pictures/files directory path = "../working/data/composites/" path_img = "../working/data/composites/train/" fnames = get_image_files(path_img) fnames[:5] np.random.seed(2) pat = r"/([^/]+)_\d+.png$" tfms = get_transforms(do_flip=True, flip_vert=True, max_lighting=0.3, max_warp=0.2) data = ImageDataBunch.from_name_re( path_img, fnames, pat, valid_pct=0.3, ds_tfms=tfms, size=128, bs=256, resize_method=ResizeMethod.CROP, padding_mode="reflection", ).normalize( imagenet_stats ) # imagenet stats # convert image to grayscale for itemList in ["train_dl", "valid_dl", "fix_dl", "test_dl"]: itemList = getattr(data, itemList) if itemList: itemList.x.convert_mode = "L" data.classes # **added imagenet weights** # let's check image + label data.show_batch(rows=3, figsize=(7, 8)) # create a learner learn = cnn_learner( data, models.resnet34, metrics=[error_rate, accuracy], model_dir="/tmp/models/" ) learn.summary() learn.fit_one_cycle(4) learn.save("stage-1") interp = ClassificationInterpretation.from_learner(learn) interp.plot_top_losses(9, figsize=(9, 9)) interp.plot_confusion_matrix() learn.lr_find() learn.recorder.plot(suggestion=True) lr = 1e-01 learn.fit_one_cycle(5, 1e-02) learn.save("stage-2") # The learner has a built in method for plotting the training and validation loss. learn.recorder.plot_losses() # Initiating refit and checking LR learn.unfreeze learn.lr_find() learn.recorder.plot(suggestion=True) # access the corresponding learning rate # min_grad_lr = learn.recorder.min_grad_lr # min_grad_lr learn.fit_one_cycle(10, slice(1e-02, 1e-01)) learn.save("stage-3") learn.recorder.plot_losses() # create a new learner # learn = cnn_learner(data, models.resnet34, metrics=[error_rate,accuracy] ,callback_fns=[partial(SaveModelCallback)], # wd=0.1,ps=[0.9, 0.6, 0.4]) # learn = learn.load('stage-3') # it becomes to be alike... unfrozen_validation = learn.validate() print("Final model validation loss: {0}".format(unfrozen_validation[0])) # Explring the result interp = ClassificationInterpretation.from_learner(learn) interp.plot_confusion_matrix(figsize=(2, 2)) test = pd.read_json("../input/sar-iceberg/test.json") Xtest = get_images(test) test_predictions = model.predict_proba(Xtest) submission = pd.DataFrame({"id": test["id"], "is_iceberg": test_predictions[:, 1]}) submission.to_csv("sub_submission.csv", index=False)
# # **Vectorizers** - #1 micro challenge # # Rules # I have an idea of an alternative challenge format for a while. I want to test it. # In short, it's a short challenge with specific measurable goals to be achieved. # In this challenge, you are given a fixed pipeline and only can change the vectorization process. The vectorization method interface is fixed, the rest is up to you. # You need to **fork [original notebook](https://www.kaggle.com/dremovd/micro-challenge-vectorizers)** # In order to compete, you also need to **make your Kaggle notebook public**. # # Challenge [data](https://www.kaggle.com/c/nlp-getting-started/data) # Data is the same as for the official competition, you can read description here https://www.kaggle.com/c/nlp-getting-started/data # # Goals # - 🥉 Bronze. F1-score >= **0.80** at **public** leaderboard # - 🥈 Silver. F1-score >= **0.81** at **public** leaderboard # - 🥇 Gold. F1-score >= **0.81** at **public** leaderboard + runtime is below **1 minute** # # [Submit](https://forms.gle/H8MPo4xpu4NDVsX49) # You can submit your **public** Kaggle notebook via this [link](https://forms.gle/H8MPo4xpu4NDVsX49) # # [Leaderboard](http://bit.ly/36pSp3S) # The final leaderboard is sorted by a medal type and then by submission time. The earlier you achieved the goal is better. You can see current leaderboard by this [link](http://bit.ly/36pSp3S) # # Fixed pipeline # In order to participate, the part below need to be unchanged import pandas as pd import numpy as np from joblib import Parallel, delayed from sklearn.svm import LinearSVC from sklearn.linear_model import LogisticRegression, RidgeClassifier from sklearn.model_selection import StratifiedKFold, cross_val_score from sklearn.metrics import f1_score import scipy def simple_pipeline(): print("Load data") train, test = load_data() data = pd.concat([train, test], axis=0, ignore_index=True) print("Vectorization") X = vectorization(data.drop("target", axis=1)) if type(X) == scipy.sparse.coo_matrix: X = X.tocsr() test_mask = data.is_test.values X_train = X[~test_mask] y_train = data["target"][~test_mask] X_test = X[test_mask] if scipy.sparse.issparse(X): X_train.sort_indices() X_test.sort_indices() model = build_model(X_train, y_train) print("Prediction with model") p = model.predict(X_test) print("Generate submission") make_submission(data[test_mask], p) def load_data(): train = pd.read_csv("/kaggle/input/nlp-getting-started/train.csv") train["is_test"] = False test = pd.read_csv("/kaggle/input/nlp-getting-started/test.csv") test["target"] = -1 test["is_test"] = True return train, test def calculate_validation_metric(model, X, y, metric): folds = StratifiedKFold(n_splits=4, shuffle=True, random_state=0) score = cross_val_score(model, X, y, scoring=metric, cv=folds, n_jobs=4) return np.mean(score), model def select_model(X, y): models = [ LinearSVC(C=30), LinearSVC(C=10), LinearSVC(C=3), LinearSVC(C=1), LinearSVC(C=0.3), LinearSVC(C=0.1), LinearSVC(C=0.03), RidgeClassifier(alpha=30), RidgeClassifier(alpha=10), RidgeClassifier(alpha=3), RidgeClassifier(alpha=1), RidgeClassifier(alpha=0.3), RidgeClassifier(alpha=0.1), RidgeClassifier(alpha=0.03), LogisticRegression(C=30), LogisticRegression(C=10), LogisticRegression(C=3), LogisticRegression(C=1), LogisticRegression(C=0.3), LogisticRegression(C=0.1), LogisticRegression(C=0.03), ] results = [ calculate_validation_metric( model, X, y, "f1_macro", ) for model in models ] best_result, best_model = max(results, key=lambda x: x[0]) print("Best model validation result: {:.4f}".format(best_result)) print("Best model: {}".format(best_model)) return best_model def build_model(X, y): print("Selecting best model") best_model = select_model(X, y) print("Refit model to full dataset") best_model.fit(X, y) return best_model def make_submission(data, p): submission = data[["id"]].copy() submission["target"] = p submission.to_csv("submission.csv", index=False) # # Your part # ## In *vectorization* method you can change everything and use any dependencies from sklearn.feature_extraction.text import ( TfidfVectorizer, CountVectorizer, HashingVectorizer, ) from scipy.sparse import hstack def vectorization(data): """ data is concatenated train and test datasets with target excluded Result value "vectors" expected to have some number of rows as data """ tfidf_chars = TfidfVectorizer( analyzer="char", strip_accents="ascii", ngram_range=(3, 6), min_df=0.0015 ) tfidf_words = TfidfVectorizer( analyzer="word", strip_accents="ascii", ) text = data["text"].fillna("").str.lower() keyword = data["keyword"].fillna("").str.lower() vectors_word = tfidf_words.fit_transform(text + " " + keyword) vectors_char = tfidf_chars.fit_transform(text) return hstack((vectors_word, vectors_char)) simple_pipeline()
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. import pandas as pd import numpy as np import matplotlib.pyplot as plt from tqdm import tqdm_notebook from IPython.core.display import HTML from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import ( StratifiedKFold, KFold, TimeSeriesSplit, train_test_split, ) from sklearn.metrics import roc_auc_score from sklearn.tree import DecisionTreeClassifier from sklearn import tree import graphviz import lightgbm as lgb import warnings from tqdm.notebook import tqdm import data_science_utils.feature_extraction_util as fe from data_science_utils.plot_util import * from sklearn.metrics import roc_auc_score from sklearn.model_selection import GridSearchCV from missingpy import MissForest # # Load Data test_identity = pd.read_csv("/kaggle/input/ieee-fraud-detection/test_identity.csv") test_identity.columns = test_identity.columns.str.replace("-", "_") train_identity = pd.read_csv("/kaggle/input/ieee-fraud-detection/train_identity.csv") test_transaction = pd.read_csv( "/kaggle/input/ieee-fraud-detection/test_transaction.csv" ) train_transaction = pd.read_csv( "/kaggle/input/ieee-fraud-detection/train_transaction.csv" ) train = pd.merge(train_identity, train_transaction, on="TransactionID", how="right") test = pd.merge(test_identity, test_transaction, on="TransactionID", how="right") # Clear unused data to free up some memory test_identity, train_identity, test_transaction, train_transaction = [None] * 4 # # Fill missing data numerical_columns = ["id_0" + str(i) for i in range(1, 10)] + ["id_10", "id_11"] # ## Categorical Data with -999 test.loc[:, ~test.columns.isin(numerical_columns)] = test.loc[ :, ~test.columns.isin(numerical_columns) ].fillna(-999) train.loc[:, ~train.columns.isin(numerical_columns)] = train.loc[ :, ~train.columns.isin(numerical_columns) ].fillna(-999) # ## Fill numerical with imputation (missForest) imputer = MissForest() test.loc[:, test.columns.isin(numerical_columns)] = imputer.fit_transform( test.loc[:, test.columns.isin(numerical_columns)] ) train.loc[:, train.columns.isin(numerical_columns)] = imputer.fit_transform( train.loc[:, train.columns.isin(numerical_columns)] ) # # Fix covariate shift params = { "objective": "binary", "boosting_type": "gbdt", "subsample": 1, "bagging_seed": 11, "metric": "auc", "num_boost_round": 100, "verbose": -1, } train, test = fe.correct_features_with_covariate_shift( train, test, params, train.columns.drop(["isFraud", "TransactionID", "TransactionDT"]), ) # # Add more features train["TransactionAmt_decimal"] = ( (train["TransactionAmt"] - train["TransactionAmt"].astype(int)) * 1000 ).astype(int) test["TransactionAmt_decimal"] = ( (test["TransactionAmt"] - test["TransactionAmt"].astype(int)) * 1000 ).astype(int) # Count encoding for card1 feature. # Explained in this kernel: https://www.kaggle.com/nroman/eda-for-cis-fraud-detection train["card1_count_full"] = train["card1"].map( pd.concat([train["card1"], test["card1"]], ignore_index=True).value_counts( dropna=False ) ) test["card1_count_full"] = test["card1"].map( pd.concat([train["card1"], test["card1"]], ignore_index=True).value_counts( dropna=False ) ) # https://www.kaggle.com/fchmiel/day-and-time-powerful-predictive-feature train["Transaction_day_of_week"] = np.floor( (train["TransactionDT"] / (3600 * 24) - 1) % 7 ) test["Transaction_day_of_week"] = np.floor( (test["TransactionDT"] / (3600 * 24) - 1) % 7 ) train["Transaction_hour"] = np.floor(train["TransactionDT"] / 3600) % 24 test["Transaction_hour"] = np.floor(test["TransactionDT"] / 3600) % 24 # Some arbitrary features interaction for feature in [ "id_02__id_20", "id_02__D8", "D11__DeviceInfo", "DeviceInfo__P_emaildomain", "P_emaildomain__C2", "card2__dist1", "card1__card5", "card2__id_20", "card5__P_emaildomain", "addr1__card1", ]: f1, f2 = feature.split("__") train[feature] = train[f1].astype(str) + "_" + train[f2].astype(str) test[feature] = test[f1].astype(str) + "_" + test[f2].astype(str) le = LabelEncoder() le.fit( list(train[feature].astype(str).values) + list(test[feature].astype(str).values) ) train[feature] = le.transform(list(train[feature].astype(str).values)) test[feature] = le.transform(list(test[feature].astype(str).values)) for feature in ["id_34", "id_36"]: if feature in useful_features: # Count encoded for both train and test train[feature + "_count_full"] = train[feature].map( pd.concat([train[feature], test[feature]], ignore_index=True).value_counts( dropna=False ) ) test[feature + "_count_full"] = test[feature].map( pd.concat([train[feature], test[feature]], ignore_index=True).value_counts( dropna=False ) ) for feature in ["id_01", "id_31", "id_33", "id_35", "id_36"]: if feature in useful_features: # Count encoded separately for train and test train[feature + "_count_dist"] = train[feature].map( train[feature].value_counts(dropna=False) ) test[feature + "_count_dist"] = test[feature].map( test[feature].value_counts(dropna=False) ) # # Train lightgbm params = { "num_leaves": 491, "min_child_weight": 0.03454472573214212, "feature_fraction": 0.3797454081646243, "bagging_fraction": 0.4181193142567742, "min_data_in_leaf": 106, "objective": "binary", "max_depth": -1, "learning_rate": 0.0066, "n_estimators": 1000, "boosting_type": "gbdt", "bagging_seed": 11, "metric": "auc", "verbosity": -1, "reg_alpha": 0.3899927210061127, "reg_lambda": 0.6485237330340494, "random_state": 47, } X_train, X_test, y_train, y_test = train_test_split( train.drop(columns=["isFraud", "TransactionID", "TransactionDT"]), train["isFraud"], test_size=0.33, ) clf = lgb.LGBMClassifier(**params) clf.fit(X_train, y_train) cols_to_drop = ["TransactionID", "TransactionDT"] sub = pd.read_csv("/kaggle/input/ieee-fraud-detection/sample_submission.csv") sub["isFraud"] = clf.predict_proba(test.drop(columns=cols_to_drop))[:, 1] sub["TransactionID"] = test.TransactionID sub.to_csv("submission.csv", index=False)
import torch device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(device) # ---- # # Imports import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import string from matplotlib.colors import is_color_like import nltk from nltk.corpus import stopwords nltk.download("stopwords") nltk.download("punkt") stop_words = stopwords.words("english") print(stop_words) from nltk.stem import PorterStemmer porter = PorterStemmer() from sklearn.feature_extraction.text import ( TfidfTransformer, TfidfVectorizer, CountVectorizer, ) from sklearn.cluster import KMeans from gensim.summarization import summarize # pip3 install gensim==3.6.0 from gensim.summarization import keywords from joblib import dump, load # ---- CSV_DIRECTORY = "../input/data-combined/data.csv" df = pd.read_csv(CSV_DIRECTORY, index_col=0).reset_index() df.head() # ## More Answer Types def more_separation(input_question, answer): question = input_question.split() # filter_question = filter(lambda w: not w in stopwords, split_question.split()) if answer.lower() == "yes" or answer.lower() == "no": return "yes/no" elif answer.translate(str.maketrans("", "", string.punctuation)).isnumeric(): return "number" ### elif (len(answer) > 1 and is_color_like(answer)) or answer == "clear": return "colour" elif question[0] == "Where": return "location" elif question[0] == "What" and question[1] == "is": return "identify" else: return "other" df["answer_type"] = df.apply( lambda x: more_separation(x["question"], x["answer"]), axis=1 ) # ## Kmeans for Question Labels def remove_stopwords_punctuation_from_tokens(question_tokens): new_list = [] for token in eval(question_tokens): if token not in stop_words and token not in string.punctuation: # print(token) new_list.append(token) return new_list def stem_tokens(question_tokens): return [porter.stem(token) for token in question_tokens] def normalize_tokens(tokens): return [token.lower() for token in tokens] df["question_tokens"] = ( df["question_tokens"] .apply(remove_stopwords_punctuation_from_tokens) .apply(normalize_tokens) ) df = df[~df["question_tokens"].apply(lambda x: isinstance(x, (list)) and len(x) == 0)] df.head() # Convert the preprocessed tokens to strings df["question_text"] = df["question_tokens"].apply(lambda x: " ".join(x)) df.head() tfidf = TfidfVectorizer() tfidf_matrix = tfidf.fit_transform(df["question_text"]) # Print the shape of the tfidf matrix print(tfidf_matrix.shape) tfidf_matrix.todense() # Initialize the KMeans model kmeans = KMeans() kmeans.fit(tfidf_matrix) MAX_N_CLUSTERS = 30 # Calculate the within-cluster sum of squares (WCSS) for different numbers of clusters wcss = [] for i in range(1, MAX_N_CLUSTERS + 1): kmeans = KMeans( n_clusters=i, init="k-means++", max_iter=300, n_init=10, random_state=0 ) kmeans.fit(tfidf_matrix) wcss.append(kmeans.inertia_) # Plot the elbow curve plt.plot(range(1, MAX_N_CLUSTERS + 1), wcss) plt.title("Elbow Method") plt.xlabel("Number of clusters") plt.ylabel("WCSS") plt.show() N_CLUSTERS = 30 # Initialize the KMeans model with the optimal number of clusters kmeans = KMeans( n_clusters=N_CLUSTERS, init="k-means++", max_iter=300, n_init=10, random_state=0 ) kmeans.fit(tfidf_matrix) # Add the cluster labels to the dataframe df["cluster_label"] = kmeans.labels_ dump(kmeans, "./kmeans_model.joblib") # Print the number of questions in each cluster df["cluster_label"].value_counts() NO_SUMMARY_WORDS = 1 NO_SUMMARY_SAMPLE_SIZE = 900 cluster_labels = {} for idx in range(N_CLUSTERS): subset = df[df["cluster_label"] == idx].sample( n=min(NO_SUMMARY_SAMPLE_SIZE, len(df)), random_state=42 ) text = ". ".join(subset["question_text"].tolist()) sentences = nltk.sent_tokenize(text) summary = summarize(" ".join(sentences)) summary_keywords = keywords(summary, words=NO_SUMMARY_WORDS, lemmatize=True) cluster_labels[f"{idx}"] = summary_keywords print(cluster_labels) def assign_named_label(label): return cluster_labels[f"{label}"] df["cluster_name"] = df["cluster_label"].apply(assign_named_label) df[500:550]
# # Task: Predict Malignant and Benign Skin Moles # I'm starting on FastAI's online course and chose this Task for my first round of practice. If you've been through FastAI's course before this might seem firmiliar, if not take a look at some of the basics from week one. # Because this is a balenced dataset today I'm simply going look at accuracy as the evaluation metric. This project is for educational purposes and considering that I cobbled together with some spare time on my weekend, I'm pretty happy with this. I'm not a doctor (I don't even play one on TV). # Thanks to: # * Cluadio Fanconi https://www.kaggle.com/fanconic for the Task, and also for creating a submission to compete against (His model produced an accuracy of about 92% so thats what I'm shoot for) # * The International Skin Imaging Collaboration https://www.isic-archive.com/ for the dataset. All the images are well centered and are size 224 so they made the bar for entry very reasonable. import numpy as np import pandas as pd import os import sys from fastai import * from fastai.vision import * PATH = Path("/kaggle/input/skin-cancer-malignant-vs-benign/") data = ImageDataBunch.from_folder( PATH, train="train/", # valid="train/", # test="test/", valid_pct=0.3, ds_tfms=get_transforms(), size=224, bs=32, ).normalize(imagenet_stats) print(f"Classes: \n {data.classes}") learn = cnn_learner(data, models.resnet50, metrics=error_rate) learn.summary() learn.fit_one_cycle(4) interp = ClassificationInterpretation.from_learner(learn) losses, idxs = interp.top_losses() len(data.valid_ds) == len(losses) == len(idxs) interp.plot_confusion_matrix(figsize=(4, 4)) Model_Path = Path("/kaggle/working/") learn.model_dir = Model_Path learn.save( "stage-1" ) # checkpointing the model incase the next couple of tasks backfire learn.unfreeze() learn.fit_one_cycle(2) learn.lr_find() learn.recorder.plot() learn.fit_one_cycle(3, max_lr=slice(1e-6, 1e-4)) interp = ClassificationInterpretation.from_learner(learn) losses, idxs = interp.top_losses() len(data.valid_ds) == len(losses) == len(idxs) interp.plot_confusion_matrix(figsize=(4, 4)) # # Final thoughts: # Initially this would appear to have an accuracy of 93%(at least on the validation set). Each week I challenge myself to complete one Kaggle Task and this week I didn't have enough time to do this project justice. While my results look good, I did not manage to test for overfitting (which is a serious asterisk to append to this). Later I will revisit this notebook when I'm able to retest the model against the test data instead of just a validation set. # If you have any constructive feedback feel free to message me or leave a comment. If you liked the notebook I'd appriciate the upvote. And if you would like to collaborate with me on a future Kaggle task send me a message here or on LinkedIn. learn.save("Final")
# # Linear Regression with Scikit Learn - Machine Learning with Python # This is a part of [Zero to Data Science Bootcamp by Jovian](https://zerotodatascience.com) and [Machine Learning with Python: Zero to GBMs](https://jovian.ai/learn/machine-learning-with-python-zero-to-gbms) # ![](https://i.imgur.com/1EzyZvj.png) # The following topics are covered in this tutorial: # - A typical problem statement for machine learning # - Downloading and exploring a dataset for machine learning # - Linear regression with one variable using Scikit-learn # - Linear regression with multiple variables # - Using categorical features for machine learning # - Regression coefficients and feature importance # - Other models and techniques for regression using Scikit-learn # - Applying linear regression to other datasets # ## Problem Statement # This tutorial takes a practical and coding-focused approach. We'll define the terms _machine learning_ and _linear regression_ in the context of a problem, and later generalize their definitions. We'll work through a typical machine learning problem step-by-step: # > **QUESTION**: ACME Insurance Inc. offers affordable health insurance to thousands of customer all over the United States. As the lead data scientist at ACME, **you're tasked with creating an automated system to estimate the annual medical expenditure for new customers**, using information such as their age, sex, BMI, children, smoking habits and region of residence. # > # > Estimates from your system will be used to determine the annual insurance premium (amount paid every month) offered to the customer. Due to regulatory requirements, you must be able to explain why your system outputs a certain prediction. # > # > You're given a [CSV file](https://raw.githubusercontent.com/JovianML/opendatasets/master/data/medical-charges.csv) containing verified historical data, consisting of the aforementioned information and the actual medical charges incurred by over 1300 customers. # > # > # > Dataset source: https://github.com/stedy/Machine-Learning-with-R-datasets # ## Downloading the Data # To begin, let's import the data using pandas import pandas as pd medical_df = pd.read_csv("/kaggle/input/insurance/insurance.csv") medical_df # The dataset contains 1338 rows and 7 columns. Each row of the dataset contains information about one customer. # Our objective is to find a way to estimate the value in the "charges" column using the values in the other columns. If we can do so for the historical data, then we should able to estimate charges for new customers too, simply by asking for information like their age, sex, BMI, no. of children, smoking habits and region. # ## Overlooking the data. # **Let's check the data type for each column.** medical_df.info() # Looks like "age", "children", "bmi" ([body mass index](https://en.wikipedia.org/wiki/Body_mass_index)) and "charges" are numbers, whereas "sex", "smoker" and "region" are strings (possibly categories). None of the columns contain any missing values, which saves us a fair bit of work! # **Here are some statistics for the numerical columns:** medical_df.describe() # The ranges of values in the numerical columns seem reasonable too (no negative ages!), so we may not have to do much data cleaning or correction. The "charges" column seems to be significantly skewed however, as the median (50 percentile) is much lower than the maximum value. # ## Exploratory Analysis and Visualization # Let's explore the data by visualizing the distribution of values in some columns of the dataset, and the relationships between "charges" and other columns. # We'll use libraries Matplotlib, Seaborn and Plotly for visualization. Follow these tutorials to learn how to use these libraries: # - https://jovian.ai/aakashns/python-matplotlib-data-visualization # - https://jovian.ai/aakashns/interactive-visualization-plotly # - https://jovian.ai/aakashns/dataviz-cheatsheet import plotly.express as px import matplotlib import matplotlib.pyplot as plt import seaborn as sns from plotly.offline import init_notebook_mode, iplot init_notebook_mode(connected=True) # The following settings will improve the default style and font sizes for our charts. This Also helps to save the Plotly plots for offline use. sns.set_style("darkgrid") matplotlib.rcParams["font.size"] = 14 matplotlib.rcParams["figure.figsize"] = (16, 9) matplotlib.rcParams["figure.facecolor"] = "#00000000" # ### Age # Age is a numeric column. The minimum age in the dataset is 18 and the maximum age is 64. Thus, we can visualize the distribution of age using a histogram with 47 bins (one for each year) and a box plot. We'll use plotly to make the chart interactive, but you can create similar charts using Seaborn. # > When "**marginal='box'**" is used, a box plot is added on either the x-axis or y-axis of the histogram, depending on the orientation of the histogram. The box plot displays the summary statistics of the data distribution, such as the median, quartiles, and outliers, providing additional insights into the distribution of the data. # > This can be useful for gaining a deeper understanding of the shape, spread, and central tendency of the data in the histogram, and for identifying potential outliers or skewness in the distribution. It can also help in comparing the distribution of data across different categories or groups, if applicable. fig = px.histogram( medical_df, x="age", marginal="box", nbins=47, title="Distribution of Age" ) fig.update_layout(bargap=0.1) fig.show() # The distribution of ages in the dataset is almost uniform, with 20-30 customers at every age, except for the ages 18 and 19, which seem to have over twice as many customers as other ages. ***This might due to the fact that there might be some discounts for early bird joiners or people might be aware that insurances is a must. But these are just my assumptions. Also we have enough data or information to confirm it is true or not.*** The uniform distribution might arise from the fact that there isn't a big variation in the [number of people of any given age](https://www.statista.com/statistics/241488/population-of-the-us-by-sex-and-age/) (between 18 & 64) in the USA. # ### Body Mass Index # Let's look at the distribution of BMI (Body Mass Index) of customers, using a histogram and box plot. fig = px.histogram( medical_df, x="bmi", marginal="box", color_discrete_sequence=["red"], title="Distribution of BMI (Body Mass Index)", ) fig.update_layout(bargap=0.1) fig.show() # The measurements of body mass index seem to form a [Gaussian distribution](https://en.wikipedia.org/wiki/Normal_distribution) centered around the value 30, with a few outliers towards the right. Here's how BMI values can be interpreted ([source](https://study.com/academy/lesson/what-is-bmi-definition-formula-calculation.html)): # ![](https://i.imgur.com/lh23OiY.jpg) # *The distribution of ages in a sample of the U.S population may form a uniform distribution because the age distribution is relatively the same across all age groups. This means that there are roughly equal numbers of individuals in each age group, resulting in a uniform distribution.* # *On the other hand, the distribution of BMIs (Body Mass Index) may form a Gaussian or normal distribution because BMI tends to follow a bell-shaped curve in a large population. A Gaussian distribution implies that most people in the dataset tend to have BMIs around a particular value, which is the peak of the distribution, with fewer individuals having higher or lower BMIs on the left and right tails of the curve.* # ### Charges # Let's visualize the distribution of "charges" i.e. the annual medical charges for customers. This is the column we're trying to predict. Let's also use the categorical column "smoker" to distinguish the charges for smokers and non-smokers. fig = px.histogram( medical_df, x="charges", marginal="box", color="smoker", color_discrete_sequence=["green", "grey"], title="Annual Medical Charges vs Smoking", ) fig.update_layout(bargap=0.1) fig.show() # We can make the following observations from the above graph: # * For most customers, the annual medical charges are under \\$10,000. Only a small fraction of customer have higher medical expenses, possibly due to accidents, major illnesses and genetic diseases. The distribution follows a "power law" # * There is a significant difference in medical expenses between smokers and non-smokers. While the median for non-smokers is \\$7300, the median for smokers is close to \\$35,000. # Visualizing the distribution of medical charges in connection with other factors like "sex" and "region". fig = px.histogram( medical_df, x="charges", marginal="box", color="sex", color_discrete_sequence=["green", "grey"], title="Annual Medical Charges vs Gender", ) fig.update_layout(bargap=0.1) fig.show() fig = px.histogram( medical_df, x="charges", marginal="box", color="region", title="Annual Medical Charges vs Region", ) fig.update_layout(bargap=0.1) fig.show() # ### Smoker # Let's visualize the distribution of the "smoker" column (containing values "yes" and "no") using a histogram. medical_df.smoker.value_counts() px.histogram(medical_df, x="smoker", color="sex", title="Smoker") # It appears that 20% of customers have reported that they smoke. The national average seems to around 14% for male and 11% for female. we have a pretty similar values here like 11% for male and 8.5% for female. so our data seems good to overall U.S average # Lets visualize the distributions of the "sex", "region" and "children" columns and report our observations. px.histogram(medical_df, x="sex", title="Gender Distribution") px.histogram(medical_df, x="region", title="Region Distribution") px.histogram(medical_df, x="children", title="Childrens Distributions") # The "Region and Gender" columns have equally distributed in our dataset while the "Children" column have a "power law" distribution. which is basically having a huge amount of count on a paricular value in a column while having very less counts on other values. # Having looked at individual columns, we can now visualize the relationship between "charges" (the value we wish to predict) and other columns. # ### Age and Charges # Let's visualize the relationship between "age" and "charges" using a scatter plot. Each point in the scatter plot represents one customer. We'll also use values in the "smoker" column to color the points. fig = px.scatter( medical_df, x="age", y="charges", color="smoker", opacity=0.8, hover_data=["sex"], title="Age vs. Charges", ) fig.update_traces(marker_size=5) fig.show() # We can make the following observations from the above chart: # * The general trend seems to be that medical charges increase with age, as we might expect. However, there is significant variation at every age, and it's clear that age alone cannot be used to accurately determine medical charges. # * We can see three "clusters" of points, each of which seems to form a line with an increasing slope: # 1. The first and the largest cluster consists primary of presumably "healthy non-smokers" who have relatively low medical charges compared to others # # 2. The second cluster contains a mix of smokers and non-smokers. It's possible that these are actually two distinct but overlapping clusters: "non-smokers with medical issues" and "smokers without major medical issues". # # 3. The final cluster consists exclusively of smokers, presumably smokers with major medical issues that are possibly related to or worsened by smoking. # 4. Among the 3 clusters I can see that the uppermost cluster have a average BMI hovering around in the thirties while the middle and lower cluster has BMI averaging in the twenties. # ### BMI and Charges # Let's visualize the relationship between BMI (body mass index) and charges using another scatter plot. Once again, we'll use the values from the "smoker" column to color the points. fig = px.scatter( medical_df, x="bmi", y="charges", color="smoker", opacity=0.8, hover_data=["sex"], title="BMI vs. Charges", ) fig.update_traces(marker_size=5) fig.show() # It appears that for non-smokers, an increase in BMI doesn't seem to be related to an increase in medical charges. However, medical charges seem to be significantly higher for smokers with a BMI greater than 30. # Creating some more graphs to visualize how the "charges" column is related to other columns ("children", "sex", "region" and "smoker") fig, ax = plt.subplots(figsize=(8, 6)) sns.barplot(x="children", y="charges", hue="smoker", data=medical_df, ax=ax) ax.set_ylabel("Charges") ax.set_title("Charges by Children with Smoker") plt.show() fig, ax = plt.subplots(figsize=(8, 6)) sns.barplot(x="sex", y="charges", hue="smoker", data=medical_df, ax=ax) ax.set_ylabel("Charges") ax.set_title("Charges by Sex with Smoker") plt.show() fig, ax = plt.subplots(figsize=(8, 6)) sns.barplot(x="region", y="charges", hue="smoker", data=medical_df, ax=ax) ax.set_ylabel("Charges") ax.set_title("Charges by Region with Smoker") plt.show() # ### Correlation # As you can tell from the analysis, the values in some columns are more closely related to the values in "charges" compared to other columns. E.g. "age" and "charges" seem to grow together, whereas "bmi" and "charges" don't. # This relationship is often expressed numerically using a measure called the _correlation coefficient_, which can be computed using the `.corr` method of a Pandas series. medical_df.charges.corr(medical_df.age) medical_df.charges.corr(medical_df.bmi) # To compute the correlation for categorical columns, they must first be converted into numeric columns. smoker_values = {"no": 0, "yes": 1} smoker_numeric = medical_df.smoker.map(smoker_values) medical_df.charges.corr(smoker_numeric) # # Here's how correlation coefficients can be interpreted ([source](https://statisticsbyjim.com/basics/correlations)): # * **Strength**: The greater the absolute value of the correlation coefficient, the stronger the relationship. # * The extreme values of -1 and 1 indicate a perfectly linear relationship where a change in one variable is accompanied by a perfectly consistent change in the other. For these relationships, all of the data points fall on a line. In practice, you won’t see either type of perfect relationship. # * A coefficient of zero represents no linear relationship. As one variable increases, there is no tendency in the other variable to either increase or decrease. # # * When the value is in-between 0 and +1/-1, there is a relationship, but the points don’t all fall on a line. As r approaches -1 or 1, the strength of the relationship increases and the data points tend to fall closer to a line. # * **Direction**: The sign of the correlation coefficient represents the direction of the relationship. # * Positive coefficients indicate that when the value of one variable increases, the value of the other variable also tends to increase. Positive relationships produce an upward slope on a scatterplot. # # * Negative coefficients represent cases when the value of one variable increases, the value of the other variable tends to decrease. Negative relationships produce a downward slope. # Here's the same relationship expressed visually ([source](https://www.cuemath.com/data/how-to-calculate-correlation-coefficient/)): # The correlation coefficient has the following formula: # You can learn more about the mathematical definition and geometric interpretation of correlation here: https://www.youtube.com/watch?v=xZ_z8KWkhXE # Pandas dataframes also provide a `.corr` method to compute the correlation coefficients between all pairs of numeric columns. medical_df.corr() # The result of `.corr` is called a correlation matrix and is often visualized using a heatmap. sns.heatmap(medical_df.corr(), cmap="Reds", annot=True) plt.title("Correlation Matrix") # **Correlation vs causation fallacy:** Note that a high correlation cannot be used to interpret a cause-effect relationship between features. Two features $X$ and $Y$ can be correlated if $X$ causes $Y$ or if $Y$ causes $X$, or if both are caused independently by some other factor $Z$, and the correlation will no longer hold true if one of the cause-effect relationships is broken. It's also possible that $X$ are $Y$ simply appear to be correlated because the sample is too small. # While this may seem obvious, computers can't differentiate between correlation and causation, and decisions based on automated system can often have major consequences on society, so it's important to study why automated systems lead to a given result. Determining cause-effect relationships requires human insight. # ## Linear Regression using a Single Feature # We now know that the "smoker" and "age" columns have the strongest correlation with "charges". Let's try to find a way of estimating the value of "charges" using the value of "age" for non-smokers. First, let's create a data frame containing just the data for non-smokers. # ***NOTE: Some of the code below are just to slice the Linear Regression Model to understand the intution behind it. Just follow the explanation and not the code. A Linear model will be build at the end of the notebook. I'll hide the code just to avoid confusion*** # Next, let's visualize the relationship between "age" and "charges" plt.title("Age vs. Charges") sns.scatterplot(data=medical_df, x="age", y="charges", hue="smoker", alpha=0.7, s=15) # We'll try and "fit" a line using this points, and use the line to predict charges for a given age. A line on the X&Y coordinates has the following formula: # $y = wx + b$ # The line is characterized two numbers: $w$ (called "slope") and $b$ (called "intercept"). # ### Model # In the above case, the x axis shows "age" and the y axis shows "charges". Thus, we're assuming the following relationship between the two: # $charges = w \times age + b$ # We'll try determine $w$ and $b$ for the line that best fits the data. # * This technique is called _linear regression_, and we call the above equation a _linear regression model_, because it models the relationship between "age" and "charges" as a straight line. # * The numbers $w$ and $b$ are called the _parameters_ or _weights_ of the model. # * The values in the "age" column of the dataset are called the _inputs_ to the model and the values in the charges column are called "targets". # Let define a helper function `estimate_charges`, to compute $charges$, given $age$, $w$ and $b$. # def estimate_charges(age, w, b): return w * age + b # The `estimate_charges` function is our very first _model_. # Let's _test_ the values for a given $age$,$w$ and $b$ and use them to estimate the value for charges. age = 32 w = 50 b = 100 print("The predicted charge for the given values is:", estimate_charges(age, w, b)) # This is a very basic single point $y$ we predicted manually using some pre assumed values. lets try to do for an list of _ages_ and see what happends # we create a pandas series by taking first 10 age values from our dataset ages = medical_df.age.head(10) ages # Our fuction can take the pandas series of values and create estimated charges for each age. # The resultant is also a pandas dataframe. estimated_charges = estimate_charges(ages, w, b) estimated_charges # We can plot the estimated charges using a line graph. plt.plot(ages, estimated_charges, "r-o") plt.xlabel("Age") plt.ylabel("Estimated Charges") # As expected, the points lie on a straight line. This happened because of the fact that we used manual values for the $w$ and $b$ # Now we input all the ages in our data and we can overlay this line on the actual data, so see how well our _model_ fits the _data_. # Repeating the same steps as above but for all the age values ages = medical_df.age target = medical_df.charges estimated_charges = estimate_charges(ages, w, b) plt.plot(ages, estimated_charges, "r", alpha=0.9) plt.scatter(ages, target, s=8, alpha=0.8) plt.xlabel("Age") plt.ylabel("Charges") plt.legend(["Estimate", "Actual"]) # Clearly, the our estimates are quite poor and the line does not "fit" the data. However, we can try different values of $w$ and $b$ to move the line around. Let's define a helper function `try_parameters` which takes `w` and `b` as inputs and creates the above plot. def try_parameters(w, b): ages = medical_df.age target = medical_df.charges def estimate_charges(age, w, b): return w * age + b estimated_charges = estimate_charges(ages, w, b) plt.plot(ages, estimated_charges, "r", alpha=0.9) plt.scatter(ages, target, s=8, alpha=0.8) plt.xlabel("Age") plt.ylabel("Charges") plt.legend(["Estimate", "Actual"]) # This function is similar to the previous one _estimate_charges_ but in that the $w$ and $b$ is fixed. Here we are using an option to change the $w$ and $b$ values as inputs and the program create '_y_=$w$x + $b$' then plots it against our 'medical_df' data. Now we'll try to experiment with different $w$ and $b$ values. try_parameters(60, 200) try_parameters(400, 5000) try_parameters(550, -5000) # As we change the values, of $w$ and $b$ manually, trying to move the line visually closer to the points, we are _learning_ the approximate relationship between "age" and "charges". # Wouldn't it be nice if a computer could try several different values of `w` and `b` and _learn_ the relationship between "age" and "charges"? To do this, we need to solve a couple of problems: # 1. We need a way to measure numerically how well the line fits the points. # 2. Once the "measure of fit" has been computed, we need a way to modify `w` and `b` to improve the the fit. # If we can solve the above problems, it should be possible for a computer to determine `w` and `b` for the best fit line, starting from a random guess. # ### Calculating Loss # We can compare our model's predictions with the actual targets using the following method: # * Calculate the difference between the targets and predictions (the differenced is called the "residual") # * Square all elements of the difference matrix to remove negative values. # * Calculate the average of the elements in the resulting matrix. # * Take the square root of the result # The result is a single number, known as the **root mean squared error** (RMSE). The above description can be stated mathematically as follows: # Geometrically, the residuals can be visualized as follows: # Let's define a function to compute the RMSE. import numpy as np def rmse(targets, predictions): return np.sqrt(np.mean(np.square(targets - predictions))) # Let's compute the RMSE for our model with a sample set of weights try_parameters(50, 100) targets = medical_df["charges"] predicted = estimate_charges(medical_df.age, w, b) rmse(targets, predicted) # Here's how we can interpret the above number: *On average, each element in the prediction differs from the actual target by \\$16359*. # The result is called the *loss* because it indicates how bad the model is at predicting the target variables. It represents information loss in the model: the lower the loss, the better the model. # ### Optimizer # Next, we need a strategy to modify weights `w` and `b` to reduce the loss and improve the "fit" of the line to the data. # * Ordinary Least Squares: https://www.youtube.com/watch?v=szXbuO3bVRk (better for smaller datasets) # * Stochastic gradient descent: https://www.youtube.com/watch?v=sDv4f4s2SB8 (better for larger datasets) # Both of these have the same objective: to minimize the loss, however, while ordinary least squares directly computes the best values for `w` and `b` using matrix operations, while gradient descent uses a iterative approach, starting with a random values of `w` and `b` and slowly improving them using derivatives. # Here's a visualization of how gradient descent works: # ![](https://miro.medium.com/max/1728/1*NO-YvpHHadk5lLxtg4Gfrw.gif) # Doesn't it look similar to our own strategy of gradually moving the line closer to the points? # ### Linear Regression using Scikit-learn # **In practice, you'll never need to implement either of the above methods yourself**. You can use a library like `scikit-learn` to do this for you. # Let's use the `LinearRegression` class from `scikit-learn` to find the best fit line for "age" vs. "charges" using the ordinary least squares optimization technique. from sklearn.linear_model import LinearRegression # First, we create a new model object. model = LinearRegression() # Next, we can use the `fit` method of the model to find the best fit line for the inputs and targets. help(model.fit) # to Understand how the function Linear Regression works. # Not that the input `X` must be a 2-d array, so we'll need to pass a dataframe, instead of a single column. inputs = medical_df[["age"]] targets = medical_df.charges print("inputs.shape :", inputs.shape) print("targes.shape :", targets.shape) # Let's fit the model to the data. model.fit(inputs, targets) # We can now make predictions using the model. Let's try predicting the charges for the ages 23, 37 and 61 model.predict(np.array([[23], [37], [61]])) # Do these values seem reasonable? Compare them with the scatter plot above. # Let compute the predictions for the entire set of inputs predictions = model.predict(inputs) predictions # Let's compute the RMSE loss to evaluate the model. rmse(targets, predictions) # Seems like our prediction is off by $11551 on average, which is not too bad considering the fact that there are several outliers. # The parameters of the model are stored in the `coef_` and `intercept_` properties. # w model.coef_ # b model.intercept_ # Are these parameters close to your best guesses? # Let's visualize the line created by the above parameters. try_parameters(model.coef_, model.intercept_) # Indeed the line is quite close to the points. It is slightly above the cluster of points, because it's also trying to account for the outliers. # we can use the [`SGDRegressor`](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDRegressor.html) class from `scikit-learn` to train a model using the stochastic gradient descent technique. Make predictions and compute the loss. # ### Machine Learning # Congratulations, you've just trained your first _machine learning model!_ Machine learning is simply the process of computing the best parameters to model the relationship between some feature and targets. # Every machine learning problem has three components: # 1. **Model** # 2. **Cost Function** # 3. **Optimizer** # We'll look at several examples of each of the above in future tutorials. Here's how the relationship between these three components can be visualized: # As we've seen above, it takes just a few lines of code to train a machine learning model using `scikit-learn`. # Below is the complied version of how the linear regression is impliemented using `scikitlearn` in python # Create inputs and targets inputs, targets = medical_df[["age"]], medical_df["charges"] # Create and train the model model = LinearRegression().fit(inputs, targets) # Generate predictions predictions = model.predict(inputs) # Compute loss to evalute the model loss = rmse(targets, predictions) print("Loss:", loss) # ## Linear Regression using Multiple Features # So far, we've used on the "age" feature to estimate "charges". Adding another feature like "bmi" is fairly straightforward. We simply assume the following relationship: # $charges = w_1 \times age + w_2 \times bmi + b$ # We need to change just one line of code to include the BMI. # Create inputs and targets inputs, targets = medical_df[["age", "bmi"]], medical_df["charges"] # Create and train the model model = LinearRegression().fit(inputs, targets) # Generate predictions predictions = model.predict(inputs) # Compute loss to evalute the model loss = rmse(targets, predictions) print("Loss:", loss) # As you can see, adding the BMI doesn't seem to reduce the loss by much, as the BMI has a very weak correlation with charges, especially for non smokers. medical_df.charges.corr(medical_df.bmi) fig = px.scatter(medical_df, x="bmi", y="charges", title="BMI vs. Charges") fig.update_traces(marker_size=5) fig.show() # We can also visualize the relationship between all 3 variables "age", "bmi" and "charges" using a 3D scatter plot. fig = px.scatter_3d(medical_df, x="age", y="bmi", z="charges") fig.update_traces(marker_size=3, marker_opacity=0.5) fig.show() # You can see that it's harder to interpret a 3D scatter plot compared to a 2D scatter plot. As we add more features, it becomes impossible to visualize all feature at once, which is why we use measures like correlation and loss. # Let's also check the parameters of the model. model.coef_, model.intercept_ # One thing important thing to keep in mind: ***you can't find a relationship that doesn't exist, no matter what machine learning technique or optimization algorithm you apply***. # Let's go one step further, and add the final numeric column: "children", which seems to have some correlation with "charges". # $charges = w_1 \times age + w_2 \times bmi + w_3 \times children + b$ medical_df.charges.corr(medical_df.children) fig = px.strip(medical_df, x="children", y="charges", title="Children vs. Charges") fig.update_traces(marker_size=4, marker_opacity=0.7) fig.show() # Create inputs and targets inputs, targets = medical_df[["age", "bmi", "children"]], medical_df["charges"] # Create and train the model model = LinearRegression().fit(inputs, targets) # Generate predictions predictions = model.predict(inputs) # Compute loss to evalute the model loss = rmse(targets, predictions) print("Loss:", loss) # Once again, we don't see a big reduction in the loss, even though it's greater than in the case of BMI. # ## Using Categorical Features for Machine Learning # So far we've been using only numeric columns, since we can only perform computations with numbers. If we could use categorical columns like "smoker", we can train a single model for the entire dataset. # To use the categorical columns, we simply need to convert them to numbers. There are three common techniques for doing this: # 1. If a categorical column has just two categories (it's called a binary category), then we can replace their values with 0 and 1. # 2. If a categorical column has more than 2 categories, we can perform one-hot encoding i.e. create a new column for each category with 1s and 0s. # 3. If the categories have a natural order (e.g. cold, neutral, warm, hot), then they can be converted to numbers (e.g. 1, 2, 3, 4) preserving the order. These are called ordinals # ## Binary Categories # we have $3$ categorical columns in the dataset. let's try to address them one by one. # #### Column 1 # The "smoker" category has just two values "yes" and "no". Let's create a new column "smoker_code" containing 0 for "no" and 1 for "yes". # sns.barplot(data=medical_df, x="smoker", y="charges") smoker_codes = {"no": 0, "yes": 1} medical_df["smoker_code"] = medical_df.smoker.map( smoker_codes ) # creating a new column `smoker_code` , # instead of overwriting `smoker` column medical_df.charges.corr(medical_df.smoker_code) medical_df # We can now use the `smoker_df` column for linear regression. # $charges = w_1 \times age + w_2 \times bmi + w_3 \times children + w_4 \times smoker + b$ # Create inputs and targets inputs, targets = ( medical_df[["age", "bmi", "children", "smoker_code"]], medical_df["charges"], ) # Create and train the model model = LinearRegression().fit(inputs, targets) # Generate predictions predictions = model.predict(inputs) # Compute loss to evalute the model loss = rmse(targets, predictions) print("Loss:", loss) # The loss reduces from `11355` to `6056`, almost by 50%! This is an important lesson: never ignore categorical data. # #### Column 2 # Let's try adding the "sex" column as well. # $charges = w_1 \times age + w_2 \times bmi + w_3 \times children + w_4 \times smoker + w_5 \times sex + b$ sns.barplot(data=medical_df, x="sex", y="charges") sex_codes = {"female": 0, "male": 1} medical_df["sex_code"] = medical_df.sex.map( sex_codes ) # maping numbers inplace as we did in `smoker` column medical_df.charges.corr(medical_df.sex_code) # still weak coorelation # Create inputs and targets inputs, targets = ( medical_df[["age", "bmi", "children", "smoker_code", "sex_code"]], medical_df["charges"], ) # Create and train the model model = LinearRegression().fit(inputs, targets) # Generate predictions predictions = model.predict(inputs) # Compute loss to evalute the model loss = rmse(targets, predictions) print("Loss:", loss) # As you might expect, this does have a significant impact on the loss. # ### One-hot Encoding # #### Column 3 # The "region" column contains 4 values, so we'll need to use hot encoding and create a new column for each region. # ![](https://i.imgur.com/n8GuiOO.png) # sns.barplot(data=medical_df, x="region", y="charges") # `ONEHOTENCODING` can be done in $2$ ways one using `OneHotEncoder` from *sklearn* or using `get_dummies` from *pandas*. Both will yeild similar results but the only differene is than the $OneHotEncoder$ will not overide the origonal dataset instead it will give array as output which we can then merge. While, $get_dummies$ directly merges the result onto the original datset when used. **I used $OneHotEncoder$ for this tutorial as we are doing *ONEHOTENCODING* first then *Scaling* more on this i'll explain it below.** from sklearn import preprocessing enc = preprocessing.OneHotEncoder() enc.fit(medical_df[["region"]]) enc.categories_ one_hot = enc.transform(medical_df[["region"]]).toarray() one_hot medical_df[["northeast", "northwest", "southeast", "southwest"]] = one_hot medical_df # Let's include the region columns into our linear regression model. # $charges = w_1 \times age + w_2 \times bmi + w_3 \times children + w_4 \times smoker + w_5 \times sex + w_6 \times region + b$ # Create inputs and targets input_cols = [ "age", "bmi", "children", "smoker_code", "sex_code", "northeast", "northwest", "southeast", "southwest", ] inputs, targets = medical_df[input_cols], medical_df["charges"] # Since we have the original columns as well the encoded columns i'll select the encoded columns alone # Create and train the model model = LinearRegression().fit(inputs, targets) # Generate predictions predictions = model.predict(inputs) # Compute loss to evalute the model loss = rmse(targets, predictions) print("Loss:", loss) # ## Model Improvements # Let's discuss and apply some more improvements to our model. # ### Feature Scaling # Recall that due to regulatory requirements, we also need to explain the rationale behind the predictions our model. # $charges = w_1 \times age + w_2 \times bmi + w_3 \times children + w_4 \times smoker + w_5 \times sex + w_6 \times region + b$ # To compare the importance of each feature in the model, our first instinct might be to compare their weights. # w model.coef_ # b model.intercept_ weights_df = pd.DataFrame( { "feature": np.append(input_cols, 1), "weight": np.append(model.coef_, model.intercept_), } ) weights_df # While it seems like BMI and the "northeast" have a higher weight than age, keep in mind that the range of values for BMI is limited (15 to 40) and the "northeast" column only takes the values 0 and 1. # Because different columns have different ranges, we run into two issues: # 1. We can't compare the weights of different column to identify which features are important # 2. A column with a larger range of inputs may disproportionately affect the loss and dominate the optimization process. # For this reason, it's common practice to scale (or standardize) the values in numeric column by subtracting the mean and dividing by the standard deviation. # ![](https://i.imgur.com/dT5fLFI.png) # Feature scaling is performed on datasets to normalize or standardize the numerical features, bringing them to a similar scale or range. This is done to ensure that all features contribute equally to the model's predictions and to prevent any unintended bias or dominance of certain features due to differences in scale. # Performing scaling on datasets can have several benefits: # * Prevents numerical features with different magnitudes or units of measurement from dominating or biasing the model's predictions. Scaling brings features to a similar scale, which helps in fair and balanced contribution of all features to the model's decision-making process. # * Enhances the convergence and performance of machine learning algorithms that are sensitive to the scale of input features. Algorithms such as gradient descent or SVM can converge faster and perform better with scaled features, as differences in scale can impact their optimization or decision boundary. # * Improves the interpretability of model results. Scaling makes it easier to compare the relative importance or contribution of different features to the model's predictions, as they are on a similar scale. # Common scaling techniques include min-max scaling (also known as normalization), where features are scaled to a specific range (e.g., [0, 1]), and z-score scaling (also known as standardization), where features are scaled to have zero mean and unit variance. Scaling is typically performed after splitting the data into training and testing sets to prevent data leakage and ensure that the scaling is done independently for each set. # In summary, performing scaling on datasets means normalizing or standardizing the numerical features to a similar scale or range, which can prevent bias, enhance model performance, and improve interpretability of results. # We can apply scaling using the StandardScaler class from `scikit-learn`. medical_df from sklearn.preprocessing import StandardScaler numeric_cols = [ "age", "bmi", "children", ] # Scaling can be done only on numerical columns scaler = ( StandardScaler() ) # This should not include converted catrgorical columns. More on this below. scaler.fit(medical_df[numeric_cols]) scaler.mean_ # this is the mean predicted for these columns induvidually scaler.var_ # this is the variance predicted for these columns induvidually # We can now scale data as follows: scaled_inputs = scaler.transform(medical_df[numeric_cols]) scaled_inputs # since the scaler only gives output in arrays we have to merge them back to the original columns. But i'm taking the categorical columns from the original dataset then using them directly in the linear regression model. J**ust try to understand how scaling works i'll attached a complied code of how to implement linear regression code in python at the end**. Let's continue, after scaling these can now we combined with the categorical data cat_cols = [ "smoker_code", "sex_code", "northeast", "northwest", "southeast", "southwest", ] categorical_data = medical_df[cat_cols].values inputs = np.concatenate((scaled_inputs, categorical_data), axis=1) targets = medical_df.charges # Create and train the model model = LinearRegression().fit(inputs, targets) # Generate predictions predictions = model.predict(inputs) # Compute loss to evalute the model loss = rmse(targets, predictions) print("Loss:", loss) # We can now compare the weights in the formula: # $charges = w_1 \times age + w_2 \times bmi + w_3 \times children + w_4 \times smoker + w_5 \times sex + w_6 \times region + b$ weights_df = pd.DataFrame( { "feature": np.append(numeric_cols + cat_cols, 1), "weight": np.append(model.coef_, model.intercept_), } ) weights_df.sort_values("weight", ascending=False) # As you can see now, The weights are distributed accoding to the importance of the features correctlyt. the most important feature are: # 1. Smoker # 2. Age # 3. BMI # ## (SCALING AFTER ENCODING) vs (ENCODING AFTER SCALING) # In general, it is recommended to perform feature scaling before encoding categorical variables in a dataset that contains both categorical and numerical columns. The reason is that most feature scaling techniques operate on numerical values and are intended to bring numerical features to a similar scale or range, which can improve the performance of machine learning algorithms. # Here are some reasons why it is usually better to perform feature scaling before encoding categorical variables: # * Scaling numerical features can help in mitigating the impact of differences in magnitude or units of measurement among numerical features. Many machine learning algorithms are sensitive to the scale of input features, and features with larger magnitudes may dominate or bias the model's predictions. Scaling numerical features can bring them to a similar scale, helping to prevent this issue. # * Feature scaling can also help in improving the convergence and performance of certain machine learning algorithms that are based on distance or similarity measures, such as k-nearest neighbors or support vector machines. These algorithms can be affected by differences in scale among numerical features, and scaling can help in making the algorithm more robust and accurate. # * Categorical variables, on the other hand, do not typically require scaling because they are represented as discrete values or labels, and their values do not have a magnitude or units of measurement that can be scaled. Encoding categorical variables, such as one-hot encoding or label encoding, is usually done to convert them into numerical representations that can be understood by machine learning algorithms. # By performing feature scaling before encoding categorical variables, you ensure that the numerical features in your dataset are on a similar scale and can be effectively processed by machine learning algorithms. Additionally, it helps to prevent any unintended bias or dominance of certain features due to differences in scale. Once the numerical features are scaled, you can then proceed with encoding the categorical variables to prepare the data for further analysis or modeling. # **Thus it is always best practise to first scale numerical values then encoding.** # ### Creating a Test Set # Models like the one we've created in this tutorial are designed to be used in the real world. It's common practice to set aside a small fraction of the data (e.g. 10%) just for testing and reporting the results of the model. ***This is a very basic demo of test train split, there is more common and straight forward way which i will be explaining the below with a fresh linear regression example.*** from sklearn.model_selection import train_test_split inputs_train, inputs_test, targets_train, targets_test = train_test_split( inputs, targets, test_size=0.1 ) # here the inputs is nothing but the numerical columns + categorical columns # Create and train the model model = LinearRegression().fit(inputs_train, targets_train) # Generate predictions predictions_test = model.predict(inputs_test) # Compute loss to evalute the model loss = rmse(targets_test, predictions_test) print("Test Loss:", loss) # Let's compare this with the training loss. # Generate predictions predictions_train = model.predict(inputs_train) # Compute loss to evalute the model loss = rmse(targets_train, predictions_train) print("Training Loss:", loss)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. import warnings warnings.filterwarnings("ignore") from tqdm import tqdm_notebook import re from bs4 import BeautifulSoup import os import re import gc import sys import time import json import random import unicodedata import multiprocessing from functools import partial, lru_cache import emoji import numpy as np import pandas as pd from sklearn.externals import joblib from tqdm import tqdm, tqdm_notebook from sklearn.preprocessing import MinMaxScaler from nltk import TweetTokenizer from nltk.stem import PorterStemmer, SnowballStemmer from nltk.stem.lancaster import LancasterStemmer import html from sklearn.feature_extraction.text import TfidfVectorizer import pandas as pd import numpy as np from sklearn.model_selection import GroupKFold import matplotlib.pyplot as plt from tqdm import tqdm_notebook as tqdm import tensorflow as tf import tensorflow.keras.backend as K import os from scipy.stats import spearmanr from math import floor, ceil from transformers import * np.set_printoptions(suppress=True) print(tf.__version__) GOOGLE_PATH = "../input/google-quest-challenge/" STACK_PATH = "../input/stackexchange123/StackexchangeExtract/" train = pd.read_csv(GOOGLE_PATH + "train.csv") test = pd.read_csv(GOOGLE_PATH + "test.csv") sample_submission = pd.read_csv(GOOGLE_PATH + "sample_submission.csv") train.shape, test.shape target_columns = sample_submission.columns[1:].values target_columns.shape def url_id_ex(url): try: ids = int(url.split("/")[-2]) except: ids = int(url.split("/")[-1]) return ids # category_type train["category_type"] = train["url"].apply(lambda x: x.split(".")[0].split("/")[-1]) test["category_type"] = test["url"].apply(lambda x: x.split(".")[0].split("/")[-1]) train["quser_id"] = train["question_user_page"].apply(lambda x: int(x.split("/")[-1])) train["auser_id"] = train["answer_user_page"].apply(lambda x: int(x.split("/")[-1])) train["url_id"] = train["url"].apply(url_id_ex) test["quser_id"] = test["question_user_page"].apply(lambda x: int(x.split("/")[-1])) test["auser_id"] = test["answer_user_page"].apply(lambda x: int(x.split("/")[-1])) test["url_id"] = test["url"].apply(url_id_ex) train.category_type.replace("programmers", "softwareengineering", inplace=True) test.category_type.replace("programmers", "softwareengineering", inplace=True) def final_dataframe(files_path, df): listofdir = list(os.listdir(files_path)) listofdir.remove("dataset-metadata.json") final_list = [] posts_columns = None q_users_columns = None a_users_columns = None for file in tqdm_notebook(listofdir): temp_df = df[df.category_type == file] temp_users = pd.read_csv(STACK_PATH + file + "/user_df.csv") temp_posts = pd.read_csv(STACK_PATH + file + "/posts_df.csv") temp_users_columns = temp_users.columns.values posts_columns = temp_posts.columns.values temp_df = pd.merge( temp_df, temp_posts, left_on="url_id", right_on="Id", how="left" ) del temp_posts temp_users = temp_users.add_prefix("q_") q_users_columns = temp_users.columns.values temp_df = pd.merge( temp_df, temp_users, left_on="quser_id", right_on="q_Id", how="left" ) temp_users.columns = temp_users_columns temp_users = temp_users.add_prefix("a_") a_users_columns = temp_users.columns.values temp_df = pd.merge( temp_df, temp_users, left_on="auser_id", right_on="a_Id", how="left" ) del temp_users temp_df = temp_df.to_dict("records") final_list.extend(temp_df) del temp_df total_columns_dic = { "posts_columns": posts_columns, "q_users_columns": q_users_columns, "a_users_columns": a_users_columns, } final_df = pd.DataFrame(final_list) del final_list return final_df, total_columns_dic files_path = STACK_PATH train_final, total_columns_dic = final_dataframe(files_path, train) test_final, total_columns_dic = final_dataframe(files_path, test) train_final.shape, test_final.shape stackof_train = train[train.category == "STACKOVERFLOW"].copy() stackof_test = test[test.category == "STACKOVERFLOW"].copy() stackof_train.shape, stackof_test.shape train_final = train_final.append(stackof_train) test_final = test_final.append(stackof_test) train_final.shape, test_final.shape test_columns = test.columns.values.tolist() train_columns = train.columns.values.tolist() train_final = pd.merge( train, train_final, left_on=train_columns, right_on=train_columns, how="left" ) test_final = pd.merge( test, test_final, left_on=test_columns, right_on=test_columns, how="left" ) train_final.shape, test_final.shape from pandas.api.types import is_datetime64_any_dtype as is_datetime from pandas.api.types import is_categorical_dtype def reduce_mem_usage(df, use_float16=False): """ Iterate through all the columns of a dataframe and modify the data type to reduce memory usage. """ start_mem = df.memory_usage().sum() / 1024**2 print("Memory usage of dataframe is {:.2f} MB".format(start_mem)) for col in df.columns: if is_datetime(df[col]) or is_categorical_dtype(df[col]): continue col_type = df[col].dtype if col_type != object: c_min = df[col].min() c_max = df[col].max() if str(col_type)[:3] == "int": if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max: df[col] = df[col].astype(np.int8) elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max: df[col] = df[col].astype(np.int16) elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max: df[col] = df[col].astype(np.int32) elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max: df[col] = df[col].astype(np.int64) else: if ( use_float16 and c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max ): df[col] = df[col].astype(np.float16) elif ( c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max ): df[col] = df[col].astype(np.float32) else: df[col] = df[col].astype(np.float64) else: # df[col] = df[col].astype("category") pass end_mem = df.memory_usage().sum() / 1024**2 print("Memory usage after optimization is: {:.2f} MB".format(end_mem)) print("Decreased by {:.1f}%".format(100 * (start_mem - end_mem) / start_mem)) return df from bs4 import BeautifulSoup def removing_html_tags(raw_html): cleantext = BeautifulSoup(raw_html, "lxml").text return cleantext def replace_urls(text): text = re.sub(r"^https?:\/\/.*[\r\n]*", " web ", text, flags=re.MULTILINE) return text def clean_AboutMe(text): text = removing_html_tags(text) text = replace_urls(text) return text def clean_Name(text): text = str(text) text = re.sub(r" ", "_", text, flags=re.MULTILINE) text = re.sub(r",", " ", text, flags=re.MULTILINE) return text def clean_Class(text): text = str(text) text = re.sub(r",", " ", text, flags=re.MULTILINE) return text def log_transform_apply(value): if value == 0: return value elif value < 1: value = np.log1p(abs(value)) return -value else: return np.log1p(value) train_final_targets = train_final[target_columns].copy() train_final_targets["qa_id"] = train_final["qa_id"] train_final.drop(columns=target_columns, inplace=True) train_final = reduce_mem_usage(train_final) test_final = reduce_mem_usage(test_final) # User AboutMe train_final["q_AboutMe_nan"] = train_final["q_AboutMe"].isnull().astype(int) train_final["a_AboutMe_nan"] = train_final["a_AboutMe"].isnull().astype(int) test_final["q_AboutMe_nan"] = test_final["q_AboutMe"].isnull().astype(int) test_final["a_AboutMe_nan"] = test_final["a_AboutMe"].isnull().astype(int) train_final["q_AboutMe"].fillna("nane", inplace=True) train_final["a_AboutMe"].fillna("nane", inplace=True) test_final["q_AboutMe"].fillna("nane", inplace=True) test_final["a_AboutMe"].fillna("nane", inplace=True) train_final["q_AboutMe"] = train_final["q_AboutMe"].apply(clean_AboutMe) train_final["a_AboutMe"] = train_final["a_AboutMe"].apply(clean_AboutMe) test_final["q_AboutMe"] = test_final["q_AboutMe"].apply(clean_AboutMe) test_final["a_AboutMe"] = test_final["a_AboutMe"].apply(clean_AboutMe) # User TagBased train_final["q_TagBased_nan"] = train_final["q_TagBased"].isnull().astype(int) train_final["a_TagBased_nan"] = train_final["a_TagBased"].isnull().astype(int) test_final["q_TagBased_nan"] = test_final["q_TagBased"].isnull().astype(int) test_final["a_TagBased_nan"] = test_final["a_TagBased"].isnull().astype(int) train_final["q_TagBased"].fillna("nane", inplace=True) train_final["a_TagBased"].fillna("nane", inplace=True) test_final["q_TagBased"].fillna("nane", inplace=True) test_final["a_TagBased"].fillna("nane", inplace=True) train_final["q_TagBased"] = train_final["q_TagBased"].apply(clean_Class) train_final["a_TagBased"] = train_final["a_TagBased"].apply(clean_Class) test_final["q_TagBased"] = test_final["q_TagBased"].apply(clean_Class) test_final["a_TagBased"] = test_final["a_TagBased"].apply(clean_Class) # User Name train_final["q_Name_nan"] = train_final["q_Name"].isnull().astype(int) train_final["a_Name_nan"] = train_final["a_Name"].isnull().astype(int) test_final["q_Name_nan"] = test_final["q_Name"].isnull().astype(int) test_final["a_Name_nan"] = test_final["a_Name"].isnull().astype(int) train_final["q_Name"].fillna("nane", inplace=True) train_final["a_Name"].fillna("nane", inplace=True) test_final["q_Name"].fillna("nane", inplace=True) test_final["a_Name"].fillna("nane", inplace=True) train_final["q_Name"] = train_final["q_Name"].apply(clean_Name) train_final["a_Name"] = train_final["a_Name"].apply(clean_Name) test_final["q_Name"] = test_final["q_Name"].apply(clean_Name) test_final["a_Name"] = test_final["a_Name"].apply(clean_Name) # User Class train_final["q_Class"].fillna("0", inplace=True) train_final["a_Class"].fillna("0", inplace=True) test_final["q_Class"].fillna("0", inplace=True) test_final["a_Class"].fillna("0", inplace=True) train_final["q_Class"] = train_final["q_Class"].apply(clean_Class) train_final["a_Class"] = train_final["a_Class"].apply(clean_Class) test_final["q_Class"] = test_final["q_Class"].apply(clean_Class) test_final["a_Class"] = test_final["a_Class"].apply(clean_Class) # User Views train_final["q_Views_nan"] = train_final["q_Views"].isnull().astype(int) train_final["a_Views_nan"] = train_final["a_Views"].isnull().astype(int) test_final["q_Views_nan"] = test_final["q_Views"].isnull().astype(int) test_final["a_Views_nan"] = test_final["a_Views"].isnull().astype(int) train_final["q_Views"].fillna(0, inplace=True) train_final["a_Views"].fillna(0, inplace=True) test_final["q_Views"].fillna(0, inplace=True) test_final["a_Views"].fillna(0, inplace=True) # User UpVotes # train_final["q_Views_nan"] = train_final["q_Views"].isnull().astype(int) # train_final["a_Views_nan"] = train_final["a_Views"].isnull().astype(int) # test_final["q_Views_nan"] = test_final["q_Views"].isnull().astype(int) # test_final["a_Views_nan"] = test_final["a_Views"].isnull().astype(int) # User UpVotes train_final["q_UpVotes_nan"] = train_final["q_UpVotes"].isnull().astype(int) train_final["a_UpVotes_nan"] = train_final["a_UpVotes"].isnull().astype(int) test_final["q_UpVotes_nan"] = test_final["q_UpVotes"].isnull().astype(int) test_final["a_UpVotes_nan"] = test_final["a_UpVotes"].isnull().astype(int) train_final["q_UpVotes"].fillna(0, inplace=True) train_final["a_UpVotes"].fillna(0, inplace=True) test_final["q_UpVotes"].fillna(0, inplace=True) test_final["a_UpVotes"].fillna(0, inplace=True) # User DownVotes train_final["q_DownVotes_nan"] = train_final["q_DownVotes"].isnull().astype(int) train_final["a_DownVotes_nan"] = train_final["a_DownVotes"].isnull().astype(int) test_final["q_DownVotes_nan"] = test_final["q_DownVotes"].isnull().astype(int) test_final["a_DownVotes_nan"] = test_final["a_DownVotes"].isnull().astype(int) train_final["q_DownVotes"].fillna(0, inplace=True) train_final["a_DownVotes"].fillna(0, inplace=True) test_final["q_DownVotes"].fillna(0, inplace=True) test_final["a_DownVotes"].fillna(0, inplace=True) user_drop_cols = [ "q_Id", "q_DisplayName", "q_UserId", "a_Id", "a_DisplayName", "a_UserId", ] def clean_Tags(text): text = str(text) text = re.sub(r"><", "> <", text, flags=re.MULTILINE) text = re.sub(r">", "", text, flags=re.MULTILINE) text = re.sub(r"<", "", text, flags=re.MULTILINE) text = "".join([i for i in text if not i.isdigit()]) return text # Posts PostTypeId train_final["PostTypeId_nan"] = train_final["PostTypeId"].isnull().astype(int) test_final["PostTypeId_nan"] = test_final["PostTypeId"].isnull().astype(int) train_final["PostTypeId"].fillna(1.0, inplace=True) test_final["PostTypeId"].fillna(1.0, inplace=True) # Posts Score train_final["Score_nan"] = train_final["Score"].isnull().astype(int) test_final["Score_nan"] = test_final["Score"].isnull().astype(int) train_final["Score"].fillna(0, inplace=True) test_final["Score"].fillna(0, inplace=True) train_final["Score"] = train_final["Score"].apply(log_transform_apply) test_final["Score"] = test_final["Score"].apply(log_transform_apply) # Posts ViewCount train_final["ViewCount_nan"] = train_final["ViewCount"].isnull().astype(int) test_final["ViewCount_nan"] = test_final["ViewCount"].isnull().astype(int) train_final["ViewCount"].fillna(0, inplace=True) test_final["ViewCount"].fillna(0, inplace=True) train_final["ViewCount"] = np.log1p(abs(train_final["ViewCount"])) test_final["ViewCount"] = np.log1p(abs(test_final["ViewCount"])) # Posts Tags train_final["Tags_nan"] = train_final["Tags"].isnull().astype(int) test_final["Tags_nan"] = test_final["Tags"].isnull().astype(int) train_final["Tags"].fillna("<nanetag>", inplace=True) test_final["Tags"].fillna("<nanetag>", inplace=True) train_final["Tags"] = train_final["Tags"].apply(clean_Tags) test_final["Tags"] = test_final["Tags"].apply(clean_Tags) # Posts AnswerCount train_final["AnswerCount_nan"] = train_final["AnswerCount"].isnull().astype(int) test_final["AnswerCount_nan"] = test_final["AnswerCount"].isnull().astype(int) train_final["AnswerCount"].fillna(1, inplace=True) test_final["AnswerCount"].fillna(1, inplace=True) # Posts CommentCount train_final["CommentCount_nan"] = train_final["CommentCount"].isnull().astype(int) test_final["CommentCount_nan"] = test_final["CommentCount"].isnull().astype(int) train_final["CommentCount"].fillna(0, inplace=True) test_final["CommentCount"].fillna(0, inplace=True) # Posts FavoriteCount train_final["FavoriteCount_nan"] = train_final["FavoriteCount"].isnull().astype(int) test_final["FavoriteCount_nan"] = test_final["FavoriteCount"].isnull().astype(int) train_final["FavoriteCount"].fillna(0, inplace=True) test_final["FavoriteCount"].fillna(0, inplace=True) train_final["FavoriteCount"] = train_final["FavoriteCount"].apply(log_transform_apply) test_final["FavoriteCount"] = test_final["FavoriteCount"].apply(log_transform_apply) posts_drop_cols = [ "Id", "AcceptedAnswerId", "OwnerUserId", "LastActivityDate", "ParentId", "ClosedDate", "LastEditorDisplayName", "OwnerDisplayName", "CommunityOwnedDate", ] def get_code_html(text, body): if text == np.nan: body = str(body) code_list = [] codes_list1 = re.findall(":\n\n.*?\n\n\n", body, flags=re.DOTALL) codes_list2 = re.findall(".\n\n(.*?)\n\n\n", body, flags=re.DOTALL) codes_list3 = re.findall("{(.*?)}", body, flags=re.DOTALL) code_list.extend(codes_list1) code_list.extend(codes_list2) code_list.extend(codes_list3) if len(codes_list) > 0: code = "<#next#>".join(map(str, codes_list)) return code else: return "NONE" else: text = str(text) codes_list = re.findall("<code>(.*?)</code>", text, flags=re.DOTALL) if len(codes_list) > 0: code = "<#next#>".join(map(str, codes_list)) return code else: return "NONE" def get_code_replace(text, code): text = str(text) code = str(code) if code != "NONE": codes_list = code.split("<#next#>") codes_list = sorted(codes_list, key=len, reverse=True) for i in codes_list: i = re.escape(i) text = re.sub(f"{i}", " [CODE] ", text, flags=re.DOTALL) return text else: return text def get_blockquote_html(text): text = str(text) codes_list = re.findall("<blockquote>(.*?)</blockquote>", text, flags=re.DOTALL) if len(codes_list) > 0: code = " ".join(map(str, codes_list)) return code else: return "NONE" def get_slsldolel(text): text = str(text) codes_list = re.findall("\\\\\$(.*?)\\\\\$", text, flags=re.DOTALL) if len(codes_list) > 0: code = " ".join(map(str, codes_list)) return code else: return "NONE" def get_slsldolel_replace(text): text = str(text) codes_list = re.findall("\\\\\$.*?\\\\\$", text, flags=re.DOTALL) if len(codes_list) > 0: # code = ' '.join(map(str, codes_list)) for i in codes_list: i = re.escape(i) text = re.sub(f"{i}", " [FORMULA] ", text) return text else: return text def get_doldol(text): text = str(text) codes_list = re.findall("\$\$(.*?)\$\$", text, flags=re.DOTALL) if len(codes_list) > 0: code = " ".join(map(str, codes_list)) return code else: return "NONE" def get_doldol_replace(text): text = str(text) codes_list = re.findall("\$\$.*?\$\$", text, flags=re.DOTALL) if len(codes_list) > 0: # code = ' '.join(map(str, codes_list)) for i in codes_list: i = re.escape(i) text = re.sub(f"{i}", " [FORMULA] ", text) return text else: return text def get_spdol(text): text = str(text) codes_list = re.findall(" \$(.*?) \$", text, flags=re.DOTALL) if len(codes_list) > 0: code = " ".join(map(str, codes_list)) return code else: return "NONE" def get_spdol_replace(text): text = str(text) codes_list = re.findall(" \$.*? \$", text, flags=re.DOTALL) if len(codes_list) > 0: # code = ' '.join(map(str, codes_list)) for i in codes_list: i = re.escape(i) text = re.sub(f"{i}", " [FORMULA] ", text) return text else: return text def get_dol(text): text = str(text) codes_list = re.findall("\$(.*?)\$", text, flags=re.DOTALL) if len(codes_list) > 0: code = " ".join(map(str, codes_list)) return code else: return "NONE" def get_dol_replace(text): text = str(text) codes_list = re.findall("\$.*?\$", text, flags=re.DOTALL) if len(codes_list) > 0: # code = ' '.join(map(str, codes_list)) for i in codes_list: i = re.escape(i) text = re.sub(f"{i}", " [FORMULA] ", text) return text else: return text def get_code1(text): text = str(text) codes_list = re.findall(":\n\n(.*?)\n\n\n", text, flags=re.DOTALL) if len(codes_list) > 0: code = " . ".join(map(str, codes_list)) return code else: return "NONE" def get_code1_replace(text): text = str(text) codes_list = re.findall(":\n\n.*?\n\n\n", text, flags=re.DOTALL) if len(codes_list) > 0: # code = ' '.join(map(str, codes_list)) for i in codes_list: i = re.escape(i) text = re.sub(f"{i}", " [CODE] ", text) return text else: return text def get_code2(text): text = str(text) codes_list = re.findall(".\n\n(.*?)\n\n\n", text, flags=re.DOTALL) if len(codes_list) > 0: code = " . ".join(map(str, codes_list)) return code else: return "NONE" def get_code2_replace(text): text = str(text) codes_list = re.findall(".\n\n.*?\n\n\n", text, flags=re.DOTALL) if len(codes_list) > 0: # code = ' '.join(map(str, codes_list)) for i in codes_list: if i.count("\n") > 4: i = re.escape(i) text = re.sub(f"{i}", " [CODE] ", text) else: pass return text else: return text def get_code3(text): text = str(text) codes_list = re.findall("{(.*?)}", text, flags=re.DOTALL) if len(codes_list) > 0: code = " . ".join(map(str, codes_list)) return code else: return "NONE" def get_code3_replace(text): text = str(text) codes_list = re.findall("{.*?}", text, flags=re.DOTALL) if len(codes_list) > 0: # code = ' '.join(map(str, codes_list)) for i in codes_list: if len(i) > 10: i = re.escape(i) text = re.sub(f"{i}", " [CODE] ", text) else: pass return text else: return text # question_body_code train_final["question_body_code"] = train_final.apply( lambda x: get_code_html(x["Body"], x["question_body"]), axis=1 ) train_final["question_body_clean"] = train_final.apply( lambda x: get_code_replace(x["question_body"], x["question_body_code"]), axis=1 ) test_final["question_body_code"] = test_final.apply( lambda x: get_code_html(x["Body"], x["question_body"]), axis=1 ) test_final["question_body_clean"] = test_final.apply( lambda x: get_code_replace(x["question_body"], x["question_body_code"]), axis=1 ) # question_body_slsldolel train_final["question_body_slsldolel"] = train_final["question_body"].apply( get_slsldolel ) train_final["question_body_clean"] = train_final["question_body_clean"].apply( get_slsldolel_replace ) test_final["question_body_slsldolel"] = test_final["question_body"].apply(get_slsldolel) test_final["question_body_clean"] = test_final["question_body_clean"].apply( get_slsldolel_replace ) # question_body_doldol train_final["question_body_doldol"] = train_final["question_body"].apply(get_doldol) train_final["question_body_clean"] = train_final["question_body_clean"].apply( get_doldol_replace ) test_final["question_body_doldol"] = test_final["question_body"].apply(get_doldol) test_final["question_body_clean"] = test_final["question_body_clean"].apply( get_doldol_replace ) # question_body_spdol train_final["question_body_spdol"] = train_final["question_body"].apply(get_spdol) train_final["question_body_clean"] = train_final["question_body_clean"].apply( get_spdol_replace ) test_final["question_body_spdol"] = test_final["question_body"].apply(get_spdol) test_final["question_body_clean"] = test_final["question_body_clean"].apply( get_spdol_replace ) # question_body_dol train_final["question_body_dol"] = train_final["question_body"].apply(get_dol) train_final["question_body_clean"] = train_final["question_body_clean"].apply( get_dol_replace ) test_final["question_body_dol"] = test_final["question_body"].apply(get_dol) test_final["question_body_clean"] = test_final["question_body_clean"].apply( get_dol_replace ) train_final["question_body_all"] = list( map( lambda a, b, c, d, e: str(a) + " " + str(b) + " " + str(c) + " " + str(d) + " " + str(e), train_final["question_body_code"], train_final["question_body_slsldolel"], train_final["question_body_doldol"], train_final["question_body_spdol"], train_final["question_body_dol"], ) ) test_final["question_body_all"] = list( map( lambda a, b, c, d, e: str(a) + " " + str(b) + " " + str(c) + " " + str(d) + " " + str(e), test_final["question_body_code"], test_final["question_body_slsldolel"], test_final["question_body_doldol"], test_final["question_body_spdol"], test_final["question_body_dol"], ) ) def get_code1(text): text = str(text) codes_list = re.findall(":\n\n(.*?)\n\n\n", text, flags=re.DOTALL) if len(codes_list) > 0: code = " . ".join(map(str, codes_list)) return code else: return "NONE" def get_code1_replace(text): text = str(text) codes_list = re.findall(":\n\n.*?\n\n\n", text, flags=re.DOTALL) if len(codes_list) > 0: # code = ' '.join(map(str, codes_list)) for i in codes_list: i = re.escape(i) text = re.sub(f"{i}", " [CODE] ", text) return text else: return text def get_code2(text): text = str(text) codes_list = re.findall(".\n\n(.*?)\n\n\n", text, flags=re.DOTALL) if len(codes_list) > 0: code = " . ".join(map(str, codes_list)) return code else: return "NONE" def get_code2_replace(text): text = str(text) codes_list = re.findall(".\n\n.*?\n\n\n", text, flags=re.DOTALL) if len(codes_list) > 0: # code = ' '.join(map(str, codes_list)) for i in codes_list: if i.count("\n") > 4: i = re.escape(i) text = re.sub(f"{i}", " [CODE] ", text) else: pass return text else: return text def get_code3(text): text = str(text) codes_list = re.findall("{(.*?)}", text, flags=re.DOTALL) if len(codes_list) > 0: code = " . ".join(map(str, codes_list)) return code else: return "NONE" def get_code3_replace(text): text = str(text) codes_list = re.findall("{.*?}", text, flags=re.DOTALL) if len(codes_list) > 0: # code = ' '.join(map(str, codes_list)) for i in codes_list: if len(i) > 10: i = re.escape(i) text = re.sub(f"{i}", " [CODE] ", text) else: pass return text else: return text # answer_code1 train_final["answer_code1"] = train_final["answer"].apply(get_code1) train_final["answer_clean"] = train_final["answer"].apply(get_code1_replace) test_final["answer_code1"] = test_final["answer"].apply(get_code1) test_final["answer_clean"] = test_final["answer"].apply(get_code1_replace) # answer_code2 train_final["answer_code2"] = train_final["answer"].apply(get_code2) train_final["answer_clean"] = train_final["answer_clean"].apply(get_code2_replace) test_final["answer_code2"] = test_final["answer"].apply(get_code2) test_final["answer_clean"] = test_final["answer_clean"].apply(get_code2_replace) # answer_code3 train_final["answer_code3"] = train_final["answer"].apply(get_code3) train_final["answer_clean"] = train_final["answer_clean"].apply(get_code3_replace) test_final["answer_code3"] = test_final["answer"].apply(get_code3) test_final["answer_clean"] = test_final["answer_clean"].apply(get_code3_replace) train_final["answer_code"] = list( map( lambda a, b, c: str(a) + " " + str(b) + " " + str(c), train_final["answer_code1"], train_final["answer_code2"], train_final["answer_code3"], ) ) test_final["answer_code"] = list( map( lambda a, b, c: str(a) + " " + str(b) + " " + str(c), test_final["answer_code1"], test_final["answer_code2"], test_final["answer_code3"], ) ) # question_body_slsldolel train_final["answer_slsldolel"] = train_final["answer"].apply(get_slsldolel) train_final["answer_clean"] = train_final["answer_clean"].apply(get_slsldolel_replace) test_final["answer_slsldolel"] = test_final["answer"].apply(get_slsldolel) test_final["answer_clean"] = test_final["answer_clean"].apply(get_slsldolel_replace) # question_body_doldol train_final["answer_doldol"] = train_final["answer"].apply(get_doldol) train_final["answer_clean"] = train_final["answer_clean"].apply(get_doldol_replace) test_final["answer_doldol"] = test_final["answer"].apply(get_doldol) test_final["answer_clean"] = test_final["answer_clean"].apply(get_doldol_replace) # question_body_spdol train_final["answer_spdol"] = train_final["answer"].apply(get_spdol) train_final["answer_clean"] = train_final["answer_clean"].apply(get_spdol_replace) test_final["answer_spdol"] = test_final["answer"].apply(get_spdol) test_final["answer_clean"] = test_final["answer_clean"].apply(get_spdol_replace) # question_body_dol train_final["answer_dol"] = train_final["answer"].apply(get_dol) train_final["answer_clean"] = train_final["answer_clean"].apply(get_dol_replace) test_final["answer_dol"] = test_final["answer"].apply(get_dol) test_final["answer_clean"] = test_final["answer_clean"].apply(get_dol_replace) train_final["answer_all"] = list( map( lambda a, b, c, d, e: str(a) + " " + str(b) + " " + str(c) + " " + str(d) + " " + str(e), train_final["answer_code"], train_final["answer_slsldolel"], train_final["answer_doldol"], train_final["answer_spdol"], train_final["answer_dol"], ) ) test_final["answer_all"] = list( map( lambda a, b, c, d, e: str(a) + " " + str(b) + " " + str(c) + " " + str(d) + " " + str(e), test_final["answer_code"], test_final["answer_slsldolel"], test_final["answer_doldol"], test_final["answer_spdol"], test_final["answer_dol"], ) ) droped_columns = [] droped_columns.extend(user_drop_cols) droped_columns.extend(posts_drop_cols) print(len(droped_columns)) train_final.drop(columns=droped_columns, inplace=True) test_final.drop(columns=droped_columns, inplace=True) train_final.shape, test_final.shape, train_final_targets.shape # ## Text cleaning def url_replace(text): text = re.sub( "(?:(?:https?|ftp):\/\/)?[\w/\-?=%.]+\.[\w/\-?=%.]+", "[URL]", text, flags=re.DOTALL, ) return text def url_count(text): count = len(re.findall("(?:(?:https?|ftp):\/\/)?[\w/\-?=%.]+\.[\w/\-?=%.]+", text)) return count CUSTOM_TABLE = str.maketrans( { "\xad": None, "\x7f": None, "\ufeff": None, "\u200b": None, "\u200e": None, "\u202a": None, "\u202c": None, "‘": "'", "’": "'", "`": "'", "“": '"', "”": '"', "«": '"', "»": '"', "ɢ": "G", "ɪ": "I", "ɴ": "N", "ʀ": "R", "ʏ": "Y", "ʙ": "B", "ʜ": "H", "ʟ": "L", "ғ": "F", "ᴀ": "A", "ᴄ": "C", "ᴅ": "D", "ᴇ": "E", "ᴊ": "J", "ᴋ": "K", "ᴍ": "M", "Μ": "M", "ᴏ": "O", "ᴘ": "P", "ᴛ": "T", "ᴜ": "U", "ᴡ": "W", "ᴠ": "V", "ĸ": "K", "в": "B", "м": "M", "н": "H", "т": "T", "ѕ": "S", "—": "-", "–": "-", } ) WORDS_REPLACER = [ ("sh*t", "shit"), ("s**t", "shit"), ("f*ck", "fuck"), ("fu*k", "fuck"), ("f**k", "fuck"), ("f*****g", "fucking"), ("f***ing", "fucking"), ("f**king", "fucking"), ("p*ssy", "pussy"), ("p***y", "pussy"), ("pu**y", "pussy"), ("p*ss", "piss"), ("b*tch", "bitch"), ("bit*h", "bitch"), ("h*ll", "hell"), ("h**l", "hell"), ("cr*p", "crap"), ("d*mn", "damn"), ("stu*pid", "stupid"), ("st*pid", "stupid"), ("n*gger", "nigger"), ("n***ga", "nigger"), ("f*ggot", "faggot"), ("scr*w", "screw"), ("pr*ck", "prick"), ("g*d", "god"), ("s*x", "sex"), ("a*s", "ass"), ("a**hole", "asshole"), ("a***ole", "asshole"), ("a**", "ass"), ] WORDS_REPLACER_2 = [ ("ain't", "is not"), ("aren't", "are not"), ("can't", "cannot"), ("'cause", "because"), ("could've", "could have"), ("couldn't", "could not"), ("didn't", "did not"), ("doesn't", "does not"), ("don't", "do not"), ("hadn't", "had not"), ("hasn't", "has not"), ("haven't", "have not"), ("he'd", "he would"), ("he'll", "he will"), ("he's", "he is"), ("how'd", "how did"), ("how'd'y", "how do you"), ("how'll", "how will"), ("how's", "how is"), ("i'd", "i would"), ("i'd've", "i would have"), ("i'll", "i will"), ("i'll've", "i will have"), ("i'm", "i am"), ("i've", "i have"), ("i'd", "i would"), ("i'd've", "i would have"), ("i'll", "i will"), ("i'll've", "i will have"), ("i'm", "i am"), ("i've", "i have"), ("isn't", "is not"), ("it'd", "it would"), ("it'd've", "it would have"), ("it'll", "it will"), ("it'll've", "it will have"), ("it's", "it is"), ("let's", "let us"), ("ma'am", "madam"), ("mayn't", "may not"), ("might've", "might have"), ("mightn't", "might not"), ("mightn't've", "might not have"), ("must've", "must have"), ("mustn't", "must not"), ("mustn't've", "must not have"), ("needn't", "need not"), ("needn't've", "need not have"), ("o'clock", "of the clock"), ("oughtn't", "ought not"), ("oughtn't've", "ought not have"), ("shan't", "shall not"), ("sha'n't", "shall not"), ("shan't've", "shall not have"), ("she'd", "she would"), ("she'd've", "she would have"), ("she'll", "she will"), ("she'll've", "she will have"), ("she's", "she is"), ("should've", "should have"), ("shouldn't", "should not"), ("shouldn't've", "should not have"), ("so've", "so have"), ("so's", "so as"), ("this's", "this is"), ("that'd", "that would"), ("that'd've", "that would have"), ("that's", "that is"), ("there'd", "there would"), ("there'd've", "there would have"), ("there's", "there is"), ("here's", "here is"), ("they'd", "they would"), ("they'd've", "they would have"), ("they'll", "they will"), ("they'll've", "they will have"), ("they're", "they are"), ("they've", "they have"), ("to've", "to have"), ("wasn't", "was not"), ("we'd", "we would"), ("we'd've", "we would have"), ("we'll", "we will"), ("we'll've", "we will have"), ("we're", "we are"), ("we've", "we have"), ("weren't", "were not"), ("what'll", "what will"), ("what'll've", "what will have"), ("what're", "what are"), ("what's", "what is"), ("what've", "what have"), ("when's", "when is"), ("when've", "when have"), ("where'd", "where did"), ("where's", "where is"), ("where've", "where have"), ("who'll", "who will"), ("who'll've", "who will have"), ("who's", "who is"), ("who've", "who have"), ("why's", "why is"), ("why've", "why have"), ("will've", "will have"), ("won't", "will not"), ("won't've", "will not have"), ("would've", "would have"), ("wouldn't", "would not"), ("wouldn't've", "would not have"), ("y'all", "you all"), ("y'all'd", "you all would"), ("y'all'd've", "you all would have"), ("y'all're", "you all are"), ("y'all've", "you all have"), ("you'd", "you would"), ("you'd've", "you would have"), ("you'll", "you will"), ("you'll've", "you will have"), ("you're", "you are"), ("you've", "you have"), ("what”s", "what is"), ('what"s', "what is"), ("its", "it is"), ("what's", "what is"), ("'ll", "will"), ("n't", "not"), ("'re", "are"), ("ain't", "is not"), ("aren't", "are not"), ("can't", "cannot"), ("'cause", "because"), ("could've", "could have"), ("couldn't", "could not"), ("didn't", "did not"), ("doesn't", "does not"), ("don't", "do not"), ("hadn't", "had not"), ("hasn't", "has not"), ("haven't", "have not"), ("he'd", "he would"), ("he'll", "he will"), ("he's", "he is"), ("how'd", "how did"), ("how'd'y", "how do you"), ("how'll", "how will"), ("how's", "how is"), ("i'd", "i would"), ("i'd've", "i would have"), ("i'll", "i will"), ("i'll've", "i will have"), ("i'm", "i am"), ("i've", "i have"), ("i'd", "i would"), ("i'd've", "i would have"), ("i'll", "i will"), ("i'll've", "i will have"), ("i'm", "i am"), ("i've", "i have"), ("isn't", "is not"), ("it'd", "it would"), ("it'd've", "it would have"), ("it'll", "it will"), ("it'll've", "it will have"), ("it's", "it is"), ("let's", "let us"), ("ma'am", "madam"), ("mayn't", "may not"), ("might've", "might have"), ("mightn't", "might not"), ("mightn't've", "might not have"), ("must've", "must have"), ("mustn't", "must not"), ("mustn't've", "must not have"), ("needn't", "need not"), ("needn't've", "need not have"), ("o'clock", "of the clock"), ("oughtn't", "ought not"), ("oughtn't've", "ought not have"), ("shan't", "shall not"), ("sha'n't", "shall not"), ("shan't've", "shall not have"), ("she'd", "she would"), ("she'd've", "she would have"), ("she'll", "she will"), ("she'll've", "she will have"), ("she's", "she is"), ("should've", "should have"), ("shouldn't", "should not"), ("shouldn't've", "should not have"), ("so've", "so have"), ("so's", "so as"), ("this's", "this is"), ("that'd", "that would"), ("that'd've", "that would have"), ("that's", "that is"), ("there'd", "there would"), ("there'd've", "there would have"), ("there's", "there is"), ("here's", "here is"), ("they'd", "they would"), ("they'd've", "they would have"), ("'they're", "they are"), ("they'll", "they will"), ("they'll've", "they will have"), ("they're", "they are"), ("they've", "they have"), ("to've", "to have"), ("wasn't", "was not"), ("we'd", "we would"), ("we'd've", "we would have"), ("we'll", "we will"), ("we'll've", "we will have"), ("we're", "we are"), ("we've", "we have"), ("weren't", "were not"), ("what'll", "what will"), ("what'll've", "what will have"), ("what're", "what are"), ("what's", "what is"), ("what've", "what have"), ("when's", "when is"), ("when've", "when have"), ("where'd", "where did"), ("where's", "where is"), ("where've", "where have"), ("who'll", "who will"), ("who'll've", "who will have"), ("who's", "who is"), ("who've", "who have"), ("why's", "why is"), ("why've", "why have"), ("will've", "will have"), ("won't", "will not"), ("won't've", "will not have"), ("would've", "would have"), ("wouldn't", "would not"), ("wouldn't've", "would not have"), ("y'all", "you all"), ("y'all'd", "you all would"), ("y'all'd've", "you all would have"), ("y'all're", "you all are"), ("y'all've", "you all have"), ("you'd", "you would"), ("you'd've", "you would have"), ("you'll", "you will"), ("you'll've", "you will have"), ("you're", "you are"), ("you've", "you have"), ] mispell_dict = { "aren't": "are not", "can't": "cannot", "couldn't": "could not", "couldnt": "could not", "didn't": "did not", "doesn't": "does not", "doesnt": "does not", "don't": "do not", "hadn't": "had not", "hasn't": "has not", "haven't": "have not", "havent": "have not", "he'd": "he would", "he'll": "he will", "he's": "he is", "i'd": "I would", "i'd": "I had", "i'll": "I will", "i'm": "I am", "isn't": "is not", "it's": "it is", "it'll": "it will", "i've": "I have", "let's": "let us", "mightn't": "might not", "mustn't": "must not", "shan't": "shall not", "she'd": "she would", "she'll": "she will", "she's": "she is", "shouldn't": "should not", "shouldnt": "should not", "that's": "that is", "thats": "that is", "there's": "there is", "theres": "there is", "they'd": "they would", "they'll": "they will", "they're": "they are", "theyre": "they are", "they've": "they have", "we'd": "we would", "we're": "we are", "weren't": "were not", "we've": "we have", "what'll": "what will", "what're": "what are", "what's": "what is", "what've": "what have", "where's": "where is", "who'd": "who would", "who'll": "who will", "who're": "who are", "who's": "who is", "who've": "who have", "won't": "will not", "wouldn't": "would not", "you'd": "you would", "you'll": "you will", "you're": "you are", "you've": "you have", "'re": " are", "wasn't": "was not", "we'll": " will", "didn't": "did not", "tryin'": "trying", "‘": "'", "₹": "e", "´": "'", "°": "", "€": "e", "™": "tm", "√": " sqrt ", "×": "x", "²": "2", "—": "-", "–": "-", "’": "'", "_": "-", "`": "'", "“": '"', "”": '"', "“": '"', "£": "e", "∞": "infinity", "θ": "theta", "÷": "/", "α": "alpha", "•": ".", "à": "a", "−": "-", "β": "beta", "∅": "", "³": "3", "π": "pi", "\u200b": " ", "…": " ... ", "\ufeff": "", "करना": "", "है": "", } WORDS_REPLACER_3 = [(k, v) for k, v in mispell_dict.items()] WORDS_REPLACER_4 = [ ("automattic", "automatic"), ("sweetpotato", "sweet potato"), ("statuscode", "status code"), ("applylayer", "apply layer"), ("aligator", "alligator"), ("downloands", "download"), ("dowloand", "download"), ("thougths", "thoughts"), ("helecopter", "helicopter"), ("telugul", "telugu"), ("unconditionaly", "unconditionally"), ("coompanies", "companies"), ("lndigenous", "indigenous"), ("evluate", "evaluate"), ("suggstion", "suggestion"), ("thinkning", "thinking"), ("concatinate", "concatenate"), ("constitutionals", "constitutional"), ("moneyback", "money back"), ("civilazation", "civilization"), ("paranoria", "paranoia"), ("rightside", "right side"), ("methamatics", "mathematics"), ("natual", "natural"), ("brodcast", "broadcast"), ("pleasesuggest", "please suggest"), ("intitution", "institution"), ("experinces", "experiences"), ("reallyreally", "really"), ("testostreone", "testosterone"), ("musceles", "muscle"), ("bacause", "because"), ("peradox", "paradox"), ("probabity", "probability"), ("collges", "college"), ("diciplined", "disciplined"), ("completeted", "completed"), ("lunchshould", "lunch should"), ("battlenet", "battle net"), ("dissapoint", "disappoint"), ("resultsnew", "results new"), ("indcidents", "incidents"), ("figuire", "figure"), ("protonneutron", "proton neutron"), ("tecnical", "technical"), ("patern", "pattern"), ("unenroll", "un enroll"), ("proceedures", "procedures"), ("srategy", "strategy"), ("mordern", "modern"), ("prepartion", "preparation"), ("throuhout", "throught"), ("academey", "academic"), ("instituitions", "institutions"), ("abadon", "abandon"), ("compitetive", "competitive"), ("hypercondriac", "hypochondriac"), ("spiliting", "splitting"), ("physchic", "psychic"), ("flippingly", "flipping"), ("likelyhood", "likelihood"), ("armsindustry", "arms industry"), (" turorials", "tutorials"), ("photostats", "photostat"), ("sunconcious", "subconscious"), ("chemistryphysics", "chemistry physics"), ("secondlife", "second life"), ("histrorical", "historical"), ("disordes", "disorders"), ("differenturl", "differential"), ("councilling", " counselling"), ("sugarmill", "sugar mill"), ("relatiosnhip", "relationship"), ("fanpages", "fan pages"), ("agregator", "aggregator"), ("switc", "switch"), ("smatphones", "smartphones"), ("headsize", "head size"), ("pendrives", "pen drives"), ("biotecnology", "biotechnology"), ("borderlink", "border link"), ("furnance", "furnace"), ("competetion", "competition"), ("distibution", "distribution"), ("ananlysis", " analysis"), ("textile?", "textile"), ("howww", "how"), ("strategybusiness", "strategy business"), ("spectrun", "spectrum"), ("propasal", "proposal"), ("appilcable", "applicable"), ("accountwhat", " account what"), ("algorithems", " algorithms"), ("protuguese", " Portuguese"), ("exatly", "exactly"), ("disturbence", "disturbance"), ("govrnment", "government"), ("requiremnt", "requirement"), ("vargin", "virgin"), ("lonleley", "lonely"), ("unmateralistic", "materialistic"), ("dveloper", "developer"), ("dcuments", "documents"), ("techonologies", "technologies"), ("morining", "morning"), ("samsing", "Samsung"), ("engeeniring", "engineering"), ("racetrac", "racetrack"), ("physian", "physician"), ("theretell", "there tell"), ("tryto", "try to"), ("teamfight", "team fight"), ("recomend", "recommend"), ("spectables", "spectacles"), ("emtional", "emotional"), ("engeenerring", "engineering"), ("optionsgood", "options good"), ("primarykey", "primary key"), ("foreignkey", "foreign key"), ("concieved", "conceived"), ("leastexpensive", "least expensive"), ("foodtech", "food tech"), ("electronegetivity", "electronegativity"), ("polticians", "politicians"), ("distruptive", "disruptive"), ("currrent", "current"), ("hidraulogy", "hydrology"), ("californa", "California"), ("electrrical", "electrical"), ("navigationally", "navigation"), ("whwhat", "what"), ("bcos", "because"), ("vaccancies", "vacancies"), ("articels", "articles"), ("boilng", "boiling"), ("hyperintensity", "hyper intensity"), ("rascism", "racism"), ("messenging", "messaging"), ("cleaniness", "cleanliness"), ("vetenary", "veterinary"), ("investorswhat", "investors what"), ("chrestianity", "Christianity"), ("apporval", "approval"), ("repaire", "repair"), ("biggerchance", "bigger chance"), ("manufacturering", "manufacturing"), ("buildertrend", "builder trend"), ("allocatively", "allocative"), ("subliminals", "subliminal"), ("mechnically", "mechanically"), ("binaurial", "binaural"), ("naaked", "naked"), ("aantidepressant", "antidepressant"), ("geunine", "genuine"), ("quantitaive", "quantitative"), ("paticipated", "participated"), ("repliedjesus", "replied Jesus"), ("baised", "biased"), ("worldreport", "world report"), ("eecutives", "executives"), ("paitents", "patients"), ("telgu", "Telugu"), ("nomeniculature", "nomenclature"), ("crimimaly", "criminally"), ("resourse", "resource"), ("procurenent", "procurement"), ("improvemet", "improvement"), ("metamers", "metamer"), ("tautomers", "tautomer"), ("knowwhen", "know when"), ("whatdoes", "what does"), ("pletelets", "platelets"), ("pssesive", "possessive"), ("oxigen", "oxygen"), ("ethniticy", "ethnicity"), ("situatiation", "situation"), ("ecoplanet", "eco planet"), ("situatio", "situation"), ("dateing", "dating"), ("hostress", "hostess"), ("initialisation", "initialization"), ("hydrabd", "Hyderabad"), ("deppresed", "depressed"), ("dwnloadng", "downloading"), ("expirey", "expiry"), ("engeenering", "engineering"), ("hyderebad", "Hyderabad"), ("automatabl", "automatable"), ("architetureocasions", "architectureoccasions"), ("restaraunts", "restaurants"), ("recommedations", "recommendations"), ("intergrity", "integrity"), ("reletively", "relatively"), ("priceworthy", "price worthy"), ("princples", "principles"), ("reconigze", "recognize"), ("paticular", "particular"), ("musictheory", "music theory"), ("requied", "required"), ("netural", "natural"), ("fluoresent", "fluorescent"), ("girlfiend", "girlfriend"), ("develpment", "development"), ("eridicate", "eradicate"), ("techologys", "technologies"), ("hybridyzation", "hybridization"), ("ideaa", "ideas"), ("tchnology", "technology"), ("appropiate", "appropriate"), ("respone", "response"), ("celebreties", "celebrities"), ("exterion", "exterior"), ("uservoice", "user voice"), ("effeciently", "efficiently"), ("torquise", "turquoise "), ("governmentand", "government and"), ("eletricity", "electricity"), ("coulums", "columns"), ("nolonger", "no longer"), ("wheras", "whereas"), ("infnite", "infinite"), ("decolourised", "no color"), ("onepiece", "one piece"), ("assignements", "assignments"), ("celebarted", "celebrated"), ("pharmacistical", "pharmaceutical"), ("jainsingle", "Jain single"), ("asssistance", "assistance"), ("glases", "glasses"), ("polymorpism", "polymorphism"), ("amerians", "Americans"), ("masquitos", "mosquitoes"), ("interseted", "interested"), ("thehighest", "the highest"), ("etnicity", "ethnicity"), ("anopportunity", "anopportunity"), ("multidiscipline", "multi discipline"), ("smartchange", "smart change"), ("collegefest", "college fest"), ("disdvantages", "disadvantages"), ("successfcators", "success factors"), ("sustitute", "substitute"), ("caoching", "coaching"), ("bullyed", "bullied"), ("comunicate", "communicate"), ("prisioner", "prisoner"), ("tamilnaadu", "Tamil Nadu"), ("methodologyies", "methodologies"), ("tranfers", "transfers"), ("truenorth", "true north"), ("backdonation", "back donation"), ("oreals", "ordeals"), ("browsec", "browser"), ("solarwinds", "solar winds"), ("susten", "sustain"), ("carnegi", "Carnegie"), ("doesent", "doesn't"), ("automtotive", "automotive"), ("nimuselide", "nimesulide"), ("subsciption", "subscription"), ("quatrone", "Quattrone"), ("qatalyst", "catalyst"), ("vardamana", "Vardaman"), ("suplements", "supplements"), ("repore", "report"), ("pikettys", "Piketty"), ("paramilltary", "paramilitary"), ("aboutlastnight", "about last night"), ("vidyapeth", "Vidyapeeth"), ("extraterrestial", "extraterrestrial"), ("powerloom", "power loom"), ("zonbie", "zombie"), ("cococola", "Coca Cola"), ("hameorrhage", "hemorrhage"), ("abhayanand", "Abhay Anand"), ("romedynow", "remedy now"), ("couster", "counter"), ("encouaged", "encouraged"), ("toprepare", "to prepare"), ("eveteasing", "eve teasing"), ("roulete", "roulette"), ("sorkar", "Sarkar"), ("waveboard", "wave board"), ("acclerate", "accelerate"), ("togrow", "to grow"), ("felatio", "fellatio"), ("baherain", "Bahrain"), ("teatment", "treatment"), ("iwitness", "eye witness"), ("autoplaying", "autoplay"), ("twise", "twice"), ("timeskip", "time skip"), ("disphosphorus", "diphosphorus"), ("implemnt", "implement"), ("proview", "preview"), ("pinshoppr", "pin shoppe"), ("protestng", "protesting"), ("chromatographymass", "chromatography mass"), ("ncache", "cache"), ("dowloands", "downloads"), ("biospecifics", "bio specifics"), ("conforim", "conform"), ("dreft", "draft"), ("sinhaleseand", "Sinhalese"), ("swivl", "swivel"), ("officerjms", "officers"), ("refrigrant", "refrigerant"), ("kendras", "Kendra"), ("alchoholism", "alcoholism"), ("dollor", "dollar"), ("jeyalalitha", "Jayalalitha"), ("bettner", "better"), ("itemstream", "timestream"), ("notetaking", "note taking"), ("cringworthy", "cringeworthy"), ("easyday", "easy day"), ("scenessex", "scenes sex"), ("vivavideo", "via video"), ("washboth", "wash both"), ("textout", "text out"), ("createwindow", "create window"), ("calsium", "calcium"), ("biofibre", "bio fibre"), ("emailbesides", "email besides"), ("kathhi", "Kathi"), ("cenre", "center"), ("polyarmory", "polyamory"), ("superforecasters", "super forecasters"), ("blogers", "bloggers"), ("medicalwhich", "medical which"), ("iiving", "living"), ("pronouciation", "pronunciation"), ("youor", "you or"), ("thuderbird", "Thunderbird"), ("oneside", "one side"), ("spearow", "Spearow"), ("aanythign", "anything"), ("inmaking", "in making"), ("datamining", "data mining"), ("greybus", "grey bus"), ("onmeter", "on meter"), ("biling", "billing"), ("fidlago", "Fidalgo"), ("edfice", "edifice"), ("microsolutions", "micro solutions"), ("easly", "easily"), ("eukarotic", "eukaryotic"), ("accedental", "accidental"), ("intercasts", "interests"), ("oppresive", "oppressive"), ("generalizably", "generalizable"), ("tacometer", "tachometer"), ("loking", "looking"), ("scrypt", "script"), ("usafter", "us after"), ("everyweek", "every week"), ("hopesthe", "hopes the"), ("openflow", "OpenFlow"), ("checkride", "check ride"), ("springdrive", "spring drive"), ("emobile", "mobile"), ("dermotology", "dermatology"), ("somatrophin", "somatropin"), ("saywe", "say we"), ("multistores", "multistory"), ("bolognaise", "Bolognese"), ("hardisk", "harddisk"), ("penisula", "peninsula"), ("refferring", "referring"), ("freshere", "fresher"), ("pokemkon", "Pokemon"), ("nuero", "neuro"), ("whosampled", "who sampled"), ("researchkit", "research kit"), ("speach", "speech"), ("acept", "accept"), ("indiashoppe", "Indian shoppe"), ("todescribe", "to describe"), ("hollywod", "Hollywood"), ("whastup", "whassup"), ("kjedahls", "Kjeldahl"), ("lancher", "launcher"), ("stalkees", "stalkers"), ("baclinks", "backlinks"), ("instutional", "institutional"), ("wassap", "Wassup"), ("methylethyl", "methyl ethyl"), ("fundbox", "fund box"), ("keypoints", "key points"), ("particually", "particularly"), ("loseit", "lose it"), ("gowipe", "go wipe"), ("autority", "authority"), ("prinicple", "principle"), ("complaince", "compliance"), ("itnormal", "it normal"), ("forpeople", "for people"), ("chaces", "chances"), ("yearhow", "year how"), ("fastcomet", "fast comet"), ("withadd", "with add"), ("omnicient", "omniscient"), ("tofeel", "to feel"), ("becauseof", "because of"), ("laungauage", "language"), ("combodia", "Cambodia"), ("bhuvneshwer", "Bhubaneshwar"), ("cognito", "Cognito"), ("thaelsemia", "thalassemia"), ("meritstore", "merit store"), ("masterbuate", "masturbate"), ("planethere", "planet here"), ("mostof", "most of"), ("shallowin", "shallow in"), ("wordwhen", "word when"), ("biodesalination", "desalination"), ("tendulkars", "Tendulkar"), ("kerja", "Kerja"), ("sertifikat", "certificate"), ("indegenous", "indigenous"), ("lowpage", "low page"), ("asend", "ascend"), ("leadreship", "leadership"), ("openlab", "open lab"), ("foldinghome", "folding home"), ("sachins", "Sachin"), ("pleatue", "plateau"), ("passwor", "password"), ("manisfestation", "manifestation"), ("valryian", "valerian"), ("chemotaxic", "chemotaxis"), ("condesending", "condescending"), ("spiltzvilla", "splitsville"), ("mammaliaforme", "mammaliaform"), ("instituteagra", "institute agra"), ("learningand", "learning and"), ("ramamurthynagar", "Ramamurthy Nagar"), ("glucoses", "glucose"), ("imitaion", "imitation"), ("awited", "awaited"), ("realvision", "real vision"), ("simslot", "sim slot"), ("yourr", "your"), ("pacjage", "package"), ("branchth", "branch"), ("magzin", "magazine"), ("frozon", "frozen"), ("codescomputational", "code computational"), ("tempratures", "temperatures"), ("neurophaphy", "neuropathy"), ("freezone", "free zone"), ("speices", "species"), ("compaitable", "compatible"), ("sensilization", "sensitization"), ("tuboscope", "tube scope"), ("gamechangers", "game changer"), ("windsheild", "windshield"), ("explorerie", "explorer"), ("cuccina", "Cucina"), ("earthstone", "hearthstone"), ("vocabs", "vocab"), ("previouse", "previous"), ("oneview", "one view"), ("relance", "reliance"), ("waterstop", "water stop"), ("imput", "input"), ("survivers", "survivors"), ("benedryl", "Benadryl"), ("requestparam", "request param"), ("typeadd", "type add"), ("autists", "artists"), ("forany", "for any"), ("inteview", "interview"), ("aphantasia", "Phantasia"), ("lisanna", "Lisanne"), ("civilengineering", "civil engineering"), ("austrailia", "Australia"), ("alchoholic", "alcoholic"), ("adaptersuch", "adapter such"), ("sphilosopher", "philosopher"), ("calenderisation", "calendarization"), ("smooking", "smoking"), ("pemdulum", "pendulum"), ("analsyis", "analysis"), ("psycholology", "psychology"), ("ubantu", "ubuntu"), ("emals", "emails"), ("questionth", "questions"), ("jawarlal", "Jawaharlal"), ("svaldbard", "Svalbard"), ("prabhudeva", "Prabhudeva"), ("robtics", "robotics"), ("umblock", "unblock"), ("professionaly", "professionally"), ("biovault", "bio vault"), ("bibal", "bible"), ("higherstudies", "higher studies"), ("lestoil", "less oil"), ("biteshow", "bike show"), ("humanslike", "humans like"), ("purpse", "purpose"), ("barazilian", "Brazilian"), ("gravitional", "gravitational"), ("cylinderical", "cylindrical"), ("peparing", "preparing"), ("healthequity", "health equity"), ("appcleaner", "app cleaner"), ("instantq", "instant"), ("abolisihed", "abolished"), ("kwench", "quench"), ("prisamatic", "prismatic"), ("bhubneshwar", "Bhubaneshwar"), ("liscense", "license"), ("cyberbase", "cyber base"), ("safezone", "safe zone"), ("deactivat", "deactivate"), ("salicyclic", "salicylic"), ("cocacola", "coca cola"), ("noice", "noise"), ("examinaton", "examination"), ("pharmavigilance", "pharmacovigilance"), ("sixthsense", "sixth sense"), ("musiclly", "musically"), ("khardushan", "Kardashian"), ("chandragupt", "Chandragupta"), ("bayesians", "bayesian"), ("engineeringbut", "engineering but"), ("caretrust", "care trust"), ("girlbut", "girl but"), ("aviations", "aviation"), ("joinee", "joiner"), ("tutior", "tutor"), ("tylenal", "Tylenol"), ("neccesity", "necessity"), ("kapsule", "capsule"), ("prayes", "prayers"), ("depositmobile", "deposit mobile"), ("settopbox", "set top box"), ("meotic", "meiotic"), ("accidentially", "accidentally"), ("offcloud", "off cloud"), ("keshavam", "Keshava"), ("domaincentral", "domain central"), ("onetaste", "one taste"), ("lumpsum", "lump sum"), ("medschool", "med school"), ("digicard", "Digi card"), ("abroadus", "abroad"), ("campusexcept", "campus except"), ("aptittude", "aptitude"), ("neutrions", "neutrinos"), ("onepaper", "one paper"), ("remidies", "remedies"), ("convinient", "convenient"), ("financaily", "financially"), ("postives", "positives"), ("nikefuel", "Nike fuel"), ("ingrediants", "ingredients"), ("aspireat", "aspirate"), ("firstand", "first"), ("mohammmad", "Mohammad"), ("mutliple", "multiple"), ("dimonatization", "demonization"), ("cente", "center"), ("marshmellow", "marshmallow"), ("citreon", "Citroen"), ("theirony", "the irony"), ("slienced", "silenced"), ("identifiy", "identify"), ("energ", "energy"), ("distribuiton", "distribution"), ("devoloping", "developing"), ("maharstra", "Maharastra"), ("siesmologist", "seismologist"), ("geckoos", "geckos"), ("placememnt", "placement"), ("introvercy", "introvert"), ("nuerosurgeon", "neurosurgeon"), ("realsense", "real sense"), ("congac", "cognac"), ("plaese", "please"), ("addicition", "addiction"), ("othet", "other"), ("howwill", "how will"), ("betablockers", "beta blockers"), ("phython", "Python"), ("concelling", "counseling"), ("einstine", "Einstein"), ("takinng", "taking"), ("birtday", "birthday"), ("prefessor", "professor"), ("dreamscreen", "dream screen"), ("satyabama", "Satyabhama"), ("faminism", "feminism"), ("noooooooooo", "no"), ("certifaction", "certification"), ("smalll", "small"), ("sterlization", "sterilization"), ("athelete", "athlete"), ("comppany", "company"), ("handlebreakup", "handle a breakup"), ("wellrounded", "well rounded"), ("breif", "brief"), ("engginering", "engineering"), ("genrally", "generally"), ("forgote", "forgot"), ("compuny", "the company"), ("wholeseller", "wholesaler"), ("conventioal", "conventional"), ("healther", "healthier"), ("realitic", "realistic"), ("israil", "Israel"), ("morghulis", "Margulis"), ("begineer", "beginner"), ("unwaiveringly", "unwavering"), ("writen", "written"), ("gastly", "ghastly"), ("obscurial", "obscure"), ("permanetly", "permanently"), ("bday", "birthday"), ("studing", "studying"), ("blackcore", "black core"), ("macbok", "MacBook"), ("realted", "related"), ("resoning", "reasoning"), ("servicenow", "service now"), ("medels", "medals"), ("hairloss", "hair loss"), ("messanger", "messenger"), ("masterbate", "masturbate"), ("oppurtunities", "opportunities"), ("newzealand", "new zealand"), ("offcampus", "off campus"), ("lonliness", "loneliness"), ("percentilers", "percentiles"), ("caccount", "account"), ("imrovement", "improvement"), ("cashbacks", "cashback"), ("inhand", "in hand"), ("baahubali", "bahubali"), ("diffrent", "different"), ("strategywho", "strategy who"), ("meetme", "meet me"), ("wealthfront", "wealth front"), ("masterbation", "masturbation"), ("successfull", "successful"), ("lenght", "length"), ("increse", "increase"), ("mastrubation", "masturbation"), ("intresting", "interesting"), ("quesitons", "questions"), ("fullstack", "full stack"), ("harambe", "Harambee"), ("criterias", "criteria"), ("rajyasabha", "Rajya Sabha"), ("techmahindra", "tech Mahindra"), ("messeges", "messages"), ("intership", "internship"), ("benifits", "benefits"), ("dowload", "download"), ("dellhi", "Delhi"), ("traval", "travel"), ("prepration", "preparation"), ("engineeringwhat", "engineering what"), ("habbit", "habit"), ("diference", "difference"), ("permantley", "permanently"), ("doesnot", "does not"), ("thebest", "the best"), ("addmision", "admission"), ("gramatically", "grammatically"), ("dayswhich", "days which"), ("intrest", "interest"), ("seperatists", "separatists"), ("plagarism", "plagiarism"), ("demonitize", "demonetize"), ("explaination", "explanation"), ("numericals", "numerical"), ("defination", "definition"), ("inmortal", "immortal"), ("elasticsearch", "elastic search"), ] REGEX_REPLACER = [ (re.compile(pat.replace("*", "\*"), flags=re.IGNORECASE), repl) for pat, repl in WORDS_REPLACER ] REGEX_REPLACER_2 = [ (re.compile(pat.replace("*", "\*"), flags=re.IGNORECASE), repl) for pat, repl in WORDS_REPLACER_2 ] REGEX_REPLACER_3 = [ (re.compile(pat.replace("*", "\*"), flags=re.IGNORECASE), repl) for pat, repl in WORDS_REPLACER_3 ] REGEX_REPLACER_4 = [ (re.compile(pat.replace("*", "\*"), flags=re.IGNORECASE), repl) for pat, repl in WORDS_REPLACER_4 ] """ WORDS_REPLACER_5 = [('["code"]', '["CODE"]'), ('["formula"]', '["FORMULA"]') ] REGEX_REPLACER_5 = [ (re.compile(pat.replace("*", "\*"), flags=re.IGNORECASE), repl) for pat, repl in WORDS_REPLACER_5 ] """ RE_SPACE = re.compile(r"\s") RE_MULTI_SPACE = re.compile(r"\s+") symbols_to_isolate = ".,?!-;*…:—()[]%#$&_/@\・ω+=^–>\\°<~•≠™ˈʊɒ∞§{}·τα❤☺ɡ|¢→̶`❥━┣┫┗O►★©―ɪ✔®\x96\x92●£♥➤´¹☕≈÷♡◐║▬′ɔː€۩۞†μ✒➥═☆ˌ◄½ʻπδηλσερνʃ✬SUPERIT☻±♍µº¾✓◾؟.⬅℅»Вав❣⋅¿¬♫CMβ█▓▒░⇒⭐›¡₂₃❧▰▔◞▀▂▃▄▅▆▇↙γ̄″☹➡«φ⅓„✋:¥̲̅́∙‛◇✏▷❓❗¶˚˙)сиʿ✨。ɑ\x80◕!%¯−flfi₁²ʌ¼⁴⁄₄⌠♭✘╪▶☭✭♪☔☠♂☃☎✈✌✰❆☙○‣⚓年∎ℒ▪▙☏⅛casǀ℮¸w‚∼‖ℳ❄←☼⋆ʒ⊂、⅔¨͡๏⚾⚽Φ×θ₩?(℃⏩☮⚠月✊❌⭕▸■⇌☐☑⚡☄ǫ╭∩╮,例>ʕɐ̣Δ₀✞┈╱╲▏▕┃╰▊▋╯┳┊≥☒↑☝ɹ✅☛♩☞AJB◔◡↓♀⬆̱ℏ\x91⠀ˤ╚↺⇤∏✾◦♬³の|/∵∴√Ω¤☜▲↳▫‿⬇✧ovm-208'‰≤∕ˆ⚜☁" symbols_to_delete2 = "\"#$%'()*+-/:;<=>@[\\]^_`{|}~" + "“”’" isolate_dict = {ord(c): f" {c} " for c in symbols_to_isolate} remove_dict = {ord(c): f"" for c in symbols_to_delete} remove_dict1 = {ord(c): f"" for c in symbols_to_delete2} NMS_TABLE = dict.fromkeys( i for i in range(sys.maxunicode + 1) if unicodedata.category(chr(i)) == "Mn" ) HEBREW_TABLE = {i: "א" for i in range(0x0590, 0x05FF)} ARABIC_TABLE = {i: "ا" for i in range(0x0600, 0x06FF)} CHINESE_TABLE = {i: "是" for i in range(0x4E00, 0x9FFF)} KANJI_TABLE = {i: "ッ" for i in range(0x2E80, 0x2FD5)} HIRAGANA_TABLE = {i: "ッ" for i in range(0x3041, 0x3096)} KATAKANA_TABLE = {i: "ッ" for i in range(0x30A0, 0x30FF)} TABLE = dict() TABLE.update(CUSTOM_TABLE) TABLE.update(NMS_TABLE) # Non-english languages TABLE.update(CHINESE_TABLE) TABLE.update(HEBREW_TABLE) TABLE.update(ARABIC_TABLE) TABLE.update(HIRAGANA_TABLE) TABLE.update(KATAKANA_TABLE) TABLE.update(KANJI_TABLE) EMOJI_REGEXP = emoji.get_emoji_regexp() UNICODE_EMOJI_MY = { k: f" EMJ {v.strip(':').replace('_', ' ')} " for k, v in emoji.UNICODE_EMOJI_ALIAS.items() } def my_demojize(string: str) -> str: def replace(match): return UNICODE_EMOJI_MY.get(match.group(0), match.group(0)) return re.sub("\ufe0f", "", EMOJI_REGEXP.sub(replace, string)) def normalize(text: str) -> str: text = text.replace("[CODE]", " ACODEA ") text = text.replace("[FORMULA]", " AFORMULAA ") # text = text.replace("[]", " [URL] ") text = html.unescape(text) text = text.lower() text = my_demojize(text) # replacing urls with "url" string text = re.sub("(?:(?:https?|ftp):\/\/)?[\w/\-?=%.]+\.[\w/\-?=%.]+", "[WEB]", text) text = text.replace("[WEB]", " AWEBA ") text = RE_SPACE.sub(" ", text) text = unicodedata.normalize("NFKD", text) text = text.translate(TABLE) text = RE_MULTI_SPACE.sub(" ", text).strip() # remove some unimportent symbles text = text.translate(remove_dict) # remove some unimportent symbles text = text.translate(remove_dict1) text = text.translate(isolate_dict) # Replacing and mispell for pattern, repl in REGEX_REPLACER: text = pattern.sub(repl, text) for pattern, repl in REGEX_REPLACER_2: text = pattern.sub(repl, text) for pattern, repl in REGEX_REPLACER_3: text = pattern.sub(repl, text) # isolated_characters # text = text.translate(isolate_dict) for pattern, repl in REGEX_REPLACER_4: text = pattern.sub(repl, text) """ for pattern, repl in REGEX_REPLACER_5: text = pattern.sub(repl, text) """ text = RE_MULTI_SPACE.sub(" ", text).strip() text = text.replace(" acodea ", " [CODE] ") text = text.replace(" aformulaa ", " [FORMULA] ") text = text.replace(" AWEBA ", " [WEB] ") text = RE_MULTI_SPACE.sub(" ", text).strip() return text train_final["question_body_clean1"] = train_final.question_body_clean.apply(normalize) train_final["answer_clean1"] = train_final.answer_clean.apply(normalize) train_final["question_title_clean1"] = train_final.question_title.apply(normalize) test_final["question_body_clean1"] = test_final.question_body_clean.apply(normalize) test_final["answer_clean1"] = test_final.answer_clean.apply(normalize) test_final["question_title_clean1"] = test_final.question_title.apply(normalize) train_final["question_body_clean1"].fillna("please see figure below", inplace=True) test_final["question_body_clean1"].fillna("please see figure below", inplace=True) train_final["answer_clean1"].fillna("please see figure below", inplace=True) test_final["answer_clean1"].fillna("please see figure below", inplace=True) train_final["question_title_clean1"].fillna("please see figure below", inplace=True) test_final["question_title_clean1"].fillna("please see figure below", inplace=True) def replace_specialtokens(text): text = text.replace(" [CODE] ", " code ") text = text.replace(" [FORMULA] ", " formula ") text = text.replace(" [WEB] ", " web ") return text train_final["question_body_clean2"] = train_final.question_body_clean1.apply( replace_specialtokens ) train_final["answer_clean2"] = train_final.answer_clean1.apply(replace_specialtokens) train_final["question_title_clean2"] = train_final.question_title_clean1.apply( replace_specialtokens ) test_final["question_body_clean2"] = test_final.question_body_clean1.apply( replace_specialtokens ) test_final["answer_clean2"] = test_final.answer_clean1.apply(replace_specialtokens) test_final["question_title_clean2"] = test_final.question_title_clean1.apply( replace_specialtokens ) train_final["question_body_all_clean"] = train_final.question_body_all.apply(normalize) train_final["answer_all_clean"] = train_final.answer_all.apply(normalize) test_final["question_body_all_clean"] = test_final.question_body_all.apply(normalize) test_final["answer_all_clean"] = test_final.answer_all.apply(normalize) # ## META DATA from sklearn.decomposition import PCA from scipy.sparse import vstack from sklearn.feature_extraction.text import CountVectorizer def text_metadata(train, test): a_AboutMe_text = train["a_AboutMe"].apply(normalize) q_AboutMe_text = train["q_AboutMe"].apply(normalize) all_text = pd.concat([a_AboutMe_text, q_AboutMe_text]) word_vectorizer = TfidfVectorizer( sublinear_tf=True, strip_accents="unicode", analyzer="word", token_pattern=r"\w{1,}", stop_words="english", ngram_range=(1, 1), ) word_vectorizer.fit(all_text) q_AboutMe_cols = [f"q_AboutMe_PCA_{i}" for i in range(1, 101)] a_AboutMe_cols = [f"a_AboutMe_PCA_{i}" for i in range(1, 101)] q_AboutMe_text = word_vectorizer.transform(q_AboutMe_text) a_AboutMe_text = word_vectorizer.transform(a_AboutMe_text) tq_AboutMe_text = word_vectorizer.transform(test["q_AboutMe"].apply(normalize)) ta_AboutMe_text = word_vectorizer.transform(test["a_AboutMe"].apply(normalize)) new = vstack([q_AboutMe_text, a_AboutMe_text]) pca = PCA(n_components=100) pca.fit(new.toarray()) q_AboutMe_text = pca.transform(q_AboutMe_text.toarray()) a_AboutMe_text = pca.transform(a_AboutMe_text.toarray()) tq_AboutMe_text = pca.transform(tq_AboutMe_text.toarray()) ta_AboutMe_text = pca.transform(ta_AboutMe_text.toarray()) train[q_AboutMe_cols] = pd.DataFrame( q_AboutMe_text, columns=q_AboutMe_cols, index=train.index ) test[q_AboutMe_cols] = pd.DataFrame( tq_AboutMe_text, columns=q_AboutMe_cols, index=test.index ) train[a_AboutMe_cols] = pd.DataFrame( a_AboutMe_text, columns=a_AboutMe_cols, index=train.index ) test[a_AboutMe_cols] = pd.DataFrame( ta_AboutMe_text, columns=a_AboutMe_cols, index=test.index ) # Tages tags_all_text = train["Tags"] word_vectorizer = CountVectorizer() word_vectorizer.fit(tags_all_text) tags_cols = ["Tags_" + sub for sub in word_vectorizer.get_feature_names()] train[tags_cols] = pd.DataFrame( word_vectorizer.transform(train["Tags"]).toarray(), columns=tags_cols, index=train.index, ) test[tags_cols] = pd.DataFrame( word_vectorizer.transform(test["Tags"]).toarray(), columns=tags_cols, index=test.index, ) return train, test, q_AboutMe_cols, a_AboutMe_cols, tags_cols train_final, test_final, q_AboutMe_cols, a_AboutMe_cols, tags_cols = text_metadata( train_final, test_final ) train_final.shape, test_final.shape def linear_based_models(train, test, cat_cols, num_cols): # Column std MinMax Scalling std = MinMaxScaler() train[num_cols] = std.fit_transform(train[num_cols]) test[num_cols] = std.transform(test[num_cols]) # One Hot Encoder train = pd.get_dummies(train, columns=cat_cols, prefix=cat_cols) test = pd.get_dummies(test, columns=cat_cols, prefix=cat_cols) rem = list(set(train.columns).intersection(set(test.columns))) train = train[rem] test = test[rem] return train, test num_cols = [ "AnswerCount", "CommentCount", "FavoriteCount", "PostTypeId", "Score", "ViewCount", "a_DownVotes", "a_UpVotes", "a_Views", "q_DownVotes", "q_UpVotes", "q_Views", ] cat_cols = ["category", "category_type"] train_final, test_final = linear_based_models( train_final, test_final, cat_cols, num_cols ) train_final.shape, test_final.shape train_final = pd.merge( train_final, train_final_targets, left_on="qa_id", right_on="qa_id", how="left" ) train_final.shape, test_final.shape # # Model train_df = train_final test_df = test_final target_columns = train_df.columns.values.tolist()[-30:] category_features = [col for col in train_df.columns if col.startswith("category_")] tags_cols = [col for col in train_df.columns if col.startswith("Tags_")] a_AboutMe_cols = [col for col in train_df.columns if col.startswith("a_AboutMe_")] q_AboutMe_cols = [col for col in train_df.columns if col.startswith("q_AboutMe_")] num_cols = [ "AnswerCount", "CommentCount", "FavoriteCount", "PostTypeId", "Score", "ViewCount", "a_DownVotes", "a_UpVotes", "a_Views", "q_DownVotes", "q_UpVotes", "q_Views", "AnswerCount_nan", "CommentCount_nan", "FavoriteCount_nan", "Score_nan", "ViewCount_nan", "a_DownVotes_nan", "a_UpVotes_nan", "a_Views_nan", "q_DownVotes_nan", "q_UpVotes_nan", "q_Views_nan", ] a_AboutMe_cols = [ "a_AboutMe_PCA_64", "a_AboutMe_PCA_19", "a_AboutMe_PCA_40", "a_AboutMe_PCA_6", "a_AboutMe_PCA_77", "a_AboutMe_PCA_35", "a_AboutMe_PCA_100", "a_AboutMe_PCA_57", "a_AboutMe_PCA_76", "a_AboutMe_PCA_16", "a_AboutMe_PCA_67", "a_AboutMe_PCA_36", "a_AboutMe_PCA_25", "a_AboutMe_PCA_26", "a_AboutMe_PCA_7", "a_AboutMe_PCA_50", "a_AboutMe_PCA_32", "a_AboutMe_PCA_60", "a_AboutMe_PCA_54", "a_AboutMe_PCA_84", "a_AboutMe_PCA_66", "a_AboutMe_PCA_88", "a_AboutMe_PCA_61", "a_AboutMe_PCA_23", "a_AboutMe_PCA_37", "a_AboutMe_PCA_1", "a_AboutMe_PCA_21", "a_AboutMe_PCA_20", "a_AboutMe_PCA_55", "a_AboutMe_PCA_86", "a_AboutMe_PCA_2", "a_AboutMe_PCA_3", "a_AboutMe_PCA_99", "a_AboutMe_PCA_18", "a_AboutMe_PCA_78", "a_AboutMe_PCA_51", "a_AboutMe_PCA_53", "a_AboutMe_PCA_96", "a_AboutMe_PCA_15", "a_AboutMe_PCA_11", "a_AboutMe_PCA_89", "a_AboutMe_PCA_82", "a_AboutMe_PCA_13", "a_AboutMe_PCA_44", "a_AboutMe_PCA_28", "a_AboutMe_PCA_41", "a_AboutMe_PCA_68", "a_AboutMe_PCA_42", "a_AboutMe_PCA_27", "a_AboutMe_PCA_73", "a_AboutMe_PCA_95", "a_AboutMe_PCA_85", "a_AboutMe_PCA_49", "a_AboutMe_PCA_33", "a_AboutMe_PCA_48", "a_AboutMe_PCA_59", "a_AboutMe_PCA_46", "a_AboutMe_PCA_65", "a_AboutMe_PCA_75", "a_AboutMe_PCA_63", "a_AboutMe_PCA_4", "a_AboutMe_PCA_52", "a_AboutMe_PCA_5", "a_AboutMe_PCA_17", "a_AboutMe_PCA_92", "a_AboutMe_PCA_47", "a_AboutMe_PCA_80", "a_AboutMe_PCA_14", "a_AboutMe_PCA_98", "a_AboutMe_PCA_34", "a_AboutMe_PCA_83", "a_AboutMe_PCA_58", "a_AboutMe_PCA_94", "a_AboutMe_PCA_69", "a_AboutMe_PCA_45", "a_AboutMe_PCA_31", "a_AboutMe_PCA_91", "a_AboutMe_PCA_12", "a_AboutMe_PCA_70", "a_AboutMe_PCA_8", "a_AboutMe_PCA_39", "a_AboutMe_PCA_74", "a_AboutMe_PCA_43", "a_AboutMe_PCA_62", "a_AboutMe_PCA_10", "a_AboutMe_PCA_9", "a_AboutMe_PCA_22", "a_AboutMe_PCA_30", "a_AboutMe_PCA_24", "a_AboutMe_PCA_87", "a_AboutMe_PCA_79", "a_AboutMe_PCA_81", "a_AboutMe_PCA_90", "a_AboutMe_PCA_93", "a_AboutMe_PCA_38", "a_AboutMe_PCA_72", "a_AboutMe_PCA_29", "a_AboutMe_PCA_56", "a_AboutMe_PCA_97", "a_AboutMe_PCA_71", ] q_AboutMe_cols = [ "q_AboutMe_PCA_93", "q_AboutMe_PCA_50", "q_AboutMe_PCA_70", "q_AboutMe_PCA_65", "q_AboutMe_PCA_85", "q_AboutMe_PCA_71", "q_AboutMe_PCA_18", "q_AboutMe_PCA_69", "q_AboutMe_PCA_51", "q_AboutMe_PCA_79", "q_AboutMe_PCA_31", "q_AboutMe_PCA_99", "q_AboutMe_PCA_40", "q_AboutMe_PCA_92", "q_AboutMe_PCA_86", "q_AboutMe_PCA_34", "q_AboutMe_PCA_2", "q_AboutMe_PCA_64", "q_AboutMe_PCA_1", "q_AboutMe_PCA_72", "q_AboutMe_PCA_32", "q_AboutMe_PCA_29", "q_AboutMe_PCA_5", "q_AboutMe_PCA_7", "q_AboutMe_PCA_67", "q_AboutMe_PCA_96", "q_AboutMe_PCA_82", "q_AboutMe_PCA_35", "q_AboutMe_PCA_55", "q_AboutMe_PCA_39", "q_AboutMe_PCA_27", "q_AboutMe_PCA_4", "q_AboutMe_PCA_66", "q_AboutMe_PCA_57", "q_AboutMe_PCA_38", "q_AboutMe_PCA_12", "q_AboutMe_PCA_76", "q_AboutMe_PCA_20", "q_AboutMe_PCA_89", "q_AboutMe_PCA_28", "q_AboutMe_PCA_30", "q_AboutMe_PCA_98", "q_AboutMe_PCA_100", "q_AboutMe_PCA_61", "q_AboutMe_PCA_3", "q_AboutMe_PCA_37", "q_AboutMe_PCA_81", "q_AboutMe_PCA_97", "q_AboutMe_PCA_49", "q_AboutMe_PCA_91", "q_AboutMe_PCA_43", "q_AboutMe_PCA_90", "q_AboutMe_PCA_94", "q_AboutMe_PCA_58", "q_AboutMe_PCA_36", "q_AboutMe_PCA_8", "q_AboutMe_PCA_46", "q_AboutMe_PCA_25", "q_AboutMe_PCA_13", "q_AboutMe_PCA_10", "q_AboutMe_PCA_87", "q_AboutMe_PCA_21", "q_AboutMe_PCA_62", "q_AboutMe_PCA_11", "q_AboutMe_PCA_42", "q_AboutMe_PCA_33", "q_AboutMe_PCA_74", "q_AboutMe_PCA_26", "q_AboutMe_PCA_6", "q_AboutMe_PCA_68", "q_AboutMe_PCA_54", "q_AboutMe_PCA_73", "q_AboutMe_PCA_17", "q_AboutMe_PCA_44", "q_AboutMe_PCA_52", "q_AboutMe_PCA_47", "q_AboutMe_PCA_56", "q_AboutMe_PCA_15", "q_AboutMe_PCA_59", "q_AboutMe_PCA_88", "q_AboutMe_PCA_22", "q_AboutMe_PCA_77", "q_AboutMe_PCA_84", "q_AboutMe_PCA_75", "q_AboutMe_PCA_63", "q_AboutMe_PCA_60", "q_AboutMe_PCA_41", "q_AboutMe_PCA_53", "q_AboutMe_PCA_45", "q_AboutMe_PCA_14", "q_AboutMe_PCA_16", "q_AboutMe_PCA_24", "q_AboutMe_PCA_19", "q_AboutMe_PCA_83", "q_AboutMe_PCA_9", "q_AboutMe_PCA_48", "q_AboutMe_PCA_23", "q_AboutMe_PCA_78", "q_AboutMe_PCA_95", "q_AboutMe_PCA_80", ] meta_cols = [*category_features, *num_cols] len(meta_cols) def _convert_to_transformer_inputs( title, question, answer, tokenizer, max_sequence_lenght ): """Converts tokenized input to ids, masks and segments for transformer (including bert)""" def return_id(str1, str2, lenght): inputs = tokenizer.encode_plus( str1, str2, add_special_tokens=True, max_length=lenght, pad_to_max_length=True, return_token_type_ids=True, return_attention_mask=True, truncation_strategy="longest_first", ) input_ids = inputs["input_ids"] attention_mask = inputs["attention_mask"] token_type_ids = inputs["token_type_ids"] return [input_ids, attention_mask, token_type_ids] input_ids_q, attention_mask_q, token_type_ids_q = return_id( title, question, max_sequence_lenght ) input_ids_a, attention_mask_a, token_type_ids_a = return_id( answer, None, max_sequence_lenght ) return [ input_ids_q, attention_mask_q, token_type_ids_q, input_ids_a, attention_mask_a, token_type_ids_a, ] def compute_input_arrays( df, columns, meta_cols, q_AboutMe_cols, a_AboutMe_cols, tokenizer, max_sequence_length, ): input_ids_q, attention_mask_q, token_type_ids_q = [], [], [] input_ids_a, attention_mask_a, token_type_ids_a = [], [], [] meta_features = [] q_AboutMe_features = [] a_AboutMe_features = [] total_cols = [*columns, *meta_cols, *q_AboutMe_cols, *a_AboutMe_cols] # i = 0 for _, instance in tqdm(df[total_cols].iterrows()): t, q, a, qc, ac = ( instance.question_title_clean2, instance.question_body_clean2, instance.answer_clean2, instance.question_body_all_clean, instance.answer_all_clean, ) t = str(t) q = str(q) + " [SEP] " + str(qc) a = str(a) + " [SEP] " + str(ac) ( ids_q, masks_q, segments_q, ids_a, masks_a, segments_a, ) = _convert_to_transformer_inputs(t, q, a, tokenizer, max_sequence_length) input_ids_q.append(ids_q) attention_mask_q.append(masks_q) token_type_ids_q.append(segments_q) input_ids_a.append(ids_a) attention_mask_a.append(masks_a) token_type_ids_a.append(segments_a) meta_data = instance[meta_cols].values.tolist() q_AboutMe_data = instance[q_AboutMe_cols].values.tolist() a_AboutMe_data = instance[a_AboutMe_cols].values.tolist() meta_features.append(meta_data) q_AboutMe_features.append(q_AboutMe_data) a_AboutMe_features.append(a_AboutMe_data) # i = i+1 # if i == 100: # break return [ np.asarray(input_ids_q, dtype=np.int32), np.asarray(attention_mask_q, dtype=np.int32), np.asarray(token_type_ids_q, dtype=np.int32), np.asarray(input_ids_a, dtype=np.int32), np.asarray(attention_mask_a, dtype=np.int32), np.asarray(token_type_ids_a, dtype=np.int32), np.asarray(meta_features, dtype=np.float32), np.asarray(q_AboutMe_features, dtype=np.float32), np.asarray(a_AboutMe_features, dtype=np.float32), ] def compute_output_arrays(df, columns): return np.asarray(df[columns]) def create_model_soft(BERT_PATH): q_id = tf.keras.layers.Input((MAX_SEQUENCE_LENGTH,), dtype=tf.int32) a_id = tf.keras.layers.Input((MAX_SEQUENCE_LENGTH,), dtype=tf.int32) q_mask = tf.keras.layers.Input((MAX_SEQUENCE_LENGTH,), dtype=tf.int32) a_mask = tf.keras.layers.Input((MAX_SEQUENCE_LENGTH,), dtype=tf.int32) q_atn = tf.keras.layers.Input((MAX_SEQUENCE_LENGTH,), dtype=tf.int32) a_atn = tf.keras.layers.Input((MAX_SEQUENCE_LENGTH,), dtype=tf.int32) meta_features_layer = tf.keras.layers.Input((len(meta_cols),), dtype=tf.float32) q_AboutMe_features_layer = tf.keras.layers.Input( (len(q_AboutMe_cols),), dtype=tf.float32 ) a_AboutMe_features_layer = tf.keras.layers.Input( (len(a_AboutMe_cols),), dtype=tf.float32 ) config = BertConfig() # print(config) to see settings config.output_hidden_states = False # Set to True to obtain hidden states # caution: when using e.g. XLNet, XLNetConfig() will automatically use xlnet-large config # normally ".from_pretrained('bert-base-uncased')", but because of no internet, the # pretrained model has been downloaded manually and uploaded to kaggle. bert_model = TFBertModel.from_pretrained( BERT_PATH + "bert-base-uncased-tf_model.h5", config=config ) # if config.output_hidden_states = True, obtain hidden states via bert_model(...)[-1] q_embedding = bert_model(q_id, attention_mask=q_mask, token_type_ids=q_atn)[0] a_embedding = bert_model(a_id, attention_mask=a_mask, token_type_ids=a_atn)[0] q = tf.keras.layers.GlobalAveragePooling1D()(q_embedding) a = tf.keras.layers.GlobalAveragePooling1D()(a_embedding) x = tf.keras.layers.Concatenate()( [ q, q_AboutMe_features_layer, a, a_AboutMe_features_layer, meta_features_layer, ] ) x = tf.keras.layers.Dropout(0.2)(x) x = tf.keras.layers.Dense(21, activation="sigmoid")(x) model = tf.keras.models.Model( inputs=[ q_id, q_mask, q_atn, a_id, a_mask, a_atn, meta_features_layer, q_AboutMe_features_layer, a_AboutMe_features_layer, ], outputs=x, ) return model def create_model_hard(BERT_PATH): q_id = tf.keras.layers.Input((MAX_SEQUENCE_LENGTH,), dtype=tf.int32) a_id = tf.keras.layers.Input((MAX_SEQUENCE_LENGTH,), dtype=tf.int32) q_mask = tf.keras.layers.Input((MAX_SEQUENCE_LENGTH,), dtype=tf.int32) a_mask = tf.keras.layers.Input((MAX_SEQUENCE_LENGTH,), dtype=tf.int32) q_atn = tf.keras.layers.Input((MAX_SEQUENCE_LENGTH,), dtype=tf.int32) a_atn = tf.keras.layers.Input((MAX_SEQUENCE_LENGTH,), dtype=tf.int32) meta_features_layer = tf.keras.layers.Input((len(meta_cols),), dtype=tf.float32) q_AboutMe_features_layer = tf.keras.layers.Input( (len(q_AboutMe_cols),), dtype=tf.float32 ) a_AboutMe_features_layer = tf.keras.layers.Input( (len(a_AboutMe_cols),), dtype=tf.float32 ) config = BertConfig() # print(config) to see settings config.output_hidden_states = False # Set to True to obtain hidden states # caution: when using e.g. XLNet, XLNetConfig() will automatically use xlnet-large config # normally ".from_pretrained('bert-base-uncased')", but because of no internet, the # pretrained model has been downloaded manually and uploaded to kaggle. bert_model = TFBertModel.from_pretrained( BERT_PATH + "bert-base-uncased-tf_model.h5", config=config ) # if config.output_hidden_states = True, obtain hidden states via bert_model(...)[-1] q_embedding = bert_model(q_id, attention_mask=q_mask, token_type_ids=q_atn)[0] a_embedding = bert_model(a_id, attention_mask=a_mask, token_type_ids=a_atn)[0] q = tf.keras.layers.GlobalAveragePooling1D()(q_embedding) a = tf.keras.layers.GlobalAveragePooling1D()(a_embedding) x = tf.keras.layers.Concatenate()( [ q, q_AboutMe_features_layer, a, a_AboutMe_features_layer, meta_features_layer, ] ) x = tf.keras.layers.Dropout(0.2)(x) x = tf.keras.layers.Dense(8, activation="sigmoid")(x) model = tf.keras.models.Model( inputs=[ q_id, q_mask, q_atn, a_id, a_mask, a_atn, meta_features_layer, q_AboutMe_features_layer, a_AboutMe_features_layer, ], outputs=x, ) return model input_categories = [ "question_title_clean2", "question_body_clean2", "answer_clean2", "question_body_all_clean", "answer_all_clean", ] MAX_SEQUENCE_LENGTH = 512 BERT_PATH = "../input/bert-base-uncased-huggingface-transformer/" tokenizer = BertTokenizer.from_pretrained(BERT_PATH + "bert-base-uncased-vocab.txt") # outputs = compute_output_arrays(train_df, target_columns) # inputs = compute_input_arrays(train_df, input_categories,meta_cols, q_AboutMe_cols, a_AboutMe_cols ,tokenizer, MAX_SEQUENCE_LENGTH) test_inputs = compute_input_arrays( test_df, input_categories, meta_cols, q_AboutMe_cols, a_AboutMe_cols, tokenizer, MAX_SEQUENCE_LENGTH, ) model_weights_path = "../input/quest-bert-soft-hard-models/" soft_target_columns = [ #'question_asker_intent_understanding', "question_body_critical", "question_conversational", "question_expect_short_answer", "question_fact_seeking", "question_has_commonly_accepted_answer", "question_interestingness_others", "question_interestingness_self", "question_multi_intent", #'question_not_really_a_question', "question_opinion_seeking", "question_type_choice", #'question_type_compare', #'question_type_consequence', "question_type_definition", "question_type_entity", "question_type_instructions", "question_type_procedure", "question_type_reason_explanation", #'question_type_spelling', "question_well_written", #'answer_helpful', "answer_level_of_information", #'answer_plausible', #'answer_relevance', #'answer_satisfaction', "answer_type_instructions", "answer_type_procedure", "answer_type_reason_explanation", "answer_well_written", ] soft_test_predictions = [] for i in range(5): for j in range(1, 3): model_path = f"{model_weights_path}bert-{i}-{j}.h5" model1 = create_model_soft(BERT_PATH) model1.load_weights(model_path) soft_test_predictions.append(model1.predict(test_inputs, batch_size=2)) len(soft_test_predictions) soft_test_predictions[0].shape soft_test_predictions = np.mean(soft_test_predictions, axis=0) soft_test_predictions.shape hard_target_columns = [ "question_asker_intent_understanding", # 'question_body_critical', # 'question_conversational', # 'question_expect_short_answer', # 'question_fact_seeking', # 'question_has_commonly_accepted_answer', # 'question_interestingness_others', # 'question_interestingness_self', # 'question_multi_intent', "question_not_really_a_question", # 'question_opinion_seeking', # 'question_type_choice', "question_type_compare", "question_type_consequence", # 'question_type_definition', # 'question_type_entity', # 'question_type_instructions', # 'question_type_procedure', # 'question_type_reason_explanation', # 'question_type_spelling', # 'question_well_written', "answer_helpful", # 'answer_level_of_information', "answer_plausible", "answer_relevance", "answer_satisfaction", # 'answer_type_instructions', # 'answer_type_procedure', # 'answer_type_reason_explanation', # 'answer_well_written' ] hard_test_predictions = [] for i in range(1, 5): print(i) model_path = f"{model_weights_path}hard-bert-{i}.h5" model1 = create_model_hard(BERT_PATH) model1.load_weights(model_path) hard_test_predictions.append(model1.predict(test_inputs, batch_size=2)) hard_test_predictions[0].shape hard_test_predictions = np.mean(hard_test_predictions, axis=0) hard_test_predictions.shape sample_submission[soft_target_columns] = soft_test_predictions sample_submission[hard_target_columns] = hard_test_predictions def question_type_spelling_hard(test): if test["category_type_english"] == 1 or test["category_type_ell"] == 1: if test["Tags_pronunciation"] == 1: return 0.666667 elif test["Tags_spelling"] == 1: return 0.666667 else: return 0.555555 else: return 0.00000 sample_submission["question_type_spelling"] = test_df.apply( question_type_spelling_hard, 1 ) def question_type_compare_hard(text): if text == np.nan: return 0.00000 else: text = str(text) ls = text.split(" ") if "vs" in ls: return 1.000000 elif ("between" or "difference") in ls: return 0.666667 elif ("means" or "better") in ls: return 0.333333 else: return 0.000000 sample_submission["question_type_compare"] = test_df.question_title_clean2.apply( question_type_compare_hard ) sample_submission.nunique(axis=0) sample_submission.isna().sum().sum() sample_submission.fillna(0.5, inplace=True) sample_submission.iloc[:, 1:].max().max() sample_submission.iloc[:, 1:].min().min() # sample_submission.to_csv('submission.csv', index=False) sample_submission.head() TARGET_COLUMNS = target_columns TARGET_COLUMNS from sklearn.preprocessing import MinMaxScaler def postprocessing(oof_df): scaler = MinMaxScaler() # type 1 column [0, 0.333333, 0.5, 0.666667, 1] # type 2 column [0, 0.333333, 0.666667] # type 3 column [0.333333, 0.444444, 0.5, 0.555556, 0.666667, 0.777778, 0.8333333, 0.888889, 1] # type 4 column [0.200000, 0.266667, 0.300000, 0.333333, 0.400000, \ # 0.466667, 0.5, 0.533333, 0.600000, 0.666667, 0.700000, \ # 0.733333, 0.800000, 0.866667, 0.900000, 0.933333, 1] # comment some columns based on oof result ################################################# handle type 1 columns type_one_column_list = [ "question_conversational", "question_has_commonly_accepted_answer", "question_not_really_a_question", "question_type_choice", "question_type_compare", "question_type_consequence", "question_type_definition", "question_type_entity", "question_type_instructions", ] oof_df[type_one_column_list] = scaler.fit_transform(oof_df[type_one_column_list]) tmp = oof_df.copy(deep=True) for column in type_one_column_list: oof_df.loc[tmp[column] <= 0.16667, column] = 0 oof_df.loc[ (tmp[column] > 0.16667) & (tmp[column] <= 0.41667), column ] = 0.333333 oof_df.loc[ (tmp[column] > 0.41667) & (tmp[column] <= 0.58333), column ] = 0.500000 oof_df.loc[ (tmp[column] > 0.58333) & (tmp[column] <= 0.73333), column ] = 0.666667 oof_df.loc[(tmp[column] > 0.73333), column] = 1 ################################################# handle type 2 columns # type_two_column_list = [ # 'question_type_spelling' # ] # for column in type_two_column_list: # if sum(tmp[column] > 0.15)>0: # oof_df.loc[tmp[column] <= 0.15, column] = 0 # oof_df.loc[(tmp[column] > 0.15) & (tmp[column] <= 0.45), column] = 0.333333 # oof_df.loc[(tmp[column] > 0.45), column] = 0.666667 # else: # t1 = max(int(len(tmp[column])*0.0013),2) # t2 = max(int(len(tmp[column])*0.0008),1) # thred1 = sorted(list(tmp[column]))[-t1] # thred2 = sorted(list(tmp[column]))[-t2] # oof_df.loc[tmp[column] <= thred1, column] = 0 # oof_df.loc[(tmp[column] > thred1) & (tmp[column] <= thred2), column] = 0.333333 # oof_df.loc[(tmp[column] > thred2), column] = 0.666667 ################################################# handle type 3 columns type_three_column_list = [ "question_interestingness_self", ] scaler = MinMaxScaler(feature_range=(0, 1)) oof_df[type_three_column_list] = scaler.fit_transform( oof_df[type_three_column_list] ) tmp[type_three_column_list] = scaler.fit_transform(tmp[type_three_column_list]) for column in type_three_column_list: oof_df.loc[tmp[column] <= 0.385, column] = 0.333333 oof_df.loc[(tmp[column] > 0.385) & (tmp[column] <= 0.47), column] = 0.444444 oof_df.loc[(tmp[column] > 0.47) & (tmp[column] <= 0.525), column] = 0.5 oof_df.loc[(tmp[column] > 0.525) & (tmp[column] <= 0.605), column] = 0.555556 oof_df.loc[(tmp[column] > 0.605) & (tmp[column] <= 0.715), column] = 0.666667 oof_df.loc[(tmp[column] > 0.715) & (tmp[column] <= 0.8), column] = 0.833333 oof_df.loc[(tmp[column] > 0.8) & (tmp[column] <= 0.94), column] = 0.888889 oof_df.loc[(tmp[column] > 0.94), column] = 1 ################################################# handle type 4 columns type_four_column_list = ["answer_satisfaction"] scaler = MinMaxScaler(feature_range=(0.2, 1)) oof_df[type_four_column_list] = scaler.fit_transform(oof_df[type_four_column_list]) tmp[type_four_column_list] = scaler.fit_transform(tmp[type_four_column_list]) for column in type_four_column_list: oof_df.loc[tmp[column] <= 0.233, column] = 0.200000 oof_df.loc[(tmp[column] > 0.233) & (tmp[column] <= 0.283), column] = 0.266667 oof_df.loc[(tmp[column] > 0.283) & (tmp[column] <= 0.315), column] = 0.300000 oof_df.loc[(tmp[column] > 0.315) & (tmp[column] <= 0.365), column] = 0.333333 oof_df.loc[(tmp[column] > 0.365) & (tmp[column] <= 0.433), column] = 0.400000 oof_df.loc[(tmp[column] > 0.433) & (tmp[column] <= 0.483), column] = 0.466667 oof_df.loc[(tmp[column] > 0.483) & (tmp[column] <= 0.517), column] = 0.500000 oof_df.loc[(tmp[column] > 0.517) & (tmp[column] <= 0.567), column] = 0.533333 oof_df.loc[(tmp[column] > 0.567) & (tmp[column] <= 0.633), column] = 0.600000 oof_df.loc[(tmp[column] > 0.633) & (tmp[column] <= 0.683), column] = 0.666667 oof_df.loc[(tmp[column] > 0.683) & (tmp[column] <= 0.715), column] = 0.700000 oof_df.loc[(tmp[column] > 0.715) & (tmp[column] <= 0.767), column] = 0.733333 oof_df.loc[(tmp[column] > 0.767) & (tmp[column] <= 0.833), column] = 0.800000 oof_df.loc[(tmp[column] > 0.883) & (tmp[column] <= 0.915), column] = 0.900000 oof_df.loc[(tmp[column] > 0.915) & (tmp[column] <= 0.967), column] = 0.933333 oof_df.loc[(tmp[column] > 0.967), column] = 1 ################################################# round to i / 90 (i from 0 to 90) oof_values = oof_df[TARGET_COLUMNS].values DEGREE = len(oof_df) // 45 * 9 # if degree: # DEGREE = degree # DEGREE = 90 oof_values = np.around(oof_values * DEGREE) / DEGREE ### 90 To be changed oof_df[TARGET_COLUMNS] = oof_values return oof_df sample_submission_post = postprocessing(sample_submission) sample_submission_post.shape for column in TARGET_COLUMNS: print(sample_submission_post[column].value_counts()) sample_submission_post sample_submission_post[sample_submission_post[TARGET_COLUMNS] > 1.0] = 1.0 sample_submission_post sample_submission_post.to_csv("submission.csv", index=False)
# # Especialização em Ciência de Dados - Turma 2018.1 - Facens # ## Aula1 | Exercício 1 (valendo nota) # * **Data de entrega:** 02/jan/2020 23:59 # * **Professor:** Matheus Mota # * **Aluno:** Almir Rogério de Macedo # * **RA:** 191338 from mpl_toolkits.mplot3d import Axes3D from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt # plotting import numpy as np # linear algebra import os # accessing directory structure import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv("/kaggle/input/BR_eleitorado_2016_municipio.csv", delimiter=",") df.dataframeName = "eleitorado.csv" df.head() # ## Questão 1 # **Enunciado:** Este notebook está associado ao *Kaggle Dataset* chamado "Aula1 | Exercício1". Este *Kaggle Dataset* possui dois arquivos em formato CSV (anv.csv e BR_eleitorado_2016_municipio ). Escolha um dos datasets disponíveis e já conhecidos, a seu critério. Uma vez definido o csv, escolha no mínimo 7 e no máximo 12 variáveis (colunas) que você avalia como sendo relevantes. Para cada uma das suas variáveis escolhidas, forneça: # ### Questão 1 - Item A - Classificação das variáveis # Classifique todas as variáveis escolhidas, e construa um dataframe com sua resposta. # Exemplo: classification = [ ["UF", "Qualitativa Nominal"], ["Município", "Qualitativa Nominal"], ["total_eleitores", "Quantitativa Discreta"], ["Feminino", "Quantitativa Discreta"], ["Masculino", "Quantitativa Discreta"], ] classification = pd.DataFrame(classification, columns=["Variavel", "Classificação"]) classification # ### Questão 1 - Item B - Tabela de frequência # Construa uma tabela de frequência para cada uma das **variáveis qualitativas** que você escolheu (caso não tenha escolhido nenhuma, deixe esta questão em branco). Uma dica: a função *value_counts()* do Pandas pode ser muito útil. =) # uf = df["uf"].value_counts() f_uf = df["uf"].value_counts(normalize=True) freqr = pd.concat( [uf, f_uf], axis=1, keys=["Frequência Absoluta", "Frequência Relativa %"], sort=False, ) freqr # ### Questão 1 - Item C - Representação Gráfica # Para cada uma das variáveis, produza um ou mais gráficos, usando matplotlib, que descreva seu comportamento / caracteristica. Lembre-se que estes gráficos precisam ser compatíveis com a classificação da variável. data = df.groupby(["uf"])["total_eleitores"].sum() data = data.sort_values()[data > 0] labels = data.keys().tolist() plt.rcdefaults() fig, ax = plt.subplots() plt.xticks(rotation="vertical") ax.bar(labels, data, align="center", ecolor="black", color="#ff4422") ax.set_title("Quantidade de Eleitores por Região") plt.show()
import numpy as np import pandas as pd import matplotlib.pyplot as plt from keras.utils import to_categorical from tensorflow.python.keras import layers, models from tensorflow.python.keras.regularizers import l2 from tensorflow.python.keras.losses import categorical_crossentropy train = pd.read_csv("../input/digit-recognizer/train.csv") test = pd.read_csv("../input/digit-recognizer/test.csv") y = to_categorical(train.label, 10) x = train.drop("label", axis=1).values.reshape(train.shape[0], 28, 28, 1) / 255 x_test = test.values.reshape(test.shape[0], 28, 28, 1) / 255 model = models.Sequential() model.add( layers.Conv2D( 16, kernel_size=(9, 9), kernel_initializer="he_normal", kernel_regularizer=l2(0.005), input_shape=(28, 28, 1), ) ) model.add( layers.Conv2D( 32, kernel_size=(7, 7), strides=2, kernel_initializer="he_normal", kernel_regularizer=l2(0.005), activation="relu", ) ) model.add(layers.Dropout(0.25)) model.add( layers.Conv2D( 128, kernel_size=(4, 4), kernel_initializer="he_normal", kernel_regularizer=l2(0.0001), activation="relu", ) ) model.add( layers.Conv2D( 128, kernel_size=(4, 4), kernel_initializer="he_normal", kernel_regularizer=l2(0.0001), activation="relu", ) ) model.add(layers.Dropout(0.25)) model.add(layers.Flatten()) model.add(layers.Dense(512, kernel_initializer="he_normal", activation="relu")) model.add(layers.Dense(10, activation="softmax")) model.compile(loss=categorical_crossentropy, optimizer="adam", metrics=["accuracy"]) hist = model.fit( x, y, batch_size=64, epochs=11, steps_per_epoch=len(x) * 0.7 / 64, validation_split=0.3, ) print("Train set: ", ", ".join([str(acc) for acc in hist.history["accuracy"]])) print("Validation set: ", ", ".join([str(acc) for acc in hist.history["val_accuracy"]])) fig, ax = plt.subplots(1, 2, figsize=(20, 5)) ax[0].plot(hist.history["accuracy"]) ax[0].set_title("Train set", fontsize=12) ax[0].set_ylabel("accuracy") ax[0].set_xlabel("epoch") ax[1].plot(hist.history["val_accuracy"]) ax[1].set_title("Validation set", fontsize=12) ax[1].set_ylabel("accuracy") ax[1].set_xlabel("epoch") fig, ax = plt.subplots(1, 10, constrained_layout=True, figsize=(20, 20)) pred = np.argmax(model.predict(x_test), axis=1) for i in range(10): ax[i].imshow(x_test[i].reshape(28, 28)) ax[i].set_xlabel("predicted:" + str(pred[i]), fontsize=18) result = pd.read_csv("../input/digit-recognizer/sample_submission.csv") result["Label"] = pred result.to_csv("submission.csv", index=False)
# # # ROV underwater species detection # A short notebook introducing techniques and common challenges for underwater species detection # # # # Install necessary packages one by one # Download data folder # Unzip folder # # # ### NOTE: Data folder should be at the same level as the notebooks provided. # # # Imports import matplotlib.pyplot as plt import cv2 import numpy as np # # OpenCV is a highly-optimised open-source computer vision library. It is built in C/C++ with binders for Python # **PLEASE NOTE: All the code blocks involving video have been commented out to speed up commits, so please use CTRL + A and then CTRL + / to uncomment them when inside a code block before running ** # Play a video # import cv2 from IPython.display import clear_output from google.colab.patches import cv2_imshow # video_file = "./Data/videos/TjarnoROV1-990813_3-1122.mov" # video = cv2.VideoCapture(video_file) # try: # while True: # (grabbed, frame) = video.read() # if not grabbed: # break # # The important part - Correct BGR to RGB channel # frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # axis('off') # # Title of the window # title("Input Stream") # # Display the frame # imshow(frame) # show() # # Display the frame until new frame is available # clear_output(wait=True) # cv2.destroyAllWindows() # video.release() # except KeyboardInterrupt: video.release() # # Detect a colour # # video_file = "./Data/videos/TjarnoROV1-990813_3-1122.mov" # video = cv2.VideoCapture(video_file) # try: # while True: # (grabbed, frame) = video.read() # if not grabbed: # break # blur = cv2.GaussianBlur(frame, (21, 21), 0) # hsv = cv2.cvtColor(blur, cv2.COLOR_BGR2HSV) # lower = np.array([0,120,70]) # upper = np.array([180,255,255]) # lower = np.array(lower, dtype="uint8") # upper = np.array(upper, dtype="uint8") # mask = cv2.inRange(hsv, lower, upper) # frame = cv2.bitwise_and(frame, hsv, mask=mask) # frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # axis('off') # # Title of the window # title("Input Stream") # # Display the frame # imshow(frame) # show() # # Display the frame until new frame is available # clear_output(wait=True) # cv2.destroyAllWindows() # video.release() # except KeyboardInterrupt: video.release() # # Problem 1: Distortion of colour between foreground and background objects # def clearImage(image): # Convert the image from BGR to gray dark_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) channels = cv2.split(image) # Get the maximum value of each channel # and get the dark channel of each image # record the maximum value of each channel a_max_dst = [float("-inf")] * len(channels) for idx in range(len(channels)): a_max_dst[idx] = channels[idx].max() dark_image = cv2.min(channels[0], cv2.min(channels[1], channels[2])) # Gaussian filtering the dark channel dark_image = cv2.GaussianBlur(dark_image, (25, 25), 0) image_t = (255.0 - 0.95 * dark_image) / 255.0 image_t = cv2.max(image_t, 0.5) # Calculate t(x) and get the clear image for idx in range(len(channels)): channels[idx] = ( cv2.max( cv2.add( cv2.subtract(channels[idx].astype(np.float32), int(a_max_dst[idx])) / image_t, int(a_max_dst[idx]), ), 0.0, ) / int(a_max_dst[idx]) * 255 ) channels[idx] = channels[idx].astype(np.uint8) return cv2.merge(channels) # # Let's see what that looks like now # # video_file = "./Data/videos/TjarnoROV1-990813_3-1122.mov" # video = cv2.VideoCapture(video_file) # try: # while True: # (grabbed, frame) = video.read() # if not grabbed: # break # # The important part - Correct BGR to RGB channel # frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # n_frame = clearImage(frame) # axis('off') # # Title of the window # title("Input Stream") # # Display the frame # imshow(n_frame) # show() # # Display the frame until new frame is available # clear_output(wait=True) # cv2.destroyAllWindows() # video.release() # except KeyboardInterrupt: video.release() # # Problem 2: How do we draw contours that represent the objects we detect with a suitable mask? # # Reference in C++: # https://answers.opencv.org/question/26280/background-color-similar-to-object-color-how-isolate-it/ # video_file = "./Data/videos/TjarnoROV1-990813_3-1122.mov" # video_file = "./Data/videos/000114 TMBL-ROV 2000 Säckenrevet EJ numrerade band_1440.mp4" # video = cv2.VideoCapture(video_file) # blur_size = 20 # grid_size = 500 # try: # while True: # (grabbed, frame) = video.read() # if frame is None: break # # Reduce the size that we observe to reduce noise from corners of the frame # origin = frame[100:500, 100:500] # if not grabbed: # break # # Clean up our image # new_img = clearImage(frame) # new_img = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) # new_img = cv2.split(frame)[2] # # Cut to the most important segment # new_img = new_img[100:500, 100:500] # blur_size += (1 - blur_size % 2) # blur = cv2.GaussianBlur(new_img, (blur_size, blur_size), 0) # # equalise the histogram # equal = cv2.createCLAHE(clipLimit=1.0, tileGridSize=(5,5)).apply(blur) # grid_size += (1 - grid_size % 2) # # create a binary mask using an adaptive thresholding technique # binimage = cv2.adaptiveThreshold(equal, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\ # cv2.THRESH_BINARY, grid_size, -30) # #cv2.imshow("bin", binimage) # contours, _ = cv2.findContours(binimage.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # # Cycle through contours and add area to array # areas = [] # for c in contours: # areas.append(cv2.contourArea(c)) # # Sort array of areas by size # try: # largest = np.argmax(areas) # except: # largest = None # if largest is not None: # fishMask = np.zeros(new_img.shape, dtype = np.uint8) # # Choose our largest contour to be the object we wish to detect # fishContours = contours[largest] # cv2.polylines(origin, [fishContours], True, (0, 0, 255), 2) # # Draw these contours we detect # cv2.drawContours(fishMask, contours, -1, 255, -1); # #cv2.imshow("fish_mask", fishMask) # origin = cv2.cvtColor(origin, cv2.COLOR_BGR2RGB) # axis('off') # # Title of the window # title("Input Stream") # # Display the frame # imshow(origin) # show() # # Display the frame until new frame is available # clear_output(wait=True) # cv2.destroyAllWindows() # video.release() # except KeyboardInterrupt: video.release() # # Problem 3: A binary mask is not sufficient if we want to detect multiple objects in a frame, so what can we do? # ![](https://miro.medium.com/max/5856/1*Hz6t-tokG1niaUfmcysusw.jpeg) # First convert all the video frames into images so we can label them # ### Save frames as images # import cv2 # import numpy as np # import scipy.io as sio # video_file = "./Data/videos/TjarnoROV1-990813_3-1122.mov" # video = cv2.VideoCapture(video_file) # total_frames = video.get(cv2.CAP_PROP_FRAME_COUNT) # frame_id = 0 # i = 0 # while True: # (grabbed, frame) = video.read() # if not grabbed: # break # new_img = clearImage(frame) # new_img = cv2.resize(new_img, (416, 416)) # assert(new_img.shape == (416, 416, 3)) # adict = {} # adict['img'] = new_img # frame_id += 1 # if frame_id % 100 == 0: # print("Saved", frame_id) # cv2.imwrite("./Data/img/odf_video_frames/{:s}".format(str(i)+'.jpg'), new_img) # #sio.savemat("./img/POTSDAM/imgs/{:s}".format(str(i)+'.mat'), adict) # i += 1 # if cv2.waitKey(1) & 0xFF == ord('q'): # break # print('Saved images') # cv2.destroyAllWindows() # video.release() # # YOLO V3 # ![](https://miro.medium.com/max/1200/0*3A8U0Hm5IKmRa6hu.png) # Train test split # import glob, os dataset_path = "./Data/img/odf_video_frames" # Percentage of images to be used for the test set percentage_test = 10 # Create and/or truncate train.txt and test.txt file_train = open("./Data/img/train.txt", "w") file_test = open("./Data/img/test.txt", "w") # Populate train.txt and test.txt counter = 1 index_test = int(percentage_test / 100 * len(os.listdir(dataset_path))) for pathAndFilename in glob.iglob(os.path.join(dataset_path, "*.jpg")): title, ext = os.path.splitext(os.path.basename(pathAndFilename)) if counter == index_test + 1: counter = 1 file_test.write(os.path.basename(title) + ".jpg" + "\n") else: file_train.write(os.path.basename(title) + ".jpg" + "\n") counter = counter + 1 # # Annotation! # Note that annotation with Labelimg cannot be done in the Cloud. Please run this on your local machine if you need to annotate data. # # !labelImg ./Data/img/odf_video_frames/ ./Data/img/odf_classes.txt # # Now, to the cloud for training... # [Google Colab Workbook](https://colab.research.google.com/drive/1lZmojs-vsarIiSoicY1QKcpB1Bp0Co3O) # ![](https://media1.tenor.com/images/79e142098ed62e0486d81028283660b7/tenor.gif?itemid=12081780) # Model Evaluation # lines = [] for line in open("./Data/logs/train_log_example.log"): if "avg" in line: lines.append(line) iterations = [] avg_loss = [] print("Retrieving data and plotting training loss graph...") for i in range(len(lines)): lineParts = lines[i].split(",") iterations.append(int(lineParts[0].split(":")[0])) avg_loss.append(float(lineParts[1].split()[0])) fig = plt.figure(figsize=(15, 10)) for i in range(0, len(lines)): plt.plot(iterations[i : i + 2], avg_loss[i : i + 2], "r.-") plt.xlabel("Batch Number") plt.ylabel("Avg Loss") fig.savefig("training_loss_plot.png", dpi=1000) print("Done! Plot saved as training_loss_plot.png") # # Note: Visualising using OpenCV does not work in the cloud - instead you can open the output file once it has been saved # ## Visualize predictions using OpenCV import argparse import sys import numpy as np import os.path # Initialize the parameters confThreshold = 0.1 # Confidence threshold nmsThreshold = 0.4 # Non-maximum suppression threshold inpWidth = 416 # 608 #Width of network's input image inpHeight = 416 # 608 #Height of network's input image # Load names of classes classesFile = "./Data/models/sweden_yolo/odf_classes.names" classes = None with open(classesFile, "rt") as f: classes = f.read().rstrip("\n").split("\n") # Give the configuration and weight files for the model and load the network using them. modelConfiguration = "./Data/models/sweden_yolo/sweden_yolo.cfg" modelWeights = "./Data/models/sweden_yolo/sweden_yolo.backup" net = cv2.dnn.readNetFromDarknet(modelConfiguration, modelWeights) net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV) net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU) # Get the names of the output layers def getOutputsNames(net): # Get the names of all the layers in the network layersNames = net.getLayerNames() # Get the names of the output layers, i.e. the layers with unconnected outputs return [layersNames[i[0] - 1] for i in net.getUnconnectedOutLayers()] # Draw the predicted bounding box def drawPred(classId, conf, left, top, right, bottom): # Draw a bounding box. cv2.rectangle(frame, (left, top), (right, bottom), (0, 255, 0), 3) label = "%.2f" % conf # Get the label for the class name and its confidence if classes: assert classId < len(classes) label = "%s:%s" % (classes[classId], label) # Display the label at the top of the bounding box labelSize, baseLine = cv2.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, 0.5, 1) top = max(top, labelSize[1]) cv2.rectangle( frame, (left, top - round(1.5 * labelSize[1])), (left + round(1.5 * labelSize[0]), top + baseLine), (0, 0, 255), cv2.FILLED, ) cv2.putText(frame, label, (left, top), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 0), 2) # Remove the bounding boxes with low confidence using non-maxima suppression def postprocess(frame, outs): frameHeight = frame.shape[0] frameWidth = frame.shape[1] classIds = [] confidences = [] boxes = [] # Scan through all the bounding boxes output from the network and keep only the # ones with high confidence scores. Assign the box's class label as the class with the highest score. classIds = [] confidences = [] boxes = [] for out in outs: print("out.shape : ", out.shape) for detection in out: # if detection[4]>0.001: scores = detection[5:] classId = np.argmax(scores) # if scores[classId]>confThreshold: confidence = scores[classId] if detection[4] > confThreshold: print(detection[4], " - ", scores[classId], " - th : ", confThreshold) print(detection) if confidence > confThreshold: center_x = int(detection[0] * frameWidth) center_y = int(detection[1] * frameHeight) width = int(detection[2] * frameWidth) height = int(detection[3] * frameHeight) left = int(center_x - width / 2) top = int(center_y - height / 2) classIds.append(classId) confidences.append(float(confidence)) boxes.append([left, top, width, height]) # Perform non maximum suppression to eliminate redundant overlapping boxes with # lower confidences. indices = cv2.dnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold) for i in indices: i = i[0] box = boxes[i] left = box[0] top = box[1] width = box[2] height = box[3] drawPred(classIds[i], confidences[i], left, top, left + width, top + height) # Process inputs winName = "ODF - Sweden Demo" cv2.namedWindow(winName, cv2.WINDOW_NORMAL) outputFile = "./Data/models/sweden_yolo/yolo_out_py.avi" video_path = "./Data/models/sweden_yolo/crabs.mov" cap = cv2.VideoCapture(video_path) vid_writer = cv2.VideoWriter( outputFile, cv2.VideoWriter_fourcc("M", "J", "P", "G"), 30, ( round(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), round(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)), ), ) count = 0 while cv2.waitKey(1) < 0: # get frame from the video hasFrame, frame = cap.read() if frame is None: break # frame = frame[100:516, 100:516] frame = clearImage(frame) frame = cv2.resize(frame, (inpWidth, inpHeight)) # Stop the program if reached end of video if not hasFrame: print("Done processing !!!") print("Output file is stored as ", outputFile) cv2.waitKey(3000) break # Create a 4D blob from a frame. blob = cv2.dnn.blobFromImage( frame, 1 / 255, (inpWidth, inpHeight), [0, 0, 0], 1, crop=False ) # Sets the input to the network net.setInput(blob) # Runs the forward pass to get output of the output layers outs = net.forward(getOutputsNames(net)) # Remove the bounding boxes with low confidence postprocess(frame, outs) # Put efficiency information. The function getPerfProfile returns the overall time for inference(t) and the timings for each of the layers(in layersTimes) t, _ = net.getPerfProfile() label = "Inference time: %.2f ms" % (t * 1000.0 / cv2.getTickFrequency()) vid_writer.write(frame.astype(np.uint8)) count += 30 # i.e. at 30 fps, this advances one second cap.set(1, count) # cv2.imshow(winName, frame)
import numpy as np import pandas as pd from sklearn.manifold import TSNE train = pd.read_csv("../input/digit-recognizer/train.csv") test = pd.read_csv("../input/digit-recognizer/test.csv") train = train[test.columns].values test = test[test.columns].values train_test = np.vstack([train, test]) train_test.shape tsne = TSNE(n_components=2) train_test_2D = tsne.fit_transform(train_test) train_2D = train_test_2D[: train.shape[0]] test_2D = train_test_2D[train.shape[0] :] np.save("train_2D", train_2D) np.save("test_2D", test_2D)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. import matplotlib.pyplot as plt from wordcloud import WordCloud import jieba from collections import Counter df_train = pd.read_csv("/kaggle/input/pkdata/pk/train.csv") df_train.head() print("total number of question pairs:{}".format(len(df_train))) print("positive tag:{}%".format(round(df_train["label"].mean() * 100, 2))) question_series = pd.Series( df_train["question1"].tolist() + df_train["question2"].tolist() ) print("question num:{}".format(len(question_series))) print("unique question num:{}".format(len(np.unique(question_series)))) plt.figure(figsize=(12, 5)) plt.hist(question_series.value_counts(), bins=50) plt.yscale("log", nonposy="clip") plt.title("Log-Histogram of question apperance counts") plt.xlabel("Number of occurence of question") plt.ylabel("Number of questions") train_qs = question_series.astype(str) dist_train = train_qs.apply(len) plt.figure(figsize=(15, 10)) plt.hist(dist_train, bins=30, normed=True, label="train") plt.title("Normalised histogram of character count in questions", fontsize=15) plt.legend() plt.xlabel("Number of characters", fontsize=15) plt.ylabel("Probability", fontsize=15) print("mean train character length:{:.2f}".format(dist_train.mean())) train_qs = question_series.apply(lambda x: " ".join(jieba.cut(x)).split()) dist_train = train_qs.apply(len) plt.figure(figsize=(15, 10)) plt.hist(dist_train, bins=30, normed=True, label="train") plt.title("Normalised histogram of word count in questions", fontsize=15) plt.legend() plt.xlabel("Number of words", fontsize=15) plt.ylabel("Probability", fontsize=15) print("mean train character length:{:.2f}".format(dist_train.mean())) # from pylab import mpl # mpl.rcParams['font.sans-serif'] = ['SimHei'] # 指定默认字体 # mpl.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题 words = " ".join(jieba.cut(" ".join(train_qs.astype(str)))) cloud = WordCloud( width=1440, height=1080, font_path="/kaggle/input/simhei/SimHei.ttf" ).generate(words) plt.figure(figsize=(29, 15)) plt.imshow(cloud) plt.axis("off") qmarks = np.mean(train_qs.apply(lambda x: "?" in x or "吗" in x or "怎么" in x)) numbers = np.mean(train_qs.apply(lambda x: max([y.isdigit() for y in x]))) print("obvious question:{:.2f}%".format(qmarks * 100)) # print('Question with [math] tags:{:.2f}'.format(math)) print("Question with numbers:{:.2f}%".format(numbers * 100))
# # CNN on a 3 class problem on images # ### Importing libs import pathlib import os import numpy as np import pandas as pb import seaborn as sns import tensorflow as tf import keras import IPython.display as display from PIL import Image import cv2 import matplotlib.pyplot as plt # ### Loading data # - Using keras.preprocessing data_dir = pathlib.Path("../input/images_train") image_count = len(list(data_dir.glob("*/*.jpg"))) image_count CLASS_NAMES = np.array( [item.name for item in data_dir.glob("*") if item.name != ".DS_Store"] ) CLASS_NAMES cat = list(data_dir.glob("cat/*")) car = list(data_dir.glob("car/*")) flower = list(data_dir.glob("flower/*")) for image_path in cat[:1]: img = cv2.imread(str(image_path)) plt.imshow(img) # ## Initialisation variables BATCH_TRAIN_SIZE = 64 IMG_HEIGHT = 224 IMG_WIDTH = 224 STEPS_PER_EPOCH = np.ceil(image_count / BATCH_TRAIN_SIZE) EPOCHS = 12 # ## Dataset Generator # Let's generate image to float32 in range [0,1]. # Moreover, as our dataset has images of different size, we will target size them as 448 px # ### Using ImageDataGenerator from keras image_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) train_data_gen = image_generator.flow_from_directory( directory=str(data_dir), batch_size=BATCH_TRAIN_SIZE, shuffle=True, target_size=(224, 224), class_mode="sparse", classes=list(CLASS_NAMES), ) def show_batch(image_batch, label_batch): plt.figure(figsize=(10, 10)) for n in range(25): ax = plt.subplot(5, 5, n + 1) plt.imshow(image_batch[n]) plt.axis("off") image_batch, label_batch = next(train_data_gen) show_batch(image_batch, label_batch) image_batch[2].shape # ### Using tf.data # Usinf tf.data, with ability of .cache(), method is actually faster for big dataset. AUTOTUNE = tf.data.experimental.AUTOTUNE list_ds = tf.data.Dataset.list_files(str(data_dir / "*/*")) for f in list_ds.take(5): print(f.numpy()) def get_label(file_path): # convert the path to a list of path components parts = tf.strings.split(file_path, os.path.sep) # The second to last is the class-directory return parts[-2] == CLASS_NAMES def decode_img(img): # convert the compressed string to a 3D uint8 tensor img = tf.image.decode_jpeg(img, channels=3) # Use `convert_image_dtype` to convert to floats in the [0,1] range. img = tf.image.convert_image_dtype(img, tf.float32) # resize the image to the desired size. return tf.image.resize(img, [IMG_WIDTH, IMG_HEIGHT]) def process_path(file_path): label = get_label(file_path) # load the raw data from the file as a string img = tf.io.read_file(file_path) img = decode_img(img) return img, label # Set `num_parallel_calls` so multiple images are loaded/processed in parallel. labeled_ds = list_ds.map(process_path, num_parallel_calls=AUTOTUNE) for image, label in labeled_ds.take(1): print("Image shape: ", image.numpy().shape) print("Label: ", label.numpy()) train_ds = labeled_ds.take(np.ceil(1596 * 0.7)) test_ds = labeled_ds.take(np.ceil(1596 * 0.7)) # To train a model with this dataset you will want the data: # To be well shuffled. # To be batched. # Batches to be available as soon as possible. def prepare_for_training(ds, cache=True, shuffle_buffer_size=300): # This is a small dataset, only load it once, and keep it in memory. # use `.cache(filename)` to cache preprocessing work for datasets that don't # fit in memory. if cache: if isinstance(cache, str): ds = ds.cache(cache) else: ds = ds.cache() ds = ds.shuffle(buffer_size=shuffle_buffer_size) # Repeat forever ds = ds.repeat() ds = ds.batch(BATCH_TRAIN_SIZE) # `prefetch` lets the dataset fetch batches in the background while the model # is training. ds = ds.prefetch(buffer_size=AUTOTUNE) return ds train_dsfinal = prepare_for_training(train_ds) test_dsfinal = prepare_for_training(test_ds) image_batch, label_batch = next(iter(train_dsfinal)) show_batch(image_batch.numpy(), label_batch.numpy()) label_batch.shape # ### Building model # CNN model class CNNModel: def __init__(self): self.inputs = tf.keras.Input(shape=(224, 224, 3)) self.x1 = tf.keras.layers.Conv2D(32, 3, activation="relu")(self.inputs) self.x1 = tf.keras.layers.Conv2D(64, 3, activation="relu")(self.x1) self.x1 = tf.keras.layers.MaxPooling2D(2, 2)(self.x1) self.x2 = tf.keras.layers.Conv2D(32, 3, activation="relu")(self.x1) self.x2 = tf.keras.layers.Conv2D(64, 3, activation="relu")(self.x2) self.x2 = tf.keras.layers.MaxPooling2D(3, 3)(self.x2) self.x3 = tf.keras.layers.Conv2D(32, 3, activation="relu")(self.x2) self.x3 = tf.keras.layers.MaxPooling2D(2, 2)(self.x3) self.x = tf.keras.layers.Dropout(0.2)(self.x3) self.output = tf.keras.layers.Flatten()(self.x) self.output = tf.keras.layers.Dense(224, activation="relu")(self.output) self.output = tf.keras.layers.Dense(3, activation="softmax")(self.output) self.model = tf.keras.Model(self.inputs, self.output) """ X_input = Input((480, 480, 3)) X = Conv2D(6, (5, 5), kernel_initializer = glorot_uniform(seed=0))(X_input) #480 - 4 = 476 X = BatchNormalization(axis = 3)(X) X = Activation('relu')(X) X = MaxPooling2D((2, 2), strides=(2, 2))(X) # 476 / 2 = 238 X = Conv2D(16, (5, 5), kernel_initializer = glorot_uniform(seed=0))(X) #238 - 4 = 234 X = BatchNormalization(axis = 3)(X) X = Activation('relu')(X) X = MaxPooling2D((2, 2), strides=(2, 2))(X) # 234 / 2 = 117 X = Conv2D(32, (5, 5), kernel_initializer = glorot_uniform(seed=0))(X) #117 - 4 = 113 X = BatchNormalization(axis = 3)(X) X = Activation('relu')(X) X = MaxPooling2D((2, 2), strides=(2, 2))(X) # 113 / 2 = 56 X = Conv2D(16, (5, 5), kernel_initializer = glorot_uniform(seed=0))(X) #56 - 4 = 52 X = BatchNormalization(axis = 3)(X) X = Activation('relu')(X) X = MaxPooling2D((2, 2), strides=(2, 2))(X) # 52 / 2 = 26 X = Conv2D(5, (5, 5), kernel_initializer = glorot_uniform(seed=0))(X) #26 - 4 = 22 X = BatchNormalization(axis = 3)(X) X = Activation('relu')(X) X = MaxPooling2D((2, 2), strides=(2, 2))(X) # 22 / 2 = 11 model = Model(inputs = X_input, outputs = X, name='ResNet50') """ def compile_cnn(self): self.model.summary() self.model.compile( loss="categorical_crossentropy", optimizer=tf.keras.optimizers.RMSprop(lr=0.001), metrics=["accuracy"], ) def fit(self, dataset, n_epochs): self.model.fit( dataset, steps_per_epoch=STEPS_PER_EPOCH, epochs=n_epochs, validation_data=test_dsfinal, validation_steps=200, ) # Create an instance of the model model = CNNModel() model.compile_cnn() history = model.fit(dataset=train_dsfinal, n_epochs=EPOCHS) acc = model.model.history.history["accuracy"] val_acc = model.model.history.history["val_accuracy"] loss = model.model.history.history["loss"] val_loss = model.model.history.history["val_loss"] epochs_range = range(EPOCHS) plt.figure(figsize=(10, 6)) plt.subplot(1, 2, 1) plt.plot(epochs_range, acc, label="Training Accuracy") plt.plot(epochs_range, val_acc, label="Validation Accuracy") plt.legend(loc="lower right") plt.title("Training and Validation Accuracy") plt.subplot(1, 2, 2) plt.plot(epochs_range, loss, label="Training Loss") plt.plot(epochs_range, val_loss, label="Validation Loss") plt.legend(loc="upper right") plt.title("Training and Validation Loss") plt.show() model.model.evaluate(test_dsfinal, verbose=2, steps=64)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import tensorflow as tf from tensorflow import keras from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from sklearn.feature_extraction.text import CountVectorizer import matplotlib.pyplot as plt import re from sklearn.metrics import accuracy_score import nltk from nltk.corpus import stopwords from nltk import regexp_tokenize from nltk.stem import WordNetLemmatizer import spacy # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. train = pd.read_csv(r"/kaggle/input/nlp-getting-started/train.csv") test = pd.read_csv(r"/kaggle/input/nlp-getting-started/test.csv") train.head() nlp = spacy.load("en_core_web_lg") with nlp.disable_pipes(): train_vectors = np.array([nlp(text).vector for text in train.text]) test_vectors = np.array([nlp(text).vector for text in test.text]) print(train_vectors.shape, test_vectors.shape) X_train = train_vectors y_train = train.target.to_numpy() train_x, test_x, train_y, test_y = train_test_split(X_train, y_train, test_size=0.2) from sklearn.ensemble import ( RandomForestClassifier, VotingClassifier, GradientBoostingClassifier, ) from sklearn.svm import SVC svc = SVC(kernel="rbf", C=0.7, gamma="auto", probability=True) rfc = RandomForestClassifier(n_estimators=100) gbc = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1) # class keras_model: # def __call__(): # model = keras.models.Sequential() # model.add(keras.layers.Dense(1024, activation='relu')) # model.add(keras.layers.Dense(512, activation='relu')) # model.add(keras.layers.BatchNormalization()) # model.add(keras.layers.Dense(512, activation='relu')) # model.add(keras.layers.Dropout(0.2)) # model.add(keras.layers.Dense(128, activation='relu')) # model.add(keras.layers.Dense(128, activation='relu')) # model.add(keras.layers.Dense(1, activation='sigmoid')) # model.compile(optimizer='adam', # loss='binary_crossentropy', # metrics=['accuracy']) # return model # from keras.wrappers.scikit_learn import KerasClassifier # keras_clf = KerasClassifier(keras_model(), batch_size=100, epochs=20) # model.fit(X_train, y_train, batch_size=100, epochs=40) # preds = model.predict_classes(test_vectors) vcf = VotingClassifier( estimators=[ ("svc", svc), ("rfc", rfc), ("gbc", gbc), ], voting="soft", ) vcf.fit(X_train, y_train) preds = vcf.predict(test_vectors) print(accuracy_score((vcf.predict(test_x)), test_y)) print(len(test["id"]), len(preds)) submission = pd.DataFrame(columns=["id", "target"]) submission["id"] = test["id"] submission["target"] = preds submission submission.to_csv("submission.csv", index=False)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. # # ## Advanced Regression - Assignment Solution # The solution is divided into the following sections: # - Data understanding and exploration # - Data cleaning # - Data preparation # - Model building and evaluation # ### 1. Data Understanding and Exploration # Let's first have a look at the dataset and understand the size, attribute names etc. # Importing all required libraries import matplotlib.pyplot as plt import seaborn as sns from sklearn import linear_model from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.linear_model import Lasso from sklearn.model_selection import GridSearchCV # Scaling libraries from sklearn.preprocessing import scale import os import datetime # hide warnings import warnings warnings.filterwarnings("ignore") # To display all columns and rows pd.set_option("display.max_columns", None) pd.set_option("display.max_rows", None) # Reading the dataset housing = pd.read_csv( "/kaggle/input/house-prices-advanced-regression-techniques/train.csv" ) housing.head() # summary of the dataset print(housing.info()) # # 1460 rows and 81 columns # # Let us analyse the data through visualization techniques. Before we do that we need to handle the Year columns. As you can see from the dataset summary,following columns do not have data type as Date: # ### 1) YearBuilt # ### 2) YearRemodAdd # ### 3) GarageYrBlt # ### 4) YrSold: Year Sold (YYYY) # # We would use the year columns to calculate the age . Following would be the approach: # 1. Check for any missing/null data for these columns first # 2. If any missing / null values, remove them # 3. Then Use these columns to create Age columns # 4. Use visualization techniques to see the prices for these columns and rest of them # 5. EDA and data visualization would would follow for the rest of the columns as well # Checking the percentage of missing values round(100 * (housing.isnull().sum() / len(housing.index)), 2) # #### All year columns are non-null, except for 'GarageYrBlt' # Dropping null values for the column 'GarageYrBlt' housing = housing.dropna(axis=0, subset=["GarageYrBlt"]) housing["GarageYrBlt"].isnull().sum() # Converting GarageYrBlt from float to int and converting to datetime housing["GarageYrBlt"] = housing["GarageYrBlt"].astype(int) # Converting year columns to datetime housing["GarageYrBlt"] = pd.to_datetime(housing["GarageYrBlt"].astype(str), format="%Y") # housing['GarageYrBlt'] = pd.to_datetime(housing['GarageYrBlt'], unit='s') housing["YearRemodAdd"] = pd.to_datetime( housing["YearRemodAdd"].astype(str), format="%Y" ) housing["YrSold"] = pd.to_datetime(housing["YrSold"].astype(str), format="%Y") housing["YearBuilt"] = pd.to_datetime(housing["YearBuilt"].astype(str), format="%Y") # Converting the Year columns from datetime to date housing["GarageYrBlt"] = housing["GarageYrBlt"].dt.date housing["YearRemodAdd"] = housing["YearRemodAdd"].dt.date housing["YrSold"] = housing["YrSold"].dt.date housing["YearBuilt"] = housing["YearBuilt"].dt.date # Calcualting the age using the Year column and today's date now = datetime.date.today() housing["GarageYrBltAge_in_years"] = now - housing["GarageYrBlt"] housing["YearRemodAddAge_in_years"] = (now - housing["YearRemodAdd"]) / 365 housing["YrSoldAge_in_years"] = (now - housing["YrSold"]) / 365 housing["YearBuiltAge_in_years"] = (now - housing["YearBuilt"]) / 365 # Convert age to int housing["GarageYrBltAge_in_years"] = housing.apply( lambda row: row.GarageYrBltAge_in_years.days, axis=1 ) housing["YearRemodAddAge_in_years"] = housing.apply( lambda row: row.YearRemodAddAge_in_years.days, axis=1 ) housing["YrSoldAge_in_years"] = housing.apply( lambda row: row.YrSoldAge_in_years.days, axis=1 ) housing["YearBuiltAge_in_years"] = housing.apply( lambda row: row.YearBuiltAge_in_years.days, axis=1 ) # we can drop the original columns of years # housing = housing.drop(['GarageYrBlt','YearRemodAdd','YrSold','YearBuilt'],1) housing.info() # plot per sale price and YearBuild plt.scatter(housing["YearBuiltAge_in_years"], housing["SalePrice"]) plt.ylabel("Sale Price") plt.xlabel("YearBuiltAge_in_years") # ### As can be seen from the above plot, as the age increases the price of house decreases, except for few outliers.[[](http://)](http://) # plot per sale price and YearBuild plt.scatter(housing["YearRemodAddAge_in_years"], housing["SalePrice"]) plt.ylabel("Sale Price") plt.xlabel("YearRemodAddAge_in_years") # plot per sale price and YearBuild plt.scatter(housing["OverallQual"], housing["SalePrice"]) plt.ylabel("Sale Price") plt.xlabel("OverallQual") # ## Price of house increases with increase in Overall Quality parameter # ### Data Exploration # #### To perform linear regression, the (numeric) target variable should be linearly related to at least one another numeric variable. We'll first subset the list of all (independent) numeric variables, and then make a pairwise plot # all numeric (float and int) variables in the dataset housing_numeric = housing.select_dtypes(include=["float64", "int64"]) housing_numeric.head() # plotting pairplot with few numeric variables. housing_numeric_plot = housing[ [ "SalePrice", "GarageYrBltAge_in_years", "YearRemodAddAge_in_years", "OverallQual", "YearBuiltAge_in_years", "LotArea", "GarageCars", "YrSoldAge_in_years", "MoSold", ] ] # pairwise scatter plot plt.figure(figsize=(20, 10)) sns.pairplot(housing_numeric_plot) plt.show() housing.head()
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns ddf = pd.read_csv( "/kaggle/input/lists-of-earthquakes-deadliest-and-largest/Deadliest earthquakes by year.csv" ) ddf = ddf.loc[~ddf.Date.str.contains("March 3–25")] ddf = ddf.loc[~ddf.Date.str.contains("June 11 and July 28")] ddf.head() ldf = pd.read_csv( "/kaggle/input/lists-of-earthquakes-deadliest-and-largest/Largest earthquakes by year.csv" ) ldf.head() def preprocess_inputs(df): df = df.copy() drop_cols = ["Unnamed: 0", "Year"] df["Magnitude"] = df["Magnitude"].str.replace("7.5-7.7", "7.6", regex=False) df["Magnitude"] = pd.to_numeric(df["Magnitude"]) df["Depth (km)"] = df["Depth (km)"].str.replace("17.9 10.0", "17.9", regex=False) df["Depth (km)"] = pd.to_numeric(df["Depth (km)"]) # 17.9 10.0 df["Date"] = (df["Year"]).astype("str") + " " + df["Date"] df["Date"] = pd.to_datetime(df["Date"]) df = df.drop(drop_cols, axis=1) return df Xddf = preprocess_inputs(ddf) Xddf Xddf["MMI"].unique() # Xddf.info() # Xddf.loc[Xddf['Depth (km)'].str.contains('17.9 10.0')] # Xddf.loc[Xddf['Magnitude']==7.8] sns.histplot(data=Xddf, x="Magnitude", bins=20, kde=True) plt.show() sns.histplot(data=Xddf, x="Depth (km)", bins=10, kde=True) plt.show() # sns.lineplot(x = 'Date', data = Xddf) Xddf.Location.unique() Xddf.groupby("Location").count()
# ![]() # # Kannada MNIST # ![]() # # 1. Import # System import sys import os import argparse import itertools # Time import time import datetime # Numerical Data import random import numpy as np import pandas as pd # Tools import shutil from glob import glob from tqdm import tqdm import gc # NLP import re # Preprocessing from sklearn import preprocessing from sklearn.utils import class_weight as cw from sklearn.utils import shuffle # Model Selection from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV from sklearn.model_selection import cross_val_score # Machine Learning Models from sklearn import svm from sklearn.svm import LinearSVC, SVC # Evaluation Metrics from sklearn import metrics from sklearn.metrics import ( f1_score, accuracy_score, precision_score, recall_score, confusion_matrix, classification_report, roc_auc_score, ) # Deep Learning - Keras - Preprocessing from keras.preprocessing.image import ImageDataGenerator # Deep Learning - Keras - Model import keras from keras import models from keras.models import Model from keras.models import load_model from keras.models import Sequential # Deep Learning - Keras - Layers from keras.layers import ( Convolution1D, concatenate, SpatialDropout1D, GlobalMaxPool1D, GlobalAvgPool1D, Embedding, Conv2D, SeparableConv1D, Add, BatchNormalization, Activation, GlobalAveragePooling2D, LeakyReLU, Flatten, ) from keras.layers import ( Dense, Input, Dropout, MaxPool2D, MaxPooling2D, Concatenate, GlobalMaxPooling2D, GlobalAveragePooling2D, Lambda, Multiply, LSTM, Bidirectional, PReLU, MaxPooling1D, ) from keras.layers.pooling import _GlobalPooling1D from keras.regularizers import l2 # Deep Learning - Keras - Pretrained Models from keras.applications.xception import Xception from keras.applications.resnet50 import ResNet50 from keras.applications.inception_v3 import InceptionV3 from keras.applications.inception_resnet_v2 import InceptionResNetV2 from keras.applications.densenet import DenseNet201 from keras.applications.nasnet import NASNetMobile, NASNetLarge from keras.applications.nasnet import preprocess_input # Deep Learning - Keras - Model Parameters and Evaluation Metrics from keras import optimizers from keras.optimizers import Adam, SGD, RMSprop from keras.losses import mae, sparse_categorical_crossentropy, binary_crossentropy # Deep Learning - Keras - Visualisation from keras.callbacks import ( ModelCheckpoint, EarlyStopping, TensorBoard, ReduceLROnPlateau, LearningRateScheduler, ) # from keras.wrappers.scikit_learn import KerasClassifier from keras import backend as K # Deep Learning - TensorFlow import tensorflow as tf # Graph/ Visualization import matplotlib.pyplot as plt from matplotlib.pyplot import figure import matplotlib.image as mpimg import seaborn as sns from mlxtend.plotting import plot_confusion_matrix # Image import cv2 from PIL import Image from IPython.display import display # np.random.seed(42) # Input data print(os.listdir("../input/")) # # 2. Functions def date_time(x): if x == 1: return "Timestamp: {:%Y-%m-%d %H:%M:%S}".format(datetime.datetime.now()) if x == 2: return "Timestamp: {:%Y-%b-%d %H:%M:%S}".format(datetime.datetime.now()) if x == 3: return "Date now: %s" % datetime.datetime.now() if x == 4: return "Date today: %s" % datetime.date.today() # # 3. Input Configuration input_directory = r"../input/Kannada-MNIST/" output_directory = r"../output/" training_dir = input_directory + "train_images" testing_dir = input_directory + r"test_images" if not os.path.exists(output_directory): os.mkdir(output_directory) figure_directory = "../output/figures" if not os.path.exists(figure_directory): os.mkdir(figure_directory) # model_input_directory = "../input/models/" # if not os.path.exists(model_input_directory): # os.mkdir(model_input_directory) model_output_directory = "../output/models/" if not os.path.exists(model_output_directory): os.mkdir(model_output_directory) file_name_pred_batch = figure_directory + r"/result" file_name_pred_sample = figure_directory + r"/sample" train_df = pd.read_csv(input_directory + "train.csv") train_df.rename(index=str, columns={"label": "target"}, inplace=True) train_df.head() test_df = pd.read_csv(input_directory + "test.csv") test_df.rename(index=str, columns={"label": "target"}, inplace=True) test_df.head() # # 4. Visualization ticksize = 18 titlesize = ticksize + 8 labelsize = ticksize + 5 figsize = (18, 5) params = { "figure.figsize": figsize, "axes.labelsize": labelsize, "axes.titlesize": titlesize, "xtick.labelsize": ticksize, "ytick.labelsize": ticksize, } plt.rcParams.update(params) col = "target" xlabel = "Label" ylabel = "Count" sns.countplot(x=train_df[col]) plt.title("Label Count") plt.xlabel(xlabel) plt.ylabel(ylabel) plt.show() # # 5. Preprocess def get_data(train_X=None, train_Y=None, test_X=None, batch_size=32): print("Preprocessing and Generating Data Batches.......\n") rescale = 1.0 / 255 train_batch_size = batch_size validation_batch_size = batch_size * 5 test_batch_size = batch_size * 5 train_shuffle = True val_shuffle = True test_shuffle = False train_datagen = ImageDataGenerator( horizontal_flip=False, vertical_flip=False, rotation_range=10, # shear_range=15, zoom_range=0.1, width_shift_range=0.1, height_shift_range=0.1, rescale=rescale, validation_split=0.25, ) train_generator = train_datagen.flow( x=train_X, y=train_Y, batch_size=batch_size, shuffle=True, sample_weight=None, seed=42, save_to_dir=None, save_prefix="", save_format="png", subset="training", ) validation_generator = train_datagen.flow( x=train_X, y=train_Y, batch_size=validation_batch_size, shuffle=True, sample_weight=None, seed=42, save_to_dir=None, save_prefix="", save_format="png", subset="validation", ) test_datagen = ImageDataGenerator(rescale=rescale) test_generator = test_datagen.flow( x=test_X, y=None, batch_size=test_batch_size, shuffle=False, sample_weight=None, seed=42, save_to_dir=None, save_prefix="", save_format="png", ) class_weights = get_weight(np.argmax(train_Y, axis=1)) steps_per_epoch = len(train_generator) validation_steps = len(validation_generator) print("\nPreprocessing and Data Batch Generation Completed.\n") return ( train_generator, validation_generator, test_generator, class_weights, steps_per_epoch, validation_steps, ) # Calculate Class Weights def get_weight(y): class_weight_current = cw.compute_class_weight("balanced", np.unique(y), y) return class_weight_current # # 5. Model Function def get_model( model_name, input_shape=(96, 96, 3), num_class=2, weights="imagenet", dense_units=1024, internet=False, ): inputs = Input(input_shape) if model_name == "Xception": base_model = Xception( include_top=False, weights=weights, input_shape=input_shape ) elif model_name == "ResNet50": base_model = ResNet50( include_top=False, weights=weights, input_shape=input_shape ) elif model_name == "ResNet101": base_model = keras.applications.resnet.ResNet101( include_top=False, weights=weights, input_shape=input_shape ) elif model_name == "ResNet152": base_model = keras.applications.resnet.ResNet152( include_top=False, weights=weights, input_shape=input_shape ) elif model_name == "ResNet50V2": base_model = resnet_v2.ResNet50V2( include_top=False, weights=weights, input_shape=input_shape ) elif model_name == "ResNet101V2": base_model = resnet_v2.ResNet101V2( include_top=False, weights=weights, input_shape=input_shape ) elif model_name == "ResNet152V2": base_model = resnet_v2.ResNet152V2( include_top=False, weights=weights, input_shape=input_shape ) elif model_name == "ResNeXt50": base_model = resnext.ResNeXt50( include_top=False, weights=weights, input_shape=input_shape ) elif model_name == "ResNeXt101": base_model = resnext.ResNeXt101( include_top=False, weights=weights, input_shape=input_shape ) elif model_name == "InceptionV3": base_model = InceptionV3( include_top=False, weights=weights, input_shape=input_shape ) elif model_name == "InceptionResNetV2": base_model = InceptionResNetV2( include_top=False, weights=weights, input_shape=input_shape ) elif model_name == "DenseNet201": base_model = DenseNet201( include_top=False, weights=weights, input_shape=input_shape ) elif model_name == "NASNetMobile": base_model = NASNetMobile( include_top=False, weights=weights, input_shape=input_shape ) elif model_name == "NASNetLarge": base_model = NASNetLarge( include_top=False, weights=weights, input_shape=input_shape ) # x = base_model(inputs) # x = Dropout(0.5)(x) # out1 = GlobalMaxPooling2D()(x) # out2 = GlobalAveragePooling2D()(x) # out3 = Flatten()(x) # out = Concatenate(axis=-1)([out1, out2, out3]) # out = Dropout(0.6)(out) # out = BatchNormalization()(out) # out = Dropout(0.5)(out) # if num_class>1: # out = Dense(num_class, activation="softmax", name="3_")(out) # else: # out = Dense(1, activation="sigmoid", name="3_")(out) # model = Model(inputs, out) # model = Model(inputs=base_model.input, outputs=outputs) x = base_model.output x = BatchNormalization()(x) x = Dropout(0.5)(x) x = GlobalAveragePooling2D()(x) x = BatchNormalization()(x) x = Dropout(0.5)(x) x = Dense(dense_units)(x) x = BatchNormalization()(x) x = Activation(activation="relu")(x) x = Dropout(0.5)(x) if num_class > 1: outputs = Dense(num_class, activation="softmax")(x) else: outputs = Dense(1, activation="sigmoid")(x) model = Model(inputs=base_model.input, outputs=outputs) model.summary() return model def get_conv_model(num_class=2, input_shape=None, dense_units=dense_units): model = Sequential() model.add( Conv2D( filters=32, kernel_size=(5, 5), padding="Same", activation="relu", input_shape=input_shape, ) ) model.add(BatchNormalization()) model.add( Conv2D( filters=32, kernel_size=(5, 5), padding="Same", activation="relu", kernel_regularizer=l2(1e-4), ) ) model.add(BatchNormalization()) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add( Conv2D( filters=64, kernel_size=(3, 3), padding="Same", activation="relu", kernel_regularizer=l2(1e-4), ) ) model.add(BatchNormalization()) model.add( Conv2D( filters=64, kernel_size=(3, 3), padding="Same", activation="relu", kernel_regularizer=l2(1e-4), ) ) model.add(BatchNormalization()) model.add(MaxPool2D(pool_size=(2, 2), strides=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(dense_units, activation="relu")) model.add(Dropout(0.5)) # model.add(Conv2D(32, (3, 3), padding='same', use_bias=False, kernel_regularizer=l2(1e-4), input_shape = input_shape)) # model.add(BatchNormalization()) # model.add(Activation('relu')) # model.add(Conv2D(32, (3, 3), padding='same', use_bias=False, kernel_regularizer=l2(1e-4))) # model.add(BatchNormalization()) # model.add(Activation('relu')) # model.add(MaxPool2D()) # model.add(Dropout(0.5)) # model.add(Conv2D(64, (3, 3), padding='same', use_bias=False, kernel_regularizer=l2(1e-4))) # model.add(BatchNormalization()) # model.add(Activation('relu')) # model.add(Conv2D(64, (3, 3), padding='same', use_bias=False, kernel_regularizer=l2(1e-4))) # model.add(BatchNormalization()) # model.add(Activation('relu')) # model.add(MaxPool2D()) # model.add(Dropout(0.5)) # model.add(GlobalAveragePooling2D()) if num_class > 1: model.add(Dense(num_class, activation="softmax")) else: model.add(Dense(num_class, activation="sigmoid")) print(model.summary()) return model # ## Visualization def plot_performance(history=None, figure_directory=None): xlabel = "Epoch" legends = ["Training", "Validation"] ylim_pad = [0.005, 0.005] ylim_pad = [0, 0] plt.figure(figsize=(20, 5)) # Plot training & validation Accuracy values y1 = history.history["accuracy"] y2 = history.history["val_accuracy"] min_y = min(min(y1), min(y2)) - ylim_pad[0] max_y = max(max(y1), max(y2)) + ylim_pad[0] # min_y = .96 # max_y = 1 plt.subplot(121) plt.plot(y1) plt.plot(y2) plt.title("Model Accuracy\n" + date_time(1), fontsize=17) plt.xlabel(xlabel, fontsize=15) plt.ylabel("Accuracy", fontsize=15) plt.ylim(min_y, max_y) plt.legend(legends, loc="upper left") plt.grid() # Plot training & validation loss values y1 = history.history["loss"] y2 = history.history["val_loss"] min_y = min(min(y1), min(y2)) - ylim_pad[1] max_y = max(max(y1), max(y2)) + ylim_pad[1] # min_y = .1 # max_y = 0 plt.subplot(122) plt.plot(y1) plt.plot(y2) plt.title("Model Loss\n" + date_time(1), fontsize=17) plt.xlabel(xlabel, fontsize=15) plt.ylabel("Loss", fontsize=15) plt.ylim(min_y, max_y) plt.legend(legends, loc="upper left") plt.grid() if figure_directory: plt.savefig(figure_directory + "/history") plt.show() # # 6. Output Configuration main_model_dir = output_directory + r"models_output/" main_log_dir = output_directory + r"logs/" try: os.mkdir(main_model_dir) except: print("Could not create main model directory") try: os.mkdir(main_log_dir) except: print("Could not create main log directory") model_dir = main_model_dir + time.strftime("%Y-%m-%d %H-%M-%S") + "/" log_dir = main_log_dir + time.strftime("%Y-%m-%d %H-%M-%S") try: os.mkdir(model_dir) except: print("Could not create model directory") try: os.mkdir(log_dir) except: print("Could not create log directory") model_file = ( model_dir + "{epoch:02d}-val_acc-{val_acc:.2f}-val_loss-{val_loss:.2f}.hdf5" ) # ## 6.2 Call Back Configuration print("Settting Callbacks") def step_decay(epoch, lr): # initial_lrate = 1.0 # no longer needed lrate = lr if epoch == 2: lrate = 0.0001 # lrate = lr * math.pow(drop, math.floor((1+epoch)/epochs_drop)) return lrate checkpoint = ModelCheckpoint(model_file, monitor="val_acc", save_best_only=True) early_stopping = EarlyStopping( monitor="val_loss", patience=10, verbose=1, restore_best_weights=True ) reduce_lr = ReduceLROnPlateau( monitor="val_loss", factor=0.6, patience=2, min_lr=0.0000001, verbose=1 ) learning_rate_scheduler = LearningRateScheduler(step_decay, verbose=1) # f1_metrics = Metrics() callbacks = [reduce_lr, early_stopping] # callbacks = [checkpoint, reduce_lr, early_stopping] # callbacks = [reduce_lr, early_stopping, f1_metrics] print("Set Callbacks at ", date_time(1)) # # 7. Model print("Getting Base Model", date_time(1)) # model_name="InceptionV3" # model_name="NASNetMobile" dim = 28 input_shape = (dim, dim, 1) num_class = len(set(train_df["target"].values)) weights = "imagenet" dense_units = 256 internet = True # model = get_model(model_name=model_name, # input_shape=input_shape, # num_class=num_class, # weights=weights, # dense_units=dense_units, # internet=internet) model = get_conv_model( num_class=num_class, input_shape=input_shape, dense_units=dense_units ) print("Loaded Base Model", date_time(1)) loss = "categorical_crossentropy" # loss = 'binary_crossentropy' metrics = ["accuracy"] # metrics = [auroc] # # 8. Data # train_X = train_df.drop(columns=["target"]).values # train_Y = train_df["target"].values # clf = svm.SVC() # cross_val_score(clf, train_X, train_Y, cv=10, n_jobs=-1, verbose=2) train_X = train_df.drop(columns=["target"]).values train_X = train_X.reshape(train_X.shape[0], dim, dim, 1) train_Y = train_df["target"].values train_Y = keras.utils.to_categorical(train_Y, 10) test_X = test_df.drop(columns=["id"]).values test_X = test_X.reshape(test_X.shape[0], dim, dim, 1) batch_size = 128 # class_mode = "categorical" # class_mode = "binary" # target_size = (dim, dim) ( train_generator, validation_generator, test_generator, class_weights, steps_per_epoch, validation_steps, ) = get_data(train_X=train_X, train_Y=train_Y, test_X=test_X, batch_size=batch_size) # # 9. Training print("Starting Trainning ...\n") start_time = time.time() print(date_time(1)) # batch_size = 32 # train_generator, validation_generator, test_generator, class_weights, steps_per_epoch, validation_steps = get_data(batch_size=batch_size) print("\n\nCompliling Model ...\n") learning_rate = 0.001 optimizer = Adam(learning_rate) # optimizer = Adam() model.compile(optimizer=optimizer, loss=loss, metrics=metrics) steps_per_epoch = len(train_generator) validation_steps = len(validation_generator) verbose = 1 epochs = 100 print("Trainning Model ...\n") history = model.fit_generator( train_generator, steps_per_epoch=steps_per_epoch, epochs=epochs, verbose=verbose, callbacks=callbacks, validation_data=validation_generator, validation_steps=validation_steps, class_weight=class_weights, ) elapsed_time = time.time() - start_time elapsed_time = time.strftime("%H:%M:%S", time.gmtime(elapsed_time)) print("\nElapsed Time: " + elapsed_time) print("Completed Model Trainning", date_time(1)) # # 10. Model Performance # Model Performance Visualization over the Epochs plot_performance(history=history) ypreds = model.predict_generator( generator=test_generator, steps=len(test_generator), verbose=1 ) # ypreds # ypred = ypreds[:,1]# ypred = np.argmax(ypreds, axis=1) sample_df = pd.read_csv(input_directory + "sample_submission.csv") sample_df.head() test_gen_id = test_generator.index_array sample_submission_id = sample_df["id"] len(test_gen_id), len(sample_submission_id) sample_list = list(sample_df.id) pred_dict = dict( (key, value) for (key, value) in zip(test_generator.index_array, ypred) ) pred_list_new = [pred_dict[f] for f in sample_list] test_df = pd.DataFrame({"id": sample_list, "label": pred_list_new}) test_df.to_csv("submission.csv", header=True, index=False) test_df.head()
# House Prices Project - Part 1: Feature Engineering and Data Transformation # In this notebook, I present my data preparation and my analysis of the House Prices Project dataset. # Here you'll find feature engineering techniques and some visualizations that help us have a good idea of how this dataset is structured. # I create additional variables keeping in mind that I don't have a pre-selected regression model that I intend to use. So some variables may be more or less useful depending on the regression model adopted in the future. The model and variable selection techniques I'll present in my next notebook on the House Prices Project. # Loading libraries and datasets import math import numpy as np import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import statsmodels.api as sm from scipy.stats import pearsonr from scipy.stats import mode sns.set(style="white", context="notebook", palette="deep") plt.rcParams["figure.figsize"] = (15, 7) # plot size train = pd.read_csv("../input/house-prices-advanced-regression-techniques/train.csv") test = pd.read_csv("../input/house-prices-advanced-regression-techniques/test.csv") # Checking the datasets # First things first. Let's see the datasets dimensions. print("Train shape: " + str(train.shape) + ".") print("Test shape: " + str(test.shape) + ".") # Since we already have more than 80 columns in the training set, I'll adjust the display to show up to 100 rows and columns. This can help us better visualize some data that will be generated. pd.set_option("display.max_rows", 100) pd.set_option("display.max_columns", 100) # Let's check for missing values. print("Missing values in the train set: " + str(train.isnull().sum().sum()) + ".") print("Missing values in the test set: " + str(test.isnull().sum().sum()) + ".") # It will be necessary to work on this missing values. Since there are several missing values in the train and test sets, is more efficient to join both datasets and work on the missing values than to do it separately. train["dataset"] = "train" # identify this as the train dataset test["dataset"] = "test" # identify this as the train dataset dataset = train.append(test, sort=False, ignore_index=True) # merge both datasets del train, test # free some memory. dataset.shape dataset.dataset.value_counts() # Checking all the columns in the dataset and getting some statistics. dataset.columns stats = dataset.describe().T for i in range(len(dataset.columns)): ( stats.loc[dataset.columns[i], "mode"], stats.loc[dataset.columns[i], "mode_count"], ) = mode(dataset[dataset.columns[i]]) stats.loc[dataset.columns[i], "unique_values"] = ( dataset[dataset.columns[i]].value_counts().size ) stats.loc[dataset.columns[i], "NaN"] = dataset[dataset.columns[i]].isnull().sum() if np.isnan(stats.loc[dataset.columns[i], "count"]): stats.loc[dataset.columns[i], "count"] = ( dataset.shape[0] - stats.loc[dataset.columns[i], "NaN"] ) stats = stats[ [ "count", "NaN", "unique_values", "mode", "mode_count", "mean", "std", "min", "25%", "50%", "75%", "max", ] ] stats.index.name = "variable" stats.reset_index(inplace=True) stats # Feature Engineering # Dealing with NaN Values # Let's treat all these missing data. First of all, lets check how many observations in each variable are missing values. variables = list( stats[stats["NaN"] > 0].sort_values(by=["NaN"], ascending=False).variable ) sns.barplot(x="variable", y="NaN", data=stats[stats["NaN"] > 0], order=variables) plt.xticks(rotation=45) stats[stats["NaN"] > 0].sort_values(by=["NaN"], ascending=False)[["variable", "NaN"]] # Having detailed information about which variables have missing values and how many they are, we can treat these cases and replace the *NaN* values for other values that may be more adequate. Some things that I would like to highlight: # - One thing to notice is that the SalePrice variable has 1459 *NaN* values (the same number of rows in the test set). This is so because these are the values that we have to predict in this competition, so we are not dealing with those missing values now, they are our final goal; # - Checking the data_description.txt file we can see that most of these missing values actually indicates that the house doesn't have that feature. i.e. Missing values in the variable FireplaceQu indicates that the house doesn't have a fireplace. With this in mind I'll replace the missing values with a *NA* when in case of a categorical variable or I'll replace it with a *0* otherwise. # Direct transformation of NaN values into NA or into 0 # For this reason, the following variables had their *NaN* values transformed: # - Alley, # - BsmtCond, # - BsmtExposure, # - BsmtFinSF1, # - BsmtFinSF2, # - BsmtFinType1, # - BsmtFinType2, # - BsmtFullBath, # - BsmtHalfBath, # - BsmtQual, # - BsmtUnfSF # - Fence, # - FireplaceQu, # - GarageCond, # - GarageFinish, # - GarageQual, # - GarageType, # - MiscFeature, # - TotalBsmtSF. dataset["MiscFeature"].fillna("NA", inplace=True) dataset["Alley"].fillna("NA", inplace=True) dataset["Fence"].fillna("NA", inplace=True) dataset["FireplaceQu"].fillna("NA", inplace=True) dataset["GarageFinish"].fillna("NA", inplace=True) dataset["GarageQual"].fillna("NA", inplace=True) dataset["GarageCond"].fillna("NA", inplace=True) dataset["GarageType"].fillna("NA", inplace=True) dataset["BsmtExposure"].fillna("NA", inplace=True) dataset["BsmtCond"].fillna("NA", inplace=True) dataset["BsmtQual"].fillna("NA", inplace=True) dataset["BsmtFinType1"].fillna("NA", inplace=True) dataset["BsmtFinType2"].fillna("NA", inplace=True) dataset["BsmtFullBath"].fillna(0.0, inplace=True) dataset["BsmtHalfBath"].fillna(0.0, inplace=True) dataset["BsmtFinSF1"].fillna(0.0, inplace=True) dataset["BsmtFinSF2"].fillna(0.0, inplace=True) dataset["BsmtUnfSF"].fillna(0.0, inplace=True) dataset["TotalBsmtSF"].fillna(0.0, inplace=True) # The following variables required some kind of additional evaluation before I could transform the missing values. # PoolQC # We can see in the stats dataset that PoolQC has 2909 missing values, but PoolArea has only 2906 zero values. So the 3 observations mismatched are real missing values. I'll check how is the crosstabulation between these two variables before decide what to do. dataset.PoolQC.value_counts() pd.crosstab(dataset.PoolArea, dataset.PoolQC) dataset[ (pd.isna(dataset["PoolQC"])) & (dataset["PoolArea"] > 0) ].PoolArea.value_counts() # Checking the variables we can see that the range between each classification in PoolQC doesn't quite match the range of these missing values. Checking the description file we see that there is another category that is not present in this classification: 'TA' meaning 'Average/Typical'. We have no rule of thumb here. It seems reasonable to me to assume that the missing labes are 'TA' and for this reason I'm coding these three values as 'TA', but another acceptable approach would be to take the median of the PoolArea variable of each category in PoolQC and assign the missing observations to the category in PoolQC that is closer to its median value in PoolArea. In the end, the most important thing here is to don't mislabel these three cases as *NA*. indexes = dataset[(pd.isna(dataset["PoolQC"])) & (dataset["PoolArea"] > 0)].index dataset.loc[indexes, "PoolQC"] = "TA" dataset["PoolQC"].fillna("NA", inplace=True) # LotFrontage # LotFrontage is going to need some manipulation since it is a numerical variable with several *NaN* values. Luckily it is related to other variables with characteristics of the lot. Let's check: # - LotArea; # - LotShape; # - LotConfig. # fig, (ax1, ax2, ax3) = plt.subplots(1, 3) ax1 = plt.subplot(212) ax2 = plt.subplot(221) ax3 = plt.subplot(222) # plt.subplots_adjust(hspace = 0.5) sns.scatterplot(y="LotFrontage", x="LotArea", data=dataset, ax=ax1, palette="rainbow") sns.boxplot(y="LotFrontage", x="LotShape", data=dataset, ax=ax2, palette="rainbow") sns.boxplot(y="LotFrontage", x="LotConfig", data=dataset, ax=ax3, palette="rainbow") # Looking at the variables we see that LotArea seems to be closer related to LotFrontage than the other variables. Yet, this relation doens't seem to be linear. I'll check it's correlation with this variable as it is, with its square root and with its fourth roth to see which of these transformations are more related to LotFrontage. pearsonr( dataset.LotFrontage.dropna(), dataset[pd.notna(dataset["LotFrontage"])].LotArea ) pearsonr( dataset.LotFrontage.dropna(), np.power(dataset[pd.notna(dataset["LotFrontage"])].LotArea, 1 / 2), ) pearsonr( dataset.LotFrontage.dropna(), np.power(dataset[pd.notna(dataset["LotFrontage"])].LotArea, 1 / 4), ) # The fourth root of Lot Area is closer related to LotFrontage and for this reason I'll use it to fill in the missing values in LotFrontage. # Below I present the distribution of the fourth root of LotArea: ax = sns.distplot(np.power(dataset[pd.notna(dataset["LotFrontage"])].LotArea, 1 / 4)) ax.set(xlabel="Fourth root of LotArea") # The missing values will be fit on the regression line presented next in the scatterplot: ax = sns.regplot( y=dataset.LotFrontage.dropna(), x=np.power(dataset[pd.notna(dataset["LotFrontage"])].LotArea, 1 / 4), ) ax.set(xlabel="Fourth root of LotArea") # Ok. So I'll use a robust regression model to predict the values in the missing observations. X = np.power(dataset[pd.notna(dataset["LotFrontage"])].LotArea, 1 / 4) X = sm.add_constant(X) model = sm.RLM(dataset.LotFrontage.dropna(), X) results = model.fit() index = dataset[pd.isna(dataset["LotFrontage"])].index X_test = np.power(dataset.loc[index, "LotArea"], 1 / 4) X_test = sm.add_constant(X_test) dataset.loc[index, "LotFrontage"] = results.predict(X_test) ax = sns.scatterplot(y=dataset.LotFrontage, x=np.power(dataset.LotArea, 1 / 4)) ax.set(xlabel="Fourth root of LotArea") # That's it. # GarageYrBlt # Since this is a numeric variable, if I just fill in its *NaN* values with a *zero* I can end up inserting a serious bias in the variable. It seems more reasonable to find another variable that is correlated with GarageYrBlt and see how I can manipulate both so I can fill in these gaps without harming my future models. For this reason, I'm checking its correlation with the YearBuilt variable. pearsonr( dataset.GarageYrBlt.dropna(), dataset[pd.notna(dataset["GarageYrBlt"])].YearBuilt ) # Since these variables have a strong correlation, lets plot them together: sns.regplot( y=dataset.GarageYrBlt.dropna(), x=dataset[pd.notna(dataset["GarageYrBlt"])].YearBuilt, ) # Great! We can visualize the strong relation in the data and yet we see that there is a mislabelled observation in GarageYrBlt (the one with GarageYrBlt > 2200). To avoid that the mislabelled observation in GarageYrBlt insert a bias in the model, I'm going to replace it with a *NaN* value and then I'm going to create a linear model to predict the values in all the *NaN* observations in the GarageYrBlt variable. index = dataset[dataset["GarageYrBlt"] > 2200].index dataset.loc[index, "GarageYrBlt"] = np.nan # Fits the Regression Model. X = dataset[pd.notna(dataset["GarageYrBlt"])]["YearBuilt"] X = sm.add_constant(X) model = sm.OLS(dataset.GarageYrBlt.dropna(), X) results = model.fit() # Fill in the NaN values. index = dataset[pd.isna(dataset["GarageYrBlt"])].index X_test = dataset.loc[index, "YearBuilt"] X_test = sm.add_constant(X_test) X_test dataset.loc[index, "GarageYrBlt"] = round(results.predict(X_test), 0).astype(int) # The regression line in the previous plot suggests that in the more recent years GarageYrBlt might have a smaller value than YearBuilt. I'll check it: dataset[(dataset["GarageYrBlt"] < dataset["YearBuilt"])][["GarageYrBlt", "YearBuilt"]] # Ok. Is easy to see when the model filled the missing values. These observations, in recent years, are the ones where GarageYrBlt is equal to YearBuilt minus 4. In these cases, I'll make GarageYrBlt equal to YearBuilt. I'm calling 'recent years' anything that came after 2000 (counting the year 2000). dataset["GarageYrBlt"] = np.where( (dataset["GarageYrBlt"] >= 2000) & (dataset["GarageYrBlt"] == dataset["YearBuilt"] - 4), dataset["YearBuilt"], dataset["GarageYrBlt"], ) # MasVnrType and MasVnrArea # There is one more observation in the MasVnrType variable counting as *NaN* then there is in the MasVnrArea variable. So that observation is very likely to be mislabelled. To fix it, I'll check what are the means of the MasVnrArea variable when grouped by the categories in MasVnrType and I'll choose the category with the median in MasVnrArea closest to the value in the observation with mislabelled data. dataset[(pd.notna(dataset["MasVnrArea"])) & (pd.isna(dataset["MasVnrType"]))][ ["MasVnrArea", "MasVnrType"] ] dataset.groupby("MasVnrType", as_index=False)["MasVnrArea"].median() index = dataset[ (pd.notna(dataset["MasVnrArea"])) & (pd.isna(dataset["MasVnrType"])) ].index dataset.loc[index, "MasVnrType"] = "Stone" # Now that we have the same number of *NaN* in both variables, we can set them equal to *NA* and zero. dataset["MasVnrType"].fillna("NA", inplace=True) dataset["MasVnrArea"].fillna(0, inplace=True) # MSZoning # According to the description file, there should be no *NaN* in this variable. To fix this, I'll compare the values in this variable with the values in MSSubClass and in LotArea (since the lot area may be influenced by the zoning classification of the sale). I'll choose the MSZoning value according to the category in MSSubClass of the observations with *NaN* values in the variable MSZoning and according to the LotArea closer to the median of LotArea of the observations grouped by MSSubClass. # LotArea and MSSubClass of the observations with NaN in the MSZoning variable. dataset[pd.isna(dataset["MSZoning"])][["MSSubClass", "LotArea"]] # median LotArea grouped by MSZoning and MSSubClass. temp = dataset.groupby(["MSSubClass", "MSZoning"], as_index=False)["LotArea"].median() temp[temp["MSSubClass"].isin([20, 30, 70])] # Makes the substitutions. indexes = dataset[(pd.isna(dataset["MSZoning"])) & (dataset["MSSubClass"] == 30)].index dataset.loc[indexes, "MSZoning"] = "C (all)" indexes = dataset[pd.isna(dataset["MSZoning"])].index dataset.loc[indexes, "MSZoning"] = "RL" dataset["MSZoning"].value_counts() # Utilities # Let's check the distribution of this variable. dataset["Utilities"].value_counts() # Ok. So it's no brainer in which category the missing values should be classified in. dataset["Utilities"].fillna("AllPub", inplace=True) # Functional # Let's check the distribution of this variable. dataset["Functional"].value_counts() # Ok. I guess it's reasonable to classify the missing values as 'Typ'. dataset["Functional"].fillna("Typ", inplace=True) # GarageArea # Let's check this variable. dataset["GarageArea"].value_counts() dataset[pd.isna(dataset["GarageArea"])] dataset[dataset["GarageType"] == "Detchd"].GarageArea.describe() # I'll set this *NaN* observation equal to the median value of the variable GarageArea when the GarageType is equal to 'Detchd'. dataset["GarageArea"].fillna(399, inplace=True) # GarageCars dataset["GarageCars"].value_counts() dataset[pd.isna(dataset["GarageCars"])] temp = dataset.groupby(["GarageType", "GarageCars"], as_index=False)[ "GarageArea" ].median() temp[temp["GarageType"] == "Detchd"] # It seems reasonable to assume that the GarageArea is equal to 1 or 2. I'll be pragmatic here and choose the one with the median Area closer to 399. dataset["GarageCars"].fillna(1, inplace=True) # Exterior1st and Exterior2nd dataset[pd.isna(dataset["Exterior2nd"])] # Both missing values of both variables are in the same line. I'll check some crosstabulations: pd.crosstab(dataset["Exterior1st"], dataset["ExterCond"]) pd.crosstab(dataset["Exterior2nd"], dataset["ExterCond"]) # The numbers don't change very much from one table to the other. This suggests that there must be many cases in which both variables have the same values. Let's see if this is true: len(dataset[dataset["Exterior1st"] == dataset["Exterior2nd"]]) # Indeed, in most of the cases both variables have the same value. Since 'VinylSd' is the the most common value for both variables, I'm setting the missing value in both variables equal to 'VinylSd'. dataset["Exterior1st"].fillna("VinylSd", inplace=True) dataset["Exterior2nd"].fillna("VinylSd", inplace=True) # KitchenQual dataset[pd.isna(dataset["KitchenQual"])] dataset[dataset["KitchenAbvGr"] == 1].KitchenQual.value_counts() dataset["KitchenQual"].fillna("TA", inplace=True) # Electrical dataset["Electrical"].value_counts() dataset["Electrical"].fillna("SBrkr", inplace=True) # SaleType dataset[pd.isna(dataset["SaleType"])] dataset[dataset["SaleCondition"] == "Normal"].SaleType.value_counts() dataset["SaleType"].fillna("WD", inplace=True) # SalePrice - Variable Transformation # This variable statistics in the stats table strongly suggest that this variable is skewed to the left. Being this the case, it is recommended to log-transform SalePrice so that its distribution become more like a normal distribution, helping our dependent variable meet some assumptions made in inferential statistics. # Let's check SalePrice distribution as it is: sns.distplot(dataset.SalePrice.dropna()) # Lets check its distribution after log transformation: sns.distplot(np.log(dataset.SalePrice.dropna()), hist=True) # Comparing both distributions we can see that the log transformed variable seems closer to a normal distribution than the original data and for this reason I'm going to work with the log transformed variable in my regression models. index = dataset[pd.notna(dataset["SalePrice"])].index dataset.loc[index, "SalePriceLog"] = np.log(dataset.loc[index, "SalePrice"]) # Data Transformations # The distribution of some variables suggest us that some transformations may be adequate to the regression models, depending on the model we choose to work with. Whith this in mind I'll update the stats dataset and I'll use it to help me decide which variables should be transformed, or created. stats = dataset.describe().T for i in range(len(dataset.columns)): ( stats.loc[dataset.columns[i], "mode"], stats.loc[dataset.columns[i], "mode_count"], ) = mode(dataset[dataset.columns[i]]) stats.loc[dataset.columns[i], "unique_values"] = ( dataset[dataset.columns[i]].value_counts().size ) stats.loc[dataset.columns[i], "NaN"] = dataset[dataset.columns[i]].isnull().sum() if np.isnan(stats.loc[dataset.columns[i], "count"]): stats.loc[dataset.columns[i], "count"] = ( dataset.shape[0] - stats.loc[dataset.columns[i], "NaN"] ) stats = stats[ [ "count", "NaN", "unique_values", "mode", "mode_count", "mean", "std", "min", "25%", "50%", "75%", "max", ] ] stats.index.name = "variable" stats.reset_index(inplace=True) stats # Some observations based on the table presented previously: # - The variables *MoSold, MSSubClass, OverallCond* and *OverallQual* may work better in a regression model if coded as **categorical variables**. For this reason I'll change them to be treated as categorical; # - Some variables with no values equal to zero could perform better in a regression model if **log transformed** since they are skewed and a transformation could help prevent problems of multicolinearity: # - MSSubClass; # - LotFrontage; # - LotArea; # - 1stFlrSF; # - GrLivArea. # - Some other variables can be used to generate new **dummy variables** indicating the presence/absence of certain features: # - 2ndFlrSF; # - 3SsnPorch; # - Alley; # - EnclosedPorch; # - Fence; # - FireplaceQu; # - GarageQual; # - LowQualFinSF; # - MasVnrType; # - MiscFeature; # - MiscVal; # - PoolQC; # - OpenPorchSF; # - ScreenPorch # - TotalBsmtSF; # - WoodDeckSF. # First I'll convert the above mentioned variables into string types. dataset["MoSold"] = dataset["MoSold"].astype(str) dataset["MSSubClass"] = dataset["MSSubClass"].astype(str) dataset["OverallCond"] = dataset["OverallCond"].astype(str) dataset["OverallQual"] = dataset["OverallQual"].astype(str) # Now I make the log transformation of the following variables: *LotFrontage, LotArea, 1stFlrSF* and *GrLivArea*. dataset["LotFrontageLog"] = np.log(dataset["LotFrontage"]) dataset["LotAreaLog"] = np.log(dataset["LotArea"]) dataset["1stFlrSFLog"] = np.log(dataset["1stFlrSF"]) dataset["GrLivAreaLog"] = np.log(dataset["GrLivArea"]) ax1 = plt.subplot(221) ax2 = plt.subplot(222) ax3 = plt.subplot(223) ax4 = plt.subplot(224) sns.distplot(dataset["LotFrontageLog"], ax=ax1) sns.distplot(dataset["LotAreaLog"], ax=ax2) sns.distplot(dataset["1stFlrSFLog"], ax=ax3) sns.distplot(dataset["GrLivAreaLog"], ax=ax4) # Finally, I create dummy variables to indicate the presence/absence of some features in the houses. dataset["2ndFlrDummy"] = np.where(dataset["2ndFlrSF"] > 0, 1, 0) dataset["3SsnPorchDummy"] = np.where(dataset["3SsnPorch"] > 0, 1, 0) dataset["AlleyDummy"] = np.where(dataset["Alley"] != "NA", 1, 0) dataset["EnclosedPorchDummy"] = np.where(dataset["EnclosedPorch"] > 0, 1, 0) dataset["FireplaceDummy"] = np.where(dataset["FireplaceQu"] != "NA", 1, 0) dataset["LowQualFinDummy"] = np.where(dataset["LowQualFinSF"] > 0, 1, 0) dataset["OpenPorchDummy"] = np.where(dataset["OpenPorchSF"] > 0, 1, 0) dataset["PoolDummy"] = np.where(dataset["PoolQC"] != "NA", 1, 0) dataset["ScreenPorchDummy"] = np.where(dataset["ScreenPorch"] > 0, 1, 0) dataset["PorchDummy"] = np.where( dataset["3SsnPorchDummy"] + dataset["EnclosedPorchDummy"] + dataset["OpenPorchDummy"] + dataset["ScreenPorchDummy"] > 0, 1, 0, ) dataset["BsmtDummy"] = np.where(dataset["TotalBsmtSF"] > 0, 1, 0) dataset["DeckDummy"] = np.where(dataset["WoodDeckSF"] > 0, 1, 0) # Final look at the data # This is a final look at the dataset before implementing the regression models. # Here I try to have an idea of how each variable interact with the dependent variable of my future models: SalePriceLog. # Correlation Matrix # I'll start by checking for some correlations to have an idea of which variables are more likely to contribute to a regression model and which aren't. sns.heatmap(dataset.corr(), cmap="Blues", linewidths=0.2) # Since there are many variables in the dataset, I think an easier way of checking for correlations with the dependent variable its to just check the column SalePriceLog in the correlation matrix. dataset.corr()["SalePrice"].sort_values(ascending=False) # Visualizations # Some variables didn't appear in the previous correlation analysis because they are categorical. # To have an ideia of how they interact with the dependent variable I'll plot scatterplots of the numerical variables and scatterplots of the categorical variables. The Y axis is always SalePriceLog (the same visualizations can be generated to SalePrice by only replacing SalePriceLog by it in the code below). variables = list(dataset.columns)[1:80] + list(dataset.columns)[83:] while len(variables) >= 8: fig, ((ax1, ax2, ax3), (ax4, ax5, ax6), (ax7, ax8, ax9)) = plt.subplots(3, 3) plt.subplots_adjust(hspace=0.5) ax = [ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8, ax9] for i in range(9): if type(dataset[variables[i]][0]) in [np.int64, np.float64]: sns.scatterplot(y="SalePriceLog", x=variables[i], data=dataset, ax=ax[i]) else: sns.boxplot( y="SalePriceLog", x=variables[i], data=dataset, palette="rainbow", ax=ax[i], ) variables = variables[9:] fig, ((ax1, ax2, ax3), (ax4, ax5, _)) = plt.subplots(2, 3, figsize=(15, 4.5)) plt.subplots_adjust(hspace=0.5) sns.boxplot(y="SalePriceLog", x=variables[0], data=dataset, ax=ax1, palette="rainbow") sns.boxplot(y="SalePriceLog", x=variables[1], data=dataset, ax=ax2, palette="rainbow") sns.boxplot(y="SalePriceLog", x=variables[2], data=dataset, ax=ax3, palette="rainbow") sns.boxplot(y="SalePriceLog", x=variables[3], data=dataset, ax=ax4, palette="rainbow") sns.boxplot(y="SalePriceLog", x=variables[4], data=dataset, ax=ax5, palette="rainbow") # The previous correlations and visualizations suggests that some variables that would be interresting to have in a regression model are: # - 1stFlrSFLog; # - BsmtCond; # - BsmtDummy; # - BsmtExposure; # - BsmtFinSF1; # - BsmtQual; # - CentralAir; # - ExterQual; # - Fireplaces; # - FireplaceQu; # - FullBath; # - GarageArea; # - GarageCars; # - GarageFinish; # - GarageQual; # - GarageYrBlt; # - GrLivAreaLog; # - HeatingQC; # - KitchenQual; # - LotAreaLog; # - LotFrontage; # - MasVnrArea; # - OpenPorchDummy; # - OverallQual; # - TotalBsmtSF; # - TotRmsAbvGrd; # - YearBuilt; # - YearRemodAdd. # Train and Test Set # Since there is no more modifications that I would like to make to the dataset, it's time to separate it into train and test set again. train = dataset[dataset["dataset"] == "train"].copy() train["dataset"] = None test = dataset[dataset["dataset"] == "test"].copy() test["dataset"] = None print("training set shape: " + str(train.shape)) print("test set shape: " + str(test.shape)) train.to_csv("train_mod.csv", index=False) test.to_csv("test_mod.csv", index=False)
class myfistclass: x = 5 y = 10 pl = myfistclass() # object print(pl.x) print(pl.y) class person: def __init__(self, name, age): self.name = name self.age = age def my_fun(abc): print("hello my name is", abc.name) print("my age is", abc.age) pl = person("Garima", 20) # print(pl.name) # print(pl.age) pl.my_fun() # Inheritance class person: def __init__(self, fname, Lname): self.fname = fname self.Lname = Lname def printname(self): print(self.fname, self.Lname) x = person("Garima", "Sharma") x.printname() # child class class children: pass x = children("john", "joey") x.printname()
# # Kensho Derived Wikimedia Dataset - Wikipedia Introduction # This notebook will introduce you to the Wikipedia Sample of the Kensho Derived Wikimedia Dataset (KDWD). We'll explore the files and make some basic "getting to know you" plots. Lets start off by importing some packages. from collections import Counter import csv import gc import json import os import string import subprocess import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from tqdm import tqdm sns.set() sns.set_context("talk") # Lets check the input directory to see what files we have access to. for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # All of the KDWD files have one "thing" per line. We'll hard code the number of lines in the files we're going to use so we can have nice progress bars when streaming through them. NUM_KLAT_LINES = 5_343_564 NUM_PAGE_LINES = 5_362_174 kdwd_path = os.path.join("/kaggle/input", "kensho-derived-wikimedia-data") # # Page Metadata # Lets examine the Wikipedia sample starting with page metadata in `page.csv`. After this we'll move on to the `link_annotated_text.jsonl` file. page_df = pd.read_csv( os.path.join(kdwd_path, "page.csv"), keep_default_na=False, # dont read the page title "NaN" as a null ) page_df # We store pages in ascending `page_id` order and we have metadata for 5,362,174 of them. The `page_id` is the primary Wikipedia identifier for a page and the `item_id` is the unique identifier for the associated Wikidata page. We can construct Wikipedia and Wikidata urls from the metadata if we like. def wikipedia_url_from_title(title): return "https://en.wikipedia.org/wiki/{}".format(title.replace(" ", "_")) def wikipedia_url_from_page_id(page_id): return "https://en.wikipedia.org/?curid={}".format(page_id) def wikidata_url_from_item_id(item_id): return "https://www.wikidata.org/entity/Q{}".format(item_id) title = "Kurt Vonnegut" page_row_df = page_df[page_df["title"] == title] print(page_row_df) page_id = page_row_df.iloc[0]["page_id"] item_id = page_row_df.iloc[0]["item_id"] print(wikipedia_url_from_title(title)) print(wikipedia_url_from_page_id(page_id)) print(wikidata_url_from_item_id(item_id)) # The `views` column represents page views for the month of December 2019. Lets see what the most viewed pages were. page_df.sort_values("views", ascending=False).head(25) # The main Wikipedia page (title=`Wikipedia`) is always near the top of the list, but `Simple Mail Transfer Protocol` being in the number one spot appears to be an anomaly for this particular month. Wikimedia provides a pageviews analysis tool that is very useful for these sorts of investigations ([Simple Mail Transfer Protocol - pageview analysis](https://tools.wmflabs.org/pageviews/?project=en.wikipedia.org&platform=all-access&agent=user&start=2018-01&end=2020-01&pages=Simple_Mail_Transfer_Protocol)). Lets see what the full distribution looks like. page_df["log_views"] = np.log10(page_df["views"] + 1) fig, axes = plt.subplots(1, 2, figsize=(18, 8), sharex=True, sharey=True) ax = axes[0] counts, bins, patches = ax.hist(page_df["log_views"], bins=40, density=True) ii = np.argmax(counts) xx = (bins[ii] + bins[ii + 1]) / 2 ax.axvline(xx, color="red", ls="--", alpha=0.7) ax.axhline(0.5, color="red", ls="--", alpha=0.7) ax.set_xlim(-0.3, 5) ax.set_xlabel("log10 views") ax.set_ylabel("fraction") ax.set_title("probability distribution") ax = axes[1] counts, bins, patches = ax.hist( page_df["log_views"], bins=40, density=True, cumulative=True ) ax.axvline(xx, color="red", ls="--", alpha=0.7) ax.axhline(0.5, color="red", ls="--", alpha=0.7) ax.set_xlabel("log10 views") ax.set_title("cumulative distribution") fig.suptitle("Distribution of page views for {} pages".format(page_df.shape[0])) # Above we show probability and cumulative distributions for page views. The probability distribution is peaked around $log_{10}(30)=1.5$ and that corresponds with roughly half of pages. There is a cutoff at $log_{10}(5) = 0.70$ due to the [raw source of pageviews](https://dumps.wikimedia.org/other/pagecounts-ez/merged/) not including counts below 5. # # Link Annotated Text # Lets start exploring the link annotated text. First we'll write a simple class to iterate over page lines and load them into dictionaries. # class KdwdLinkAnnotatedText: def __init__(self, file_path, max_pages=1_000_000): self.file_path = file_path self.num_lines = NUM_KLAT_LINES self.max_pages = max_pages self.pages_to_parse = min(self.num_lines, self.max_pages) def __iter__(self): with open(self.file_path) as fp: for ii_line, line in enumerate(fp): if ii_line == self.pages_to_parse: break yield json.loads(line) file_path = os.path.join(kdwd_path, "link_annotated_text.jsonl") klat = KdwdLinkAnnotatedText(file_path) # Next we will grab a single page from the iterator and examine its structure. first_page = next(iter(klat)) print("page_id: ", first_page["page_id"]) section = first_page["sections"][0] print("section name: ", section["name"]) print("section text: ", section["text"]) print("section link_offsets: ", section["link_offsets"]) print("section link_lengths: ", section["link_lengths"]) print("section target_page_ids: ", section["target_page_ids"]) # The link data can be used to examine link anchor texts and their target pages. for offset, length, target_page_id in zip( section["link_offsets"], section["link_lengths"], section["target_page_ids"] ): anchor_text = section["text"][offset : offset + length] target_title = page_df[page_df["page_id"] == target_page_id].iloc[0]["title"] print("{} -> {}".format(anchor_text, wikipedia_url_from_title(target_title))) # Now lets iterate through part of the corpus and examine the vocabulary used in `Introduction` sections of the first 1M pages. We'll create a quick tokenizer function that will split on whitespace, lowercase, and remove punctuation. table = str.maketrans("", "", string.punctuation) def tokenize(text): tokens = [tok.lower().strip() for tok in text.split()] tokens = [tok.translate(table) for tok in tokens] return tokens unigrams = Counter() words_per_section = [] for page in tqdm( klat, total=min(klat.num_lines, klat.max_pages), desc="iterating over page text" ): for section in page["sections"]: tokens = tokenize(section["text"]) unigrams.update(tokens) words_per_section.append(len(tokens)) # stop after intro section break print("num tokens= {}".format(sum(unigrams.values()))) print("unique tokens= {}".format(len(unigrams))) def filter_unigrams(unigrams, min_count): """remove tokens that dont occur at least `min_count` times""" tokens_to_filter = [tok for tok, count in unigrams.items() if count < min_count] for tok in tokens_to_filter: del unigrams[tok] return unigrams min_count = 5 unigrams = filter_unigrams(unigrams, min_count) print("num tokens= {}".format(sum(unigrams.values()))) print("unique tokens= {}".format(len(unigrams))) unigrams_df = pd.DataFrame(unigrams.most_common(), columns=["token", "count"]) unigrams_df # Lets create the classic Zipf style count vs rank plot for our unigrams. num_rows = unigrams_df.shape[0] ii_rows_logs = np.linspace(1, np.log10(num_rows - 1), 34) ii_rows = [0, 1, 3, 7] + [int(el) for el in 10**ii_rows_logs] rows = unigrams_df.iloc[ii_rows, :] indexs = np.log10(rows.index.values + 1) counts = np.log10(rows["count"].values + 1) tokens = rows["token"] fig, ax = plt.subplots(figsize=(14, 12)) ax.scatter(indexs, counts) for token, index, count in zip(tokens, indexs, counts): ax.text(index + 0.05, count + 0.05, token, fontsize=12) ax.set_xlim(-0.2, 6.5) ax.set_xlabel("log10 rank") ax.set_ylabel("log10 count") ax.set_title("Zipf style plot for unigrams") # And finally lets examine the distribution of section lengths measured in words. xx = np.log10(np.array(words_per_section) + 1) fig, axes = plt.subplots(1, 2, figsize=(18, 8), sharex=True, sharey=True) ax = axes[0] counts, bins, patches = ax.hist(xx, bins=40, density=True) ii = np.argmax(counts) xx_max = (bins[ii] + bins[ii + 1]) / 2 ax.axvline(xx_max, color="red", ls="--", alpha=0.7) ax.axhline(0.5, color="red", ls="--", alpha=0.7) ax.set_xlabel("log10 tokens/section") ax.set_ylabel("fraction") ax.set_title("probability distribution") ax.set_xlim(0.3, 3.8) ax = axes[1] counts, bins, patches = ax.hist(xx, bins=40, density=True, cumulative=True) ax.axvline(xx_max, color="red", ls="--", alpha=0.7) ax.axhline(0.5, color="red", ls="--", alpha=0.7) ax.set_xlabel("log10 tokens/section") ax.set_title("cumulative distribution") fig.suptitle( "Distribution of tokens/section for {} pages".format(len(words_per_section)) )
# This notebook estimates the causal effects of markdowns on store sales. The regression of sales on markdowns have omitted variables bias because variables that affect markdown decision might also affect store sales. I use two methods to control these none observable variables. One is to use store fixed effects, and the other is to use lagged store sales. import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. import datetime import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np from scipy.stats import norm from sklearn.preprocessing import StandardScaler from scipy import stats import warnings warnings.filterwarnings("ignore") from linearmodels import PanelOLS print(os.listdir("../input")) data_a = pd.read_csv("../input/retaildataset/Features data set.csv") data_b = pd.read_csv("../input/retaildataset/sales data-set.csv") data_a.head() data_b.head() data_b.isnull().sum() # Extract store sales data from data_b store_sales = pd.DataFrame(data_b.groupby(["Store", "Date"])["Weekly_Sales"].sum()) store_sales.head() store_sales.reset_index(inplace=True) store_sales.head() # store_sales=store_sales.set_index(['Store', 'Date']) # store_sales.head() store_sales[store_sales["Store"] == 1].count() store_sales.shape # store_sales is balanced! # Merge the sales data with markdowns data data = pd.merge( store_sales, data_a, how="left", left_on=["Store", "Date"], right_on=["Store", "Date"], ) data.isnull().sum() data["Weekly_Sales"] = data["Weekly_Sales"] / data["CPI"] data["MarkDown1"] = data["MarkDown1"] / data["CPI"] data["MarkDown2"] = data["MarkDown2"] / data["CPI"] data["MarkDown3"] = data["MarkDown3"] / data["CPI"] data["MarkDown4"] = data["MarkDown4"] / data["CPI"] data["MarkDown5"] = data["MarkDown5"] / data["CPI"] data[data["Store"] == 1].count() data.shape data["Date"] = pd.to_datetime(data["Date"]) data.head() df = data df.sort_values(["Store", "Date"], inplace=True) df.reset_index(inplace=True) df.drop(["index"], axis=1, inplace=True) df["month"] = pd.to_datetime(df["Date"]).dt.to_period("M") df.head() # df_dummy=pd.get_dummies(df['month']) # df_dummy=df_dummy.rename(columns=lambda s:'mcode'+s) # df=df.join(df_dummy) # df.head() df["IsHoliday_pre"] = df.groupby("Store")["IsHoliday"].shift(1) df["IsHoliday_next"] = df.groupby("Store")["IsHoliday"].shift(-1) df.head() df["sales_lag"] = df.groupby("Store")["Weekly_Sales"].shift(1) df.head() df.isnull().sum() df = df[df["Date"].isin(pd.date_range(start="20111111", end="20121026"))] df.isnull().sum() # correlation matrix corrmat = df[["MarkDown1", "MarkDown2", "MarkDown3", "MarkDown4", "MarkDown5"]].corr() f, ax = plt.subplots(figsize=(12, 9)) sns.heatmap(corrmat, vmax=0.8, square=True) df["FilledMarkdown1"] = df["MarkDown1"].fillna(method="pad") df["FilledMarkdown2"] = df["MarkDown2"].fillna(method="pad") df["FilledMarkdown3"] = df["MarkDown3"].fillna(method="pad") df["FilledMarkdown4"] = df["MarkDown4"].fillna(method="pad") df["FilledMarkdown5"] = df["MarkDown5"].fillna(method="pad") df.isnull().sum() # df['MarkDown1'].fillna(df.groupby('Store')['MarkDown1'].shift(-1),inplace=True)#fill nan with previous values # df['MarkDown2'].fillna(df.groupby('Store')['MarkDown2'].shift(-1),inplace=True) # df['MarkDown3'].fillna(df.groupby('Store')['MarkDown3'].shift(-1),inplace=True) # df['MarkDown4'].fillna(df.groupby('Store')['MarkDown4'].shift(-1),inplace=True) # df['MarkDown5'].fillna(df.groupby('Store')['MarkDown5'].shift(-1),inplace=True) # df.isnull().sum() df["LogMarkdown1"] = np.log(df["FilledMarkdown1"]) df["LogMarkdown2"] = np.log(df["FilledMarkdown2"]) df["LogMarkdown3"] = np.log(df["FilledMarkdown3"]) df["LogMarkdown4"] = np.log(df["FilledMarkdown4"]) df["LogMarkdown5"] = np.log(df["FilledMarkdown5"]) df["LogSales"] = np.log(df["Weekly_Sales"]) df["LogSales_lag"] = np.log(df["sales_lag"]) df["LogCPI"] = np.log(df["CPI"]) df[df["LogMarkdown2"].isnull()][["MarkDown2", "FilledMarkdown2"]] df["IsHoliday"] = df["IsHoliday"].apply(lambda x: int(x == True)) df["IsHoliday_pre"] = df["IsHoliday_pre"].apply(lambda x: int(x == True)) df["IsHoliday_next"] = df["IsHoliday_next"].apply(lambda x: int(x == True)) df["IsHoliday"].head() df_test = df.drop( ["MarkDown1", "MarkDown2", "MarkDown3", "MarkDown4", "MarkDown5"], axis=1 ) df_test.isnull().sum() df["TMarkdown"] = ( df["FilledMarkdown1"] + df["FilledMarkdown2"] + df["FilledMarkdown3"] + df["FilledMarkdown4"] + df["FilledMarkdown5"] ) df_pn = df.set_index(["Store", "Date"]) df_pn.head() # X=[df_pn.LogCPI,df_pn.Unemployment,df_pn.IsHoliday,df_pn.IsHoliday_pre,df_pn.IsHoliday_next,df_pn.LogMarkdown1,df_pn.LogMarkdown2,df_pn.LogMarkdown3,df_pn.LogMarkdown4,df_pn.LogMarkdown5] X = df_pn[ [ "Unemployment", "FilledMarkdown1", "FilledMarkdown2", "FilledMarkdown3", "FilledMarkdown4", "FilledMarkdown5", ] ] y = df_pn["Weekly_Sales"] y1 = np.log(y) X.isnull().sum() y.rank() mod = PanelOLS(y, X, entity_effects=True, time_effects=True) res = mod.fit(cov_type="clustered", cluster_entity=True) res df_pn["month"] = df_pn["month"].astype("str") df_pn[ [ "IsHoliday", "IsHoliday_pre", "IsHoliday_next", "FilledMarkdown1", "FilledMarkdown2", "FilledMarkdown3", "FilledMarkdown4", "FilledMarkdown5", ] ].corr() df_pn[ [ "IsHoliday", "IsHoliday_pre", "IsHoliday_next", "MarkDown1", "MarkDown2", "MarkDown3", "MarkDown4", "MarkDown5", ] ].corr() formula_reg = "y ~ 1 + Unemployment+FilledMarkdown1+FilledMarkdown2+FilledMarkdown3+FilledMarkdown4+FilledMarkdown5+FilledMarkdown1*IsHoliday +FilledMarkdown2*IsHoliday+FilledMarkdown3*IsHoliday+FilledMarkdown4*IsHoliday+FilledMarkdown5*IsHoliday+FilledMarkdown1*IsHoliday_pre +FilledMarkdown2*IsHoliday_pre+FilledMarkdown3*IsHoliday_pre+FilledMarkdown4*IsHoliday_pre+FilledMarkdown5*IsHoliday_pre+FilledMarkdown1*IsHoliday_next +FilledMarkdown2*IsHoliday_next+FilledMarkdown3*IsHoliday_next+FilledMarkdown4*IsHoliday_next+FilledMarkdown5*IsHoliday_next+C(month)+ EntityEffects" formula_reg1 = "y ~ 1 + sales_lag+Unemployment+FilledMarkdown1+FilledMarkdown2+FilledMarkdown3+FilledMarkdown4+FilledMarkdown5+FilledMarkdown1*IsHoliday +FilledMarkdown2*IsHoliday+FilledMarkdown3*IsHoliday+FilledMarkdown4*IsHoliday+FilledMarkdown5*IsHoliday+FilledMarkdown1*IsHoliday_pre +FilledMarkdown2*IsHoliday_pre+FilledMarkdown3*IsHoliday_pre+FilledMarkdown4*IsHoliday_pre+FilledMarkdown5*IsHoliday_pre+FilledMarkdown1*IsHoliday_next +FilledMarkdown2*IsHoliday_next+FilledMarkdown3*IsHoliday_next+FilledMarkdown4*IsHoliday_next+FilledMarkdown5*IsHoliday_next+C(month)" df_pn["IsHoliday"] mod1 = PanelOLS.from_formula(formula_reg, df_pn) res1 = mod1.fit(cov_type="clustered", cluster_entity=True) res1 mod2 = PanelOLS.from_formula(formula_reg1, df_pn) res2 = mod2.fit(cov_type="clustered", cluster_entity=True) res2
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. transcriptions = { filename: f"{dirname}{filename}" for filename in filenames for dirname, _, filenames in os.walk("/kaggle/input/explorationspeechresources/") } tedxCorpus = pd.read_csv( transcriptions["TEDx_Spanish.transcription"], names=["sentence", "path"], sep="TEDX_", ) tedxCorpus.loc[:, "path"] = tedxCorpus.path.apply(lambda p: f"TEDX_{p}.wav") tedxCorpus["gender"] = tedxCorpus.path.apply( lambda x: "male" if "_M_" in x else "female" ) tedxCorpus["accent"] = "mexicano" transcriptions["TEDx_Spanish.transcription"] = tedxCorpus transcriptions["validated.tsv"] = pd.read_table( transcriptions["validated.tsv"], header=0 ) def process_crowfund(path, gender, accent): df = pd.read_table(path, header=None, names=["path", "sentence"]) df["gender"] = gender df["accent"] = accent df.loc[:, "path"] = df.path.apply(lambda p: p + ".wav") return df transcriptions["es_co_male.tsv"] = process_crowfund( transcriptions["es_co_male.tsv"], "male", "andino" ) transcriptions["es_co_female.tsv"] = process_crowfund( transcriptions["es_co_female.tsv"], "female", "andino" ) transcriptions["es_pe_male.tsv"] = process_crowfund( transcriptions["es_pe_male.tsv"], "male", "andino" ) transcriptions["es_pe_female.tsv"] = process_crowfund( transcriptions["es_pe_female.tsv"], "female", "andino" ) transcriptions["es_portoric_female.tsv"] = process_crowfund( transcriptions["es_portoric_female.tsv"], "female", "caribe" ) tmp = pd.read_json(transcriptions["female_mex.json"], orient="index") transcriptions["female_mex.json"] = pd.DataFrame() transcriptions["female_mex.json"]["path"] = tmp.index transcriptions["female_mex.json"]["sentence"] = tmp.clean.values transcriptions["female_mex.json"]["gender"] = "female" transcriptions["female_mex.json"]["accent"] = "mexicano" tmp = None def mergeDataframes(**dataframes): return pd.concat(list(dataframes.values()), axis=0).reset_index(drop=True) mergedTranscriptions = mergeDataframes(**transcriptions) def getFrequencyDistribution(df, column_name): return df[pd.notnull(df[column_name])].groupby(df[column_name]).size() getFrequencyDistribution(mergedTranscriptions, "accent").plot.bar() getFrequencyDistribution(mergedTranscriptions, "age").plot.bar() getFrequencyDistribution(mergedTranscriptions, "gender").plot.bar() # Repeated Values? len(mergedTranscriptions.path.unique()) != len(mergedTranscriptions) # Empty values? len(mergedTranscriptions[mergedTranscriptions.sentence.isnull()]) + len( mergedTranscriptions[mergedTranscriptions.path.isnull()] ) # Grouping a-like accents from collections import defaultdict phonetic_groups = defaultdict( lambda: "other", { **dict.fromkeys(["mexicano", "andino", "americacentral"], "mexican_alike"), **dict.fromkeys(["canario", "caribe", "rioplatense"], "southAmerican"), **dict.fromkeys( ["centrosurpeninsular", "nortepeninsular", "surpeninsular"], "spaniards" ), "chileno": "chileno", }, ) mergedTranscriptions.loc[:, "accent"] = mergedTranscriptions.accent.apply( lambda a: phonetic_groups[a] ) getFrequencyDistribution(mergedTranscriptions, "accent").plot.bar() import numpy as np def apply_w2l_format(dataframe): dataframe = dataframe.reset_index() dataframe.drop("index", axis=1, inplace=True) dataframe["unique_id"] = dataframe.index dataframe["duration"] = np.zeros(len(dataframe)) dataframe = dataframe[["unique_id", "path", "duration", "sentence"]] return dataframe mergedTranscriptions = apply_w2l_format(mergedTranscriptions) mergedTranscriptions.groupby( mergedTranscriptions.sentence.apply(lambda s: len(s.split())) ).size().plot.bar() mergedTranscriptions.to_csv("raw_dataset.lst", sep="\t", index=False, header=None) import re import string import ftfy co_SentenceLevel = { # Separate simbols from words "?": " ? ", "¿": " ¿ ", ",": " , ", "'": " ' ", "\.{2,}": " ", ".": " . ", ":": " : ", ftfy.fix_encoding("á"): ftfy.fix_encoding("A"), ftfy.fix_encoding("é"): ftfy.fix_encoding("E"), ftfy.fix_encoding("í"): ftfy.fix_encoding("I"), ftfy.fix_encoding("ó"): ftfy.fix_encoding("O"), ftfy.fix_encoding("ú"): ftfy.fix_encoding("U"), # delete some useless simbols "-": " ", "(": " ", ")": " ", # delete double space, and sequences of "-,*,^,." "\?{2,}|\!{2,}": " ", } def escapePattern(pattern): """Helper function to build our regex""" if len(pattern) == 1: pattern = re.escape(pattern) return pattern def compileCleanerRegex(cleaningOptions): """Given a dictionary of rules this contruct the regular expresion to detect the patterns""" return re.compile("(%s)" % "|".join(map(escapePattern, cleaningOptions.keys()))) delete = ftfy.fix_encoding("\"!¡#$%&()*+-/:<=>@[\\]^_`{|}'~") replaceVocal = ftfy.fix_encoding("äëïöü") clean_regex = compileCleanerRegex(co_SentenceLevel) rmPunc = str.maketrans("", "", delete) rPVocal = str.maketrans(replaceVocal, "aeiou") norm_spaces = re.compile("\s{1,}") def clean_text( text, cleaningOptions, cleaningRegex, removePunct, replaceVocab, norm_spaces ): """Cleaning function for text Given a text this function applies the cleaning rules defined in a dictionary using a regex to detect the patterns. Args: text (str): The text we want to clean. cleaningRegex(regex): Regular expression to detect the patterns defined in the cleaning options compiled using the compileCleanerRegex(cleaningOptions) function. Returns: The cleaned text applying the cleaning options. """ text = ftfy.fix_encoding(text).lower() text = cleaningRegex.sub( lambda mo: cleaningOptions.get( mo.group(1), ), text, ) text = text.translate(removePunct) text = text.translate(replaceVocab) return " ".join(norm_spaces.split(text.strip())) from functools import partial clean = partial( clean_text, cleaningOptions=co_SentenceLevel, cleaningRegex=clean_regex, removePunct=rmPunc, replaceVocab=rPVocal, norm_spaces=norm_spaces, ) ph = """\"Tal programa, ""Rog-O-Matic"",el pingüino fue desarrollado para jugar.... y ganar el juego.\" ángel , diego gómez , carlos o'connor reina , ma . """ clean(ph) from multiprocessing import Pool from tqdm.notebook import tqdm with Pool(8) as p: mergedTranscriptions.loc[:, "sentence"] = tqdm( p.imap(clean, mergedTranscriptions.sentence.values), total=len(mergedTranscriptions), ) mergedTranscriptions["sentence"].sample(10).values mergedTranscriptions.to_csv("punc_dataset.lst", sep="\t", index=False, header=None) punclst = string.punctuation + "¿" rmPunc = str.maketrans("", "", punclst) def remPunct(text, rmPunc=rmPunc, norm_spaces=norm_spaces): text = text.translate(rmPunc) return " ".join(norm_spaces.split(text.strip())) with Pool(8) as p: mergedTranscriptions.loc[:, "sentence"] = tqdm( p.imap(remPunct, mergedTranscriptions.sentence.values), total=len(mergedTranscriptions), ) mergedTranscriptions["sentence"].sample(10).values mergedTranscriptions.to_csv( "np_accents_dataset.lst", sep="\t", index=False, header=None ) mergedTranscriptions.loc[:, "sentence"] = mergedTranscriptions.sentence.apply( lambda s: s.lower() ) mergedTranscriptions.to_csv("np_dataset.lst", sep="\t", index=False, header=None) mergedTranscriptions["sentence"].sample(10).values
# Import Dependencies import numpy as np from numpy import nan import pandas as pd import matplotlib.pyplot as plt from sklearn.metrics import mean_squared_error from sklearn.preprocessing import MinMaxScaler from tensorflow.keras import Sequential from tensorflow.keras.layers import LSTM, Dense data = pd.read_csv( "../input/power-consumption-of-house/power_consumption_of_house.txt", sep=";", parse_dates=True, low_memory=False, ) data["date_time"] = data["Date"].str.cat(data["Time"], sep=" ") data.drop(["Date", "Time"], inplace=True, axis=1) data.set_index(["date_time"], inplace=True) data.replace("?", nan, inplace=True) data = data.astype("float") data.head() # First check how many values are null np.isnan(data).sum() # fill the null value def fill_missing(data): one_day = 24 * 60 for row in range(data.shape[0]): for col in range(data.shape[1]): if np.isnan(data[row, col]): data[row, col] = data[row - one_day, col] fill_missing(data.values) # Again check the data after filling the value np.isnan(data).sum() data.describe() data.shape data.head() # Converting the index as date data.index = pd.to_datetime(data.index) data = data.resample("D").sum() data.head() fig, ax = plt.subplots(figsize=(18, 18)) for i in range(len(data.columns)): plt.subplot(len(data.columns), 1, i + 1) name = data.columns[i] plt.plot(data[name]) plt.title(name, y=0, loc="right") plt.yticks([]) plt.show() fig.tight_layout() # # Exploring Active power consumption for each year years = ["2007", "2008", "2009", "2010"] fig, ax = plt.subplots(figsize=(18, 18)) for i in range(len(years)): plt.subplot(len(years), 1, i + 1) year = years[i] active_power_data = data[str(year)] plt.plot(active_power_data["Global_active_power"]) plt.title(str(year), y=0, loc="left") plt.show() fig.tight_layout() # # Power consumption distribution with histogram fig, ax = plt.subplots(figsize=(18, 18)) for i in range(len(years)): plt.subplot(len(years), 1, i + 1) year = years[i] active_power_data = data[str(year)] active_power_data["Global_active_power"].hist(bins=200) plt.title(str(year), y=0, loc="left") plt.show() fig.tight_layout() # for full data fig, ax = plt.subplots(figsize=(18, 18)) for i in range(len(data.columns)): plt.subplot(len(data.columns), 1, i + 1) name = data.columns[i] data[name].hist(bins=200) plt.title(name, y=0, loc="right") plt.yticks([]) plt.show() fig.tight_layout() # ## What can we predict # Forecast hourly consumption for the next day. # Forecast daily consumption for the next week. # Forecast daily consumption for the next month. # Forecast monthly consumption for the next year. # ## Modeling Methods # There are many modeling methods and few of those are as follows # Naive Methods -> Naive methods would include methods that make very simple, but often very effective assumptions. # Classical Linear Methods -> Classical linear methods include techniques are very effective for univariate time series forecasting # Machine Learning Methods -> Machine learning methods require that the problem be framed as a supervised learning problem. # k-nearest neighbors. # SVM # Decision trees # Random forest # Gradient boosting machines # Deep Learning Methods -> combinations of CNN LSTM and ConvLSTM, have proven effective on time series classification tasks # CNN # LSTM # CNN - LSTM data_train = data.loc[:"2009-12-31", :]["Global_active_power"] data_train.head() data_test = data["2010"]["Global_active_power"] data_test.head() data_train.shape data_test.shape # # Prepare Training data data_train = np.array(data_train) print(data_train) X_train, y_train = [], [] for i in range(7, len(data_train) - 7): X_train.append(data_train[i - 7 : i]) y_train.append(data_train[i : i + 7]) X_train, y_train = np.array(X_train), np.array(y_train) X_train.shape, y_train.shape pd.DataFrame(X_train).head() x_scaler = MinMaxScaler() X_train = x_scaler.fit_transform(X_train) y_scaler = MinMaxScaler() y_train = y_scaler.fit_transform(y_train) X_train = X_train.reshape(1098, 7, 1) X_train.shape # # Build LSTM Network model = Sequential() model.add(LSTM(units=200, activation="relu", input_shape=(7, 1))) model.add(Dense(7)) model.compile(loss="mse", optimizer="adam") model.summary() model.fit(X_train, y_train, epochs=100) # # Prepare test dataset and test LSTM model data_test = np.array(data_test) X_test, y_test = [], [] for i in range(7, len(data_test) - 7): X_test.append(data_test[i - 7 : i]) y_test.append(data_test[i : i + 7]) X_test, y_test = np.array(X_test), np.array(y_test) X_test = x_scaler.transform(X_test) y_test = y_scaler.transform(y_test) X_test = X_test.reshape(331, 7, 1) X_test.shape y_pred = model.predict(X_test) y_pred = y_scaler.inverse_transform(y_pred) y_pred y_true = y_scaler.inverse_transform(y_test) y_true # # Evaluate the Model def evaluate_model(y_true, y_predicted): scores = [] # calculate scores for each day for i in range(y_true.shape[1]): mse = mean_squared_error(y_true[:, i], y_predicted[:, i]) rmse = np.sqrt(mse) scores.append(rmse) # calculate score for whole prediction total_score = 0 for row in range(y_true.shape[0]): for col in range(y_predicted.shape[1]): total_score = total_score + (y_true[row, col] - y_predicted[row, col]) ** 2 total_score = np.sqrt(total_score / (y_true.shape[0] * y_predicted.shape[1])) return total_score, scores evaluate_model(y_true, y_pred)
# # Avocado price prediction # * **Task type:** regression # * **Models used:** linear, XGB regression # import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import seaborn as sns from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split, cross_val_score df = pd.read_csv("/kaggle/input/avocado-prices/avocado.csv") df # # Data preprocessing df = df.drop("Unnamed: 0", axis=1) df # **As there are two types of avocados, let's see the price distribution of each one.** import plotly.express as px # conventional = df[df['type'] == 'conventional'] # organic = df[df['type'] == 'organic'] fig = px.histogram( df, x="AveragePrice", color="type", marginal="box", hover_data=df.columns ) fig.show() # **So, on average, organic avocados are more expensive (as expected).** # **Let's also check whether geography influences the price.** fig = px.box(df, x="region", y="AveragePrice") fig.show() # **Correlation matrix** corr = df.corr() corr f, ax = plt.subplots(nrows=1, ncols=1, figsize=(12, 10)) ax.set_title("Correlation Matrix", fontsize=16) sns.heatmap(corr, vmin=-1, vmax=1, cmap="viridis", annot=True) # **Checking for missing & duplicated data.** df.isnull().sum() df.duplicated().any() df # # Modeling df1 = df.copy() # Introducing new feature = 'season' df1["Date"] = pd.to_datetime(df1["Date"]) df1["month"] = df1["Date"].dt.month conditions = [ (df1["month"].between(3, 5, inclusive=True)), (df1["month"].between(6, 8, inclusive=True)), (df1["month"].between(9, 11, inclusive=True)), (df1["month"].between(12, 2, inclusive=True)), ] values = [0, 1, 2, 3] # spring = 0, summer = 1, fall = 2, winter = 3 df1["seasons"] = np.select(conditions, values) # encoding labels for 'type' from sklearn.preprocessing import LabelEncoder le = LabelEncoder() df1["type"] = le.fit_transform(df1["type"]) # and region (One Hot Encoding instead of labelizing) ohe = pd.get_dummies(data=df1, columns=["region"]) X = ohe.drop( [ "AveragePrice", "Date", "4046", "4225", "4770", "Small Bags", "Large Bags", "XLarge Bags", ], axis=1, ) y = df1["AveragePrice"] X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.33, random_state=0 ) X_train from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score pipe0 = Pipeline([("scaler", StandardScaler()), ("lr", LinearRegression())]) pipe0.fit(X_train, y_train) y_pred0 = pipe0.predict(X_test) r2_score(y_test, y_pred0) from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import r2_score pipe = Pipeline([("scaler", StandardScaler()), ("rf", RandomForestRegressor())]) pipe.fit(X_train, y_train) y_pred = pipe.predict(X_test) r2_score(y_test, y_pred) from xgboost import XGBRegressor pipe2 = Pipeline([("scaler", StandardScaler()), ("xgb", XGBRegressor())]) pipe2.fit(X_train, y_train) y_pred2 = pipe2.predict(X_test) r2_score(y_test, y_pred2) # **Apparently, the best model is the one with boosting (XGB).** pd.DataFrame( pipe2["xgb"].feature_importances_, index=X_train.columns, columns=["Feature Importances"], )
from __future__ import absolute_import from __future__ import print_function # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list the files in the input directory import os import pandas as pd import numpy as np from keras.utils import np_utils from keras.utils.np_utils import to_categorical # convert to one-hot-encoding from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D, BatchNormalization from keras.callbacks import EarlyStopping from keras.callbacks import ModelCheckpoint from keras import optimizers from keras import losses from keras.models import load_model from keras import regularizers import time from keras import initializers # Load the training dataset ~87K states all_train = pd.read_csv("../input/applied-ai-assignment-2/Assignment_2_train.csv") all_train.loc[(all_train.state == 4), "state"] = 0 all_train.loc[(all_train.state == 5), "state"] = 1 len(all_train) all_train[1:5] # Create a train/validation split data_to_use = 1 train = all_train[: int(len(all_train) * data_to_use)] split = 0.9 Train = train[: int(len(train) * split)] Valid = train[int(len(train) * split) :] # Remove the first and last column from the data, as it is the board name and the label X_train = Train.iloc[:, 1:-1].values X_valid = Valid.iloc[:, 1:-1].values # Remove everything except the last column from the data, as it is the label and put it in y y_train = Train.iloc[:, -1:].values y_valid = Valid.iloc[:, -1:].values len(X_train) X_train[20].reshape(6, 7) print(X_train.shape) print(X_valid.shape) sample_train = X_train.reshape(-1, 6, 7) X_train = sample_train.reshape(79062, 6, 7, 1) sample_valid = X_valid.reshape(-1, 6, 7) X_valid = sample_valid.reshape(8785, 6, 7, 1) print(X_train.shape) print(X_valid.shape) # set input to the shape of one X value dimof_input = X_train.shape[1] # Set y categorical dimof_output = int(np.max(y_train) + 1) y_train = np_utils.to_categorical(y_train, dimof_output) y_valid = np_utils.to_categorical(y_valid, dimof_output) from keras.models import Sequential from keras.layers import Dense, Conv2D, Flatten # create model model = Sequential() model.add(Conv2D(64, kernel_size=4, activation="relu", input_shape=(6, 7, 1))) model.add(Flatten()) model.add(Dense(2, activation="softmax")) model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"]) model.summary() es = EarlyStopping( monitor="val_loss", # do not change mode="min", # do not change verbose=1, # allows you to see more info per epoch patience=10, ) # **** patience is how many validations to wait with nothing learned (patience * validation_freq) mc = ModelCheckpoint( "best_model.h5", monitor="val_loss", mode="min", verbose=0, save_best_only=True ) # do not change history = model.fit( X_train, y_train, batch_size=32, validation_data=(X_valid, y_valid), callbacks=[es, mc], epochs=1, )
import numpy as np import tensorflow as tf import keras from keras.preprocessing.image import ImageDataGenerator from keras.models import load_model from keras.layers import Dense, Activation, Flatten from keras.models import Sequential train_datagen = ImageDataGenerator( # rescale=1./255, # zoom_range=0.2, horizontal_flip=False ) train_generator = train_datagen.flow_from_directory( directory="/kaggle/input/image-data-with-valid/Data_Loader_Dataset/Train", target_size=(224, 224), color_mode="rgb", batch_size=64, class_mode="binary", shuffle=True, seed=42, ) valid_datagen = ImageDataGenerator( # rescale=1./255, # zoom_range=0.2, horizontal_flip=False ) valid_generator = valid_datagen.flow_from_directory( directory="/kaggle/input/image-data-with-valid/Data_Loader_Dataset/Valid", target_size=(224, 224), color_mode="rgb", batch_size=64, class_mode="binary", shuffle=True, seed=42, ) model = Sequential( [ keras.applications.resnet.ResNet50( include_top=False, weights="imagenet", input_tensor=None, input_shape=(224, 224, 3), pooling="max", ), # Flatten(), Dense(512), Activation("relu"), Dense(1), Activation("sigmoid"), ] ) model.summary() model.compile(optimizer=Adam(lr=0.01), loss="binary_crossentropy", metrics=["accuracy"]) history = model.fit_generator( train_generator, validation_data=valid_generator, epochs=5, verbose=1 ) def eval_metric(model, history, metric_name): """ Function to evaluate a trained model on a chosen metric. Training and validation metric are plotted in a line chart for each epoch. Parameters: history : model training history metric_name : loss or accuracy Output: line chart with epochs of x-axis and metric on y-axis """ metric = history.history[metric_name] val_metric = history.history["val_" + metric_name] e = range(1, 5 + 1) plt.plot(e, metric, "bo", label="Train " + metric_name) plt.plot(e, val_metric, "b", label="Validation " + metric_name) plt.xlabel("Epoch number") plt.ylabel(metric_name) plt.title("Comparing training and validation " + metric_name) plt.legend() plt.show() import matplotlib.pyplot as plt eval_metric(model, history, "loss") from keras.models import load_model model.save("ResNet50_valid.h5") import pickle filename = "ResNet50_pickle.pkl" model = pickle.dump(model, open(filename, "wb"))
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session df = pd.read_csv( "/kaggle/input/key-indicators-of-heart-disease/heart_2022_Key_indicators.csv" ) df.sample(3) # ## Basic Preprocessing df.info() df.isnull().sum() df.describe() df.shape # ## Data Processing cat_df = df.select_dtypes(exclude=np.number) num_df = df.select_dtypes(include=np.number) cat_df.sample(2) num_df.sample(2) # ## ---> Categorical processing # * One hot encoding import matplotlib.pyplot as plt import seaborn as sn cat_cols = cat_df.columns cat_cols # ### ------> Unique values for each column for col in cat_cols: print(f"Unique {col}===============>", cat_df[col].unique()) value_cnts = {} for col in cat_cols: value_cnt = {} for uv in cat_df[col].unique(): value_cnt[uv] = len(cat_df[cat_df[col] == uv]) value_cnts[col] = value_cnt value_cnts sn.barplot() # ### ------> One hot encoding cat_df_1hot = pd.get_dummies(cat_df) cat_df_1hot.sample(4)
# *** # # # Semantic Segementation + ⚡ PyTorch Lightning Training # # # # ⛈ Flood Imagery Segmentation </span # # If you liked the notebook, please leave an UPVOTE ⬆ # 1. Importing Libraries # # Importing Libraries import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import warnings import PIL from glob import glob import tqdm warnings.filterwarnings("ignore") import torch import torch.nn as nn import torch.nn.functional as F from torchvision import models, datasets from torch.utils.data import Dataset, DataLoader import albumentations as A from albumentations.pytorch import ToTensorV2 import cv2 from sklearn.model_selection import train_test_split, StratifiedKFold, KFold import segmentation_models_pytorch as smp import pytorch_lightning as pl from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping from pytorch_toolbelt.losses import JaccardLoss, BinaryFocalLoss from iglovikov_helper_functions.dl.pytorch.lightning import find_average import wandb from pytorch_lightning.loggers import WandbLogger from collections import OrderedDict # 2. Configuration Variables # Config = dict( input_path="/kaggle/input/flood-area-segmentation/", BATCH=8, wd=1e-6, n_cpu=os.cpu_count(), IMG_SIZE=224, infra="Kaggle", MODEL_PATH="", EPOCH=8, MODEL_NAME="mobilenet_v2", _wandb_kernel="nikhil__xb", encoders=["mit_b3", "resnet34", "timm-mobilenetv3_large_100"], ) # 3. Weights & Biases Setup # wandb_logger = WandbLogger( project="Flood_Segmentation", group="vision", anonymous="allow", job_type="train", config=Config, ) # 4. Data Formatting # df = pd.read_csv("/kaggle/input/flood-area-segmentation/metadata.csv") df.drop(0, axis=0, inplace=True) df.set_axis(range(len(df)), inplace=True) df.head() # 5. Plot Color Distribution # def plot_hist(path, n_images, size=(8, 5), aug=None): np.random.seed(42) for i in range(n_images): plt.figure(figsize=size) id = np.random.randint(289) img = plt.imread(path + "Image/" + df["Image"][id]) mask = plt.imread(path + "Mask/" + df["Mask"][id]) plt.subplot(1, 2, 1) lum_img = img[:, :, 0] plt.hist(lum_img.ravel(), bins=range(256), fc="k", ec="k") plt.title("Histogram") plt.subplot(1, 2, 2) plt.imshow(img) plt.title("Image") plt.tight_layout() plot_hist(Config["input_path"], n_images=5) # 6. Plot Flood Images with Masks # def plot_image(path, n_images, size=(10, 6), aug=None): np.random.seed(42) for i in range(n_images): plt.figure(figsize=size) id = np.random.randint(290) img = plt.imread(path + "Image/" + df["Image"][id]) mask = plt.imread(path + "Mask/" + df["Mask"][id]) if aug is not None: _aug = aug(image=img, mask=mask) img_tf = _aug["image"].numpy().transpose(1, 2, 0) mask_tf = _aug["mask"].T plt.subplot(1, 5, 1) plt.imshow(img) plt.title("Image") plt.axis("off") plt.subplot(1, 5, 2) plt.imshow(mask, cmap="gray") plt.title("Mask") plt.axis("off") plt.subplot(1, 5, 3) plt.imshow(img, cmap="gray") plt.imshow(mask, cmap="gray", alpha=0.5) plt.title("Overlapping Mask") plt.axis("off") if aug is not None: plt.subplot(1, 5, 4) plt.imshow(img_tf) plt.title("Augmented Image") plt.axis("off") plt.subplot(1, 5, 5) plt.imshow(mask_tf) plt.title(f"Augmented Mask") plt.axis("off") plt.tight_layout() plt.show() plot_image(Config["input_path"], n_images=5) # 7. Augmentations # class Augments: train = A.Compose( [ A.Resize( Config["IMG_SIZE"], Config["IMG_SIZE"], interpolation=cv2.INTER_NEAREST, p=1, ), A.RandomResizedCrop( Config["IMG_SIZE"], Config["IMG_SIZE"], interpolation=cv2.INTER_NEAREST, p=0.5, ), A.HorizontalFlip(p=0.5), A.VerticalFlip(p=0.3), A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), p=1), ToTensorV2(), ] ) valid = A.Compose( [ A.Resize( Config["IMG_SIZE"], Config["IMG_SIZE"], interpolation=cv2.INTER_NEAREST, p=1, ), A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), p=1), ToTensorV2(), ] ) # Plotting Image with Augmentations plot_image(Config["input_path"], n_images=5, aug=Augments.train) # # --- # ### Notes:- # * The data contains two type of input values:- # 1. Raw Image 2. Masked Image # * Number of images = 290 # * Feature Selection can be done # > SelectFromModel, RFE, SelectKBest, and SelectPercentile. You can also use the feature_importances_ or coef_ attributes of certain models to identify the most important features # * Utilize Transfer Learning using freezing of weights and creating a custom header for it. # * Create Minibatches, trained them in parallel and combined the results of the minibatches # * Utilize Dropout, Learning Rate Scheduler, Optimizer= Adagrad # * Early stopping to reduce risk of overfitting # * Hyperparamter tuning # * Cross Entropy Loss # --- # 8. PyTorch Dataset Class # class FloodDataset(Dataset): def __init__(self, path, df, augments=None): super().__init__() self.path = path self.df = df self.augments = augments self.data = df.values def __getitem__(self, idx): image_id, mask_id = self.data[idx] im_path = self.path + "Image/" + image_id mask_path = self.path + "Mask/" + mask_id img = cv2.imread(im_path) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) mask = cv2.imread(mask_path) mask = np.where(mask[:, :, 2] > 0, 1, 0) # print(mask) if self.augments is not None: aug = self.augments(image=img, mask=mask) img = aug["image"] mask = aug["mask"] mask = np.expand_dims(mask, 0) return img, mask def __len__(self): return len(self.df) # # Helper Function # --- # Helper Function def load_weights(checkpoint_dict): new_state_dict = OrderedDict() for k, v in checkpoint_dict.items(): name = k[12:] new_state_dict[name] = v return new_state_dict def iou_pytorch(logits: torch.Tensor, targets: torch.Tensor, SMOOTH=1e-6): output = (logits > 0.5).float() if output.shape != targets.shape: targets = torch.squeeze(targets, 1) intersection = (targets * output).sum() union = targets.sum() + output.sum() - intersection result = (intersection + SMOOTH) / (union + SMOOTH) return result # 9. Model Class # class UnetModel(nn.Module): def __init__( self, encoder_name=Config["encoders"], in_channels=3, classes=1, pretrained=False, index=0, ): super().__init__() self.i = index self.model = smp.Unet( encoder_name=encoder_name[self.i], encoder_weights="imagenet", classes=classes, activation="sigmoid", ) if pretrained: checkpoint_dict = torch.load( f"/kaggle/working/Fold={index}_Model=mobilenet_v2.ckpt" )["state_dict"] self.model.load_state_dict(load_weights(checkpoint_dict)) def forward(self, x): x = self.model(x) return x model = UnetModel() from torchsummary import summary summary(model) # 10. PyTorch Lightning Module Class # class SegmentFlood(pl.LightningModule): def __init__(self): super().__init__() self.model = UnetModel() self.losses = [ ("jaccard", 0.1, JaccardLoss(mode="binary", from_logits=True)), ("focal", 0.9, BinaryFocalLoss()), ] def forward(self, batch): return self.model(batch) def training_step(self, batch, batch_idx): image, mask = batch logits = self.forward(image) total_loss = 0 for loss_name, weight, loss in self.losses: ls_mask = loss(logits, mask) total_loss += weight * ls_mask self.log("train_mask_{}".format(loss_name), ls_mask) self.log("train_loss", total_loss) lr = self._get_current_lr() self.log("lr", lr) return total_loss def _get_current_lr(self): lr = [x["lr"] for x in self.optimizer.param_groups] return torch.Tensor([lr]).cuda() def validation_step(self, batch, batch_idx): image, mask = batch logits = self.forward(image) result = {} for loss_name, _, loss in self.losses: result[f"val_mask_{loss_name}"] = loss(logits, mask) result["val_iou"] = iou_pytorch(logits, mask) return result def validation_epoch_end(self, outputs): self.log("epoch", self.trainer.current_epoch) avg_val_iou = find_average(outputs, "val_iou") self.log("val_iou", avg_val_iou) return {"val_iou": avg_val_iou} def configure_optimizers(self): params = [x for x in self.model.parameters() if x.requires_grad] self.optimizer = torch.optim.AdamW(params, lr=1e-4) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR( self.optimizer, T_max=8, eta_min=0.6 ) dict_val = {"optimizer": self.optimizer, "lr_scheduler": scheduler} return dict_val train = df[: int(len(df) * 0.85)] test = df[int(len(df) * 0.85) :] # 11. Training by KFolds # kf = KFold(n_splits=3) for fold_, (train_idx, valid_idx) in enumerate(kf.split(X=train)): print(f"{'-'*20} Fold: {fold_} {'-'*20}") train_df = df.loc[train_idx] valid_df = df.loc[valid_idx] train_tf = FloodDataset(Config["input_path"], train_df, Augments.train) valid_tf = FloodDataset(Config["input_path"], valid_df, Augments.valid) train_load = DataLoader( train_tf, batch_size=Config["BATCH"], num_workers=Config["n_cpu"], shuffle=True, pin_memory=True, ) valid_load = DataLoader( valid_tf, batch_size=Config["BATCH"], num_workers=Config["n_cpu"], shuffle=False, pin_memory=True, ) checkpoint = ModelCheckpoint( monitor="val_iou", dirpath="./", filename=f"Fold={fold_}_Model={Config['encoders'][1]}", save_top_k=1, mode="max", verbose=True, ) FloodModel = SegmentFlood() trainer = pl.Trainer( max_epochs=Config["EPOCH"], accelerator="gpu", devices=1, callbacks=[checkpoint], logger=wandb_logger, fast_dev_run=False, ) trainer.fit(FloodModel, train_load, valid_load) # 12. Checkpoint Values # checkpoint_keys1 = torch.load("/kaggle/working/Fold=0_Model=resnet50.ckpt")[ "callbacks" ] # VGG16 FIRST checkpoint_keys1 checkpoint_keys2 = torch.load("/kaggle/working/Fold=1_Model=resnet50-v1.ckpt")[ "callbacks" ] checkpoint_keys2 checkpoint_keys3 = torch.load("/kaggle/working/Fold=2_Model=resnet50.ckpt")["callbacks"] checkpoint_keys3 # 13. Model Inference # model = SegmentFlood.load_from_checkpoint( "/kaggle/working/Fold=1_Model=resnet50-v1.ckpt" ) test_tf = FloodDataset(Config["input_path"], test, Augments.valid) test_load = DataLoader( test_tf, batch_size=Config["BATCH"], num_workers=Config["n_cpu"], shuffle=False, pin_memory=True, ) validate_metrics = trainer.validate(model, dataloaders=test_load, verbose=False) print(validate_metrics) # 14. Plot Predictions # batch = next(iter(test_load)) with torch.no_grad(): model.eval() logits = model(batch[0]) pr_masks = logits.sigmoid() for image, gt_mask, pr_mask in zip(batch[0], batch[1], pr_masks): plt.figure(figsize=(10, 5)) plt.subplot(1, 3, 1) plt.imshow(image.numpy().transpose(1, 2, 0)) # convert CHW -> HWC plt.title("Image") plt.axis("off") plt.subplot(1, 3, 2) plt.imshow( gt_mask.numpy().squeeze() ) # just squeeze classes dim, because we have only one class plt.title("Ground truth") plt.axis("off") plt.subplot(1, 3, 3) plt.imshow( pr_mask.numpy().squeeze() ) # just squeeze classes dim, because we have only one class plt.title("Prediction") plt.axis("off") plt.show()
# # 📲 **Imports.** import io import os import cv2 import csv import time import copy import math import torch import shutil import logging import argparse import numpy as np import torchvision import numpy as np import pandas as pd import seaborn as sb import torch.nn as nn from PIL import Image from tqdm import tqdm import torch.optim as optim from sklearn import datasets import matplotlib.pyplot as plt from tqdm.notebook import trange from statistics import mean, stdev from torchvision.utils import make_grid import torch.utils.model_zoo as model_zoo from torch.utils.data import Dataset, DataLoader from torchvision import datasets, models, transforms from sklearn.model_selection import ( train_test_split, StratifiedKFold, StratifiedShuffleSplit, KFold, ) # # ✔ **Checking Pytorch and Torchvision Versions.** print("PyTorch Version: ", torch.__version__) print("Torchvision Version: ", torchvision.__version__) # # ⌨ **Defining some parameters for the model.** num_classes = 100 batch_size = 32 num_epochs = 20 # model_choice = "Resnet152" # model_choice = "Resnet34" model_choice = "ViT-L" learning_rate = 0.01 SGD_momentum = 0.9 SGD_weight_decay = 1e-4 feature_extract = False # # 🔧 **Transformation Configurations.** transform_train = transforms.Compose( [ transforms.Resize((224, 224)), transforms.RandomHorizontalFlip(0.1), transforms.RandomRotation(20), transforms.ToTensor(), transforms.RandomAdjustSharpness(sharpness_factor=2, p=0.1), transforms.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261)), transforms.RandomErasing(p=0.75, scale=(0.02, 0.1), value=1.0, inplace=False), ] ) transform_train_without_transformers = transforms.Compose([transforms.ToTensor()]) transform_test = transforms.Compose( [ transforms.ToTensor(), transforms.Resize((224, 224)), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261)), ] ) # # 🖨 **Datasets and Dataloaders.** """ Training Dataset & Dataloaders with Transformers """ train_set = torchvision.datasets.CIFAR100( root="./data", train=True, download=True, transform=transform_train ) train_loader = torch.utils.data.DataLoader( train_set, batch_size=batch_size, shuffle=True, num_workers=1 ) """ Training Dataset & Dataloaders without Transformers """ train_set_without_transformers = torchvision.datasets.CIFAR100( root="./data", train=True, download=True, transform=transform_train_without_transformers, ) train_loader_without_transformers = torch.utils.data.DataLoader( train_set_without_transformers, batch_size=batch_size, shuffle=True, num_workers=0 ) """ Validation Dataset & Dataoaders """ validation_set = torchvision.datasets.CIFAR100( root="./data", train=False, download=True, transform=transform_test ) validation_loader = torch.utils.data.DataLoader( validation_set, batch_size=batch_size, shuffle=False, num_workers=0 ) dataloaders_dict = {} dataloaders_dict["Train"] = train_loader dataloaders_dict["Validation"] = validation_loader # # 📷 **Function for showing batch of the images.** def show_batch(data): for images, labels in data: fig, ax = plt.subplots(figsize=(30, 30)) ax.set_xticks([]) ax.set_yticks([]) ax.imshow(make_grid(images, nrow=16).permute(1, 2, 0)) break # # 📸 **Showing Batch of The Images Before Applying Transformers.** show_batch(train_loader_without_transformers) # # 📸 **Showing Batch of The Images After After Applying Transformers.** show_batch(train_loader) # # 📜 **Function to get the learning rate to view it in every iteration.** def Learning_Rate(optimizer): for param_group in optimizer.param_groups: return param_group["lr"] # # 📝 **Training Loop (The *definition* of the function).** def train_model(model, dataloaders, criterion, optimizer, scheduler, num_epochs=10): since = time.time() training_accuracy_history = [] training_loss_history = [] validation_accuracy_history = [] validation_loss_history = [] best_acc = 0.0 for epoch in trange( num_epochs, desc=f"Model: {model_choice}, Number of Epochs: {num_epochs}, Batch Size: {batch_size}, Learning Rate: {(Learning_Rate(optimizer)):.9f} ", ): print("Epoch {}/{}".format(epoch + 1, num_epochs)) print("-" * 10) # Each epoch has a training and validation phase for phase in ["Train", "Validation"]: if phase == "Train": model.train() # Set model to training mode else: model.eval() # Set model to evaluate mode running_loss = 0.0 running_corrects = 0 # Iterate over data. for inputs, labels in dataloaders[phase]: inputs = inputs.to(device) labels = labels.to(device) optimizer.zero_grad() with torch.set_grad_enabled(phase == "Train"): outputs = model_ft(inputs.to(device)) loss = criterion(outputs, labels) _, preds = torch.max(outputs, 1) if phase == "Train": loss.backward() def closure(): outputs = model_ft(inputs) _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels) loss.backward() return loss optimizer.step(closure) running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) epoch_loss = running_loss / len(dataloaders[phase].dataset) epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset) print( f"{phase} Loss: {epoch_loss:.9f}, Accuracy: {(epoch_acc * 100):.9f}%, Learning Rate: {(Learning_Rate(optimizer)):.9f}" ) if phase == "Validation" and epoch_acc > best_acc: best_acc = epoch_acc # best_model_wts = copy.deepcopy(model.state_dict()) torch.save(model_ft.state_dict(), "./Best_Checkpoint.pth") if phase == "Train": training_accuracy_history.append(epoch_acc.item() * 100) training_loss_history.append(epoch_loss) if phase == "Validation": validation_accuracy_history.append(epoch_acc.item() * 100) validation_loss_history.append(epoch_loss) torch.save(model_ft.state_dict(), "./Last_Checkpoint.pth") scheduler.step() print() time_elapsed = time.time() - since print( "Training completed in {:.0f}h {:.0f}m {:.0f}s".format( time_elapsed // 3600, (time_elapsed % 3600) // 60, time_elapsed % 60 ) ) print("Best Validation Accuracy: {:9f}".format(best_acc * 100)) model.load_state_dict(torch.load("./Best_Checkpoint.pth")) return ( model, validation_accuracy_history, training_accuracy_history, validation_loss_history, training_loss_history, ) # # 📝 **Choosing an Architecture (The *definition* of the function).** def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True): model_ft = None if model_name == "Resnet34": """Resnet34""" model_ft = models.resnet34(models.ResNet34_Weights.DEFAULT) set_parameter_requires_grad(model_ft, feature_extract) num_ftrs = model_ft.fc.in_features model_ft.fc = nn.Sequential(nn.Dropout(0.1), nn.Linear(num_ftrs, num_classes)) elif model_name == "Resnet18": """Resnet18""" model_ft = models.resnet18(pretrained=use_pretrained) set_parameter_requires_grad(model_ft, feature_extract) num_ftrs = model_ft.fc.in_features torch.nn.init.xavier_uniform_(model_ft.fc.weight) model_ft.fc = nn.Sequential(nn.Dropout(0.1), nn.Linear(num_ftrs, num_classes)) elif model_name == "Resnet101": """Resnet101""" model_ft = models.resnet101(pretrained=use_pretrained) set_parameter_requires_grad(model_ft, feature_extract) num_ftrs = model_ft.fc.in_features model_ft.fc = nn.Sequential(nn.Dropout(0.1), nn.Linear(num_ftrs, num_classes)) elif model_name == "Resnext101": """Resnext101""" model_ft = models.resnext101_32x8d(pretrained=use_pretrained) set_parameter_requires_grad(model_ft, feature_extract) num_ftrs = model_ft.fc.in_features model_ft.fc = nn.Sequential(nn.Dropout(0.1), nn.Linear(num_ftrs, num_classes)) elif model_name == "Resnet152": """Resnet152""" model_ft = models.resnet152(models.ResNet152_Weights.DEFAULT) set_parameter_requires_grad(model_ft, feature_extract) num_ftrs = model_ft.fc.in_features model_ft.fc = nn.Sequential(nn.Dropout(0.1), nn.Linear(num_ftrs, num_classes)) elif model_name == "Alexnet": """Alexnet""" model_ft = models.alexnet(pretrained=use_pretrained) set_parameter_requires_grad(model_ft, feature_extract) num_ftrs = model_ft.classifier[6].in_features model_ft.classifier[6] = nn.Linear(num_ftrs, num_classes) elif model_name == "VGG11": """VGG11""" model_ft = models.vgg11_bn(pretrained=use_pretrained) set_parameter_requires_grad(model_ft, feature_extract) num_ftrs = model_ft.classifier[6].in_features model_ft.classifier[6] = nn.Linear(num_ftrs, num_classes) elif model_name == "Squeezenet": """Squeezenet""" model_ft = models.squeezenet1_0(pretrained=use_pretrained) set_parameter_requires_grad(model_ft, feature_extract) model_ft.classifier[1] = nn.Conv2d( 512, num_classes, kernel_size=(1, 1), stride=(1, 1) ) model_ft.num_classes = num_classes model_ft.classifier[1] = nn.Conv2d( 512, num_classes, kernel_size=(1, 1), stride=(1, 1) ) elif model_name == "Densenet121": """Densenet121""" model_ft = models.densenet121(pretrained=use_pretrained) set_parameter_requires_grad(model_ft, feature_extract) num_ftrs = model_ft.classifier.in_features model_ft.classifier = nn.Linear(num_ftrs, num_classes) elif model_name == "ViT-H": """Vision Transform - H""" model_ft = torchvision.models.vit_h_14(weights="DEFAULT") set_parameter_requires_grad(model_ft, feature_extract) num_ftrs = model_ft.heads.head.in_features model_ft.heads.head = nn.Linear(num_ftrs, num_classes) elif model_name == "ViT-L": """Vision Transform - L""" model_ft = torchvision.models.vit_l_16(weights="DEFAULT") set_parameter_requires_grad(model_ft, feature_extract) num_ftrs = model_ft.heads.head.in_features model_ft.heads.head = nn.Linear(num_ftrs, num_classes) else: print("Invalid model name, exiting...") exit() return model_ft # # 📜 **Function that changes *grad* value in the model.** def set_parameter_requires_grad(model, feature_extracting): if feature_extracting: for param in model.parameters(): param.requires_grad = False # # ⚙ **Choosing an Architecture (The *call* of the function).** model_ft = initialize_model( model_choice, num_classes, feature_extract, use_pretrained=True ) # # 📠 **Checking if we want to extract the features or not.** params_to_update = model_ft.parameters() # print("Params to learn:") if feature_extract: params_to_update = [] for name, param in model_ft.named_parameters(): if param.requires_grad == True: params_to_update.append(param) pass # print("\t",name) else: for name, param in model_ft.named_parameters(): if param.requires_grad == True: pass # print("\t",name) # # 🖥 **Transfaring the model to the GPU to make traning cycle faster and efficient.** device = torch.device("cuda:0") if torch.cuda.device_count() > 1: print("Using", torch.cuda.device_count(), "GPUs") model_ft = nn.DataParallel(model_ft) model_ft.to(device) # # ⌨ **Define the SAM optimizer class.** class SAM(torch.optim.Optimizer): def __init__(self, params, base_optimizer, rho=0.05, adaptive=False, **kwargs): assert rho >= 0.0, f"Invalid rho, should be non-negative: {rho}" defaults = dict(rho=rho, adaptive=adaptive, **kwargs) super(SAM, self).__init__(params, defaults) self.base_optimizer = base_optimizer(self.param_groups, **kwargs) self.param_groups = self.base_optimizer.param_groups self.defaults.update(self.base_optimizer.defaults) @torch.no_grad() def first_step(self, zero_grad=False): grad_norm = self._grad_norm() for group in self.param_groups: scale = group["rho"] / (grad_norm + 1e-12) for p in group["params"]: if p.grad is None: continue self.state[p]["old_p"] = p.data.clone() e_w = ( (torch.pow(p, 2) if group["adaptive"] else 1.0) * p.grad * scale.to(p) ) p.add_(e_w) # climb to the local maximum "w + e(w)" if zero_grad: self.zero_grad() @torch.no_grad() def second_step(self, zero_grad=False): for group in self.param_groups: for p in group["params"]: if p.grad is None: continue p.data = self.state[p]["old_p"] # get back to "w" from "w + e(w)" self.base_optimizer.step() # do the actual "sharpness-aware" update if zero_grad: self.zero_grad() @torch.no_grad() def step(self, closure=None): assert ( closure is not None ), "Sharpness Aware Minimization requires closure, but it was not provided" closure = torch.enable_grad()( closure ) # the closure should do a full forward-backward pass self.first_step(zero_grad=True) closure() self.second_step() def _grad_norm(self): shared_device = self.param_groups[0]["params"][ 0 ].device # put everything on the same device, in case of model parallelism norm = torch.norm( torch.stack( [ ((torch.abs(p) if group["adaptive"] else 1.0) * p.grad) .norm(p=2) .to(shared_device) for group in self.param_groups for p in group["params"] if p.grad is not None ] ), p=2, ) return norm def load_state_dict(self, state_dict): super().load_state_dict(state_dict) self.base_optimizer.param_groups = self.param_groups # # ⌨ **Defining the *loss function*, *optimizer* and the *scheduler.*** criterion = nn.CrossEntropyLoss().to(device) # optimizer = optim.SGD(params_to_update, lr = learning_rate, momentum = SGD_momentum, weight_decay = SGD_weight_decay) base_optimizer = torch.optim.SGD optimizer = SAM( model_ft.parameters(), base_optimizer, lr=learning_rate, momentum=SGD_momentum, weight_decay=SGD_weight_decay, ) # optimizer = optim.Adam(params_to_update, lr=1e-3) # scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode = 'min', factor = 0.001, patience = 5, threshold = 0.0001, threshold_mode='abs') scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=num_epochs) # # ⚙ **Calling the training loop function.** ( model_ft, validation_accuracy_history, training_accuracy_history, validation_loss_history, training_loss_history, ) = train_model( model_ft, dataloaders_dict, criterion, optimizer, scheduler, num_epochs=num_epochs ) # # 📈 **Plotting the Training and Validation Accuracies.** plt.figure(figsize=[6, 4]) plt.plot(training_accuracy_history, "black", linewidth=2.0) plt.plot(validation_accuracy_history, "blue", linewidth=2.0) plt.legend(["Training Accuracy", "Validation Accuracy"], fontsize=14) plt.xlabel("Epochs", fontsize=10) plt.ylabel("Accuracy", fontsize=10) plt.title("Accuracy Curves", fontsize=12) # # 📉 **Plotting the Training and Validation Losses.** plt.figure(figsize=[6, 4]) plt.plot(training_loss_history, "black", linewidth=2.0) plt.plot(validation_loss_history, "green", linewidth=2.0) plt.legend(["Training Loss", "Validation Loss"], fontsize=14) plt.xlabel("Epochs", fontsize=10) plt.ylabel("Loss", fontsize=10) plt.title("Loss Curves", fontsize=12) # # ➕➖ **Calculating the inference time for a single image.** ➗✖ # First Iteration inference_data_loader = torch.utils.data.DataLoader( validation_set, batch_size=1, shuffle=False, num_workers=2 ) images, labels = next(iter(inference_data_loader)) labels = labels.to(device) images = images.to(device) model_ft = model_ft.to(device) start = time.time() outputs = model_ft(images) end = time.time() infrence_time = end - start print(f"The inference time is: {infrence_time}") # Second Iteration inference_data_loader = torch.utils.data.DataLoader( validation_set, batch_size=1, shuffle=False, num_workers=2 ) images, labels = next(iter(inference_data_loader)) labels = labels.to(device) images = images.to(device) model_ft = model_ft.to(device) start = time.time() outputs = model_ft(images) end = time.time() infrence_time = end - start print(f"The inference time is: {infrence_time}") # # 📑 **Creating the prediction file.** predictions = [] with torch.no_grad(): for data in validation_loader: images, labels = data outputs = model_ft(images) _, predicted = torch.max(outputs.data, 1) predictions.append(predicted) predictions_transformed = [x.item() for x in torch.cat(predictions)] with open("submission.csv", "w", encoding="utf-8", newline="") as out: writer = csv.writer(out) writer.writerow(["ID", "Label"]) for ID, Label in enumerate(predictions_transformed): writer.writerow([ID, Label])
# # A transfer learning attempt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. import cv2 import os import numpy as np import matplotlib.pyplot as plt import pickle import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten from tensorflow.keras.layers import Conv2D, MaxPooling2D, BatchNormalization from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.callbacks import TensorBoard, EarlyStopping from tensorflow.keras.optimizers import RMSprop from tensorflow.keras.applications.vgg16 import VGG16 from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix, accuracy_score from mlxtend.plotting import plot_confusion_matrix # ## First, we will load and pre-process the data CATEGORIES = ["NORMAL", "PNEUMONIA"] DIR_TRAINING = "/kaggle/input/chest-xray-pneumonia/chest_xray/chest_xray/train/" DIR_VALIDATION = "/kaggle/input/chest-xray-pneumonia/chest_xray/chest_xray/val" DIR_TEST = "/kaggle/input/chest-xray-pneumonia/chest_xray/chest_xray/test/" NEW_SIZE = 100 X_train = [] y_train = [] X_validation = [] y_validation = [] X_test = [] y_test = [] for category in CATEGORIES: label = CATEGORIES.index(category) path_train = os.path.join(DIR_TRAINING, category) path_val = os.path.join(DIR_VALIDATION, category) path_test = os.path.join(DIR_TEST, category) for img in os.listdir(path_train): try: img_train = cv2.imread(os.path.join(path_train, img), cv2.IMREAD_COLOR) img_train = cv2.resize(img_train, (NEW_SIZE, NEW_SIZE)) X_train.append(img_train) y_train.append(label) except Exception as e: pass for img in os.listdir(path_val): try: img_val = cv2.imread(os.path.join(path_val, img), cv2.IMREAD_COLOR) img_val = cv2.resize(img_val, (NEW_SIZE, NEW_SIZE)) X_validation.append(img_val) y_validation.append(label) except Exception as e: pass for img in os.listdir(path_test): try: img_test = cv2.imread(os.path.join(path_test, img), cv2.IMREAD_COLOR) img_test = cv2.resize(img_test, (NEW_SIZE, NEW_SIZE)) X_test.append(img_test) y_test.append(label) except Exception as e: pass # ## Convert lists into arrays of appropiate size X_train = np.array(X_train).reshape(-1, NEW_SIZE, NEW_SIZE, 3) y_train = np.asarray(y_train) X_validation = np.array(X_validation).reshape(-1, NEW_SIZE, NEW_SIZE, 3) y_validation = np.asarray(y_validation) X_test = np.array(X_test).reshape(-1, NEW_SIZE, NEW_SIZE, 3) y_test = np.asarray(y_test) # ## Let's have a look at the size of the dataset hist_train, bins_train = np.histogram(y_train, bins=[0, 0.5, 1]) hist_validation, bins_validation = np.histogram(y_validation, bins=[0, 0.5, 1]) hist_test, bins_test = np.histogram(y_test, bins=[0, 0.5, 1]) x_labels = ["Train", "Val", "Test"] x_hist = np.arange(len(x_labels)) normal = [hist_train[0], hist_validation[0], hist_test[0]] pneumonia = [hist_train[1], hist_validation[1], hist_test[1]] width = 0.35 fig, ax = plt.subplots() rects1 = ax.bar(x_hist - width / 2, normal, width, label="Normal") rects2 = ax.bar(x_hist + width / 2, pneumonia, width, label="Pneumonia") ax.set_xticks(x_hist) ax.set_xticklabels(x_labels) ax.legend(["Normal", "Pneumonia"]) fig.tight_layout() plt.show() # ## We can see that it is a clearly unbalnace dataset # ## Let's have a look at the images fig = plt.figure(figsize=(16, 16)) for counter, img in enumerate(X_train[:5]): ax = fig.add_subplot(1, 5, counter + 1) ax.imshow(X_train[counter, :, :], cmap="gray") plt.title("Normal") ax.axes.get_xaxis().set_visible(False) ax.axes.get_yaxis().set_visible(False) for counter, img in enumerate(X_train[-5:]): ax = fig.add_subplot(2, 5, counter + 1) ax.imshow(X_train[-5 + counter, :, :], cmap="gray") plt.title("Pneumonia") ax.axes.get_xaxis().set_visible(False) ax.axes.get_yaxis().set_visible(False) plt.tight_layout() plt.show() # ## To evaluate these datasets we will use transfer learning # ## Specifically, we will use the VGG16 model trained with the imagenet dataset (available in Keras), and then add a couple of dense layer and an output layer base_model = VGG16( include_top=False, weights="imagenet", input_shape=(NEW_SIZE, NEW_SIZE, 3), pooling="avg", ) model = Sequential() model.add(base_model) model.add(Dense(256)) model.add(Activation("relu")) model.add(Dropout(0.2)) model.add(Dense(128)) model.add(Activation("relu")) model.add(Dropout(0.2)) model.add(Dense(2, activation="softmax")) # ## We comnpile the model model.compile( loss="sparse_categorical_crossentropy", optimizer="adam", metrics=["accuracy"] ) model.summary() # ## Validation dataset is pretty small, only 8 images for each label. Thus, I will go for splitting the train dataset into training and validation (X_train2, X_val2, y_train2, y_val2) = train_test_split( X_train, y_train, test_size=0.3, random_state=42 ) # ## Creation of generators for: augmentation of training data and for normalization of validation data aug_train = ImageDataGenerator( rotation_range=20, zoom_range=0.15, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.15, horizontal_flip=True, fill_mode="nearest", ) generator_val = ImageDataGenerator() aug_train.fit(X_train2) generator_val.fit(X_val2) # ## Fitting the data base_model.trainable = False earlystop = EarlyStopping(patience=10) history = model.fit( aug_train.flow(X_train2, y_train2, batch_size=32), validation_data=generator_val.flow(X_val2, y_val2, batch_size=32), epochs=100, callbacks=[earlystop], )
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) break # Any results you write to the current directory are saved as output. # DATA LOAD import os data_dir = "/kaggle/input/proy1segmentaciondeimagenesdermatoscopicas/" imgs_files = [ os.path.join(data_dir, "Images/Images", f) for f in sorted(os.listdir(os.path.join(data_dir, "Images/Images"))) if ( os.path.isfile(os.path.join(data_dir, "Images/Images", f)) and f.endswith(".jpg") ) ] masks_files = [ os.path.join(data_dir, "Masks/Masks", f) for f in sorted(os.listdir(os.path.join(data_dir, "Masks/Masks"))) if (os.path.isfile(os.path.join(data_dir, "Masks/Masks", f)) and f.endswith(".png")) ] # Ordenamos para que cada imagen se corresponda con cada máscara imgs_files.sort() masks_files.sort() print("Number of images", len(imgs_files)) print("Number of masks", len(masks_files)) # Convert files into skimages and visualize import matplotlib.pyplot as plt from skimage import io images = io.ImageCollection(imgs_files) masks = io.ImageCollection(masks_files) index = 1 plt.figure(figsize=(15, 8)) for i in range(4): plt.subplot(2, 4, index) plt.imshow(images[i]) index += 1 plt.title("Image %i" % (i)) plt.subplot(2, 4, index) plt.imshow(masks[i], cmap="gray") index += 1 plt.title("Mask %i" % (i)) # PREPROCESSING # Grayscale from skimage.color import rgb2gray gray_images = [rgb2gray(image) for image in images] plt.imshow(gray_images[2], cmap="gray") print(gray_images[2].shape) print(masks[2].shape) # Note that images and mask have the same size # **As we can see, there are black borders at the image, which must be removed while prepocessing.** # **Another option is removing those borders from the mask when postprocessing.** # IMAGE SEGMENTATION import copy from skimage import filters automated_masks = [] for i, image in enumerate(gray_images): val = filters.threshold_otsu(image) my_mask = image < val automated_masks.append(my_mask) plt.figure(figsize=(20, 20)) plt.subplot(1, 3, 1) plt.imshow(gray_images[1], cmap="gray") plt.title("Dermoscopy image") plt.subplot(1, 3, 2) plt.imshow(masks[1], cmap="gray") plt.title("True mask ") plt.subplot(1, 3, 3) plt.imshow(automated_masks[1], cmap="gray") plt.title("Automated mask before postprocessing") print(len(automated_masks)) type(automated_masks) # POSTPORCESSING # Fill holes within a mask from scipy import ndimage automated_masks_post = [] for i, auto_mask in enumerate(automated_masks): fill_holes = ndimage.binary_fill_holes(auto_mask) automated_masks_post.append(fill_holes) print(len(automated_masks_post)) index = 1 for i in range(3): plt.figure(figsize=(20, 60)) plt.subplot(3, 4, index) plt.imshow(gray_images[i], cmap="gray") plt.title("Dermoscopy image") index += 1 plt.subplot(3, 4, index) plt.imshow(masks[i], cmap="gray") plt.title("True mask ") index += 1 plt.subplot(3, 4, index) plt.imshow(automated_masks[i], cmap="gray") plt.title("Automated mask before postprocessing") index += 1 plt.subplot(3, 4, index) plt.imshow(automated_masks_post[i], cmap="gray") plt.title("Automated mask after postprocessing") index += 1 # **We can appreciate that at the last mask an inner hole was removed. # Nevertheless all the masks should be smoothed to reach better results. # Moreover, the black border must be eliminated.** # EVALUATION index = 1 # To visualize the performance of the algorithm for i in range(3): intersection = np.logical_and(masks[i], automated_masks_post[i]) union = np.logical_or(masks[i], automated_masks_post[i]) iou_score = np.sum(intersection) / np.sum(union) plt.figure(figsize=(20, 60)) plt.subplot(3, 4, index) plt.imshow(images[i]) plt.imshow(masks[i], cmap="RdYlGn", alpha=0.3) plt.title("Ground truth") index += 1 plt.subplot(3, 4, index) plt.imshow(images[i]) plt.imshow(automated_masks_post[i], cmap="RdYlGn", alpha=0.3) plt.title("Automated mask iou score %f" % (iou_score)) index += 1 plt.subplot(3, 4, index) plt.imshow(images[i]) plt.imshow(intersection, cmap="RdYlGn", alpha=0.3) plt.title("Intersection") index += 1 plt.subplot(3, 4, index) plt.imshow(images[i]) plt.imshow(union, cmap="RdYlGn", alpha=0.3) plt.title("Union") index += 1 from skimage.metrics import mean_squared_error i = 1 MSE = mean_squared_error(masks[i], automated_masks_post[i])
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session df = pd.read_csv( "/kaggle/input/key-indicators-of-heart-disease/heart_2022_Key_indicators.csv" ) df.sample(3) # ## Basic Preprocessing df.info() df.isnull().sum() df.describe() df.shape # ## Data Processing cat_df = df.select_dtypes(exclude=np.number) target = cat_df["HeartDisease"] cat_df.drop("HeartDisease", axis=1, inplace=True) num_df = df.select_dtypes(include=np.number) cat_df.sample(2) num_df.sample(2) # ## ---> Categorical processing # * One hot encoding # * Label Encoding import matplotlib.pyplot as plt import seaborn as sn from sklearn.preprocessing import LabelEncoder cat_cols = cat_df.columns cat_cols # ### ------> Unique values for each column for col in cat_cols: print(f"Unique {col}===============>", cat_df[col].unique()) value_cnts = {} for col in cat_cols: value_cnt = {} for uv in cat_df[col].unique(): value_cnt[uv] = len(cat_df[cat_df[col] == uv]) value_cnts[col] = value_cnt value_cnts # ### ------> Unique values and their counts plt.figure(figsize=(12, 8)) for i, col in enumerate(cat_cols[:6]): plt.subplot(3, 2, i + 1) sn.barplot(x=list(value_cnts[col].keys()), y=list(value_cnts[col].values())) plt.title(col) plt.show() plt.figure(figsize=(12, 8)) temp = cat_cols[6:-4] for i, col in enumerate(temp): plt.subplot(2, 2, i + 1) sn.barplot(x=list(value_cnts[col].keys()), y=list(value_cnts[col].values())) plt.title(col) plt.xticks(rotation=45) plt.show() plt.figure(figsize=(12, 8)) temp = cat_cols[10:] for i, col in enumerate(temp): plt.subplot(2, 2, i + 1) sn.barplot(x=list(value_cnts[col].keys()), y=list(value_cnts[col].values())) plt.title(col) plt.xticks(rotation=45) plt.show() # ### ------> One hot encoding cat_df_1hot = pd.get_dummies(cat_df) cat_df_1hot.sample(4) # ### ------> Label Encoding encoder = LabelEncoder() target = encoder.fit_transform(target) target # ## ---> Numerical Process # >No need to process numerical data it is already in better format num_df.sample(4) # ## Training Model df_final = pd.concat([num_df, cat_df_1hot], axis=1) df_final.head(2) from sklearn.model_selection import train_test_split, cross_val_score from sklearn.ensemble import RandomForestClassifier, BaggingClassifier from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.svm import SVC import warnings warnings.filterwarnings("ignore") X_train, X_test, y_train, y_test = train_test_split(df_final, target, test_size=0.3) X_train.shape, X_test.shape, y_train.shape, y_test.shape model_rf = RandomForestClassifier() model_rf.fit(X_train, y_train) print("train score", model_rf.score(X_train, y_train)) print("test score", model_rf.score(X_test, y_test)) model_bg = BaggingClassifier() model_bg.fit(X_train, y_train) print("train score", model_bg.score(X_train, y_train)) print("test score", model_bg.score(X_test, y_test)) model_lr = LogisticRegression() model_lr.fit(X_train, y_train) print("train score", model_lr.score(X_train, y_train)) print("test score", model_lr.score(X_test, y_test)) model_dt = DecisionTreeClassifier() model_dt.fit(X_train, y_train) print("train score", model_dt.score(X_train, y_train)) print("test score", model_dt.score(X_test, y_test)) model_dt = DecisionTreeClassifier() model_dt.fit(X_train, y_train) print("train score", model_dt.score(X_train, y_train)) print("test score", model_dt.score(X_test, y_test))
# **Introduction** # This is a very basic implementation of convolutional neural network (CNN) without using pretrained models. Fully implemented using keras. You can learn following things by reading this. # 1. Keras implementation of a CNN. # 2. StratidiedKFold evaluation. # 3. Utility funcitons required when working with images. # *Comment your improvements and be sure the upvote.* # **Imports and Workspace setting** from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation, Flatten from keras.layers.convolutional import Conv2D, MaxPooling2D from keras.utils import np_utils from keras.utils import to_categorical from keras.preprocessing.image import ImageDataGenerator, img_to_array, image, load_img from keras import backend as K from keras.optimizers import Adam, SGD from keras.callbacks import ReduceLROnPlateau, EarlyStopping from keras.models import load_model import os import numpy as np import pandas as pd import csv from sklearn.model_selection import StratifiedKFold from mpl_toolkits.axes_grid1 import ImageGrid import matplotlib.pyplot as plt plt.rcParams["figure.figsize"] = [16, 10] plt.rcParams["font.size"] = 16 # Variable defining SAMPLE_PER_CATEGORY = 200 SEED = 1987 WIDTH = 64 HEIGHT = 64 DEPTH = 3 INPUT_SHAPE = (WIDTH, HEIGHT, DEPTH) data_dir = "../input/plant-seedlings-classification/" train_dir = os.path.join(data_dir, "train") test_dir = os.path.join(data_dir, "test") sample_submission = pd.read_csv(os.path.join(data_dir, "sample_submission.csv")) # **Defining categories** CATEGORIES = [ "Black-grass", "Charlock", "Cleavers", "Common Chickweed", "Common wheat", "Fat Hen", "Loose Silky-bent", "Maize", "Scentless Mayweed", "Shepherds Purse", "Small-flowered Cranesbill", "Sugar beet", ] NUM_CATEGORIES = len(CATEGORIES) NUM_CATEGORIES # **Training sample data set info** for category in CATEGORIES: print( "{} {} images".format( category, len(os.listdir(os.path.join(train_dir, category))) ) ) def read_img(filepath, size): img = image.load_img( os.path.join(data_dir, filepath), target_size=size ) ## https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/load_img img = image.img_to_array(img) return img train = [] for category_id, category in enumerate(CATEGORIES): for file in os.listdir(os.path.join(train_dir, category)): train.append(["train/{}/{}".format(category, file), category_id, category]) train = pd.DataFrame(train, columns=["file", "category_id", "category"]) train.shape train.head(2) # **Generating vector for training samples taking equal number of images from each category** train = pd.concat( [train[train["category"] == c][:SAMPLE_PER_CATEGORY] for c in CATEGORIES] ) train = train.sample(frac=1) train.index = np.arange(len(train)) train.shape train # **Understanding test-set** test = [] for file in os.listdir(test_dir): test.append(["test/{}".format(file), file]) test = pd.DataFrame(test, columns=["filepath", "file"]) test.shape test.head(2) # **Generating example images** fig = plt.figure(1, figsize=(NUM_CATEGORIES, NUM_CATEGORIES)) grid = ImageGrid(fig, 111, nrows_ncols=(NUM_CATEGORIES, NUM_CATEGORIES), axes_pad=0.05) i = 0 for category_id, category in enumerate(CATEGORIES): for filepath in train[train["category"] == category]["file"].values[ :NUM_CATEGORIES ]: ax = grid[i] img = read_img(filepath, (WIDTH, HEIGHT)) ax.imshow(img / 255.0) ax.axis("off") if i % NUM_CATEGORIES == NUM_CATEGORIES - 1: ax.text(250, 112, filepath.split("/")[1], verticalalignment="center") i += 1 plt.show() np.random.seed(seed=SEED) # Used following articles and kernels for this work: # > https://www.kaggle.com/chamathsajeewa/simple-convolution-neural-network # > https://medium.com/@vijayabhaskar96/tutorial-on-keras-flow-from-dataframe-1fd4493d237c # > https://www.kaggle.com/gaborfodor/seedlings-pretrained-keras-models # # create model from scratch def createModel(number_of_hidden_layers, activation, optimizer, learning_rate, epochs): print("Create Model") model = Sequential() model.add(Conv2D(WIDTH, (3, 3), padding="same", input_shape=INPUT_SHAPE)) model.add(Activation(activation)) model.add(Conv2D(WIDTH, (3, 3))) model.add(Activation(activation)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(2 * WIDTH, (3, 3), padding="same")) model.add(Activation(activation)) model.add(Conv2D(2 * WIDTH, (3, 3))) model.add(Activation(activation)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) for i in range(0, number_of_hidden_layers): model.add(Dense(512)) model.add(Activation(activation)) model.add(Dropout(0.3)) model.add(Dense(12, activation="softmax")) if optimizer == "SGD": opt = SGD(lr=learning_rate, decay=learning_rate / epochs) elif optimizer == "Adam": opt = Adam(lr=learning_rate, decay=learning_rate / epochs) model.compile(loss="categorical_crossentropy", optimizer=opt, metrics=["accuracy"]) return model # **Print function for training history** def printHistory(history, title, epochs): f, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4)) t = f.suptitle(title, fontsize=12) f.subplots_adjust(top=0.85, wspace=0.3) epoch_list = list(range(1, epochs + 1)) ax1.plot(epoch_list, history.history["accuracy"], label="Train Accuracy") ax1.plot(epoch_list, history.history["val_accuracy"], label="Validation Accuracy") ax1.set_xticks(np.arange(0, epochs + 1, 5)) ax1.set_ylabel("Accuracy Value") ax1.set_xlabel("Epoch") ax1.set_title("Accuracy") l1 = ax1.legend(loc="best") ax2.plot(epoch_list, history.history["loss"], label="Train Loss") ax2.plot(epoch_list, history.history["val_loss"], label="Validation Loss") ax2.set_xticks(np.arange(0, epochs + 1, 5)) ax2.set_ylabel("Loss Value") ax2.set_xlabel("Epoch") ax2.set_title("Loss") l2 = ax2.legend(loc="best") # callbacks for keras modal def get_callbacks(patience): print("Get Callbacks") lr_reduce = ReduceLROnPlateau( monitor="val_acc", factor=0.1, min_delta=1e-5, patience=patience, verbose=1 ) # msave = ModelCheckpoint(filepath, save_best_only=True) return [lr_reduce, EarlyStopping()] def evaluateModelDFViaCrossValidation( images, epochs, batch_size, learning_rate, cross_validation_folds, activation, number_of_hidden_layers, optimizer, ): print("Train Model") datagen_train = ImageDataGenerator(rescale=1.0 / 255) datagen_valid = ImageDataGenerator(rescale=1.0 / 255) print("Cross validation") kfold = StratifiedKFold(n_splits=cross_validation_folds, shuffle=True) cvscores = [] iteration = 1 t = images.category_id for train_index, test_index in kfold.split(np.zeros(len(t)), t): print("======================================") print("Iteration = ", iteration) iteration = iteration + 1 train = images.loc[train_index] test = images.loc[test_index] print("======================================") model = createModel( number_of_hidden_layers, activation, optimizer, learning_rate, epochs ) print("======================================") train_generator = datagen_train.flow_from_dataframe( dataframe=train, directory="/kaggle/input/plant-seedlings-classification/", x_col="file", y_col="category", batch_size=batch_size, seed=SEED, shuffle=True, class_mode="categorical", target_size=(HEIGHT, WIDTH), ) valid_generator = datagen_valid.flow_from_dataframe( dataframe=test, directory="/kaggle/input/plant-seedlings-classification/", x_col="file", y_col="category", batch_size=batch_size, seed=SEED, shuffle=False, class_mode="categorical", target_size=(HEIGHT, WIDTH), ) STEP_SIZE_TRAIN = train_generator.n // train_generator.batch_size STEP_SIZE_VALID = valid_generator.n // valid_generator.batch_size # Trains the model on data generated batch-by-batch by a Python generator history = model.fit_generator( generator=train_generator, validation_data=valid_generator, steps_per_epoch=STEP_SIZE_TRAIN, validation_steps=STEP_SIZE_VALID, epochs=epochs, verbose=1, ) # , \ # callbacks = get_callbacks(patience=2)) scores = model.evaluate_generator( generator=valid_generator, steps=STEP_SIZE_VALID, pickle_safe=True ) print("Accuarcy %s: %.2f%%" % (model.metrics_names[1], scores[1] * 100)) cvscores.append(scores[1] * 100) printHistory(history, "Basic CNN performance", epochs) accuracy = np.mean(cvscores) std = np.std(cvscores) print("Accuracy: %.2f%% (+/- %.2f%%)" % (accuracy, std)) return accuracy, std # Use different combinations to find the best params. # Also change the CreateModel function to change the network architecture # evaluateModelDFViaCrossValidation( # train, # batch_size =32, # cross_validation_folds = 5, # learning_rate = 0.001, # activation = 'relu', # number_of_hidden_layers = 4, # optimizer = 'Adam', # epochs = 48 # ) # **Build the model with best params and save it** def trainFinalModel( images, epochs, batch_size, learning_rate, activation, number_of_hidden_layers, optimizer, ): print("Train Model") datagen_train = ImageDataGenerator(rescale=1.0 / 255) print("======================================") model = createModel( number_of_hidden_layers, activation, optimizer, learning_rate, epochs ) print("======================================") train_generator = datagen_train.flow_from_dataframe( dataframe=images, directory="/kaggle/input/plant-seedlings-classification/", x_col="file", y_col="category", batch_size=batch_size, seed=SEED, shuffle=True, class_mode="categorical", target_size=(HEIGHT, WIDTH), ) STEP_SIZE_TRAIN = train_generator.n // train_generator.batch_size # Trains the model on data generated batch-by-batch by a Python generator model.fit_generator( generator=train_generator, steps_per_epoch=STEP_SIZE_TRAIN, epochs=epochs, verbose=1, ) # , \ # callbacks = get_callbacks(patience=2)) model.save("/kaggle/working/best_model") # predict values def predict_createSubmission(): print("Predicting......") datagen_test = ImageDataGenerator(rescale=1.0 / 255) test_generator = datagen_test.flow_from_dataframe( dataframe=test, directory="/kaggle/input/plant-seedlings-classification/test/", x_col="file", y_col=None, batch_size=1, seed=SEED, shuffle=False, class_mode=None, target_size=(HEIGHT, WIDTH), ) model = load_model("/kaggle/working/best_model") filenames = test_generator.filenames nb_samples = len(filenames) predictions = model.predict_generator( test_generator, steps=nb_samples ) # return prob of each class per image (softmax) predicted_class_indices = np.argmax(predictions, axis=1) predicted_labels = [CATEGORIES[k] for k in predicted_class_indices] results = pd.DataFrame({"file": filenames, "species": predicted_labels}) print(results) results.to_csv("submission.csv", index=False) print("Prediction Completed") # **Do predictions on given test images and submit predictions** # Following model parameters were identified as best by evaluating various combinations above. trainFinalModel( train, batch_size=32, learning_rate=0.001, activation="relu", number_of_hidden_layers=2, optimizer="Adam", epochs=32, ) predict_createSubmission()
import pandas as pd import numpy as np import seaborn as sns from sklearn import preprocessing import matplotlib.pyplot as plt SS = pd.read_csv("/kaggle/input/rsna-breast-cancer-detection/sample_submission.csv") TE = pd.read_csv("/kaggle/input/rsna-breast-cancer-detection/test.csv") TR = pd.read_csv("/kaggle/input/rsna-breast-cancer-detection/train.csv") print(SS) print(TE) print(TR) SS.head() TE.head() TR.head() SS.shape TE.shape TR.shape SS.dtypes TE.dtypes TR.dtypes SS.isnull().sum() TE.isnull().sum() TR.isnull().sum() SS.info() TE.info() TR.info() SS.describe() TE.describe() TR.describe() CS = SS.corr() print(CS) CE = TE.corr() print(CE) CR = TR.corr() print(CR) sns.heatmap(CS) sns.heatmap(CE) sns.heatmap(CR) sns.heatmap(CS, annot=True) sns.heatmap(CE, annot=True) sns.heatmap(CR, annot=True) sns.pairplot(SS) sns.pairplot(TE) SS.to_csv("submission.csv", index=False)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. tweets = pd.read_csv("/kaggle/input/trump-tweets/trumptweets.csv") tweets.head(50) tweets = tweets[["content"]] tweets.head(5) tweets.shape def remove_punctuation(text): """a function for removing punctuation""" import string # replacing the punctuations with no space. # which in effect deletes the punctuation marks. translator = str.maketrans("", "", string.punctuation) # return the text stripped of punctuation marks. return text.translate(translator) tweets["text"] = tweets["content"].apply(remove_punctuation) tweets.head(10) tweets = tweets["text"] tweets.head(10) from fastai.text import * data = pd.read_csv("/kaggle/input/trump-tweets/trumptweets.csv", encoding="latin1") data.head() data = ( TextList.from_df(data, cols="content") .split_by_rand_pct(0.1) .label_for_lm() .databunch(bs=48) ) data.show_batch() # Create deep learning model learn = language_model_learner(data, AWD_LSTM, drop_mult=0.3, model_dir="/tmp/work") # select the appropriate learning rate learn.lr_find() # we typically find the point where the slope is steepest learn.recorder.plot(skip_end=15) # Fit the model based on selected learning rate learn.fit_one_cycle(1, 1e-2, moms=(0.8, 0.7)) # Predict Tweets starting from the given words N_WORDS = 20 print(learn.predict("Clean energy will be", N_WORDS, temperature=0.75)) print(learn.predict("Russian hackers", N_WORDS, temperature=0.75)) print(learn.predict("Tesla", N_WORDS, temperature=0.75)) print(learn.predict("Clean energy will be", 2, temperature=0.75)) print(learn.predict("Clean energy will be", 10, temperature=0.75)) print(learn.predict("Global warming", 10, temperature=0.75)) print(learn.predict("Clean energy will be", 11, temperature=0.75)) print(learn.predict("Global warming", 11, temperature=0.75)) print(learn.predict("White house", 10, temperature=0.75)) print(learn.predict("I am", 10, temperature=0.75)) print(learn.predict("Deep fake", 10, temperature=0.75)) print(learn.predict("Calling", 10, temperature=0.75)) print(learn.predict("Putin", 10, temperature=0.75)) print(learn.predict("Russia", 10, temperature=0.75)) print(learn.predict("Nuclear war is", 10, temperature=0.75)) print(learn.predict("Iran is democratic", 10, temperature=0.75)) print(learn.predict("Global warming", 10, temperature=0.75))
# # Project 3 # We've built low-level models, and we've built high-level models. Now, our goal is two-fold: # - Build low-level models into better high-level models, and vice-versa. # - Ensemble our models to make them more reliable # The process for performing hierarchical reconciliation is laid out well [here](https://nixtla.github.io/hierarchicalforecast/examples/tourismsmall.html). I'd recommend following along! # Let's get going! data_dir = "/kaggle/input/project-2-data/project_2_data" preds_dir = "/kaggle/input/project-3-preds" # ## Hierarchical Forecasting # add imports import pandas as pd import numpy as np # We're going to start by building a model at the store-deparment level. Our goal is to create a forecast at that level that coherently aggregates up to the state level. data = ( pd.read_parquet(f"{data_dir}/sales_data.parquet") .reset_index() .rename(columns={"date": "ds", "sales": "y"}) .assign(store_dept_id=lambda df: df.store_id + "_" + df.dept_id) .groupby(["ds", "store_dept_id", "store_id", "state_id"]) .y.sum() .reset_index() ) data.head() # Now it's time to set up our hierarchical data. Use the `aggregate` method from `hierarchicalforecast` to hierarchically structure our data and get the proper summing dataframe. from hierarchicalforecast.utils import aggregate # this is the `spec` argument in the `aggregate` function hierarchy_levels = [ ["state_id"], ["state_id", "store_id"], ["state_id", "store_id", "store_dept_id"], ] y_hier, S_df, tags = aggregate(df=data, spec=hierarchy_levels) y_hier = y_hier.reset_index() y_hier.head() tags from hierarchicalforecast.utils import HierarchicalPlot hplots = HierarchicalPlot(S_df, tags) hplots.plot_summing_matrix() # I went ahead and split your data for you. Train a `StatsForecast` model (any algorithm works, I used AutoARIMA). Be sure to grab the fitted values (i.e. the predictions on the training set), since we'll need that later. val = y_hier.groupby("unique_id").tail(28) train = y_hier.drop(val.index) from statsforecast import StatsForecast from statsforecast.models import AutoETS fcst = StatsForecast(models=[AutoETS(season_length=7)], freq="D") models = fcst.fit(train) y_fcst = fcst.forecast(h=28, fitted=True) # forecast on the validation period y_fitted = ( fcst.forecast_fitted_values() ) # fitted values, i.e. forecast on the training data # Use the `StatsForecast.plot` method to visualize your predictions. Try passing `plot_random=False` to see how the model performs at the top levels. Y_df = y_hier.merge( y_fcst.reset_index(), on=["ds", "unique_id"], how="outer" ).set_index("unique_id") Yval_df = val.merge( y_fcst.reset_index(), on=["ds", "unique_id"], how="outer" ).set_index("unique_id") # Notebook too big, need to reduce the number of images # hplots.plot_hierarchically_linked_series('TX/TX_3/TX_3_HOUSEHOLD_2', Y_df=Y_df, models=['y', 'AutoETS']) # hplots.plot_hierarchically_linked_series('TX/TX_3/TX_3_HOUSEHOLD_2', Y_df=Yval_df) # fcst.plot(y_hier.set_index('unique_id'), y_fcst, plot_random=True) fcst.plot(val.set_index("unique_id"), y_fcst, plot_random=False) # Now it's time to reconcile! Use the BottomUp, TopDown, and MinTrace reconciliation methods. For TopDown and MinTrace, try out the different methods provided by `hierarchicalforecast` to see which ones work best. from hierarchicalforecast.core import HierarchicalReconciliation from hierarchicalforecast.methods import ( BottomUp, TopDown, MiddleOut, MinTrace, OptimalCombination, ERM, ) reconcilers = [ BottomUp(), MiddleOut(middle_level="state_id/store_id", top_down_method="forecast_proportions"), MiddleOut(middle_level="state_id/store_id", top_down_method="average_proportions"), MiddleOut(middle_level="state_id/store_id", top_down_method="proportion_averages"), TopDown(method="forecast_proportions"), TopDown(method="average_proportions"), TopDown(method="proportion_averages"), MinTrace(method="ols"), MinTrace(method="wls_struct"), MinTrace(method="wls_var"), MinTrace(method="mint_shrink"), MinTrace(method="mint_cov"), OptimalCombination(method="ols"), OptimalCombination(method="wls_struct"), ERM(method="closed"), ERM(method="reg"), ERM(method="reg_bu"), ] hrec = HierarchicalReconciliation(reconcilers=reconcilers) y_rec = hrec.reconcile(Y_hat_df=y_fcst, Y_df=y_fitted, S=S_df, tags=tags) y_rec.groupby("unique_id").head(2).head(10) # Plot the results for your raw model predictions against the hierarchical predictions. How closely do the direct, non-hierarchical forecasts agree/disagree? What about the hierarchical forecasts? # Hint: the below plot shows a sample, but the answer to this question lies with `plot_hierarchical_predictions_gap()`. Check out some of the other plotting methods, too! Y_rec_df = val.merge(y_rec, on=["unique_id", "ds"]).set_index("unique_id") Y_recs = [col for col in Y_rec_df.columns if col not in ["ds", "y"]] len(Y_recs) hplots = HierarchicalPlot(S_df, tags) hplots.plot_hierarchically_linked_series( bottom_series="TX/TX_3/TX_3_HOUSEHOLD_2", Y_df=Y_rec_df[["ds", "y"] + Y_recs[0:9]], ) hplots.plot_hierarchically_linked_series( bottom_series="TX/TX_3/TX_3_HOUSEHOLD_2", Y_df=Y_rec_df[["ds", "y"] + Y_recs[9:]], ) hplots.plot_hierarchical_predictions_gap( Y_df=Y_rec_df, models=["AutoETS/MinTrace_method-ols"] ) hplots.plot_hierarchical_predictions_gap(Y_df=Y_rec_df, models=["AutoETS"]) # I can't put too many plots, but in these four we can see that the hierarchical models agree alot more then the non-hierarchical. # Use the helper code below to calculate RMSSE for every method you tried, at every level of the hierarchy. This code is borrowed and modified from the `hierarchicalforecast` library, because their implementation of `msse` is different than our version. This formulation of RMSSE should line up with the formulation from Project 2. from hierarchicalforecast.evaluation import HierarchicalEvaluation def mse(y, y_hat, weights=None, axis=None): delta_y = np.square(y - y_hat) if weights is not None: mse = np.average(delta_y, weights=weights, axis=axis) else: mse = np.nanmean(delta_y, axis=axis) return mse def rmsse(y, y_hat, y_insample, mask=None, insample_mask=None): if mask is None: mask = np.ones_like(y) eps = np.finfo(float).eps norm = mse( y=y_insample[:, 1:], y_hat=y_insample[:, :-1], weights=insample_mask, axis=1 ) loss = mse(y=y, y_hat=y_hat, weights=mask, axis=1) loss = np.sqrt(loss / (norm + eps)) return loss.mean() HierarchicalEvaluation([rmsse]).evaluate( Y_hat_df=y_rec, # your reconciled forecasts Y_test_df=val.set_index( "unique_id" ), # validation actuals DF, with unique_id as index tags=tags, # tags from aggregate() Y_df=train.set_index("unique_id"), # training actuals DF, with unique_id as index ) # Answer the following questions: # - What's more accurate, the direct forecast, or the hierarchical methods? # - What's the most accurate method for top-level aggregation (i.e. the `state_id` level)? # - What's the most accurate method for bottom-level aggregation (i.e. the `state_id`/`store_id`/`store_dept_id` level)? # Using the MinTrace and OptmimalCombination methods of reconciliation seems to yield better RMSSE values Overall, and for `state_id`, and `state_id/store_id/store_dept_id` levels. ERM-reg showed a better performance on `state_id` and `state_id/store_id` level, ERM-closed was horrible though. # I want to point out that Middle out despite getting 0.742 RMSSE for the state_id level, the `average_proportions` method yeilded many NaN values. I don't know if it was a error in set up, or it was expected given the data. # ## Ensembling # Now, let's try to ensemble predictions from multiple models. # Below, fit two models -- one `mlforecast` model (could be the same one you used in Project 2), and one `statsforecast` model. You can fit the models at any level you want (just make sure both are fit at the same level), but I'd recommend trying out `item_id`. It's a little faster than at the `id` level, and it gives both models a good opportunity to show their diversity. # Once you've fit both models, be sure to plot some sample predictions. # Don't worry about tuning the performance much here. This is more about seeing ensembling in action than optimizing your individual models! # [Optional, if you have extra time] You can also fit a `neuralforecast` model. # read in a fresh copy of the data data = ( pd.read_parquet(f"{data_dir}/sales_data.parquet") .reset_index() .groupby(["date", "item_id", "dept_id", "cat_id"]) .sales.sum() .reset_index() .assign(unique_id=lambda df: df.item_id.copy()) .rename(columns={"date": "ds", "sales": "y"}) ) data.head() prices = ( pd.read_parquet(f"{data_dir}/prices.parquet") .groupby(["date", "item_id"]) .sum() .reset_index() .assign(unique_id=lambda df: df.item_id.copy()) .rename(columns={"date": "ds"}) ) prices.head() calendar = ( pd.read_parquet(f"{data_dir}/calendar.parquet") .reset_index() .rename(columns={"date": "ds"}) ) calendar.head() data = ( data[["ds", "item_id", "dept_id", "cat_id", "unique_id", "y"]] .merge(prices, how="left", on=["ds", "item_id", "unique_id"]) .merge(calendar, how="left", on=["ds"]) ) data = ( data.assign( item_id=data.item_id.astype("category"), dept_id=data.dept_id.astype("category"), cat_id=data.cat_id.astype("category"), event_name_1=data.event_name_1.astype("category"), event_type_1=data.event_type_1.astype("category"), event_name_2=data.event_name_2.astype("category"), event_type_2=data.event_type_2.astype("category"), ) .set_index(["unique_id", "ds"]) .sort_index() ) data.head() data val_data = data.reset_index().groupby("unique_id").tail(28) y = val_data.sort_values(["unique_id", "ds"]).y.values.reshape(-1, 28) display(val_data) train_data = data.reset_index().drop(val_data.index) y_insample = train_data.sort_values(["unique_id", "ds"]).y.values.reshape(-1, 1210) insample_mask = (y_insample.cumsum(axis=1) > 0).astype(int)[:, 1:] display(train_data) from statsforecast import StatsForecast from mlforecast import MLForecast from sklearn.preprocessing import OrdinalEncoder from window_ops.rolling import ( rolling_mean, seasonal_rolling_mean, rolling_std, rolling_max, rolling_min, ) from numba import njit import lightgbm as lgb import random random.seed(415) ml_skip = False # If True it would skip training and load previous saved forecast data. if ml_skip: preds_ml = pd.read_parquet(f"{preds_dir}/project_3_preds_ml_lgbm.parquet") else: val = val_data.copy(deep=True) train = train_data.copy(deep=True) # label encode categorical features cat_feats = ["unique_id", "item_id", "snap_TX"] enc_cat_feats = [f"{feat}_enc" for feat in cat_feats] numeric_features = [ "sell_price", "sell_price_rolling_max", "sell_price_rolling_min", ] train["sell_price_rolling_max"] = rolling_max( train["sell_price"].to_numpy(), window_size=7 ) train["sell_price_rolling_min"] = rolling_min( train["sell_price"].to_numpy(), window_size=7 ) val["sell_price_rolling_max"] = rolling_max( val["sell_price"].to_numpy(), window_size=7 ) val["sell_price_rolling_min"] = rolling_min( val["sell_price"].to_numpy(), window_size=7 ) encoder = OrdinalEncoder() train[enc_cat_feats] = encoder.fit_transform(train[cat_feats]) val[enc_cat_feats] = encoder.transform(val[cat_feats]) reference_cols = ["unique_id", "ds", "y"] # add features to this list if you want to use them features = reference_cols + enc_cat_feats + numeric_features train = train[features] val = val[features] @njit def rolling_max_14(x): return rolling_max(x, window_size=14) @njit def rolling_mean_28(x): return rolling_mean(x, window_size=28) @njit def rolling_std_28(x): return rolling_std(x, window_size=28) @njit def rolling_mean_7(x): return rolling_mean(x, window_size=7) @njit def seasonal_rolling_mean_7(x): return seasonal_rolling_mean(x, season_length=7, window_size=4, min_samples=1) # feel free to tweak these parameters! lgb_model_params = { "verbose": -1, "num_leaves": 512, "n_estimators": 100, "objective": "tweedie", "tweedie_variance_power": 1.1, "boosting": "dart", "learning_rate": 0.1, } models = [lgb.LGBMRegressor(**lgb_model_params)] fcst = MLForecast( models=models, freq="D", # dictionary reads like this: # {number of days to lag the feature: [list of functions to apply to the lagged data]} # lags=[1, 2, 3, 7], lag_transforms={ 7: [rolling_mean_7, rolling_mean_28, seasonal_rolling_mean_7], 14: [rolling_mean_28], 21: [rolling_mean_28], 28: [rolling_mean_28], }, date_features=["dayofweek", "dayofyear", "week"], ) fcst.fit( train, id_col="unique_id", time_col="ds", target_col="y", dropna=False, static_features=["unique_id_enc", "item_id_enc"], ) preds_ml = fcst.predict(28, dynamic_dfs=[val]) preds_ml.to_parquet("/kaggle/working/project_3_preds_ml_lgbm.parquet") lgb.plot_importance(fcst.models_["LGBMRegressor"]) y_hat_ml = preds_ml.sort_values(["unique_id", "ds"]).LGBMRegressor.values.reshape( -1, 28 ) print( f"LightGBM Tweedie RMSSE: {rmsse(y, y_hat_ml, y_insample, insample_mask=insample_mask)}" ) StatsForecast.plot(val_data[["unique_id", "ds", "y"]], preds_ml, level=[80, 90]) from ray import tune from statsforecast import StatsForecast from neuralforecast import NeuralForecast from neuralforecast.auto import AutoNHITS, AutoTFT from neuralforecast.losses.pytorch import DistributionLoss from sklearn.preprocessing import OrdinalEncoder from window_ops.rolling import ( rolling_mean, seasonal_rolling_mean, rolling_std, rolling_max, rolling_min, ) from numba import njit import random random.seed(415) nf_skip = True # If True it would skip training and load previous saved forecast data. if nf_skip: preds_nf = pd.read_parquet(f"{preds_dir}/project_3_preds_nf.parquet") else: val = val_data.copy(deep=True) train = train_data.copy(deep=True) # label encode categorical features cat_feats = [ "unique_id", "item_id", "dept_id", "cat_id", "event_type_1", "event_type_2", ] enc_cat_feats = [f"{feat}_enc" for feat in cat_feats] numeric_features = [ "sell_price", "sell_price_rolling_max", "sell_price_rolling_min", ] train["sell_price_rolling_max"] = rolling_max( train["sell_price"].to_numpy(), window_size=7 ) train["sell_price_rolling_min"] = rolling_min( train["sell_price"].to_numpy(), window_size=7 ) val["sell_price_rolling_max"] = rolling_max( val["sell_price"].to_numpy(), window_size=7 ) val["sell_price_rolling_min"] = rolling_min( val["sell_price"].to_numpy(), window_size=7 ) encoder = OrdinalEncoder() train[enc_cat_feats] = encoder.fit_transform(train[cat_feats]) val[enc_cat_feats] = encoder.transform(val[cat_feats]) reference_cols = ["unique_id", "ds", "y"] # add features to this list if you want to use them features = reference_cols + enc_cat_feats + numeric_features train = train[features] val = val[features] config_nhits = { "input_size": tune.choice( [28, 28 * 2, 28 * 3, 28 * 5] ), # Length of input window "n_blocks": 5 * [1], # Length of input window "mlp_units": 5 * [[512, 512]], # Length of input window "n_pool_kernel_size": tune.choice( [5 * [1], 5 * [2], 5 * [4], [8, 4, 2, 1, 1]] ), # MaxPooling Kernel size "n_freq_downsample": tune.choice( [[8, 4, 2, 1, 1], [1, 1, 1, 1, 1]] ), # Interpolation expressivity ratios "learning_rate": tune.loguniform(1e-4, 1e-2), # Initial Learning rate "scaler_type": tune.choice([None]), # Scaler type "max_steps": tune.choice([1000]), # Max number of training iterations "batch_size": tune.choice([32, 64, 128, 256]), # Number of series in batch "windows_batch_size": tune.choice( [128, 256, 512, 1024] ), # Number of windows in batch "random_seed": tune.randint(1, 20), # Random seed # "stat_exog_list": ["unique_id_enc", # "item_id_enc", # "dept_id_enc", # "cat_id_enc"], # Static exogenous columns. # "futr_exog_list": ["sell_price", # "sell_price_rolling_max", # "sell_price_rolling_min"], # Future exogenous columns. } config_tft = { "input_size": tune.choice([28, 28 * 2, 28 * 3]), # Length of input window "hidden_size": tune.choice([64, 128, 256]), # Size of embeddings and encoders "learning_rate": tune.loguniform(1e-4, 1e-2), # Initial learning rate "scaler_type": tune.choice([None]), # Scaler type "max_steps": tune.choice([500, 1000]), # Max number of training iterations "batch_size": tune.choice([32, 64, 128, 256]), # Number of series in batch "windows_batch_size": tune.choice( [128, 256, 512, 1024] ), # Number of windows in batch "random_seed": tune.randint(1, 20), # Random seed # "stat_exog_list": ["unique_id_enc", # "item_id_enc", # "dept_id_enc", # "cat_id_enc"], # Static exogenous columns. # "futr_exog_list": ["sell_price", # "sell_price_rolling_max", # "sell_price_rolling_min"], # Future exogenous columns. } nf = NeuralForecast( models=[ AutoNHITS( h=28, config=config_nhits, loss=DistributionLoss( distribution="Poisson", level=[80, 90], return_params=False ), num_samples=10, verbose=0, ), AutoTFT( h=28, config=config_tft, loss=DistributionLoss( distribution="Poisson", level=[80, 90], return_params=False ), num_samples=10, verbose=0, ), ], freq="D", ) cv_df = nf.cross_validation(train, n_windows=3, step_size=28) preds_nf = nf.predict(df=train, futr_df=val) preds_nf.columns = preds_nf.columns.str.replace("-median", "") preds_nf.to_parquet("/kaggle/working/project_3_preds_nf.parquet") y_hat_nf1 = preds_nf.sort_values(["unique_id", "ds"]).AutoNHITS.values.reshape(-1, 28) print( f"AutoNHITS RMSSE: {rmsse(y, y_hat_nf1, y_insample, insample_mask=insample_mask)}" ) y_hat_nf2 = preds_nf.sort_values(["unique_id", "ds"]).AutoTFT.values.reshape(-1, 28) print(f"AutoTFT RMSSE: {rmsse(y, y_hat_nf2, y_insample, insample_mask=insample_mask)}") StatsForecast.plot(val_data[["unique_id", "ds", "y"]], preds_nf, level=[80, 90]) preds_nf # fit a statsforecast model (AutoETS takes FOREEEEVEEER, arrgh.) from statsforecast.core import StatsForecast from statsforecast.models import AutoETS random.seed(415) sf_skip = True # If True it would skip training and load previous saved forecast data. if sf_skip: preds_sf = pd.read_parquet(f"{preds_dir}/project_3_preds_sf_ets.parquet") else: val = val_data.copy() train = train_data.copy() reference_cols = ["unique_id", "ds", "y"] # add features to this list if you want to use them features = reference_cols train = train[features] al = val[features] fcst = StatsForecast(models=[AutoETS(season_length=7)], freq="D") fcst.fit(train) preds_sf = fcst.forecast(h=28).reset_index() preds_sf.to_parquet("/kaggle/working/project_3_preds_sf_ets.parquet") y_hat_sf = preds_sf.sort_values(["unique_id", "ds"]).AutoETS.values.reshape(-1, 28) print(f"AutoETS RMSSE: {rmsse(y, y_hat_sf, y_insample, insample_mask=insample_mask)}") StatsForecast.plot(val_data[["unique_id", "ds", "y"]], preds_sf, level=[80, 90]) # Before starting to ensemble, let's check the RMSSE of our individual models. Our modified version of RMSSE takes predictions in a rectangular shape, with each row being one `unique_id` and each column being one of the 28 predictions for the validation set. That results in an array of shape `[n_unique_ids, 28]`. We need to do the same thing for the training data (`y_insample` here) to create the scale (the denominator). Finally, we create a mask to tell the RMSSE function not to calculate the scale value before each `unique_id` has its first sale, since we don't calculate the loss over those periods. # This code assumes you stored your `mlforecast` predictions in `preds_ml` and your `statsforecast` predictions in `preds_sf`. # Modify it to suit your needs! print( f"LightGBM Tweedie RMSSE: {rmsse(y, y_hat_ml, y_insample, insample_mask=insample_mask)}" ) print(f"AutoETS RMSSE: {rmsse(y, y_hat_sf, y_insample, insample_mask=insample_mask)}") print( f"AutoNHITS RMSSE: {rmsse(y, y_hat_nf1, y_insample, insample_mask=insample_mask)}" ) print(f"AutoTFT RMSSE: {rmsse(y, y_hat_nf2, y_insample, insample_mask=insample_mask)}") # Create `y_hat`, which is a NumPy array of all of your model's predictions combined along a new axis. `y_hat` should be of shape `[n_models, n_unique_ids, 28]`. So, if you only fit one `mlforecast` model and one `statsforecast` model, it'd be of shape `[2, n_unique_ids, 28]`. # The reason we're doing this is because we're going to have a single weight for each model, and that weight will be between 0 and 1. So, that means we can take a weighted average across the first dimension using those weights to calculate our ensemble. But, that after this! # Hint: try running the following code: # ``` # arr = np.array([ # [0, 1, 2], # [3, 4, 5], # [6, 7, 8], # [9, 0, 1], # ]) # print(arr.shape) # print(arr[None, :].shape) # ``` y_hat = np.concatenate( [y_hat_ml[None, :], y_hat_sf[None, :], y_hat_nf1[None, :], y_hat_nf2[None, :]], axis=0, ) # Calculate `y_hat_avg` in `ensemble_metric`. `y_hat_avg` is a weighted average of `y_hat` along the first dimension, and is weighted according to `weights`, which is a list of floats of length `n_models`. There are some tests in there to help you out! # Here's what you have to do: # 1. Finish the definition for `init_guess`, which should be a list with length equal to the number of models you trained. Initialize it such that the weights for each model are between 0 and 1 and are equal for every model. # 2. Run the code and make note of the RMSSE value. This is the RMSSE for a simple average of your predictions. from functools import partial def ensemble_metric(weights, y, y_hat, y_insample, insample_mask): y_hat_avg = np.average(y_hat, axis=0, weights=weights) assert ( y_hat_avg.ndim == 2 ), "y_hat_avg has {y_hat_avg.ndim} dimensions, but it must be 2D. Did you calculate a weighted average over the first dimension?" assert ( y_hat_avg.shape == y.shape ), "y_hat_avg and y must have the same shape. y_hat_avg has shape {y_hat_avg.shape}, but y has shape {y.shape}" return rmsse(y, y_hat_avg, y_insample, insample_mask=insample_mask) ensemble_metric = partial( ensemble_metric, y=y, y_hat=y_hat, y_insample=y_insample, insample_mask=insample_mask, ) # Our first guess is setting all weights equal to each other, such that they sum up to 1 init_guess = np.ones(y_hat.shape[0]) / y_hat.shape[0] print(f"Inital Blend RMSSE: {ensemble_metric(init_guess):.6f}") # On line 16, replace `oof_names` with a list of the names of your models in the order that you added them to `y_hat`. from scipy.optimize import minimize bnds = [(0, 1) for _ in range(y_hat.shape[0])] # Weights must be between 0 and 1 res_scipy = minimize( fun=ensemble_metric, x0=init_guess, method="Powell", bounds=bnds, options=dict(maxiter=1_000_000), tol=1e-8, ) print(f"Optimised Blend RMSSE: {res_scipy.fun:.6f}") print(f"Optimised Weights: {res_scipy.x}") print("-" * 70) oof_names = ["LGBMRegressor", "AutoETS", "AutoNHITS", "AutoTST"] for n, key in enumerate(oof_names): print(f"{key} Optimised Weights: {res_scipy.x[n]:.6f}") ws = [res_scipy.x[i] for i in range(len(oof_names))] # normalize the weights so they sum to 1 weights = ws / np.sum(ws) print(f"Normalized weights:") print(weights)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. WINE_PATH = "../input/red-wine-quality-cortez-et-al-2009/winequality-red.csv" wine = pd.read_csv(WINE_PATH) # Look at the data wine.shape wine.info() wine.describe() import matplotlib.pyplot as plt wine.hist(bins=50, figsize=(20, 15)) plt.show() # Look at possible influential feature corr_matrix = wine.corr() corr_matrix["quality"].sort_values(ascending=False) val = wine.values len(val[1]) # Spliting the dataset and do stratified sampling on Alcohol from sklearn.model_selection import train_test_split train_set, test_set = train_test_split(wine, test_size=0.2, random_state=42) wine["alcohol_cat"] = pd.cut( wine["alcohol"], bins=[0, 9.3, 10, 10.7, 11.4, 12.1, np.inf], labels=[1, 2, 3, 4, 5, 6], ) wine["alcohol_cat"].hist() from sklearn.model_selection import StratifiedShuffleSplit alcohol_split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42) for train_index, test_index in alcohol_split.split(wine, wine["alcohol_cat"]): strat_train_set = wine.loc[train_index] strat_test_set = wine.loc[test_index] wine = strat_train_set.copy() from pandas.plotting import scatter_matrix attributes = ["quality", "alcohol", "volatile acidity"] scatter_matrix(wine[attributes], figsize=(15, 10)) wine = strat_train_set.drop(["quality"], axis=1) wine_test = strat_test_set.drop(["quality"], axis=1) wine_score_labels = strat_train_set["quality"].copy() wine_test_score_labels = strat_test_set["quality"].copy() # Check correlation again # The data are all numerical and no null values, so it seems like only feature scaling is needed from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler from sklearn.compose import ColumnTransformer num_pipeline = Pipeline( [ ("std_scaler", StandardScaler()), ] ) wine_prepared = num_pipeline.fit_transform(wine) wine_test_prepared = num_pipeline.transform(wine_test) # start to train models (Linear Regression vs Decision Tree Regressor) from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor lin_reg = LinearRegression() lin_reg.fit(wine_prepared, wine_score_labels) tree_reg = DecisionTreeRegressor(random_state=42) tree_reg.fit(wine_prepared, wine_score_labels) strat_test_set from sklearn.metrics import mean_absolute_error print("Linear Model: {}".format(lin_reg.score(wine_prepared, wine_score_labels))) print( "Decision Tree Model: {}".format(tree_reg.score(wine_prepared, wine_score_labels)) ) from sklearn.metrics import mean_squared_error wine_predictions = lin_reg.predict(wine_prepared) lin_mse = mean_squared_error(wine_score_labels, wine_predictions) line_rmse = np.sqrt(lin_mse) line_rmse def display_scores(scores): print("Scores:", scores) print("Mean:", scores.mean()) print("Standard deviation:", scores.std()) from sklearn.model_selection import cross_val_score scores = cross_val_score( tree_reg, wine_prepared, wine_score_labels, scoring="neg_mean_squared_error", cv=30 ) test_scores = cross_val_score( tree_reg, wine_test_prepared, wine_test_score_labels, scoring="neg_mean_squared_error", cv=30, ) tree_rmse_test_scores = np.sqrt(-test_scores) tree_rmse_scores = np.sqrt(-scores) scores = cross_val_score( lin_reg, wine_prepared, wine_score_labels, scoring="neg_mean_squared_error", cv=30 ) test_scores = cross_val_score( lin_reg, wine_test_prepared, wine_test_score_labels, scoring="neg_mean_squared_error", cv=30, ) lin_rmse_test_scores = np.sqrt(-test_scores) lin_rmse_scores = np.sqrt(-scores) print("Training:") display_scores(tree_rmse_scores) print("\nTesting:") display_scores(tree_rmse_test_scores) print("Training:") display_scores(lin_rmse_scores) print("\nTesting:") display_scores(lin_rmse_test_scores)