script
stringlengths
113
767k
import pandas as pd import numpy as np import warnings import tensorflow as tf import tensorflow.keras.backend as K import keras_metrics import spacy from tensorflow import keras from keras.models import Sequential from keras.layers import Dense, SimpleRNN, Dropout, GRU, LSTM, Bidirectional from sklearn.model_selection import train_test_split from sklearn.metrics import ( accuracy_score, f1_score, precision_score, recall_score, classification_report, confusion_matrix, ) from sklearn.exceptions import DataConversionWarning, UndefinedMetricWarning warnings.filterwarnings(action="ignore", category=DataConversionWarning) warnings.filterwarnings(action="ignore", category=UndefinedMetricWarning) tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) nlp = spacy.load("en_core_web_lg") sarcasm_df = pd.read_csv("/kaggle/input/sarcasm-detection/Sarcasm Dataset.csv") sarcasm_df = sarcasm_df.iloc[:, 1:] sarcasm_df.head() # LABELS # sarcasm 0 # irony 1 # satire 2 # understatement 3 # overstatement 4 # rhetorical_question 5 tweets_lst = [] labels_lst = [] multiclass_df = sarcasm_df.loc[sarcasm_df["sarcastic"] == 1].drop(columns="sarcastic") for itr in range(len(multiclass_df)): if int(multiclass_df.iloc[itr].sarcasm) == 1: tweets_lst.append(multiclass_df.iloc[itr].tweet), labels_lst.append(0) if int(multiclass_df.iloc[itr].irony) == 1: tweets_lst.append(multiclass_df.iloc[itr].tweet), labels_lst.append(1) if int(multiclass_df.iloc[itr].satire) == 1: tweets_lst.append(multiclass_df.iloc[itr].tweet), labels_lst.append(2) if int(multiclass_df.iloc[itr].understatement) == 1: tweets_lst.append(multiclass_df.iloc[itr].tweet), labels_lst.append(3) if int(multiclass_df.iloc[itr].overstatement) == 1: tweets_lst.append(multiclass_df.iloc[itr].tweet), labels_lst.append(4) if int(multiclass_df.iloc[itr].overstatement) == 1: tweets_lst.append(multiclass_df.iloc[itr].tweet), labels_lst.append(5) dataset_df = pd.DataFrame({"tweet": tweets_lst, "label": labels_lst}) # #################### BINARY CLASSIFICATION ######################## doc_embeddings = [] for itr in dataset_df.tweet: doc = nlp(str(itr)) doc_embeddings.append(doc.vector) X_train, X_test, y_train, y_test = train_test_split( np.asarray(doc_embeddings), np.asarray(dataset_df.label), test_size=0.25 ) X_train = np.expand_dims(X_train, -1) X_test = np.expand_dims(X_test, -1) y_train = tf.one_hot(y_train, depth=6) ################################# SIMPLE RNN DROUPOUT RATE 0.2 ######################################## model = keras.Sequential() model.add( SimpleRNN( 128, input_shape=(X_train.shape[1:]), activation="relu", return_sequences=True ) ) model.add(Dropout(0.2)) model.add(SimpleRNN(128, activation="relu", return_sequences=False)) model.add(Dropout(0.2)) model.add(Dense(32, activation="relu")) model.add(Dropout(0.2)) model.add(Dense(6, activation="softmax")) # model.summary() opt = tf.keras.optimizers.Adam(learning_rate=1e-3, decay=1e-5) model.compile(loss="binary_crossentropy", optimizer=opt, metrics=["accuracy"]) print("Train...") history = model.fit(X_train, y_train, validation_split=0.2, epochs=5) predicted_y = np.argmax(model.predict(X_test), axis=1) print("\nSIMPLE RNN WITH DROPOUT 0.2 WITH MICRO AVERAGE") print("Accuray: ", accuracy_score(y_test, predicted_y)) print("F1 Score: ", f1_score(y_test, predicted_y, average="micro")) print("Precision: ", precision_score(y_test, predicted_y, average="micro")) print("Recall: ", recall_score(y_test, predicted_y, average="micro")) print("\nSIMPLE RNN WITH DROPOUT 0.2 WITH MACRO AVERAGE") print("Accuray: ", accuracy_score(y_test, predicted_y)) print("F1 Score: ", f1_score(y_test, predicted_y, average="macro")) print("Precision: ", precision_score(y_test, predicted_y, average="macro")) print("Recall: ", recall_score(y_test, predicted_y, average="macro")) ################################# SIMPLE RNN DROUPOUT RATE 0.4 ######################################## model = keras.Sequential() model.add( SimpleRNN( 128, input_shape=(X_train.shape[1:]), activation="relu", return_sequences=True ) ) model.add(Dropout(0.4)) model.add(SimpleRNN(128, activation="relu", return_sequences=False)) model.add(Dropout(0.4)) model.add(Dense(32, activation="relu")) model.add(Dropout(0.4)) model.add(Dense(6, activation="softmax")) # model.summary() opt = tf.keras.optimizers.Adam(learning_rate=1e-3, decay=1e-5) model.compile(loss="binary_crossentropy", optimizer=opt, metrics=["accuracy"]) print("Train...") history = model.fit(X_train, y_train, validation_split=0.2, epochs=5) predicted_y = np.argmax(model.predict(X_test), axis=1) print("\nSIMPLE RNN WITH DROPOUT 0.4 WITH MICRO AVERAGE") print("Accuray: ", accuracy_score(y_test, predicted_y)) print("F1 Score: ", f1_score(y_test, predicted_y, average="micro")) print("Precision: ", precision_score(y_test, predicted_y, average="micro")) print("Recall: ", recall_score(y_test, predicted_y, average="micro")) print("\nSIMPLE RNN WITH DROPOUT 0.4 WITH MACRO AVERAGE") print("Accuray: ", accuracy_score(y_test, predicted_y)) print("F1 Score: ", f1_score(y_test, predicted_y, average="macro")) print("Precision: ", precision_score(y_test, predicted_y, average="macro")) print("Recall: ", recall_score(y_test, predicted_y, average="macro")) ################################# SIMPLE RNN DROUPOUT RATE 0.6 ######################################## model = keras.Sequential() model.add( SimpleRNN( 128, input_shape=(X_train.shape[1:]), activation="relu", return_sequences=True ) ) model.add(Dropout(0.6)) model.add(SimpleRNN(128, activation="relu", return_sequences=False)) model.add(Dropout(0.6)) model.add(Dense(32, activation="relu")) model.add(Dropout(0.6)) model.add(Dense(6, activation="softmax")) # model.summary() opt = tf.keras.optimizers.Adam(learning_rate=1e-3, decay=1e-5) model.compile(loss="binary_crossentropy", optimizer=opt, metrics=["accuracy"]) print("Train...") history = model.fit(X_train, y_train, validation_split=0.2, epochs=5) predicted_y = np.argmax(model.predict(X_test), axis=1) print("\nSIMPLE RNN WITH DROPOUT 0.6 WITH MICRO AVERAGE") print("Accuray: ", accuracy_score(y_test, predicted_y)) print("F1 Score: ", f1_score(y_test, predicted_y, average="micro")) print("Precision: ", precision_score(y_test, predicted_y, average="micro")) print("Recall: ", recall_score(y_test, predicted_y, average="micro")) print("\nSIMPLE RNN WITH DROPOUT 0.6 WITH MACRO AVERAGE") print("Accuray: ", accuracy_score(y_test, predicted_y)) print("F1 Score: ", f1_score(y_test, predicted_y, average="macro")) print("Precision: ", precision_score(y_test, predicted_y, average="macro")) print("Recall: ", recall_score(y_test, predicted_y, average="macro")) ################################# SIMPLE RNN DROUPOUT RATE 0.8 ######################################## model = keras.Sequential() model.add( SimpleRNN( 128, input_shape=(X_train.shape[1:]), activation="relu", return_sequences=True ) ) model.add(Dropout(0.8)) model.add(SimpleRNN(128, activation="relu", return_sequences=False)) model.add(Dropout(0.8)) model.add(Dense(32, activation="relu")) model.add(Dropout(0.8)) model.add(Dense(6, activation="softmax")) # model.summary() opt = tf.keras.optimizers.Adam(learning_rate=1e-3, decay=1e-5) model.compile(loss="binary_crossentropy", optimizer=opt, metrics=["accuracy"]) print("Train...") history = model.fit(X_train, y_train, validation_split=0.2, epochs=5) predicted_y = np.argmax(model.predict(X_test), axis=1) print("\nSIMPLE RNN WITH DROPOUT 0.8 WITH MICRO AVERAGE") print("Accuray: ", accuracy_score(y_test, predicted_y)) print("F1 Score: ", f1_score(y_test, predicted_y, average="micro")) print("Precision: ", precision_score(y_test, predicted_y, average="micro")) print("Recall: ", recall_score(y_test, predicted_y, average="micro")) print("\nSIMPLE RNN WITH DROPOUT 0.8 WITH MACRO AVERAGE") print("Accuray: ", accuracy_score(y_test, predicted_y)) print("F1 Score: ", f1_score(y_test, predicted_y, average="macro")) print("Precision: ", precision_score(y_test, predicted_y, average="macro")) print("Recall: ", recall_score(y_test, predicted_y, average="macro")) # **#################### GRU ##############################** ################################# GRU DROUPOUT RATE 0.2 ######################################## model = keras.Sequential() model.add( GRU(128, input_shape=(X_train.shape[1:]), activation="relu", return_sequences=True) ) model.add(Dropout(0.2)) model.add(GRU(128, activation="relu", return_sequences=False)) model.add(Dropout(0.2)) model.add(Dense(32, activation="relu")) model.add(Dropout(0.2)) model.add(Dense(6, activation="softmax")) # model.summary() opt = tf.keras.optimizers.Adam(learning_rate=1e-3, decay=1e-5) model.compile(loss="binary_crossentropy", optimizer=opt, metrics=["accuracy"]) print("Train...") history = model.fit(X_train, y_train, validation_split=0.2, epochs=5) predicted_y = np.argmax(model.predict(X_test), axis=1) print("\nGRU WITH DROPOUT 0.2 WITH MICRO AVERAGE") print("Accuray: ", accuracy_score(y_test, predicted_y)) print("F1 Score: ", f1_score(y_test, predicted_y, average="micro")) print("Precision: ", precision_score(y_test, predicted_y, average="micro")) print("Recall: ", recall_score(y_test, predicted_y, average="micro")) print("\nGRU WITH DROPOUT 0.2 WITH MACRO AVERAGE") print("Accuray: ", accuracy_score(y_test, predicted_y)) print("F1 Score: ", f1_score(y_test, predicted_y, average="macro")) print("Precision: ", precision_score(y_test, predicted_y, average="macro")) print("Recall: ", recall_score(y_test, predicted_y, average="macro")) ################################# GRU DROUPOUT RATE 0.4 ######################################## model = keras.Sequential() model.add( GRU(128, input_shape=(X_train.shape[1:]), activation="relu", return_sequences=True) ) model.add(Dropout(0.4)) model.add(GRU(128, activation="relu", return_sequences=False)) model.add(Dropout(0.4)) model.add(Dense(32, activation="relu")) model.add(Dropout(0.4)) model.add(Dense(6, activation="softmax")) # model.summary() opt = tf.keras.optimizers.Adam(learning_rate=1e-3, decay=1e-5) model.compile(loss="binary_crossentropy", optimizer=opt, metrics=["accuracy"]) print("Train...") history = model.fit(X_train, y_train, validation_split=0.2, epochs=5) predicted_y = np.argmax(model.predict(X_test), axis=1) print("\nGRU WITH DROPOUT 0.4 WITH MICRO AVERAGE") print("Accuray: ", accuracy_score(y_test, predicted_y)) print("F1 Score: ", f1_score(y_test, predicted_y, average="micro")) print("Precision: ", precision_score(y_test, predicted_y, average="micro")) print("Recall: ", recall_score(y_test, predicted_y, average="micro")) print("\nGRU WITH DROPOUT 0.4 WITH MACRO AVERAGE") print("Accuray: ", accuracy_score(y_test, predicted_y)) print("F1 Score: ", f1_score(y_test, predicted_y, average="macro")) print("Precision: ", precision_score(y_test, predicted_y, average="macro")) print("Recall: ", recall_score(y_test, predicted_y, average="macro")) ################################# GRU DROUPOUT RATE 0.6 ######################################## model = keras.Sequential() model.add( GRU(128, input_shape=(X_train.shape[1:]), activation="relu", return_sequences=True) ) model.add(Dropout(0.6)) model.add(GRU(128, activation="relu", return_sequences=False)) model.add(Dropout(0.6)) model.add(Dense(32, activation="relu")) model.add(Dropout(0.6)) model.add(Dense(6, activation="softmax")) # model.summary() opt = tf.keras.optimizers.Adam(learning_rate=1e-3, decay=1e-5) model.compile(loss="binary_crossentropy", optimizer=opt, metrics=["accuracy"]) print("Train...") history = model.fit(X_train, y_train, validation_split=0.2, epochs=5) predicted_y = np.argmax(model.predict(X_test), axis=1) print("\nGRU WITH DROPOUT 0.6 WITH MICRO AVERAGE") print("Accuray: ", accuracy_score(y_test, predicted_y)) print("F1 Score: ", f1_score(y_test, predicted_y, average="micro")) print("Precision: ", precision_score(y_test, predicted_y, average="micro")) print("Recall: ", recall_score(y_test, predicted_y, average="micro")) print("\nGRU WITH DROPOUT 0.6 WITH MACRO AVERAGE") print("Accuray: ", accuracy_score(y_test, predicted_y)) print("F1 Score: ", f1_score(y_test, predicted_y, average="macro")) print("Precision: ", precision_score(y_test, predicted_y, average="macro")) print("Recall: ", recall_score(y_test, predicted_y, average="macro")) ################################# GRU DROUPOUT RATE 0.8 ######################################## model = keras.Sequential() model.add( GRU(128, input_shape=(X_train.shape[1:]), activation="relu", return_sequences=True) ) model.add(Dropout(0.8)) model.add(GRU(128, activation="relu", return_sequences=False)) model.add(Dropout(0.8)) model.add(Dense(32, activation="relu")) model.add(Dropout(0.8)) model.add(Dense(6, activation="softmax")) # model.summary() opt = tf.keras.optimizers.Adam(learning_rate=1e-3, decay=1e-5) model.compile(loss="binary_crossentropy", optimizer=opt, metrics=["accuracy"]) print("Train...") history = model.fit(X_train, y_train, validation_split=0.2, epochs=5) predicted_y = np.argmax(model.predict(X_test), axis=1) print("\nGRU WITH DROPOUT 0.8 WITH MICRO AVERAGE") print("Accuray: ", accuracy_score(y_test, predicted_y)) print("F1 Score: ", f1_score(y_test, predicted_y, average="micro")) print("Precision: ", precision_score(y_test, predicted_y, average="micro")) print("Recall: ", recall_score(y_test, predicted_y, average="micro")) print("\nGRU WITH DROPOUT 0.8 WITH MACRO AVERAGE") print("Accuray: ", accuracy_score(y_test, predicted_y)) print("F1 Score: ", f1_score(y_test, predicted_y, average="macro")) print("Precision: ", precision_score(y_test, predicted_y, average="macro")) print("Recall: ", recall_score(y_test, predicted_y, average="macro")) # **######################LSTM########################** ################################# LSTM DROUPOUT RATE 0.2 ######################################## model = keras.Sequential() model.add( LSTM(128, input_shape=(X_train.shape[1:]), activation="relu", return_sequences=True) ) model.add(Dropout(0.2)) model.add(LSTM(128, activation="relu", return_sequences=False)) model.add(Dropout(0.2)) model.add(Dense(32, activation="relu")) model.add(Dropout(0.2)) model.add(Dense(6, activation="softmax")) # model.summary() opt = tf.keras.optimizers.Adam(learning_rate=1e-3, decay=1e-5) model.compile(loss="binary_crossentropy", optimizer=opt, metrics=["accuracy"]) print("Train...") history = model.fit(X_train, y_train, validation_split=0.2, epochs=5) predicted_y = np.argmax(model.predict(X_test), axis=1) print("\nLSTM WITH DROPOUT 0.2 WITH MICRO AVERAGE") print("Accuray: ", accuracy_score(y_test, predicted_y)) print("F1 Score: ", f1_score(y_test, predicted_y, average="micro")) print("Precision: ", precision_score(y_test, predicted_y, average="micro")) print("Recall: ", recall_score(y_test, predicted_y, average="micro")) print("\nLSTM WITH DROPOUT 0.2 WITH MACRO AVERAGE") print("Accuray: ", accuracy_score(y_test, predicted_y)) print("F1 Score: ", f1_score(y_test, predicted_y, average="macro")) print("Precision: ", precision_score(y_test, predicted_y, average="macro")) print("Recall: ", recall_score(y_test, predicted_y, average="macro")) ################################# LSTM DROUPOUT RATE 0.4 ######################################## model = keras.Sequential() model.add( LSTM(128, input_shape=(X_train.shape[1:]), activation="relu", return_sequences=True) ) model.add(Dropout(0.4)) model.add(LSTM(128, activation="relu", return_sequences=False)) model.add(Dropout(0.4)) model.add(Dense(32, activation="relu")) model.add(Dropout(0.4)) model.add(Dense(6, activation="softmax")) # model.summary() opt = tf.keras.optimizers.Adam(learning_rate=1e-3, decay=1e-5) model.compile(loss="binary_crossentropy", optimizer=opt, metrics=["accuracy"]) print("Train...") history = model.fit(X_train, y_train, validation_split=0.2, epochs=5) predicted_y = np.argmax(model.predict(X_test), axis=1) print("\nLSTM WITH DROPOUT 0.4 WITH MICRO AVERAGE") print("Accuray: ", accuracy_score(y_test, predicted_y)) print("F1 Score: ", f1_score(y_test, predicted_y, average="micro")) print("Precision: ", precision_score(y_test, predicted_y, average="micro")) print("Recall: ", recall_score(y_test, predicted_y, average="micro")) print("\nLSTM WITH DROPOUT 0.4 WITH MACRO AVERAGE") print("Accuray: ", accuracy_score(y_test, predicted_y)) print("F1 Score: ", f1_score(y_test, predicted_y, average="macro")) print("Precision: ", precision_score(y_test, predicted_y, average="macro")) print("Recall: ", recall_score(y_test, predicted_y, average="macro")) ################################# LSTM DROUPOUT RATE 0.6 ######################################## model = keras.Sequential() model.add( LSTM(128, input_shape=(X_train.shape[1:]), activation="relu", return_sequences=True) ) model.add(Dropout(0.6)) model.add(LSTM(128, activation="relu", return_sequences=False)) model.add(Dropout(0.6)) model.add(Dense(32, activation="relu")) model.add(Dropout(0.6)) model.add(Dense(6, activation="softmax")) # model.summary() opt = tf.keras.optimizers.Adam(learning_rate=1e-3, decay=1e-5) model.compile(loss="binary_crossentropy", optimizer=opt, metrics=["accuracy"]) print("Train...") history = model.fit(X_train, y_train, validation_split=0.2, epochs=5) predicted_y = np.argmax(model.predict(X_test), axis=1) print("\nLSTM WITH DROPOUT 0.6 WITH MICRO AVERAGE") print("Accuray: ", accuracy_score(y_test, predicted_y)) print("F1 Score: ", f1_score(y_test, predicted_y, average="micro")) print("Precision: ", precision_score(y_test, predicted_y, average="micro")) print("Recall: ", recall_score(y_test, predicted_y, average="micro")) print("\nLSTM WITH DROPOUT 0.6 WITH MACRO AVERAGE") print("Accuray: ", accuracy_score(y_test, predicted_y)) print("F1 Score: ", f1_score(y_test, predicted_y, average="macro")) print("Precision: ", precision_score(y_test, predicted_y, average="macro")) print("Recall: ", recall_score(y_test, predicted_y, average="macro")) ################################# LSTM DROUPOUT RATE 0.8 ######################################## model = keras.Sequential() model.add( LSTM(128, input_shape=(X_train.shape[1:]), activation="relu", return_sequences=True) ) model.add(Dropout(0.8)) model.add(LSTM(128, activation="relu", return_sequences=False)) model.add(Dropout(0.8)) model.add(Dense(32, activation="relu")) model.add(Dropout(0.8)) model.add(Dense(6, activation="softmax")) # model.summary() opt = tf.keras.optimizers.Adam(learning_rate=1e-3, decay=1e-5) model.compile(loss="binary_crossentropy", optimizer=opt, metrics=["accuracy"]) print("Train...") history = model.fit(X_train, y_train, validation_split=0.2, epochs=5) predicted_y = np.argmax(model.predict(X_test), axis=1) print("\nLSTM WITH DROPOUT 0.8 WITH MICRO AVERAGE") print("Accuray: ", accuracy_score(y_test, predicted_y)) print("F1 Score: ", f1_score(y_test, predicted_y, average="micro")) print("Precision: ", precision_score(y_test, predicted_y, average="micro")) print("Recall: ", recall_score(y_test, predicted_y, average="micro")) print("\nLSTM WITH DROPOUT 0.8 WITH MACRO AVERAGE") print("Accuray: ", accuracy_score(y_test, predicted_y)) print("F1 Score: ", f1_score(y_test, predicted_y, average="macro")) print("Precision: ", precision_score(y_test, predicted_y, average="macro")) print("Recall: ", recall_score(y_test, predicted_y, average="macro")) # **################## BIDIRECTIONAL LSTM #######################** ################################# Bidirectional LSTM DROUPOUT RATE 0.2 ######################################## model = keras.Sequential() model.add( Bidirectional( ( LSTM( 128, input_shape=(X_train.shape[1:]), activation="relu", return_sequences=True, ) ) ) ) model.add(Dropout(0.2)) model.add(Bidirectional((LSTM(128, activation="relu", return_sequences=False)))) model.add(Dropout(0.2)) model.add(Dense(32, activation="relu")) model.add(Dropout(0.2)) model.add(Dense(6, activation="softmax")) # model.summary() opt = tf.keras.optimizers.Adam(learning_rate=1e-3, decay=1e-5) model.compile(loss="binary_crossentropy", optimizer=opt, metrics=["accuracy"]) print("Train...") history = model.fit(X_train, y_train, validation_split=0.2, epochs=5) predicted_y = np.argmax(model.predict(X_test), axis=1) print("\nBidirectional LSTM WITH DROPOUT 0.2 WITH MICRO AVERAGE") print("Accuray: ", accuracy_score(y_test, predicted_y)) print("F1 Score: ", f1_score(y_test, predicted_y, average="micro")) print("Precision: ", precision_score(y_test, predicted_y, average="micro")) print("Recall: ", recall_score(y_test, predicted_y, average="micro")) print("\nnBidirectional LSTM WITH DROPOUT 0.2 WITH MACRO AVERAGE") print("Accuray: ", accuracy_score(y_test, predicted_y)) print("F1 Score: ", f1_score(y_test, predicted_y, average="macro")) print("Precision: ", precision_score(y_test, predicted_y, average="macro")) print("Recall: ", recall_score(y_test, predicted_y, average="macro")) ################################# Bidirectional LSTM DROUPOUT RATE 0.4 ######################################## model = keras.Sequential() model.add( Bidirectional( ( LSTM( 128, input_shape=(X_train.shape[1:]), activation="relu", return_sequences=True, ) ) ) ) model.add(Dropout(0.4)) model.add(Bidirectional((LSTM(128, activation="relu", return_sequences=False)))) model.add(Dropout(0.4)) model.add(Dense(32, activation="relu")) model.add(Dropout(0.4)) model.add(Dense(6, activation="softmax")) # model.summary() opt = tf.keras.optimizers.Adam(learning_rate=1e-3, decay=1e-5) model.compile(loss="binary_crossentropy", optimizer=opt, metrics=["accuracy"]) print("Train...") history = model.fit(X_train, y_train, validation_split=0.2, epochs=5) predicted_y = np.argmax(model.predict(X_test), axis=1) print("\nBidirectional LSTM WITH DROPOUT 0.4 WITH MICRO AVERAGE") print("Accuray: ", accuracy_score(y_test, predicted_y)) print("F1 Score: ", f1_score(y_test, predicted_y, average="micro")) print("Precision: ", precision_score(y_test, predicted_y, average="micro")) print("Recall: ", recall_score(y_test, predicted_y, average="micro")) print("\nnBidirectional LSTM WITH DROPOUT 0.4 WITH MACRO AVERAGE") print("Accuray: ", accuracy_score(y_test, predicted_y)) print("F1 Score: ", f1_score(y_test, predicted_y, average="macro")) print("Precision: ", precision_score(y_test, predicted_y, average="macro")) print("Recall: ", recall_score(y_test, predicted_y, average="macro")) ################################# Bidirectional LSTM DROUPOUT RATE 0.6 ######################################## model = keras.Sequential() model.add( Bidirectional( ( LSTM( 128, input_shape=(X_train.shape[1:]), activation="relu", return_sequences=True, ) ) ) ) model.add(Dropout(0.6)) model.add(Bidirectional((LSTM(128, activation="relu", return_sequences=False)))) model.add(Dropout(0.6)) model.add(Dense(32, activation="relu")) model.add(Dropout(0.6)) model.add(Dense(6, activation="softmax")) # model.summary() opt = tf.keras.optimizers.Adam(learning_rate=1e-3, decay=1e-5) model.compile(loss="binary_crossentropy", optimizer=opt, metrics=["accuracy"]) print("Train...") history = model.fit(X_train, y_train, validation_split=0.2, epochs=5) predicted_y = np.argmax(model.predict(X_test), axis=1) print("\nBidirectional LSTM WITH DROPOUT 0.6 WITH MICRO AVERAGE") print("Accuray: ", accuracy_score(y_test, predicted_y)) print("F1 Score: ", f1_score(y_test, predicted_y, average="micro")) print("Precision: ", precision_score(y_test, predicted_y, average="micro")) print("Recall: ", recall_score(y_test, predicted_y, average="micro")) print("\nnBidirectional LSTM WITH DROPOUT 0.6 WITH MACRO AVERAGE") print("Accuray: ", accuracy_score(y_test, predicted_y)) print("F1 Score: ", f1_score(y_test, predicted_y, average="macro")) print("Precision: ", precision_score(y_test, predicted_y, average="macro")) print("Recall: ", recall_score(y_test, predicted_y, average="macro")) ################################# Bidirectional LSTM DROUPOUT RATE 0.8 ######################################## model = keras.Sequential() model.add( Bidirectional( ( LSTM( 128, input_shape=(X_train.shape[1:]), activation="relu", return_sequences=True, ) ) ) ) model.add(Dropout(0.8)) model.add(Bidirectional((LSTM(128, activation="relu", return_sequences=False)))) model.add(Dropout(0.8)) model.add(Dense(32, activation="relu")) model.add(Dropout(0.8)) model.add(Dense(6, activation="softmax")) # model.summary() opt = tf.keras.optimizers.Adam(learning_rate=1e-3, decay=1e-5) model.compile(loss="binary_crossentropy", optimizer=opt, metrics=["accuracy"]) print("Train...") history = model.fit(X_train, y_train, validation_split=0.2, epochs=5) predicted_y = np.argmax(model.predict(X_test), axis=1) print("\nBidirectional LSTM WITH DROPOUT 0.8 WITH MICRO AVERAGE") print("Accuray: ", accuracy_score(y_test, predicted_y)) print("F1 Score: ", f1_score(y_test, predicted_y, average="micro")) print("Precision: ", precision_score(y_test, predicted_y, average="micro")) print("Recall: ", recall_score(y_test, predicted_y, average="micro")) print("\nnBidirectional LSTM WITH DROPOUT 0.8 WITH MACRO AVERAGE") print("Accuray: ", accuracy_score(y_test, predicted_y)) print("F1 Score: ", f1_score(y_test, predicted_y, average="macro")) print("Precision: ", precision_score(y_test, predicted_y, average="macro")) print("Recall: ", recall_score(y_test, predicted_y, average="macro"))
# # PSS3, E12. Kidney Stone Prediction # # Define the objetive # ### Thanks [Kidney Stone Prediction based on Urine Analysis](https://www.kaggle.com/datasets/vuppalaadithyasairam/kidney-stone-prediction-based-on-urine-analysis) by [@vuppalaadithyasairam](https://www.kaggle.com/vuppalaadithyasairam) # Determine if certain physical characteristics of the urine might be related to the formation of calcium oxalate crystals. # The six physical characteristics of the urine are: # (1) `gravity` specific gravity, the density of the urine relative to water. # (2) `ph` pH, the negative logarithm of the hydrogen ion. # (3) `osmo` osmolarity (mOsm), a unit used in biology and medicine but not in physical chemistry. Osmolarity is proportional to the concentration of molecules in solution. # (4) `cond` conductivity (mMho milliMho). One Mho is one reciprocal Ohm. Conductivity is proportional to the concentration of charged ions in solution. # (5) `urea` concentration in millimoles per litre. # (6) `calc` calcium. import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from pprint import pprint class conf: index = "id" target = "target" random = 2023 load_original = True only_positive = False np.random.seed(conf.random) train_full = pd.read_csv( "/kaggle/input/playground-series-s3e12/train.csv", index_col=conf.index ) test_full = pd.read_csv( "/kaggle/input/playground-series-s3e12/test.csv", index_col=conf.index ) train = train_full.copy() test = test_full.copy() if conf.load_original: print("Load external data...") original_tr = pd.read_csv( "/kaggle/input/kidney-stone-prediction-based-on-urine-analysis/kindey stone urine analysis.csv" ) # original_te = pd.read_csv('/kaggle/input/media-campaign-cost-prediction/test_dataset.csv') if conf.only_positive: train = pd.concat( [original_tr[original_tr[conf.target] == 1], train_full], ignore_index=True ) # test = pd.concat([original_te[original_te[conf.target] == 1], test_full], ignore_index=True) else: train = pd.concat([original_tr, train_full], ignore_index=True) # test = pd.concat([original_te, test_full], ignore_index=True) features_ex = test.columns.tolist() # # Explore the data train_ex = train.copy() test_ex = test.copy() # ## No Missing Values percent_missing = train_ex.isnull().sum() * 100 / len(train_ex) missing_value_df = pd.DataFrame( {"column_name": train_ex.columns, "percent_missing": percent_missing} ) display(missing_value_df) # ## No duplicate Values train_ex.duplicated().value_counts() train_ex[conf.target].value_counts() # #### Descriptive statistics (min, max, mean, std, varciance, etc.) of each attirbutes train_ex[features_ex].describe().T # ## Visualize the data import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings("ignore") ax = train_full[conf.target].plot.hist(alpha=0.5, figsize=(10, 6)) ax = original_tr[conf.target].plot.hist(alpha=0.5, figsize=(10, 6)) ax.legend(["syntetic", "original"]) plt.figure(figsize=(14, 8)) plt.suptitle("Frequency of attributes in train") for i, col in enumerate(features_ex): plt.subplot(3, 2, i + 1) ax1 = train_full[col].plot.hist(alpha=0.5, density=True) ax2 = original_tr[col].plot.hist(alpha=0.5, density=True) ax1.set_title(col) ax2.legend(["syntetic", "original"]) # sns.histplot(train_full[col], color='r', kde=True) # sns.histplot(original_tr[col], color='g', kde=True) plt.grid() plt.tight_layout() # ## Study the correlations # #### Check feature importance using Mutual information from sklearn.feature_selection import mutual_info_classif, mutual_info_regression mi = mutual_info_classif( train_ex[features_ex], train_ex[[conf.target]][conf.target].values, discrete_features="auto", n_neighbors=3, copy=True, random_state=2, ) ax = ( pd.DataFrame([mi], columns=features_ex) .transpose() .plot.bar(figsize=(8, 6), legend=False) ) ax.grid() ax.set_title("Calcium and Urea are the most important factors to Kidney Stone") # #### For each low MI scored feature check interaction with other features hi_estimated_mi = ( pd.DataFrame([mi], columns=features_ex) .T.rename(columns={0: "mi_score"}) .sort_values(by="mi_score", ascending=False) ) hi_estimated_mi = hi_estimated_mi[hi_estimated_mi.mi_score > 0.07].index.tolist() low_mi_feat = features_ex.copy() low_mi_feat.remove("calc") low_mi = mutual_info_regression( train_ex[low_mi_feat], train_ex[["calc"]]["calc"].values, discrete_features="auto", n_neighbors=3, copy=True, random_state=2, ) ax = ( pd.DataFrame([low_mi], columns=low_mi_feat) .transpose() .plot.bar(figsize=(8, 6), legend=False) ) ax.grid() ax.set_title("Gravity had an impact on Calcium") from sklearn.feature_selection import f_regression f_regression(train_ex[["gravity", "urea"]], train_ex[["calc"]]["calc"].values) # #### Correlations between the variables fig, ax = plt.subplots(figsize=(5, 4)) # https://www.kaggle.com/code/sergiosaharovskiy/ps-s3e11-2023-eda-and-submission?scriptVersionId=123851844&cellId=26 corr = train_ex[features_ex].corr() mask = np.zeros_like(corr) mask[np.triu_indices_from(mask)] = True ax = sns.heatmap( corr, mask=mask, vmin=-1, vmax=1, cmap=sns.diverging_palette(20, 220, as_cmap=True), annot=True, ) ax.set_title( "All feature down the pH. and Urea are the most important factors to Kidney Stone" ) plt.tight_layout() plt.show() # * `gravity` and `urea` have the same negative correlation over `pH`. # * `gravity`, `osmo` and `urea` have the equal positive correlation over `calc`. # * If `pH` arise the other ones features downs. # # Prepare the data # ## Data cleaning # ### Fix or remove outliers plt.figure(figsize=(7, 6)) plt.suptitle("Frequency of attributes in train") for i, col in enumerate(features_ex): plt.subplot(2, 3, i + 1) ax1 = train_full[col].plot.box() # ax2 = original_tr[col].plot.box() # ax1.set_title(col) # ax2.legend(['syntetic', 'original']) # sns.histplot(train_full[col], color='r', kde=True) # sns.histplot(original_tr[col], color='g', kde=True) plt.grid() plt.tight_layout() # ## Feature engineering # #### Combining the top features with other related features # ##### Relationships among high importance features: `calc`, `urea`, `osmo`, `cond` # F-test captures only linear dependency. On the other hand, mutual information can capture any kind of dependency between variables and it rates ([source](https://scikit-learn.org/stable/modules/feature_selection.html#univariate-feature-selection)) # We compute whether there is a statistically significant relationship between each feature and the target and the features that are related with the highest confidence from sklearn.feature_selection import f_regression, mutual_info_regression mi = mutual_info_classif( train_ex[features_ex], train_ex[[conf.target]][conf.target].values, discrete_features="auto", n_neighbors=3, copy=True, random_state=2, ) pd.DataFrame([mi], columns=features_ex).T.rename(columns={0: "mi_score"}).sort_values( by="mi_score", ascending=False ) hi_estimated_mi = ( pd.DataFrame([mi], columns=features_ex) .T.rename(columns={0: "mi_score"}) .sort_values(by="mi_score", ascending=False) ) hi_estimated_mi = hi_estimated_mi[hi_estimated_mi.mi_score > 0.07].index.tolist() # ### Mathematical transforms # #### Are any relationships among numerical features expressed through mathematical formula? # We consider 3 features and I try discover how each feature (target) depends on the other ones : # target = f2(feature_1) + f2(feature_2), # i.e # `calc` = f1(`urea`)+f2(`osmo`) # `urea` = f1(`calc`)+f2(`osmo`) # `osmo`= f1(`calc`)+f2(`urea`) # Acording to F-test only captures linear dependency over features `calc`, `urea` and `osmo`. Mutual Information can capture any kind of dependency between variables. # So F-test and Mutual Information shows: # - To `calc` = f1(`urea`)+f2(`osmo`)  rates that both features have strong dependency. `osmo` have a little more dependence than `urea` . # # - To `urea` = f1(`calc`)+f2(`osmo`) rates that `osmo` have a strong dependence. # # - To `osmo`= f1(`calc`)+f2(`urea`) rates that `urea` have a strong dependence. # # [source](https://scikit-learn.org/stable/auto_examples/feature_selection/plot_f_test_vs_mi.html#sphx-glr-auto-examples-feature-selection-plot-f-test-vs-mi-py) # https://scikit-learn.org/stable/auto_examples/feature_selection/plot_f_test_vs_mi.html#comparison-of-f-test-and-mutual-information features_to_math_formula = hi_estimated_mi for feat in features_to_math_formula: other_feat = features_to_math_formula.copy() other_feat.remove(feat) X = train_ex[other_feat].to_numpy() y = train_ex[[feat]][feat].values f_test, _ = f_regression(X, y) f_test /= np.max(f_test) mi = mutual_info_regression(X, y) mi /= np.max(mi) n_feat = len(features_to_math_formula) - 1 plt.figure(figsize=(10, 3)) # plt.title('Top features with other related features with F-test and Mutual Information') for i in range(n_feat): plt.subplot(1, n_feat, i + 1) plt.scatter(X[:, i], y, edgecolor="black", s=20) plt.xlabel("{}".format(other_feat[i]), fontsize=8) if i == 0: plt.ylabel("{}".format(feat), fontsize=8) plt.title("F-test={:.2f}, MI={:.2f}".format(f_test[i], mi[i]), fontsize=8) plt.show() # Need more work # ##### Try find a mathematical equations of transforms through Ordinary least squares Linear Regression from sklearn.linear_model import LinearRegression lin_reg = LinearRegression() X_math_trans_train = train_ex[["urea", "osmo"]] y_math_trans_train = train_ex[["calc"]]["calc"].values lin_reg.fit(X_math_trans_train, y_math_trans_train) lin_reg.intercept_, lin_reg.coef_ X_new = np.array([[354], [698]]) lin_reg.predict(X_new.transpose()) # Need more work # #### "Reshaping" features through powers or logarithms to create new features math_trans_train = train_ex[["calc", "urea", "osmo", "target"]] math_trans_train["calc_log10"] = train_ex["calc"].apply(lambda x: np.log10(x)) math_trans_train["urea_log10"] = train_ex["urea"].apply(lambda x: np.log10(x)) # math_trans_train['osmo'] = train_pr['osmo'].apply( lambda x: np.exp(x)) train_pr = math_trans_train[["calc_log10", "urea_log10", "target"]] reshaping_feat = ["calc_log10", "urea_log10"] # ### Creating features # #### Ratio combinations train_pr["calc_per_gravity"] = train_ex.calc / train_ex.gravity train_pr["calc_per_urea"] = train_ex.calc / train_ex.urea # ratio_train_pr['gravity_urea'] = ratio_train_pr.gravity/ratio_train_pr.urea train_pr # ### Group Transforms # #### Aggregate information across multiple rows grouped by some category(feature). from sklearn.preprocessing import KBinsDiscretizer n_bins = 10 kbins_ordinal = KBinsDiscretizer(n_bins=n_bins, strategy="uniform", encode="ordinal") train_kbins_ordinal = kbins_ordinal.fit_transform(train_ex[["calc", "urea"]]) df_train_kbins_ordinal = pd.DataFrame( train_kbins_ordinal, columns=["calc_bin", "urea_bin"] ) train_pr_kbins_ordinal = pd.concat( [train_ex[["calc", "urea"]], df_train_kbins_ordinal], axis=1 ) calc_bins_means = ( train_pr_kbins_ordinal.groupby(["calc_bin"])["calc"] .mean() .to_frame() .rename(columns={"calc": "calc_mean_per_bin"}) ) urea_bins_means = ( train_pr_kbins_ordinal.groupby(["urea_bin"])["urea"] .mean() .to_frame() .rename(columns={"urea": "urea_mean_per_bin"}) ) means_per_bins = pd.merge( df_train_kbins_ordinal, calc_bins_means, how="left", on="calc_bin" ) means_per_bins = pd.merge(means_per_bins, urea_bins_means, how="left", on="urea_bin") # #### Discretize continuous features into intervals with bins bins_cols = [] for i in range(2 * n_bins): bins_col = f"bins_{i}" bins_cols.append(bins_col) kbins = KBinsDiscretizer(n_bins=n_bins, strategy="uniform", encode="onehot-dense") train_kbins = kbins.fit_transform(train_ex[["calc", "urea"]]) df_train_kbins = pd.DataFrame(train_kbins, columns=bins_cols) train_pr = pd.concat([train_pr, df_train_kbins], axis=1) # Get worse score if add `means_per_bins` # train_pr = pd.concat([train_pr, means_per_bins[['calc_mean_per_bin', 'urea_mean_per_bin']]], axis=1) # # Train many quick and dirty models from different categories # ### From [Utility Script Competition](https://www.kaggle.com/general/10965) this [comment](https://www.kaggle.com/general/109651#633850) thanks to [chmaxx](https://www.kaggle.com/chmaxx) import quick_classification df_score_train_ex = quick_classification.score_models( train_ex, conf.target, scoring_metric="roc_auc", verbose=False ) df_scores = df_score_train_ex.rename(columns={"roc_auc": "train_ex"}) df_scores.index = df_scores.Classifier df_scores = df_scores.drop(columns=["Classifier"]) hi_mi_and_target = hi_estimated_mi.copy() hi_mi_and_target.append("target") df_score_hi_estimated_mi = quick_classification.score_models( train_ex[hi_mi_and_target], conf.target, scoring_metric="roc_auc", verbose=False ) df_score_hi_estimated_mi = df_score_hi_estimated_mi.rename( columns={"roc_auc": "hi_estimated_mi"} ) df_score_hi_estimated_mi.index = df_score_hi_estimated_mi.Classifier df_score_hi_estimated_mi = df_score_hi_estimated_mi.drop(columns=["Classifier"]) df_scores = pd.concat([df_score_hi_estimated_mi, df_scores], axis=1) df_score_train_pr = quick_classification.score_models( train_pr, conf.target, scoring_metric="roc_auc", verbose=False ) df_score_train_pr = df_score_train_pr.rename(columns={"roc_auc": "train_pr"}) df_score_train_pr.index = df_score_train_pr.Classifier df_score_train_pr = df_score_train_pr.drop(columns=["Classifier"]) df_scores = pd.concat([df_score_train_pr, df_scores], axis=1) df_scores df_scores.T.mean().sort_values(ascending=True).plot.barh(color="chocolate") plt.title("Model comparison by mean (bigger bar is better)") plt.xlim(0.4, 0.84) # --- # # Next sections are working in progress =) # # Fine tune models from sklearn.inspection import PartialDependenceDisplay from sklearn.ensemble import HistGradientBoostingClassifier from sklearn.metrics import roc_auc_score from sklearn.model_selection import StratifiedShuffleSplit from sklearn.model_selection import train_test_split from sklearn.pipeline import make_pipeline from sklearn.model_selection import GridSearchCV from sklearn.preprocessing import StandardScaler y = train_ex[conf.target] X = train_ex.drop([conf.target], axis=1) split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42) for train_index, test_index in split.split(X, y): strat_train_set = train_ex.loc[train_index] strat_test_set = train_ex.loc[test_index] X_train, X_test, y_train, y_test = ( strat_train_set[features_ex], strat_test_set[features_ex], strat_train_set[conf.target], strat_test_set[conf.target], ) # ##### Histogram-based Gradient Boosting Classification Tree param_grid = { "histgradientboostingclassifier__max_depth": [1, 2, 4, 10], "histgradientboostingclassifier__random_state": [1, 100, 200], "histgradientboostingclassifier__scoring": ["roc_auc"], } pipe = make_pipeline(StandardScaler(), HistGradientBoostingClassifier()) grid = GridSearchCV(pipe, param_grid, cv=5) grid.fit(X_train, y_train) y_pred = grid.predict_proba(X_test)[:, 1] roc_auc_score(y_test, y_pred) # ##### To plot the ROC curve, from sklearn.metrics import RocCurveDisplay RocCurveDisplay.from_predictions(y_test, y_pred) grid.best_params_ # pprint(grid.cv_results_) # ##### RandomForestClassifier from sklearn.ensemble import RandomForestClassifier for cv in np.arange(7, 13): param_grid = { "randomforestclassifier__n_estimators": [50, 100, 200], "randomforestclassifier__random_state": [1, 2], "randomforestclassifier__min_samples_split": [2, 5, 10], # 'randomforestclassifier__min_samples_leaf': [1, 2, 3] } pipe = make_pipeline(StandardScaler(), RandomForestClassifier()) grid = GridSearchCV(pipe, param_grid, cv=cv) grid.fit(X_train, y_train) y_pred = grid.predict_proba(X_test)[:, 1] print( f"roc_auc_score:{roc_auc_score(y_test, y_pred)} | " f"cv: {cv} | " f"best_params:{grid.best_params_}" ) # display(roc_auc_score(y_test, y_pred)) # ##### Linear classifiers (SVM, logistic regression, etc.) with SGD training from sklearn.linear_model import LogisticRegression param_grid = { "logisticregression__penalty": ["l2", "l1"], "logisticregression__random_state": [1, 2, 3], "logisticregression__tol": [1e-4, 1e-3, 1e-2], "logisticregression__solver": ["liblinear"], } pipe = make_pipeline(StandardScaler(), LogisticRegression()) grid = GridSearchCV(pipe, param_grid, cv=3) grid.fit(X_train, y_train) y_pred = grid.predict_proba(X_test)[:, 1] roc_auc_score(y_test, y_pred) grid.best_params_ # pprint(grid.cv_results_) # ## Analyze the types of errors the models make X_test["y_pred"] = y_pred X_test["target"] = y_test X_test["y_errors"] = (X_test.y_pred - X_test.target).abs().round(1) X_test["y_errors"].value_counts() X_test_errors = X_test[X_test.y_errors > 0.5] X_test_errors_positive = X_test_errors[X_test_errors.target == 1] # #### Probability calibration # ##### Plot calibration of binary classifier from sklearn.calibration import CalibrationDisplay histGBC = HistGradientBoostingClassifier(max_depth=2, random_state=1).fit( X_train, y_train ) disp = CalibrationDisplay.from_estimator(histGBC, X_test, y_test) plt.show() from sklearn.calibration import CalibrationDisplay y_prob = histGBC.predict_proba(X_test)[:, 1] disp = CalibrationDisplay.from_predictions(y_test, y_prob) plt.show() fig = plt.figure() ax1 = fig.add_subplot(2, 1, 1) ax2 = fig.add_subplot(2, 1, 2) ax1.hist(y_prob, bins=20, color="black", alpha=0.5) ax1.set_title("Y Predicted") ax2.hist(y_test, bins=20, color="blue", alpha=0.5) ax2.set_title("Y True") # ##### Calibration with isotonic regression or logistic regression from sklearn.calibration import CalibratedClassifierCV calibrated_histGBC = CalibratedClassifierCV(histGBC, cv=3) calibrated_histGBC.fit(X_test, y_test) y_calib = calibrated_histGBC.predict_proba(X)[:, 1] # #### Utility Script: classification # import quick_classification hi_mi_and_target = hi_estimated_mi.copy() hi_mi_and_target.append("target") quick_classification.score_models( train_ex[hi_mi_and_target], conf.target, scoring_metric="roc_auc" ) quick_classification.score_models(train_ex, conf.target, scoring_metric="roc_auc")
# # Read the data from the file Balance.csv # # Use any instructions you need to check your data import pandas as pd df = pd.read_csv("/kaggle/input/teaching-balance-example/balance.csv") df.head() # # find the total balance in each customer account df["Total"] = df["Balance"] + df["Deposite"] df.head() # # Find the total sum of the amounts sum = df["Total"].mean() sum # # Find the owner of the maximum amount mx = df["Total"].max() x = df[df["Total"] == mx] x # # Add 10 percent to the total amount for all customers df["Total"] = df["Total"] + 0.01 * df["Total"] df.head()
# # **NETFLIX ANALYSIS** import pandas as pd import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sb import re import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) df = pd.read_csv("../input/netflix-shows/netflix_titles.csv") df.head() df.isnull().sum() df["director"] = df["director"].fillna("Unknown") df["cast"] = df["cast"].fillna("Unknown") df["country"] = df["country"].fillna("Unknown") df["rating"] = df["rating"].fillna("Unknown") df["date_added"] = df["date_added"].fillna("Unknown") # fill nulls with 'unknown' # now check again df.isnull().sum() # check type df.dtypes # sliptting the year and month the movie was added to netflix df["year_added"] = df["date_added"].apply(lambda x: x.split(" ")[-1]) df["month_added"] = df["date_added"].apply(lambda x: x.split(" ")[0]) df data = pd.DataFrame(df.groupby("type")["title"].count()) data.reset_index(inplace=True) data.columns = ["type", "value"] data
# # Mutual Information by Ryan Holbrook # All script by Ryan Holbrook https://www.kaggle.com/mpwolke/exercise-mutual-information/edit # Feature Engineering Kaggle Micro-course by Ryan Holbrook. import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # #Introduction # In this exercise you'll identify an initial set of features in the Ames dataset to develop using mutual information scores and interaction plots. # Setup feedback system from learntools.core import binder binder.bind(globals()) from learntools.feature_engineering_new.ex2 import * import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from sklearn.feature_selection import mutual_info_regression # Set Matplotlib defaults plt.style.use("seaborn-whitegrid") plt.rc("figure", autolayout=True) plt.rc( "axes", labelweight="bold", labelsize="large", titleweight="bold", titlesize=14, titlepad=10, ) # Load data df = pd.read_csv("../input/fe-course-data/ames.csv") # Utility functions from Tutorial def make_mi_scores(X, y): X = X.copy() for colname in X.select_dtypes(["object", "category"]): X[colname], _ = X[colname].factorize() # All discrete features should now have integer dtypes discrete_features = [pd.api.types.is_integer_dtype(t) for t in X.dtypes] mi_scores = mutual_info_regression( X, y, discrete_features=discrete_features, random_state=0 ) mi_scores = pd.Series(mi_scores, name="MI Scores", index=X.columns) mi_scores = mi_scores.sort_values(ascending=False) return mi_scores def plot_mi_scores(scores): scores = scores.sort_values(ascending=True) width = np.arange(len(scores)) ticks = list(scores.index) color = np.array(["C0"] * scores.shape[0]) # Color red for probes idx = [i for i, col in enumerate(scores.index) if col.startswith("PROBE")] color[idx] = "C3" # Create plot plt.barh(width, scores, color=color) plt.yticks(width, ticks) plt.title("Mutual Information Scores") # #Review the meaning of mutual information by looking at a few features from the Ames dataset. features = ["YearBuilt", "MoSold", "ScreenPorch"] sns.relplot( x="value", y="SalePrice", col="variable", data=df.melt(id_vars="SalePrice", value_vars=features), facet_kws=dict(sharex=False), ) # #Understanding Mutual Information # Based on the plots, which feature do you think would have the highest mutual information with SalePrice? # Based on the plots, YearBuilt should have the highest MI score since knowing the year tends to constrain SalePrice to a smaller range of possible values. This is generally not the case for MoSold, however. Finally, since ScreenPorch is usually just one value, 0, on average it won't tell you much about SalePrice (though more than MoSold) . # The Ames dataset has seventy-eight features -- a lot to work with all at once! Fortunately, you can identify the features with the most potential. # Use the make_mi_scores function (introduced in the tutorial) to compute mutual information scores for the Ames features: X = df.copy() y = X.pop("SalePrice") mi_scores = make_mi_scores(X, y) # #Examine the scores using the functions in this cell. Look especially at top and bottom ranks. print(mi_scores.head(20)) # print(mi_scores.tail(20)) # uncomment to see bottom 20 plt.figure(dpi=100, figsize=(8, 5)) plot_mi_scores(mi_scores.head(20)) # plot_mi_scores(mi_scores.tail(20)) # uncomment to see bottom 20 # #Examine MI Scores # Do the scores seem reasonable? Do the high scoring features represent things you'd think most people would value in a home? Do you notice any themes in what they describe? # Some common themes among most of these features are: # Location: Neighborhood # Size: all of the Area and SF features, and counts like FullBath and GarageCars # Quality: all of the Qual features # Year: YearBuilt and YearRemodAdd # Types: descriptions of features and styles like Foundation and GarageType # These are all the kinds of features you'll commonly see in real-estate listings (like on Zillow), It's good then that our mutual information metric scored them highly. On the other hand, the lowest ranked features seem to mostly represent things that are rare or exceptional in some way, and so wouldn't be relevant to the average home buyer. # In this step you'll investigate possible interaction effects for the BldgType feature. This feature describes the broad structure of the dwelling in five categories: # Bldg Type (Nominal): Type of dwelling # 1Fam Single-family Detached # # 2FmCon Two-family Conversion; originally built as one-family dwelling # # Duplx Duplex # TwnhsE Townhouse End Unit # TwnhsI Townhouse Inside Unit # The BldgType feature didn't get a very high MI score. A plot confirms that the categories in BldgType don't do a good job of distinguishing values in SalePrice (the distributions look fairly similar, in other words): sns.catplot(x="BldgType", y="SalePrice", data=df, kind="boxen") # Still, the type of a dwelling seems like it should be important information. Investigate whether BldgType produces a significant interaction with either of the following: # GrLivArea - Above ground living area # MoSold - Month sold # YOUR CODE HERE: feature = "GrLivArea" sns.lmplot( x=feature, y="SalePrice", hue="BldgType", col="BldgType", data=df, scatter_kws={"edgecolor": "w"}, col_wrap=3, height=4, ) feature = "MoSold" sns.lmplot( x=feature, y="SalePrice", hue="BldgType", col="BldgType", data=df, scatter_kws={"edgecolor": "w"}, col_wrap=3, height=4, ) # #The trend lines being significantly different from one category to the next indicates an interaction effect. # #Discover Interactions # From the plots, does BldgType seem to exhibit an interaction effect with either GrLivArea or MoSold? # The trends lines within each category of BldgType are clearly very different, indicating an interaction between these features. Since knowing BldgType tells us more about how GrLivArea relates to SalePrice, we should consider including BldgType in our feature set. # The trend lines for MoSold, however, are almost all the same. This feature hasn't become more informative for knowing BldgType. # #Found the ten features with the highest MI scores. mi_scores.head(10)
# # Générateur d'indices pour CodeNames # ## Introduction # CodeNames est un jeu de plateau se jouant en 2 équipes de 2 joueurs minimum. # But : Dans chaque équipe, un espion doit faire deviner à son équipe une liste de mots (appelés Nom de Code) inscrit sur une « carte clé » commune aux deux espions. # L’équipe qui trouve tous les noms de Code inscrits sur la carte Clé gagne la partie (l’équipe qui commence doit faire deviner 9 mots et l’autre équipe 8). # ![image.png](attachment:9b027bf1-9019-4800-836e-950e6105653f.png) # Déroulement : # L'équipe avec le plus de cartes à deviner commence, ici ce sont les rouges. # Les équipes sont composées d'agents et d'espions, dans le cas où il n'y a que 4 joueurs dans la partie, il y aura donc 1 agent et 1 espion dans chaque équipe. # L'agent voit les cartes mais ne voit pas leur couleur. # L'espion donne un indice suivi d'un chiffre qui va permettre à son agent de deviner les cartes clés associées. Le chiffre lui permet de savoir combien de cartes sont associées au mot donné. # Par exemple l'espion Rouge pourrait proposer FILM 2 pour faire deviner les mots CINEMA et TITRE. # Si l'agent découvre une carte alliée (Rouge dans ce cas), il peut continuer à découvrir d'autres cartes jusqu'à un total du nombre d'indice +1. Dans le cas de FILM 2 l'agent pourrait découvrir jusqu'à 3 cartes. # Si l'agent découvre une carte adverse (Bleue dans ce cas) ou une carte blanche, il finit son tour, l'espion adverse peut proposer un indice. # Si l'agent découvre la carte assassin (carte noire), la partie est perdu, les adversaires gagnent. from gensim.models import KeyedVectors import spacy import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # ## Création d'une grille # On récupère dans un premier temps la liste de tous les mots contenus dans Codenames file = open("/kaggle/input/mots-codenames/codenames.txt").readlines() words = [s.replace("\n", "") for s in file] print(words) # Ensuite on va pouvoir générer notre liste de mots import random random.shuffle(words) # Mélanger la liste de manière aléatoire words = words[:25] words = list(map(str.lower, words)) # Maintenant on va assigner une couleur à chaque mot red_words = words[:9] blue_words = words[9:17] white_words = words[17:24] black_words = words[24:25] print("les mots rouges sont : ", red_words) print("les mots bleus sont : ", blue_words) print("les mots blancs sont : ", white_words) print("le mot noir est : ", black_words) import numpy as np import matplotlib.pyplot as plt # Création de la grille grid = np.random.randint(4, size=(5, 5)) # Création du graphique fig, ax = plt.subplots() random.shuffle(words) n = 0 # Dessin des rectangles et ajout des labels for i in range(len(grid)): for j in range(len(grid[i])): if words[n] in red_words: color = "#f36722" elif words[n] in blue_words: color = "#01abc4" elif words[n] in white_words: color = "#f5d9b6" else: color = "#949494" rect = plt.Rectangle((j, i), 1, 1, facecolor=color) ax.add_patch(rect) ax.text(j + 0.5, i + 0.5, words[n], ha="center", va="center") n = n + 1 # Configuration du graphique ax.set_xlim([0, 5]) ax.set_ylim([0, 5]) ax.set_aspect("equal") ax.axis("off") # Affichage de la grille plt.show() # Voilà, on peut à présent générer nos propres grilles de codenames, celà va nous être utile pour faire des test randomisés et mieux observer nos IA. # ## Développement de l'IA # Pour notre IA nous utiliserons gensim avec un modèle pré entrainé sur la langue francaise. Il est possible d'adapter le jeu dans n'importe quelle langue tant que nous avons une liste de mots disponible et un modèle pré entrainé disponible également. # Le modèle utilisé est disponible ici : https://fauconnier.github.io/#data # Chemin vers le modèle Word2Vec pré-entraîné path = "/kaggle/input/word2vecfr/frWac_no_postag_no_phrase_500_cbow_cut100.bin" # Charger le modèle model = KeyedVectors.load_word2vec_format(path, binary=True) # Trouver les 10 mots les plus similaires pour la liste de mots donnée similar_words = model.most_similar( positive=red_words, negative=blue_words + white_words + black_words, topn=10 ) # Afficher les résultats for word, similarity in similar_words: print(word, similarity) # L'IA nous permet de récupérer les 10 premiers mots qui sont les plus proches avec tout ceux que l'on a à découvrir. # Cette méthode n'est pas forcément la meilleure, les mots sont un peu trop hasardeux et on perd en précision. # On ne peut pas demander à quelqu'un de trouver 8 ou 9 mots d'un coup en un seul indice. # On va chercher une autre méthode # ### Méthode n°1 # Ici on va essayer d'abord de trouver une corrélation forte entre nos propres mots # Il est plus facile de faire deviner deux ou trois mots qui se ressemblent plutot que donner un indice trop général pour 9 mots qui sont pas vraiment liés score = [] for i in range(len(red_words)): for j in range(i, len(red_words)): if i != j: similarite = model.similarity(red_words[i], red_words[j]) print(red_words[i], "+", red_words[j], "=", similarite) score.append([similarite, red_words[i], red_words[j]]) sorted_scores = sorted(score, key=lambda x: x[0], reverse=True) print(sorted_scores) # Maintenant nous avons les couples de mots les plus ressemblants avec leur scores respectifs. # On va pouvoir filtrer un peu tout ca et retirer ceux qui ne vont pas du tout ensemble. # On peut soit retirer les éléments en fonction d'un seuil, ici 0.12, soit les retirer en fonction du nombre de résultats que l'on veut garder (par exemple: les 5 premiers). sorted_scores = [element for element in sorted_scores if element[0] >= 0.12] print(sorted_scores) score = [] for i in range(len(sorted_scores)): for j in range(len(red_words)): if red_words[j] not in sorted_scores[i][1:]: similarite = model.n_similarity(sorted_scores[i][1:], red_words[j]) words = [] for word in sorted_scores[i][1:]: words.append(word) words.append(red_words[j]) score.append([similarite, words]) sorted_scores.append(sorted(score, key=lambda x: x[0], reverse=True)) print(sorted_scores) # Maintenant nous avons agrandi nos possibilités à 3 mots à trouver pour l'indice donné. On remarque que plus le nombre de mots à trouver est élevé, plus le score a tendance à être faible, c'est normal. # On pourrait essayer de rectifier ca en mettant un coefficient multiplicateur sur le score pour que l'IA prenne plus de risques et qu'elle essaie de faire deviner plus de mots d'un coup. # Mais pour l'instant nous allons se concentrer sur la proposition d'indice. # model.most_similar( positive=red_words, negative=blue_words + white_words + black_words, topn=10 ) # Au début du projet nous avions cette fonction qui nous permettait d'avoir une liste d'indice mais rien de très pertinent, essayons avec notre nouvelle méthode. resultats = model.most_similar( positive=sorted_scores[0][1:], negative=blue_words + white_words + black_words, topn=10, ) resultats = [mot[0] for mot in resultats] print( "L'IA propose ", resultats[0], len(sorted_scores[0][1:]), " pour trouver les mots :", sorted_scores[0][1:], )
# --- # Analisis Penjualan Game di Seluruh Dunia # --- # --- # image from Google # Studi Kasus # Pada tugas Exploratory Data Analysis ini, kami memilih untuk menganalisis data penjualan game. Data ini berisi 16600 judul game beserta data penjualannya. Melalui Exploratory Data Analysis, kami berusaha untuk mencari insight yang dapat diambil dari data tersebut. # Import important library # Sebelum masuk ke proses data preparation, kita perlu mengimport library-library penting yang akan digunakan dalam proses EDA, antara lain: numpy, pandas, matplotlib, dan sebagainya import numpy as np import pandas as pd import scipy.stats as st pd.set_option("display.max_columns", None) import math import matplotlib.pyplot as plt import seaborn as sns sns.set_style("whitegrid") import missingno as msno from sklearn.preprocessing import StandardScaler from scipy import stats import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Data Preparation # Selanjutnya kita melakukan data preparation untuk menyiapkan data sehingga menjadi bentuk yang mudah untuk dianalisis # Import data # Kita import data menggunakan pandas, kemudian menggunakan perintah 'head' untuk menampilkan lima data teratas. Hal ini dilakukan agar kita bisa mengetahui gambaran data yang baru saja kita import data = pd.read_csv("/kaggle/input/videogamesales/vgsales.csv") data.head() # Menghapus data tidak lengkap # Data yang tidak lengkap perlu dihapus karena dapat menghambat analisis. Dalam data ini, data dari tahun 2016 tidak sepenuhnya lengkap, sehingga kita perlu menghapusnya drop_row_index = data[data["Year"] > 2015].index data = data.drop(drop_row_index) # Mendeskripsi data # Selanjutnya kita perlu mendapatkan informasi mengenai data secara lebih lengkap. Mulai dari jumlah data, bentuk, dan ada atau tidaknya data kosong yang perlu dihilangkan lagi # Menggunakan perintah 'shape', kita dapat memperoleh informasi dimensi data data.shape # Menggunakan perintah 'info' kita dapat melihat atribut apa saja yang ada pada data data.info() # Berdasarkan informasi data yang didapat, kita dapat menyimpulkan bahwa atribut-atribut dalam data tersebut yaitu: # * Peringkat - Peringkat penjualan secara keseluruhan (bilangan bulat) # # * Nama - Nama game # * Platform - Platform rilis game (mis. PC, PS4, dll.) # * Tahun - Tahun rilis game (desimal) # * Genre - Genre permainan # * Publisher - Penerbit game # * NA_Sales - Penjualan di Amerika Utara (dalam jutaan) (desimal) # * EU_Sales - Penjualan di Eropa (dalam jutaan) (desimal) # * JP_Sales - Penjualan di Jepang (dalam jutaan) (desimal) # * Other_Sales - Penjualan di seluruh dunia (dalam jutaan) (desimal) # * Global_Sales - Total penjualan di seluruh dunia (desimal) # data.describe() # data.describe(include=['object', 'bool']) # Selanjutnya, kita cari tahu apakah terdapat banyak data kosong data.isnull().sum() # Karena tidak terdapat banyak data kosong, kita dapat memulai melakukan analisis EDA # # 1. Game bergenre apa yang paling banyak dibuat? # Menggunakan fungsi 'value_count', kita dapat menghitung berdasarkan atribut tertentu (dalam hal ini yaitu genre) data["Genre"].value_counts() # Selanjutnya kita gunakan matplotlib untuk membuat chart dengan bentuk bar chart agar tampilan menjadi menarik dan mudah dimengerti plt.figure(figsize=(15, 10)) sns.countplot(x="Genre", data=data, order=data["Genre"].value_counts().index) plt.xticks(rotation=90) # Jawaban # Genre yang paling banyak gamenya adalah genre Action dengan jumlah 3196 game # # 2. Tahun mana yang memiliki rilis game terbanyak? # Menggunakan fungsi 'value_count', kita dapat menghitung berdasarkan atribut tertentu (dalam hal ini yaitu Year) data["Year"].value_counts() # Selanjutnya kita gunakan matplotlib untuk membuat chart dengan bentuk bar chart agar tampilan menjadi menarik dan mudah dimengerti plt.figure(figsize=(15, 10)) sns.countplot( x="Year", data=data, order=data.groupby(by=["Year"])["Name"].count().sort_values(ascending=False).index, ) plt.xticks(rotation=90) # Jawaban # Tahun yang memiliki rilis game terbanyak yaitu tahun 2009 dengan jumlah game mencapai 1431 # # 3. Rilis game teratas dalam 5 tahun terakhir berdasarkan genre. plt.figure(figsize=(30, 10)) sns.countplot( x="Year", data=data, hue="Genre", order=data.Year.value_counts().iloc[:5].index ) plt.xticks(size=16, rotation=90) # Jawaban # Dalam 5 tahun terakhir genre action selalu menjadi yang teratas dalam jumlah rilis game # # 4. Tahun berapa yang memiliki penjualan tertinggi di seluruh dunia? data_year = data.groupby(by=["Year"])["Global_Sales"].sum() data_year = data_year.reset_index() # data_year.sort_values(by=['Global_Sales'], ascending=False) plt.figure(figsize=(15, 10)) sns.barplot(x="Year", y="Global_Sales", data=data_year) plt.xticks(rotation=90) # Jawaban # 2008 menjadi tahun dengan jumlah penjualan tertinggi yang mencapai lebih dari 600 juta copy game # # 5. Game bergenre apa yang paling banyak dirilis dalam satu tahun? year_max_df = data.groupby(["Year", "Genre"]).size().reset_index(name="count") year_max_idx = ( year_max_df.groupby(["Year"])["count"].transform(max) == year_max_df["count"] ) year_max_genre = year_max_df[year_max_idx].reset_index(drop=True) year_max_genre = year_max_genre.drop_duplicates( subset=["Year", "count"], keep="last" ).reset_index(drop=True) # year_max_genre genre = year_max_genre["Genre"].values # genre[0] plt.figure(figsize=(30, 15)) g = sns.barplot(x="Year", y="count", data=year_max_genre) index = 0 for value in year_max_genre["count"].values: # print(asd) g.text( index, value + 5, str(genre[index] + "----" + str(value)), color="#000", size=14, rotation=90, ha="center", ) index += 1 plt.xticks(rotation=90) plt.show() # Jawaban # Genre yang paling banyak dirilis adalah game bergenre action dengan puncaknya pada tahun 2009 yang mencapai 272 game # # 6. Game bergenre apa yang paling banyak terjual dalam satu tahun? year_sale_dx = data.groupby(by=["Year", "Genre"])["Global_Sales"].sum().reset_index() year_sale = ( year_sale_dx.groupby(by=["Year"])["Global_Sales"].transform(max) == year_sale_dx["Global_Sales"] ) year_sale_max = year_sale_dx[year_sale].reset_index(drop=True) # year_sale_max genre = year_sale_max["Genre"] plt.figure(figsize=(30, 18)) g = sns.barplot(x="Year", y="Global_Sales", data=year_sale_max) index = 0 for value in year_sale_max["Global_Sales"]: g.text( index, value + 1, str(genre[index] + "----" + str(round(value, 2))), color="#000", size=14, rotation=90, ha="center", ) index += 1 plt.xticks(rotation=90) plt.show() # Jawaban # Game action menjadi game dengan penjualan paling banyak dalam satu tahun. Puncaknya terjadi pada tahun 2009 yang mencapai 139.36 juta copy game terjual # * Action and Sports are always in top. but in third whis is remarkable "Shooter", in count which was no 5 # # 7. Platformm mana yang memiliki penjualan tertinggi secara global data_platform = data.groupby(by=["Platform"])["Global_Sales"].sum() data_platform = data_platform.reset_index() data_platform = data_platform.sort_values(by=["Global_Sales"], ascending=False) # data_platform plt.figure(figsize=(15, 10)) sns.barplot(x="Platform", y="Global_Sales", data=data_platform) plt.xticks(rotation=90) # Jawaban # PS2 menjadi platform dengan jumlah penjualan game terbanyak yang mencapai lebih dari 1,2M copy # # 9. Game apa yang memiliki penjualan terbanyak di seluruh dunia top_game_sale = data.head(20) top_game_sale = top_game_sale[["Name", "Year", "Genre", "Global_Sales"]] top_game_sale = top_game_sale.sort_values(by=["Global_Sales"], ascending=False) # top_game_sale name = top_game_sale["Name"] year = top_game_sale["Year"] y = np.arange(0, 20) plt.figure(figsize=(30, 18)) g = sns.barplot(x="Name", y="Global_Sales", data=top_game_sale) index = 0 for value in top_game_sale["Global_Sales"]: g.text( index, value - 18, name[index], color="#000", size=14, rotation=90, ha="center" ) index += 1 plt.xticks(y, top_game_sale["Year"], fontsize=14, rotation=90) plt.xlabel("Release Year") plt.show() # Jawaban # Game Wii Sports menduduki peringkat pertama sebagai game dengan penjualan terbanyak yang mana mencapai lebih dari 80 juta copy # # 10. Seperti apa perbandingan penjualan game berdasarkan genre? comp_genre = data[["Genre", "NA_Sales", "EU_Sales", "JP_Sales", "Other_Sales"]] # comp_genre comp_map = comp_genre.groupby(by=["Genre"]).sum() # comp_map plt.figure(figsize=(15, 10)) sns.set(font_scale=1) sns.heatmap(comp_map, annot=True, fmt=".1f") plt.xticks(fontsize=14) plt.yticks(fontsize=14) plt.show() # Jawaban # Game dengan genre action memilki tingkat penjualan tertinggi dengan selisih cukup jauh dengan genre game lainya # # 11. Relasi antar kolom plt.figure(figsize=(13, 10)) sns.heatmap(data.corr(), cmap="Blues", annot=True, linewidth=3)
import os import torch import torchvision import numpy as np import pandas as pd from PIL import Image from torch import optim import matplotlib.pyplot as plt from torch.utils.data import DataLoader, Dataset from sklearn.model_selection import train_test_split import torchvision.models as models import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torch.autograd import Variable from torch.utils.data.sampler import SubsetRandomSampler import time class FIDataset(Dataset): """Fashion Image Dataset""" def __init__(self, dir, dataframe, transform, cat_lookup): super(FIDataset, self).__init__() self.dataframe = dataframe self.dir = dir self.transform = transform self.cat_lookup = cat_lookup def __getitem__(self, idx): line = self.dataframe.iloc[idx] cat = line.articleType cat_id = self.cat_lookup[cat] img_path = os.path.join(self.dir, str(line.id) + ".jpg") img = Image.open(img_path).convert("RGB") img_tensor = self.transform(img) return img_tensor, cat_id def __len__(self): return len(self.dataframe) def split_train_valid(train_data, valid_size): # obtain training indices that will be used for validation num_train = len(train_data) indices = list(range(num_train)) np.random.shuffle(indices) split = int(np.floor(valid_size * num_train)) train_idx, valid_idx = indices[split:], indices[:split] # define samplers for obtaining training and validation batches train_sampler = SubsetRandomSampler(train_idx) valid_sampler = SubsetRandomSampler(valid_idx) return train_sampler, valid_sampler def imshow(img): # helper function to un-normalize and display an image img = img / 2 + 0.5 # unnormalize plt.imshow(np.transpose(img, (1, 2, 0))) # convert from Tensor image def plot_sample_data(dataloader, num, cat_lookup): # obtain one batch of training images dataiter = iter(dataloader) images, labels = next(dataiter) # convert to numpy for display images = images.numpy() labels = labels.numpy() # plot the images in the batch, along with the corresponding labels fig = plt.figure(figsize=(25, 4)) # display images for idx in np.arange(num): ax = fig.add_subplot(1, 5, idx + 1, xticks=[], yticks=[]) imshow(images[idx]) ax.set_title(cat_lookup[labels[idx]]) def plot_sample_data_model(dataloader, num, model, cat_lookup, use_cuda=True): import torch # obtain one batch of training images dataiter = iter(dataloader) images, labels = next(dataiter) # convert to numpy for display labels = labels.numpy() # move model inputs to cuda, if GPU available if use_cuda: images = images.cuda() else: model = model.cpu() # get sample outputs output = model(images) # convert output probabilities to predicted class _, preds_tensor = torch.max(output, 1) preds = ( np.squeeze(preds_tensor.numpy()) if not use_cuda else np.squeeze(preds_tensor.cpu().numpy()) ) # plot the images in the batch, along with the corresponding labels fig = plt.figure(figsize=(15, 6)) # display images for idx in np.arange(num): ax = fig.add_subplot(2, num / 2, idx + 1, xticks=[], yticks=[]) imshow(images[idx].cpu()) ax.set_title( "{} ({})".format(cat_lookup[preds[idx]], cat_lookup[labels[idx]]), color=("green" if preds[idx] == labels[idx].item() else "red"), ) def plot_training_and_valid_loss(train_loss_history, valid_loss_history, n_epochs): # Define a helper function for plotting training and valid loss plt.title("Training and Validation Loss vs. Number of Training Epochs") plt.xlabel("Training Epochs") plt.ylabel("Loss") plt.plot(range(1, n_epochs + 1), train_loss_history, label="Training Loss") plt.plot(range(1, n_epochs + 1), valid_loss_history, label="Validation Loss") plt.xticks(np.arange(1, n_epochs + 1, 1.0)) plt.legend() plt.show() def train( n_epochs, train_loader, valid_loader, model, optimizer, criterion, use_cuda, save_path, scheduler=False, ): """returns trained model""" since = time.time() # initialize tracker for minimum validation loss valid_loss_min = np.Inf # initialize lists of values of train and valid losses over the training process train_loss_history = [] valid_loss_history = [] for epoch in range(n_epochs): # initialize variables to monitor training and validation loss train_loss = 0.0 valid_loss = 0.0 ################### # train the model # ################### # Call the learning rate scheduler if given if scheduler: scheduler.step() model.train() for batch_idx, (data, target) in enumerate(train_loader): # move to GPU if use_cuda: data, target = data.cuda(), target.cuda() optimizer.zero_grad() # forward pass: compute predicted outputs by passing inputs to the model output = model(data) # calculate the batch loss loss = criterion(output, target) # backward pass: compute gradient of the loss with respect to model parameters loss.backward() # perform a single optimization step (parameter update) optimizer.step() # record the average training loss and add it to history train_loss = train_loss + ((1 / (batch_idx + 1)) * (loss.data - train_loss)) train_loss_history.append(train_loss) ###################### # validate the model # ###################### model.eval() for batch_idx, (data, target) in enumerate(valid_loader): # move to GPU if use_cuda: data, target = data.cuda(), target.cuda() # update the average validation loss and add it to history output = model(data) _, preds = torch.max(output, 1) loss = criterion(output, target) valid_loss = valid_loss + ((1 / (batch_idx + 1)) * (loss.data - valid_loss)) valid_loss_history.append(valid_loss) # Print training/validation statistics print( "Epoch: {}/{} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}".format( epoch, n_epochs, train_loss, valid_loss ) ) # Save the model if validation loss has decreased if valid_loss < valid_loss_min: torch.save(model.state_dict(), save_path) print( "Validation loss decreased ({:.6f} --> {:.6f}). Saving model ...".format( valid_loss_min, valid_loss ) ) valid_loss_min = valid_loss # Print training time time_elapsed = time.time() - since print( "Training complete in {:.0f}m {:.0f}s".format( time_elapsed // 60, time_elapsed % 60 ) ) # return trained model return model, train_loss_history, valid_loss_history def correct_top_k(output, target, topk=(1,)): """Returns a tensor with 1 if target in top-k best guesses and 0 otherwise""" with torch.no_grad(): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)).sum(0, keepdim=True) return correct[0] def test(test_loader, model, criterion, cat_lookup, use_cuda): # initialize lists to monitor correct guesse and total number of data test_loss = 0.0 class_correct = list(0.0 for i in range(len(cat_lookup))) class_correct_top_5 = list(0.0 for i in range(len(cat_lookup))) class_total = list(0.0 for i in range(len(cat_lookup))) model.eval() # prep model for evaluation for data, target in test_loader: if use_cuda: data, target, model = data.cuda(), target.cuda(), model.cuda() # else: # model = model.cpu() # forward pass: compute predicted outputs by passing inputs to the model output = model(data) # calculate the loss loss = criterion(output, target) # update test loss test_loss += loss.item() * data.size(0) # get 1 if target in top-1 predictions correct_top_1 = correct_top_k(output, target, topk=(1,)) # get 1 if target in top-5 predictions correct_top_5 = correct_top_k(output, target, topk=(5,)) # calculate test accuracy for each object class for i in range(len(target)): label = target.data[i] class_correct[label] += correct_top_1[i].item() class_correct_top_5[label] += correct_top_5[i].item() class_total[label] += 1 # calculate and print avg test loss test_loss = test_loss / len(test_loader.sampler) print("Test Loss: {:.6f}\n".format(test_loss)) class_accuracy_top_1 = {} print("\nPrinting accuracy for each class") for i in range(len(cat_lookup)): if class_total[i] > 0: accuracy_top_1 = 100 * class_correct[i] / class_total[i] accuracy_top_5 = 100 * class_correct_top_5[i] / class_total[i] class_accuracy_top_1[i] = accuracy_top_1 print( "Test accuracy of %5s: \nTop-1 accuracy: %2d%% (%2d/%2d) \nTop-5 accuracy: %2d%% (%2d/%2d)".format() % ( cat_lookup[i], accuracy_top_1, np.sum(class_correct[i]), np.sum(class_total[i]), accuracy_top_5, np.sum(class_correct_top_5[i]), np.sum(class_total[i]), ) ) else: print("Test Accuracy of %5s: N/A (no training examples)" % (cat_lookup[i])) print("\nPrinting 5 classes with greatest top-1 accuracy") sorted_class_accuracy = sorted( class_accuracy_top_1.items(), key=lambda kv: kv[1], reverse=True ) for i in range(5): print( "Test Accuracy of %5s: %2d%%" % ( str(cat_lookup[sorted_class_accuracy[i][0]]), sorted_class_accuracy[i][1], ) ) print( "\nTest Accuracy (Overall): \nTop-1 accuracy: %2d%% (%2d/%2d) \nTop-5 accuracy: %2d%% (%2d/%2d)" % ( 100.0 * np.sum(class_correct) / np.sum(class_total), np.sum(class_correct), np.sum(class_total), 100.0 * np.sum(class_correct_top_5) / np.sum(class_total), np.sum(class_correct_top_5), np.sum(class_total), ) ) # create a df from styles.csv neglecting lines with error DATASET_PATH = "/kaggle/input/fashion-product-images-dataset/fashion-dataset/" styles = pd.read_csv(os.path.join(DATASET_PATH, "styles.csv"), error_bad_lines=False) print(styles.head()) print(len(styles)) # Get the list of names of images that are available imgs_available = os.listdir(DATASET_PATH + "/images") print(len(imgs_available)) # Check if each entry in styles.csv has a corresponding images listing. # If not, we remove it from the dataframe. missing_img = [] for idx, line in styles.iterrows(): if not os.path.exists(os.path.join(DATASET_PATH, "images", str(line.id) + ".jpg")): print(os.path.join(DATASET_PATH, "images", str(line.id) + ".jpg")) missing_img.append(idx) styles.drop(styles.index[missing_img], inplace=True) print(len(styles)) # Check how many unique article types we have uniquie_article_types = styles["articleType"].unique() print(len(uniquie_article_types)) sorted_df = styles.groupby(["articleType"]).size().sort_values(ascending=False) top_classes = sorted_df.nlargest(20) display(top_classes) # plot the distribution of top 20 classes top_classes.plot.bar() styles.dropna(inplace=True, subset=["year", "articleType"]) len(styles) training_data = styles[styles["year"].astype("int") % 2 == 0] testing_data = styles[styles["year"].astype("int") % 2 == 1] top_classes_names = list(top_classes.index) training_top20 = training_data[training_data.articleType.isin(top_classes_names)] testing_top20 = testing_data[testing_data.articleType.isin(top_classes_names)] # Find weights total_number_of_samples = np.sum(top_classes.values) weights = [total_number_of_samples / top_classes.values] # Create a mapping between article types and their ids cat_list = sorted_df.index cat2num = {cat: i for i, cat in enumerate(cat_list)} num2cat = {i: cat for i, cat in enumerate(cat_list)} # Create data transform transform = torchvision.transforms.Compose( [ torchvision.transforms.Resize((224, 224)), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] ) # number of subprocesses to use for data loading num_workers = 8 # how many samples per batch to load batch_size = 16 # percentage of training set to use as validation valid_size = 0.2 # Construct datasets top20_data = FIDataset( os.path.join(DATASET_PATH, "images"), training_top20, transform, cat2num ) # others_data = FIDataset(os.path.join(DATASET_PATH, 'images'), training_others, transform, cat2num) test_top20 = FIDataset( os.path.join(DATASET_PATH, "images"), testing_top20, transform, cat2num ) # split the training data for 'top 20' classes into train and validation datasets top20_train_sampler, top20_valid_sampler = split_train_valid(top20_data, valid_size) # prepare data loaders top20_train_loader = DataLoader( top20_data, batch_size=batch_size, sampler=top20_train_sampler, num_workers=num_workers, ) top20_valid_loader = DataLoader( top20_data, batch_size=batch_size, sampler=top20_valid_sampler, num_workers=num_workers, ) top20_test_loader = DataLoader( test_top20, batch_size=batch_size, num_workers=num_workers ) # Plot sample data from the training dataset of top 20 classes plot_sample_data(top20_train_loader, 5, num2cat) # Plot sample data from the training dataset of the remaining classes plot_sample_data(top20_test_loader, 5, num2cat) # Check if CUDA is available use_cuda = torch.cuda.is_available() # Specify model architecture model_top20 = models.resnet50(pretrained=True) # To reshape the network, we reinitialize the classifier’s linear layer n_inp = model_top20.fc.in_features model_top20.fc = nn.Linear(n_inp, len(top_classes_names)) if use_cuda: model_top20 = model_top20.cuda() print(model_top20.fc) # Convert weights vector to a tensor weights = torch.tensor(weights, dtype=torch.float) if use_cuda: weights = weights.cuda() # Specify a loss function and optimizer criterion = nn.CrossEntropyLoss(weight=weights) optimizer = optim.SGD(model_top20.parameters(), lr=0.001) n_epochs = 10 # train the model model_top20, train_loss_history_top20, valid_loss_history_top20 = train( n_epochs, top20_train_loader, top20_valid_loader, model_top20, optimizer, criterion, use_cuda, "model_top20.pt", ) plot_training_and_valid_loss( train_loss_history_top20, valid_loss_history_top20, n_epochs ) # Load the model that got the best validation accuracy model_top20.load_state_dict(torch.load("model_top20.pt")) plot_sample_data_model(top20_test_loader, 10, model_top20, num2cat, use_cuda=True) top20_cat_lookup = {i: j for i, j in num2cat.items() if j in top_classes_names} test( top20_test_loader, model_top20, criterion, cat_lookup=top20_cat_lookup, use_cuda=True, ) # Data augmentation transform_augment = torchvision.transforms.Compose( [ torchvision.transforms.Resize((224, 224)), torchvision.transforms.RandomHorizontalFlip(), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] ) # Construct datasets test_data = FIDataset( os.path.join(DATASET_PATH, "images"), testing_data, transform, cat2num ) training_dataset = FIDataset( os.path.join(DATASET_PATH, "images"), training_data, transform_augment, cat2num ) valid_dataset = FIDataset( os.path.join(DATASET_PATH, "images"), training_data, transform, cat2num ) # split the training data into train and validation datasets train_sampler, valid_sampler = split_train_valid(training_dataset, valid_size) # prepare data loaders train_loader = DataLoader( training_dataset, batch_size=batch_size, sampler=train_sampler, num_workers=num_workers, ) valid_loader = DataLoader( valid_dataset, batch_size=batch_size, sampler=valid_sampler, num_workers=num_workers ) test_loader = DataLoader(test_data, batch_size=batch_size, num_workers=num_workers) # Plot sample data from the training dataset of top 20 classes plot_sample_data(train_loader, 5, num2cat) # Plot sample data from the training dataset of top 20 classes plot_sample_data(test_loader, 5, num2cat) model_142 = model_top20 # Freeze the first 5 layers of the model layers_to_freeze = 5 layer_count = 0 print("Layers to freeze: \n") for child in model_142.children(): layer_count += 1 if layer_count <= layers_to_freeze: print(child) for param in child.parameters(): param.requires_grad = False # To reshape the network, we reinitialize the classifier’s linear layer n_inp = model_142.fc.in_features model_142.fc = nn.Linear(n_inp, len(uniquie_article_types)) if use_cuda: model_142 = model_142.cuda() # Define the weights for all the 142 classes as before total_number_of_samples = np.sum(sorted_df.values) weights = [total_number_of_samples / sorted_df.values] # Convert weights vector to a tensor weights = torch.tensor(weights, dtype=torch.float) if use_cuda: weights = weights.cuda() # Specify a loss function and optimizer criterion = nn.CrossEntropyLoss(weight=weights) optimizer = optim.SGD(model_142.parameters(), lr=0.001) n_epochs = 20 # train the model model_142, train_loss_history_142, valid_loss_history_142 = train( n_epochs, train_loader, valid_loader, model_142, optimizer, criterion, use_cuda, "model_142_augment2.pt", ) plot_training_and_valid_loss(train_loss_history_142, valid_loss_history_142, n_epochs) plot_sample_data_model(test_loader, 10, model_142, num2cat, use_cuda=True) # Load the model that got the best validation accuracy model_142.load_state_dict(torch.load("model_142_augment2.pt")) test(test_loader, model_142, criterion, cat_lookup=num2cat, use_cuda=True)
# ## kandinsky import torch torch.set_grad_enabled(False) import requests from PIL import Image from io import BytesIO from kandinsky2 import get_kandinsky2 from PIL import Image model = get_kandinsky2( "cuda", task_type="text2img", model_version="2.1", use_flash_attention=False ) response = requests.get( "https://ih1.redbubble.net/image.2086350547.7750/flat,750x,075,f-pad,750x1000,f8f8f8.jpg" ) # response = requests.get('https://nationaltoday.com/wp-content/uploads/2022/01/Ginger-Cat-640x514.jpg') content_img = Image.open(BytesIO(response.content)) response = requests.get( "https://hips.hearstapps.com/hmg-prod.s3.amazonaws.com/images/lord-of-the-rings-sean-bean-boromir-1584636601.jpg" ) # response = requests.get('https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRMtfKLzUTi-tBt_pzGzltUXO3muc7k3qjq0g&usqp=CAU') style_img = Image.open(BytesIO(response.content)) images_texts = [style_img, content_img] weights = [0.5, 0.5] images = model.mix_images( images_texts, weights, num_steps=50, batch_size=1, guidance_scale=5, h=768, w=768, sampler="p_sampler", prior_cf_scale=4, prior_steps="5", ) images[0]
import autosklearn.classification import autosklearn.classification import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) pd.set_option("display.max_rows", None) pd.set_option("display.max_columns", None) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session train = pd.read_csv("/kaggle/input/digit-recognizer/train.csv") test = pd.read_csv("/kaggle/input/digit-recognizer/test.csv") train[0:1] LABEL = "label" y = train[LABEL] train = train.drop(LABEL, axis=1) # Dropping label to normalize train[0:1] width = 28 def make_grid(row): # print(row) grid = np.zeros((width, width)) for x in range(width): for y in range(width): grid[y][x] = row[x * width + y] # print(row[x*width + y],end=" ") # print() return grid def make_grid_array(ar): ar = np.array(ar) num = len(ar) grid = np.zeros((num, width, width)) for i in range(num): # print(ar[i]) grid[i] = make_grid(ar[i]) return grid val = 3 # print(y) # print(y[val:val+1]) # print(make_grid(train[val:val+1])) # train = make_grid_array(train) # test = make_grid_array(test) # print(train[0:3]) np.shape(train) from autosklearn.metrics import ( accuracy, f1, roc_auc, precision, average_precision, recall, log_loss, ) automl = autosklearn.classification.AutoSklearnClassifier( time_left_for_this_task=600, max_models_on_disc=5, memory_limit=25000, scoring_functions=[ roc_auc, average_precision, accuracy, f1, precision, recall, log_loss, ], ) automl.fit(train, y) y_hat = automl.predict(test) submission = pd.read_csv("/kaggle/input/digit-recognizer/sample_submission.csv") submission["Label"] = y_hat y_hat submission.to_csv("/kaggle/working/output.csv", index=False)
from fastai.vision.all import * from pathlib import Path import h5py from matplotlib import cm import matplotlib.pyplot as plt import os kaggle = os.environ.get("KAGGLE_KERNEL_RUN_TYPE", "") path = "/kaggle/input/jet-images-train-val-test/jet-images_train.hdf5" h5_file = h5py.File(path, "r") signal_data = h5_file["signal"] image_data = h5_file["image"] signal_array = np.array(signal_data) image_array = np.array(image_data) len(image_array) # Filter the image_array based on signal_array filtered_images = image_array[signal_array == 1] # Calculate the mean image mean_image = np.mean(filtered_images, axis=0) len(filtered_images) plt.imshow(mean_image) plt.show() plt.imshow(filtered_images[7]) plt.show() filtered_images_general = image_array[signal_array == 0] mean_image_general = np.mean(filtered_images_general, axis=0) plt.imshow(mean_image_general) plt.show() plt.imshow(filtered_images_general[22]) plt.show() path_val = "/kaggle/input/jet-images-train-val-test/jet-images_micro.hdf5" h5_file_val = h5py.File(path_val, "r") signal_data_val = h5_file_val["signal"] image_data_val = h5_file_val["image"] signal_array = np.array(signal_data_val) image_array = np.array(image_data_val) print(len(signal_array)) print(len(image_array)) from sklearn.metrics.pairwise import cosine_similarity from sklearn.metrics import accuracy_score def mean_image_predict(threshold): mean_image = np.mean(image_array[signal_array == 1], axis=0) similarities = np.zeros(len(image_array)) for i, image_vec in enumerate(image_array): similarities[i] = cosine_similarity( image_vec.reshape(1, -1), mean_image.reshape(1, -1) ) threshold = threshold predicted_labels = np.where(similarities > threshold, 1, 0) accuracy = accuracy_score(signal_array, predicted_labels) return accuracy test_num = [0.9, 0.81, 0.79, 0.6, 0.5, 0.4] for i in test_num: test = mean_image_predict(i) print(f"Whit a treshold of {i} we have a accuracy: {test}") preds = [] def predict(array): general = np.abs(np.mean(mean_image_general) - np.mean(array)) boson = np.abs(np.mean(mean_image) - np.mean(array)) if boson < general: preds.append(1.0) else: preds.append(0.0) for image in image_data_val: predict(image) def accuracy(predictions, labels): """Calculate the accuracy of the predictions.""" num_correct = sum( [1 for i in range(len(predictions)) if predictions[i] == labels[i]] ) return num_correct / len(predictions) accuracy(preds, signal_data)
# # Задача: # На основе имеющихся в датасете данных о 515 000 отзывах на отели Европы обучить модель, которая должна предсказывать рейтинг отеля по данным сайта Booking. # ## Проблема: # Наличие отелей накручивающих себе рейтинг на Booking # ## Цель проекта: # Построить модель на основе алгоритмов машинного обучения, которая предсказывает рейтинг отеля # ## 0. Подготовительный этап # ЗАГРУЗКА НЕОБХОДИМЫХ БИБЛИОТЕК # для работы с данными import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # для работы с признаками # кодирования признаков import category_encoders as ce # нормализации признаков from sklearn import preprocessing # импортируем библиотеки для визуализации import matplotlib.pyplot as plt import seaborn as sns # импортируем библиотеки для оценки тональности текста import nltk from nltk.sentiment.vader import SentimentIntensityAnalyzer import time # загружаем специальный удобный инструмент для разделения датасета: from sklearn.model_selection import train_test_split # библиотеки для работы с моделью from sklearn.ensemble import ( RandomForestRegressor, ) # инструмент для создания и обучения модели from sklearn import metrics # инструменты для оценки точности модели # загружаем специальный удобный инструмент для работы с исходными данными: import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # фиксируем RANDOM_SEED, для воспроизводимости эксперимента RANDOM_SEED = 42 # зафиксируем версию пакетов, чтобы эксперименты были воспроизводимы # ## 1. Знакомимся с входными данными # Подгрузим наши данные из соревнования DATA_DIR = "/kaggle/input/sf-booking/" df_train = pd.read_csv(DATA_DIR + "/hotels_train.csv") # датасет для обучения df_test = pd.read_csv(DATA_DIR + "hotels_test.csv") # датасет для предсказания sample_submission = pd.read_csv(DATA_DIR + "/submission.csv") # самбмишн # Первоначальная версия датасета (df_train) содержит **17 полей** со следующей информацией: # - hotel_address — адрес отеля; # - review_date — дата, когда рецензент разместил соответствующий отзыв; # - average_score — средний балл отеля, рассчитанный на основе последнего комментария за последний год; # - hotel_name — название отеля; # - reviewer_nationality — страна рецензента; # - negative_review — отрицательный отзыв, который рецензент дал отелю; # - review_total_negative_word_counts — общее количество слов в отрицательном отзыв; # - positive_review — положительный отзыв, который рецензент дал отелю; # - review_total_positive_word_counts — общее количество слов в положительном отзыве. # - reviewer_score — оценка, которую рецензент поставил отелю на основе своего опыта; # - total_number_of_reviews_reviewer_has_given — количество отзывов, которые рецензенты дали в прошлом; # - total_number_of_reviews — общее количество действительных отзывов об отеле; # - tags — теги, которые рецензент дал отелю; # - days_since_review — количество дней между датой проверки и датой очистки; # - additional_number_of_scoring — есть также некоторые гости, которые просто поставили оценку сервису, но не оставили отзыв. Это число указывает, сколько там действительных оценок без проверки. # - lat — географическая широта отеля; # - lng — географическая долгота отеля. df_train.info() # **Описание:** # Признаки можно разделить на три группы: # 1. Связанные с отелем признаки / Hotel Related Features (7) # - hotel_name - full hotel name; # - hotel_address - address: street, post code, city, country; # - lat - hotel latitude coordinate; # - lng - hotel longitude coordinate; # - average_score - average hotel rating; # - total_number_of_reviews - total number of hotel reviews; # - additional_number_of_scoring - number of hotel scores without review. # 2. Связанные с рецензентом признаки / Reviewer Related Features (3) # - reviewer_nationality - reviewer nationality; # - total_number_of_reviews_reviewer_has_given - total number of reviews reviewer has given; # - tags - tags describing stay in the hotel. # 3. Связанные с отзывом признаки / Review Related Features (6) # - review_date date of review; # - days_since_review difference in the number of days between review date and scrape date; # - negative_review text of negative review; # - review_total_negative_word_counts negative review words number; # - positive_review text of positive review; # - review_total_positive_word_counts positive review words number. df_train.head(2) # Тестовая версия датасета (df_test) содержит 16 полей (без 'reviewer_score' ) df_test.info() df_test.head(2) # Сабмишн содержит 128935 строки и два признака 'reviewer_score' и 'id' sample_submission.head(2) sample_submission.info() # ## 2. Подготовка данных, которые будут использованы для обучения модели # ВАЖНО! дkя корректной обработки признаков объединяем трейн и тест в один датасет df_train["sample"] = 1 # помечаем где у нас трейн df_test["sample"] = 0 # помечаем где у нас тест df_test[ "reviewer_score" ] = 0 # в тесте у нас нет значения reviewer_score, мы его должны предсказать, по этому пока просто заполняем нулями data = df_test.append(df_train, sort=False).reset_index(drop=True) # объединяем data.info() data.describe() data.hist(figsize=(15, 15)) # Имеются следующие **"проблемы"** с представленными данными: # - Отсутствуют некоторые значения в столбцах lat и lng. # - Числовые значения в 9 столбцах: 'additional_number_of_scoring', 'average_score','review_total_negative_word_counts','total_number_of_reviews_reviewer_has_given', 'total_number_of_reviews', 'review_total_positive_word_counts', 'reviewer_scoretotal_number_of_reviews_reviewer_has_given', 'lat', 'lng'. # - Значения типа object в 8 столбцах: 'hotel_address', review_date', 'hotel_name', 'reviewer_nationality', 'negative_review', 'positive_review', ' tags ', 'days_since_review'. # ### **2.1 Работа с "нулевыми" значениями** # проверим может быть пропущенные данные по местоположению отелей можно найти в других записях no_place = set(data[(data["lat"] == 0) | (data["lng"] == 0)]["hotel_name"].values) yes_place = set(data[(data["lat"] != 0) & (data["lng"] != 0)]["hotel_name"].values) no_place.intersection(yes_place) # нет данных # заполним пустые значения в координатах нулями data[["lat", "lng"]] = data[["lat", "lng"]].fillna(0) # ### **2.2 Преобразуем признаки** # #### **2.2.1 Преобразование признака 'review_date' (дата написания признака)** # изменим значение даты на тип данных datetime data["review_date"] = pd.to_datetime( data["review_date"], dayfirst=False, yearfirst=False ) # определим номер дня года, когда написан отзыв и создадим новый признак data["day_of_year"] = data["review_date"].apply(lambda x: x.timetuple().tm_yday) # выделим год отзыва data["rewiew_year"] = data["review_date"].dt.year # преобразуем информацию о времени, прошедшем с момента # написания отзыва, в числовое значение с помощью функции: def time_review(arg): word_list = arg.split() # преобразуем в список по пробелам for word in word_list: if word.isnumeric(): # выберем числовое значение return int(word) data["days_since_review"] = data["days_since_review"].apply(time_review) # #### **2.2.2 Обработка тегов** # из тегов выделим количество ночей проведенных клиентом в отеле # создадим функцию, отыскивающую нужный тег и возвращающую количество дней def days_number(arg): tag_list = arg.split(",") for tag in tag_list: ind = tag.find("night") if ind > 0: word_list = tag.split() for word in word_list: if word.isnumeric(): return int(word) data["accommodation_days"] = data["tags"].apply(days_number) # создадим признак считающий количество слов в тегах data["word_tegs_cnt"] = data["tags"].apply(lambda x: len(list(x.split(",")))) # удалим теги, отвечающий за количество ночей (мы уже выписали их) # функция принимает строку, разбивает ее на теги, находит и удаляет те, в которых уrазано количество ночей возвращает список def tags_no_nights(arg): k = list(arg.split(",")) for tag in k: ind = 0 ind = tag.find("night") if ind > 0: k.remove(tag) arg = ",".join(k) return arg # очищаем теги от длительности пребывания, возможно они нам еще пригодятся data["tags"] = data["tags"].apply(tags_no_nights) # из отзывов выделим эмоциональную окраску текста в отзывах nltk.downloader.download("vader_lexicon") sent_analyzer = SentimentIntensityAnalyzer() # в результате обработки выдается словарь с четырьмя парами ключ:значение # по негативным отзывам data["negative_review"] = data["negative_review"].apply(sent_analyzer.polarity_scores) # по позитивным отзывам data["positive_review"] = data["positive_review"].apply(sent_analyzer.polarity_scores) # создадим новые признаки из негативнного отзыва data["negative_neg"] = data["negative_review"].apply(lambda x: x["neg"]) data["negative_neu"] = data["negative_review"].apply(lambda x: x["neu"]) data["negative_pos"] = data["negative_review"].apply(lambda x: x["pos"]) data["negative_compound"] = data["negative_review"].apply(lambda x: x["compound"]) # создадим новые признаки из позитивного отзыва data["positive_neg"] = data["positive_review"].apply(lambda x: x["neg"]) data["positive_neu"] = data["positive_review"].apply(lambda x: x["neu"]) data["positive_pos"] = data["positive_review"].apply(lambda x: x["pos"]) data["positive_compound"] = data["positive_review"].apply(lambda x: x["compound"]) data["negative_review"].head(10) # в некоторых негативных отзывах указано "нет негатива", пометим их и создадим соответствующий признак data["no_negative"] = 0 data[data["negative_review"] == "No Negative"] = 1 data["positive_review"].head(10) # в некоторых позитивных отзывах указано "нет позитива", пометим их и создадим соответствующий признак data["no_positive"] = 0 data[data["positive_review"] == "No Positive"] = 1 # удалим ненужные теперь признаки отзывов data.drop(["negative_review", "positive_review"], axis=1, inplace=True) # города местоположения отелей data["city_name"] = data["hotel_address"].apply( lambda x: x.split()[-2] if x.split()[-2] != "United" else x.split()[-5] ) # ['London', 'Paris', 'Amsterdam', 'Milan', 'Vienna', 'Barcelona'] # можно использовать One-Hot-Coding encoder = ce.OneHotEncoder( cols=["city_name"], use_cat_names=True ) # указываем столбец для кодирования type_bin = encoder.fit_transform(data["city_name"]) data = pd.concat([data, type_bin], axis=1) # Зная город, можно использовать данные по его расположению для заполнения пропущенных координат data[(data["city_name"] == "Amsterdam") & (data["lat"] == 0)].fillna( {"lat": 52.362209, "lng": 4.885346} ) data[(data["city_name"] == "Barcelona") & (data["lat"] == 0)].fillna( {"lat": 41.389125, "lng": 2.169152} ) data[(data["city_name"] == "London") & (data["lat"] == 0)].fillna( {"lat": 51.510737, "lng": -0.139075} ) data[(data["city_name"] == "Milan") & (data["lat"] == 0)].fillna( {"lat": 45.479619, "lng": 9.191844} ) data[(data["city_name"] == "Paris") & (data["lat"] == 0)].fillna( {"lat": 48.863658, "lng": 2.326816} ) data[(data["city_name"] == "Vienna") & (data["lat"] == 0)].fillna( {"lat": 48.203368, "lng": 16.367176} ) data["lat"].nunique data.info() # пустые значения пребывания заменим на медиану data["accommodation_days"] = data["accommodation_days"].fillna( data["accommodation_days"].median() ) data.info() plt.rcParams["figure.figsize"] = (25, 20) sns.heatmap(data.drop(["sample"], axis=1).corr(), annot=True) # Высокая корреляция между days_since_review - rewiew_year(-0.92), negative_neg - negative_neu (-0.94) и positive_pos - positive_neu(-0.92 data.nunique(dropna=False) # Обработаем списки тегов # введем признак страны для отелей data["country"] = data["hotel_address"].apply( lambda x: x.split()[-1] if x.split()[-1] != "Kingdom" else " ".join(x.split()[-2:]) ) # уберем пробелы в названии места жительства резидента data["reviewer_nationality"] = data["reviewer_nationality"].apply(lambda x: x[1:-1]) # создадим признак,определяющий иностранец или "местный жительЭ писал отзыв" data["local_reviewer"] = data.apply( lambda x: 1 if x["reviewer_nationality"] == x["country"] else 0, axis=1 ) data["local_reviewer"].value_counts(normalize=True) # используем бинарное кодирования для некоторых признаков data["reviewer_nationality"].nunique(dropna=False) bin_encoder = ce.BinaryEncoder(cols=["hotel_name"]) # указываем столбец для кодирования type_bin = bin_encoder.fit_transform(data["hotel_name"]) data = pd.concat([data, type_bin], axis=1) data.hist(figsize=(25, 25)) # создадим копию data_copied = data.copy() object_columns = [ "hotel_address", "hotel_name", "reviewer_nationality", "negative_review", "positive_review", "tags", "review_date", "city_name", "country", ] data.info() # убираем признаки которые еще не успели обработать, # модель на признаках с dtypes "object" обучаться не будет, просто выберим их и удалим object_columns = [s for s in data.columns if data[s].dtypes == "object"] data.drop(object_columns, axis=1, inplace=True) data.info() data2 = data.copy() # Провели нормализацию признаков by RobustScaler # ``` # list_normal = ['average_score','additional_number_of_scoring','additional_number_of_scoring', 'review_total_positive_word_counts','total_number_of_reviews_reviewer_has_given','total_number_of_reviews'] # r_scaler = preprocessing.RobustScaler(copy=False) # for col in list(data.columns): # if col != 'reviewer_score' and col != 'sample': # data[col] = r_scaler.fit_transform(data[[col]]) # ``` # По итогу нормализация данных признаков не привела к улучшению результата. Решено от нее отказаться. # data['average_score', 'additional_number_of_scoring','additional_number_of_scoring' 'review_total_positive_word_counts','total_number_of_reviews_reviewer_has_given''total_number_of_reviews'] data.head() data.describe() # ## 3. # Теперь выделим тестовую часть train_data = data.query("sample == 1").drop(["sample"], axis=1).drop_duplicates() test_data = data.query("sample == 0").drop(["sample"], axis=1) y = train_data.reviewer_score.values # наш таргет X = train_data.drop(["reviewer_score"], axis=1) # Воспользуемся специальной функцие train_test_split для разбивки тестовых данных # выделим 20% данных на валидацию (параметр test_size) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=RANDOM_SEED ) # проверяем test_data.shape, train_data.shape, X.shape, X_train.shape, X_test.shape # Создаём модель model = RandomForestRegressor( n_estimators=100, verbose=1, n_jobs=-1, random_state=RANDOM_SEED ) # Обучаем модель на тестовом наборе данных model.fit(X_train, y_train) # Используем обученную модель для предсказания рейтинга ресторанов в тестовой выборке. # Предсказанные значения записываем в переменную y_pred y_pred = model.predict(X_test) # Функция для рассчёта MAPE: def mape(actual, pred): actual, pred = np.array(actual), np.array(pred) return np.mean(np.abs((actual - pred) / actual)) * 100 # Сравниваем предсказанные значения (y_pred) с реальными (y_test), и смотрим насколько они в среднем отличаются # Метрика называется Mean Absolute Error (MAE) и показывает среднее отклонение предсказанных значений от фактических. print("MAE:", metrics.mean_absolute_error(y_test, y_pred)) print("MAPE:", mape(y_test, y_pred)) # print('MAPE:', metrics.mean_absolute_percentage_error(y_test, y_pred)) plt.rcParams["figure.figsize"] = (10, 10) feat_importances = pd.Series(model.feature_importances_, index=X.columns) feat_importances.nlargest(25).plot(kind="barh") test_data.sample(10) test_data = test_data.drop(["reviewer_score"], axis=1) sample_submission predict_submission = model.predict(test_data) predict_submission list(sample_submission) sample_submission["reviewer_score"] = predict_submission sample_submission.to_csv("submission.csv", index=False) sample_submission.head(10)
# # Imports import os import numpy as np import matplotlib.pyplot as plt from PIL import Image from tqdm import tqdm import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import Dataset, DataLoader import torchvision.transforms as transforms from torchsummary import summary from torchvision.utils import save_image # # Dataset def load_image(root_dir: str, dir_name: str, file_name: str, extension: str) -> Image: return Image.open(os.path.join(root_dir, dir_name, file_name + extension)) class CelebADataset(Dataset): def __init__(self, dir, transform=None): super().__init__() self.root = dir self.transform = transform self.list_of_inputs = os.listdir(dir) def __getitem__(self, idx): to_tensor_transform = transforms.ToTensor() input_image = load_image(self.root, r"", self.list_of_inputs[idx], "") input_image = to_tensor_transform(input_image) if self.transform: input_image = self.transform(input_image) return input_image.float() def __len__(self): return len(self.list_of_inputs) transform = transforms.Compose( [ transforms.Resize((64, 64)), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), ] ) batch_size = 16 train_dataset = CelebADataset( dir=r"/kaggle/input/celeba-dataset/img_align_celeba/img_align_celeba", transform=transform, ) train_dataloader = DataLoader( train_dataset, batch_size=batch_size, shuffle=True, num_workers=8 ) # # Model # I tested two generators: Upsample + Conv2d and ConvTranspose2d class UpsampleGenerator(nn.Module): def __init__(self): super().__init__() self.conv_0 = nn.Sequential( nn.UpsamplingNearest2d(scale_factor=2), nn.Conv2d( in_channels=100, out_channels=512, kernel_size=3, stride=1, padding=1 ), nn.BatchNorm2d(512), nn.ReLU(), ) self.conv_1 = nn.Sequential( nn.UpsamplingNearest2d(scale_factor=2), nn.Conv2d( in_channels=512, out_channels=256, kernel_size=3, stride=1, padding=1 ), nn.BatchNorm2d(256), nn.ReLU(), ) self.conv_2 = nn.Sequential( nn.UpsamplingNearest2d(scale_factor=2), nn.Conv2d( in_channels=256, out_channels=128, kernel_size=3, stride=1, padding=1 ), nn.BatchNorm2d(128), nn.ReLU(), ) self.conv_3 = nn.Sequential( nn.UpsamplingNearest2d(scale_factor=2), nn.Conv2d( in_channels=128, out_channels=64, kernel_size=3, stride=1, padding=1 ), nn.BatchNorm2d(64), nn.ReLU(), ) self.conv_4 = nn.Sequential( nn.UpsamplingNearest2d(scale_factor=2), nn.Conv2d( in_channels=64, out_channels=3, kernel_size=3, stride=1, padding=1 ), nn.BatchNorm2d(3), nn.ReLU(), ) self.conv_5 = nn.Sequential( nn.UpsamplingNearest2d(scale_factor=2), nn.Conv2d( in_channels=3, out_channels=3, kernel_size=3, stride=1, padding=1 ), nn.BatchNorm2d(3), nn.ReLU(), ) self.conv_6 = nn.Sequential( nn.Conv2d( in_channels=3, out_channels=3, kernel_size=3, stride=1, padding=1 ), nn.Tanh(), ) # 3 x 64 x 64 def forward(self, x): x = self.conv_0(x) x = self.conv_1(x) x = self.conv_2(x) x = self.conv_3(x) x = self.conv_4(x) x = self.conv_5(x) x = self.conv_6(x) return x class TransposeGenerator(nn.Module): def __init__(self): super().__init__() self.conv_0 = nn.Sequential( nn.ConvTranspose2d( in_channels=100, out_channels=512, kernel_size=4, stride=2, padding=0, bias=False, ), nn.BatchNorm2d(512), nn.ReLU(), ) self.conv_1 = nn.Sequential( nn.ConvTranspose2d( in_channels=512, out_channels=256, kernel_size=4, stride=2, padding=1, bias=False, ), nn.BatchNorm2d(256), nn.ReLU(), ) self.conv_2 = nn.Sequential( nn.ConvTranspose2d( in_channels=256, out_channels=128, kernel_size=4, stride=2, padding=1, bias=False, ), nn.BatchNorm2d(128), nn.ReLU(), ) self.conv_3 = nn.Sequential( nn.ConvTranspose2d( in_channels=128, out_channels=64, kernel_size=4, stride=2, padding=1, bias=False, ), nn.BatchNorm2d(64), nn.ReLU(), ) self.conv_4 = nn.Sequential( nn.ConvTranspose2d( in_channels=64, out_channels=3, kernel_size=4, stride=2, padding=1 ), nn.Tanh(), ) # 3 x 64 x 64 def forward(self, x): x = self.conv_0(x) x = self.conv_1(x) x = self.conv_2(x) x = self.conv_3(x) x = self.conv_4(x) return x class Discriminator(nn.Module): def __init__(self): super().__init__() self.conv_0 = nn.Sequential( nn.Conv2d( in_channels=3, out_channels=32, kernel_size=4, stride=2, padding=1 ), nn.LeakyReLU(0.2), ) self.conv_1 = nn.Sequential( nn.Conv2d( in_channels=32, out_channels=64, kernel_size=4, stride=2, padding=1 ), nn.LeakyReLU(0.2), ) self.conv_2 = nn.Sequential( nn.Conv2d( in_channels=64, out_channels=128, kernel_size=4, stride=2, padding=1 ), nn.LeakyReLU(0.2), ) self.conv_3 = nn.Sequential( nn.Conv2d( in_channels=128, out_channels=256, kernel_size=4, stride=2, padding=1 ), nn.LeakyReLU(0.2), ) self.conv_4 = nn.Sequential( nn.Conv2d( in_channels=256, out_channels=512, kernel_size=4, stride=2, padding=1 ), nn.LeakyReLU(0.2), ) self.conv_5 = nn.Sequential( nn.Conv2d( in_channels=512, out_channels=256, kernel_size=4, stride=2, padding=1 ), nn.LeakyReLU(0.2), ) # self.classifier = nn.Sequential( # nn.Linear(in_features=256*2*2, out_features=1) # ) self.conv_6 = nn.Sequential( nn.Conv2d( in_channels=256, out_channels=1, kernel_size=3, stride=1, padding=1 ), ) self.flatten = nn.Flatten() def forward(self, x): x = self.conv_0(x) x = self.conv_1(x) x = self.conv_2(x) x = self.conv_3(x) x = self.conv_4(x) x = self.conv_5(x) x = self.conv_6(x) x = self.flatten(x) # x = self.classifier(x) return x def calc_gp(discriminator, true, fake): eps = torch.randn(true.shape[0], 1, 1, 1).to(device) eps = eps.expand(true.size()) interpolation = eps * true + (1 - eps) * fake interp_logits = discriminator(interpolation) grad_outputs = torch.ones_like(interp_logits) gradients = torch.autograd.grad( outputs=interp_logits, inputs=interpolation, grad_outputs=grad_outputs, create_graph=True, retain_graph=True, )[0] gradients = gradients.view(true.shape[0], -1) grad_norm = gradients.norm(2, 1) gp = torch.mean((grad_norm - 1) ** 2) return gp # In paper "Improved Training of Wasserstein GANs" using .mean() on discriminator outputs is suggested for loss function to train both discriminator and generator. Discriminator also recieves gradient penalty. def train_gan( generator, generator_loss, generator_optimizer, discriminator, discriminator_loss, discriminator_optimizer, dataloader, device="cpu", epochs=1, ): print(device) device = torch.device(device) generator.train() discriminator.train() generator_loss.to(device) discriminator_loss.to(device) generator.to(device) discriminator.to(device) losses_d = [] losses_g = [] real_scores = [] fake_scores = [] for epoch in range(epochs): losses_d_running = [] losses_g_running = [] real_scores_running = [] fake_scores_running = [] for index, input_ in enumerate(tqdm(dataloader)): input_ = input_.to(device) # train critic train_critic_loss = 0 real_score = 0 fake_score = 0 # training discriminator discriminator_optimizer.zero_grad() real_preds = discriminator(input_) real_targets = torch.ones(input_.shape[0], 1, device=device) real_loss = discriminator_loss(real_preds, real_targets) real_score = real_loss.mean().item() real_scores_running.append(real_score) # generate fake images noise = torch.randn(input_.shape[0], 100, 1, 1, device=device) fake_img = generator(noise) fake_preds = discriminator(fake_img) fake_targets = -1 * torch.ones(input_.shape[0], 1, device=device) fake_loss = discriminator_loss(fake_preds, fake_targets) fake_score = fake_loss.mean().item() fake_scores_running.append(fake_score) # wgan-gp moment gp = calc_gp(discriminator, input_, fake_img) d_loss = real_loss + fake_loss + 10 * gp losses_d_running.append(d_loss.item()) d_loss.backward() discriminator_optimizer.step() train_critic_loss += d_loss.item() if index % 5 == 0: # training generator generator_optimizer.zero_grad() noise = torch.randn(input_.shape[0], 100, 1, 1, device=device) fake_img = generator(noise) fake_preds = discriminator(fake_img) targets = torch.ones(input_.shape[0], 1, device=device) g_loss = generator_loss(fake_preds, targets) g_loss.backward() generator_optimizer.step() losses_g_running.append(g_loss.item()) losses_g.append(np.mean(losses_g_running)) losses_d.append(np.mean(losses_d_running)) real_scores.append(np.mean(real_scores_running)) fake_scores.append(np.mean(fake_scores_running)) print( "Epoch [{}/{}], loss_g: {:.4f}, loss_d: {:.4f}, real_score: {:.4f}, fake_score: {:.4f}".format( epoch + 1, epochs, losses_g[-1], losses_d[-1], real_scores[-1], fake_scores[-1], ) ) return losses_g, losses_d, real_scores, fake_scores class WassersteinLoss(nn.Module): def __init__(self): super().__init__() def forward(self, preds, targets): return -torch.mean(targets * preds) loss = WassersteinLoss() device = "cuda" if torch.cuda.is_available() else "cpu" print(device) # # Upsample training + results up_d = Discriminator() up_g = UpsampleGenerator() up_d_optim = torch.optim.Adam(up_d.parameters(), lr=1 * 10e-5, betas=(0.5, 0.999)) up_g_optim = torch.optim.Adam(up_g.parameters(), lr=1 * 10e-5, betas=(0.5, 0.999)) # up_d_optim = torch.optim.RMSprop(up_d.parameters(), lr=1*10e-5) # up_g_optim = torch.optim.RMSprop(up_g.parameters(), lr=1*10e-5) up_d.to(device) summary(up_d, (3, 64, 64)) g_loss, d_loss, real_score, fake_score = train_gan( up_g, loss, up_g_optim, up_d, loss, up_d_optim, train_dataloader, device, epochs=40 ) plt.plot(g_loss, label="g") plt.plot(d_loss, label="d") plt.legend() plt.show() plt.plot(real_score, label="real score") plt.plot(fake_score, label="fake score") plt.legend() plt.show() noise = torch.randn(1, 100, 1, 1, device=device) img = up_g(noise) save_image(img[0], fp="output.png") img = transforms.ToPILImage()(img[0] / 2 + 0.5) img = np.array(img) plt.imshow(img) # # Convtranspose training + results tr_g = TransposeGenerator() tr_d = Discriminator() tr_g_optim = torch.optim.Adam(tr_g.parameters(), lr=1 * 10e-4, betas=(0.0, 0.9)) tr_d_optim = torch.optim.Adam(tr_d.parameters(), lr=1 * 10e-4, betas=(0.0, 0.9)) g_loss, d_loss, real_score, fake_score = train_gan( tr_g, loss, tr_g_optim, tr_d, loss, tr_d_optim, train_dataloader, device, epochs=20 ) plt.plot(g_loss, label="g") plt.plot(d_loss, label="d") plt.legend() plt.show() noise = torch.randn(1, 100, 1, 1, device=device) img = tr_g(noise) img = transforms.ToPILImage()(img[0] / 2 + 0.5) img = np.array(img) plt.imshow(img)
import pandas as pd import numpy as np import matplotlib.pyplot as plt import xgboost as xgb from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score import tensorflow as tf from tensorflow import keras from sklearn.model_selection import GridSearchCV pd.set_option("display.max_rows", 200) # ## Data Exploration df_init = pd.read_csv("TrainingWiDS2021.csv", index_col=0) # drop columns which have more than 30% Nan values df = df_init.dropna(thresh=0.7 * len(df_init), axis="columns") # columns removed remove_cols = list(set(df_init.columns) - set(df.columns)) set(df.columns) # df print(df.dtypes.unique()) # readmission_status columns has all 0 for c in df.columns: if df.dtypes[c] == "int64": print(c, df[c].unique()) # Number of non-nan values in each column df.count(axis=0) # Exploring categorical columns for c in df.columns: if df.dtypes[c] == "object": print("Categorical columns: ", c) print("Null values: ", df[c].isna().sum()) print(df[c].value_counts()) print("--------") # print(df[c].unique()) # one-hot encoding categorical columns enc_df = pd.get_dummies(df) # removing a few hospital_admit_source_ as they are not present in the training data X = enc_df.drop( [ "encounter_id", "hospital_id", "diabetes_mellitus", "icu_id", "readmission_status", "hospital_admit_source_Acute Care/Floor", "hospital_admit_source_ICU", "hospital_admit_source_Observation", "hospital_admit_source_Other", "hospital_admit_source_PACU", ], axis=1, ) Y = enc_df["diabetes_mellitus"] train_X, test_X, train_y, test_y = train_test_split( X, Y, random_state=1, test_size=0.25 ) X.shape # ## Classification using XGBoost model = xgb.XGBClassifier( n_estimators=300, max_depth=3, learning_rate=0.1, subsample=0.5 ) # Fit the model to the training set and predict on the test set train_model = model.fit(train_X, train_y) pred = train_model.predict(test_X) model2 = xgb.XGBClassifier( n_estimators=500, max_depth=3, learning_rate=0.1, subsample=0.5 ) # Fit the model to the training set and predict on the test set train_model2 = model2.fit(train_X, train_y) pred2 = train_model2.predict(test_X) model3 = xgb.XGBClassifier( n_estimators=500, max_depth=3, learning_rate=0.01, subsample=0.5 ) # Fit the model to the training set and predict on the test set train_model3 = model3.fit(train_X, train_y) pred3 = train_model3.predict(test_X) print("Accuracy for model: %.2f" % (accuracy_score(test_y, pred) * 100)) print("Accuracy for model: %.2f" % (accuracy_score(test_y, pred2) * 100)) print("Accuracy for model: %.2f" % (accuracy_score(test_y, pred3) * 100)) # ## Predict probability using model 2 predprob2 = train_model2.predict_proba(test_X) predprob2 pred2 # ## Grid search CV # ## Feature Importance # Plot feature importance xgb.plot_importance(model2, max_num_features=100, height=0.2) plt.rcParams["figure.figsize"] = [50, 20] # plt.show() plt.tight_layout() # plt.savefig('xgboost_model1_featureimp.png',dpi=400) # # Applying the model to the Unlabeled data testdf = pd.read_csv("UnlabeledWiDS2021.csv", index_col=0) testdf = testdf.drop( [ "h1_arterial_ph_min", "h1_glucose_min", "urineoutput_apache", "h1_diasbp_invasive_max", "ph_apache", "d1_bilirubin_max", "h1_albumin_min", "bilirubin_apache", "d1_pao2fio2ratio_min", "h1_lactate_max", "h1_diasbp_invasive_min", "d1_arterial_pco2_max", "h1_calcium_min", "paco2_for_ph_apache", "d1_albumin_max", "h1_hematocrit_max", "h1_sysbp_invasive_max", "h1_arterial_po2_min", "h1_hemaglobin_max", "h1_arterial_pco2_max", "d1_mbp_invasive_max", "d1_sysbp_invasive_min", "h1_inr_max", "d1_diasbp_invasive_max", "h1_platelets_min", "h1_potassium_max", "h1_wbc_max", "d1_pao2fio2ratio_max", "h1_platelets_max", "h1_hemaglobin_min", "h1_pao2fio2ratio_max", "h1_sodium_min", "albumin_apache", "h1_lactate_min", "pao2_apache", "d1_arterial_ph_min", "d1_bilirubin_min", "h1_hco3_max", "h1_sysbp_invasive_min", "fio2_apache", "d1_diasbp_invasive_min", "h1_mbp_invasive_max", "h1_bilirubin_min", "d1_arterial_ph_max", "d1_albumin_min", "h1_bun_min", "h1_bun_max", "d1_arterial_pco2_min", "d1_inr_max", "h1_arterial_po2_max", "h1_inr_min", "d1_arterial_po2_max", "d1_lactate_max", "d1_arterial_po2_min", "h1_wbc_min", "h1_arterial_ph_max", "h1_mbp_invasive_min", "h1_pao2fio2ratio_min", "h1_sodium_max", "paco2_apache", "d1_sysbp_invasive_max", "d1_inr_min", "h1_hematocrit_min", "h1_glucose_max", "h1_bilirubin_max", "h1_arterial_pco2_min", "h1_calcium_max", "h1_creatinine_max", "h1_creatinine_min", "h1_albumin_max", "h1_potassium_min", "d1_mbp_invasive_min", "d1_lactate_min", "h1_hco3_min", ], axis=1, ) testdf.shape # writing the encounter_id into an array enc_id = testdf["encounter_id"] # one hot encoding enc_testdf = pd.get_dummies(testdf) testdf_X = enc_testdf.drop( ["encounter_id", "hospital_id", "icu_id", "readmission_status"], axis=1 ) print(testdf_X.columns) # df['hospital_admit_source'].unique() # set(X.columns) - set(testdf_X.columns) # testdf['hospital_admit_source'].unique() # Apply model to predict diabetes_mellitus testdf_Y = model2.predict_proba(testdf_X) # writing encounter_id and diabetes_mellitus prediction into data frame finalx = enc_id.to_numpy() finaly = testdf_Y[:, 1] finaldict = {"encounter_id": finalx, "diabetes_mellitus": finaly} finaldf = pd.DataFrame(data=finaldict) finaldf # writing dataframe into csv finaldf.to_csv("Team_Noether_SubmissionWiDS2021.csv", index=False)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # - train.csv - Personal records for about two-thirds (~8700) of the passengers, to be used as training data. # - PassengerId - A unique Id for each passenger. Each Id takes the form gggg_pp where gggg indicates a group the passenger is travelling with and pp is their number within the group. People in a group are often family members, but not always. # - HomePlanet - The planet the passenger departed from, typically their planet of permanent residence. # - CryoSleep - Indicates whether the passenger elected to be put into suspended animation for the duration of the voyage. Passengers in cryosleep are confined to their cabins. # - Cabin - The cabin number where the passenger is staying. Takes the form deck/num/side, where side can be either P for Port or S for Starboard. # - Destination - The planet the passenger will be debarking to. # - Age - The age of the passenger. # - VIP - Whether the passenger has paid for special VIP service during the voyage. # - RoomService, FoodCourt, ShoppingMall, Spa, VRDeck - Amount the passenger has billed at each of the Spaceship Titanic's many luxury amenities. # - Name - The first and last names of the passenger. # - Transported - Whether the passenger was transported to another dimension. This is the target, the column you are trying to predict. train = pd.read_csv("/kaggle/input/spaceship-titanic/train.csv") test = pd.read_csv("/kaggle/input/spaceship-titanic/test.csv") import numpy as np import pandas as pd import seaborn as sns import warnings warnings.filterwarnings("ignore") # - ## Need to add steps note havent done that yet... will do later # DATA EXPLORATION # - passenger id is useful the groupnumber and passenger number can identify the missing HomePlanet and Destination using the data just above and below # train.head(5) train_len = len(train) print(len(train)) train.isnull().sum() train.describe() # Percentile meaning..... # (Age).........................Same meaning for others # 75% people are 38 or younger # 50% people are 27 or younger # cant use function for visualisn here as except Age all num hav very diff vals # cay=tegorical also notworking train.info() # ### Age wrt Destination & Homeplanet sns.histplot(data=train, x=train["Age"], hue=train["Destination"], kde=True) # - Most have age 21-25 (Can fill Age wrt Destination) sns.histplot(data=train, x=train["Age"], hue=train["HomePlanet"], bins=30, kde=True) # - From Earth most are of age-22 # - From mars -25 # - From Europa 27 # ######################################################################################################## # #### -Transported is numerical ie it is in Boolean so need to convert it to Categorical ?? (No need actualy works fine normally) # def impute_val(col): # if col==True: # return 'true' # elif col== False: # return 'false' # train['Transported']= train['Transported'].apply(impute_val) # train['Transported'].head() # - function for categorical ddnt work # ######################################################################################################## # ### CRYOSLEEP wrt Homeplanet, Destination sns.countplot(data=train, x=train["CryoSleep"], hue=train["HomePlanet"]) sns.countplot(data=train, x=train["CryoSleep"], hue=train["Destination"]) # Cryosleep has no pattern wrt either HomePlanet or EndDestination (so use Mode for impute cryosleep) # ### VIP wrt Homeplanet and Destination sns.countplot(data=train, x=train["VIP"], hue="HomePlanet") # - Earth has no VIPs , So if VIP is missing, HomePlanet is Earth VIP=FALSE (actually most are non VIP so VIp= False only) # - If VIP is True HomePlanet missing most Vip from Europa so fill Europa sns.countplot(data=train, x=train["VIP"], hue="Destination") # - No VIP is going to PSO Destination sns.countplot(data=train, x="Destination", hue="VIP") # hue=df['VIP'] no relation # Most passengers going to Trappist (No pattern for VIP either # sns.countplot(data=train,x=train['Cabin']) # - Cabin has lot of unique values test.info() test.isnull().sum() train.corr() # - Merging both train and test for missing values operation train_len = len(train) # combine train and test to do all data processing in them together df = pd.concat( [train, test], axis=0 ) # axis=0 => row wise concatenation 1=> column wise ie more columns added df = df.reset_index(drop=True) # df is combination of both train and test df.head() df.tail() # - transport is missing in the end b/c test doesn't have Transported column df.isnull().sum() # ### Histplot for all numerical values df.hist(figsize=(20, 20), bins=20) # - Highly Left skewed data so must use log transformation to get bell curve (~equal distribution) # #### any transformation only after filling missing values sns.kdeplot(df["Age"]) # sns.kdeplot(np.sqrt(df['Age']+1)) df["Age"].median() df.isnull().sum() # only Pid ,Transported we have full values # # Testing sqrt transform sns.histplot(data=df, x=np.sqrt(df["Spa"]), bins=30, hue=df["VIP"], color="dark") sns.countplot( data=train, x=df["VIP"], ) train["VIP"].value_counts() train.pivot_table( index="HomePlanet", columns="VIP", values="CryoSleep", aggfunc="count" ) df["RoomService"].unique # # Exploring Cabin df["Cabin"] cabininitial = train["Cabin"].str.split("/") cabininitial.head(20) # - How does this try except work look again appending.., Its correct each value of list goes to individual lists (since we have null values we are using try except deck = [] decknum = [] side = [] for i in cabininitial: try: deck.append(i[0]) decknum.append(i[1]) side.append(i[2]) except: # when 14. [F, 2, P] 15 NaN deck.append("NULL") decknum.append("-1") # else -1 as indicator of nan value side.append("NULL") print(set(deck)) print("maximum decknum is:{}".format(max(decknum)), "minimum :{}".format(0), sep="\n") print(set(side)) # - P=Port=Left # - S=Starboard=Right # - Find mean median mode and impute the nan # - (as currently they are list not series so can't do value_counts ) # - can do mode for deck but cant do median/mean for deck no as it varies import statistics print(statistics.mode(deck)) print(statistics.mode(side)) Cabin2 = pd.DataFrame({"deck": deck, "decknum": decknum, "side": side}) # sns.histplot(x=Cabin2["decknum"],kde=True,bins=200) # - decknum is maybe useless... sns.countplot(x=Cabin2["deck"], hue=df["VIP"]) Cabin2["deck"].value_counts() # VIPs are distributed in every Cabin ie- no special cabins for VIPs but in the same Cabins probably some deluxe rooms, T can be merged with F or G Cabin2["deck"].value_counts() Cabin2.loc("deck" == "T") def impute_deck(cols): deck = cols if deck == "NULL": return "F" else: return deck Cabin2["deck"] = Cabin2["deck"].apply(impute_deck) def impute_side(cols): side = cols if side == "NULL": return "S" else: return side Cabin2["side"] = Cabin2["side"].apply(impute_side) Cabin2.head(16) Cabin2 = Cabin2.drop(columns=["decknum"], axis=1) Cabin2.head(10) # ################################################################################################### # ## Taking passenger group number- Groupnum = df["PassengerId"].str.split("_") Groupnum Groupid = [] for i in Groupnum: Groupid.append(i[0]) Groupid = pd.DataFrame({"Groupid": Groupid}) Groupid = Groupid.astype("int") Groupid.head(10) # ######################################################################################################## train["VIP"].value_counts() df.columns df["FoodCourt"].max() # 0 t0 30k df.boxplot("Age") df.boxplot(["RoomService", "FoodCourt", "ShoppingMall", "Spa", "VRDeck"]) # ## Imputing Missing Values # ### Impute AGE def age(cols): # cols has Age value if df[['Age'],['']] # Age = cols if pd.isnull(Age): return 24 else: return Age df["Age"] = df["Age"].apply(age) # ## Let's Try Binning the age def age(cols): # cols has Age value if df[['Age'],['']] # Age = cols if Age <= 10: return "Infant" elif Age > 10 and Age <= 20: return "Teen" elif Age > 20 and Age <= 50: return "Adult" else: return "elder" df["Age"] = df["Age"].apply(age) # # Impute HomePlanet def Homeplanetimpute(cols): HomePlanet = cols[0] VIP = cols[1] if pd.isnull(HomePlanet): if VIP == "True": return "Europa" elif VIP == "False": return "Earth" else: return "Earth" else: return HomePlanet df["HomePlanet"] = df[["HomePlanet", "VIP"]].apply(Homeplanetimpute, axis=1) # ## Imputing RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck' df["RoomService"].median() df["RoomService"].fillna(value=df["RoomService"].median(), inplace=True) df["FoodCourt"].fillna(value=df["FoodCourt"].median(), inplace=True) df["ShoppingMall"].fillna(value=df["ShoppingMall"].median(), inplace=True) df["Spa"].fillna(value=df["Spa"].median(), inplace=True) df["VRDeck"].fillna(value=df["VRDeck"].median(), inplace=True) df.isnull().sum() # ### Fill missing Destination and CryoSleep print(df["Destination"].mode()[0]) df["Destination"].fillna(value=df["Destination"].mode()[0], inplace=True) print(df["CryoSleep"].mode()[0]) df["CryoSleep"].fillna(value=df["CryoSleep"].median(), inplace=True) print(df["VIP"].mode()[0]) df["VIP"].fillna(value=df["VIP"].mode()[0], inplace=True) df.isnull().sum() # ### Transforming The data (log transform used due to skewness) # Checking the Skewness df.skew() # VIP is categorical df["RoomService"] = df["RoomService"].apply(lambda x: np.log(x + 1)) df["FoodCourt"] = df["FoodCourt"].apply(lambda x: np.log(x + 1)) df["ShoppingMall"] = df["ShoppingMall"].apply(lambda x: np.log(x + 1)) df["Spa"] = df["Spa"].apply(lambda x: np.log(x + 1)) df["VRDeck"] = df["VRDeck"].apply(lambda x: np.log(x + 1)) df.skew() # - Skewness removed pretty much # - VIP is Categorical data so its skewness doesnt matter df.hist(bins=20, figsize=(20, 20)) # ## Feature Selection # #### Dropping Name,Cabin,PassengerId df.drop(["Name", "Cabin", "PassengerId"], inplace=True, axis=1) df.columns # ### Concatenating Cabin2 (Groupid didnt work well performance detoriated so not adding groupid) df = pd.concat([df, Cabin2], axis=1) df.head() # ### Using LabelEncoder to convert categorical values to numbers # - HomePLanet # - Destination # - VIP # - Transported # - deck # - side # - Age (as we binned it) from sklearn import preprocessing le = preprocessing.LabelEncoder() cols = [ "HomePlanet", "Destination", "VIP", "CryoSleep", "Transported", "deck", "side", "Age", ] for col in cols: df[col] = le.fit_transform(df[col]) # df['HomePlanet']= le.fit_transform(data['HomePlanet']) df.head() # ### Standardizing (Didnt work properly so didnt do standardization) # - (Checking by both doing it and not Doing it choosing whichever gives better reults) # - All our datas are in different units so Using StandardScaler to bring all the data into same scale # (can be usefull sometimes) """from sklearn.preprocessing import StandardScaler scaler=StandardScaler() cols=df.columns df=pd.DataFrame(scaler.fit_transform(df),columns=cols)""" df # # BLINK (just to stop execution mid way ie no purpose of blink) # blink # ### Seperating Train and Test train = df.iloc[:train_len, :] # =>rows till 0 to train_len-1 , all columns test = df.iloc[train_len:, :] ############################################ STOP ######################## # ### Seperating X and y ( Y= Transported) # input split (What is this step) note wer using 'train' only X = train.drop(columns=["Transported"], axis=1) Y = train["Transported"] # test run of standardization from sklearn.preprocessing import StandardScaler scaler = StandardScaler() cols = X.columns X = pd.DataFrame(scaler.fit_transform(X), columns=cols) # X.info() from sklearn.model_selection import train_test_split, cross_val_score # classify column def classify(model): x_train, x_test, y_train, y_test = train_test_split( X, Y, test_size=0.25, random_state=42 ) model.fit(x_train, y_train) print("Accuracy:", model.score(x_test, y_test)) score = cross_val_score(model, X, Y, cv=5) # will give 5 scores cv=5 => 5 folds print("CV_score:", np.mean(score)) from sklearn.linear_model import LogisticRegression model = LogisticRegression() classify(model) from sklearn.svm import SVC model = SVC() classify(model) from sklearn.tree import DecisionTreeClassifier model = DecisionTreeClassifier() classify(model) from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier() classify(model) from sklearn.ensemble import ExtraTreesClassifier model = ExtraTreesClassifier() classify(model) from xgboost import XGBClassifier model = XGBClassifier() classify(model) from lightgbm import LGBMClassifier model = LGBMClassifier() classify(model) from catboost import CatBoostClassifier model = CatBoostClassifier(verbose=0) # verbose=0 else it will go deeplearning classify(model) # ## Complete Model Training with Full data model = CatBoostClassifier(verbose=0) model.fit(X, Y) # input split for test data we dont need y as thats what we need to predict X_test = test.drop(columns=["Transported"], axis=1) pred = model.predict(X_test) pred # our predicted Y_test (Transported) using the 'X'_test # need to convert the values to Boolean type acc to submission.csv pattern ( if changed to categ) transported = [] for i in pred: if i == 1: transported.append(True) if i == 0: transported.append(False) transported[0:10] sub = pd.read_csv("/kaggle/input/spaceship-titanic/sample_submission.csv") sub.info() # - this means we need pandas dataframe type object and PassengerId too transported = list(transported) PassengerId = pd.read_csv( "/kaggle/input/spaceship-titanic/test.csv", usecols=["PassengerId"] ) print(PassengerId[0:10]) print(type(PassengerId)) PassengerId = PassengerId["PassengerId"].tolist() PassengerId[0:5] transported2 = pd.DataFrame({"PassengerId": PassengerId, "transported": transported}) # pip show pandas transported2.info() # transported['transpored']=transported['transported'].astype('bool') transported2 # Generate csv file transported2.to_csv("submission.csv", index=False) # Now click submit
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # Define periods PERIODS = [ (None, "2000-03-23"), # Period 1: before dot-bubble ("2000-03-24", "2002-10-04"), # Period 2 : dot-bubble ("2002-10-05", "2007-10-08"), # Period 3: between dot-bubble and 2008 crisis ("2007-10-09", "2009-03-09"), # Period 4: 2008 financial crisis ("2009-03-10", "2020-02-18"), # Period 5: between 2008 financial crisis and COVID ("2020-02-19", "2020-03-23"), # Period 6: COVID ("2020-02-19", None), # Period 7: after COVID ] SPY_FILE = "/kaggle/input/daily-adjusted-spy-from-alpha-vantage/SPY.csv" SPY_CONSTITUENTS = ( "/kaggle/input/daily-adjusted-spy-from-alpha-vantage/SPY_holdings_20-Mar-2023.csv" ) PROGRESS = "/kaggle/input/alpha-vantage-daily-adjusted-prices/download_progress.csv" DIR = "/kaggle/input/alpha-vantage-daily-adjusted-prices/" def validate_price_data(price_df, symbol): """ validate Date and Adjusted Close Price of a symbol Parameters: - price_df (DataFrame) : DataFrame with date and prices - symbol (string) : symbol of the equity you want to enquire e.g. 'IBM' Return: - True if price_df is valid - False if price_df is invalid """ # check if any duplicated dates if price_df["timestamp"].duplicated().any(): print("Duplicated timestamp for " + symbol) return False # check if any NULL price or prices <= 0 if ( price_df["adjusted_close"].isnull().any() | (price_df["adjusted_close"] <= 0).any() ): print("Invalid price on " + price_df["timestamp"] + " for " + symbol) return False if len(price_df) > 0: return True else: return False def transform_df(df): """ Transform DataFrame of a stock before processing: 1. 'timestamp' to datetime 2. Sort 'timestamp' in ascending order 3. Add a new column 'year' by converting 'timestamp' 4. Add a new column 'return_pct' to calculate the percentage change of 'adjusted_close' 5. Drop the first row of data as 'return_pct' is NA Parameters: - df (DataFrame) : DataFrame with date, prices of a stock / ETF Return: - DataFrame with 'timestamp', 'year', 'adjusted_close', 'return_pct' """ cols = ["timestamp", "year", "adjusted_close", "return_pct"] df["timestamp"] = pd.to_datetime(df["timestamp"]) df = df.sort_values("timestamp") df["year"] = df["timestamp"].dt.year + (df["timestamp"].dt.dayofyear - 1) / 365.25 df["return_pct"] = df["adjusted_close"].pct_change() df = df.dropna() return df.loc[:, cols] def merge_df(df1, df2, suff1, suff2): """ Merge 2 DataFrames with inner join Parameters: - df1 (DataFrame) : DataFrame 1 - df2 (DataFrame) : DataFrame 2 - suff1 (string) : Suffix for columns of DataFrame 1 - suff2 (string) : Suffix for columns of DataFrame 2 Return: - merged DataFrame """ return pd.merge( df1, df2, on=["timestamp", "year"], how="inner", suffixes=(suff1, suff2) ) import statsmodels.api as sm def fit_linear_reg_model(x, y): """ Fit 2 variables to a linear regression model from statsmodels Parameters: - x (array_like) : independent variable - y (array_like) : dependent variable Return: - fitted model """ x = sm.add_constant(x) mdl = sm.OLS(y, x).fit() return mdl def calculate_stock_stats(symbol, df): """ Computes several statistical measures related to a particular stock or ETF Parameters: - symbol (string): The symbol for the stock/ETF of interest - df (DataFrame): A DataFrame containing information about the investment and a benchmark Return: - DataFrame with the following values: - symbol: symbol of the stock/ETF - in_SPY: indicates whether the investment is part of the SPY index (TRUE) or not (FALSE) - slope: the slope of a linear regression model that's fitted to the investment's adjusted price over time - r2: the R-squared value of the linear regression model - beta: the slope of a linear regression model that's fitted to the investment's adjusted price against the benchmark's adjusted price - alpha: the intercept of the same linear regression model as Beta - r2_with_benchmark: the R-squared value of the linear regression model that uses the investment's adjusted price and the SPY's adjusted price - correlation: the correlation between the investment's adjusted price and the SPY's adjusted price. """ error = 0 if len(df) >= 2: mdl_symbol = fit_linear_reg_model(df["year"], df["adjusted_close"]) mdl_against_index = fit_linear_reg_model(df["return_pct_spy"], df["return_pct"]) corr = df["return_pct"].corr(df["return_pct_spy"]) else: error = 1 corr = 0 return pd.DataFrame( { "symbol": symbol, "in_SPY": spy_holdings["Ticker"].isin([symbol]).any(), "slope": mdl_symbol.params[1] if error != 1 else 0, "r2": mdl_symbol.rsquared if error != 1 else 0, "beta": mdl_against_index.params[1] if error != 1 else 0, "alpha": mdl_against_index.params[0] if error != 1 else 0, "r2_with_benchmark": mdl_against_index.rsquared if error != 1 else 0, "correlation": corr, }, index=[0], ) from scipy.stats import ttest_ind def calculate_periodic_stock_stats(symbol, df): """ Computes several statistical measures related to a particular stock or ETF in different periods Parameters: - symbol (string): The symbol for the stock/ETF of interest - df (DataFrame): A DataFrame containing information about the investment and a benchmark Return: - DataFrame with the following values: - symbol: symbol of the stock/ETF - period: period number of the statistics - t-statistic: t_statistic of one-tailed test between returns of the investment and a benchmark during that period - p-value: p-value of the same one-tailed test during that period - correlation: correlation between returns of the investment and a benchmark during that period """ results = [] # Perform one-tailed-test for each period for i, period in enumerate(PERIODS): start_date, end_date = period if (start_date is not None) & (end_date is not None): subset_df = df.loc[ (df["timestamp"] >= start_date) & (df["timestamp"] < end_date) ] elif end_date is not None: subset_df = df.loc[(df["timestamp"] <= end_date)] else: subset_df = df.loc[(df["timestamp"] >= start_date)] t_stat, p_val = ttest_ind( subset_df["return_pct"], subset_df["return_pct_spy"], equal_var=False, alternative="greater", ) p_val /= 2 # divide p-value by 2 for one-tailed test corr = subset_df["return_pct"].corr(subset_df["return_pct_spy"]) results.append( { "symbol": symbol, "period": f"Period {i+1}", "t-statistic": t_stat, "p-value": p_val, "correlation": corr, } ) # print(f'Period {i+1} t-statistic: {t_stat:.3f}, p-value: {p_val:.4f}, Pearson Correlation: {corr:.4f}') return pd.DataFrame(results) SPY_df = pd.read_csv(SPY_FILE) SPY_df = transform_df(SPY_df) progress_df = pd.read_csv(PROGRESS) downloaded = progress_df[progress_df["Status"] == "Downloaded"]["Symbol"] spy_holdings = pd.read_csv(SPY_CONSTITUENTS) results_df = pd.DataFrame({}) periodic_results_df = pd.DataFrame({}) for symbol in downloaded: df = pd.read_csv(DIR + symbol + ".csv") df = transform_df(df) merged_df = merge_df(SPY_df, df, "_spy", "") results_df = results_df.append(calculate_stock_stats(symbol, merged_df)) periodic_results_df = periodic_results_df.append( calculate_periodic_stock_stats(symbol, merged_df) ) results_df.reset_index() results_df.to_csv("results.csv", index=False) periodic_results_pivot = periodic_results_df.pivot(index="symbol", columns="period") periodic_results_pivot.columns = [ f'{col[1]}-{col[0].replace(" ", "").lower()}' for col in periodic_results_pivot.columns ] # reset the index to have Symbol as a column again periodic_results_pivot = periodic_results_pivot.reset_index() periodic_results_pivot.to_csv("periodic_results.csv", index=False)
from fastai.vision.all import * path = Path("/kaggle/input/25-indian-bird-species-with-226k-images") path.ls() files = get_image_files(path) len(files) dls = DataBlock( blocks=(ImageBlock, CategoryBlock), get_items=get_image_files, splitter=RandomSplitter(valid_pct=0.2, seed=42), get_y=parent_label, item_tfms=[Resize(224, method="squish")], ).dataloaders(path, bs=32) dls.show_batch(max_n=15) learn = vision_learner(dls, resnet34, metrics=error_rate) learn.fine_tune(2) learn.show_results(max_n=12) what_breed, _, prob = learn.predict(files[4500]) # files[4500] print(f"The bird breed is: {what_breed}") print(prob) interp = Interpretation.from_learner(learn) interp.plot_top_losses(9, figsize=(20, 10))
import numpy as np import pandas as pd import tensorflow as tf from tensorflow import keras import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # # Custrom Normalization Layer class LayerNormalization(keras.layers.Layer): def __init__(self): super().__init__() def build(self, input_shape): self.alpha = self.add_weight( "alpha", shape=input_shape[-1:], dtype=tf.float32, initializer=tf.constant_initializer(1), ) self.beta = self.add_weight( "beta", shape=input_shape[-1:], dtype=tf.float32, initializer=tf.constant_initializer(0), ) def call(self, inputs, epsilon=1e-3): mean, variance = tf.nn.moments(inputs, axes=-1, keepdims=True) std = tf.math.sqrt(variance) return self.alpha * (inputs - mean) / (std + epsilon) + self.beta def get_config(self): base_config = super().get_config() return {**base_config, "epsilon": self.epsilon} tf.random.set_seed(42) X = tf.random.uniform( (50, 12), ) my_layer = LayerNormalization() std_layer = keras.layers.LayerNormalization() print(tf.reduce_mean(my_layer(X))) print(tf.reduce_mean(std_layer(X))) random_alpha = np.random.rand(X.shape[-1]) random_beta = np.random.rand(X.shape[-1]) my_layer.set_weights([random_alpha, random_beta]) std_layer.set_weights([random_alpha, random_beta]) tf.reduce_mean(keras.losses.mean_absolute_error(std_layer(X), my_layer(X)))
# # Project 2 # We're going to continue from where we left off with Project 1. Project 1 left us with a daily time series for every product with no gaps -- exactly what we want for modeling! data_path = "/kaggle/input/project-2-data/project_2_data" data_path = "./project_2_data" import pandas as pd import numpy as np data = pd.read_parquet(f"{data_path}/sales_data.parquet") data.head() data.shape # We did some EDA in Project 1, but it was primarily focused on higher level patterns (i.e., at the department level). This time, spend some time doing EDA at the item level to see what kind of items you're dealing with. # Some questions you may want to explore: # 1. How do high-volume items compare to low-volume/itermittent items? # 2. What sort of seasonal patterns are at play? # 3. Do items from different departments show different patterns? # 4. Does the same item show different behavior at different stores? # These questions are just a starting point. Feel free to explore this any way you feel is necessary to make better models. The best EDA is done iteratively, so I encourage you to come back to this once you've started fitting models! top10items = ( data.groupby("item_id")["sales"].sum().sort_values(ascending=False).index[:10] ) btm10items = ( data.groupby("item_id")["sales"].sum().sort_values(ascending=False).index[-10:] ) data_items = data.groupby(["item_id", "date"])["sales"].sum() data_items.shape import matplotlib.pyplot as plt data_items.unstack(0)[top10items].rolling(7).sum().plot() plt.show() data_items.unstack(0)[btm10items].rolling(7).sum().plot() plt.show() pd.plotting.autocorrelation_plot(data_items.unstack(0)[top10items[0]]) pd.plotting.autocorrelation_plot(data_items["FOODS_2_320"]) # Before we get to modeling, let's create our evaluation setup. The models that we're going to create have a 28-day forecast horizon, and our goal is to best approximate "average" sales. # The first step is to implement our evaluation metric. The original competition used a metric called RMSSE, or "Root Mean Squared Scaled Error." It's similar to the MASE metric that we discussed before, except that the metric optimizes better for "average" sales (as opposed to MASE, which optimizes for the median, since it's an absolute error metric). The competition actually used a weighted version of RMSSE which is techincally more robust, but we're going to stick to RMSSE. Here's what RMSSE looks like: # $RMSSE = \sqrt{\frac{1}{h}\frac{\sum^{n+h}_{t=n+1} (Y_t - \hat{Y}_t)^2}{\frac{1}{n-1}\sum^n_{t=2} (Y_t - Y_{t-1})^2}}$ # where $Y_t$ is the actual future value of sales at date $t$, $\hat{Y}_t$ is your forecast for date $t$, $n$ is the number of dates in our training set, and $h$ is our forecast horizon (28 days, in our case). # That looks intimidating! But, similarly to MASE, you can break it down into two parts: # - The numerator: $\frac{1}{h}\sum^{n+h}_{t=n+1} (Y_t - \hat{Y}_t)^2$, which is just the MSE for every prediction in the validation set. # - The denominator: $\frac{1}{n-1}\sum^n_{t=2} (Y_t - Y_{t-1})^2$, which is just the MSE over the entire training set if your forecast was a naive, one-day-ahead forecast. We refer to this as the "scale" since it's really just a benchmark -- errors less than this are better than the benchmark, and errors greater than this are worse. # Of course, the "naive, one-day-ahead forecast" part only works if you calculate both the numerator and denominator separately for each `id`. So, the idea here is that you are effectively calculating an RMSSE value for each `id`, and then averaging those to get the final RMSSE. # Last comment: there are products in the dataset that don't start showing sales for some time. For those products, the denominator is only supposed to be calculated after the first sale in the dataset. I'd recommend just dropping the records for those products until that first sales, which is straightforward to do using `.cumsum()` over `sales` while grouping by `id`. # QUESTION: filter out products that don't have sales using cumsum sales_cumul = data.groupby("item_id")["sales"].cumsum() data = data[sales_cumul > 0] # Here's how you should implement your RMSSE: # 1. Create a function called `rmsse` that looks like this: # `def rmsse(train, val, y_pred):` # where: # - `train` is the `pd.DataFrame` representing the training set # - `val` is the `pd.DataFrame` representing the validation set # - `y_pred` is either a `pd.Series` or `np.ndarray` that is the output of your model # 2. Start by calculating the scale (i.e. denominator from above) for each `id` over the training set. # 3. Then, calculate the MSE for each `id` over the validation set. # 4. Merge the scale dataframe onto the dataframe that contains your validation MSE values. # 5. Use the merged dataframe to calculate the RMSSE for each `id`, and finally return the average of all of those RMSSE values. # Don't worry that you haven't split your data into training and validation sets yet. I gave you a test case below to see if your code is working before you move on. Also, don't be afraid to do this in a simple, looped fashion before refactoring it into more beautiful Pandas code. Take advantage of that test case! # QUESTION: implement rmsse def rmsse(train, val, y_pred): # Calculate the denominator over the training set df_scaled = ( train.groupby("id")["sales"] .apply(lambda x: np.sum(np.square(np.diff(x))) / (len(x) - 1)) .reset_index() ) df_scaled.columns = ["id", "scale"] # Calculate MSE over the validation set val["y_pred"] = y_pred df_mse = ( val.groupby("id") .apply(lambda x: np.mean(np.square(x["sales"] - x["y_pred"]))) .reset_index() ) df_mse.columns = ["id", "mse"] # Merge df_merged = pd.merge(df_mse, df_scaled, on="id") # Calculate the RMSSE df_merged["rmsse"] = np.sqrt(df_merged["mse"] / df_merged["scale"]) # Return the average return df_merged["rmsse"].mean() num = lambda tr, val, pred, id="item_id": (val.sales - pred).pow(2).groupby(id).mean() den = ( lambda tr, val, pred, id="item_id": tr.groupby(id) .sales.diff() .pow(2) .groupby(id) .mean() ) rmsse = lambda tr, val, pred, id="item_id": np.sqrt( num(tr, val, pred, id) / den(tr, val, pred, id) ).mean() def test_rmsse(): """ I've modified the dataframes below so they get the same indices, ie like the arguments I will pass later """ test_train = pd.DataFrame( { "item_id": ["a", "a", "a", "b", "b", "b", "c", "c", "c"], "sales": [3, 2, 5, 100, 150, 60, 10, 20, 30], } ).set_index("item_id") test_val = pd.DataFrame( { "item_id": ["a", "a", "a", "b", "b", "b", "c", "c", "c"], "sales": [6, 1, 4, 200, 120, 270, 10, 20, 30], } ).set_index("item_id") test_y_pred = pd.Series( [1, 2, 3, 180, 160, 240, 20, 30, 40], index=["a", "a", "a", "b", "b", "b", "c", "c", "c"], ) # test_y_pred = pd.Series([1, 2, 3, 180, 160, 240, 20, 30, 40]) rmss = rmsse(test_train, test_val, test_y_pred) # print(rmss) assert ( np.abs(rmss - 0.92290404515501) < 1e-6 ), f"RMSSE should be 0.9229, we got {rmss}" print("RMSSE implementation is correct!") test_rmsse() # # Fitting models # From this point on, the project is a bit of a "choose your own adventure." There's a huge range of skill levels out there, and I want to provide you with a path that will meet you where you're at (but test you a little). At a minimum, though, you'll be fitting a LightGBM model. # 1. If you're a beginner, use [`mlforecast`](https://nixtla.github.io/mlforecast/) (the sister package to `statsforecast`). It helps a lot with both feature engineering and model fitting, so you'll be able to try out a lot of options without getting bogged down in writing complex code. Focus your efforts on trying lots of different features/hyperparameters and seeing how they affect your model! # If you want to go this route, here are the steps you should take: # - Familiarize yourself with mlforecast [here](https://nixtla.github.io/mlforecast/) # - Read the code in the below cell. This is your starting point! # - Try adding other `date_features`, like the week of year and day of year. # - Try adding `static_features=['item_id', 'dept_id', 'cat_id']` to `fcst.fit()` # - Try out other rolling mean/std lengths and at different lags to see if they help. (You can import `rolling_std` from `window_ops.rolling`) # - Try adding seasonal rolling means using the following code, which implements a 4 week seasonal rolling mean with a season length of 7 days: # ``` # @njit # def seasonal_rolling_mean(x): # return seasonal_rolling_mean(x, season_length=7, window_size=4, min_samples=1) # ``` # - Try out some difference and lag features. # - Try adding variables from the other data files, such as price. # 2. If you feel more comfortable, then I want you to not only try out different features/hyperparameters, but also compare modeling methods! Some things to try: # - Features # - Benefits from lag features vs. rolling window features # - Which rolling window aggregations help # - Comparing seasonal rolling features to non-seasonal # - Features aggregated at the department/category level (but make sure to only calculate over the training set!) # - Modeling # - Simple 28-day forecast horizon LightGBM model # - MLForecast's recursive strategy # - The multi-horizon strategy (i.e. one model predicting 7 days out, a second model predicting 14 days out, etc.) # - Deep learning models using [`neuralforecast`](https://nixtla.github.io/neuralforecast/) or `darts` # 3. (Optional) no matter which group you fit into, try adding in calendar and price features from the other data files that I added! prices = pd.read_parquet(f"{data_path}/prices.parquet") prices.head() data data = pd.merge( data.reset_index(), prices, on=["store_id", "item_id", "date"], how="left" ) data data["dayofyear"] = data["date"].dt.dayofyear data["dayofweek"] = data["date"].dt.dayofweek data["month"] = data["date"].dt.month data = data.set_index(["date", "id"]) # Don't worry about any error outputs here, unless you get the same "Retrying" error as Project 1 from mlforecast import MLForecast from statsforecast import StatsForecast from sklearn.preprocessing import OrdinalEncoder from numba import njit from window_ops.rolling import rolling_mean, rolling_std import lightgbm as lgb # split into training and validation sets and conform the column names to what MLForecast expects val = ( data.reset_index() .groupby("id") .tail(28) .rename( columns={ "date": "ds", "id": "unique_id", "sales": "y", } ) ) train = ( data.reset_index() .drop(val.index) .rename( columns={ "date": "ds", "id": "unique_id", "sales": "y", } ) ) # label encode categorical features cat_feats = ["unique_id", "item_id", "dept_id", "cat_id"] enc_cat_feats = [f"{feat}_enc" for feat in cat_feats] encoder = OrdinalEncoder() train[enc_cat_feats] = encoder.fit_transform(train[cat_feats]) val[enc_cat_feats] = encoder.transform(val[cat_feats]) reference_cols = ["unique_id", "ds", "y", "sell_price"] # add features to this list if you want to use them features = reference_cols + enc_cat_feats train = train[features] val = val[features] @njit def rolling_mean_28(x): return rolling_mean(x, window_size=28) @njit def rolling_mean_14(x): return rolling_mean(x, window_size=14) @njit def rolling_mean_7(x): return rolling_mean(x, window_size=7) @njit def rolling_std_7(x): return rolling_std(x, window_size=7) @njit def rolling_std_14(x): return rolling_std(x, window_size=14) @njit def rolling_std_28(x): return rolling_std(x, window_size=28) # feel free to tweak these parameters! model_params = { "verbose": -1, "num_leaves": 256, "n_estimators": 50, "objective": "tweedie", "tweedie_variance_power": 1.1, } models = [ lgb.LGBMRegressor(**model_params), ] fcst = MLForecast( models=models, freq="D", # dictionary reads like this: # {number of days to lag the feature: [list of functions to apply to the lagged data]} lag_transforms={ 7: [rolling_mean_28, rolling_mean_14, rolling_mean_7], 7: [rolling_std_28, rolling_std_14, rolling_std_7], }, date_features=["dayofweek", "dayofyear", "month"], ) # don't worry about nul value warnings. LightGBM and XGBoost can handle it! fcst.fit( train, id_col="unique_id", time_col="ds", target_col="y", static_features=enc_cat_feats, dropna=False, ) predictions = fcst.predict(28, dynamic_dfs=[val[["ds", "unique_id", "sell_price"]]]) # plot the last 45 days of the training set, the validation set, and the predictions plot_data = pd.concat( [ train.groupby("unique_id").tail(45)[["unique_id", "ds", "y"]], val[["unique_id", "ds", "y"]], predictions, ] ) # for some reason, MLForecast doesn't have this awesome plotting method! StatsForecast.plot(plot_data) # Original StatsForecast.plot(plot_data) rmsse( train.rename({"y": "sales"}, axis=1).set_index(["unique_id", "ds"]), val.rename({"y": "sales"}, axis=1).set_index( ["unique_id", "ds"] ), # we need those indices so subtraction matches rows using indices predictions.set_index(["unique_id", "ds"])["LGBMRegressor"], id="unique_id", )
# ##### 데이터셋 # - CementComponent: 콘크리트에 혼합된 시멘트 양 # - BlastFurnaceSlag: 콘크리트에 혼합된 고로슬래그 양 # - FlyAshComponent: 콘크리트에 혼합된 플라이애쉬 양 # - WaterComponent: 콘크리트에 혼합된 물의 양 # - SuperplasticizerComponent: 콘크리트에 혼합된 고성능 플라스티서 양 # - CoarseAggregateComponent: 콘크리트에 혼합된 거친 골재 양 # - FineAggregateComponent: 콘크리트에 혼합된 미세 골재 양 # - AgeInDays: 콘크리트가 건조한 일 수 # - Strength: 콘크리트의 최종 강도(Target) # #### 위 대회는 콘크리트 강도 예측 대회입니다. # - 기존 대회였던 Concrete Strength Prediction 의 데이터셋을 딥러닝 모델을 거쳐 확장된 데이터셋이 제공됩니다. 기존 데이터셋 분포와는 큰 차이가 없으며 원한다면 자유롭게 기존 데이터셋과 병행해서 사용하는 것을 허락합니다. import os import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from matplotlib.ticker import MaxNLocator from sklearn.model_selection import KFold from sklearn.pipeline import make_pipeline, Pipeline from sklearn.compose import ColumnTransformer from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestRegressor, VotingRegressor from sklearn.linear_model import Ridge import sklearn.gaussian_process.kernels as kernels from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.ensemble import GradientBoostingRegressor from sklearn.metrics import mean_squared_error from sklearn.inspection import PartialDependenceDisplay from sklearn.manifold import TSNE from sklearn.decomposition import PCA from fasteda import fast_eda np.set_printoptions(linewidth=150, edgeitems=5) result_list = [] # logging # ##### Numpy set Printoptions Document # - https://numpy.org/doc/stable/reference/generated/numpy.set_printoptions.html for width, edge, config in zip([75, 150], [3, 5], ["default", "customized"]): np.set_printoptions(linewidth=width, edgeitems=edge) print( f"[{config}] width: {width} edgeitem: {edge}\n {np.random.random(10000)}", end="\n\n", ) # - 중복된 데이터를 어떻게 다룰지에 대한 결론을 내리기 위해 분석을 수행해야 합니다(중복 데이터 삭제, 일부 샘플 가중치 설정, GroupKFold 사용 등). 그러나 현재는 중복 데이터 분석을 건너뛰고 "duplicate saga"를 참조하도록 되어 있습니다. 이는 중복 데이터가 있을 경우 발생할 수 있는 문제를 경험한 사례나 이야기를 의미할 수 있습니다. original = pd.read_csv( "/kaggle/input/predict-concrete-strength/ConcreteStrengthData.csv" ) file_path = "/kaggle/input/playground-series-s3e9" train = pd.read_csv(os.path.join(file_path, "train.csv")) test = pd.read_csv(os.path.join(file_path, "test.csv")) submission = pd.read_csv(os.path.join(file_path, "sample_submission.csv")) # 경로 수정 필요 # train = pd.read_csv('C:/BNACode/Python Code/Regression with a Tabular Concrete Strength Dataset/train.csv') # test = pd.read_csv('C:/BNACode/Python Code/Regression with a Tabular Concrete Strength Dataset/test.csv') # submission = pd.read_csv('C:/BNACode/Python Code/Regression with a Tabular Concrete Strength Dataset/sample_submission.csv') # original = pd.read_csv('C:/BNACode/Python Code/Regression with a Tabular Concrete Strength Dataset/ConcreteStrengthData.csv') # 원본 데이터 # ### EDA train.head() # Train Data 중복값 col_idxs = [] for col in train.columns: col_list = [] col_list.append(col) if col != "id": col_list.append("id") train_dup = train.drop(columns=col_list) dup_idx = list(train_dup.loc[train_dup.duplicated(keep="first")].index) print(f"# of duplicates: {len(dup_idx)} --> columns dropped: {col_list}") if col == "Strength": col_idxs.append(dup_idx) ax = train.loc[sum(col_idxs, [])]["Strength"].hist(bins=100) train.loc[sum(col_idxs, [])].sort_values("Strength").query( "CementComponent == 540.0 and BlastFurnaceSlag == 0.0 and FlyAshComponent == 0.0 and AgeInDays == 90" ).T ax = train["Strength"].hist(bins=100) # Test Data 중복값 ool_idxs = [] for col in test.columns: col_list = [] col_list.append(col) if col != "id": col_list.append("id") test_dup = test.drop(columns=col_list) dup_idx = list(test_dup.loc[test_dup.duplicated(keep="first")].index) print(f"# of duplicates: {len(dup_idx)} --> columns dropped: {col_list}") if col == "id": ool_idxs.append(dup_idx) test.loc[sum(ool_idxs, [])] # Origin 데이터 중복값 ool_idxs = [] for col in original.columns: col_list = [] col_list.append(col) original_dup = original.drop(columns=col_list) dup_idx = list(original_dup.loc[original_dup.duplicated(keep="first")].index) print(f"# of duplicates: {len(dup_idx)} --> columns dropped: {col_list}") if col == "Strength": ool_idxs.append(dup_idx) original.loc[sum(ool_idxs, [])] train["is_train"] = 1 original["is_train"] = 1 test["is_train"] = 0 train_test = pd.concat([train, test], ignore_index=True) # train, test 데이터 합친거 train_test_orig = pd.concat( [train.drop(columns="id"), test.drop(columns="id"), original], ignore_index=True ) train_test_orig["CementComponent"] = train_test_orig["CementComponent"].fillna( train_test_orig.iloc[:, 10] ) train_test_orig = train_test_orig.iloc[:, :-1] train_test fast_eda(train_test, target="is_train") # ### T-SNE # - https://velog.io/@swan9405/%EB%A8%B8%EC%8B%A0%EB%9F%AC%EB%8B%9D-T-SNE-T-distributed-Stochastic-Neighbor-Embedding # - https://amazelimi.tistory.com/13 train_orig = pd.concat([train.drop(columns="id"), original], ignore_index=True) train_orig["cement"] = train_orig.iloc[:, 10] # CementComponent train_orig["CementComponent"] = train_orig["CementComponent"].fillna( train_orig["cement"] ) # CementComponent의 결측치 제거한 값 train_orig = train_orig.iloc[:, :-2] ss = StandardScaler() drop_cols = ["is_train", "Strength"] X = train.drop(drop_cols, axis=1) X_orig = train_orig.drop(drop_cols, axis=1) X_train_ss = pd.DataFrame(ss.fit_transform(X)) X_orig_ss = pd.DataFrame(ss.fit_transform(X_orig)) y = train["Strength"].values train_tsne = train[test.drop(columns="id").columns].values test_tsne = test[test.drop(columns="id").columns].values tsne = TSNE(n_components=2) train_2D = tsne.fit_transform(train_tsne) plt.style.use("dark_background") plt.figure(figsize=(12, 8)) sns.scatterplot( x=train_2D[:, 0], y=train_2D[:, 1], s=4, hue=y, linewidth=0, palette=sns.color_palette("rainbow", as_cmap=True), ) plt.grid(False) plt.title("TSNE plot | train data") plt.show() # ### PCA n_components = 2 on train Data pca = PCA(2) X_train_ss2 = pca.fit_transform(X_train_ss) pca2 = pd.DataFrame( { "PCA1": X_train_ss2[:, 0], "PCA2": X_train_ss2[:, 1], "Strength": train["Strength"], } ) plt.style.use("dark_background") plt.figure(figsize=(12, 8)) sns.scatterplot( data=pca2, x="PCA1", y="PCA2", s=6, hue="Strength", linewidth=0, palette=sns.color_palette("rainbow", as_cmap=True), ) plt.grid(False) plt.title("Data scaled with StandardScaler()") plt.show() # ### 분석 original = pd.read_csv( "/kaggle/input/predict-concrete-strength/ConcreteStrengthData.csv" ) file_path = "/kaggle/input/playground-series-s3e9" train = pd.read_csv(os.path.join(file_path, "train.csv")) test = pd.read_csv(os.path.join(file_path, "test.csv")) submission = pd.read_csv(os.path.join(file_path, "sample_submission.csv")) # train = pd.read_csv('C:/BNACode/Python Code/Regression with a Tabular Concrete Strength Dataset/train.csv') # test = pd.read_csv('C:/BNACode/Python Code/Regression with a Tabular Concrete Strength Dataset/test.csv') # submission = pd.read_csv('C:/BNACode/Python Code/Regression with a Tabular Concrete Strength Dataset/sample_submission.csv') # original = pd.read_csv('C:/BNACode/Python Code/Regression with a Tabular Concrete Strength Dataset/ConcreteStrengthData.csv') # 원본 데이터 target = "Strength" original_features = list(test.columns) print( f"train set 결측치: {train.isna().sum().sum()}, test set 결측치: {test.isna().sum().sum()}" ) print( f"train set 중복값: {train[test.columns].duplicated().sum()}, test set 중복값: {test.duplicated().sum()}" ) # - 위에서 fasteda 라이브러리를 통해 확인함 # - 히스토그램에서 보면 모든 샘플은 시멘트, 물, 거친 골재 및 고급 골재를 포함한다. # - 일부 샘플에서만 고로슬래그, 플라이애쉬 또는 슈퍼플라스틱 라이저가 포함되어있음 # - train, test 셋의 분포는 유사해 보임.. # - train set에서 blast furnance, fly ash, superplasticizer 에서 0값을 가짐 # - AgeInDays 컬럼에서 특이점이 보이는데, 건조 기간이 아래와 같이 특정 기간에 몰려있다는 점이다. train[ (train.BlastFurnaceSlag == 0) & (train.FlyAshComponent == 0) & (train.SuperplasticizerComponent == 0) ].shape print("AgeInDays 분포 확인") (pd.concat([train, test], axis=0).AgeInDays.value_counts().sort_index()).plot( kind="bar" ) # - FlyAshComponent와 Superplasticizier와의 상관성이 높음 # - 하지만 물과의 상관성은 낮은것으로 보아 시멘트에 물은 적게 들어 가는것으로 보임 corr = train.corr() plt.figure(figsize=(4, 4)) sns.heatmap( corr, linewidths=0.1, fmt=".1f", annot=True, annot_kws={"size": 8}, cmap="PiYG", center=0, ) # plt.show() corr2 = test.corr() plt.figure(figsize=(4, 4)) sns.heatmap( corr2, linewidths=0.1, fmt=".1f", annot=True, annot_kws={"size": 8}, cmap="PiYG", center=0, ) # ### 분석 모델 선택 # #### Linear Baseline # - Ridge regression 모델을 baseline 모델로 사용하였다. # - std scaler와 모델 순으로 파이프라인 적용 # - Pipeline 개념: https://zephyrus1111.tistory.com/254 # def score_model(model, features_used, label=None): "Cross-validate a model with feature selection" score_list = [] oof = np.zeros_like(train[target]) kf = KFold() for fold, (idx_tr, idx_va) in enumerate(kf.split(train)): X_tr = train.iloc[idx_tr][features_used] X_va = train.iloc[idx_va][features_used] y_tr = train.iloc[idx_tr][target] y_va = train.iloc[idx_va][target] model.fit(X_tr, y_tr) trmse = mean_squared_error(y_tr, model.predict(X_tr), squared=False) y_va_pred = model.predict(X_va) rmse = mean_squared_error(y_va, y_va_pred, squared=False) if ( type(model) == Pipeline and type(model.steps[-1][1]) == GaussianProcessRegressor ): print("Kernel:", model.steps[-1][1].kernel_) print(f"Fold {fold}: trmse = {trmse:.3f} rmse = {rmse:.3f}") oof[idx_va] = y_va_pred score_list.append(rmse) rmse = sum(score_list) / len(score_list) print(f"rmse 평균: {rmse:.3f}") if label is not None: global result_list result_list.append((label, rmse, oof)) score_model( model=make_pipeline(StandardScaler(), Ridge(70)), features_used=original_features ) # Blast Furnace Slag, Fly Ash, 그리고 Superplasticizer 총 3가지 선택적 구성 요소의 존재를 나타내는 지표를 추가하면 RMSE가 조금 향상됨 for df in [train, test]: df["hasBlastFurnaceSlag"] = df.BlastFurnaceSlag != 0 df["hasFlyAshComponent"] = df.FlyAshComponent != 0 df["hasSuperplasticizerComponent"] = df.SuperplasticizerComponent != 0 score_model(model=make_pipeline(StandardScaler(), Ridge(70)), features_used=df.columns) # ### Random forests and partial dependency plots # - 선형 Ridge모델 보다 랜포의 성능이 더 좋았고 과적합을 방지하기 위해 min_samples_leaf 값을 30으로 설정함 score_model( model=RandomForestRegressor(n_estimators=300, min_samples_leaf=30, random_state=1), features_used=original_features, label="Random Forest", ) # #### PDP는 비선형적인 종속관계에 대한 중요한 통찰력을 제공함 # - PDP plot에 대한 설명: https://westshine-data-analysis.tistory.com/m/134 # - 콘크리트는 최대 강도를 얻기 위해 1~2개월의 시간이 필요합니다. 더 오래 놔둬도 강도가 더 좋아지지 않습니다. # - 물을 더 추가하면 강도가 감소하지만, 195 이상의 물은 강도에 영향을 미치지 않습니다. # - 파란색 개별 조건부 예상치들은 평행하지 않습니다. 이는 중요한 feature 상호 작용의 존재를 나타냅니다. # model = RandomForestRegressor(n_estimators=300, min_samples_leaf=30, random_state=1) model.fit(train[original_features], train[target]) features_for_pdp = original_features fig, axs = plt.subplots(2, 5, figsize=(14, 10)) plt.suptitle("Partial Dependence", y=1.0) PartialDependenceDisplay.from_estimator( model, train[original_features], features_for_pdp, pd_line_kw={"color": "red"}, ice_lines_kw={"color": "blue"}, kind="both", ax=axs.ravel()[: len(features_for_pdp)], ) plt.tight_layout(h_pad=0.3, w_pad=0.5) plt.show() # 콘크리트가 건조되어 있는 기간을 40일로, 물의 양을 195로 제한한 후에 linear model의 RMSE가 크게 개선된 된다. for df in [train, test]: df["clippedAge"] = df.AgeInDays.clip(None, 40) score_model( model=make_pipeline(StandardScaler(), Ridge(70)), features_used=original_features + [ "hasBlastFurnaceSlag", "hasFlyAshComponent", "hasSuperplasticizerComponent", "clippedAge", ], ) for df in [train, test]: df["clippedwater"] = df.WaterComponent.clip(195, None) score_model( model=make_pipeline(StandardScaler(), Ridge(30)), features_used=test.columns ) # Flyash를 지우면 ridge 모델 성능이 올라감 ridge_features = [ "CementComponent", "BlastFurnaceSlag", "WaterComponent", "SuperplasticizerComponent", "CoarseAggregateComponent", "FineAggregateComponent", "AgeInDays", "hasBlastFurnaceSlag", "hasSuperplasticizerComponent", "clippedAge", "clippedwater", ] score_model( model=make_pipeline(StandardScaler(), Ridge(30)), features_used=ridge_features, label="Ridge", ) # ### Gaussian process regression # - 가우시안 회귀: https://sonsnotation.blogspot.com/2020/11/11-2-gaussian-progress-regression.html # - 특정 변수들이 모델 예측에 중요하게 작용하는 것으로 나타났고 해당 변수들을 활용해 가우시안 회귀를 진행하면 ridge 모델보다 훨씬 좋은 성능을 나타냄 # - 이해하기 가장 어려운 부분 이므로 반드시 공부가 필요함 gp_features = ["CementComponent", "SuperplasticizerComponent", "AgeInDays"] kernel = kernels.RBF( length_scale=[1] * (len(gp_features) - 1) + [0.07], length_scale_bounds=(0.01, 10) ) + kernels.WhiteKernel(0.55) score_model( model=make_pipeline( StandardScaler(), GaussianProcessRegressor(kernel=kernel, normalize_y=True, random_state=1), ), features_used=gp_features, label="Gaussian Process", ) # #### Gradient boosting # - 그래디안 부스팅은 랜포 보다 더 나은 성능을 보여줌 gbr_params = { "n_estimators": 550, "max_depth": 4, "learning_rate": 0.01, "min_samples_leaf": 30, "max_features": 3, } score_model( model=GradientBoostingRegressor(**gbr_params, random_state=1), features_used=original_features, label="GradientBoostingRegressor", ) # ColumnTransformer의 사용법:https://scribblinganything.tistory.com/661 ensemble_model = VotingRegressor( [ ( "gb", make_pipeline( ColumnTransformer([("pt", "passthrough", original_features)]), GradientBoostingRegressor(**gbr_params, random_state=1), ), ), ( "rf", make_pipeline( ColumnTransformer([("pt", "passthrough", original_features)]), RandomForestRegressor( n_estimators=300, min_samples_leaf=30, random_state=1 ), ), ), ( "gp", make_pipeline( ColumnTransformer([("pt", "passthrough", gp_features)]), StandardScaler(), GaussianProcessRegressor( kernel=kernel, normalize_y=True, random_state=1 ), ), ), ( "ridge", make_pipeline( ColumnTransformer([("pt", "passthrough", ridge_features)]), StandardScaler(), Ridge(30), ), ), ], weights=[0.4, 0.3, 0.2, 0.1], ) score_model( model=ensemble_model, features_used=test.columns, label="GradientBoostingRegressor + RF + GP + Ridge", ) result_df = pd.DataFrame(result_list, columns=["label", "rmse", "oof"]) result_df.drop_duplicates(subset="label", keep="last", inplace=True) result_df.sort_values("rmse", inplace=True) plt.figure(figsize=(6, len(result_df) * 0.3)) plt.title("Cross-validation scores") plt.barh(np.arange(len(result_df)), result_df.rmse, color="lightgreen") plt.gca().invert_yaxis() plt.yticks(np.arange(len(result_df)), result_df.label) plt.xticks(np.linspace(12, 12.3, 4)) plt.xlabel("RMSE") plt.xlim(12, 12.3) # plt.savefig('cv-scores.png', bbox_inches='tight') plt.show()
# ## All Space Missions from 1957 | Data Analysis and Visualization # Group Members: # ➡️ Alex Tamboli (202011071) # ➡️ Ashish Kumar Gupta (202011013) # ➡️ Chinmay Bhalodia (202011016) # ➡️ Nishesh Jain (202011050) # ➡️ Prashant Kumar (202011058) # ## Importing necessary libraries import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import warnings warnings.filterwarnings("ignore") plt.style.use("seaborn-dark") # ## Analysis of dataset # Let's know what the data is and how the data is. # loading the dataset df = pd.read_csv("/kaggle/input/all-space-missions-from-1957/Space_Corrected.csv") df.head() # `Unnamed: 0.1` and `Unnamed: 0` are of no use. We will drop them. df = df.drop(["Unnamed: 0", "Unnamed: 0.1"], axis=1) df.head() # ## Visualization #1: Everything related to the Companies. # ### 1) Number of Launches by Company # First, we find the total number of unique companies. number_of_companies = df["Company Name"].unique() len(number_of_companies) # Out of total 56 companies, we will see number of launches by top 10 companies. company_count = df["Company Name"].value_counts() top_companies = company_count[:10] plt.figure(figsize=(20, 4)) plt.scatter( x=top_companies.index, y=[1] * len(top_companies), s=top_companies.values * 10, c="blue", alpha=0.5, ) for i, count in enumerate(top_companies.values): plt.text( top_companies.index[i], 1, str(count), ha="center", va="center", fontsize=12, color="white", ) plt.xticks(fontsize=12) plt.xlim(-0.75) plt.yticks([]) plt.title("Top 10 Companies by number of Launches.", fontsize=15) plt.show() # ### 2) Number of Launches by Company per Year # We need to modify the dataframe to extract the year of launch from the date. df["Datum"] = pd.to_datetime(df["Datum"], utc=True) df["Year"] = df["Datum"].dt.year df.head()
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # ![](https://storage.googleapis.com/kaggle-competitions/kaggle/47790/logos/header.png) # # Playground Series - Season 3, Episode 11 # ## Tabular Regression with a Media Campaign Cost Dataset # ### Welcome to the 2023 edition of Kaggle's Playground Series! # Thank you to everyone who participated in and contributed to Season 3 Playground Series so far! # With the same goal to give the Kaggle community a variety of fairly light-weight challenges that can be used to learn and sharpen skills in different aspects of machine learning and data science, we will continue launching the Tabular Tuesday in March every Tuesday 00:00 UTC, with each competition running for 2 weeks. Again, these will be fairly light-weight datasets that are synthetically generated from real-world data, and will provide an opportunity to quickly iterate through various model and feature engineering ideas, create visualizations, etc.. # ### Synthetically-Generated Datasets # Using synthetic data for Playground competitions allows us to strike a balance between having real-world data (with named features) and ensuring test labels are not publicly available. This allows us to host competitions with more interesting datasets than in the past. While there are still challenges with synthetic data generation, the state-of-the-art is much better now than when we started the Tabular Playground Series two years ago, and that goal is to produce datasets that have far fewer artifacts. Please feel free to give us feedback on the datasets for the different competitions so that we can continue to improve! # #### Synthetically-Generated Datasets # Root Mean Squared Log Error (RMLSE) # Submissions are scored on the root mean squared log error (RMSLE) (the sklearn mean_squared_log_error with squared=False). # #### Synthetically-Generated Datasets # Submission File # For each id in the test set, you must predict the value for the target cost. The file should contain a header and have the following format: # ```Python # id,cost # 360336,99.615 # 360337,87.203 # 360338,101.111 # etc. # ``` # **Start Date** - March 20, 2023 # **Entry Deadline** - Same as the Final Submission Deadline # **Team Merger Deadline** - Same as the Final Submission Deadline # **Final Submission Deadline** - April 3, 2023 # All deadlines are at 11:59 PM UTC on the corresponding day unless otherwise noted. The competition organizers reserve the right to update the contest timeline if they deem it necessary. # 1 - import the necessary libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.linear_model import LinearRegression from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import ( mean_absolute_error, mean_squared_error, mean_squared_log_error, r2_score, ) from catboost import CatBoostRegressor from xgboost import XGBRegressor from lightgbm import LGBMRegressor from mlxtend.regressor import StackingRegressor # 2 - open training and test data train = pd.read_csv("/kaggle/input/playground-series-s3e11/train.csv") test = pd.read_csv("/kaggle/input/playground-series-s3e11/test.csv") train.head(3) # 3 - display descriptive statistics of training data train.describe() # 4 - look at the number of gaps in the training set train.isna().sum() # as you can see the number of passes is 0 # 5 - look at the number of gaps in the test set test.isna().sum() # as you can see the number of passes is 0 # 6 - look at the data type of the training set train.info() # all data is of type float64 # 6a - Create boxplots of our features sns.set(rc={"figure.figsize": (40, 6)}) sns.boxplot(train) plt.ylim([0, 151]) # 7 - look at the correlation between features correlation = train.corr() correlation.style.background_gradient(cmap="PuRd") # ### Features salad_bar and prepared_food have a very high correlation (about 1). To avoid multicollinearity, remove the prepared_food feature # 8 - remove the feature 'prepared_food' train.drop(columns="prepared_food", axis=1, inplace=True) test.drop(columns="prepared_food", axis=1, inplace=True) # 9 - checking the correlation after removing the feature 'prepared_food' correlation = train.corr() correlation.style.background_gradient(cmap="Blues") # ### Features with a high correlation (more than 0.62) are no longer left # 10 - look at the distribution of the dependent variable using kernel density estimation sns.kdeplot(train.cost, fill=True, color="green") # 11 - look at the distribution of the dependent variable using a histogram of the distribution train["cost"].hist(bins=50, color="red") # 12 - use the Shapiro-Wilk test to check the distribution of 'cost' for normality (ignore warnings) import warnings import scipy.stats as stats warnings.filterwarnings("ignore") result = stats.shapiro(train["cost"]) print(f"Shapiro-Wilk test statistic: {result[0]:.4f}") print(f"p-value: {result[1]}") # ### If p-value > 0.05, then we can accept the hypothesis of normal distribution. Otherwise, the hypothesis is rejected and the feature is not normally distributed. # ### In our case, the distribution is not normal, because p-value is 0. # 13 - To check if the distribution is normal, you can also use the Anderson-Darling test, # which is more powerful than the Shapiro-Wilk test. result = stats.anderson(train["cost"], dist="norm") print(f"Anderson-Darling test statistic: {result[0]:.4f}") print(f"critical values: {result[1]}") print(f"Significance levels: {result[2]}") # ### If the value of the test statistic is less than the critical value, then the hypothesis of normal distribution can be accepted. If the value of the statistic is greater, then the hypothesis is rejected, and the feature is not normally distributed. # ### In our case, the distribution is not normal # 14 - split the training dataset into X and y X = train.drop(columns=["cost"], axis=1) y = train.cost # 15 - Standardizing data sc = StandardScaler() train_std = sc.fit_transform(X) # first we train test_std = sc.transform(test) # 16 - train a Linear regression model and look at the metrics lin_reg = LinearRegression().fit(train_std, y) predict = lin_reg.predict(train_std) print(f"mean_absolute_error: {mean_absolute_error(y, predict):.4f}") print(f"mean_squared_error: {mean_squared_error(y, predict):.4f}") print(f"mean_squared_log_error: {mean_squared_log_error(y, predict):.4f}") print(f"r2_score: {r2_score(y, predict):.4f}") predict # 17 - train a XGB regression model and look at the metrics xgb_reg = XGBRegressor().fit(train_std, y) predict = xgb_reg.predict(train_std) print(f"mean_absolute_error: {mean_absolute_error(y, predict):.4f}") print(f"mean_squared_error: {mean_squared_error(y, predict):.4f}") print(f"mean_squared_log_error: {mean_squared_log_error(y, predict):.4f}") print(f"r2_score: {r2_score(y, predict):.4f}") predict # 18 - initialize the models and train on the training set model1 = LinearRegression() model2 = CatBoostRegressor(random_state=42) model3 = XGBRegressor(random_state=42) model4 = LGBMRegressor(random_state=42) model1.fit(train_std, y) model2.fit(train_std, y) model3.fit(train_std, y) model4.fit(train_std, y) # create an ensemble of models and predict on a test set ensemble = StackingRegressor( regressors=[model1, model2, model3, model4], meta_regressor=XGBRegressor(n_estimators=100, random_state=42), ) ensemble.fit(train_std, y) # evaluate the accuracy of predictions on a test set predict = ensemble.predict(train_std) print(f"mean_absolute_error: {mean_absolute_error(y, predict):.4f}") print(f"mean_squared_error: {mean_squared_error(y, predict):.4f}") print(f"mean_squared_log_error: {mean_squared_log_error(y, predict):.4f}") print(f"r2_score: {r2_score(y, predict):.4f}") predict # 18a - train random forest regression model and look at the metrics reg_randfor = RandomForestRegressor(max_depth=5, random_state=42) reg_randfor.fit(train_std, y) predict = reg_randfor.predict(train_std) print(f"mean_absolute_error: {mean_absolute_error(y, predict):.4f}") print(f"mean_squared_error: {mean_squared_error(y, predict):.4f}") print(f"mean_squared_log_error: {mean_squared_log_error(y, predict):.4f}") print(f"r2_score: {r2_score(y, predict):.4f}") predict # 19 - train a Catboost regression model and look at the metrics cat = CatBoostRegressor() cat.fit(train_std, y) predict = cat.predict(train_std) print(f"mean_absolute_error: {mean_absolute_error(y, predict):.4f}") print(f"mean_squared_error: {mean_squared_error(y, predict):.4f}") print(f"mean_squared_log_error: {mean_squared_log_error(y, predict):.4f}") print(f"r2_score: {r2_score(y, predict):.4f}") predict # 20 - the best submit result was shown by the catboost model. Let's train a test sample on it cat = CatBoostRegressor() cat.fit(train_std, y) cat_predict = cat.predict(test_std) cat_predict # 21 - making submission's dataset submission = pd.DataFrame() submission["id"] = test.id submission["cost"] = cat_predict submission # 22 - making submission's csv file submission[["id", "cost"]].to_csv("CatReg submission PSs3e11.csv", index=False)
# # * [1. IMPORTING LIBRARIES](#1) # # * [2. LOADING DATASET 📚](#2) # # * [3. Statistical information and general information about the data 🔍](#3) # * [4. EDA 📊](#4) # * [5. Data preprocessing 🔧](#5) # # Importing libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt plt.style.use( "https://github.com/dhaitz/matplotlib-stylesheets/raw/master/pitayasmoothie-dark.mplstyle" ) import warnings warnings.filterwarnings("ignore") import plotly.express as px import plotly.graph_objects as go from plotly.subplots import make_subplots import seaborn as sns # # # Reading the data 📚 # data = pd.read_csv(r"/kaggle/input/suicide-rates-overview-1985-to-2016/master.csv") data.head() # show the first 5 rows data.tail() # show the last 5 rows # # # Statistical information and general information about the data 🔍 # data.shape # **Observations 📋** # 🔘 The data consists of **27820** and **12** columns (features) data.describe().T # Statistical information for numirc data data.describe(include="O").T # tatistical information for object data data.info() # **Observations 📋** # 🔘 HDI for year has a lot of null values data.columns # # # EDA 📊 # data.nunique() # 🔘 **Exploratory data analysis (EDA)** : is used by data scientists to analyze and investigate data sets and summarize their main characteristics, often employing data visualization methods. # sns.pairplot(data=data, hue="sex") # **The ratio of males to females** data.sex.value_counts() sns.countplot(data=data, x="sex") # **Observations 📋** # # 🔘 The ratio of the number of males and females in the data is equal # 🔘 The column **Sex** is balanced # **What are the most suicide age groups ?** data.age.value_counts() data.age.value_counts().plot.pie( autopct="%1.1f%%", figsize=(10, 7), title="Distribution by age groups" ) # **Observations 📋** # # 🔘 The number of suicide groups is almost equal in all age groups in the data # **Distribution by gdp per capita** px.violin( data, x="sex", y="gdp_per_capita ($)", color="sex", box=True, points="all", color_discrete_sequence=["#71AEC2 ", "#D58989"], title="Sex distribution by gdp per capita ", template="plotly_dark", ) # **Observations 📋** # # 🔘 The column **gdb per captia** is balanced # **Distribution of country by suicides_no** # **Distribution of country by population** px.histogram( data, x="country", y="population", color="country", height=700, width=1500, template="plotly_dark", marginal="rug", title="Distribution of country by population", hover_data=["sex", "year"], ) # **Distribution of Generation by gdp per capita** data.generation.value_counts() plt.figure(figsize=(20, 10)) sns.lineplot(data=data, x="generation", y="gdp_per_capita ($)") plt.title("Distribution of Generation by gdp per capita") # **Distribution of gdp per capita by suicides/100k pop** px.scatter( data, x="gdp_per_capita ($)", y="suicides/100k pop", color="country", template="plotly_dark", title="Distribution of gdp per capita by suicides/100k pop", hover_data=["year"], ) # **Distribution of Countries by population** px.choropleth( data, locations="country", locationmode="country names", color="population", animation_frame="year", template="plotly_dark", title="Distribution of Countries by population", ) px.treemap( data, path=["country"], values="population", title="Distribution of Countries by population", template="plotly_dark", ) px.choropleth( data, locations="country", locationmode="country names", color="suicides_no", animation_frame="year", template="plotly_dark", title="Distribution of Countries by suicides_no", ) px.treemap( data, path=["country"], values="suicides_no", title="Distribution of Countries by suicides_no", template="plotly_dark", ) px.choropleth( data, locations="country", locationmode="country names", color="gdp_per_capita ($)", animation_frame="year", template="plotly_dark", title="Distribution of Countries by gdp per capita", ) px.treemap( data, path=["country"], values="gdp_per_capita ($)", title="Distribution of Countries by gdp per capita", template="plotly_dark", ) # # # Data preprocessing 🔧 # **Data cleaning** data.isna().sum() sns.heatmap(data.isna()) # **Observations 📋** # 🔘 The column HDI for year has a lot of null values # **Decisions 📋** # 🔘 so it is better to be delted data.drop("HDI for year", axis=1, inplace=True) data.isna().sum() data.head(2) # **Observations 📋** # 🔘 The column **country-year** is a combination of two coulmns ** country** and **year** # **Decisions 📋** # 🔘 so it is better to be delted data.drop("country-year", axis=1, inplace=True) data.head(2) data[" gdp_for_year ($) "] = data[" gdp_for_year ($) "].apply( lambda x: x.replace(",", "") ) data[" gdp_for_year ($) "] = data[" gdp_for_year ($) "].astype(int) px.choropleth( data, locations="country", locationmode="country names", color=" gdp_for_year ($) ", animation_frame="year", template="plotly_dark", title="Distribution of Countries by gdp for year", ) px.treemap( data, path=["country"], values=" gdp_for_year ($) ", title="Distribution of Countries by gdp for year", template="plotly_dark", ) data.head() data["suicides_no"] = pd.cut(data["suicides_no"], 6, labels=[1, 2, 3, 4, 5, 6]) data["population"] = pd.cut(data["population"], 6, labels=[1, 2, 3, 4, 5, 6]) data["suicides/100k pop"] = pd.cut( data["suicides/100k pop"], 6, labels=[1, 2, 3, 4, 5, 6] ) data["gdp_per_capita ($)"] = pd.cut( data["gdp_per_capita ($)"], 6, labels=[1, 2, 3, 4, 5, 6] ) data[" gdp_for_year ($) "] = pd.cut( data[" gdp_for_year ($) "], 6, labels=[1, 2, 3, 4, 5, 6] ) # To clarify data.population.unique() # 🔘**let's encoding the data** # 🔘 Models only work with numerical values. For this reason, it is necessary to convert the categorical values of the features into numerical ones, So the machine can learn from those data and gives the right model. This process of converting categorical data into numerical data is called Encoding. # 🔘 **Label encoder** :Sklearn provides a very efficient tool for encoding the levels of categorical features into numeric values. LabelEncoder encode labels with a value between 0 and n_classes-1 where n is the number of distinct labels. If a label repeats it assigns the same value to as assigned earlier. # **Note 📋** # also we can use one hot encoder or pandas.get_dummies function with diffrent output but finally the same task to_categorical = ["country", "year", "sex", "age", "generation"] from sklearn.preprocessing import LabelEncoder L_encoder = LabelEncoder() for label in to_categorical: data[label] = L_encoder.fit_transform(data[label]) data.head() # **Data correlations** plt.figure(figsize=(10, 7)) sns.heatmap(data.corr(), annot=True) plt.title("Data Correlations")
# To download the Dataset with "wget", we use the following command. # if the wget didin't work, you must install "WGET" in your OS # ## 1) Importing Dataset and Libraries # ### 1- 1) Importing Libraries import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt # data processing from sklearn.preprocessing import Normalizer, StandardScaler # data splitting from sklearn.model_selection import ( train_test_split, StratifiedKFold, cross_validate, KFold, ) # data evaluation from sklearn.metrics import r2_score, mean_squared_error # data modeling from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor from xgboost import XGBRegressor from lightgbm import LGBMRegressor from catboost import CatBoostRegressor # set SEED SEED = 123 df = pd.read_csv( "/kaggle/input/prediction-salesbased-on-advertising-costs/advertising.csv" ) # Loading dataset as DataFram with Pandas df.head() # Looking top 5 row df.info() # A summary of the dataset and columns # Observaions: # 1) All of features are numeric # 2) The target variable is a numerical continuous type # 3) So we must Use Regression Models df.describe() # describtion of numeric features # ### Visualization of Data sns.scatterplot(x="Radio", y="Sales", data=df) sns.scatterplot(x="TV", y="Sales", data=df) sns.scatterplot(x="Newspaper", y="Sales", data=df) plt.legend(labels=["Radio", "TV", "Newspaper"]) plt.xlabel("Advertising Costs") plt.ylabel("Mount of Sales") # ### Spliting data to features and target variable X = df.drop("Sales", axis=1) # The Features y = df["Sales"] # The Target # ### Splitting Data and making KFOLD X_train, X_val, y_train, y_val = train_test_split( X, y, test_size=0.2, random_state=SEED, shuffle=True ) # The shape of train and validation data y_train.shape, y_val.shape kf = KFold(n_splits=5, shuffle=True, random_state=SEED) # ### Linear Regression lin_reg = LinearRegression() cv = cross_validate( lin_reg, X_train, y_train, cv=kf, scoring=("r2", "neg_mean_squared_error"), return_estimator=True, ) # detect more metrics https://scikit-learn.org/stable/modules/model_evaluation.html#scoring-parameter model_lin = cv["estimator"] y_hats = [model.predict(X_val) for model in model_lin] r2_lin = np.mean([r2_score(y_val, y_hat) for y_hat in y_hats]) print("R2 of linearregression: " f"{r2_lin:0.2%}") # ### DecisionTree dec = DecisionTreeRegressor() cv = cross_validate( dec, X_train, y_train, cv=kf, scoring=("r2", "neg_mean_squared_error"), return_estimator=True, ) model_dec = cv["estimator"] y_hats = [model.predict(X_val) for model in model_dec] r2_dec = np.mean([r2_score(y_val, y_hat) for y_hat in y_hats]) print("R2 of DecisionTree: " f"{r2_dec:0.2%}") # ## RandomForest rf = RandomForestRegressor() cv = cross_validate( rf, X_train, y_train, cv=kf, scoring=("r2", "neg_mean_squared_error"), return_estimator=True, ) model_rf = cv["estimator"] y_hats = [model.predict(X_val) for model in model_rf] r2_rf = np.mean([r2_score(y_val, y_hat) for y_hat in y_hats]) print("R2 of Randomforest: " f"{r2_rf:0.2%}") # ### Light Gradiant Boosting Model lgb = LGBMRegressor() cv = cross_validate( lgb, X_train, y_train, cv=kf, scoring=("r2", "neg_mean_squared_error"), return_estimator=True, ) model_lgb = cv["estimator"] y_hats = [model.predict(X_val) for model in model_lgb] r2_lgb = np.mean([r2_score(y_val, y_hat) for y_hat in y_hats]) print("R2 of LightGBM: " f"{r2_lgb:0.2%}") # ### Extra Gradiant Boosting xgb = XGBRegressor() cv = cross_validate( xgb, X_train, y_train, cv=kf, scoring=("r2", "neg_mean_squared_error"), return_estimator=True, ) model_xgb = cv["estimator"] y_hats = [model.predict(X_val) for model in model_xgb] r2_xgb = np.mean([r2_score(y_val, y_hat) for y_hat in y_hats]) print("R2 of XGB: " f"{r2_xgb:0.2%}") # Table of Results print("R2 of linearregression: " f"{r2_lin:0.2%}") print("R2 of DecisionTree: " f"{r2_dec:0.2%}") print("R2 of Randomforest: " f"{r2_rf:0.2%}") print("R2 of LightGBM: " f"{r2_lgb:0.2%}") print("R2 of XGB: " f"{r2_xgb:0.2%}")
# Aşağıda ihtiyacımız doğrultusunda kullanacağımız kütüphaneleri yükleyelim. # import numpy as np import seaborn as sns import pandas as pd # Veri çerçevemizi bulunduğumuz dizinden yükleyelim ve bir veri çerçevesi haline getirerek df değişkenine atayalım. (pd.read_csv(...csv)) df = pd.read_csv("/kaggle/input/vizeodev/iris.csv") # Veri çerçevesinin ilk 5 gözlemini görüntüleyelim. df.head(5) # Veri çerçevesinin kaç öznitelik ve kaç gözlemden oluştuğunu görüntüleyelim. # Öznitelik sayısını (sütun sayısı) görüntüleme oznitelik_sayisi = df.shape[1] print("Öznitelik Sayısı: ", oznitelik_sayisi) # Gözlem sayısını (satır sayısı) görüntüleme gozlem_sayisi = df.shape[0] print("Gözlem Sayısı: ", gozlem_sayisi) # Veri çerçevesindeki değişkenlerin hangi tipte olduğunu ve bellek kullanımını görüntüleyelim. # Değişkenlerin veri tiplerini görüntüleme veri_tipleri = df.dtypes print("Değişken Veri Tipleri:\n", veri_tipleri) # Bellek kullanımını görüntüleme bellek_kullanimi = df.memory_usage(deep=True).sum() / ( 1024**2 ) # MB cinsinden hesaplama print("Toplam Bellek Kullanımı (MB):", bellek_kullanimi) # Veri çerçevesindeki sayısal değişkenler için temel istatistik değerlerini görüntüleyelim. # Standart sapma ve ortalama değerlerden çıkarımda bulunarak hangi değişkenlerin ne kadar varyansa sahip olduğu hakkında fikir yürütelim. # Sayisal değişkenlerin temel istatistik değerlerini görüntüleme sayisal_degiskenler = df.select_dtypes(include=np.number) # Sayisal değişkenleri seçme temel_istatistikler = ( sayisal_degiskenler.describe() ) # Temel istatistik değerleri hesaplama print("Temel İstatistik Değerler:\n", temel_istatistikler) # Standart sapma ve ortalama değerlerden çikarimda bulunma varyans = ( temel_istatistikler.loc["std"] ** 2 ) # Standart sapmanin karesi varyansi temsil eder ortalama = temel_istatistikler.loc["mean"] cikarim = ortalama**2 - varyans print("\nDeğişkenlerin Varyans ve Ortalama Değerlerden Çıkarımları:\n", cikarim) # Veri çerçevesinde hangi öznitelikte kaç adet eksik değer olduğunu gözlemleyelim. # Her bir özniteliğin eksik değer sayısını görüntüleme eksik_deger_sayisi = df.isna().sum() print("Eksik Değer Sayıları:\n", eksik_deger_sayisi) # Sayısal değişkenler arasında korelasyon olup olmadığını göstermek için korelasyon matrisi çizdirelim. Korelasyon katsayıları hakkında fikir yürütelim. # En güçlü pozitif ilişki hangi iki değişken arasındadır? import matplotlib.pyplot as plt # Korelasyon matrisini hesapla corr = df.corr() # Korelasyon matrisini ısı haritası olarak çizdir sns.heatmap(corr, annot=True, cmap="coolwarm") plt.title("Değişkenler Arasındaki Korelasyon Matrisi") plt.show() # Korelasyon katsayılarını daha iyi okuyabilmek için ısı haritası çizdirelim. # Korelasyon matrisini hesaplayalım corr_matrix = df.corr() # Korelasyon matrisini büyük bir ısı haritası olarak çizdirme plt.figure(figsize=(10, 8)) # Grafiğin boyutunu belirleme sns.heatmap( corr_matrix, annot=True, cmap="coolwarm", linewidths=0.5, annot_kws={"fontsize": 12} ) plt.title("Korelasyon Matrisi") plt.show() # Veri çerçevemizin hedef değişkeninin "variety" benzersiz değerlerini görüntüleyelim. # "variety" değişkeninin benzersiz değerlerini görüntüleme variety_unique = df["variety"].unique() print("variety Benzersiz Değerler: ", variety_unique) # Veri çerçevemizin hedef değişkeninin "variety" benzersiz kaç adet değer içerdiğini görüntüleyelim. # "variety" değişkeninin benzersiz değer sayısını görüntüleme variety_unique_count = df["variety"].nunique() print("variety Benzersiz Değer Sayısı: ", variety_unique_count) # Veri çerçevesindeki sepal.width ve sepal.length değişkenlerinin sürekli olduğunu görüyoruz. Bu iki sürekli veriyi görselleştirmek için önce scatterplot kullanalım. # Scatterplot çizimi sns.scatterplot(x="sepal.width", y="sepal.length", data=df) plt.xlabel("Sepal Width") plt.ylabel("Sepal Length") plt.title("Sepal Width vs Sepal Length Scatterplot") plt.show() # Aynı iki veriyi daha farklı bir açıdan frekanslarıyla incelemek için jointplot kullanarak görselleştirelim. # Jointplot çizimi sns.jointplot(x="sepal.width", y="sepal.length", data=df, kind="hex") plt.xlabel("Sepal Width") plt.ylabel("Sepal Length") plt.title("Sepal Width vs Sepal Length Jointplot") plt.show() # Aynı iki veriyi scatterplot ile tekrardan görselleştirelim fakat bu sefer "variety" parametresi ile hedef değişkenine göre kırdıralım. # 3 farklı renk arasında sepal değişkenleriyle bir kümeleme yapılabilir mi? Ne kadar ayırt edilebilir bunun üzerine düşünelim. # Scatterplot çizimi sns.scatterplot( x="sepal.width", y="sepal.length", data=df, hue="variety", palette="Set1" ) plt.xlabel("Sepal Width") plt.ylabel("Sepal Length") plt.title("Sepal Width vs Sepal Length Scatterplot (Colored by Variety)") plt.show() # value_counts() fonksiyonu ile veri çerçevemizin ne kadar dengeli dağıldığını sorgulayalım. # "variety" değişkeninin sınıf frekanslarını hesapla class_counts = df["variety"].value_counts() # Sonuçları ekrana yazdır print("Sınıf Frekansları:\n", class_counts) # Keman grafiği çizdirerek sepal.width değişkeninin dağılımını inceleyin. # Söz konusu dağılım bizim için ne ifade ediyor, normal bir dağılım olduğunu söyleyebilir miyiz? # Sepal.width değişkeninin keman grafiğini çizdir sns.violinplot(x="variety", y="sepal.width", data=df) # Grafiği göster plt.show() # Daha iyi anlayabilmek için sepal.width üzerine bir distplot çizdirelim. # Sepal.width değişkeni için distplot çizdir sns.histplot(df["sepal.width"]) # Grafiği göster plt.show() # Üç çiçek türü için üç farklı keman grafiğini sepal.length değişkeninin dağılımı üzerine tek bir satır ile görselleştirelim. # Üç çiçek türü için sepal.length değişkeninin keman grafiğini çizdir sns.violinplot(x="variety", y="sepal.length", data=df) # Grafiği göster plt.show() # Hangi çiçek türünden kaçar adet gözlem barındırıyor veri çerçevemiz? # 50 x 3 olduğunu ve dengeli olduğunu value_counts ile zaten görmüştük, ancak bunu görsel olarak ifade etmek için sns.countplot() fonksiyonuna variety parametresini vereilm. # Çiçek türlerinin görsel olarak ifade edildiği bir countplot çizdir sns.countplot(data=df, x="variety") plt.title("Çiçek Türlerine Göre Gözlem Sayısı") plt.xlabel("Çiçek Türü") plt.ylabel("Gözlem Sayısı") plt.show() # sepal.length ve sepal.width değişkenlerini sns.jointplot ile görselleştirelim, dağılımı ve dağılımın frekansı yüksek olduğu bölgelerini inceleyelim. sns.jointplot(data=df, x="sepal.length", y="sepal.width", kind="hex", cmap="viridis") plt.xlabel("Sepal Length") plt.ylabel("Sepal Width") plt.title("Sepal Length vs Sepal Width") plt.show() # Bir önceki hücrede yapmış olduğumuz görselleştirmeye kind = "kde" parametresini ekleyelim. Böylelikle dağılımın noktalı gösterimden çıkıp yoğunluk odaklı bir görselleştirmeye dönüştüğünü görmüş olacağız. sns.jointplot(data=df, x="sepal.length", y="sepal.width", kind="kde", cmap="viridis") plt.xlabel("Sepal Length") plt.ylabel("Sepal Width") plt.title("Sepal Length vs Sepal Width (KDE)") plt.show() # scatterplot ile petal.length ve petal.width değişkenlerinin dağılımlarını çizdirelim. sns.scatterplot( data=df, x="petal.length", y="petal.width", hue="variety", palette="viridis" ) plt.xlabel("Petal Length") plt.ylabel("Petal Width") plt.title("Petal Length vs Petal Width") plt.show() # Aynı görselleştirmeye hue = "variety" parametresini ekleyerek 3. bir boyut verelim. # Label Encoding ile variety değişkenini sayısal bir değişkene dönüştürme df["variety_label"] = df["variety"].astype("category").cat.codes # 3D scatterplot figürünü oluşturma fig = plt.figure() ax = fig.add_subplot(111, projection="3d") # Veriyi 3D scatterplot ile çizme ax.scatter( df["petal.length"], df["petal.width"], df["variety_label"], c=df["variety_label"], cmap="viridis", ) # Eksen etiketlerini ve başlığı ekleme ax.set_xlabel("Petal Length") ax.set_ylabel("Petal Width") ax.set_zlabel("Variety") plt.title("Petal Length vs Petal Width (with Variety)") # Grafik gösterme plt.show() # sns.lmplot() görselleştirmesini petal.length ve petal.width değişkenleriyle implemente edelim. Petal length ile petal width arasında ne tür bir ilişki var ve bu ilişki güçlü müdür? sorusunu yanıtlayalım. # petal.length ve petal.width değişkenleri arasındaki ilişkiyi görselleştirme sns.lmplot(x="petal.length", y="petal.width", data=df) # Başlığı ve eksen etiketlerini ekleme plt.title("Petal Length vs Petal Width") plt.xlabel("Petal Length") plt.ylabel("Petal Width") # Grafik gösterme plt.show() # Bu sorunun yanıtını pekiştirmek için iki değişken arasında korelasyon katsayısını yazdıralım. import scipy.stats # petal.length ve petal.width arasındaki korelasyon katsayısını hesapla correlation, _ = scipy.stats.pearsonr(df["petal.length"], df["petal.width"]) # Korelasyon katsayısını yazdır print( "Petal Length ve Petal Width arasındaki Korelasyon Katsayısı: {:.2f}".format( correlation ) ) # Petal Length ile Sepal Length değerlerini toplayarak yeni bir total length özniteliği oluşturalım. # Yeni özniteliği hesapla df["total.length"] = df["petal.length"] + df["sepal.length"] # Veri çerçevesini gözden geçir print(df.head()) # total.length'in ortalama değerini yazdıralım. # total.length sütununun ortalama değeri total_length_mean = np.mean(df["total.length"]) # Sonucu ekrana yazdır print("total.length ortalama değeri: ", total_length_mean) # total.length'in standart sapma değerini yazdıralım. # total.length sütununun standart sapma değeri total_length_std = np.std(df["total.length"]) # Sonucu ekrana yazdır print("total.length standart sapma değeri: ", total_length_std) # sepal.length'in maksimum değerini yazdıralım. # sepal.length sütununun maksimum değeri sepal_length_max = df["sepal.length"].max() # Sonucu ekrana yazdır print("sepal.length maksimum değer: ", sepal_length_max) # sepal.length'i 5.5'den büyük ve türü setosa olan gözlemleri yazdıralım. # sepal.length'i 5.5'den büyük ve türü setosa olan gözlemleri filtrele filtered_data = df[(df["sepal.length"] > 5.5) & (df["variety"] == "Setosa")] # Filtrelenen veriyi yazdır print(filtered_data) # petal.length'i 5'den küçük ve türü virginica olan gözlemlerin sadece sepal.length ve sepal.width değişkenlerini ve değerlerini yazdıralım. # petal.length'i 5'ten küçük ve türü virginica olan gözlemleri filtrele filtered_data = df[(df["petal.length"] < 5) & (df["variety"] == "Virginica")] # Filtrelenen verinin sadece sepal.length ve sepal.width sütunlarını ve değerlerini yazdır filtered_data[["sepal.length", "sepal.width"]] # Hedef değişkenimiz variety'e göre bir gruplama işlemi yapalım değişken değerlerimizin ortalamasını görüntüleyelim. # "variety" değişkenine göre gruplama yaparak değişken değerlerinin ortalamasını hesapla grouped_mean = df.groupby("variety").mean() # Ortalama değerleri görüntüle print(grouped_mean) # Hedef değişkenimiz variety'e göre gruplama işlemi yaparak sadece petal.length değişkenimizin standart sapma değerlerini yazdıralım. # "variety" değişkenine göre gruplama yaparak "petal.length" değişkeninin standart sapma değerlerini hesapla grouped_std = df.groupby("variety")["petal.length"].std() # Standart sapma değerlerini görüntüle print(grouped_std)
# # Rename Pandas Columns in DataFrame🔥💥 # Welcome! In this notebook # Rename Columns is necessary for the data preprocessing stage. Everyone is using it for data analytics, machine learning, data engineering, and even software development. renaming columns in a Pandas dataframe is a simple and useful technique that can save time and make data analysis easier # Thanks for visiting my notebook # # All Method I cover this version # - ✒️**Method 1**: # ```bash # Using Rename Function # ``` # - ✒️**Method 2**: # ```bash # Replacing the Column String # ``` # - ✒️**Method 3**: # ```bash # Assigning a List of Column Names # ``` # - ✒️**Method 4**: # ```bash # Renaming Columns with a Dictionary # ``` # - ✒️**Method 5**: # ```bash # Using axis-style parameters: upper and lower case # ``` # - ✒️**Method 6**: # ```bash # Rename column names using DataFrame add_prefix() and add_suffix() functions # ``` # # Make Data import pandas as pd info = { "ID": [11, 12, 13], "Name": ["Pritom Saha", "Himel Saha", "Pranajit Saha"], "Age": [25, 27, 65], } # Dictionary into DataFrame # Make some copy dataset = pd.DataFrame(info) dataset1 = pd.DataFrame(info) dataset2 = pd.DataFrame(info) dataset3 = pd.DataFrame(info) dataset4 = pd.DataFrame(info) dataset5 = pd.DataFrame(info) dataset6 = pd.DataFrame(info) dataset7 = pd.DataFrame(info) dataset8 = pd.DataFrame(info) print("\033[1m\033[31m{}\033[0m".format(dataset.head())) # # Using Rename Function # Syntax: # ```bash # dataset.rename(columns = {'OldName':'New Name '}, inplace = True) # ``` # using columns dataset1.rename(columns={"Name": "Full Name ", "Age": "Current Age"}, inplace=True) print("\033[35m{}\033[0m".format(dataset1.head())) # using axis = "columns" dataset2.rename( {"Name": "Full Name ", "Age": "Current_Age"}, axis="columns", inplace=True ) print("\033[36m{}\033[0m".format(dataset2.head())) # # Replacing the Column String # Syntax: # ```bash # dataset.columns.str.replace('OldName', 'new_name') # ``` dataset3.columns = dataset3.columns.str.replace("Name", "full_name") print("\033[1m\033[31m{}\033[0m".format(dataset3.head())) # # Assigning a List of Column Names # Syntax: # - Make all columns name list # ```bash # dataset.columns = [x for x in columnlist] # ``` columnN = ["serial", "full_name", "Current_age"] dataset4.columns = [x for x in columnN] print("\033[1m\033[31m{}\033[0m".format(dataset4.head())) # # Renaming Columns with a Dictionary # Syntax: # - First make a dictionary than use columns as this dictionary # ```bash # dataset.rename(columns=new_col_name, inplace=True) # ``` new_col_name = {"ID": "Serial", "Name": "Full Name", "Age": "Years Old"} dataset5.rename(columns=new_col_name, inplace=True) print("\033[1m\033[31m{}\033[0m".format(dataset5.head())) # # Using axis-style parameters: # Syntax: # ```bash # dataset.rename(str.lower, axis='columns') # dataset.rename(str.upper, axis='columns') # ``` dataset6.rename(str.lower, axis="columns", inplace=True) print("\033[1m\033[31m{}\033[0m".format(dataset6.head())) dataset6.rename(str.upper, axis="columns", inplace=True) print("\033[1m\033[31m{}\033[0m".format(dataset6.head())) # # Rename column names using DataFrame add_prefix() and add_suffix() functions # Syntax: # ```bash # # Prefix # dataset.add_prefix('X') # # Suffix # dataset.add_suffix('X') # ``` # Add prefix to the column names dataset7 = dataset7.add_prefix("student_") print("\033[1m\033[31m{}\033[0m".format(dataset7.head())) dataset8 = dataset8.add_suffix("_student") print("\033[33m{}\033[0m".format(dataset8.head()))
# # Data Dictionary - train.csv - dependent variable is survival # * Variable Definition Key # * survival Survival 0 = No, 1 = Yes # * pclass Ticket class 1 = 1st, 2 = 2nd, 3 = 3rd # * sex Sex # * Age Age in years # * sibsp # For children number of siblings. For parents number of spouses. # * parch # For children number of parents. For parents number of children. # * ticket Ticket number # * fare Passenger fare # * cabin Cabin number # * embarked Port Embarkation C = Cherbourg, Q = Queenstown, S = Southampton # Normally, all data is processed and then split with Sklearn test_train_split. Since both files are given, they are processed separately. import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # Other imports besides Kaggle provided ones. import seaborn as sn # importing one hot encoder from sklearn.preprocessing import OneHotEncoder from sklearn.naive_bayes import GaussianNB from sklearn.metrics import classification_report, confusion_matrix, accuracy_score from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split dash = "-" * 80 # Use this to allow all rows to be printed if you need to analyze the data. # pd.set_option('display.max_rows', None) # pd.set_option('display.max_columns',None) # # Read in Competition Data train_data = pd.read_csv("/kaggle/input/titanic/train.csv") train_data.head() test_data = pd.read_csv("/kaggle/input/titanic/test.csv") test_data.head() # ## Data Shape print("Train Data: ", train_data.shape) print("Test Data: ", test_data.shape) # # Review Null Values # Funtion to Iterate over column names to display how many null values for each column. def Check_Dataframe_for_Null_Values(df_to_check): for column in df_to_check: print( " Count of Null values for " + column + ": " + str(len(df_to_check[df_to_check[column].isna()])) ) return Check_Dataframe_for_Null_Values(train_data) # **Training Data Nulls:** # * Age: 177 # * Cabin: 687 # * Embarked: 2 Check_Dataframe_for_Null_Values(test_data) # **Testing Data Nulls:** # * Age: 86 # * Fare: 1 # * Cabin: 327 # # Feature Engineering and Populating Null Values # ## Size of Family # Adding Size of the Family to the training set in hopes that it will improve modeling. # Add the siblings with the spouse and the passenger to get the size of the family aboart the Titanic. train_data["family_size"] = train_data["SibSp"] + train_data["Parch"] + 1 test_data["family_size"] = train_data["SibSp"] + train_data["Parch"] + 1 # ## For Null Age, Fill in Age of Passenger by Ticket Class Assignment # A boxplot to see approximate mean age by Ticket Class (Pclass) sn.boxplot(x="Pclass", y="Age", data=train_data) # Review distinct values of Pclass: print(train_data["Pclass"].unique()) # Calculate Age based on Ticket Class # To address null values for age we query for each class and then calcuate the mean. df_class_1 = train_data.query("Pclass == 1", engine="python") class_1_mean_age = int(df_class_1["Age"].mean()) df_class_2 = train_data.query("Pclass == 2", engine="python") class_2_mean_age = int(df_class_2["Age"].mean()) df_class_3 = train_data.query("Pclass == 3", engine="python") class_3_mean_age = int(df_class_3["Age"].mean()) print("Mean Age for Class 1", class_1_mean_age) print("Mean Age for Class 2", class_2_mean_age) print("Mean Age for Class 3", class_3_mean_age) # ### Update Training and Testing data set with Mean Age # if data is null and class 1 then update age with value, etc. # train_data.query('Pclass == 1 and Age.isnull()' , engine='python') # Update train and test separately. train_data.loc[ train_data.query("Pclass == 1 and Age.isnull()", engine="python").index, "Age" ] = class_1_mean_age test_data.loc[ test_data.query("Pclass == 1 and Age.isnull()", engine="python").index, "Age" ] = class_1_mean_age train_data.loc[ train_data.query("Pclass == 2 and Age.isnull()", engine="python").index, "Age" ] = class_2_mean_age test_data.loc[ test_data.query("Pclass == 2 and Age.isnull()", engine="python").index, "Age" ] = class_2_mean_age train_data.loc[ train_data.query("Pclass == 3 and Age.isnull()", engine="python").index, "Age" ] = class_3_mean_age test_data.loc[ test_data.query("Pclass == 3 and Age.isnull()", engine="python").index, "Age" ] = class_3_mean_age # First Class - Age Set to 38 for Null train_data.query( "Pclass == 1 and Age == " + str(class_1_mean_age), engine="python" ).head(5) # First Class - Age Set to 38 for Null test_data.query( "Pclass == 1 and Age == " + str(class_1_mean_age), engine="python" ).head(5) # Second Class - Age Set to 29 for Null train_data.query( "Pclass == 2 and Age == " + str(class_2_mean_age), engine="python" ).head(5) # Second Class - Age Set to 29 for Null test_data.query( "Pclass == 2 and Age == " + str(class_2_mean_age), engine="python" ).head(5) # Third Class - Age Set to 25 for Null train_data.query( "Pclass == 3 and Age == " + str(class_3_mean_age), engine="python" ).head(5) # Third Class - Age Set to 25 for Null test_data.query( "Pclass == 3 and Age == " + str(class_3_mean_age), engine="python" ).head(5) # Review Null values again Check_Dataframe_for_Null_Values(train_data) # Review Null values again Check_Dataframe_for_Null_Values(test_data) # ## Title - Cateogorizing into 4 titles - Mr, Mrs, Miss and Master # * This will replace with the following: # * Mr = Adult male # * Mrs = Adult female # * Miss = Child female # * Master = Child male # https://triangleinequality.wordpress.com/2013/09/08/basic-feature-engineering-with-the-titanic-data/ # * An article on parsing out the titles of the passengers. # This takes the full string, big_string and determines if the substring (ie. "Mr.") occurs. -1 means that the subtring was not found. def substrings_in_string(big_string, substrings): # print (big_string, substrings) for substring in substrings: if big_string.find(substring) != -1: return substring print(big_string) return np.nan # np.nan will return a type of float but with no value # creating a title column from name. These are the subtrings we will use to search the names title_list = [ "Mrs", "Mr", "Master", "Miss", "Major", "Rev", "Dr", "Ms", "Mlle", "Col", "Capt", "Mme", "Countess", "Don", "Jonkheer", ] # This will use map to go through train_data and test_data and then create a new column called Title with the title found in each name. train_data["Title"] = train_data["Name"].map( lambda x: substrings_in_string(x, title_list) ) test_data["Title"] = test_data["Name"].map( lambda x: substrings_in_string(x, title_list) ) # This will replace each record with the following: # Mr = Adult male # Mrs = Adult female # Miss = Child female # Master = Child male def replace_titles(x): title = x["Title"] if title in ["Don", "Major", "Capt", "Jonkheer", "Rev", "Col"]: return "Mr" elif title in ["Countess", "Mme"]: return "Mrs" elif title in ["Mlle", "Ms"]: return "Miss" elif title == "Dr": if x["Sex"] == "Male": return "Mr" else: return "Mrs" else: return title # Categorizing into 4 groups - Mr, Mrs, Miss and Master train_data["Title"] = train_data.apply(replace_titles, axis=1) test_data["Title"] = test_data.apply(replace_titles, axis=1) train_data.head(20) test_data.head(20) # big_string = "Braund, Mr. Owen Harris" # substrings = "['Mrs', 'Mr', 'Master', 'Miss', 'Major', 'Rev', 'Dr', 'Ms', 'Mlle', 'Col', 'Capt', 'Mme', 'Countess', 'Don', 'Jonkheer']" # print (big_string.find('substring')) # ## Cabin column removed for this iteration # https://www.kaggle.com/code/ccastleberry/titanic-cabin-features/notebook # * Intersting article on how to process the Cabin Column with all of the missing data. # * It's clear that many passengers who were not assigned a cabin were in the lower deck. # * Meaning, these passengers were more likely not to survive. # Removing the cabin column train_data.drop( [ "Cabin", ], axis=1, inplace=True, ) test_data.drop(["Cabin"], axis=1, inplace=True) ## Remove Appropriate Columns Before Modeling train_data.drop( [ "Name", ], axis=1, inplace=True, ) test_data.drop(["Name"], axis=1, inplace=True) train_data.drop( [ "PassengerId", ], axis=1, inplace=True, ) # For the test_data, I'm not deleting passenger id because it's needed for submittal to competition. train_data.drop( [ "Ticket", ], axis=1, inplace=True, ) test_data.drop(["Ticket"], axis=1, inplace=True) Check_Dataframe_for_Null_Values(train_data) Check_Dataframe_for_Null_Values(test_data) # # One Hot Encoding # creating one hot encoder object OneHotEncoder = OneHotEncoder() # ## Title df_OneHotEncoded_train = pd.DataFrame( OneHotEncoder.fit_transform(train_data[["Title"]]).toarray() ) df_OneHotEncoded_test = pd.DataFrame( OneHotEncoder.fit_transform(test_data[["Title"]]).toarray() ) df_OneHotEncoded_train.rename( columns={ 0: "master-male-child", 1: "miss-female-child", 2: "mr-male-adult", 3: "mrs-female-adult", }, inplace=True, ) df_OneHotEncoded_test.rename( columns={ 0: "master-male-child", 1: "miss-female-child", 2: "mr-male-adult", 3: "mrs-female-adult", }, inplace=True, ) train_data = train_data.join(df_OneHotEncoded_train) test_data = test_data.join(df_OneHotEncoded_test) train_data # ## Sex df_OneHotEncoded_train = pd.DataFrame( OneHotEncoder.fit_transform(train_data[["Sex"]]).toarray() ) df_OneHotEncoded_test = pd.DataFrame( OneHotEncoder.fit_transform(test_data[["Sex"]]).toarray() ) df_OneHotEncoded_train.rename(columns={0: "sex-female", 1: "sex-male"}, inplace=True) df_OneHotEncoded_test.rename(columns={0: "sex-female", 1: "sex-male"}, inplace=True) train_data = train_data.join(df_OneHotEncoded_train) test_data = test_data.join(df_OneHotEncoded_test) train_data.head() test_data.head() # ## Embarked # I can't include Embarked because test_data doesn't have any values for this. When I do one hot encoding # it won't create the emb_4 column. I'm having to leave off Embarked. # df_OneHotEncoded_train_emb=pd.DataFrame(OneHotEncoder.fit_transform(train_data[['Embarked']]).toarray()) # df_OneHotEncoded_test_emb=pd.DataFrame(OneHotEncoder.fit_transform(test_data[['Embarked']]).toarray()) # df_OneHotEncoded_train_emb.rename(columns={0: 'emb_0',1: 'emb_1',2: 'emb_2',3: 'emb_3'}, inplace=True) # df_OneHotEncoded_test_emb.rename(columns={0: 'emb_0' ,1: 'emb_1',2: 'emb_2',3: 'emb_3'}, inplace=True) # train_data=train_data.join(df_OneHotEncoded_train_emb) # test_data=test_data.join(df_OneHotEncoded_test_emb) train_data.head(5) test_data.head(5) # ## Remove Title, Sex and Embarked After One Hot Encoding train_data.drop( [ "Title", ], axis=1, inplace=True, ) test_data.drop(["Title"], axis=1, inplace=True) train_data.drop( [ "Sex", ], axis=1, inplace=True, ) test_data.drop(["Sex"], axis=1, inplace=True) train_data.drop( [ "Embarked", ], axis=1, inplace=True, ) test_data.drop(["Embarked"], axis=1, inplace=True) # # Final Data for Modeling train_data.head(5) test_data.head(5) # # Correlations sn.set(rc={"figure.figsize": (20, 8)}) # plotting correlation heatmap dataplot = sn.heatmap(train_data.corr(), cmap="YlGnBu", annot=True) # # Split Independent and Dependent Varibles for Training Data x = train_data.iloc[:, 1:].values y = train_data.iloc[:, 0].values # # Scale the Data ( Independent Features) print(type(test_data)) print(type(x)) # Only scale the independent variables. Stand_Scale = StandardScaler() # Fit Transform Training Data x = Stand_Scale.fit_transform(x) # Fit Transform Testing Data test_data_scaled = Stand_Scale.fit_transform(test_data) print("\nx after standarization:", x) print(dash) print("\ntest_data_scaled after standarization:", test_data_scaled) # # Split Training Data into Training and Testing # * We will run our final predict against test_data for submittal. # * For now I'm splitting the training data to see how it will perform against a test set. # split the training data to generate training and test data. x_train, x_test, y_train, y_test = train_test_split( x, y, test_size=0.20, random_state=5 ) print("\nx_train", x_train.shape) print("\ny_train", y_train.shape) print(dash) print("\nx_test", x_test.shape) print("\ny_test", y_test.shape) # # Gaussian Naive Bayes # ### Fit Model # -----------Gaussian generative model---------------- GNB_model = GaussianNB() GNB_model.fit(x_train, y_train) print(GNB_model) # ### Predict Model y_pred = GNB_model.predict(x_test) print("Actual:", y_test) print("Predicted:", y_pred) # ### Show Accuracy Score and Confusion Matrix print("Accuracy Score:", accuracy_score(y_test, y_pred)) # in your classification, Bayesian approaches like this can be a useful approach. # -----performance..... Confusion Matrix (actual, predicted) cm_GNB = confusion_matrix(y_test, y_pred) print("Confusion matrix (y_test,y_pred\n", cm_GNB) from sklearn import metrics import matplotlib.pyplot as plt # Receiver Operating Characteristic (ROC) fpr, tpr, _ = metrics.roc_curve(y_test, y_pred) auc = metrics.roc_auc_score(y_test, y_pred) # create ROC curve plt.plot(fpr, tpr, label="AUC=" + str(auc)) plt.legend(loc=4) plt.title("Gaussian Naive Bayes - ROC( Receiver Operating Characteristic) curve") plt.show() print(auc) print(fpr, "\n", tpr, "\n", _) # # Making Final Predictions for Submittal # ### test_data column names: # * PassengerId # * Pclass # * Age # * SibSp # * Parch # * Fare # * family_size # * master-male-child # * miss-female-child # * mr-male-adult # * mrs-female-adult # * sex-female # * sex-male test_data_scaled # ### The test_data needs to be converted back into a data frame to review the null values. # defining array column names and assigning to a dataframe. test_data_scaled = pd.DataFrame( test_data_scaled, columns=[ "PassengerId", "Pclass", "Age", "SibSp", "Parch", "Fare", "family_size", "master-male-child", "miss-female-child", "mr-male-adult", "mrs-female-adult", "sex-female", "sex-male", ], ) test_data_scaled.head(10) # Checking for Null records before submitting # Removing 1 null record in the test_data. Check_Dataframe_for_Null_Values(test_data_scaled) test_data_scaled["Fare"].describe().loc[["mean"]] # Updated Fare to a Mean Value - It can't be deleted or the competition entry will fail. # Find just the mean Fare value and put it in a variable. f_mean = test_data_scaled.loc[:, "Fare"].mean() f_mean # Update test_data null values with mean Fare. test_data_scaled["Fare"].fillna(f_mean, inplace=True) # Verifying Check_Dataframe_for_Null_Values(test_data_scaled) # I need to drop passenger id since I'm not using it as an independent variable. test_data_GNB = test_data_scaled.drop( [ "PassengerId", ], axis=1, ) # Generate predictions for competition. predictions = GNB_model.predict(test_data_GNB) print("Predictions for Submittal:", predictions) test_data.info() # I need to include the Passenger ID that is not scaled so we are using the original test_data dataframe. output = pd.DataFrame({"PassengerId": test_data.PassengerId, "Survived": predictions}) output.to_csv("submission.csv", index=False) print("Your submission was successfully saved!")
import numpy as np import pandas as pd # from sklearn import * from sklearn.naive_bayes import GaussianNB from sklearn.metrics import accuracy_score import glob def get_id(file): return file.split("/")[-1].split(".")[0] def build_submission(files, model, features): submission = [] for file in files: df = pd.read_csv(file) df["Id"] = get_id(file) # df = df.fillna(0).reset_index(drop=True) res = pd.DataFrame( np.round(model.predict(df[features]), 3), columns=["StartHesitation", "Turn", "Walking"], ) df = pd.concat([df, res], axis=1) # df['Id'] = df['Id'].astype(str) + '_' + df['Time'].astype(str) submission.append(df[["Id", "StartHesitation", "Turn", "Walking"]]) count = 0 # def get_file_data(file): def get_file_data(datasets): data_frames = [] count = 0 for file in datasets: if count > 30: break # print(file) df = pd.read_csv(file) df["Id"] = get_id(file) df["Type"] = file.split("/")[-2] # filter out rows where either Valid or Task is false # try: # df = df[(df['Valid'] == True) & (df['Task'] == True)] # except: # print("D") data_frames.append(df) count = count + 1 return pd.concat(data_frames) train = glob.glob( "/kaggle/input/tlvmc-parkinsons-freezing-gait-prediction/train/defog/**" ) test = glob.glob("/kaggle/input/tlvmc-parkinsons-freezing-gait-prediction/test/**/**") subjects = pd.read_csv( "/kaggle/input/tlvmc-parkinsons-freezing-gait-prediction/subjects.csv" ) tasks = pd.read_csv("/kaggle/input/tlvmc-parkinsons-freezing-gait-prediction/tasks.csv") # train train_data = get_file_data(train) test_data = get_file_data(test) train_data test_data print(train_data.columns) # print(subjects.columns) print(tasks.columns) print(test_data.columns) print("Merge taining") train_data = pd.merge(train_data, tasks, on="Id") train_data print("merge testing") test_data = pd.merge(test_data, tasks, on="Id") test_data print("training") X = train_data[["AccV", "AccML", "AccAP"]] X_test = test_data[["AccV", "AccML", "AccAP"]] y = train_data["Valid"].values.ravel() y_test = test_data[["Task"]] # print(train_data.shape) # print(test_data.shape) # print(X.shape, y.shape) print("Model area") nb = GaussianNB() nb.fit(X, y) y_pred = nb.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print("Naive Bayes accuracy:", accuracy) path = "/kaggle/input/tlvmc-parkinsons-freezing-gait-prediction/" sub = pd.read_csv(path + "sample_submission.csv") test = glob.glob(path + "test/**/**") count = 0 sub["t"] = 0 submission = [] for f in test: print("Working test ", count) if count > 30: break count = count + 1 df = pd.read_csv(f) df["Id"] = f.split("/")[-1].split(".")[0] df = df.fillna(0).reset_index(drop=True) res = nb.predict(df[["AccV", "AccML", "AccAP"]]) n = len(res) if n % 3 != 0: res = np.concatenate([res, np.zeros(3 - n % 3)]) res = res.reshape(-1, 3).astype("float64") res = pd.DataFrame(res, columns=["StartHesitation", "Turn", "Walking"]) df = pd.concat([df, res], axis=1) df["Id"] = df["Id"].astype(str) + "_" + df["Time"].astype(str) submission.append(df[["Id", "StartHesitation", "Turn", "Walking"]]) submission = pd.concat(submission) submission = pd.merge(sub[["Id", "t"]], submission, how="left", on="Id").fillna(0.0) submission[["Id", "StartHesitation", "Turn", "Walking"]].to_csv( "submission.csv", index=False )
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import missingno from sklearn.preprocessing import LabelEncoder, OneHotEncoder from sklearn.impute import KNNImputer from sklearn.metrics import ( roc_auc_score, roc_curve, accuracy_score, confusion_matrix, log_loss, plot_roc_curve, auc, precision_recall_curve, ) from sklearn.cluster import KMeans from sklearn.model_selection import StratifiedKFold from sklearn.svm import SVC from sklearn.linear_model import LogisticRegression from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.ensemble import RandomForestClassifier from xgboost import XGBClassifier from functools import partial from skopt import gp_minimize from skopt import space from skopt.plots import plot_convergence sns.set_style("whitegrid") import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) import warnings warnings.filterwarnings("ignore") df_train = pd.read_csv( "../input/hr-analytics-job-change-of-data-scientists/aug_train.csv" ) df_test = pd.read_csv( "../input/hr-analytics-job-change-of-data-scientists/aug_test.csv" ) df_train.head() df_test.head() df_train.info() df_test.info() import matplotlib.pyplot as plt import seaborn as sns plt.figure(figsize=(10, 6)) ax = sns.countplot(x="company_type", data=df_train[df_train["target"] == 1]) plt.xticks(rotation=45, ha="right") plt.xlabel("Company Type") plt.ylabel("Count") total = len(df_train[df_train["target"] == 1]) for p in ax.patches: percentage = "{:.1f}%".format(100 * p.get_height() / total) x = p.get_x() + p.get_width() / 2 - 0.1 y = p.get_height() + 10 ax.annotate(percentage, (x, y), size=12) plt.show() import matplotlib.pyplot as plt import seaborn as sns plt.figure(figsize=(10, 6)) ax = sns.countplot(x="company_size", data=df_train[df_train["target"] == 1]) plt.xlabel("Company Size") plt.ylabel("Count") total = len(df_train[df_train["target"] == 1]) for p in ax.patches: percentage = "{:.1f}%".format(100 * p.get_height() / total) x = p.get_x() + p.get_width() / 2 - 0.1 y = p.get_height() + 10 ax.annotate(percentage, (x, y), size=12) plt.show() plt.figure(figsize=(10, 6)) ax = sns.countplot(x="education_level", data=df_train[df_train["target"] == 1]) plt.xlabel("Education Level") plt.ylabel("Count") total = len(df_train[df_train["target"] == 1]) for p in ax.patches: percentage = "{:.1f}%".format(100 * p.get_height() / total) x = p.get_x() + p.get_width() / 2 - 0.1 y = p.get_height() + 10 ax.annotate(percentage, (x, y), size=12) plt.show() plt.figure(figsize=(10, 6)) ax = sns.countplot(x="relevent_experience", data=df_train[df_train["target"] == 1]) plt.xlabel("Relevant Experience") plt.ylabel("Count") total = len(df_train[df_train["target"] == 1]) for p in ax.patches: percentage = "{:.1f}%".format(100 * p.get_height() / total) x = p.get_x() + p.get_width() / 2 - 0.1 y = p.get_height() + 10 ax.annotate(percentage, (x, y), size=12) plt.show() plt.figure(figsize=(10, 6)) ax = sns.countplot(x="relevent_experience", data=df_train[df_train["target"] == 1]) plt.xlabel("Relevant Experience") plt.ylabel("Count") total = len(df_train[df_train["target"] == 1]) for p in ax.patches: percentage = "{:.1f}%".format(100 * p.get_height() / total) x = p.get_x() + p.get_width() / 2 - 0.1 y = p.get_height() + 10 ax.annotate(percentage, (x, y), size=12) plt.show() plt.figure(figsize=(10, 6)) ax = sns.countplot(x="enrolled_university", data=df_train[df_train["target"] == 1]) plt.xlabel("Enrolled University") plt.ylabel("Count") total = len(df_train[df_train["target"] == 1]) for p in ax.patches: percentage = "{:.1f}%".format(100 * p.get_height() / total) x = p.get_x() + p.get_width() / 2 - 0.1 y = p.get_height() + 10 ax.annotate(percentage, (x, y), size=12) plt.show() plt.figure(figsize=(10, 6)) ax = sns.countplot(x="major_discipline", data=df_train[df_train["target"] == 1]) plt.xlabel("Major Discipline") plt.ylabel("Count") total = len(df_train[df_train["target"] == 1]) for p in ax.patches: percentage = "{:.1f}%".format(100 * p.get_height() / total) x = p.get_x() + p.get_width() / 2 - 0.1 y = p.get_height() + 10 ax.annotate(percentage, (x, y), size=12) plt.show() df_train2 = df_train.copy() experience_map = { "<1": "0-5", "1": "0-5", "2": "0-5", "3": "0-5", "4": "0-5", "5": "0-5", "6": "6-10", "7": "6-10", "8": "6-10", "9": "6-10", "10": "6-10", "11": "11-15", "12": "11-15", "13": "11-15", "14": "11-15", "15": "11-15", "16": "16-20", "17": "16-20", "18": "16-20", "19": "16-20", "20": "16-20", ">20": ">20", } df_train2.loc[:, "experience"] = df_train2["experience"].map(experience_map) category_order = ["0-5", "6-10", "11-15", "16-20", ">20"] plt.figure(figsize=(10, 6)) ax = sns.countplot( x="experience", data=df_train2[df_train2["target"] == 1], order=category_order ) plt.xlabel("Experience") plt.ylabel("Count") total = len(df_train2[df_train2["target"] == 1]) for p in ax.patches: percentage = "{:.1f}%".format(100 * p.get_height() / total) x = p.get_x() + p.get_width() / 2 - 0.1 y = p.get_height() + 10 ax.annotate(percentage, (x, y), size=12) plt.show() plt.figure(figsize=(10, 6)) ax = sns.countplot(x="gender", data=df_train[df_train["target"] == 1]) plt.xlabel("Gender") plt.ylabel("Percentage") total = len(df_train[df_train["target"] == 1]) for p in ax.patches: percentage = "{:.1f}%".format(100 * p.get_height() / total) x = p.get_x() + p.get_width() / 2 - 0.1 y = p.get_height() + 10 ax.annotate(percentage, (x, y), size=12) plt.show() plt.figure(figsize=(10, 6)) ax = sns.countplot(x="last_new_job", data=df_train[df_train["target"] == 1]) plt.xlabel("Last New Job") plt.ylabel("Percentage") total = len(df_train[df_train["target"] == 1]) for p in ax.patches: percentage = "{:.1f}%".format(100 * p.get_height() / total) x = p.get_x() + p.get_width() / 2 - 0.1 y = p.get_height() + 10 ax.annotate(percentage, (x, y), size=12) plt.show() df_test["target"] = -1 # ทำเป้น -1 df_pre = pd.concat([df_train, df_test], axis=0).reset_index(drop=True) df_test.head() df_pre.info() # # **Label Encoding** refers to converting the labels into numeric form so as to convert it into the machine-readable form. Machine learning algorithms can then decide in a better way on how those labels must be operated. It is an important pre-processing step for the structured dataset in supervised learning. # ![](https://ekababisong.org/assets/seminar_IEEE/LabelEncoder.png) # We can do label Encoding From LabelEncoder of scikit-Learn but to do so first we have to impute missing values in data from sklearn.preprocessing import LabelEncoder df_lb = df_pre.copy() df_lb["education_level"].value_counts() # Fill nan values df_lb.loc[:, "education_level"] = df_lb["education_level"].fillna("NONE") # In above code cell i just create null values as new category "NONE" # initialize LabelEncoder lbl_enc = LabelEncoder() # one hot encoder df_lb.loc[:, "education_level"] = lbl_enc.fit_transform(df_lb["education_level"].values) df_lb["education_level"].value_counts() # Making Dictionaries of ordinal features gender_map = {"Female": 2, "Male": 1, "Other": 0} relevent_experience_map = {"Has relevent experience": 1, "No relevent experience": 0} enrolled_university_map = { "no_enrollment": 0, "Full time course": 1, "Part time course": 2, } education_level_map = { "Primary School": 0, "Graduate": 2, "Masters": 3, "High School": 1, "Phd": 4, } major_map = { "STEM": 0, "Business Degree": 1, "Arts": 2, "Humanities": 3, "No Major": 4, "Other": 5, } experience_map = { "<1": 0, "1": 1, "2": 2, "3": 3, "4": 4, "5": 5, "6": 6, "7": 7, "8": 8, "9": 9, "10": 10, "11": 11, "12": 12, "13": 13, "14": 14, "15": 15, "16": 16, "17": 17, "18": 18, "19": 19, "20": 20, ">20": 21, } company_type_map = { "Pvt Ltd": 0, "Funded Startup": 1, "Early Stage Startup": 2, "Other": 3, "Public Sector": 4, "NGO": 5, } company_size_map = { "<10": 0, "10/49": 1, "100-500": 2, "1000-4999": 3, "10000+": 4, "50-99": 5, "500-999": 6, "5000-9999": 7, } last_new_job_map = {"never": 0, "1": 1, "2": 2, "3": 3, "4": 4, ">4": 5} # Transforming Categorical features into numarical features df_pre.loc[:, "education_level"] = df_pre["education_level"].map(education_level_map) df_pre.loc[:, "company_size"] = df_pre["company_size"].map(company_size_map) df_pre.loc[:, "company_type"] = df_pre["company_type"].map(company_type_map) df_pre.loc[:, "last_new_job"] = df_pre["last_new_job"].map(last_new_job_map) df_pre.loc[:, "major_discipline"] = df_pre["major_discipline"].map(major_map) df_pre.loc[:, "enrolled_university"] = df_pre["enrolled_university"].map( enrolled_university_map ) df_pre.loc[:, "relevent_experience"] = df_pre["relevent_experience"].map( relevent_experience_map ) df_pre.loc[:, "gender"] = df_pre["gender"].map(gender_map) df_pre.loc[:, "experience"] = df_pre["experience"].map(experience_map) # encoding city feature using label encoder lb_en = LabelEncoder() df_pre.loc[:, "city"] = lb_en.fit_transform(df_pre.loc[:, "city"]) df_pre.head() df_pre.info() colors = [ "#E1FEFE", "#E3EBFD", "#E7DCFC", "#E0C7EE", "#F8D5F8", "#E0E0F3", "#D4D2F2", "#D4D2F2", "#E5D0E2", "#F5E8F7", "#FFF5ED", "#FAE0D8", "#F0F4BF", "#DFE1BE", ] missingno.bar(df_pre, color=colors, sort="ascending", figsize=(10, 5), fontsize=12) # Just to check number of null values of every column in data for col in df_pre.columns: null_val = df_pre[col].isnull().sum() null_prec = (null_val * 100) / df_pre.shape[0] print("> %s , Missing: %d (%.1f%%)" % (col, null_val, null_prec)) missingno.heatmap(df_pre, cmap="RdYlGn", figsize=(10, 5), fontsize=12) df_pre1 = df_pre.copy() knn_imputer = KNNImputer(n_neighbors=3) X = np.round(knn_imputer.fit_transform(df_pre1)) df_pre1 = pd.DataFrame(X, columns=df_pre1.columns) df_pre1.info() df_pre1.head() plt.figure(figsize=(15, 8)) plt.title("Before Imputation") df_pre["city_development_index"].plot(kind="kde") plt.show() plt.figure(figsize=(15, 8)) plt.title("After Imputation") df_pre1["city_development_index"].plot(kind="kde") plt.show() # So rather than using imputation on whole dataset just use it on those features having missing values. # missing columns missing_cols = df_pre.columns[df_pre.isna().any()].tolist() missing_cols # Above shown columns have missing values and all 8 are categorical features # Now i would like make two different dataframes one having features with missing values and second having features without missing values. But there will be one common column enrollee_id so that later we can perform inner join on both dataframes # dataframe having features with missing values df_missing = df_pre[["enrollee_id"] + missing_cols] # dataframe having features without missing values df_non_missing = df_pre.drop(missing_cols, axis=1) # k-Nearest Neighbour Imputation knn_imputer = KNNImputer(n_neighbors=3) X = np.round(knn_imputer.fit_transform(df_missing)) # Rounding them because these are categorical features df_missing = pd.DataFrame(X, columns=df_missing.columns) # now lets join both dataframes df_pre2 = pd.merge(df_missing, df_non_missing, on="enrollee_id") # If you remember i did concatenation between train and test data before preprocessing. Now after preprocessing of data we can seprate train and test data train = df_pre2[df_pre2["target"] != -1].reset_index(drop=True) test = df_pre2[df_pre2["target"] == -1].reset_index(drop=True) X = train.drop(["enrollee_id", "target"], axis=1) Y = train["target"] # drop fake target feature from test data test = test.drop("target", axis=1) sns.countplot(train["target"], edgecolor="black") # # Model # In this notebook i would like to use [Extreme Gradient Boosting (XGBoost)](https://machinelearningmastery.com/extreme-gradient-boosting-ensemble-in-python/) Classifier from sklearn.model_selection import train_test_split X_train, X_val, y_train, y_val = train_test_split(X, Y, test_size=0.2, random_state=42) clf = XGBClassifier() clf.fit(X_train, y_train) y_train_pred = clf.predict_proba(X_train) y_train_pred_pos = y_train_pred[:, 1] y_val_pred = clf.predict_proba(X_val) y_val_pred_pos = y_val_pred[:, 1] auc_train = roc_auc_score(y_train, y_train_pred_pos) auc_test = roc_auc_score(y_val, y_val_pred_pos) print(f"Train AUC Score {auc_train}") print(f"Test AUC Score {auc_test}") fpr, tpr, _ = roc_curve(y_val, y_val_pred_pos) # Let's plot AUC Curve def plot_auc_curve(fpr, tpr, auc): plt.figure(figsize=(16, 6)) plt.plot(fpr, tpr, "b+", linestyle="-") plt.fill_between(fpr, tpr, alpha=0.5) plt.ylabel("True Postive Rate") plt.xlabel("False Postive Rate") plt.title(f"ROC Curve Having AUC = {auc}") plot_auc_curve(fpr, tpr, auc_test) # funtion to plot learning curves def plot_learning_cuve(model, X, Y): x_train, x_test, y_train, y_test = train_test_split( X, Y, test_size=0.2, random_state=11 ) train_loss, test_loss = [], [] for m in range(200, len(x_train), 200): model.fit(x_train.iloc[:m, :], y_train[:m]) y_train_prob_pred = model.predict_proba(x_train.iloc[:m, :]) train_loss.append(log_loss(y_train[:m], y_train_prob_pred)) y_test_prob_pred = model.predict_proba(x_test) test_loss.append(log_loss(y_test, y_test_prob_pred)) plt.figure(figsize=(15, 8)) plt.plot(train_loss, "r-+", label="Training Loss") plt.plot(test_loss, "b-", label="Test Loss") plt.xlabel("Number Of Batches") plt.ylabel("Log-Loss") plt.legend(loc="best") plt.show() plot_learning_cuve(XGBClassifier(), X, Y) # It's a high variance problem sns.countplot(Y, edgecolor="black", palette=["#96deff", "#ffa3ed"]) # # Oversampling using SMOTE # [SMOTE for Imbalanced Classification](https://machinelearningmastery.com/smote-oversampling-for-imbalanced-classification/)\ # [SMOTE implementation](https://imbalanced-learn.org/stable/generated/imblearn.over_sampling.SMOTE.html) from imblearn.over_sampling import SMOTE smote = SMOTE(random_state=402) X_smote, Y_smote = smote.fit_resample(X, Y) sns.countplot(Y_smote, edgecolor="black") print(X_smote.shape) X_train, X_val, y_train, y_val = train_test_split( X_smote, Y_smote, test_size=0.2, random_state=42 ) clf = XGBClassifier() clf.fit(X_train, y_train) y_train_pred = clf.predict_proba(X_train) y_train_pred_pos = y_train_pred[:, 1] y_val_pred = clf.predict_proba(X_val) y_val_pred_pos = y_val_pred[:, 1] auc_train = roc_auc_score(y_train, y_train_pred_pos) auc_test = roc_auc_score(y_val, y_val_pred_pos) print(f"Train AUC Score {auc_train}") print(f"Test AUC Score {auc_test}") plot_learning_cuve(XGBClassifier(), X_smote, Y_smote) # Let's try to increase more data to conquer overfitting using SMOTE smote = SMOTE(random_state=446) X_smote1, Y_smote1 = smote.fit_resample(X, Y) X_final = pd.concat([X_smote, X_smote1], axis=0).reset_index(drop=True) Y_final = pd.concat([Y_smote, Y_smote1], axis=0).reset_index(drop=True) sns.countplot(Y_final, edgecolor="black") print(X_final.shape) X_train, X_val, y_train, y_val = train_test_split( X_final, Y_final, test_size=0.2, random_state=42 ) clf = XGBClassifier() clf.fit(X_train, y_train) y_train_pred = clf.predict_proba(X_train) y_train_pred_pos = y_train_pred[:, 1] y_val_pred = clf.predict_proba(X_val) y_val_pred_pos = y_val_pred[:, 1] auc_train = roc_auc_score(y_train, y_train_pred_pos) auc_test = roc_auc_score(y_val, y_val_pred_pos) print(f"Train AUC Score {auc_train}") print(f"Test AUC Score {auc_test}") plot_learning_cuve(XGBClassifier(), X_final, Y_final) ####################### from sklearn.metrics import f1_score y_val_pred_bin = [1 if x >= 0.5 else 0 for x in y_val_pred_pos] # calculate f1 score f1 = f1_score(y_val, y_val_pred_bin) print(f"F1 score: {f1}") from sklearn.metrics import precision_recall_curve y_val_pred_pos = clf.predict_proba(X_val)[:, 1] precision, recall, thresholds = precision_recall_curve(y_val, y_val_pred_pos) plt.figure(figsize=(8, 6)) plt.plot(recall, precision, color="blue", linewidth=2) plt.xlabel("Recall", fontsize=14) plt.ylabel("Precision", fontsize=14) plt.title("Precision-Recall Curve", fontsize=16) plt.show() import matplotlib.pyplot as plt from sklearn.metrics import plot_precision_recall_curve, plot_roc_curve # Precision-Recall Curve plot_precision_recall_curve(clf, X_val, y_val) plt.title("Precision-Recall Curve") # ROC Curve plot_roc_curve(clf, X_val, y_val) plt.title("Receiver Operating Characteristic (ROC) Curve") from sklearn.metrics import confusion_matrix import xgboost as xgb model = xgb.XGBClassifier() model.fit(X_train, y_train) y_train_pred = model.predict(X_train) y_val_pred = model.predict(X_val) tn, fp, fn, tp = confusion_matrix(y_val, y_val_pred).ravel() print("True Negative: ", tn) print("False Positive: ", fp) print("False Negative: ", fn) print("True Positive: ", tp) cols_to_plot = ["enrollee_id", "gender", "experience"] import matplotlib.pyplot as plt for col in cols_to_plot: fig, ax = plt.subplots(figsize=(10, 5)) ax = sns.countplot(x="target", hue=col, data=df_pre2) ax.set_title(f"Target vs {col}") plt.show() import matplotlib.pyplot as plt import seaborn as sns # Plot target vs last_new_job plt.figure(figsize=(10, 6)) sns.countplot(x="target", hue="last_new_job", data=df_pre2) # Plot target vs city plt.figure(figsize=(10, 6)) sns.countplot(x="target", hue="city", data=df_pre2) # Plot target vs gender plt.figure(figsize=(10, 6)) sns.countplot(x="target", hue="gender", data=df_pre2) # Plot target vs experience plt.figure(figsize=(10, 6)) sns.boxplot(x="target", y="experience", data=df_pre2) # Plot target vs city_development_index plt.figure(figsize=(10, 6)) sns.boxplot(x="target", y="city_development_index", data=df_pre2) # Plot target vs major_discipline plt.figure(figsize=(10, 6)) sns.countplot(x="target", hue="major_discipline", data=df_pre2) # Plot target vs enrolled_university plt.figure(figsize=(10, 6)) sns.countplot(x="target", hue="enrolled_university", data=df_pre2) import seaborn as sns import matplotlib.pyplot as plt sns.countplot(x="target", hue="relevent_experience", data=df_pre2) plt.show() # Plot target vs relevant_experience plt.figure(figsize=(10, 6)) sns.countplot(x="target", hue="relevent_experience", data=df_pre2) # Plot target vs education_level plt.figure(figsize=(10, 6)) sns.countplot(x="target", hue="education_level", data=df_pre2) # Plot target vs company_size plt.figure(figsize=(10, 6)) sns.countplot(x="target", hue="company_size", data=df_pre2) # Plot target vs enrollee_id plt.figure(figsize=(10, 6)) sns.countplot(x="target", hue="enrollee_id", data=df_pre2) # Plot target vs company_type plt.figure(figsize=(10, 6)) sns.countplot(x="target", hue="company_type", data=df_pre2) # Plot target vs training_hours plt.figure(figsize=(10, 6)) sns.boxplot(x="target", y="training_hours", data=df_pre2)
# # Speech Emotion Recognition # ### Algorithm used: # * Gradient Boosting # * Decision Tree # * Gaussian Naive Bayes # * MLP Classifier # * Random Forest # * AdaBoost # * KNN # * Logistic Regression # * Support Vector Machine (RBF & Linear) # * Stochastic Gradient Descent # ### Databases used # * Toronto emotional speech set (TESS) # ### Reference # * [Recognizing Speech Emotion Based on Acoustic # Features Using Machine Learning](https://aiubedu60714-my.sharepoint.com/personal/manjurul_aiub_edu/Documents/Microsoft%20Teams%20Chat%20Files/Recognizing_Speech_Emotion_Based_on_Acoustic_Features_Using_Machine_Learning.pdf) # ### Import Libraries # Import necessary libraries import glob import os import librosa import time import seaborn as sns import numpy as np import pandas as pd from tqdm import tqdm tess_emotions = ["angry", "disgust", "fear", "happy", "neutral", "ps", "sad"] def extract_feature(file_name): X, sample_rate = librosa.load(os.path.join(file_name), res_type="kaiser_fast") result = np.array([]) stft = np.abs(librosa.stft(X)) chromas = np.mean(librosa.feature.chroma_stft(S=stft, sr=sample_rate).T, axis=0) result = np.hstack((result, chromas)) mfccs = np.mean(librosa.feature.mfcc(y=X, sr=sample_rate, n_mfcc=40).T, axis=0) result = np.hstack((result, mfccs)) mels = np.mean( librosa.feature.melspectrogram(y=X, sr=sample_rate, n_mels=128).T, axis=0 ) result = np.hstack((result, mels)) return result def load_data(): sound, emo = [], [] for file in glob.glob( "/kaggle/input/toronto-emotional-speech-set-tess/tess toronto emotional speech set data/TESS Toronto emotional speech set data/*AF_*/*.wav" ): file_name = os.path.basename(file) emotion = file_name.split("_")[2][:-4] # split and remove .wav sound.append(file) emo.append(emotion) return {"file": sound, "emotion": emo} start_time = time.time() Trial_dict = load_data() print("--- Data loaded. Loading time: %s seconds ---" % (time.time() - start_time)) X = pd.DataFrame(Trial_dict["file"]) y = pd.DataFrame(Trial_dict["emotion"]) X.shape, y.shape y.value_counts() # X_features = X[0].swifter.progress_bar(enable=True).apply(lambda x: extract_feature(x)) X_features = [] for x in tqdm(X[0]): # print(x) X_features.append(extract_feature(x)) X_features = pd.DataFrame(X_features) # renaming the label column to emotion y = y.rename(columns={0: "emotion"}) # concatinating the attributes and label into a single dataframe data = pd.concat([X_features, y], axis=1) data.head() # ## Shuffling data#reindexing to shuffle the data at random # data = data.reindex(np.random.permutation(data.index)) # reindexing to shuffle the data at random data = data.reindex(np.random.permutation(data.index)) # Storing shuffled ravdess and tess data to avoid loading again data.to_csv("TESS_FEATURES.csv") starting_time = time.time() data = pd.read_csv("./TESS_FEATURES.csv") print("data loaded in " + str(time.time() - starting_time) + "ms") print(data.head()) data.shape # printing all columns data.columns # dropping the column Unnamed: 0 to removed shuffled index data = data.drop("Unnamed: 0", axis=1) data.columns # separating features and target outputs X = data.drop("emotion", axis=1).values y = data["emotion"].values print(y) import pandas as pd import numpy as np import matplotlib.pyplot as plt X.shape, y.shape np.unique(y) # # Importing sklearn libraries from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report, confusion_matrix, accuracy_score from sklearn.preprocessing import StandardScaler from sklearn.pipeline import Pipeline # # Cross Validation Parameters from sklearn.model_selection import RepeatedStratifiedKFold from sklearn.model_selection import cross_val_score, cross_validate, cross_val_predict X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.50, random_state=0 ) cv = RepeatedStratifiedKFold(n_splits=5, n_repeats=10) # # SVC - RBF from sklearn.svm import SVC svclassifier = SVC(kernel="rbf") # ### Without Scaling # Accuracy should be lower than scaled import time starting_time = time.time() svclassifier.fit(X_train, y_train) print("Trained model in %s ms " % str(time.time() - starting_time)) train_acc = float(svclassifier.score(X_train, y_train) * 100) print("----train accuracy score %s ----" % train_acc) test_acc = float(svclassifier.score(X_test, y_test) * 100) print("----test accuracy score %s ----" % test_acc) # ### With Scaling # Setup the pipeline steps: steps steps = [("scaler", StandardScaler()), ("SVM", SVC(kernel="rbf"))] # Create the pipeline: pipeline pipeline = Pipeline(steps) # Fit the pipeline to the training set: svc_scaled svc_scaled = pipeline.fit(X_train, y_train) # Compute and print metrics print("Accuracy with Scaling: {}".format(svc_scaled.score(X_test, y_test))) # ### Cross Validation cv_results2 = cross_val_score(pipeline, X, y, cv=cv, n_jobs=-1) print(cv_results2) print("Average:", np.average(cv_results2)) # ### Generalization check train_acc = float(svc_scaled.score(X_train, y_train) * 100) print("----train accuracy score %s ----" % train_acc) test_acc = float(svc_scaled.score(X_test, y_test) * 100) print("----test accuracy score %s ----" % test_acc) scaled_predictions = svc_scaled.predict(X_test) # ### Classification reports and Confusion Matrix print(classification_report(y_test, scaled_predictions)) acc = float(accuracy_score(y_test, scaled_predictions)) * 100 print("----accuracy score %s ----" % acc) cm = confusion_matrix(y_test, scaled_predictions) ax = plt.subplot() sns.heatmap(cm, annot=True, fmt="g", ax=ax) # labels, title and ticks ax.set_xlabel("Predicted labels") ax.set_ylabel("True labels") ax.set_title("Confusion Matrix (SVM - RBF)") ax.xaxis.set_ticklabels(tess_emotions) ax.yaxis.set_ticklabels(tess_emotions) # # SVM - Linear from sklearn.svm import LinearSVC steps2 = [("scaler", StandardScaler()), ("LinearSVM", LinearSVC())] svml = Pipeline(steps2) svml_res = svml.fit(X_train, y_train) print("Accuracy with Scaling: {}".format(svml.score(X_test, y_test))) svml_train_acc = float(svml_res.score(X_train, y_train) * 100) print("----train accuracy score %s ----" % svml_train_acc) svml_test_acc = float(svml_res.score(X_test, y_test) * 100) print("----test accuracy score %s ----" % svml_test_acc) svml_score = cross_val_score(svml, X, y, cv=cv, n_jobs=-1) print(svml_score) print("Average:", np.average(svml_score)) svml_pred = svml_res.predict(X_test) print(svml_pred) print(classification_report(y_test, svml_pred)) acc_svml = float(accuracy_score(y_test, svml_pred)) * 100 print("----accuracy score %s ----" % acc_svml) cm_svml = confusion_matrix(y_test, svml_pred) # df_cm_svml = pd.DataFrame(cm_svml) # sn.heatmap(df_cm_svml, annot=True, fmt='') # plt.show() ax = plt.subplot() sns.heatmap(cm_svml, annot=True, fmt="g", ax=ax) # labels, title and ticks ax.set_xlabel("Predicted labels") ax.set_ylabel("True labels") ax.set_title("Confusion Matrix (SVM - Linear)") ax.xaxis.set_ticklabels(tess_emotions) ax.yaxis.set_ticklabels(tess_emotions) # # Random Forest from sklearn.ensemble import RandomForestClassifier rfm = RandomForestClassifier() rfm_score = cross_val_score(rfm, X, y, cv=cv, n_jobs=-1) print(rfm_score) print("Average:", np.average(rfm_score)) rfm_res = rfm.fit(X_train, y_train) rfm_train_acc = float(rfm_res.score(X_train, y_train) * 100) print("----train accuracy score %s ----" % rfm_train_acc) rfm_test_acc = float(rfm_res.score(X_test, y_test) * 100) print("----test accuracy score %s ----" % rfm_test_acc) rfm_pred = rfm_res.predict(X_test) print(classification_report(y_test, rfm_pred)) acc = float(accuracy_score(y_test, rfm_pred)) * 100 print("----accuracy score %s ----" % acc) cm_rfm = confusion_matrix(y_test, rfm_pred) ax = plt.subplot() sns.heatmap(cm_rfm, annot=True, fmt="g", ax=ax) # labels, title and ticks ax.set_xlabel("Predicted labels") ax.set_ylabel("True labels") ax.set_title("Confusion Matrix (Random Forest)") ax.xaxis.set_ticklabels(tess_emotions) ax.yaxis.set_ticklabels(tess_emotions) # # Naive Bayes from sklearn.naive_bayes import GaussianNB nbm = GaussianNB().fit(X_train, y_train) nbm_train_acc = float(nbm.score(X_train, y_train) * 100) print("----train accuracy score %s ----" % nbm_train_acc) nbm_test_acc = float(nbm.score(X_test, y_test) * 100) print("----test accuracy score %s ----" % nbm_train_acc) nbm_score = cross_val_score(nbm, X, y, cv=cv, n_jobs=-1) print(nbm_score) print("Average:", np.average(nbm_score)) nbm_pred = nbm.predict(X_test) print(nbm_pred) print(classification_report(y_test, nbm_pred)) acc_nbm = float(accuracy_score(y_test, nbm_pred)) * 100 print("----accuracy score %s ----" % acc_nbm) cm_nbm = confusion_matrix(y_test, nbm_pred) ax = plt.subplot() sns.heatmap(cm_nbm, annot=True, fmt="g", ax=ax) # labels, title and ticks ax.set_xlabel("Predicted labels") ax.set_ylabel("True labels") ax.set_title("Confusion Matrix (Gaussian Naive Bayes)") ax.xaxis.set_ticklabels(tess_emotions) ax.yaxis.set_ticklabels(tess_emotions) # # Logistic Regression # [Resource](https://www.datacamp.com/tutorial/understanding-logistic-regression-python) from sklearn.linear_model import LogisticRegression lrm = LogisticRegression(solver="liblinear").fit(X_train, y_train) lrm_train_acc = float(lrm.score(X_train, y_train) * 100) print("----train accuracy score %s ----" % lrm_train_acc) lrm_test_acc = float(lrm.score(X_test, y_test) * 100) print("----test accuracy score %s ----" % lrm_train_acc) lrm_score = cross_val_score(lrm, X, y, cv=cv, n_jobs=-1) print(lrm_score) print("Average:", np.average(lrm_score)) lrm_pred = lrm.predict(X_test) print(lrm_pred) print(classification_report(y_test, lrm_pred)) acc_lrm = float(accuracy_score(y_test, lrm_pred)) * 100 print("----accuracy score %s ----" % acc_lrm) cm_lrm = confusion_matrix(y_test, lrm_pred) ax = plt.subplot() sns.heatmap(cm_lrm, annot=True, fmt="g", ax=ax) # labels, title and ticks ax.set_xlabel("Predicted labels") ax.set_ylabel("True labels") ax.set_title("Confusion Matrix (Logistic Regression)") ax.xaxis.set_ticklabels(tess_emotions) ax.yaxis.set_ticklabels(tess_emotions) # # Decision Tree from sklearn.tree import DecisionTreeClassifier dtc = DecisionTreeClassifier(max_depth=50) dtc.fit(X_train, y_train) dtc_train_acc = float(dtc.score(X_train, y_train) * 100) print("----train accuracy score %s ----" % dtc_train_acc) dtc_test_acc = float(dtc.score(X_test, y_test) * 100) print("----test accuracy score %s ----" % dtc_train_acc) dtc_score = cross_val_score(dtc, X, y, cv=cv, n_jobs=-1) print(dtc_score) print("Average:", np.average(dtc_score)) dtc_pred = dtc.predict(X_test) print(dtc_pred) print(classification_report(y_test, dtc_pred)) acc_dtc = float(accuracy_score(y_test, dtc_pred)) * 100 print("----accuracy score %s ----" % acc_dtc) cm_dtc = confusion_matrix(y_test, dtc_pred) ax = plt.subplot() sns.heatmap(cm_dtc, annot=True, fmt="g", ax=ax) # labels, title and ticks ax.set_xlabel("Predicted labels") ax.set_ylabel("True labels") ax.set_title("Confusion Matrix (Decision Tree)") ax.xaxis.set_ticklabels(tess_emotions) ax.yaxis.set_ticklabels(tess_emotions) # # AdaBoost from sklearn.ensemble import AdaBoostClassifier abc = AdaBoostClassifier().fit(X_train, y_train) abc_train_acc = float(abc.score(X_train, y_train) * 100) print("----train accuracy score %s ----" % abc_train_acc) abc_test_acc = float(abc.score(X_test, y_test) * 100) print("----test accuracy score %s ----" % abc_train_acc) abc_score = cross_val_score(abc, X, y, cv=cv, n_jobs=-1) print(abc_score) print("Average:", np.average(abc_score)) abc_pred = abc.predict(X_test) print(abc_pred) # print(classification_report(y_test,abc_pred)) acc_abc = float(accuracy_score(y_test, abc_pred)) * 100 print("----accuracy score %s ----" % acc_abc) cm_abc = confusion_matrix(y_test, abc_pred) ax = plt.subplot() sns.heatmap(cm_abc, annot=True, fmt="g", ax=ax) # labels, title and ticks ax.set_xlabel("Predicted labels") ax.set_ylabel("True labels") ax.set_title("Confusion Matrix (AdaBoost)") ax.xaxis.set_ticklabels(tess_emotions) ax.yaxis.set_ticklabels(tess_emotions) # # SGD from sklearn.linear_model import SGDClassifier sgd = SGDClassifier().fit(X_train, y_train) sgd_train_acc = float(sgd.score(X_train, y_train) * 100) print("----train accuracy score %s ----" % sgd_train_acc) sgd_test_acc = float(sgd.score(X_test, y_test) * 100) print("----test accuracy score %s ----" % sgd_train_acc) sgd_score = cross_val_score(sgd, X, y, cv=cv, n_jobs=-1) print(sgd_score) print("Average:", np.average(sgd_score)) sgd_pred = sgd.predict(X_test) print(sgd_pred) # print(classification_report(y_test,abc_pred)) acc_sgd = float(accuracy_score(y_test, sgd_pred)) * 100 print("----accuracy score %s ----" % acc_sgd) cm_sgd = confusion_matrix(y_test, sgd_pred) ax = plt.subplot() sns.heatmap(cm_sgd, annot=True, fmt="g", ax=ax) # labels, title and ticks ax.set_xlabel("Predicted labels") ax.set_ylabel("True labels") ax.set_title("Confusion Matrix (Stochastic Gradient Descent)") ax.xaxis.set_ticklabels(tess_emotions) ax.yaxis.set_ticklabels(tess_emotions) # # Gradient Boosting from sklearn.ensemble import GradientBoostingClassifier gbc = GradientBoostingClassifier().fit(X_train, y_train) gbc_train_acc = float(gbc.score(X_train, y_train) * 100) print("----train accuracy score %s ----" % gbc_train_acc) gbc_test_acc = float(gbc.score(X_test, y_test) * 100) print("----test accuracy score %s ----" % gbc_train_acc) # Very time consuming gbc_score = cross_val_score(gbc, X, y, cv=cv, n_jobs=-1) print(gbc_score) print("Average:", np.average(gbc_score)) gbc_pred = gbc.predict(X_test) print(gbc_pred) print(classification_report(y_test, gbc_pred)) acc_gbc = float(accuracy_score(y_test, gbc_pred)) * 100 print("----accuracy score %s ----" % acc_gbc) cm_gbc = confusion_matrix(y_test, gbc_pred) ax = plt.subplot() sns.heatmap(cm_gbc, annot=True, fmt="g", ax=ax) # labels, title and ticks ax.set_xlabel("Predicted labels") ax.set_ylabel("True labels") ax.set_title("Confusion Matrix (Gradient Boosting)") ax.xaxis.set_ticklabels(tess_emotions) ax.yaxis.set_ticklabels(tess_emotions) # # MLP Classifier from sklearn.neural_network import MLPClassifier steps3 = [("scaler", StandardScaler()), ("MLP", MLPClassifier())] pipeline_mlp = Pipeline(steps3) mlp = pipeline_mlp.fit(X_train, y_train) print("Accuracy with Scaling: {}".format(mlp.score(X_test, y_test))) mlp_train_acc = float(mlp.score(X_train, y_train) * 100) print("----train accuracy score %s ----" % mlp_train_acc) mlp_test_acc = float(mlp.score(X_test, y_test) * 100) print("----test accuracy score %s ----" % mlp_train_acc) mlp_res = cross_val_score(mlp, X, y, cv=cv, n_jobs=-1) print(mlp_res) print("Average:", np.average(mlp_res)) mlp_pred = mlp.predict(X_test) print(mlp_pred) print(classification_report(y_test, mlp_pred)) acc_mlp = float(accuracy_score(y_test, mlp_pred)) * 100 print("----accuracy score %s ----" % acc_mlp) cm_mlp = confusion_matrix(y_test, mlp_pred) ax = plt.subplot() sns.heatmap(cm_mlp, annot=True, fmt="g", ax=ax) # labels, title and ticks ax.set_xlabel("Predicted labels") ax.set_ylabel("True labels") ax.set_title("Confusion Matrix (Multi Layer Perceptron)") ax.xaxis.set_ticklabels(tess_emotions) ax.yaxis.set_ticklabels(tess_emotions) # # KNN from sklearn.neighbors import KNeighborsClassifier steps4 = [("scaler", StandardScaler()), ("KNN", KNeighborsClassifier())] pipeline_knn = Pipeline(steps4) knn = pipeline_mlp.fit(X_train, y_train) print("Accuracy with Scaling: {}".format(knn.score(X_test, y_test))) knn_train_acc = float(knn.score(X_train, y_train) * 100) print("----train accuracy score %s ----" % knn_train_acc) knn_test_acc = float(knn.score(X_test, y_test) * 100) print("----test accuracy score %s ----" % knn_train_acc) knn_res = cross_val_score(knn, X, y, cv=cv, n_jobs=-1) print(knn_res) print("Average:", np.average(knn_res)) knn_pred = knn.predict(X_test) print(knn_pred) print(classification_report(y_test, knn_pred)) acc_knn = float(accuracy_score(y_test, knn_pred)) * 100 print("----accuracy score %s ----" % acc_knn) cm_knn = confusion_matrix(y_test, knn_pred) ax = plt.subplot() sns.heatmap(cm_knn, annot=True, fmt="g", ax=ax) # labels, title and ticks ax.set_xlabel("Predicted labels") ax.set_ylabel("True labels") ax.set_title("Confusion Matrix (K Nearest Neighbour)") ax.xaxis.set_ticklabels(tess_emotions) ax.yaxis.set_ticklabels(tess_emotions) import pandas as pd import numpy as np import os import seaborn as sns import librosa import librosa.display from IPython.display import Audio import tensorflow as tf import keras import warnings warnings.filterwarnings("ignore") import matplotlib.pyplot as plt paths = [] labels = [] for dirname, _, filename in os.walk("/kaggle/input/toronto-emotional-speech-set-tess/"): for filename in filename: paths.append(os.path.join(dirname, filename)) label = filename.split("_")[-1] label = label.split(".")[0] labels.append(label) df = pd.DataFrame() df["speech_data"] = paths df["label"] = labels df.head() # paste here paths = [] labels = [] for dirname, _, filename in os.walk( "/content/drive/MyDrive/TESS Toronto emotional speech set data" ): for filename in filename: paths.append(os.path.join(dirname, filename)) label = filename.split("_")[-1] label = label.split(".")[0] labels.append(label) df = pd.DataFrame() df["speech_data"] = paths df["label"] = labels df.head() df["label"].hist(color="pink") # defining the waveplot and spectogram def waveplot(data, sampling_rate, emotion): plt.figure(figsize=(8, 4)) plt.title(emotion, size=15) librosa.display.waveshow(data, sr=sampling_rate) plt.show() def spectogram(data, sampling_rate, emotion): frequency_domain = librosa.stft(data) freq_db = librosa.amplitude_to_db((frequency_domain)) plt.figure(figsize=(8, 4)) plt.title(emotion, size=15) librosa.display.specshow(freq_db, sr=sampling_rate, x_axis="time", y_axis="hz") plt.colorbar() # calling function waveplot and spectoram on all the emotions [angry ,disgust,fear,happy,neural,pleasent surprised ] emotion = "angry" path = np.array(df["speech_data"][df["label"] == emotion])[0] data, sampling_rate = librosa.load(path) waveplot(data, sampling_rate, emotion) spectogram(data, sampling_rate, emotion) Audio(path) emotion = "disgust" path = np.array(df["speech_data"][df["label"] == emotion])[0] data, sampling_rate = librosa.load(path) waveplot(data, sampling_rate, emotion) spectogram(data, sampling_rate, emotion) Audio(path) emotion = "fear" path = np.array(df["speech_data"][df["label"] == emotion])[0] data, sampling_rate = librosa.load(path) waveplot(data, sampling_rate, emotion) spectogram(data, sampling_rate, emotion) Audio(path) emotion = "happy" path = np.array(df["speech_data"][df["label"] == emotion])[0] data, sampling_rate = librosa.load(path) waveplot(data, sampling_rate, emotion) spectogram(data, sampling_rate, emotion) Audio(path) emotion = "neutral" path = np.array(df["speech_data"][df["label"] == emotion])[0] data, sampling_rate = librosa.load(path) waveplot(data, sampling_rate, emotion) spectogram(data, sampling_rate, emotion) Audio(path) emotion = "ps" path = np.array(df["speech_data"][df["label"] == emotion])[0] data, sampling_rate = librosa.load(path) waveplot(data, sampling_rate, emotion) spectogram(data, sampling_rate, emotion) Audio(path) # data augmentation /characterisric tuning of data to make the model invariant to these changes def noise(data): noise_amp = 0.035 * np.random.uniform() * np.amax(data) data = data + noise_amp * np.random.normal(size=data.shape[0]) return data def stretch(data, rate): return librosa.effects.time_stretch(data, rate=rate) def shift(data): shift_range = int(np.random.uniform(low=-5, high=5) * 1000) return np.roll(data, shift_range) def pitch(data, sampling_rate, pitch_factor): return librosa.effects.pitch_shift(data, sr=sampling_rate, n_steps=pitch_factor) path = np.array(df["speech_data"][df["label"] == "happy"])[2] data, sample_rate = librosa.load(path) # given audio plt.figure(figsize=(8, 4)) waveplot(data, sampling_rate, "happy") Audio(path) # noise injection x = noise(data) plt.figure(figsize=(14, 4)) waveplot(x, sampling_rate, "happy") Audio(x, rate=sampling_rate) # streching x = stretch(data, 0.8) plt.figure(figsize=(14, 4)) waveplot(x, sampling_rate, "happy") Audio(x, rate=sampling_rate) # shifting x = shift(data) plt.figure(figsize=(14, 4)) waveplot(x, sampling_rate, "happy") Audio(x, rate=sample_rate) # pitch x = pitch(data, sampling_rate, 0.7) plt.figure(figsize=(8, 4)) waveplot(x, sampling_rate, "happy") Audio(x, rate=sampling_rate) # feature extraction # noise injection x = noise(data) plt.figure(figsize=(14, 4)) waveplot(x, sampling_rate, "happy") Audio(x, rate=sampling_rate) # streching x = stretch(data, 0.8) plt.figure(figsize=(14, 4)) waveplot(x, sampling_rate, "happy") Audio(x, rate=sampling_rate) # shifting x = shift(data) plt.figure(figsize=(14, 4)) waveplot(x, sampling_rate, "happy") Audio(x, rate=sample_rate) # pitch x = pitch(data, sampling_rate, 0.7) plt.figure(figsize=(8, 4)) waveplot(x, sampling_rate, "happy") Audio(x, rate=sampling_rate) # feature extraction # 1. MFCC # 2. Zero Crossing Rate # 3. RMS # 4. Chroma_shift # 5. MelSpectogram def feature_extraction(data): # ZCR result = np.array([]) zcr = np.mean(librosa.feature.zero_crossing_rate(y=data).T, axis=0) result = np.hstack((result, zcr)) # Chroma_stft stft = np.abs(librosa.stft(data)) chroma_stft = np.mean( librosa.feature.chroma_stft(S=stft, sr=sampling_rate).T, axis=0 ) result = np.hstack((result, chroma_stft)) # MFCC mfcc = np.mean(librosa.feature.mfcc(y=data, sr=sampling_rate).T, axis=0) result = np.hstack((result, mfcc)) # Root Mean Square Value rms = np.mean(librosa.feature.rms(y=data).T, axis=0) result = np.hstack((result, rms)) # MelSpectogram mel = np.mean(librosa.feature.melspectrogram(y=data, sr=sampling_rate).T, axis=0) result = np.hstack((result, mel)) return result def get_features(path, rate_stretch, pitch_factor): data, sampling_rate = librosa.load(path, duration=2.5, offset=0.6) # original data r1 = feature_extraction(data) result = np.array(r1) # noise induced audio noise_data = noise(data) r2 = feature_extraction(noise_data) result = np.vstack((result, r2)) # sretched and pitched new_data = stretch(data, rate_stretch) data_stretch_pitch = pitch(new_data, sampling_rate, pitch_factor) r3 = feature_extraction(data_stretch_pitch) result = np.vstack((result, r3)) return result X, Y = [], [] for path, emotion in zip(df.speech_data, df.label): feature = get_features(path, 0.8, 0.7) for ele in feature: X.append(ele) Y.append(emotion) len(X), len(Y), df.speech_data.shape Features = pd.DataFrame(X) Features["labels"] = Y Features.to_csv("features.csv", index=False) Features.head() # data preparation X = Features.iloc[:, :-1].values Y = Features["labels"].values from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import classification_report from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(X, Y, random_state=0, shuffle=True) x_train.shape, y_train.shape, x_test.shape, y_test.shape ## do till here import keras from keras.callbacks import ReduceLROnPlateau from keras.models import Sequential from keras.layers import ( Dense, Conv1D, MaxPooling1D, Flatten, Dropout, BatchNormalization, ) from keras.utils import np_utils, to_categorical from keras.callbacks import ModelCheckpoint encoder = OneHotEncoder() Y = encoder.fit_transform(np.array(Y).reshape(-1, 1)).toarray() x_train, x_test, y_train, y_test = train_test_split(X, Y, random_state=0, shuffle=True) x_train.shape, y_train.shape, x_test.shape, y_test.shape # data scaling scaler = StandardScaler() x_train = scaler.fit_transform(x_train) x_test = scaler.transform(x_test) x_train.shape, y_train.shape, x_test.shape, y_test.shape # transformation of data for compatibility x_train = np.expand_dims(x_train, axis=2) x_test = np.expand_dims(x_test, axis=2) x_train.shape, y_train.shape, x_test.shape, y_test.shape # Applying CNN model = Sequential() model.add( Conv1D( 256, kernel_size=5, strides=1, padding="same", activation="relu", input_shape=(x_train.shape[1], 1), ) ) model.add(MaxPooling1D(pool_size=5, strides=2, padding="same")) model.add(Conv1D(256, kernel_size=5, strides=1, padding="same", activation="relu")) model.add(MaxPooling1D(pool_size=5, strides=2, padding="same")) model.add(Conv1D(128, kernel_size=5, strides=1, padding="same", activation="relu")) model.add(MaxPooling1D(pool_size=5, strides=2, padding="same")) model.add(Dropout(0.2)) model.add(Conv1D(64, kernel_size=5, strides=1, padding="same", activation="relu")) model.add(MaxPooling1D(pool_size=5, strides=2, padding="same")) model.add(Flatten()) model.add(Dense(units=32, activation="relu")) model.add(Dropout(0.3)) model.add(Dense(units=7, activation="softmax")) model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"]) model.summary() rlrp = ReduceLROnPlateau( monitor="loss", factor=0.4, verbose=0, patience=2, min_lr=0.0000001 ) history = model.fit( x_train, y_train, batch_size=56, epochs=50, validation_data=(x_test, y_test), callbacks=[rlrp], ) print( "Accuracy of our model on test data : ", model.evaluate(x_test, y_test)[1] * 100, "%", ) epochs = [i for i in range(50)] fig, ax = plt.subplots(1, 2) train_acc = history.history["accuracy"] train_loss = history.history["loss"] test_acc = history.history["val_accuracy"] test_loss = history.history["val_loss"] fig.set_size_inches(20, 6) ax[0].plot(epochs, train_loss, label="Training Loss") ax[0].plot(epochs, test_loss, label="Testing Loss") ax[0].set_title("Training & Testing Loss") ax[0].legend() ax[0].set_xlabel("Epochs") ax[1].plot(epochs, train_acc, label="Training Accuracy") ax[1].plot(epochs, test_acc, label="Testing Accuracy") ax[1].set_title("Training & Testing Accuracy") ax[1].legend() ax[1].set_xlabel("Epochs") plt.show() pred_test = model.predict(x_test) y_pred = encoder.inverse_transform(pred_test) y_test = encoder.inverse_transform(y_test) df = pd.DataFrame(columns=["Predicted Labels", "Actual Labels"]) df["Predicted Labels"] = y_pred.flatten() df["Actual Labels"] = y_test.flatten() df.head(10) def feature_extraction(data): # ZCR result = np.array([]) zcr = np.mean(librosa.feature.zero_crossing_rate(y=data).T, axis=0) result = np.hstack((result, zcr)) # Chroma_stft stft = np.abs(librosa.stft(data)) chroma_stft = np.mean( librosa.feature.chroma_stft(S=stft, sr=sampling_rate).T, axis=0 ) result = np.hstack((result, chroma_stft)) # MFCC mfcc = np.mean(librosa.feature.mfcc(y=data, sr=sampling_rate).T, axis=0) result = np.hstack((result, mfcc)) # Root Mean Square Value rms = np.mean(librosa.feature.rms(y=data).T, axis=0) result = np.hstack((result, rms)) # MelSpectogram mel = np.mean(librosa.feature.melspectrogram(y=data, sr=sampling_rate).T, axis=0) result = np.hstack((result, mel)) return result def get_features(path, rate_stretch, pitch_factor): data, sampling_rate = librosa.load(path, duration=2.5, offset=0.6) # original data r1 = feature_extraction(data) result = np.array(r1) # noise induced audio noise_data = noise(data) r2 = feature_extraction(noise_data) result = np.vstack((result, r2)) # sretched and pitched new_data = stretch(data, rate_stretch) data_stretch_pitch = pitch(new_data, sampling_rate, pitch_factor) r3 = feature_extraction(data_stretch_pitch) result = np.vstack((result, r3)) return result X, Y = [], [] for path, emotion in zip(df.speech_data, df.label): feature = get_features(path, 0.8, 0.7) for ele in feature: X.append(ele) Y.append(emotion) # # Comparison paper_results = [ 0.8986, 0.9886, 0.7911, 0.79, 0.9929, 0.9089, 0.2643, 0.9757, 0.9875, 0.9964, 0.9886, ] # From paper results = [ np.average(cv_results2), np.average(svml_score), np.average(rfm_score), np.average(nbm_score), np.average(lrm_score), np.average(dtc_score), np.average(abc_score), np.average(sgd_score), np.average(gbc_score), np.average(mlp_res), np.average(knn_res), ] algo_labels = [ "SVM (RBF)", "SVM (Linear)", "Random Forest", "Naive Bayes", "Logistic Regression", "Decision Tree", "AdaBoost", "SGD", "GradBoosting", "MLP", "KNN", ] res_df = pd.DataFrame(results) algo_df = pd.DataFrame(algo_labels) pres_df = pd.DataFrame(paper_results) algo_df = algo_df.rename(columns={0: "Classifier"}) res_df = res_df.rename(columns={0: "Acc"}) pres_df = pres_df.rename(columns={0: "Acc"}) res_df["Type"] = "Ours" pres_df["Type"] = "Paper" data_res1 = pd.concat([algo_df, res_df], axis=1) data_res2 = pd.concat([algo_df, pres_df], axis=1) data_res = pd.concat([data_res1, data_res2], axis=0) data_res sns.set_theme(style="whitegrid") plt.figure(figsize=(20, 10)) ax = sns.barplot( data=data_res, x="Classifier", y="Acc", hue="Type", ) ax.set_xlabel("Classifier Algorithms", fontsize=20) ax.set_ylabel("Test Accuracy", fontsize=20) ax.set_title( "Comparison Between Different Algorithms Based on Test Accuracy (5-Fold Repeated CV Avg Test Accuracy (Ours) vs Paper) " ) # plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) ax.legend(loc="upper left", bbox_to_anchor=(1, 1), fontsize=15)
# ## Se cargan las librerias import numpy as np import pandas as pd import time import tensorflow as tf from sklearn.metrics import mean_absolute_error, mean_squared_error import matplotlib.pyplot as plt import cartopy.crs as ccrs import cartopy.feature as cfeatureÇ param = ["t", "precip"] zone = "NW" path = ( "/kaggle/input/meteonet/NW_Ground_Stations/NW_Ground_Stations/NW_Ground_Stations_" ) cols = ["number_sta", "lat", "lon", "date"] + param df = pd.concat( [ pd.read_csv( path + "2016.csv", usecols=cols, parse_dates=["date"], infer_datetime_format=True, ), pd.read_csv( path + "2017.csv", usecols=cols, parse_dates=["date"], infer_datetime_format=True, ), pd.read_csv( path + "2018.csv", usecols=cols, parse_dates=["date"], infer_datetime_format=True, ), ], axis=0, ) def create_time_steps(length): return list(range(-length, 0)) # ## Mapa de la temperatura usando cartopy date = "2016-01-01T06:00:00" d_sub = df[df["date"] == date] # Coordinates of studied area boundaries (in °N and °E) lllat = 46.25 # lower left latitude urlat = 51.896 # upper right latitude lllon = -5.842 # lower left longitude urlon = 2 # upper right longitude # Assuming d_sub is a DataFrame containing 'lon', 'lat', and the parameter (e.g., 'temperature' and 'precipitation') columns params = ["t", "precip"] # Replace these with the correct column names for your data date = "2016-01-01T06:00:00" # Replace this with the correct date for your data fig, axs = plt.subplots( nrows=1, ncols=2, figsize=(18, 5), subplot_kw={"projection": ccrs.PlateCarree()} ) for ax, param in zip(axs, params): # Plot the data scatter = ax.scatter(d_sub["lon"], d_sub["lat"], c=d_sub[param], cmap="jet") fig.colorbar( scatter, ax=ax, label=f"{param} (units)" ) # Replace 'units' with the appropriate unit for each parameter ax.set_title(f"{date} - {param}") ax.coastlines(resolution="50m", linewidth=1) ax.add_feature(cfeatureÇ.BORDERS.with_scale("50m")) # Adjust the plot to the area we defined ax.set_xlim(lllon, urlon) ax.set_ylim(lllat, urlat) plt.show() number_sta = 91200002 uni_data = df[(df["number_sta"] == number_sta)]["t"] uni_data.index = df[(df["number_sta"] == number_sta)]["date"] plt.figure(figsize=(10, 5)) plt.ylabel("Temperatura (ºK)") plt.title("Evolución de la temperatura en la estación " + str(number_sta)) uni_data.plot(subplots=True) plt.show() number_sta = 91200002 uni_data_2 = df[(df["number_sta"] == number_sta)]["precip"] uni_data_2.index = df[(df["number_sta"] == number_sta)]["date"] plt.figure(figsize=(10, 5)) plt.ylabel("Precipitacion (km.m^2)") plt.title("Evolución de la precipitacion en la estación " + str(number_sta)) uni_data_2.plot(subplots=True) plt.show() df df = df[(df["number_sta"] == number_sta)][params + ["date"]] df.index = df["date"] df = df.drop(columns=["date"]) df # Fill missing values with mean for col in params: df[col] = df[col].fillna(df[col].mean()) coeff_train = 0.7 TRAIN_SPLIT = round(df.shape[0] * coeff_train) def multivariate_data(x_data, start_index, end_index, input_size, target_size): data = [] labels = [] start_index = start_index + input_size if end_index is None: end_index = len(x_data) - target_size for i in range(start_index, end_index): data.append( x_data[(i - input_size) : i, :] ) # Updated to handle multiple variables labels.append(np.max(x_data[i : i + target_size, :], axis=0)) return np.array(data), np.array(labels) univariate_past_history = 240 univariate_future_target = 240 x_train, y_train = multivariate_data( df.to_numpy(), 0, TRAIN_SPLIT, univariate_past_history, univariate_future_target ) x_val, y_val = multivariate_data( df.to_numpy(), TRAIN_SPLIT, None, univariate_past_history, univariate_future_target ) x_train_mean = np.mean(x_train, axis=(0, 1)) x_train_std = np.std(x_train, axis=(0, 1)) y_train_mean = np.mean(y_train, axis=0) y_train_std = np.std(y_train, axis=0) x_data_train = (x_train - x_train_mean) / x_train_std x_data_val = (x_val - x_train_mean) / x_train_std y_data_train = (y_train - y_train_mean) / y_train_std y_data_val = (y_val - y_train_mean) / y_train_std # Update the LSTM model to handle multiple outputs simple_lstm_model = tf.keras.models.Sequential( [ tf.keras.layers.LSTM( 64, input_shape=x_data_train.shape[-2:], return_sequences=True ), tf.keras.layers.Dropout(0.3), tf.keras.layers.LSTM(32, return_sequences=True), tf.keras.layers.Dropout(0.3), tf.keras.layers.LSTM(16, return_sequences=True), tf.keras.layers.Dropout(0.3), tf.keras.layers.LSTM(8), tf.keras.layers.Dropout(0.3), tf.keras.layers.Dense(2), ] ) optimizer = tf.keras.optimizers.Adam(learning_rate=0.001) simple_lstm_model.compile(optimizer=optimizer, loss="mse") BATCH_SIZE = 64 BUFFER_SIZE = 1000 train_univariate = tf.data.Dataset.from_tensor_slices((x_data_train, y_data_train)) train_univariate = ( train_univariate.cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE).repeat() ) val_univariate = tf.data.Dataset.from_tensor_slices((x_data_val, y_data_val)) val_univariate = val_univariate.batch(BATCH_SIZE).repeat() EPOCHS = 5 STEPS_PER_EPOCH = (x_data_train.shape[0] / BATCH_SIZE // 1) + 1 VAL_STEPS = (x_data_val.shape[0] / BATCH_SIZE // 1) + 1 simple_lstm_model.fit( train_univariate, epochs=EPOCHS, steps_per_epoch=STEPS_PER_EPOCH, validation_data=val_univariate, validation_steps=VAL_STEPS, ) def baseline(history): return np.mean(history, axis=0) def show_result(index, plot_data, delta): labels = ["History : x", "True Future : y", "Prediction", "Baseline : Max(History)"] marker = [".-", "rx", "go", "go"] colors = ["blue", "red", "green", "darkblue"] time_steps = create_time_steps(plot_data[0].shape[0]) if delta: future = delta else: future = 0 fig, (ax1, ax2) = plt.subplots(2, 1) fig.suptitle("Sample example " + str(ind)) axes = [ax1, ax2] ylabel = ["Standardized temperature", "Standardized precipitation"] for j, ax in enumerate(axes): for i, x in enumerate(plot_data): if i: ax.plot( future, plot_data[i][j], marker[i], markersize=10, label=labels[i], color=colors[i], ) else: ax.plot( time_steps, plot_data[i][:, j].flatten(), marker[i], label=labels[i], color=colors[i], ) ax.legend() ax.set_xlim([time_steps[0], (future + 5) * 2]) ax.set_xlabel("Time-Step") ax.set_ylabel(ylabel[j]) plt.show() ind = 0 for x, y in val_univariate.take(3): y_true = y[ind].numpy() basel = baseline(x[ind].numpy()) print("mse baseline", mean_squared_error(y_true, basel)) print("mse LSTM", mean_squared_error(y_true, simple_lstm_model.predict(x)[ind])) plot = show_result( ind, [ x[ind].numpy(), y[ind].numpy(), simple_lstm_model.predict(x)[ind], baseline(x[ind].numpy()), ], 0, )
# ## Intel Classification Problem: # The dataset contains images of natural scenes around the world. # This Data contains around 25k images of size 150x150 distributed under 6 categories. # {'buildings' -> 0, # 'forest' -> 1, # 'glacier' -> 2, # 'mountain' -> 3, # 'sea' -> 4, # 'street' -> 5 } # The objectif of this project is to build a convolutional neural networks to classify these images into their respective category. # We are first going to build a basic model, and then use transfer learning to improve performance. # ## What are Convolutional Neural Networks? # A Convolutional Neural Network (CNN) is a type of deep neural network that is designed to process data with a grid-like topology, such as images or videos. It is inspired by the structure and function of the visual cortex in the brain, which is responsible for processing visual information. # CNNs consist of multiple layers of interconnected neurons that perform a series of mathematical operations on the input data. The core building blocks of a CNN are convolutional layers, pooling layers, and fully connected layers. # Convolutional layers apply a set of filters to the input data, each filter detecting a specific pattern or feature in the input. The filters slide over the input data, performing element-wise multiplication and summing up the results to produce a feature map. The pooling layers then downsample the feature map, reducing its size while retaining the most important features. Finally, the fully connected layers process the output of the convolutional and pooling layers, using it to make a prediction. # CNNs have proven to be very effective in image classification, object detection, and other computer vision tasks, and are widely used in various fields such as autonomous driving, medical image analysis, and natural language processing. # ### Importing the required libraries: import numpy as np import matplotlib.pyplot as plt from PIL import Image import tensorflow as tf import os import cv2 from sklearn.model_selection import train_test_split from sklearn.utils import shuffle from keras.utils import np_utils from tensorflow.keras.layers import Dense, Conv2D, MaxPool2D, Flatten, Dropout from tensorflow.keras.models import Sequential, Model from tensorflow.keras.optimizers import Adam from keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.applications.vgg16 import VGG16 from tensorflow.keras.applications.vgg16 import preprocess_input # ### Loading the images: d = {} X_train = [] train_path = "/kaggle/input/intel-image-classification/seg_train/seg_train" for folder in os.listdir(train_path): image_folder = train_path + "/" + folder images = os.listdir(image_folder) d[folder] = len(images) for image in images: image_path = image_folder + "/" + image x = Image.open(image_path) x = x.convert("RGB") x = np.array(x) img_resize = cv2.resize(x, (224, 224)) X_train.append(img_resize) for key in d.keys(): print("Found {} images for {}!".format(d[key], key)) # ### Creating the train set: X_train = np.array(X_train) y_train = np.ones((14034,), dtype="int32") y_train[:2512] = 3 # for moutain y_train[2512:4894] = 5 # for street y_train[4894:7085] = 0 # for buildings y_train[7085:9359] = 4 # for sea y_train[9359:11630] = 1 # for forest y_train[11630:] = 2 # for glacier X_train, y_train = shuffle(X_train, y_train, random_state=42) def get_label(id): label_dict = { 0: "buildings", 1: "forest", 2: "glacier", 3: "mountain", 4: "sea", 5: "street", } return label_dict[id] j = np.random.randint(0, 10000) plt.imshow(X_train[j]) plt.xlabel(get_label(y_train[j])) y_train = np_utils.to_categorical(y_train, 6) X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.1) # ### What is data augmentation : # Data augmentation is a technique used in machine learning and computer vision to artificially increase the size of a training dataset by creating new data from existing data. The process involves applying a set of transformations to the original data, such as rotation, scaling, flipping, cropping, adding noise, or changing the brightness and contrast. # The goal of data augmentation is to improve the performance of machine learning models by providing more training data to learn from, which can help prevent overfitting and improve generalization. By introducing variations in the training data, the model can learn to recognize the same object under different conditions, such as changes in lighting or viewpoint, and become more robust to these variations. # ***Keras' ImageDataGenerator*** work as a python generator that allows us to generate new data on the fly, this allows you to train on an almost infinite stream of augmented image data without running out of memory. aug = ImageDataGenerator( preprocessing_function=preprocess_input, rotation_range=25, width_shift_range=0.1, height_shift_range=0.1, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, fill_mode="nearest", ) val_aug = ImageDataGenerator(preprocessing_function=preprocess_input) def create_model(): model = Sequential() model.add( Conv2D( 64, (3, 3), padding="same", strides=(2, 2), activation="relu", input_shape=(224, 224, 3), ) ) model.add(MaxPool2D(2, 2)) model.add(Conv2D(128, (3, 3), activation="relu")) model.add(MaxPool2D(2, 2)) model.add(Conv2D(256, (3, 3), activation="relu")) model.add(MaxPool2D(2, 2)) model.add(Conv2D(512, (3, 3), activation="relu")) model.add(MaxPool2D(2, 2)) model.add(Conv2D(512, (3, 3), activation="relu")) model.add(MaxPool2D(2, 2)) model.add(Flatten()) model.add(Dense(128, activation="relu")) model.add(Dense(64, activation="relu")) model.add(Dropout(0.5)) model.add(Dense(6, activation="softmax")) return model my_model = create_model() my_model.summary() my_model.compile( optimizer=Adam(learning_rate=0.001), loss="categorical_crossentropy", metrics=["accuracy"], ) # ### The problem with training with a large amount of images: # Normally we would use X_train, y_train created previously to train our CNN, but since the amount of images is large a certain problem might arise which is: # Memory constraints: It could happen that your Kaggle notebook does not have enough memory to handle large datasets. When working with a large dataset, it's important to ensure that you have enough memory to load the data and perform the necessary computations. When working with a dataset with over 14000 training images, the ressources available might not be able to handle it during training. # To address these issues, we can try using a generator to load the images in batches rather than loading the entire dataset into memory at once. # For that, we can use the method 'flow_from_directory' of ImageDataGenerator that will generate batches of data for training or evaluation from a directory structure. train_data = aug.flow_from_directory( "/kaggle/input/intel-image-classification/seg_train/seg_train", target_size=(224, 224), batch_size=128, class_mode="categorical", ) val_data = val_aug.flow_from_directory( "/kaggle/input/intel-image-classification/seg_test/seg_test", target_size=(224, 224), batch_size=128, shuffle=False, class_mode="categorical", ) # ### Model training: my_model_history = my_model.fit(train_data, epochs=50, validation_data=val_data) # ### Making predictions and visualizing errors:: predict = my_model.predict_generator(val_data, steps=3000) y_pred_classes = np.argmax(predict, axis=1) from sklearn.metrics import accuracy_score, confusion_matrix, ConfusionMatrixDisplay print(accuracy_score(val_data.classes, y_pred_classes)) ConfusionMatrixDisplay(confusion_matrix(val_data.classes, y_pred_classes)).plot() X_test = [] test_path = "/kaggle/input/intel-image-classification/seg_test/seg_test" for folder in sorted(os.listdir(test_path)): image_folder = test_path + "/" + folder images = sorted(os.listdir(image_folder)) print( "Loaded the images of -" + "{} having {} images. \n".format(folder, len(images)) ) for image in images: image_path = image_folder + "/" + image x = Image.open(image_path) x = x.convert("RGB") x = np.array(x) img_resize = cv2.resize(x, (224, 224)) X_test.append(img_resize) def plot_errors(true_label, predicted_label): rows, cols = 1, 5 fig, ax = plt.subplots(rows, cols, figsize=(10, 3)) x = (y_pred_classes == predicted_label) & (val_data.classes == true_label) y = np.where(x == True)[0] z = np.random.randint(0, len(y), 5) fig.suptitle( "Predicted : {}, Real : {}".format( get_label(predicted_label), get_label(true_label) ), fontsize=11, ) for col in range(cols): ax[col].imshow(X_test[y[z[col]]]) ax[col].tick_params( axis="both", which="both", bottom=False, left=False, top=False, labelbottom=False, labelleft=False, ) plot_errors(0, 5) plot_errors(4, 3) plot_errors(3, 2) plot_errors(2, 3) # ## What is transfer learning? # Transfer learning is a machine learning technique where a model trained on one task is re-purposed to solve a different but related task. Rather than starting the training process from scratch, the pre-trained model is used as a starting point and then fine-tuned or further trained on the new task. # Transfer learning is based on the idea that features learned from one task can be useful for solving other related tasks. For example, a model trained to recognize objects in images can be fine-tuned to recognize specific types of objects in new images. By using transfer learning, the model can learn to perform the new task faster and with less training data than if it were trained from scratch. # Transfer learning is widely used in computer vision. It can help to overcome the limitations of small datasets, reduce the amount of training time required, and improve the overall performance of the model. # Here we are going to use VGG16 which is a known architecture for image classification tasks, and it has achieved state-of-the-art performance on several benchmarks. base_model = VGG16(weights="imagenet", include_top=False, input_shape=(224, 224, 3)) base_model.trainable = False inputs = tf.keras.Input(shape=(224, 224, 3)) x = Flatten()(base_model(inputs)) y = Dense(128, activation="relu")(x) z = Dense(64, activation="relu")(y) outputs = Dense(6, activation="softmax")(z) model = Model(inputs, outputs) model.summary() model.compile( optimizer=Adam(learning_rate=0.001), loss="categorical_crossentropy", metrics=["accuracy"], ) history = model.fit(train_data, epochs=20, validation_data=val_data) # ### Visualizing Loss and accuracy curves: fig, ax = plt.subplots(1, 2, figsize=(10, 5)) ax[0].plot(history.epoch, history.history["loss"], label="Train Loss") ax[0].plot(history.epoch, history.history["val_loss"], label="Test Loss") ax[1].plot(history.epoch, history.history["accuracy"], label="Train Accuracy") ax[1].plot(history.epoch, history.history["val_accuracy"], label="Test Accuracy") ax[0].legend() ax[1].legend() plt.show()
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # # # Project-3 .Booking reviews # Прогнозирование рейтинга отеля на Booking. # ## 1.1 Задание # Представьте, что вы работаете дата-сайентистом в компании Booking. Одна из проблем компании — это нечестные отели, которые накручивают себе рейтинг. Одним из способов обнаружения таких отелей является построение модели, которая предсказывает рейтинг отеля. Если предсказания модели сильно отличаются от фактического результата, то, возможно, отель ведёт себя нечестно, и его стоит проверить. Вам поставлена задача создать такую модель. # ### Описание данных # |**Признак** | **Описание** | # |------------------------------------------- |---------------------------------------------------------------------------| # |*hotel_address* | адрес отеля # |*review_date* | дата, когда рецензент разместил соответствующий отзыв # |*average_score* |средний балл отеля, рассчитанный на основе последнего комментария за последний год # |*hotel_name* |название отеля # |*reviewer_nationality* |страна рецензента # |*negative_review* |отрицательный отзыв, который рецензент дал отелю # |*review_total_negative_word_counts* |общее количество слов в отрицательном отзыве # |*positive_review* |положительный отзыв, который рецензент дал отелю # |*review_total_positive_word_counts* |общее количество слов в положительном отзыве # |*reviewer_score* |оценка, которую рецензент поставил отелю на основе своего опыта # |*total_number_of_reviews_reviewer_has_given* |количество отзывов, которые рецензенты дали в прошлом # |*total_number_of_reviews* |общее количество действительных отзывов об отеле # |*tags* |теги, которые рецензент дал отелю # |*days_since_review* |количество дней между датой проверки и датой создания датасета # |*additional_number_of_scoring* |количество оценок без отзыва # |*lat* |географическая широта отеля # |*lng* |географическая долгота отеля import numpy as np import pandas as pd import matplotlib.pyplot as plt import plotly.express as px from plotly.subplots import make_subplots import plotly.graph_objects as go import seaborn as sns import category_encoders as ce from sklearn import metrics from sklearn import preprocessing from sklearn.ensemble import RandomForestRegressor from sklearn.preprocessing import RobustScaler from sklearn.model_selection import train_test_split from textblob import TextBlob from geopy.distance import geodesic as GD pd.options.mode.chained_assignment = None # ### 1.2 Загрузка данных # всегда фиксируйте RANDOM_SEED, чтобы ваши эксперименты были воспроизводимы! RANDOM_SEED = 42 # добавим пикселей для графиков, чтобы не так мыльно и уныло смотрелись sns.set(rc={"figure.dpi": 300, "savefig.dpi": 300}) # форматируем вывод данных pandas, чтобы реже любоваться троеточием pd.set_option("display.max_colwidth", None) pd.set_option("display.float_format", "{:.3f}".format) pd.set_option("display.max_rows", 50) # Подгрузим наши данные из соревнования DATA_DIR = "/kaggle/input/sf-booking/" df_train = pd.read_csv(DATA_DIR + "/hotels_train.csv") # датасет для обучения df_test = pd.read_csv(DATA_DIR + "hotels_test.csv") # датасет для предсказания sample_submission = pd.read_csv(DATA_DIR + "/submission.csv") # самбмишн # ВАЖНО! дря корректной обработки признаков объединяем трейн и тест в один датасет df_train["sample"] = 1 # помечаем где у нас трейн df_test["sample"] = 0 # помечаем где у нас тест df_test[ "reviewer_score" ] = 0 # в тесте у нас нет значения reviewer_score, мы его должны предсказать, поэтому пока просто заполняем нулями data = pd.concat([df_train, df_test], axis=0, ignore_index=True) # объединяем data.info() # Все признаки датасета можно условно разделить на три категории: # 1. Признаки, описывающие отель # 2. Признаки, описывающие рецензента # 3. Признаки, описывающие отзыв # ## 2. Анализ признаков, описывающих отель # ### 2.1 hotel_address data["hotel_address"].head() # Значение признака имеет следующую структуру: # * адрес # * почтовый индекс # * город # * страна # Используем эту информацию для создания новых признаков: 'hotel_city' и 'hotel_country'. # из столбца с адресом отелей получаем новые признаки: страна и город отеля data["hotel_country"] = data["hotel_address"].apply( lambda x: x.split()[-1] if x.split()[-1] != "Kingdom" else " ".join(x.split()[-2:]) ) print(data["hotel_country"].value_counts()) print() data["hotel_city"] = data["hotel_address"].apply( lambda x: x.split()[-2] if x.split()[-1] != "Kingdom" else x.split()[-5] ) print(data["hotel_city"].value_counts()) # Создаем функцию для визуализации категорийных признаков def visual_cat(df, col, n=31): """A function for visualizing categorical features. Builds a px.treemap for the number of reviews by category and px.bar for the average score for these categories. Args: df (pandas.DataFrame): researched dataset col (pandas.Series): researched future n (int): number of categories """ tree_data = ( df.groupby(col)["sample"] .count() .sort_values(ascending=False) .nlargest(n) .reset_index(name="Counts") ) bar_data = ( data.groupby(col)["reviewer_score"] .mean() .round(2) .sort_values(ascending=False) .nlargest(n) .reset_index(name="Score") ) fig_tree = px.treemap( data_frame=tree_data, path=[col], values="Counts", height=350, width=600, title="Количество отзывов по группам", ) fig_tree.show() fig_bar = px.bar( data_frame=bar_data, x=col, y="Score", color=col, text="Score", orientation="v", height=350, width=600, title="Средний балл отелей по группам", ) fig_bar.show() visual_cat(df=data, col="hotel_country") visual_cat(df=data, col="hotel_city", n=6) # Признаки "hotel_city" и "hotel_country" полностью дублируют друг друга. Оставляем эти признаки для дальнейших исследований. Максимальный средний бал у отелей Испании, минимальный - у отелей Великобритании. # ### 2.2 hotel_name print(f"Количество уникальных названий отелей: {data['hotel_name'].nunique()}") print(f"Количество уникальных адресов отелей: {data['hotel_address'].nunique()}") # проверим есть ли отели с одинаковыми названиями, но разными адресами grouped_hotels = ( data.groupby(["hotel_name", "hotel_address"])["sample"] .count() .sort_values(ascending=False) ) display( grouped_hotels.groupby("hotel_name").count().sort_values(ascending=False).head(5) ) # получаем имена таких отелей и их количество duplicated_hotel_name = ( grouped_hotels.groupby("hotel_name").count().sort_values(ascending=False).index[0] ) n_of_duplicated = ( grouped_hotels.groupby("hotel_name").count().sort_values(ascending=False)[0] ) print( "\nВсего " + str(n_of_duplicated) + " отеля '" + duplicated_hotel_name + "' с различными адресами.\n" ) display( data[data["hotel_name"] == duplicated_hotel_name]["hotel_address"].value_counts() ) # Переименуем отели 'Hotel Regina' добавляя название города adress_to_rename_Barcelona = ( data[data["hotel_name"] == duplicated_hotel_name]["hotel_address"] .value_counts() .index[0] ) adress_to_rename_Vienna = ( data[data["hotel_name"] == duplicated_hotel_name]["hotel_address"] .value_counts() .index[1] ) adress_to_rename_Milan = ( data[data["hotel_name"] == duplicated_hotel_name]["hotel_address"] .value_counts() .index[2] ) data.loc[ (data["hotel_address"] == adress_to_rename_Barcelona), "hotel_name" ] = "Hotel Regina Barcelona" data.loc[ (data["hotel_address"] == adress_to_rename_Vienna), "hotel_name" ] = "Hotel Regina Vienna" data.loc[ (data["hotel_address"] == adress_to_rename_Milan), "hotel_name" ] = "Hotel Regina Milan" print("Всего " + str(data["hotel_name"].nunique()) + " уникальных отелей.") # Из названия отеля мы можем узнать сеть, которой он принадлежит. Создаем новый признак 'hotel_chain' largest_hotel_chains = [ "Hilton", "Barriott", "Hyatt", "Sheraton", "Holiday Inn", "Best Western", "Crowne Plaza", "Radisson", "Britannia", "Mercure", "NH", "Novotel", ] def get_hotel_chain(hotel_name): """A function to determine whether a hotel belongs to one of the chains by its name. Args: hotel_name (str): hotel name Returns: chain (str): chain name """ for chain in largest_hotel_chains: if chain in hotel_name: return chain return "Undefined chain" data["hotel_chain"] = data["hotel_name"].apply(get_hotel_chain) data["hotel_chain"].value_counts() visual_cat(data, "hotel_chain", 12) # Только четверть всех отелей принадлежит определенной сети. Самый высокий средний балл у отелей сети Crowne Plaza, самый низкий - у сети Britannia. # ### 2.3 lat и lng # Данные признаки имеют пропуски. Мы можем их заполнить, так как знаем название и адрес отеля. # создаем списки индексов записей в которых есть пропуски координат отелей и проверяем их идентичность hotel_index_without_lat = list(data[data["lat"].isna() == True].index) hotel_index_without_lng = list(data[data["lng"].isna() == True].index) print(hotel_index_without_lat == hotel_index_without_lng) print( f"Общее количество записей с пропущенными координатами {len(hotel_index_without_lat)}" ) # создаем список имен отелей без координат nul_coor_hotels = data[data["lat"].isna() == True]["hotel_name"].value_counts() hotels_list = list(nul_coor_hotels.index) hotels_list # создаем словарь с координатами данных отелей hotels_coor = { "Fleming s Selection Hotel Wien City": [48.20953762534306, 16.353445198051627], "Hotel City Central": [48.21373711264242, 16.379908198051773], "Hotel Atlanta": [48.220589085614826, 16.355829326887893], "Maison Albar Hotel Paris Op ra Diamond": [48.875416068138684, 2.3233490827330874], "Hotel Daniel Vienna": [48.18897203791783, 16.38377969805083], "Hotel Pension Baron am Schottentor": [48.21698150234599, 16.360153962634904], "Austria Trend Hotel Schloss Wilhelminenberg Wien": [ 48.22022075977996, 16.287605889524585, ], "Derag Livinghotel Kaiser Franz Joseph Vienna": [ 48.24986700746027, 16.35143806924949, ], "NH Collection Barcelona Podium": [41.398032508061526, 2.178148084530765], "City Hotel Deutschmeister": [48.22101628770906, 16.36661149805206], "Hotel Park Villa": [48.233379, 16.345510], "Cordial Theaterhotel Wien": [48.21117559983704, 16.35126149555466], "Holiday Inn Paris Montmartre": [48.89504057540539, 2.3424128967362043], "Roomz Vienna": [48.19326450823598, 16.44164878115289], "Mercure Paris Gare Montparnasse": [48.84005228479027, 2.3235456428967862], "Renaissance Barcelona Hotel": [41.40224270585638, 2.192538019639329], "Hotel Advance": [41.38343167642923, 2.1629495978105107], } # создаем словарь с данными городов, в которых расположены эти отели: широта, долгота, площадь города city_info = { "London": [51.509792839719985, -0.11271152139656829, 1706], "Barcelona": [41.38743213521596, 2.1878525754382365, 101], "Paris": [48.86052268694293, 2.3378305054065533, 105], "Amsterdam": [52.373503451385275, 4.8997592221035, 219], "Vienna": [48.20959417455436, 16.369159260825704, 415], "Milan": [45.46333908667008, 9.191085064501934, 183], } # создаем словарь с координатами аэропортов городов, в которых расположены эти отели city_airport_coor = { "London": [51.470970478463485, -0.4539386225916353], "Barcelona": [41.29819139987498, 2.08407948816106], "Paris": [49.00860015550327, 2.5529518146013754], "Amsterdam": [52.311215140719774, 4.768994284266432], "Vienna": [48.11370272268876, 16.575215723658697], "Milan": [45.630608899633756, 8.72726519572734], } # Заполняем пропуски координат значениями словаря hotels_coor. # После этого мы можем создать три новых признака: # * удаленность от центра города # * удаленность от аэропорта # * отношение расстояния от отеля до центра города к площади этого города # заполняем пропуски координат отелей в нашем датасете значениями из словаря data["lat"] = data.apply( lambda x: hotels_coor[x["hotel_name"]][0] if x["hotel_name"] in hotels_list else x["lat"], axis=1, ) data["lng"] = data.apply( lambda x: hotels_coor[x["hotel_name"]][1] if x["hotel_name"] in hotels_list else x["lng"], axis=1, ) # создаем новые признаки: координаты центров городов, координаты аэропортов, площадь города data["city_center_lat"] = data["hotel_city"].apply(lambda x: city_info[x][0]) data["city_center_lng"] = data["hotel_city"].apply(lambda x: city_info[x][1]) data["city_airport_lat"] = data["hotel_city"].apply(lambda x: city_airport_coor[x][0]) data["city_airport_lng"] = data["hotel_city"].apply(lambda x: city_airport_coor[x][1]) data["city_square"] = data["hotel_city"].apply(lambda x: city_info[x][2]) # Для удобства дальнейших преобразований объединим интересующие нас признаки в один датасет. # создаем новый датасет col_coor_list = [ "city_center_lat", "city_center_lng", "city_airport_lat", "city_airport_lng", "lat", "lng", "city_square", ] data_coor = data[col_coor_list] data_coor.info() # Вычисляем расстояния от отеля до центра города и аэропорта, используя модуль geodesic библиотеки geopy. # создаем новые признаки: растояние от отеля до центра города и растояние от отеля до аэропорта в метрах data_coor["distance_to_center"] = data_coor.apply( lambda x: round( GD((x["lat"], x["lng"]), (x["city_center_lat"], x["city_center_lng"])).m ), axis=1, ) data_coor["distance_to_airport"] = data_coor.apply( lambda x: round( GD((x["lat"], x["lng"]), (x["city_airport_lat"], x["city_airport_lng"])).m ), axis=1, ) # посмотрим на статистику новых признаков print(data_coor["distance_to_center"].describe()) print() print(data_coor["distance_to_airport"].describe()) # Среди значений признаков distance_to_center и distance_to_airport нет выбросов. Все расстояния не выходят за пределы разумного для современной европейской столицы. # Визуализируем распределение полученныч признаков. # создаем функцию для визуализации распределения непрерывных признаков def visual_num(df, col): """A function for visualizing numerical features. Builds a px.histogram and px.box for the numerical feature. Args: df (pandas.DataFrame): researched dataset col (pandas.Series): researched future """ future_hist = px.histogram( df[col], height=500, width=700, title="Распределение признака", labels={"value": col}, marginal="box", ) future_hist.show() visual_num(data_coor, "distance_to_center") visual_num(data_coor, "distance_to_airport") # Также создадим признак,показывающий как условный радиус города относится к расстоянию от отеля до центра города. data_coor["dist_square_ratio"] = round( ((data_coor["city_square"] * 1000000 / 3.14) ** 0.5) / data_coor["distance_to_center"], 2, ) data_coor["dist_square_ratio"].describe() # визуализируем полученный признак visual_num(data_coor, "dist_square_ratio") # Новые признаки распределены не нормально. Нормализуем их методом RobustScaler. rb_scaler = preprocessing.RobustScaler() data_coor["distance_to_center"] = rb_scaler.fit_transform( data_coor[["distance_to_center"]] ) data_coor["distance_to_airport"] = rb_scaler.fit_transform( data_coor[["distance_to_airport"]] ) data_coor["dist_square_ratio"] = rb_scaler.fit_transform( data_coor[["dist_square_ratio"]] ) # удаляем из data_coor признаки с координатами и объединяем с data data_coor.drop(columns=col_coor_list, inplace=True) data = pd.concat([data, data_coor], axis=1) data.info() # удаляем из нашего датасета признаки, которые нам больше не понадобятся data.drop( columns=[ "city_center_lat", "city_center_lng", "city_airport_lat", "city_airport_lng", "lat", "lng", ], inplace=True, ) # ### 2.4 total_number_of_reviews # Возможно это один из признаков надёжности отеля. Если отзывов много, то средний рейтинг можно считать объективным. Исследуем распределение этого признака. visual_num(data, "total_number_of_reviews") # Обратим внимание на отели, количество отзывов у которых около 17000. Узнаем их имена. data[data["total_number_of_reviews"] > 15000]["hotel_name"].value_counts() # Такое большое количество отзывов только у одого отеля. Выясняем его средний балл. data[data["hotel_name"] == "Hotel Da Vinci"]["reviewer_score"].mean() # Средний балл достаточно низкий. Такое большое количество отзывов вероятно обусловлено большим количеством недовольных клиентов. Создаем признак, указывающий на большое количество отзывов. data["total_reviews"] = data["total_number_of_reviews"].apply( lambda x: 1 if x > 15000 else 0 ) # ### 2.5 average_score visual_num(data, "average_score") # Распределение признака близко к нормальному. Отрицательных значения и значения больше десяти отсутствуют. # ### 2.6 additional_number_of_scoring visual_num(data, "additional_number_of_scoring") # Создадим признак, показывающий отношение количества оценок без отзыва к общему количеству действительных отзывов об отеле. data["review_ratio"] = ( data["additional_number_of_scoring"] / data["total_number_of_reviews"] ) visual_num(data, "review_ratio") # Доля оценок без отзыва не превышает сорок процентов. Выясним среднюю оценку отелей, у которых доля оценок бе отзыов близка к верхней границе полученного нами диапазона. print(data[data["review_ratio"] > 0.39]["reviewer_score"].mean()) print(data[data["review_ratio"] < 0.39]["reviewer_score"].mean()) # Разница составляет более половины балла, что довольно существенно. Это может быть обусловлено психологией человека: недовольный клиент с большей вероятностью опишет то, что ему не понравилось. Удовлетворенный клиент скорее просто поставит высокую оценку, не вдаваясь в подробности. Создадим признак, указывающий на высокую долю оценок без отзывов. data["top_review_ratio"] = data["review_ratio"].apply(lambda x: 1 if x > 0.39 else 0) data["top_review_ratio"].value_counts() # ## 3. Анализ признаков, описывающих рецензента # ### 3.1 reviewer_nationality # Создадим из признаков reviewer_nationality и hotel_country признак-флаг, указывающий на то, является ли человек, оставивший отзыв об отеле, гражданином страны, в которой этот отель расположен. data["reviewer_nationality"] = data["reviewer_nationality"].apply(lambda s: s.strip()) print( "Всего " + str(data["reviewer_nationality"].nunique()) + " различных национальностей в датасете.\n" ) data["reviewer_nationality"].value_counts() # Возможно для некоторых национальностей имеет смысл создать отдельный признак-флаг. Сгруппируем наши данные по национальностям рецензентов и посмотрим на поставленные средние баллы первых двадцати по количеству отзывов group_nationality = ( data.groupby("reviewer_nationality")["reviewer_score"] .agg(["mean", "count"]) .round(2) .sort_values(ascending=False, by="count") .nlargest(20, columns="count") ) group_nationality # Максимальный средний балл у представителей США, минимальный - у представителей ОАЭ. Создаем два новых признака "national_is_usa" и "national_is_uae". Также введем признак для самой многочисленной группы национальностей рецензентов - "national_is_uk". data["national_is_usa"] = data["reviewer_nationality"].apply( lambda x: 1 if x == "United States of America" else 0 ) data["national_is_uae"] = data["reviewer_nationality"].apply( lambda x: 1 if x == "United Arab Emirates" else 0 ) data["national_is_uk"] = data["reviewer_nationality"].apply( lambda x: 1 if x == "United Kingdom" else 0 ) # Разделим рецензентов по следующему принципу: те, кто проживал в отеле своей страны и те, кто проживал в отеле заграницей. # создаем признак-флаг и выводим соотношение резидентов и нерезидентов data["local_reviewer"] = data.apply( lambda x: 1 if x["reviewer_nationality"] == x["hotel_country"] else 0, axis=1 ) data["local_reviewer"].value_counts(normalize=True) print( f'Резидентов: {round(data["local_reviewer"].value_counts(normalize=True)[0]*100)} %\nНерезидентов:' f'{round(data["local_reviewer"].value_counts(normalize=True)[1]*100)} %' ) # визуализируем признак local_reviewer visual_cat(data, "local_reviewer", 2) # Средний балл отзыва, оставленного рецензентом-резидентом, выше среднего балла, оставленногого нерезидентом. # Cреди национальностей, входящих в топ-20 по количеству рецензентов, есть 4 национальности, преобладающей религией которых является ислам. # Создаем новый признак-флаг, определяющий то, что отзыв оставил представитель исламской страны. a = ["United Arab Emirates", "Saudi Arabia", "Turkey", "Kuwait"] data["reviewer_is_muslim"] = data["reviewer_nationality"].apply( lambda x: 1 if x in a else 0 ) data["reviewer_is_muslim"].value_counts(normalize=True) # визуализируем признак reviewer_is_muslim visual_cat(data, "reviewer_is_muslim", 2) # ### 3.2 total_number_of_reviews_reviewer_has_given visual_num(data, "total_number_of_reviews_reviewer_has_given") # Распределение признака похоже на логнормальное. Создадим из признака total_number_of_reviews_reviewer_has_given новый признак verified_reviewer. Будем считать надежным такого рецезента, общее количество отзывов у которого не менее 10. data["verified_reviewer"] = data["total_number_of_reviews_reviewer_has_given"].apply( lambda x: 1 if x >= 11 else 0 ) print(data["verified_reviewer"].value_counts()) visual_cat(data, "verified_reviewer", 2) # Разница в средней оценке между группами минимальна. # ### 3.3 review_date # Создадим из признака review_date новые признаки: год, месяц, число месяца и день недели. data["review_date"] = pd.to_datetime(data["review_date"]) data["year"] = data["review_date"].dt.year data["day"] = data["review_date"].dt.day data["month"] = data["review_date"].dt.month data["weekday"] = data["review_date"].dt.weekday + 1 # Пн = 1, ..., Вс = 7 # Визуализируем новые признаки fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(12, 12)) plt.subplots_adjust(hspace=0.25) histplot1 = sns.histplot(data=data, x="year", bins=3, ax=axes[0, 0]) histplot1.set_title("Распределение по году", fontsize=10) histplot1.set_xlabel("Год") histplot1.set_ylabel("Количество отзывов") histplot1.set_xticklabels(histplot1.get_xticklabels(), rotation=30) histplot2 = sns.histplot(data=data, x="month", bins=12, ax=axes[0, 1]) histplot2.set_title("Распределение по месяцам", fontsize=10) histplot2.set_xlabel("Месяц") histplot2.set_ylabel("Количество отзывов") histplot3 = sns.histplot(data=data, x="day", bins=31, ax=axes[1, 0]) histplot3.set_title("Распределение по дням месяца", fontsize=10) histplot3.set_xlabel("день") histplot3.set_ylabel("Количество отзывов") histplot4 = sns.histplot(data=data, x="weekday", bins=7, ax=axes[1, 1]) histplot4.set_title("Распределение по дням недели", fontsize=10) histplot4.set_xlabel("День недели") histplot4.set_ylabel("Количество отзывов") # Из построенных графиков можно сделать следующие выводы: # * все отзывы были сделаны с 2015 по 2017 годы # * максимальное количество отзывов было сделано в 2016 году # * чаще всего отзывы оставляют в июле-августе # * на первые числа месяца приходится больше отзывов, чем на последние # * самый популярный день недели для отзывов - вторник, наименее популярный - пятница # ## 4. Признаки, описывающие отзыв # ### 4.1 negative_review, positive_review # Данные признаки будем анализировать с помощью библиотеки Textblob. # создаем новый датасет data_emotion = data[["negative_review", "positive_review"]] # создаем функцию для получения новых признаков def emotional_rate(x): """Text sentiment analysis function Args: x (str): parsed text Returns: tuple: tuple consisting of polarity and subjectivity values_ """ tuple_emotion = TextBlob(x).polarity, TextBlob(x).subjectivity return tuple_emotion # применяем функцию к столбцам 'negative_review' и 'positive_review' # получаем четыре новых признака: показатели "полярности" и "субъективности" для положительных и отрицательных отзывов data_emotion["negative_polarity"] = data_emotion["negative_review"].apply( lambda x: emotional_rate(x)[0] ) data_emotion["negative_subjectivity"] = data_emotion["negative_review"].apply( lambda x: emotional_rate(x)[1] ) data_emotion["positive_polarity"] = data_emotion["positive_review"].apply( lambda x: emotional_rate(x)[0] ) data_emotion["positive_subjectivity"] = data_emotion["positive_review"].apply( lambda x: emotional_rate(x)[1] ) data_emotion.describe() # Визуализируем распределение полученных признаков. emotion_futures = [ "positive_polarity", "negative_polarity", "positive_subjectivity", "negative_subjectivity", ] for future in emotion_futures: visual_num(data_emotion, future) # Проверим, насколько точно данные признаки описывают содержание отзывов. # удаляем признаки типа "object" data_emotion.drop(columns=["negative_review", "positive_review"], axis=1, inplace=True) # объединяем с исходным датасетом data = pd.concat([data, data_emotion], axis=1) # Посмотрим на разброс значений reviewer_score с положительным значением positive_polarity и отрицательным значением negative_polarity data[(data["positive_polarity"] > 0) & (data["negative_polarity"] < 0)][ "reviewer_score" ].value_counts().sort_values(ascending=False) # При данных условиях мы ожидаем увидеть высокие значения reviewer_score. Однако количество низких баллов(будем считать таковыми все, что ниже четырех баллов) значительно. Теперь посмотрим на самые часто встречающиеся отзывы с оценкой ниже пяти баллов при тех же условиях. data[ (data["positive_polarity"] > 0) & (data["negative_polarity"] < 0) & (data["reviewer_score"] < 4) & (data["reviewer_score"] != 0) ]["positive_review"].value_counts().sort_values(ascending=False).nlargest(20) # Основная масса таких отзывов - это указание на удобное месторасположение отеля. Создадим новый признак 'good_location'. def good_location(x): a = " ".join(x.lower().split()) if a == "good location": return 1 if a == "location was good": return 1 if a == "location is good": return 1 else: return 0 data["good_location"] = data["positive_review"].apply(good_location) data["good_location"].value_counts() visual_cat(data, "good_location") # Среднее значение признака reviewer_score в категории отзывов, где положительный отзыв ограничивается упоминанием удобного расположения отеля, значительно ниже. # Теперь рассмотрим обратную ситуацию: нас интересует разброс значений reviewer_score с отрицательным значением positive_polarity и положительным значением negative_polarity. data[(data["positive_polarity"] < 0) & (data["negative_polarity"] > 0)][ "reviewer_score" ].value_counts().sort_values(ascending=False) # При данных условиях мы ожидаем увидеть низкие значения reviewer_score. Однако количество высоких баллов(будем считать таковыми все, что выше восьми баллов) значительно. Теперь посмотрим на самые часто встречающиеся положительные отзывы с оценкой выше восьми баллов при тех же условиях. # Самое часто встречающееся значение положительного отзыва - 'No Positive'. Создадим новый признак, указывающий на равенство значения положительного отзыва 'No Positive'. data["no_positive"] = data["positive_review"].apply( lambda x: 1 if x == "No Positive" else 0 ) visual_cat(data, "no_positive") # Среднее значение признака reviewer_score в категории отзывов, где положительный отзыв равен 'No Positive, значительно ниже. # ### 4.2 tags # Каждое значение признака tags является списком тегов в строковом формате. В тегах встречается много "мусора". Для начала избавимся от него. def tags_cleaner(x): """The function removes non-numeric and non-alphabetic characters from the elements of the spike. Args: x (list): tag list Returns: list: list of cleared tags """ drop_simbols = ["[", "]", "' ", " '"] for simbol in drop_simbols: x = x.replace(simbol, "") return x.split(", ") data["tags_cleaned"] = data["tags"].apply(tags_cleaner) data["tags_cleaned"].head() # Создаем новый признак, показывающий количество тэгов в отзыве data["num_tegs"] = data["tags_cleaned"].apply(lambda x: len(x)) data["num_tegs"].value_counts() # Максимальное количество тэгов в отзыве равно шести. Выводим на экран все отзывы с максимальным количеством тэгов data[data["num_tegs"] == 6]["tags_cleaned"].value_counts() # Из тэгов мы можем извлечь следующую информацию: # 1. Тип поездки: командировка или отдых # 2. Количество проживающих # 3. Количество комнат в номере # 4. Количество ночей в отеле # 5. Где оставлен отзыв # 6. Наличие окон в номере # 7. Проживание с домашними животными или без # создаем новый признак, указывающий на проживание с домашними животными def pet_tag(x): for tag in x: if "pet" in tag: return 1 return 0 data["with_pet"] = data["tags_cleaned"].apply(pet_tag) print(data["with_pet"].value_counts()) visual_cat(data, "with_pet") # Средний балл отзывов рецензентов с домашними животными ниже чем средний балл рецензентов без них. # создаем новый признак, указывающий на то, кто проживал в отеле: один человек, два, семья или группа def num_travelels(x): for tag in x: if "Solo" in tag: return "one" if "Couple" in tag: return "two" if "Family" in tag: return "family" if "Group" in tag: return "group" return "unknown" data["num_travelers"] = data["tags_cleaned"].apply(num_travelels) print(data["num_travelers"].value_counts()) visual_cat(data, "num_travelers") # Больше всего отзывов в категории 'unknown'. В этой же категории самая высокая оценка. Самая низкая оценка в категории 'one'. # создаем признак количества ночей проживания в отеле def num_night(x): for tag in x: if "Stayed" in tag: return int(tag.split()[1]) return 0 data["num_night"] = data["tags_cleaned"].apply(num_night) print(data["num_night"].value_counts()) visual_num(data, "num_night") # Распределение данного признака близко к логнормальному # создаем признак, указывающий то, что отзыв оставлен в мобильном приложении def mobile_review(x): for tag in x: if "Submitted" in tag: return 1 return 0 data["mobile_review"] = data["tags_cleaned"].apply(mobile_review) print(data["mobile_review"].value_counts()) visual_cat(data, "mobile_review") # создаем признак, указывающий на то, с какой целью рецензент в отеле: командировка или отдых def trip_tag(x): for tag in x: if "trip" in tag: if "Business" in tag: return "business" elif "Leisure" in tag: return "leisure" return "unknown" data["trip_tag"] = data["tags_cleaned"].apply(trip_tag) print(data["trip_tag"].value_counts()) visual_cat(data, "trip_tag") # Отдыхающиеся рецензенты в среднем ставят более высокую оценку, чем находящиеся в командировке. def window(x): for tag in x: if "Window" in tag: return 1 return 0 data["window"] = data["tags_cleaned"].apply(window) print(data["window"].value_counts()) visual_cat(data, "window") # ### 4.3 review_total_positive_word_counts, review_total_negative_word_counts # Визуализируем распределение данных признаков visual_num(data, "review_total_positive_word_counts") visual_num(data, "review_total_negative_word_counts") # Распределение признаков близко к логнормальному. fig = px.scatter( data, x="review_total_negative_word_counts", y="review_total_positive_word_counts", title="График зависимости двух переменных", width=700, height=500, ) fig.update_traces(marker={"size": 6}) fig.show() # Зависимость переменных близка к обратной линейной функции. # нормализуем данные признаки rb_scaler = preprocessing.RobustScaler() data["review_total_negative_word_counts"] = rb_scaler.fit_transform( data[["review_total_negative_word_counts"]] ) data["review_total_positive_word_counts"] = rb_scaler.fit_transform( data[["review_total_positive_word_counts"]] ) # ### 4.4 days_since_review # Данный признак представлен в текстовом формате. Скорее всего влияние этого признака на обучение модели будет незначительным. # приводим признак числовому типу данных data["days_since_review"] = data["days_since_review"].apply(lambda x: int(x.split()[0])) # строим графики распределения признака visual_num(data, "days_since_review") # ## 5. Отбор признаков # На данный момент в нашем датасете один признак datetime и 13 признаков типа object. Закодируем созданные нами признаки и удалим все нечисловые признаки. data_copy = data.copy() # список признаков для кодирования list_to_code = [ "hotel_country", "hotel_city", "hotel_chain", "num_travelers", "trip_tag", "year", "month", "weekday", ] for elem in list_to_code: one_hot_encoder = ce.OneHotEncoder(cols=[elem], use_cat_names=True) encoded = one_hot_encoder.fit_transform(data_copy[elem]) data_copy = pd.concat([data_copy, encoded], axis=1, join="inner") data_copy.drop(columns="review_date", axis=1, inplace=True) object_columns = [s for s in data_copy.columns if data_copy[s].dtypes == "object"] data_copy.drop(object_columns, axis=1, inplace=True) data_copy.info() # Все признаки в нашем датасете числовые. Разделим его на два датасета: с числовыми непрерывными признаками и с числовыми категориальными признаками. # список непрерывных признаков num_future = [ "additional_number_of_scoring", "average_score", "review_total_negative_word_counts", "total_number_of_reviews", "review_total_positive_word_counts", "total_number_of_reviews_reviewer_has_given", "reviewer_score", "distance_to_center", "distance_to_airport", "negative_polarity", "positive_polarity", "negative_subjectivity", "positive_subjectivity", "num_tegs", "days_since_review", "dist_square_ratio", "city_square", "review_ratio", ] # список категориальных признаков cat_future = [] for col in data_copy.columns: if col not in num_future: cat_future.append(col) cat_data = data_copy[cat_future] num_data = data_copy[num_future] # Строим матрицы корелляций отдельно для непрерывных и отдельно для категориальных признаков plt.figure(figsize=(10, 7)) corr_heatmap = sns.heatmap(num_data.corr(method="spearman"), annot=True, cmap="binary") corr_heatmap.set_title("Матрица корреляции для непрерывных признаков ") # Сильную корелляцию имеют три пары признаков: # * total_number_of_reviews, additional_number_of_scoring # * positive_subjectivity, positive_polarity # * city_square, dist_square_ratio # Однако удаление из датасета по одному признаку из каждой пары не привело к уменьшению MAPE plt.figure(figsize=(23, 12)) corr_heatmap = sns.heatmap(cat_data.corr(method="spearman"), annot=True, cmap="binary") corr_heatmap.set_title("Матрица корреляции для категориальных признаков ") # Из-за большого количества признаков визуальное восприятие матрицы корелляции затруднено. Выводим на экран только признаки с корелляцией выше по модулю 0.7 # функция фильтрации матрицы корелляции def correl(xtrain, thresh): """Function to filter correlation values Args: xtrain (pd.DataFrame): researched dataframe thresh (float): filtration limit Returns: _pd.DataFrame: pairs of features with a higher correlation modulo a given limit """ cor = xtrain.corr(method="spearman") c = cor.stack().sort_values(ascending=False).drop_duplicates() all_cor = c[c.values != 1] return all_cor[abs(all_cor) > thresh] correl(xtrain=cat_data, thresh=0.7) # Удаление признаков из каждой пары также не привело к уменьшению значения MAPE # ## 6. Создание и проверка модели train_data = data_copy.query("sample == 1").drop(["sample"], axis=1) test_data = data_copy.query("sample == 0").drop(["sample"], axis=1) y = train_data.reviewer_score.values # наш таргет X = train_data.drop(["reviewer_score"], axis=1) X = train_data.drop(columns="reviewer_score") y = train_data["reviewer_score"] # Воспользуемся специальной функцие train_test_split для разбивки тестовых данных # выделим 20% данных на валидацию (параметр test_size) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=RANDOM_SEED ) # Импортируем необходимые библиотеки: from sklearn.ensemble import ( RandomForestRegressor, ) # инструмент для создания и обучения модели from sklearn import metrics # инструменты для оценки точности модели # Создаём модель (НАСТРОЙКИ НЕ ТРОГАЕМ) model = RandomForestRegressor( n_estimators=100, verbose=1, n_jobs=-1, random_state=RANDOM_SEED ) # Обучаем модель на тестовом наборе данных model.fit(X_train, y_train) # Используем обученную модель для предсказания рейтинга отелей в тестовой выборке. # Предсказанные значения записываем в переменную y_pred y_pred = model.predict(X_test) # Сравниваем предсказанные значения (y_pred) с реальными (y_test), и смотрим насколько они в среднем отличаются # Метрика называется mean absolute percentage error (MAPE) и показывает среднюю абсолютную процентную ошибку предсказанных значений от фактических. print("MAPE:", metrics.mean_absolute_percentage_error(y_test, y_pred)) # в RandomForestRegressor есть возможность вывести самые важные признаки для модели plt.rcParams["figure.figsize"] = (10, 10) feat_importances = pd.Series(model.feature_importances_, index=X.columns) feat_importances.nlargest(32).plot(kind="barh") test_data = test_data.drop(["reviewer_score"], axis=1) predict_submission = model.predict(test_data) sample_submission["reviewer_score"] = predict_submission sample_submission.to_csv("submission.csv", index=False) sample_submission
# # CNN v2 # import models import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns from keras.models import Sequential from keras.callbacks import EarlyStopping from keras.layers.convolutional import Conv1D, MaxPooling1D from keras.layers import Dense, LSTM, RepeatVector, Flatten, TimeDistributed, Dropout from sklearn.preprocessing import MinMaxScaler from keras.losses import ( mean_absolute_error, mean_absolute_percentage_error, mean_squared_error, ) from sklearn.model_selection import train_test_split import matplotlib.dates as mdates color_pal = sns.color_palette() plt.style.use("fivethirtyeight") import os # # import and Clean Data # Read & fill empty Date df = pd.read_csv("/kaggle/input/iraq2016/iraq2016.csv") df.fillna(method="ffill", inplace=True) df = df.set_index("datetime") df.index = pd.to_datetime(df.index) # df # # split the data train_data, test_data = train_test_split( df, test_size=0.23, shuffle=False, random_state=42 ) # # Plotting # create a list of the days of the month # plot the train and test sets in different colors plt.figure(figsize=(15, 5)) plt.plot(train_data.index, train_data["power"], label="Train", color="green") plt.plot(test_data.index, test_data["power"], label="Test", color="orange") plt.axvline(x=pd.Timestamp("2016-01-24 20:00:00"), color="black", linestyle="--") plt.xlabel("Date") plt.ylabel("Power") plt.title("Power Consumption in 2016 (MW)") plt.legend() # format the x-axis as dates and show every 3 days date_format = mdates.DateFormatter("%Y-%m-%d") plt.gca().xaxis.set_major_formatter(date_format) plt.gca().xaxis.set_major_locator(mdates.DayLocator(interval=7)) plt.gcf().autofmt_xdate() plt.show() data = df.loc["2016-01-25"] # plot the data plt.figure(figsize=(15, 5)) plt.plot(data.index, data["power"], color="blue") plt.xlabel("Time") plt.ylabel("Power") plt.title("Power Consumption on January 25, 2016 (MW)") plt.ylim(22000, 42000) # # Feautre Creation def create_features(df): """ Create time series features based on time series index. """ df = df.copy() df["hour"] = df.index.hour df["dayofweek"] = df.index.dayofweek df["quarter"] = df.index.quarter df["month"] = df.index.month df["year"] = df.index.year df["dayofyear"] = df.index.dayofyear df["dayofmonth"] = df.index.day df["weekofyear"] = df.index.isocalendar().week return df df = create_features(df) df.head() # # split data to train and test features = ["dayofyear", "hour", "dayofweek", "quarter", "month", "year"] labels = ["power"] train_data, test_data = train_test_split( df, test_size=0.23, shuffle=False, random_state=42 ) train_x = train_data[features] train_y = train_data[labels] test_x = test_data[features] test_y = test_data[labels] # # create windows data = df["power"].values scaler = MinMaxScaler() data = scaler.fit_transform(df["power"].values.reshape(-1, 1)) # define the window size and stride window_size = 24 stride = 1 # create windows and labels for the data windows = [] labels = [] for i in range(0, len(data) - window_size, stride): window = data[i : i + window_size] label = data[i + window_size] windows.append(window) labels.append(label) windows = np.array(windows) labels = np.array(labels) # split the data into a train set and a test set train_ratio = 0.8 train_size = int(train_ratio * len(windows)) train_windows, train_labels = windows[:train_size], labels[:train_size] test_windows, test_labels = windows[train_size:], labels[train_size:] # split the data into a train set and a test set train_ratio = 0.8 train_size = int(train_ratio * len(windows)) train_windows, train_labels = windows[:train_size], labels[:train_size] test_windows, test_labels = windows[train_size:], labels[train_size:] # reshape the data for the CNN layer train_windows = train_windows.reshape( (train_windows.shape[0], train_windows.shape[1], 1) ) test_windows = test_windows.reshape((test_windows.shape[0], test_windows.shape[1], 1)) # # perform hybrid CNN-LSTM model model = Sequential() # define the model architecture model = Sequential() model.add( Conv1D(filters=16, kernel_size=3, activation="relu", input_shape=(window_size, 1)) ) model.add(MaxPooling1D(pool_size=2)) model.add( Conv1D(filters=32, kernel_size=3, activation="relu", input_shape=(window_size, 1)) ) model.add(MaxPooling1D(pool_size=2)) model.add(Dropout(0.2)) model.add(LSTM(units=64)) model.add(Dense(units=1)) # compile the model model.compile(optimizer="adam", loss="mse", metrics=["mse", "mae", "mape"]) early_stopping_monitor = EarlyStopping(patience=3) # train the model history = model.fit( train_windows, train_labels, epochs=7, batch_size=12, verbose=1, callbacks=early_stopping_monitor, ) # # Analyse Outputs loss, mse, mae, mape = model.evaluate(test_windows, test_labels, verbose=0) rmse = np.sqrt(mse) # evaluate the model on the test set predictions = model.predict(test_windows) predictions = scaler.inverse_transform(predictions) test_labels = scaler.inverse_transform(test_labels) print(f"Mean Squared Error: {mse:.2f}") print(f"Mean Absolute Error: {mae:.2f}") print(f"Root Mean Squared Error: {rmse:.2f}") print(f"Mean Absulote Precentage Error: {mape:.2f}%") # # plot the result # plot the predicted values and the actual values plt.figure(figsize=(10, 6)) plt.plot(predictions, label="predictions") plt.plot(test_labels, label="actual") plt.legend() plt.title("Predicted vs Actual Power Consumption") plt.xlabel("Time Step") plt.ylabel("Power (MW)") plt.show() labels = ["MSE", "MAE", "RMSE", "%(MAPE / 100) "] values = [mse, mae, rmse, mape / 100] position = range(len(values)) plt.barh(position, values, 0.4) plt.yticks(position, labels) plt.title("CNN-LSTM Evaluation Metrics") plt.xlabel("Values") plt.show() # # save our prediction # create a DataFrame with the predictions predictions_df = pd.DataFrame(predictions, columns=["predictions"]) # read the original CSV file df = pd.read_csv( "/kaggle/input/iraq2016/iraq2016.csv", index_col="datetime", parse_dates=True ) # merge the original DataFrame with the predictions DataFrame df = pd.concat([df, predictions_df], axis=1) # save the merged DataFrame to a CSV file df.to_csv("iraq2016_prediction2.csv") # # read our data predict_df = pd.read_csv("/kaggle/working/iraq2016_prediction1.csv", parse_dates=True) print(predict_df) predict_df.isna().sum() # plt.figure(figsize=(15, 5)) # # plt.plot(predict_df.index, predict_df['power'], label='Train', color='green') # # plt.plot(predict_df.index, predict_df['predictions'], label='Train', color='green') # plt.xlabel('Date') # plt.ylabel('Power') # plt.title('Predict in 2016 (MW)') # plt.legend() # # format the x-axis as dates and show every 3 days # date_format = mdates.DateFormatter('%Y-%m-%d') # plt.gca().xaxis.set_major_formatter(date_format) # plt.gca().xaxis.set_major_locator(mdates.DayLocator(interval=7)) # plt.gcf().autofmt_xdate() # plt.show()
# # # Understanding The Dataset: # Now from dataset description we have 2 datasets: # # 1. The Original Dataset # 2. The Generated Dataset (train.csv, test.csv, sample.csv) # # ## Original Dataset Description: # # This dataset consists of **79 urine specimens** that were analyzed to determine if certain physical characteristics of the urine are related to the formation of calcium oxalate crystals, which are the most common type of kidney stones. The six physical characteristics of the urine that were analyzed are: # 1. Specific gravity: The density of the urine relative to water. # 2. pH: The negative logarithm of the hydrogen ion. # 3. Osmolarity (mOsm): A unit used in biology and medicine but not in physical chemistry. Osmolarity is proportional to the concentration of molecules in solution. # 4. Conductivity (mMho milliMho): One Mho is one reciprocal Ohm. Conductivity is proportional to the concentration of charged ions in solution. # 5. Urea concentration in millimoles per litre. # 6. Calcium concentration (CALC) in millimoles per litre. # The objective of this dataset is to **predict the presence of kidney stones** based on the u**rine analysis results**. # # # EDA # # importing libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib_inline.backend_inline import set_matplotlib_formats import seaborn as sns set_matplotlib_formats("svg") sns.set_style("whitegrid") original_df = pd.read_csv( "/kaggle/input/kidney-stone-prediction-based-on-urine-analysis/kindey stone urine analysis.csv" ) train_df = pd.read_csv("/kaggle/input/playground-series-s3e12/train.csv") test_df = pd.read_csv("/kaggle/input/playground-series-s3e12/test.csv") original_df.head() train_df test_df print("The shape of Original Dataset:", original_df.shape) print("The shape of Train Dataset:", train_df.shape) print("The shape of Test Dataset:", test_df.shape) # note that the shape of **Train Dataset** includes 8 columns because it includes id column # let's see datatypes for each column: print("The Original Dataset Info: ") print() print(original_df.info()) print("-" * 50) print() print("The Train Dataset Info: ") print() print(train_df.info()) print("-" * 50) print() print("The Test Dataset Info: ") print() print(test_df.info()) print("-" * 50) # Great! from original, train, test datasets we see there's no null values and datatypes float64 and int64 # We can aslo check the null using other method such: # > train.isnull().sum() #copy and run in a cell # Let's now check duplicates print("Duplicates for Original DataFrames:") print(original_df[original_df.duplicated()]) print() print("-" * 60) print("Duplicates for Train DataFrames:") print(train_df[train_df.duplicated()]) print() print("-" * 60) print("Duplicates for Test DataFrames") print(test_df[test_df.duplicated()]) # let's see descriptive data using .describe() original_df.describe() train_df.describe() train_df.nunique() # # ## Visualizations # now time to visualization but before this, dropping id column # train_df_2 = train_df.drop("id", axis=1) # ### Distributions OF Features fig = plt.figure(figsize=(13, 11)) for i, col in enumerate(train_df_2.columns, 1): plt.subplot(4, 2, i) sns.histplot( x=train_df_2[col], kde=True, color="#9080ff", linewidth=0.8, edgecolor="k", alpha=0.7, ) plt.title(f"Distribution of {col}") plt.tight_layout() fig.suptitle( "Distributions OF Features Using Histograms", fontsize=13.5, fontweight="heavy", y=1.02, ) plt.show() # From Histograms: # 1. Gravity has a slightly positive skewness, meaning that the distribution is slightly skewed to the right. # 2. Ph has a positive skewness, meaning that the distribution is skewed to the right, and the tail on the right side is longer or fatter than the left side. # 3. Osmo has a slightly positive skewness, meaning that the distribution is slightly skewed to the right. # 4. Cond has a negative skewness, meaning that the distribution is skewed to the left, and the tail on the left side is longer or fatter than the right side. # 5. Urea has a slightly positive skewness, meaning that the distribution is slightly skewed to the right. # 6. Calc has a positive skewness, meaning that the distribution is skewed to the right, and the tail on the right side is longer or fatter than the left side. # 7. Target has a slightly positive skewness, meaning that the distribution is slightly skewed to the right. _, axes = plt.subplots(1, 5, figsize=(15, 4)) for i, ax in enumerate(axes.flatten()): sns.boxenplot(y=train_df_2[train_df_2.columns[i]], color="#ffb400", ax=axes[i]) _.suptitle("Boxen Plots For Features", fontsize=14, fontweight="heavy") plt.tight_layout() plt.show() # ### Target vs Features fig, axes = plt.subplots(1, 6, figsize=(15, 4)) for i, ax in enumerate(axes.flatten()): sns.kdeplot( data=train_df_2, x=train_df_2.columns[i], hue="target", fill=True, ax=ax, palette=["#ffb400", "#9080ff"], ) fig.suptitle("KDE Plots For Target vs. Features", fontsize=14, fontweight="heavy") plt.tight_layout() f = sns.pairplot( train_df_2, hue="target", diag_kind="kde", palette=["#ffb400", "#9080ff"], height=4, aspect=1.2, ) f.fig.set_size_inches(15, 11) f.fig.suptitle("Pair Plot & hue = target", fontsize=14, fontweight="heavy", y=1.05) plt.legend() plt.tight_layout() plt.show() f, ax = plt.subplots(1, 6, figsize=(15, 4)) for i in range(len(train_df_2.columns) - 1): sns.boxplot( x="target", y=train_df_2.columns[i], data=train_df_2, ax=ax[i], palette=["#ffb400", "#9080ff"], ) ax[i].title.set_text("target vs {0}".format(train_df_2.columns[i])) f.suptitle("Box Plots Output Vs. Numerical Features", fontsize=14, fontweight="heavy") plt.tight_layout() # ### Person Correlation Heatmap plt.figure(figsize=(13, 7)) sns.heatmap(train_df_2.corr(), annot=True, cmap="Blues", linewidth=0.1) plt.title("Person Correlation Heatmap", fontsize=14, fontweight="heavy") plt.show() # # # Modeling Using Pycaret # # test_df_2 = test_df.drop("id", axis=1) train_df_3 = pd.concat([original_df, train_df_2]) train_df_3.shape from pycaret.classification import * s = setup(train_df_3, target="target", session_id=123) best = compare_models() plot_model(best, plot="confusion_matrix") plot_model(best, plot="auc") evaluate_model(best) tuned_best = tune_model(best) predictions = predict_model(tuned_best, data=test_df_2) test_df predictions save_model(tuned_best, "my_pipeline") # # # Submission # # my_sub = pd.DataFrame({"id": test_df["id"], "target": predictions["prediction_label"]}) my_sub my_sub.to_csv("submission.csv")
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # generating array of timestamps of comments: baseline = 48640 commentsTimes = [48640] for i in range(50): newNumber = baseline + (i + 1) * 2560 commentsTimes.append(newNumber) print(commentsTimes) print(len(commentsTimes)) Set1comments = [ 49, 43, 17, 15, 13, 45, 41, 1, 3, 25, 16, 42, 9, 24, 40, 32, 29, 2, 26, 46, 36, 18, 12, 34, 19, 4, 48, 50, 28, 23, 22, 14, 33, 6, 21, 7, 8, 5, 27, 47, 38, 37, 30, 11, 35, 39, 31, 20, 44, 10, ] S1channels = pd.read_csv( "/kaggle/input/EEGwithChannelsNOLabels/kaggle/working/S01channels.csv", low_memory=False, ) dfS1 = pd.DataFrame(S1channels) dfS1 = dfS1.iloc[2:, :] S1float = dfS1.astype(float) # NEEDED? S1channelsOnly = S1float.iloc[:, 1:] S1channelsOnly subjIDs = [ "S01", "S02", "S03", "S04", "S05", "S06", "S07", "S08", "S10", "S11", "S12", "S13", "S14", "S15", "S16", "S18", "S19", "S20", "S21", "S22", "S23", "S25", "S26", "S27", "S28", "S29", "S31", ] # ,'S32','S33','S34'] def makeFileNames(headerArr): nameArr = [] for i in range(len(headerArr)): nameStr = headerArr[i] + "noHeadersNoTimes.csv" nameArr.append(nameStr) return nameArr outputFiles = makeFileNames(subjIDs) import csv # remove headers from all files input_files = sorted( [ os.path.join(dirname, f) for dirname, _, files in os.walk( "/kaggle/input/EEGwithChannelsNOLabels/kaggle/working/" ) for f in files if f.startswith("S") and f.endswith(".csv") ] ) # print(input_files) # Create a list of output filenames based on the index of the input files # new_csv_files = ['output{}.csv'.format(i) for i in range(len(input_files))] output_dir = "/kaggle/working" # Iterate over the input files and create new CSV files with the desired headers and data for i, input_file in enumerate(input_files): with open(input_file) as infile: reader = csv.reader(infile) with open(os.path.join(output_dir, outputFiles[i]), "w", newline="") as outfile: writer = csv.writer(outfile) # writer.writerow(headers) for row in reader: if row[2]: writer.writerow(row[1:]) # looks like this one actually worked print(len(os.listdir("/kaggle/working"))) # os.remove('%i') # making list of segmented comments for boxplotting: fiftyCommentsS1 = [] for i in range(len(commentsTimes) - 1): # -1 to allow for i+1 indexing # print(commentsTimes[i],commentsTimes[i+1]) # print(S1channelsOnly[commentsTimes[i]:commentsTimes[i+1]]) comment = S1channelsOnly[commentsTimes[i] : commentsTimes[i + 1]] fiftyCommentsS1.append(comment) def makeArrays(headerArr): nameArr = [] for i in range(len(headerArr)): nameStr = headerArr[i] + "comments.csv" nameArr.append(nameStr) return nameArr commentsFiles = makeArrayNames(subjIDs) commentsFiles # attempting to make plot of 30 subjs 50 comments from ast import literal_eval working_files = sorted( [ os.path.join(dirname, f) for dirname, _, files in os.walk("/kaggle/working/") for f in files if f.startswith("S") and f.endswith(".csv") ] ) # print(working_files) # commentsArrays = literal_eval(commentsFiles) for i, file in enumerate(working_files): for i in range(len(commentsTimes) - 1): # -1 to allow for i+1 indexing # print(commentsTimes[i],commentsTimes[i+1]) # print(S1channelsOnly[commentsTimes[i]:commentsTimes[i+1]]) comment = file[commentsTimes[i] : commentsTimes[i + 1]] commentsArr.append(comment) commentsArray1 i = 1 for comment in fiftyCommentsS1: plt.figure() if Set1comments[i - 1] > 25: plt.title("Comment #%i (CS)" % i) elif Set1comments[i - 1] <= 25: plt.title("Comment #%i (HS)" % i) sns.violinplot(comment) i += 1 i = 1 for comment in fiftyCommentsS1: plt.figure() if Set1comments[i - 1] > 25: plt.title("Comment #%i (CS)" % i) elif Set1comments[i - 1] <= 25: plt.title("Comment #%i (HS)" % i) sns.boxplot(comment) i += 1 i = 1 for comment in fiftyCommentsS1: plt.figure() if Set1comments[i - 1] > 25: plt.title("Comment #%i (CS)" % i) elif Set1comments[i - 1] <= 25: plt.title("Comment #%i (HS)" % i) sns.scatterplot(comment) i += 1 # rip from old notebook to try PCA on S1 # PCA Model # probably only need n_components = 3 (explains roughly 80% of data [53/15/13{next 3 are 2/1/1}]) scaler = StandardScaler() scaled_df = scaler.fit_transform(dataset) print("scaled_df shape:", scaled_df.shape) pca = PCA(n_components=7) # mle solves PCA so that n_components sum = 100 % pca_vectors = pca.fit_transform(scaled_df) print("PCA_vectors shape: ", pca_vectors.shape) pca_var = 0 for index, var in enumerate(pca.explained_variance_ratio_): pca_var += var print( "Explained Variance ratio by Principal Component ", (index + 1), " : ", var * 100, "%", ) print("Total Variance Explained by PCA: ", pca_var * 100, "%") print("components:", pca.components_) print("singular values:", pca.singular_values_) print("Number of features:", pca.n_features_in_) plt.figure() plt.plot(pca.explained_variance_ratio_) plt.xticks(rotation="vertical") plt.figure(figsize=(25, 8)) sns.scatterplot(x=pca_vectors[:, 0], y=pca_vectors[:, 1], hue=dataset["label"]) plt.title("Principal Components vs Class distribution", fontsize=16) plt.ylabel("Principal Component 2", fontsize=16) plt.xlabel("Principal Component 1", fontsize=16) plt.xticks(rotation="vertical") plt.clf() # leftover from ModelBuildingTest # boxplot attempt of S1 # plt.boxplot(S1labeled) # works but has no scaling: # S1float.boxplot() # col-by-col try # S1float['EEG.AF3'].plot(kind='box') # works; split into baseline/comments S1baseline = S1float[0:48640] S1comment1 = S1float[48640:51200] S1comment2 = S1float[commentsTimes[1] : commentsTimes[2]] S1comment3 = S1float[commentsTimes[2] : commentsTimes[3]] S1comment4 = S1float[commentsTimes[3] : commentsTimes[4]] S1comments = [S1comment1, S1comment2, S1comment3, S1comment4] print(S1baseline.shape, S1comment1.shape) # S1baseline['EEG.AF3'].plot(kind='box', title='baselineAF3') S1c1NoTime = S1comment1.iloc[:, 1:] S1baseNoTime = S1baseline.iloc[:, 1:] S1commentsNoTime = [ S1comment1.iloc[:, 1:15], S1comment2.iloc[:, 1:15], S1comment3.iloc[:, 1:15], S1comment4.iloc[:, 1:15], ] # Comment3 is first HS in S1 (2CS followed by 3HS)
# Ovo je druga obavezna bilježnica u okviru kolegija Dubinska analiza podataka. Cilj ove bilježnice je raditi sa značajkama train skuoa te stvoriti nove značajke koje će pridonjeti kvaliteti skupa podataka. import numpy as np import pandas as pd # # 0. Priprema skupa podataka train = pd.read_csv("/kaggle/input/dapprojekt23/train.csv") del train["id"] train = train.astype({"machine_name": "category"}) train = train.astype({"day": "uint16"}) train = train.astype({"broken": "uint16"}) train = train.astype({"total": "uint16"}) train = train.astype({"label": "uint8"}) train = train.loc[train["day"] > 365] for machine in train.machine_name.unique(): anomaly_day = pom = train[ (train["machine_name"] == machine) & (train["label"] == 1) ].day.min() pom = train[ (train["machine_name"] == machine) & (train["label"] == 1) & (train["day"] > anomaly_day) ].index train.drop(pom, inplace=True) strojevi = train.machine_name.unique() data_to_be_appended = pd.DataFrame( columns=["day", "broken", "total", "label", "machine_name"] ) i = 1 for stroj in strojevi: dani = range(366, train.loc[train["machine_name"] == stroj].day.max() + 1) stroj_dani = train.loc[train["machine_name"] == stroj].day.unique() dani_bez_podataka = np.setdiff1d(np.asarray(dani), np.asarray(stroj_dani)) machine_data = train.loc[(train["machine_name"] == stroj)] i += 1 for dan in dani_bez_podataka: total = abs( int( np.random.normal( loc=machine_data.total.mean(), scale=machine_data.total.std() ) ) ) broken = abs( int( np.random.normal( loc=machine_data.broken.mean(), scale=machine_data.broken.std() ) ) ) while broken >= total: total = abs( int( np.random.normal( loc=machine_data.total.mean(), scale=machine_data.total.std() ) ) ) broken = abs( int( np.random.normal( loc=machine_data.broken.mean(), scale=machine_data.broken.std() ) ) ) day_before = machine_data.loc[(machine_data["day"] == dan - 1)] day_after = machine_data.loc[(machine_data["day"] == dan + 1)] if ( day_before.empty or day_after.empty or day_before.label.sum() != day_after.label.sum() ): novi_red = { "day": dan, "broken": broken, "total": total, "label": 0, "machine_name": stroj, } data_to_be_appended = data_to_be_appended.append( novi_red, ignore_index=True ) else: broken = int((day_before.broken.sum() + day_after.broken.sum()) / 2) total = int((day_before.total.sum() + day_after.total.sum()) / 2) novi_red = { "day": dan, "broken": broken, "total": total, "label": day_before.label.sum(), "machine_name": stroj, } data_to_be_appended = data_to_be_appended.append( novi_red, ignore_index=True ) train = train.append(data_to_be_appended, ignore_index=True) train = train.astype({"machine_name": "category"}) train = train.astype({"day": "uint16"}) train = train.astype({"broken": "uint16"}) train = train.astype({"total": "uint16"}) train = train.astype({"label": "uint8"}) train.dtypes # train.to_csv('train_fixed.csv', index=False) # # 1. Cross-validation function 1 # Ovdje ću sada stvoriti prvu cross validation funkciju koja će koristiti GaussianNB, LogisticRegression, RIPPER, RandomForestClassifier, ExtraTreesClassifier i XGBClassifier modele. import wittgenstein as lw from xgboost import XGBClassifier from sklearn.model_selection import KFold from sklearn.naive_bayes import GaussianNB from itertools import combinations from sklearn.metrics import f1_score from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import ExtraTreesClassifier def gaussNB(train_x, train_y, test_x, test_y): clf = GaussianNB() clf.fit(train_x, train_y) y_pred = clf.predict(test_x) return f1_score(test_y, y_pred, average="macro") def logReg(train_x, train_y, test_x, test_y): clf = LogisticRegression(random_state=0).fit(train_x, train_y) y_pred = clf.predict(test_x) return f1_score(test_y, y_pred, average="macro") def ripper(train_x, train_y, test_x, test_y): ripper_clf = lw.RIPPER() ripper_clf.fit(train_x, train_y) y_pred = ripper_clf.predict(test_x) return f1_score(test_y, y_pred, average="macro") def RFC(train_x, train_y, test_x, test_y): clf = RandomForestClassifier() clf.fit(train_x, train_y) y_pred = clf.predict(test_x) return f1_score(test_y, y_pred, average="macro") def ETC(train_x, train_y, test_x, test_y): clf = ExtraTreesClassifier() clf.fit(train_x, train_y) y_pred = clf.predict(test_x) return f1_score(test_y, y_pred, average="macro") def XGB(train_x, train_y, test_x, test_y): clf = XGBClassifier() clf.fit(train_x, train_y) y_pred = clf.predict(test_x) return f1_score(test_y, y_pred, average="macro") def cross_validation_1(data, num_folds): data = data.drop(["machine_name"], axis=1) pom = data folds = [] for i in range(1, num_folds): folds.append(pom.iloc[: int(pom.size / num_folds)]) pom = pom.iloc[int(pom.size / num_folds) :, :] folds.append(pom) gaussianNB_f1 = [] logReg_f1 = [] ripper_f1 = [] RFC_f1 = [] ETC_f1 = [] XGB_f1 = [] for fold in folds: train = pd.concat([data, fold, fold]).drop_duplicates(keep=False) train_x = train.drop(["label"], axis=1) train_y = train["label"] train_x = np.asarray(train_x) train_y = np.asarray(train_y) test_x = fold.drop(["label"], axis=1) test_y = fold["label"] test_x = np.asarray(test_x) test_y = np.asarray(test_y) gaussianNB_f1.append(gaussNB(train_x, train_y, test_x, test_y)) logReg_f1.append(logReg(train_x, train_y, test_x, test_y)) ripper_f1.append(ripper(train_x, train_y, test_x, test_y)) RFC_f1.append(RFC(train_x, train_y, test_x, test_y)) ETC_f1.append(ETC(train_x, train_y, test_x, test_y)) XGB_f1.append(XGB(train_x, train_y, test_x, test_y)) gaussianNB_f1.append(np.mean(gaussianNB_f1)) logReg_f1.append(np.mean(logReg_f1)) ripper_f1.append(np.mean(ripper_f1)) RFC_f1.append(np.mean(RFC_f1)) ETC_f1.append(np.mean(ETC_f1)) XGB_f1.append(np.mean(XGB_f1)) results = pd.DataFrame( columns=[ "algorithm", "Fold 1", "Fold 2", "Fold 3", "Fold 4", " Fold 5", "average", ] ) results.loc[len(results)] = np.append(["Gaussian_NB"], gaussianNB_f1) results.loc[len(results)] = np.append(["LogisticRegresion"], logReg_f1) results.loc[len(results)] = np.append(["RIPPER"], ripper_f1) results.loc[len(results)] = np.append(["RandomForrestClassifier"], RFC_f1) results.loc[len(results)] = np.append(["ExtraTreesClassifier"], ETC_f1) results.loc[len(results)] = np.append(["XGBClassifier"], XGB_f1) return results # # 2. Run the cross-validation function 1 results = cross_validation_1(train, 5) results.head(6) # Najbolji model je logistička regresija. X_test = pd.read_csv("/kaggle/input/dapprojekt23/test.csv") """del X_test['id'] del X_test['machine_name'] X=train.drop(["label", "machine_name"], axis=1) y=list(train['label']) X=np.asarray(X) X_test=np.asarray(X_test) clf = LogisticRegression(random_state=0).fit(X, y) y_pred=clf.predict(X_test) submission=pd.read_csv("/kaggle/input/dapprojekt23/test.csv") submission['Predicted']=y_pred del submission['day'] del submission['broken'] del submission['total'] del submission['machine_name'] submission.head()""" # submission.to_csv('submission.csv',index=False) # Rezultat nad test skupom je 0.49957. # # 3. Cross-validation function 2 # Ovdje će podjela na grupe biti izvršena pazeći na imena mašina tako da su svi podatci za jednu mašinu u istoj grupi,a zatim će se provesti cross validacija. def cross_validation_2(data, num_folds): num_of_machines = len(data.machine_name.unique()) pom = data folds = [] for i in range(1, num_folds): fold = pom.loc[ pom["machine_name"].isin( pom.machine_name.unique()[: int(num_of_machines / num_folds)] ) ] fold = fold.drop(["machine_name"], axis=1) folds.append(fold) pom = pom.loc[ pom["machine_name"].isin( pom.machine_name.unique()[int(num_of_machines / num_folds) :] ) ] pom = pom.drop(["machine_name"], axis=1) folds.append(pom) gaussianNB_f1 = [] logReg_f1 = [] ripper_f1 = [] RFC_f1 = [] ETC_f1 = [] XGB_f1 = [] data = data.drop(["machine_name"], axis=1) for fold in folds: train = pd.concat([data, fold, fold]).drop_duplicates(keep=False) train_x = train.drop(["label"], axis=1) train_y = train["label"] train_x = np.asarray(train_x) train_y = np.asarray(train_y) test_x = fold.drop(["label"], axis=1) test_y = fold["label"] test_x = np.asarray(test_x) test_y = np.asarray(test_y) gaussianNB_f1.append(gaussNB(train_x, train_y, test_x, test_y)) logReg_f1.append(logReg(train_x, train_y, test_x, test_y)) ripper_f1.append(ripper(train_x, train_y, test_x, test_y)) RFC_f1.append(RFC(train_x, train_y, test_x, test_y)) ETC_f1.append(ETC(train_x, train_y, test_x, test_y)) XGB_f1.append(XGB(train_x, train_y, test_x, test_y)) gaussianNB_f1.append(np.mean(gaussianNB_f1)) logReg_f1.append(np.mean(logReg_f1)) ripper_f1.append(np.mean(ripper_f1)) RFC_f1.append(np.mean(RFC_f1)) ETC_f1.append(np.mean(ETC_f1)) XGB_f1.append(np.mean(XGB_f1)) results = pd.DataFrame( columns=[ "algorithm", "Fold 1", "Fold 2", "Fold 3", "Fold 4", " Fold 5", "average", ] ) results.loc[len(results)] = np.append(["Gaussian_NB"], gaussianNB_f1) results.loc[len(results)] = np.append(["LogisticRegresion"], logReg_f1) results.loc[len(results)] = np.append(["RIPPER"], ripper_f1) results.loc[len(results)] = np.append(["RandomForrestClassifier"], RFC_f1) results.loc[len(results)] = np.append(["ExtraTreesClassifier"], ETC_f1) results.loc[len(results)] = np.append(["XGBClassifier"], XGB_f1) return results # # 4. Run the cross-validation function 2 results = cross_validation_2(train, 5) results.head(6) # Vidimo da najbolje rezultate daje Gaussian_NB. Sada ću utrenirati GausianNB model nad cijelim train skupom i onda vidjeti kako radi and test skupom. del X_test["id"] del X_test["machine_name"] X = train.drop(["label", "machine_name"], axis=1) y = list(train["label"]) X = np.asarray(X) X_test = np.asarray(X_test) clf = GaussianNB() clf.fit(X, y) y_pred = clf.predict(X_test) submission = pd.read_csv("/kaggle/input/dapprojekt23/test.csv") submission["Predicted"] = y_pred del submission["day"] del submission["broken"] del submission["total"] del submission["machine_name"] submission.head() submission.to_csv("submission.csv", index=False)
import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np import plotly.express as px import warnings warnings.filterwarnings("ignore") # ## Accessing the data df = pd.read_csv("/kaggle/input/virat-kohli-100s/Virat_Kohli_100s.csv") df.columns df.columns = [x.lower() for x in df.columns] df.rename( columns={ "strike rate": "strike_rate", "host nation": "host_nation", "team total": "team_total", "wickets lost": "wickets_lost", "not out": "not_out", }, inplace=True, ) df.info() df.describe() # ## Checking for null values df.isnull().sum() plt.figure(figsize=(18, 5), dpi=300) sns.heatmap(df.isnull(), yticklabels=False, cbar=False, cmap="magma") # #### No null values ## Checking Data types df.dtypes # Converting important string column to numeric values df = pd.get_dummies(df, columns=["not_out", "motm", "win", "captain"]) df.drop( ["not_out_No", "motm_No", "win_Drawn", "win_No", "win_Tie", "captain_No"], axis=1, inplace=True, ) df.rename( columns={ "not_out_Yes": "not_out", "motm_Yes": "motm", "win_Yes": "win", "captain_Yes": "captain", }, inplace=True, ) df.head(3) # 1-Yes 0-No df.columns plt.subplots(figsize=(10, 10)) sns.heatmap(df.corr(), cmap="OrRd", annot=True) centuries = df.groupby("format").size() fig, ax = plt.subplots(figsize=(10, 5)) # Horizontal Bar Plot ax.barh(centuries.index, centuries.values) # Add annotation to bars for i in ax.patches: plt.text( i.get_width(), i.get_y() + 0.4, str(round((i.get_width()), 2)), fontsize=10, fontweight="bold", color="grey", ) # Show top values ax.invert_yaxis() # Add Plot Title ax.set_title("Centuries", loc="left") # Show Plot plt.show() a = df[["format", "strike_rate"]] print("IPL", a.loc[a["format"] == "T20"].mean()) print("T20i", a.loc[df["format"] == "T20i"].mean()) print("ODI", a.loc[df["format"] == "ODI"].mean()) print("test", a.loc[df["format"] == "Test"].mean()) df.groupby(["format", "inning"]).count()[["number"]] df.groupby(["format", "inning", "position"]).count()[["number"]] df.groupby(["against"]).count()[["number"]] centuries = df.groupby(["against"]).count()[["number"]].reset_index() plt.figure(figsize=(25, 15), dpi=300) sns.barplot(x="against", y="number", data=centuries) plt.show() # # Considering only countries centuries.drop([4, 5, 6, 7, 9], inplace=True) fig, ax = plt.subplots(figsize=(10, 5)) sns.barplot(x="against", y="number", data=centuries) ax.set_title("Countries", loc="left") plt.show() format = [] against = [] avg_strike_rate = [] for i in df.loc[:, ["format", "against"]]["format"].unique(): for j in df.loc[:, ["format", "against"]]["against"].unique(): strike_rate_mean = df.loc[(df["format"] == i) & (df["against"] == j)][ "strike_rate" ].mean() format.append(i) against.append(j) avg_strike_rate.append(strike_rate_mean) country_cent = pd.DataFrame( list(zip(format, against, avg_strike_rate)), columns=["format", "against", "avg_strike_rate"], ) country_cent.dropna(inplace=True) country_cent.drop(country_cent[(country_cent["format"] == "T20")].index, inplace=True) country_cent.drop(country_cent[(country_cent["format"] == "T20i")].index, inplace=True) country_cent = country_cent.sort_values("against") country_cent = country_cent.reset_index(drop=True) country_cent format_cent = df.groupby(["format", "against"]).count()[["number"]] format_cent new_format_cent = format_cent.drop(["T20", "T20i"]) new_format_cent new_format_cent.reset_index(inplace=True) new_format_cent.loc[len(new_format_cent.index)] = ["Test", "Zimbabwe", 0] new_format_cent.loc[len(new_format_cent.index)] = ["Test", "Pakistan", 0] new_format_cent = new_format_cent.sort_values("against") new_format_cent = new_format_cent.reset_index(drop=True) new_format_cent fig = px.bar(new_format_cent, x="format", y="number", color="against") fig.update_layout( height=700, width=700, title_text="Comparison of centuries \ in different formats against nations", ) fig.show() cent_strike_rate = new_format_cent.sort_values("against") cent_strike_rate["strike_rate"] = country_cent["avg_strike_rate"] # Correcting errors and replacing missing values cent_strike_rate.loc[17, "strike_rate"] = 106.481482 cent_strike_rate.loc[8, "strike_rate"] = np.nan cent_strike_rate["strike_rate"] = cent_strike_rate["strike_rate"].fillna(0) cent_strike_rate print( "Virat Kohli avg strike rate in ODI is", cent_strike_rate[cent_strike_rate["format"] == "ODI"]["strike_rate"].mean(), ) print( "Virat Kohli avg strike rate in Test is", cent_strike_rate[cent_strike_rate["format"] == "test"]["strike_rate"].mean(), ) fig = px.bar(cent_strike_rate, x="format", y="strike_rate", color="against") fig.update_layout( height=700, width=700, title_text="Comparison of strike_rate \ in different formats against nations", ) fig.show() cent_nations = df.groupby(["format", "host_nation"]).count()[["number"]].reset_index() fig = px.bar(cent_nations, x="format", y="number", color="host_nation") fig.update_layout(height=700, width=700, title_text="Centuries in different nations") fig.show() cent_venue = ( df.groupby(["venue"]).count()[["number"]].reset_index().sort_values("venue") ) cent_venue = cent_venue.sort_values(by="number", ascending=False) fig = px.bar(cent_venue, x="venue", y="number", color="number") fig.update_layout(title_text="Centuries in different venues across formats") fig.show() a = ( df.groupby(["format", "venue"]) .count()[["number"]] .sort_values("venue") .reset_index() ) a[a["format"] == "ODI"] df["freq_count"] = df.groupby("score")["score"].transform("count") # ## Finding the score a at which Virat Kohli has been dismissed most times after scoring a century across formats df.query("freq_count==5 and not_out==0") df.query("freq_count==4 and not_out==0 and score!=107 and score!=103") df.query("score>200") print( "Average team score in test when Virat scores a double century", df.query("score>200")["team_total"].mean(), ) print( "Average team total when Virat scores a century in ODI", df[df["format"] == "ODI"]["team_total"].mean(), )
# # Website Ad-Clicks Prediction with Deployment # *Author: Amitesh Tripathi & Sayali Lad* # ## Table of Contents # 1. Importing libraries # 2. Importing and exploring the dataset # 3. Data Pre-processing and Feature Engineering # 4. Exploratory Data Analysis (EDA) # 5. Feature Selection & Feature Scaling # 6. Data Modeling # 7. Model Evaluation # 8. Conclusion # 9. Reference # ># **1- Importing necessary libraries** # --- import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import time import warnings warnings.filterwarnings("ignore") # ># **2- Importing and Exploring the dataset** # --- from google.colab import files uploaded = files.upload() df = pd.read_csv("Ad_click_prediction_train (1).csv") df.head() df.shape tab_info = pd.DataFrame(df.dtypes).T.rename(index={0: "column type"}) tab_info = tab_info.append( pd.DataFrame(df.isnull().sum()).T.rename(index={0: "null values (nb)"}) ) tab_info = tab_info.append( pd.DataFrame(df.isnull().sum() / df.shape[0] * 100).T.rename( index={0: "null values (%)"} ) ) tab_info # ># **3- Data Pre-processing and Feature Engineering** # --- df.drop(labels="product_category_2", axis=1, inplace=True) sum(df["is_click"] == 1) num_missing = df["city_development_index"].isnull().sum() if num_missing > 0: missing_indices = df["city_development_index"].isnull() num_missing_values = num_missing replace_values = np.random.choice( [1, 2, 3, 4], size=num_missing_values, p=[0.25, 0.25, 0.25, 0.25] ) df["city_development_index"][missing_indices] = replace_values df.isna().sum() df = df.dropna() df.isna().sum() sum(df["is_click"] == 1) df.head() from sklearn.preprocessing import LabelEncoder LE = LabelEncoder() df["gender"] = LE.fit_transform(df["gender"]) df["product"] = LE.fit_transform(df["product"]) df.info() df df["DateTime"] = pd.to_datetime(df["DateTime"]) df["DateTime"] = df["DateTime"].dt.hour # df['day_of_week'] = df['DateTime'].dt.dayofweek # df['hour_of_day'] = df['DateTime'].dt.hour df.head() df.info() df.nunique() print("not click:", df.loc[df["is_click"] == 0].shape[0]) print("clicked:", df.loc[df["is_click"] == 1].shape[0]) user_ctr = df.groupby("user_id")["is_click"].agg(["count", "sum"]) user_ctr["avg_ctr"] = user_ctr["sum"] / user_ctr["count"] user_ctr = user_ctr.reset_index() # Merge the average CTR back to the main dataset df = df.merge(user_ctr[["user_id", "avg_ctr"]], on="user_id", how="left") df.head() import matplotlib.pyplot as plt # Create a scatter plot of count vs. avg_ctr plt.figure(figsize=(10, 6)) plt.scatter(user_ctr["count"], user_ctr["avg_ctr"], alpha=0.5) # Customize the plot plt.title("Click Counts vs. Average Click-Through Rate per User", fontsize=16) plt.xlabel("Click Counts", fontsize=14) plt.ylabel("Average Click-Through Rate", fontsize=14) # Show the plot plt.show() from sklearn.ensemble import RandomForestClassifier from sklearn.feature_selection import SelectFromModel # Separate features and target variable X = df.drop(columns=["is_click"]) y = df["is_click"] # Create a random forest classifier rf_clf = RandomForestClassifier(random_state=42) # Train the classifier rf_clf.fit(X, y) # Identify the most important features selector = SelectFromModel(rf_clf, prefit=True) X_selected = selector.transform(X) # Get the names of the selected features selected_features = X.columns[selector.get_support()] print("Selected Features:", selected_features) # ># **4- Exploratory Data Analysis** # --- import matplotlib.pyplot as plt import seaborn as sns labels = ["Not Click", "Click"] size = df["is_click"].value_counts() colors = ["#66b3ff", "#ff9999"] explode = [0, 0.1] sns.set(style="whitegrid") plt.figure(figsize=(8, 6)) plt.pie( size, colors=colors, explode=explode, labels=labels, shadow=True, autopct="%.2f%%", startangle=90, ) plt.axis("equal") plt.title("Data Distribution", fontsize=16) plt.legend(frameon=False, fontsize=12, loc="upper right") sns.despine(left=True, bottom=True) plt.tight_layout() plt.show() plt.figure(figsize=(12, 8)) sns.set(style="white") # Generate a custom diverging colormap cmap = sns.diverging_palette(230, 20, as_cmap=True) # Draw the heatmap with the mask and correct aspect ratio sns.heatmap( df.corr(), cmap=cmap, annot=True, fmt=".2f", vmin=-1, vmax=1, center=0, square=True, linewidths=0.5, cbar_kws={"shrink": 0.5}, ) plt.title("Correlation Heatmap", fontsize=16) plt.xticks(rotation=45, ha="right") plt.yticks(rotation=0) plt.tight_layout() plt.show() import matplotlib.pyplot as plt import seaborn as sns # Map numeric gender values to string representations df["gender_str"] = df["gender"].map({0: "Female", 1: "Male"}) plt.figure(figsize=(8, 6)) sns.set(style="whitegrid") sns.countplot(x="is_click", hue="gender_str", data=df, palette="Set2") # Customize the plot plt.title("Click Counts by Gender", fontsize=16) plt.xlabel("Click", fontsize=14) plt.ylabel("Count", fontsize=14) # Customize the legend leg = plt.legend(title="Gender", title_fontsize=12, frameon=False) for text in leg.get_lines(): text.set_linestyle("-") text.set_linewidth(1.5) sns.despine(left=True) plt.tight_layout() plt.show() Male = df[df["gender"] == 1] Male Female = df[df["gender"] == 0] # Calculate click rates male_click_rate = round(100 * sum(Male["is_click"] == 1) / Male.shape[0], 2) female_click_rate = round(100 * sum(Female["is_click"] == 1) / Female.shape[0], 2) # Print click rates print(f"Male click rate: {male_click_rate}%") print(f"Female click rate: {female_click_rate}%") # Create a DataFrame for visualization click_rates = pd.DataFrame( {"Gender": ["Male", "Female"], "Click Rate": [male_click_rate, female_click_rate]} ) # Create a bar plot plt.figure(figsize=(8, 6)) sns.set(style="whitegrid") sns.barplot(x="Gender", y="Click Rate", data=click_rates, palette="Set2") # Customize the plot plt.title("Click Rate by Gender", fontsize=16) plt.xlabel("Gender", fontsize=14) plt.ylabel("Click Rate (%)", fontsize=14) sns.despine(left=True) plt.tight_layout() plt.show() Is_clicked = df[df["is_click"] == 1] Is_clicked_hour = Is_clicked.groupby("DateTime").agg("sum").reset_index() Is_clicked_hour["is_click"] = ( 100 * Is_clicked_hour["is_click"] / sum(Is_clicked_hour["is_click"]) ) Is_clicked_hour sns.lineplot(x="DateTime", y="is_click", data=Is_clicked_hour, palette="Set2") plt.title("Click Counts by DateTime") plt.xlabel("DateTime") plt.ylabel("Count %") plt.show() plt.figure(figsize=(10, 6)) sns.set(style="whitegrid") sns.countplot( x="product", data=df[df["is_click"] == 1], palette="Set2", order=df["product"].value_counts().index, ) # Customize the plot plt.title("Click Counts by Product", fontsize=16) plt.xlabel("Product ID", fontsize=14) plt.ylabel("Count", fontsize=14) # Customize the x-axis labels plt.xticks(rotation=45, ha="right", fontsize=12) sns.despine(left=True) plt.tight_layout() plt.show() import matplotlib.pyplot as plt import seaborn as sns plt.figure(figsize=(10, 6)) sns.set(style="whitegrid") sns.countplot( y="campaign_id", data=df[df["is_click"] == 1], palette="Set2", order=df["campaign_id"].value_counts().index, ) # Customize the plot plt.title("Click Counts by Campaign ID", fontsize=16) plt.xlabel("Counts", fontsize=14) plt.ylabel("Campaign ID", fontsize=14) # Customize the y-axis labels plt.yticks(fontsize=12) sns.despine(left=True) plt.tight_layout() plt.show() # ># **5- Feature Selection & Feature Scaling** # --- from collections import Counter from sklearn.datasets import make_classification import matplotlib.pyplot as plt import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler # Steps 1 and 2: Sampling and preparing the feature matrix and target vector df_sampled = ( df.groupby("is_click") .apply(lambda x: x.sample(n=7000 if x.name == 1 else 20000)) .reset_index(drop=True) ) x = df_sampled.drop(["is_click", "session_id"], axis=1) y = df_sampled["is_click"] # Step 3: Splitting the data into train and test sets x_train_1, x_test_1, y_train_1, y_test_1 = train_test_split( x, y, test_size=0.3, shuffle=True ) # Step 4: Standardizing the feature matrix using the training set and transforming both the training and test sets scaler = StandardScaler() x_train_1 = scaler.fit_transform(x_train_1) x_test_1 = scaler.transform(x_test_1) from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from imblearn.over_sampling import SMOTE # Steps 1 and 2: Sampling and preparing the feature matrix and target vector df_2 = df.sample(n=30000) x = df_2.drop(["is_click", "session_id"], axis=1) y = df_2["is_click"] # Step 3: Splitting the data into train and test sets x_train_2, x_test_2, y_train_2, y_test_2 = train_test_split( x, y, test_size=0.3, shuffle=True ) # Step 4: Standardizing the feature matrix using the training set and transforming both the training and test sets scaler = StandardScaler() x_train_2 = scaler.fit_transform(x_train_2) x_test_2 = scaler.transform(x_test_2) # Step 5: Applying SMOTE to handle class imbalance sm = SMOTE(random_state=2) x_train_2, y_train_2 = sm.fit_resample(x_train_2, y_train_2) pd.Series(y_train_2).value_counts() pd.Series(y_test_2).value_counts() x_train_2.shape x_test_2.shape # ># **6- Data Modelling** # --- from sklearn.linear_model import LogisticRegression from sklearn.linear_model import SGDClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import cross_val_score from sklearn.model_selection import GridSearchCV from sklearn.model_selection import StratifiedKFold from collections import Counter from sklearn.metrics import ( confusion_matrix, precision_score, recall_score, f1_score, roc_auc_score, accuracy_score, classification_report, ) from sklearn.ensemble import BaggingClassifier, GradientBoostingClassifier from xgboost import XGBClassifier classifiers = { "LogisticRegression": LogisticRegression(), "KNN": KNeighborsClassifier(), "DT": DecisionTreeClassifier(), "RFC": RandomForestClassifier(), "Bagging": BaggingClassifier(), "SGD": SGDClassifier(), "GBC": GradientBoostingClassifier(), "xgb": XGBClassifier(), } def accuracy_score(X_train, y_train): for key, classifier in classifiers.items(): classifier.fit(X_train, y_train) training_score = cross_val_score(classifier, X_train, y_train, cv=5) print( "Classifier Name : ", classifier.__class__.__name__, " Training Score :", round(training_score.mean(), 2) * 100, "%", ) accuracy_score(x_train_1, y_train_1) accuracy_score(x_train_2, y_train_2) def LR_gs(X_train, y_train): # LR LR_param = {"penalty": ["l1", "l2"], "C": [0.001, 0.01, 0.1, 1, 10]} LR_gs = GridSearchCV( LogisticRegression(), param_grid=LR_param, n_jobs=-1, scoring="accuracy" ) LR_gs.fit(X_train, y_train) LR_estimators = LR_gs.best_estimator_ return LR_estimators def KNN_gs(X_train, y_train): KNN_param = { "n_neighbors": list(range(2, 5, 1)), "algorithm": ["auto", "ball_tree", "kd_tree", "brute"], } KNN_gs = GridSearchCV( KNeighborsClassifier(), param_grid=KNN_param, n_jobs=-1, scoring="accuracy" ) KNN_gs.fit(X_train, y_train) KNN_estimators = KNN_gs.best_estimator_ return KNN_estimators def SVC_gs(X_train, y_train): SVC_param = {"C": [0.5, 0.7, 0.9, 1], "kernel": ["rfb", "sigmod", "poly"]} SVC_gs = GridSearchCV(SVC(), param_grid=SVC_param, n_jobs=-1, scoring="accuracy") SVC_gs.fit(X_train, y_train) SVC_estimators = SVC_gs.best_estimator_ return SVC_estimators def DT_gs(X_train, y_train): DT_param = { "criterion": ["gini", "entropy"], "max_depth": list(range(2, 5, 1)), "min_samples_leaf": list(range(3, 7, 1)), } DT_gs = GridSearchCV( DecisionTreeClassifier(), param_grid=DT_param, n_jobs=-1, scoring="accuracy" ) DT_gs.fit(X_train, y_train) DT_estimators = DT_gs.best_estimator_ return DT_estimators def RFC_gs(X_train, y_train): RFC_param = { "n_estimators": [100, 150, 200], "criterion": ["gini", "entropy"], "max_depth": list(range(2, 5, 1)), } RFC_gs = GridSearchCV( RandomForestClassifier(), param_grid=RFC_param, n_jobs=-1, scoring="accuracy" ) RFC_gs.fit(X_train, y_train) RFC_estimators = RFC_gs.best_estimator_ return RFC_estimators def BAG_gs(X_train, y_train): BAG_param = {"n_estimators": [10, 15, 20]} BAG_gs = GridSearchCV( BaggingClassifier(), param_grid=BAG_param, n_jobs=-1, scoring="accuracy" ) BAG_gs.fit(X_train, y_train) BAG_estimators = BAG_gs.best_estimator_ return BAG_estimators def SGD_gs(X_train, y_train): SGD_param = {"penalty": ["l2", "l1"], "max_iter": [1000, 1500, 2000]} SGD_gs = GridSearchCV( SGDClassifier(), param_grid=SGD_param, n_jobs=-1, scoring="accuracy" ) SGD_gs.fit(X_train, y_train) SGD_estimators = SGD_gs.best_estimator_ return SGD_estimators def XGB_gs(X_train, y_train): XGB_param = {"max_depth": [3, 4, 5, 6]} XGB_gs = GridSearchCV( XGBClassifier(), param_grid=XGB_param, n_jobs=-1, scoring="accuracy" ) XGB_gs.fit(X_train, y_train) XGB_estimators = XGB_gs.best_estimator_ return XGB_estimators LR_best_estimator = LR_gs(x_train_1, y_train_1) KNN_best_estimator = KNN_gs(x_train_1, y_train_1) SVC_best_estimator = SVC_gs(x_train_1, y_train_1) DT_best_estimator = DT_gs(x_train_1, y_train_1) RFC_best_estimator = RFC_gs(x_train_1, y_train_1) BAG_best_estimator = BAG_gs(x_train_1, y_train_1) SGD_best_estimator = SGD_gs(x_train_1, y_train_1) XGB_best_estimator = XGB_gs(x_train_1, y_train_1) LR_best_estimator = LR_gs(x_train_2, y_train_2) KNN_best_estimator = KNN_gs(x_train_2, y_train_2) SVC_best_estimator = SVC_gs(x_train_2, y_train_2) DT_best_estimator = DT_gs(x_train_2, y_train_2) RFC_best_estimator = RFC_gs(x_train_2, y_train_2) BAG_best_estimator = BAG_gs(x_train_2, y_train_2) SGD_best_estimator = SGD_gs(x_train_2, y_train_2) XGB_best_estimator = XGB_gs(x_train_2, y_train_2) # ># **7- Model Evaluation** # --- from sklearn.metrics import accuracy_score from sklearn.metrics import precision_recall_fscore_support result_df1 = pd.DataFrame( columns=["Accuracy", "F1-score", "Recall", "Precision", "AUC_ROC"], index=["LR", "KNN", "DT", "RFC", "Bagging", "SGD", "XGB"], ) def caculate(models, X_test, y_test): accuracy_results = [] F1_score_results = [] Recall_results = [] Precision_results = [] AUC_ROC_results = [] for model in models: y_pred = model.predict(X_test) accuracy = accuracy_score(y_test, y_pred) precision, recall, f1_score, _ = precision_recall_fscore_support(y_test, y_pred) AUC_ROC = roc_auc_score(y_test, y_pred) # AUC accuracy_results.append(accuracy) F1_score_results.append(f1_score) Recall_results.append(recall) AUC_ROC_results.append(AUC_ROC) Precision_results.append(precision) return ( accuracy_results, F1_score_results, Recall_results, AUC_ROC_results, Precision_results, ) best_models = [ LR_best_estimator, KNN_best_estimator, DT_best_estimator, RFC_best_estimator, BAG_best_estimator, SGD_best_estimator, XGB_best_estimator, ] ( accuracy_results, F1_score_results, Recall_results, AUC_ROC_results, Precision_results, ) = caculate(best_models, x_test_1, y_test_1) result_df1["Accuracy"] = accuracy_results result_df1["F1-score"] = F1_score_results result_df1["Recall"] = Recall_results result_df1["Precision"] = Precision_results result_df1["AUC_ROC"] = AUC_ROC_results result_df1 best_models = [ LR_best_estimator, KNN_best_estimator, DT_best_estimator, RFC_best_estimator, BAG_best_estimator, SGD_best_estimator, XGB_best_estimator, ] result_df2 = pd.DataFrame( columns=["Accuracy", "F1-score", "Recall", "Precision", "AUC_ROC"], index=["LR", "KNN", "DT", "RFC", "Bagging", "SGD", "XGB"], ) ( accuracy_results, F1_score_results, Recall_results, AUC_ROC_results, Precision_results, ) = caculate(best_models, x_test_2, y_test_2) result_df2["Accuracy"] = accuracy_results result_df2["F1-score"] = F1_score_results result_df2["Recall"] = Recall_results result_df2["Precision"] = Precision_results result_df2["AUC_ROC"] = AUC_ROC_results result_df2 import seaborn as sns import matplotlib.pyplot as plt # Set the plot style and size sns.set(style="whitegrid") plt.figure(figsize=(10, 6)) # Create the barplot ax = sns.barplot(data=result_df1, x=result_df1.index, y="AUC_ROC") # Customize the plot plt.title("AUC-ROC Scores for Different Models", fontsize=16) plt.xlabel("Model", fontsize=14) plt.ylabel("AUC-ROC Score", fontsize=14) # Customize the y-axis ticks ax.set_ylim([0, 1]) # Annotate the bars with the AUC-ROC scores for p in ax.patches: ax.annotate( format(p.get_height(), ".2f"), (p.get_x() + p.get_width() / 2.0, p.get_height()), ha="center", va="baseline", fontsize=12, color="black", xytext=(0, 5), textcoords="offset points", ) # Remove the top and right spines sns.despine(top=True, right=True) # Show the plot plt.show() import seaborn as sns import matplotlib.pyplot as plt # Set the plot style and size sns.set(style="whitegrid") plt.figure(figsize=(10, 6)) # Create the barplot ax = sns.barplot(data=result_df2, x=result_df2.index, y="AUC_ROC") # Customize the plot plt.title("AUC-ROC Scores for Different Models (Alternative Dataset)", fontsize=16) plt.xlabel("Model", fontsize=14) plt.ylabel("AUC-ROC Score", fontsize=14) # Customize the y-axis ticks ax.set_ylim([0, 1]) # Annotate the bars with the AUC-ROC scores for p in ax.patches: ax.annotate( format(p.get_height(), ".2f"), (p.get_x() + p.get_width() / 2.0, p.get_height()), ha="center", va="baseline", fontsize=12, color="black", xytext=(0, 5), textcoords="offset points", ) # Remove the top and right spines sns.despine(top=True, right=True) # Show the plot plt.show() top_3_classifier_1 = result_df1.sort_values("AUC_ROC", ascending=False)[:3] top_3_classifier_1 top_3_classifier_2 = result_df2.sort_values("AUC_ROC", ascending=False)[:3] top_3_classifier_2 from sklearn.ensemble import VotingClassifier voting_clf1 = VotingClassifier( estimators=[ ("XGB", XGB_best_estimator), ("DT", DT_best_estimator), ("RFC", RFC_best_estimator), ], n_jobs=-1, ) voting_clf1.fit(x_train_1, y_train_1) voting_clf2 = VotingClassifier( estimators=[ ("RFC", RFC_best_estimator), ("SGD", SGD_best_estimator), ("DT", DT_best_estimator), ], n_jobs=-1, ) voting_clf2.fit(x_train_2, y_train_2) from sklearn.metrics import classification_report, roc_auc_score from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay y_final_pred = voting_clf1.predict(x_test_1) print(classification_report(y_test_1, y_final_pred)) # Compute confusion matrix confusion_mat = confusion_matrix(y_test_1, y_final_pred, labels=[1, 0]) disp = ConfusionMatrixDisplay( confusion_matrix=confusion_mat, display_labels=["Yes(1)", "No(0)"] ) # Customize the plot style and size sns.set(style="whitegrid") plt.figure(figsize=(8, 6)) # Plot the confusion matrix disp.plot(cmap="Blues") # Customize the plot plt.title("Confusion Matrix for Voting Classifier 1", fontsize=16) plt.xlabel("Predicted label", fontsize=14) plt.ylabel("True label", fontsize=14) # Remove the top and right spines sns.despine(top=True, right=True) # Show the plot plt.show() # Calculate AUC-ROC score AUC_ROC = roc_auc_score(y_test_1, y_final_pred) print(AUC_ROC) from sklearn.metrics import classification_report, roc_auc_score from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay y_final_pred = voting_clf2.predict(x_test_2) print(classification_report(y_test_2, y_final_pred)) # Compute confusion matrix confusion_mat = confusion_matrix(y_test_2, y_final_pred, labels=[1, 0]) disp = ConfusionMatrixDisplay( confusion_matrix=confusion_mat, display_labels=["Yes(1)", "No(0)"] ) # Customize the plot style and size sns.set(style="whitegrid") plt.figure(figsize=(8, 6)) # Plot the confusion matrix disp.plot(cmap="Blues") # Customize the plot plt.title("Confusion Matrix for Voting Classifier 2", fontsize=16) plt.xlabel("Predicted label", fontsize=14) plt.ylabel("True label", fontsize=14) # Remove the top and right spines sns.despine(top=True, right=True) # Show the plot plt.show() # Calculate AUC-ROC score AUC_ROC = roc_auc_score(y_test_2, y_final_pred) print(AUC_ROC)
import pandas as pd import numpy as np from sklearn.metrics.pairwise import cosine_similarity import random ratings = pd.read_csv( "/kaggle/input/lab04-dataset/ccai422_lab03_part1_data.csv", index_col="Unnamed: 0" ) ratings.head(5) # The total number of data points print("The number of data points in this dataset: " + str(len(ratings))) # The number of items (i.e. movies) in the dataset print( "The number of items (i.e. movies) in the dataset: " + str(ratings["movie_id"].nunique()) ) # The number of users in the dataset print("The number of users in the dataset: " + str(ratings["user_id"].nunique())) # The average ratings per user ratings_per_users = ratings.groupby("user_id").count() print("The average ratings per user: " + str(round(ratings_per_users.mean()[0], 2))) # The number of ratings/user print("The below table shows the number of ratings per user\n") print(ratings_per_users) # Build the ratings matrix using pivot_table function ratings = ratings.pivot_table(values="rating", index="user_id", columns="movie_id") # Before starting computations, copy the original ratings into a dummy ratings matrix which will have all null values imputed to zeros cos_matrix_dummy = ratings.copy() # Rename the axis of the new matrix cos_matrix_dummy = cos_matrix_dummy.rename_axis("user_id", axis=1).rename_axis( None, axis=0 ) # Compute the mean rating per user cos_matrix_dummy["mean"] = cos_matrix_dummy.mean(axis=1) # Substract the mean from each item cos_matrix_dummy.loc[:, cos_matrix_dummy.columns != "mean"] = ( cos_matrix_dummy.loc[:, cos_matrix_dummy.columns != "mean"] - cos_matrix_dummy["mean"].values[:, None] ) # Drop the newly added mean column from the data cos_matrix_dummy.drop(columns="mean", inplace=True) # Display the data centred around the mean cos_matrix_dummy.head() # Fill NaN values with zeros cos_matrix_dummy.fillna(0, inplace=True) # Compute the cosine similarity. Notice we take the transpose to compute the similarity between the items cos_matrix_dummy_sim = cosine_similarity(cos_matrix_dummy.T) # Build dataframe based on the similarity value. Note that the type of r_matrix_dummy_sim is numpy array cos_matrix_dummy_sim = pd.DataFrame( cos_matrix_dummy_sim, columns=list(cos_matrix_dummy.T.index), index=list(cos_matrix_dummy.T.index), ) display(cos_matrix_dummy_sim) # Optionally set a seed random.seed(3) # Select random user random_user = random.randrange(len(ratings)) print("random user ID is {}".format(random_user)) # Retrieve ratings data for the randomly selected user random_user_ratings = ratings[ratings.index == random_user] # Retrieve unrated item for that the randomly selected user unrated_items_for_random_user = random_user_ratings.columns[ random_user_ratings.isnull().all(0) ] # Randomly select an unrated item whose rating will be predicted using item-based methods random_unrated_item = random.choice(list(unrated_items_for_random_user)) print("Item {} is unrated by user{}".format(random_unrated_item, random_user)) # Retrieve all the items rated by the randomly selected user rated_items_for_random_user = random_user_ratings.columns[ random_user_ratings.notnull().all(0) ] # Show the similarity matrix between the randomly selected unrated item and rated items of the randomly selected user filtered_col_sim = list(rated_items_for_random_user) filtered_col_sim.append(random_unrated_item) rated_unrated_sim_random_user = cos_matrix_dummy_sim.loc[ cos_matrix_dummy_sim.columns.isin(filtered_col_sim) ] # Of those items find the top n neighbors to the randomely selected unrated item topn = rated_unrated_sim_random_user.nlargest(3, random_unrated_item).index.tolist()[1:] # Retrieve the ratings that the top neighbor items gave to the unrated item neighbors_item_ratings_random_item = random_user_ratings.loc[:, topn] # Get the similarity values for the top n similar items neighbors_sim = rated_unrated_sim_random_user[[random_unrated_item]].nlargest( 3, random_unrated_item )[1:] print( "The top neighbors for the item {} that is unrated by user {} are the items: {}".format( random_unrated_item, random_user, topn ) ) print( "The ratings for the top {} neigbors items are: {}".format( len(topn), *neighbors_item_ratings_random_item.values ) ) print( "The cosine similarities between item {} and items: {} are: {}".format( random_unrated_item, topn, neighbors_sim.values ) ) # Apply the formula predicted_value_for_unrated_item = ( neighbors_sim.T.dot(neighbors_item_ratings_random_item.T).values[0] / neighbors_sim.sum() ) predicted_value_for_unrated_item
# # What is stacking? # Stacking is a popular machine learning technique that involves combining multiple models to improve predictive accuracy. It's a powerful tool that can help you squeeze out every last bit of performance from your data and models, and it's widely used in competitions and real-world applications. # So, what exactly is stacking? Simply put, it involves training several different models on your data and then combining their predictions to make a final prediction. The idea is that by combining the strengths of different models, you can mitigate their weaknesses and produce more accurate results. # The basic workflow for stacking is as follows: # - Split your data into training and validation sets. # - Train several different models on the training set. # - Use the validation set to evaluate the performance of each model. # - Combine the predictions of the models using a meta-model. # - Use the meta-model to make final predictions on new data. # There are several different ways to combine the predictions of the models, but one common approach is to use a simple linear regression or logistic regression model as the meta-model. The meta-model takes the predictions of the base models as input and learns how to combine them to produce a final prediction. # One of the key benefits of stacking is that it can help you overcome overfitting, which is a common problem in machine learning. By combining the predictions of multiple models, you can reduce the risk of any one model memorizing the training data and performing poorly on new data. # Another advantage of stacking is that it can be used with any type of machine learning model, including neural networks, decision trees, and support vector machines. This means that you can experiment with different models and use the ones that work best for your data. # ![https://editor.analyticsvidhya.com/uploads/39725Stacking.png](https://editor.analyticsvidhya.com/uploads/39725Stacking.png) # # Import data and libraries from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import log_loss from sklearn.svm import SVC from sklearn.naive_bayes import GaussianNB from xgboost import XGBClassifier from vecstack import stacking import pandas as pd import numpy as np # import data X_train = pd.read_csv("/kaggle/input/playground-series-s3e12/train.csv") y_train = X_train["target"] X_test = pd.read_csv("/kaggle/input/playground-series-s3e12/test.csv") test_id = X_test["id"] X_train = X_train.drop(["id"], axis=1) X_train = X_train.drop(["target"], axis=1) X_test = X_test.drop(["id"], axis=1) # # Initialize 1st level models # Choose and set up a list of base models that will be used in the stacking process. In this notebook, we use logistic regression, random forest, Gaussian naive bayes, support vector machines, and XGBoost as our base models. models = [ LogisticRegression(), RandomForestClassifier(), GaussianNB(), SVC(probability=True), XGBClassifier(), ] # # Vecstack # Vecstack is a Python library that provides a convenient and easy-to-use method for stacking machine learning models. Vecstack takes care of splitting the data, training the models, and generating the predictions for the next level (meta-model). # The library is built on top of the scikit-learn library and is compatible with any scikit-learn model. S_train_1, S_test_1 = stacking( models, # list of models X_train, y_train, X_test, # data regression=False, # classification task (if you need regression - set to True) mode="oof_pred", # mode: oof for train set, fit on full # train and predict test set once needs_proba=True, # predict probabilities (if you need # class labels - set to False) save_dir=".", # save result and log in current dir # (to disable saving - set to None) metric=log_loss, # metric: callable n_folds=10, # number of folds stratified=True, # stratified split for folds shuffle=True, # shuffle the data random_state=0, # ensure reproducibility verbose=2, ) # print all info # # Level 2 Data # Process the output from the base models to create the dataset for the meta-model. In this case, we extract the probability predictions for each class and keep only one probability column for each model, since the sum of probabilities for all classes is equal to 1. S_train = S_train_1[:, 1::2] S_test = S_test_1[:, 1::2] print(f"S_train shape: {S_train.shape}") print(f"S_test shape: {S_test.shape}") # The new dataset is made of out-of-fold predictions of the 5 models, so it has 5 columns. # # Level 2 Data # Train a logistic regression model as the meta-model, which takes the predictions from the base models as input features and combines them for a final prediction. The idea is that the meta-model learns the optimal way to combine the base models' predictions, taking advantage of their strengths and compensating for their weaknesses. # fit logreg model = LogisticRegression() model = model.fit(S_train, y_train) # predict y_pred = model.predict_proba(S_test)[:, 1] # # Submit # final submission sub = pd.DataFrame() sub["id"] = test_id sub["target"] = y_pred sub.to_csv("submission.csv", index=False)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import torch import torch.nn.functional as F from datasets import load_dataset import torchvision from denoising_diffusion_pytorch import Unet from torch.optim import Adam import tqdm from torch.cuda.amp import GradScaler scaler = GradScaler() device = torch.device("cuda") def linear_beta_schedule(timesteps): beta_start = 0.0001 beta_end = 0.02 return torch.linspace(beta_start, beta_end, timesteps) # ## Parameters of noise timesteps = 500 betas = linear_beta_schedule(timesteps).to(device) alphas = 1.0 - betas alphas_cumprod = torch.cumprod(alphas, axis=0) # 累乘 sqrt_alphas_cumprod = torch.sqrt(alphas_cumprod) sqrt_one_minus_alphas_cumprod = torch.sqrt(1.0 - alphas_cumprod) sqrt_recip_alphas = torch.sqrt(1.0 / alphas) alphas_cumprod_prev = F.pad( alphas_cumprod[:-1], (1, 0), value=1.0 ) # t时刻对应的alpht_{t-1}的累乘 posterior_variance = ( betas * (1.0 - alphas_cumprod_prev) / (1 - alphas_cumprod) ) # Xt时刻的分布方差 # ## Dataset dataset = load_dataset("fashion_mnist") image_size = 28 channels = 1 batch_size = 128 from torch.utils.data import DataLoader transform = torchvision.transforms.Compose( [ torchvision.transforms.RandomHorizontalFlip(), torchvision.transforms.ToTensor(), torchvision.transforms.Lambda(lambda t: (t * 2) - 1), ] ) def transforms(examples): examples["pixel_values"] = [ transform(image.convert("L")) for image in examples["image"] ] del examples["image"] return examples transformed_dataset = dataset.with_transform(transforms).remove_columns("label") dataloader = DataLoader( transformed_dataset["train"], batch_size=batch_size, shuffle=True, num_workers=2 ) # ## Training stage: using $X_t$ to predict the noise $ Z_t$ def extract(a, t, x_shape): bs = x_shape[0] out = a.gather(-1, t) return out.reshape(bs, *((1,) * (len(x_shape) - 1))).to(device) # (bs)->(bs,1,1,1) epochs = 5 model = Unet(dim=18, channels=1, dim_mults=(1, 2, 4), resnet_block_groups=6).to(device) optimizer = Adam(model.parameters(), lr=8e-5, betas=(0.9, 0.99)) lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - 0.01) + 0.01 # linear lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) model.train() for epoch in range(epochs): total_loss = 0.0 progress_bar = tqdm.tqdm(enumerate(dataloader), total=len(dataloader)) for step, batch in progress_bar: batch = batch["pixel_values"].to(device) bs = batch.size()[0] t = torch.randint(0, timesteps, (bs,), device=device).long() # generate noise noise = torch.randn_like(batch).to(device) # Adding Noise_T to X_0 sqrt_alphas_cumprod_t = extract(sqrt_alphas_cumprod, t, batch.shape) sqrt_one_minus_alphas_cumprod_t = extract( sqrt_one_minus_alphas_cumprod, t, batch.shape ) x_t = sqrt_alphas_cumprod_t * batch + sqrt_one_minus_alphas_cumprod_t * noise predicted_noise = model(x_t, t) loss = F.smooth_l1_loss(noise, predicted_noise) total_loss += loss.data optimizer.zero_grad() scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() mem = "%.3gG" % ( torch.cuda.memory_reserved() / 1e9 if torch.cuda.is_available() else 0 ) s = ("epoch: %10s" + "loss: %10.4g" + "Mem: %10s") % ( "%g/%g" % (epoch + 1, epochs), total_loss / (step + 1), mem, ) progress_bar.set_description(s) # ## 模型保存 import os save = {"state_dict": model.state_dict()} torch.save(save, os.path.join("/kaggle/working/", "weights.pth")) # ## Sampling # ![image.png](attachment:f74a44c0-9fbb-4a75-9966-e37306d2eb53.png) model = Unet(dim=18, channels=1, dim_mults=(1, 2, 4), resnet_block_groups=6).to(device) model.load_state_dict(torch.load(args.model_path)["state_dict"]) img = torch.randn((1, 1, 28, 28), device=device) # X_t 随机高斯分布的噪声 model.eval() imgs = [] for current_t in tqdm.tqdm(reversed(range(0, timesteps))): bs = img.size()[0] t = torch.full((bs,), current_t, device=device, dtype=torch.long) # calculate the means and std of the distribution of X_{t-1} betas_t = extract(betas, t, img.shape) sqrt_one_minus_alphas_cumprod_t = extract( sqrt_one_minus_alphas_cumprod, t, img.shape ) sqrt_recip_alphas_t = extract(sqrt_recip_alphas, t, img.shape) # get the prediction noise z_t with torch.no_grad(): z_t = model(img, t) mean = sqrt_recip_alphas_t * (img - betas_t / sqrt_one_minus_alphas_cumprod_t * z_t) # 根据均值方差重参数化采样: if current_t > 0: posterior_variance_t = extract(posterior_variance, t, img.shape) img = mean + torch.sqrt(posterior_variance_t) * torch.randn_like(img) else: img = mean imgs.append(img.cpu().numpy()) def unnormalize(img): return (img + 1) * 0.5 # ## Visualization from matplotlib import pyplot as plt plt.imshow(unnormalize(imgs[-1][0]).reshape(28, 28, 1), cmap="gray") # ### Save as gif import matplotlib.animation as animation fig = plt.figure() ims = [] for i in tqdm.tqdm(range(timesteps)): im = plt.imshow( unnormalize(imgs[i][0]).reshape(28, 28, 1), cmap="gray", animated=True ) ims.append([im]) ims = ims[::10] animate = animation.ArtistAnimation( fig, ims, interval=50, blit=True, repeat_delay=10000 ) animate.save("/kaggle/working/diffusion_2.gif")
# ![wall.jpg](attachment:wall.jpg) # # Summary & Objective : # ## Historical sales data for 45 Walmart stores located in different regions are available. There are certain events and holidays which impact sales on each day. The business is facing a challenge due to unforeseen demands and runs out of stock some times, due to inappropriate machine learning algorithm. Walmart would like to predict the sales and demand accurately. An ideal ML algorithm will predict demand accurately and ingest factors like economic conditions including CPI, Unemployment Index, etc. The objective is to determine the factors affecting the sales and to analyze the impact of markdowns around holidays on the sales. # # Data Understanding : # ## This is the historical data that covers sales from 2010-02-05 to 2012-11-01, in which you will find the following fields: # ### Store - the store number # ### Date - the week of sales # ### Weekly_Sales - sales for the given store # ### Holiday_Flag - whether the week is a special holiday week 1 – Holiday week 0 – Non-holiday week # ### Temperature - Temperature on the day of sale # ### Fuel_Price - Cost of fuel in the region # ### CPI – Prevailing consumer price index # ### Unemployment - Prevailing unemployment rate import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import StandardScaler, LabelEncoder, OneHotEncoder import warnings warnings.simplefilter("ignore") df = pd.read_csv("/kaggle/input/wallmart-sale/Walmart.csv") df.head() df.shape df.dtypes df.info() df.nunique() df.isnull().sum() labelencoder = LabelEncoder() # Converting the categprical features to numerical features for i in df.columns: if df[i].dtype == "object": df[i] = df[i].astype("category").cat.codes df.info() sns.displot(df.Weekly_Sales) sns.pairplot(df) df.corr() # Linear Regression : from sklearn.model_selection import train_test_split from sklearn import metrics from sklearn.linear_model import LinearRegression X = df[["Store", "Fuel_Price", "CPI", "Unemployment", "Date"]] Y = df["Weekly_Sales"] X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2) print("Linear Regression:") print() reg = LinearRegression() reg.fit(X_train, Y_train) Y_pred = reg.predict(X_test) print("Accuracy:", reg.score(X_train, Y_train) * 100) print("Mean Absolute Error:", metrics.mean_absolute_error(Y_test, Y_pred)) print("Mean Squared Error:", metrics.mean_squared_error(Y_test, Y_pred)) print("Root Mean Squared Error:", np.sqrt(metrics.mean_squared_error(Y_test, Y_pred))) # sns.scatterplot(Y_pred, Y_test) import warnings warnings.filterwarnings("ignore") # Random Forest Regressor from sklearn.ensemble import RandomForestRegressor print("Random Forest Regressor:") print() rfr = RandomForestRegressor() rfr.fit(X_train, Y_train) Y_pred = rfr.predict(X_test) print("Accuracy:", rfr.score(X_test, Y_test) * 100) print("Mean Absolute Error:", metrics.mean_absolute_error(Y_test, Y_pred)) print("Mean Squared Error:", metrics.mean_squared_error(Y_test, Y_pred)) print("Root Mean Squared Error:", np.sqrt(metrics.mean_squared_error(Y_test, Y_pred))) # sns.scatterplot(Y_pred, Y_test) import warnings warnings.filterwarnings("ignore") # Here, Linear Regression is not an appropriate model to use which is clear from it's low accuracy. However, Random Forest Regression gives accuracy of over 95% , so, it is the best model to forecast demand plt.figure(figsize=(20, 7)) barplot = sns.barplot( x="Store", y="Weekly_Sales", data=df, estimator=np.sum, ci=None, order=df.groupby("Store") .agg("sum") .reset_index() .sort_values(by="Weekly_Sales", ascending=False)["Store"], ).set_title("Total Sales By Store") plt.ylabel("Sales (millions)") plt.show() # Checking for outlier and NaN value features_list = "Temperature, Fuel_Price, CPI, Unemployment, Date, Weekly_Sales".split( ", " ) plt.figure(dpi=150) count = 1 for feature in features_list: plt.subplot(4, 2, count) sns.boxplot(df[feature]) count += 1 plt.tight_layout() plt.show()
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv("/kaggle/input/2023cnu-machinelearning/train.csv") test = pd.read_csv("/kaggle/input/2023cnu-machinelearning/test.csv") train test train.info() test.info() print("Train 크기:{}".format(train.shape)) print("Test 크기:{}".format(test.shape)) print("train 결측치 확인: ", train.isnull().sum()) print("----------------------------------------------------") print("test 결측치 확인: ", test.isnull().sum()) df = train.corr() df sf = test.corr() sf import matplotlib.pyplot as plt train.hist(bins=50, figsize=(20, 15)) plt.show() # ## 데이터 전처리 # - 해당 데이터가 연속적인 시간의 값이기에 결측치를 앞 방향 값으로 채웠습니다. # - 수치형 데이터가 문자로 표시되는d 값이 있을 수도 있기에 전부 수치형으로 변경하였습니다. # 수치형 변수에 포함되는 데이터 타입 선정 numerics = ["int16", "int32", "int64", "float16", "float32", "float64"] # 결측치는 위 데이터로 채우기 train[train.select_dtypes(include=numerics).columns] = train[ train.select_dtypes(include=numerics).columns ].fillna(method="ffill") test[test.select_dtypes(include=numerics).columns] = test[ test.select_dtypes(include=numerics).columns ].fillna(method="ffill") print("train_data 결측치 확인: ", train.isnull().sum()) print("----------------------------------------------------") print("test_data 결측치 확인: ", test.isnull().sum()) test_not_index = test.drop(["index"], axis=1) test_not_index train_not_index = train.drop(["index"], axis=1) train_not_index # ## 검증 데이터로 분리 # 베이스 코드에는 모델의 성능을 비교해보기 위해 train 데이터에서 일부를 validation 데이터로 나눠서 진행 from sklearn.model_selection import train_test_split train_data, val_data = train_test_split( train_not_index, test_size=0.2, random_state=2023, shuffle=True ) print(train_data.shape) print(val_data.shape) X_train = train_data.drop(["count"], axis=1) X_val = val_data.drop(["count"], axis=1) X_test = test_not_index y_train = train_data["count"] y_val = val_data["count"] print("X_train의 shape: ", X_train.shape) print("X_val의 shape: ", X_val.shape) print("X_test의 shape: ", X_test.shape) print("\t") print("y_train의 shape: ", y_train.shape) print("y_val의 shape: ", y_val.shape) X_test # ## 모델 학습 # 베이스라인에서는 간단하게 랜덤포레스트회귀를 사용하여 성능평가지표인 MAE 사용 from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_absolute_error rnd_clf = RandomForestRegressor(n_estimators=500, max_leaf_nodes=13, n_jobs=-1) rnd_clf.fit(X_train, y_train) y_rnd_pred = rnd_clf.predict(X_val) print(rnd_clf.score(X_train, y_train)) print(rnd_clf.score(X_val, y_val)) print(mean_absolute_error(y_val, y_rnd_pred)) # # 결과 제출 # 예측한 결과값을 submission 파일로 생성 test_predicted = rnd_clf.predict(X_test) X_result = pd.concat([test["index"], X_test], axis=1) X_result sample_sub = pd.DataFrame({"index": X_result["index"], "count": test_predicted}) sample_sub sample_sub.to_csv("submission.csv", index=False)
# **Syntax Errors** a = 90 print("The value of a is:", a) if a > 80: print("yes") i = 10 while i > 0: print(i) i = i - 1 # **Runtime Error** num = int(input("Enter the value of Num ")) den = int(input("Enter the value of Den")) c = num / den print(c) # division by 0 will create runtime error # **Logical Error** a = 90 b = 30 c = 60 f = ( a + b + c / 3 ) # here logic of dividing is first put a+b+c in bracket then divide by 3 but by not doint so will create a logical error print(f) if a < 80: # by mistake wrote < other than > . This type of error is hard to find print("yes") else: print("no")
# # Parte 1: Conceitos básicos # ### Parte prática # Neste material apresentamos ferramentas em Python para a manipulação de redes complexas. Vamos focar principalmente no uso do Networkx, biblioteca voltada para criação e manipulação de redes complexas. # Os tópicos aqui apresentados consistem em conceitos básicos, iniciando com a criação de instâncias de redes complexas de diferentes tipos (com peso, sem peso, com direção e sem direção), manipulação dos vértices e arestas, geração de redes não direcionadas a partir de redes direcionadas. # Essa biblioteca cobre as principais medidas e algoritmos conhecidos na Literatura de Redes Complexas. Quando estiver programando, em caso de dúvida recomendamos consultar a documentação disponível em https://networkx.org/documentation/stable/reference/index.html. # Nosso curso focará no uso do Networkx, entretanto outras ferramentas estão disponíveis na web conforme listadas no [link]( # https://github.com/briatte/awesome-network-analysis). """ No google colab, o Networkx já está instalado. """ # !pip install networkx import networkx as nx # ## Criando redes sem direção e com direção graph = nx.Graph() # aqui estamos criando um grafo vazio, sem vértices ou arestas # sem direção ou atributos label = "1" graph.add_node( label ) # podemos adicionar apenas um vértice com o label informado como argumento graph.add_nodes_from([1, 2, 3]) # ou adicionar uma lista de vértices print(graph) graph.add_edge("1", 1) # usando os labels dos vértices, podemos adicionar arestas graph.add_edges_from([("1", 2), (2, 3), (1, 3)]) # ou uma lista de vértices print(graph) # temos métodos análogos para o caso de redes dirigidas dir_graph = nx.DiGraph() # rede vazia dirigida label = 1 dir_graph.add_node(1) # adicionando vértices dir_graph.add_nodes_from([2, 3, 4, 5]) dir_graph.add_edge(1, 2) # adicionando arestas direcionadas dir_graph.add_edges_from([(2, 3), (3, 2), (3, 1), (5, 1), (3, 4)]) print(dir_graph) # ## Visualizando as redes # A visualização de redes complexas é uma área ampla por si só. # Para redes pequenas, as ferramentas de visualização oferecidas pelo Networkx podem ser interessantes. Aqui vamos apresentar o básico que pode facilitar no entendimento dos métodos apresentados ao longo do material. # vamos visualizar os dois grafos que criamos até o momento import matplotlib.pyplot as plt # Networkx usa o matplotlib para desenhar grafos # por isso, podemos usar também as funções dessa outra biblioteca pos = nx.circular_layout( graph ) # aqui estamos definindo uma forma de calcula a posição dos vértices nx.draw( graph, pos=pos, node_color="orange" ) # além de passar a posição recém calculada, # também podemos informar outros parâmetros como a cor dos vértices nx.draw_networkx_labels(graph, pos=pos) # adicionamos os labels dos vértices plt.title("graph") # função do matplotlib para adicionar título plt.show() # depois de todas as informações para gerar a figura, vamos visualizá-la # Agora o grafo direcionado que criamos anteriormente pos = nx.circular_layout(dir_graph) nx.draw(dir_graph, pos=pos, with_labels=True, node_size=500) # with_labels é uma forma # mais simples de adicionar os labels do vértices plt.title("dir_graph") plt.show() # ## Adicionando atributos # Vértices e arestas podem possuir atributos. # Em particular, o peso (weight) da conexão das arestas é um atributo muito estudado. attr_graph = nx.Graph() # adicionando atributos aos vértices attr_graph.add_node(2, title="The Lord of the Rings", writer="Tolkien") attr_graph.add_nodes_from( [ (3, {"title": "Dune", "writer": "Frank Herbert"}), (4, {"title": "Brave New World", "writer": "Huxley"}), ] ) # adicionando atributos às arestas attr_graph.add_edge(2, 3, weight=0.3) attr_graph.add_edges_from([(2, 4, {"weight": 0.25})]) labels = nx.get_edge_attributes(attr_graph, "weight") pos = nx.circular_layout(attr_graph) nx.draw(attr_graph, pos=pos, with_labels=True, node_color="orange", node_size=600) nx.draw_networkx_edge_labels(attr_graph, pos, edge_labels=labels) plt.show() # Mais informações sobre adição de atributos podem ser encontradas na documentação disponível em [link](https://networkx.org/documentation/networkx-1.7/tutorial/tutorial.html#adding-attributes-to-graphs-nodes-and-edges). # Como consultar vértices e arestas: print("Vértices do grafo attr_graph:") # os vértices podem ser acessados da seguinte forma for vtx in attr_graph.nodes(): print(vtx) print("Forma alternativa de acessar os vértices do mesmo grafo:") # dica: iterar sobre o objeto grafo também funciona for vtx in attr_graph: print(vtx) print("Arestas do grafo:") # de forma similar, para as arestas podemos fazer for edge in attr_graph.edges(): print(edge) # ## Matriz de adjacência # O método adjacency_matrix retorna a matriz que representa as conexões do grafo. # Para o caso de redes sem peso e sem direção, será uma matriz simétrica composta por 0s e 1s. No caso de redes sem peso e com direção, será uma matriz não simétrica de 0s e 1s. Finalmente, o valor 1 que normalmente indica a existência da conexão entre dois vértices será trocado pelo peso da conexão para as redes com peso. # A representação que o Networkx usa é de uma matriz esparça. Para visualização intuitiva podemos transformá-la para versão densa. Nota: no caso de redes com muitos vértices, esse procedimento pode não ser viável, pois a matriz gerada pode ocupar muita memória. # rede sem peso e sem direção print("Sem peso, sem direção:") print(nx.adjacency_matrix(graph).todense()) # rede com direção print("Com direção:") print(nx.adjacency_matrix(dir_graph).todense()) # rede sem direção print("Com peso:") print(nx.adjacency_matrix(attr_graph).todense()) # Nota: quando uma aresta sem peso informado é adicionada, o valor padrão do peso é 1 print("Lista de adjacência:") for vtx, adj in attr_graph.adjacency(): print(vtx, adj) # no caso de redes direcionadas, a lista de adjacência indica vértices vizinhos # apontados pelo vértice em análise # ## Rede de co-citação e acoplamento bibliográfico # Uma forma de transformar uma rede direcionada em não direcionada é extraindo a rede de co-citação. A ideia geral consiste em conectar dois vértices A e B caso ambos sejam apontados por um terceiro vértice C. Podemos incluir peso nas conexões ao considerarmos o número de vértices C que apontam para A e B. # O método apresentado a seguir é comumente utilizado para dados de citações de artigos. A ideia é análoga ao explicado anteriormente, artigos citados por um mesmo artigo devem ser conectados. # import numpy as np from itertools import combinations from collections import defaultdict def co_citation(digraph): di_nodes = digraph.nodes() graph = nx.Graph() graph.add_nodes_from(di_nodes) edges = defaultdict(lambda: 0) # key: edge, value: edge weight for node, adj in digraph.adjacency(): neig = list(adj.keys()) for edge in combinations(neig, 2): edges[edge] += 1 graph.add_edges_from(list(edges.keys())) nx.set_edge_attributes(graph, edges, "weight") return graph nx.draw(dir_graph, with_labels=True, node_color="orange") plt.title("dir_graph") plt.show() co_cit_graph = co_citation(dir_graph) nx.draw(co_cit_graph, with_labels=True, node_color="pink") plt.title("co_cit_graph") plt.show() print("Informações do co_cit_graph:") print(co_cit_graph.nodes()) print(co_cit_graph.edges()) print(nx.adjacency_matrix(co_cit_graph).todense()) # O acoplamento bibliográfico é outro tipo de rede também comum para dados de citações de artigos. Nesse caso, dois artigos são conectados quando citam outros artigos em comum. Uma forma de considerar peso nas conexões é o número de artigos C que A e B citam. def get_bibliographic_coupling_graph(digraph): di_nodes = digraph.nodes() graph = nx.Graph() graph.add_nodes_from(di_nodes) edges = [] for node1, adj1 in digraph.adjacency(): for node2, adj2 in digraph.adjacency(): if node1 != node2: co = set(adj1.keys()) & set(adj2.keys()) if len(co) > 0: edges.append((node1, node2, len(co))) graph.add_weighted_edges_from(edges) return graph nx.draw(dir_graph, with_labels=True, node_color="orange") plt.title("dir_graph") plt.show() coupling_graph = get_bibliographic_coupling_graph(dir_graph) nx.draw(coupling_graph, with_labels=True, node_color="pink") plt.title("coupling_graph") plt.show() # ## Ciclos em redes direcionadas # O Networkx tem métodos para a identificação dos ciclos em si, portanto, para confirmar se uma rede é ciclica ou acíclica podemos criar um métedo simples que confere a lista de saída do método já pronto. # retorna um iterador sobre os ciclos do grafo # Nota: esse método é específico para redes direcionadas def has_cycle(graph): return len(list(nx.simple_cycles(graph))) > 0 cycle_graph = nx.DiGraph() cycle_graph.add_nodes_from([1, 2, 3, 4, 5]) cycle_graph.add_edges_from([(1, 2), (2, 3), (3, 1), (4, 5), (5, 2)]) nx.draw(cycle_graph, with_labels=True) plt.show() print(has_cycle(cycle_graph)) for cycle in nx.simple_cycles(cycle_graph): print(cycle) # ## Projeções de redes bipartidas # Redes bipartidas são redes com vértides que podem ser divididos em grupos distintos, existindo apenas conexões entre vértices de grupos distintos. Para esse tipo de rede, podemos gerar um grafo de projeção selecionando um grupo de vértices que desejamos focar. # A seguir, utilizamos um método do Networkx que gera a projeção dada uma rede bipartida. Dois vértices de um grupo são conectados caso estejam conectados a um terceiro vértice em comum do outro grupo. bi_graph = nx.Graph() bi_graph.add_edges_from([(1, "a"), (1, "b"), ("c", 2), ("d", 3), ("e", 2), (3, "b")]) pos = nx.bipartite_layout(bi_graph, nodes=[1, 2, 3]) nx.draw(bi_graph, pos=pos, with_labels=True, node_color="pink") plt.title("rede bipartida") plt.show() projection_letters = nx.bipartite.projected_graph(bi_graph, ["a", "b", "c", "d", "e"]) nx.draw(projection_letters, with_labels=True, node_color="gray") plt.title("projeção (vértices do tipo letras)") plt.show() projection_numbers = nx.bipartite.projected_graph(bi_graph, [1, 2, 3]) nx.draw(projection_numbers, with_labels=True, node_color="pink") plt.title("projeção (vértices do tipo número)") plt.show() # ## Grau # O grau de um vértice é o número de vizinhos que o vértice tem, isto é, vértices diretamente conectados. Utilizando os métodos do Networkx, é possível consultar o grau de um vértice específico ou obter uma lista com o grau de todos os vértices da rede. Para os casos de redes com peso e com direção, a medida pode ser adaptada, como mostrado a seguir. print("grau dos vértices do grafo sem peso, sem direção: ") for node in graph.degree(): # podemos iterar sobre todos os vértices print(node) # tupla com o label do vértice e o grau correspondente print( "vértice '1', peso", graph.degree("1") ) # para saber o grau de um vértice em particular print("vértice 3, peso", graph.degree(3)) print( "grafo com peso:" ) # quando informamos o atributo que representa o peso das arestas for node in attr_graph.degree(weight="weight"): print(node) print("grafo com direção:") # para o grafo com direção print("- grau de entrada:") for node in dir_graph.in_degree(): print(node) print("- grau de saída:") for node in dir_graph.out_degree(): print(node) # utilizando o matplotlib podemos visualizar a distribuição do grau dos vértices de uma rede import math import matplotlib.pyplot as plt degree_graph = nx.Graph() degree_graph.add_nodes_from([1, 2, 3, 4, 5, 6]) degree_graph.add_edges_from([(1, 2), (3, 4), (5, 2), (5, 6), (2, 3), (4, 1), (5, 1)]) degrees = [val for (node, val) in degree_graph.degree()] plt.hist(degrees) plt.xlabel("grau") plt.ylabel("ocorrência") plt.show() # # Parte 2: Medidas de redes # Há métodos do Networkx para medidas apresentadas nas aulas teóricas, conforme apresentado a seguir. # vamos utilizar o grafo a seguir para extrar as medidas de centralidade metric_graph = nx.Graph() metric_graph.add_edges_from([(1, 2), (1, 3), (1, 4), (1, 5), (5, 6), (5, 7)]) nx.draw(metric_graph, with_labels=True, node_color="pink") plt.show() # eigenvector centrality print("eigenvector centrality:") size_factor = [] for node, val in nx.eigenvector_centrality(metric_graph).items(): print("%d %.2f" % (node, val)) size_factor.append(val * 1000) # vamos visualizar a rede com os vértices com tamanho proporcional # à medida de centralidade nx.draw(metric_graph, node_size=size_factor, with_labels=True) plt.show() # centralidade de Katz print("centralidade de Katz:") # os nomes dos parâmetros são diretamente adaptados do método apresentado na aula teórica alpha = 0.01 beta = 1.0 size_factor = [] for node, val in nx.katz_centrality(metric_graph, alpha=alpha, beta=beta).items(): print("%d %.2f" % (node, val)) size_factor.append(val * 1000) nx.draw(metric_graph, node_size=size_factor, with_labels=True) plt.show() # pagerank print("pagerank:") size_factor = [] for node, val in nx.pagerank(metric_graph).items(): print("%d %.2f" % (node, val)) size_factor.append(200 + val * 1200) nx.draw(metric_graph, node_size=size_factor, with_labels=True) plt.show() # # Parte 3: Modelos de redes complexas # Por vezes, pode ser útil gerar redes de maneira procedural. Alguns modelos de geração de redes são bem estabelecidos na Literatura por servirem de referência para comparar com redes de dados real, por exemplo. # ## Rede aleatória n = 100 e = 400 p = 0.15 er = nx.gnm_random_graph( n, e ) # nesse caso são especificados número de vértices e arestas gi = nx.gnp_random_graph(n, p) # aqui o número de vértices e a probabilidade de # uma aresta ser criada entre dois vértices nx.draw(er, node_size=7, edge_color="gray", alpha=0.5) plt.title( "gnm_random_graph (vertices=%d, arestas=%d)" % (len(er.nodes()), len(er.edges())) ) plt.show() nx.draw(gi, node_size=7, edge_color="gray", alpha=0.5) plt.title( "gnp_random_graph (vertices=%d, arestas=%d)" % (len(gi.nodes()), len(gi.edges())) ) plt.show() # ## Rede pequeno mundo (WS) n = 150 # número de vértices k = 5 # grau de conexão com vizinhos p = 0.3 # probabilidade de realocar uma aresta ws = nx.watts_strogatz_graph(n, k, p) nx.draw(ws, node_size=7, edge_color="gray", alpha=0.5) plt.title( "watts_strogatz_graph (vertices=%d, arestas=%d)" % (len(ws.nodes()), len(ws.edges())) ) plt.show() # ## Modelo de ligação preferencial (BA) n = 100 m = 5 ba = nx.barabasi_albert_graph(n, m) nx.draw(ba, node_size=7, edge_color="gray", alpha=0.5) plt.title( "barabasi_albert_graph (vertices=%d, arestas=%d)" % (len(ba.nodes()), len(ba.edges())) ) plt.show() # Modelo de atratividade (disponível?) # Modelo de fitness (disponível?) # # Parte 5: Detecção de comunidades # ## Método de Girvan Newman # método Girvan Newman # nesse caso, o método retorna um iterador com as comunidades encontradas a cada iteração do algoritmo node_sets = None for lvl, comms in enumerate( nx.algorithms.community.centrality.girvan_newman(metric_graph) ): print(lvl, comms) if lvl == 1: node_sets = comms colors = dict() for i, comm in enumerate(comms): for vtx in comm: colors[vtx] = i # vamos colocar o grafo conforme as comunidades indentificadas no lvl = 1 node_color = [] for vtx in metric_graph.nodes(): node_color.append(colors[vtx]) nx.draw(metric_graph, node_color=node_color) plt.show() # ## Modularidade # A medida de modularidade quantifica a qualidade de uma divisão de vértices em grupos seguindo a ideia de que grupos bem formados são aqueles com muitas conexões internas e poucas conexões com vértices de outros grupos. # O método modularity do Networkx espera receber como parâmetros um grafo e a partição dos vértices do grafo. # modularidade # anteriormente salvamos na variável node_sets uma partição dos vértices gerada # pelo algoritmo de Girvan Newman print(node_sets) nx.algorithms.community.quality.modularity(metric_graph, node_sets) # vamos verificar a modularidade gerada para cada iteração do algoritmo for lvl, comms in enumerate( nx.algorithms.community.centrality.girvan_newman(metric_graph) ): mod = nx.algorithms.community.quality.modularity(metric_graph, comms) print(lvl, comms, mod) # ## Greedy modularity optimization # Neste caso, a ideia do algoritmo de Girvan Newman é utilizada, porém combinado com a medida de modularidade para indicar qual é a melhor partição encontrada. # Ao contrário do método anterior que retorna um iterador, aqui já recebemos a partição ótima. partition = nx.algorithms.community.modularity_max.greedy_modularity_communities( metric_graph ) def idx_partition(partition, node): for i, p in enumerate(partition): if node in p: return i return None node_color = [] for node in metric_graph.nodes(): node_color.append(idx_partition(partition, node)) nx.draw(metric_graph, node_color=node_color) plt.title("greedy_modularity_communities") plt.show() # ## Louvain # A versão estável do Networkx ainda não possui uma implementação do método Louvain. Assim, utilizamos uma biblioteca alternativa chamada python-louvain # que é compatível com Networkx. import community.community_louvain as community_louvain # importando o método que vamos utilizar partition_louvain = community_louvain.best_partition(metric_graph) print(partition_louvain) colors = list(partition_louvain.values()) nx.draw(metric_graph, with_labels=True, node_color=colors, cmap=plt.cm.Set2) plt.title("community_louvain") plt.show() # ## Label propagation # O método de label propagation implementado em asyn_lpa_communities retorna um iterador, onde cada item é uma comunidade identificada (conjunto de vértices identificados pelo label). partition_iter = nx.community.label_propagation.asyn_lpa_communities(metric_graph) partition = [] for comm in partition_iter: partition.append(comm) print(partition) node_color = [] for node in metric_graph.nodes(): node_color.append(idx_partition(partition, node)) nx.draw(metric_graph, with_labels=True, node_color=node_color, cmap=plt.cm.Set3) plt.title("asyn_lpa_communities") plt.show() # ## Normalized mutual Information (NMI) # No contexto de detecção de comunidades, essa métrica pode ser utilizada para comparar uma partição identificada por algum algoritmo que estamos utilizando com a partição que sabemos previamente ser uma boa resposta (chamado também de ground truth). # Essa medida não é necessariamente relacionada apenas com redes complexas, podendo ter um uso muito mais geral que não vamos entrar em detalhes nesse curso. Vamos utilizar a implementação disponível no sklearn. # Normalized mutual Information # !pip install sklearn from sklearn.metrics.cluster import normalized_mutual_info_score as nmi # vamos utilizar uma rede clássica da literatura # https://en.wikipedia.org/wiki/Zachary%27s_karate_club karate_club = nx.karate_club_graph() # Cada vértice representa um aluno e a cor do vértice seria o grupo (professor) # que o aluno pertence ground_truth = [ "blue" if karate_club.nodes[v]["club"] == "Mr. Hi" else "red" for v in karate_club.nodes() ] nx.draw(karate_club, node_size=30, node_color=ground_truth) plt.title("karate_club") plt.show() # vamos comparar a partição identificada pelo label propagation com o ground truth partition_iter = nx.community.label_propagation.asyn_lpa_communities(karate_club) partition = [] for comm in partition_iter: partition.append(comm) print(partition) node_color = [] for node in karate_club.nodes(): node_color.append(idx_partition(partition, node)) karate_nmi = nmi(ground_truth, node_color) print(karate_nmi) nx.draw(karate_club, node_size=50, node_color=node_color, cmap=plt.cm.Set3) plt.title("rede = karate club, método = asyn_lpa_communities, nmi = %.3f" % karate_nmi) plt.show()
# ## Regressors # There are many machine learning algorithms for Regression, but deciding best number of features and best model for getting best accuracy is typical. When we select a model for prediction, then we suffer problems related to underfitting and overfitting. In real scenario, there are more cases of overfitting, which we solve through regulariztion and hyperparameter tuning. Here, I implemented the following models to check best out of them for this cars dataset: # # 1. Linear Regression # 2. Lasso Regression # 3. Ridge Regression # 4. Elastic Net Regression # 5. Least Angle Regression # 6. Stochastic Gradient Descent Regression # 7. Support Vector Regression # 8. K Neighbors Regression # 9. Decision Tree Regression # 10. Random Forest Regression # 11. XG Boost Regression from sklearn.linear_model import LinearRegression from sklearn.linear_model import Lasso from sklearn.linear_model import Ridge from sklearn.linear_model import ElasticNet from sklearn.linear_model import Lars from sklearn.linear_model import SGDRegressor from sklearn.svm import SVR from sklearn.neighbors import KNeighborsRegressor from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor from xgboost import XGBRegressor # ## Importing Libraries... import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import warnings warnings.filterwarnings("ignore") # ## Loading Data... data = pd.read_csv("/kaggle/input/cars-dataset/mtcars2.csv") data.head() # ### Renaming column data = data.rename(columns={"Unnamed: 0": "Model"}) data.head() # ## EDA data.shape nulldata = data.isnull().sum() nulldata[nulldata > 0] data.describe() data.info() data = data.drop("Model", axis=1) data.head() data = data.rename( columns={ "cyl": "cylinder", "disp": "displacement", "hp": "horsepower", "wt": "weight", } ) data.head() # ### Selecting main columns for analysis data = data[["mpg", "cylinder", "displacement", "horsepower", "weight", "qsec"]] data.head() data.plot(kind="box", subplots=True, layout=(3, 3), figsize=(20, 12)) plt.show() plt.subplots(figsize=(10, 8)) sns.heatmap(data.corr(), annot=True) plt.show() sns.pairplot(data, diag_kind="kde", kind="reg") plt.show() from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.metrics import r2_score # ### Helper Functions def build_model( regression_fn, dataset, x_col, y_col, test_frac, preprocess_fn=None, show_plot=False ): X = dataset[x_col] Y = dataset[y_col] if preprocess_fn is not None: preprocess = preprocess_fn() X = preprocess.fit_transform(X) x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=test_frac) model = regression_fn(x_train, y_train) y_pred = model.predict(x_test) print("Training Score : ", model.score(x_train, y_train)) print("Testing Score : ", r2_score(y_test, y_pred)) if show_plot is True: plt.plot(y_pred, label="Predictions") plt.plot(y_test.values, label="Actual") plt.legend() plt.show() return { "training score": model.score(x_train, y_train), "testing score": r2_score(y_test, y_pred), } results_dict = {} def compare_results(): for key in results_dict: print("Regression : ", key) print("Training Score : ", results_dict[key]["training score"]) print("Testing Score : ", results_dict[key]["testing score"]) print() def overfitting(): overfitting_regression = [] print("These are the overfitting models : \n") for key in results_dict: if ( results_dict[key]["training score"] > results_dict[key]["testing score"] + 0.02 ): print("Regression : ", key) print("Training Score : ", results_dict[key]["training score"]) print("Testing Score : ", results_dict[key]["testing score"]) print() overfitting_regression.append(key) print("No. of Overfitting models : ", len(overfitting_regression)) for i in overfitting_regression: print(i) def underfitting(): underfitting_regression = [] print("These are the underfitting models : \n") for key in results_dict: if ( results_dict[key]["training score"] < results_dict[key]["testing score"] - 0.02 ): print("Regression : ", key) print("Training Score : ", results_dict[key]["training score"]) print("Testing Score : ", results_dict[key]["testing score"]) print() underfitting_regression.append(key) print("No. of Underfitting models : ", len(underfitting_regression)) for i in underfitting_regression: print(i) def balanced(): balanced_regression = [] print("Best models among all the models : \n") for key in results_dict: if ( results_dict[key]["training score"] < results_dict[key]["testing score"] + 0.02 ) and ( results_dict[key]["training score"] > results_dict[key]["testing score"] - 0.02 ): print("Regression : ", key) print("Training Score : ", results_dict[key]["training score"]) print("Testing Score : ", results_dict[key]["testing score"]) print() balanced_regression.append(key) print("No. of Balanced models : ", len(balanced_regression)) for i in balanced_regression: print(i) # ### Importing all Regressor Functions from sklearn.linear_model import LinearRegression from sklearn.linear_model import Lasso from sklearn.linear_model import Ridge from sklearn.linear_model import ElasticNet from sklearn.linear_model import Lars from sklearn.linear_model import SGDRegressor from sklearn.svm import SVR from sklearn.neighbors import KNeighborsRegressor from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor from xgboost import XGBRegressor def linear_reg(x_train, y_train): model = LinearRegression() model.fit(x_train, y_train) return model def lasso_reg(x_train, y_train, alpha=0.5): model = Lasso(alpha=alpha) model.fit(x_train, y_train) return model def ridge_reg(x_train, y_train, alpha=0.5): model = Ridge(alpha=alpha) model.fit(x_train, y_train) return model def elastic_net_reg( x_train, y_train, alpha=1, l1_ratio=0.5, warm_start=True, max_iter=10000 ): model = ElasticNet( alpha=alpha, l1_ratio=l1_ratio, warm_start=warm_start, max_iter=max_iter ) model.fit(x_train, y_train) return model def lars_reg(x_train, y_train, n_nonzero_coefs=4): model = Lars(n_nonzero_coefs=n_nonzero_coefs) model.fit(x_train, y_train) return model def sgd_reg(x_train, y_train, max_iter=10000, tol=1e-3): model = SGDRegressor(max_iter=max_iter, tol=tol) model.fit(x_train, y_train) return model def svr_reg(x_train, y_train, kernel="linear", epsilon=0.05, C=0.3): model = SVR(kernel=kernel, epsilon=epsilon, C=C) model.fit(x_train, y_train) return model def kneighbor_reg(x_train, y_train, n_neighbors=10): model = KNeighborsRegressor(n_neighbors=n_neighbors) model.fit(x_train, y_train) return model def decisiontree_reg(x_train, y_train, max_depth=2): model = DecisionTreeRegressor(max_depth=max_depth) model.fit(x_train, y_train) return model def randomforest_reg(x_train, y_train, max_depth=2): model = RandomForestRegressor(max_depth=max_depth) model.fit(x_train, y_train) return model def xgb_reg(x_train, y_train): model = XGBRegressor() model.fit(x_train, y_train) return model results_dict["Single Linear"] = build_model( linear_reg, data, ["weight"], "mpg", 0.2, None, True ) results_dict["Multi Linear all"] = build_model( linear_reg, data, ["cylinder", "displacement", "horsepower", "qsec", "weight"], "mpg", 0.2, StandardScaler, True, ) results_dict["Multi Linear 4 features"] = build_model( linear_reg, data, ["cylinder", "displacement", "horsepower", "weight"], "mpg", 0.2, StandardScaler, True, ) results_dict["Single Lasso"] = build_model( lasso_reg, data, ["weight"], "mpg", 0.2, StandardScaler, True ) results_dict["Multi Lasso all"] = build_model( lasso_reg, data, ["cylinder", "displacement", "horsepower", "qsec", "weight"], "mpg", 0.2, StandardScaler, True, ) results_dict["Multi Lasso 4 features"] = build_model( lasso_reg, data, ["cylinder", "displacement", "horsepower", "weight"], "mpg", 0.2, StandardScaler, True, ) results_dict["Single Ridge"] = build_model( ridge_reg, data, ["weight"], "mpg", 0.2, StandardScaler, True ) results_dict["Multi Ridge all"] = build_model( ridge_reg, data, ["cylinder", "displacement", "horsepower", "qsec", "weight"], "mpg", 0.2, StandardScaler, True, ) results_dict["Multi Ridge 4 features"] = build_model( ridge_reg, data, ["cylinder", "displacement", "horsepower", "weight"], "mpg", 0.2, None, True, ) results_dict["Single Elastic net"] = build_model( elastic_net_reg, data, ["weight"], "mpg", 0.2, StandardScaler, True ) results_dict["Multi Elastic net all"] = build_model( elastic_net_reg, data, ["cylinder", "displacement", "horsepower", "qsec", "weight"], "mpg", 0.2, StandardScaler, True, ) results_dict["Multi Elastic net 4 features"] = build_model( elastic_net_reg, data, ["cylinder", "displacement", "horsepower", "weight"], "mpg", 0.2, StandardScaler, True, ) results_dict["Single Lars"] = build_model( lars_reg, data, ["weight"], "mpg", 0.2, StandardScaler, True ) results_dict["Multi Lars all"] = build_model( lars_reg, data, ["cylinder", "displacement", "horsepower", "qsec", "weight"], "mpg", 0.2, StandardScaler, True, ) results_dict["Multi Lars 4 features"] = build_model( lars_reg, data, ["cylinder", "displacement", "horsepower", "weight"], "mpg", 0.2, None, True, ) results_dict["Single SVR"] = build_model( svr_reg, data, ["weight"], "mpg", 0.2, StandardScaler, True ) results_dict["Multi SVR all"] = build_model( svr_reg, data, ["cylinder", "displacement", "horsepower", "qsec", "weight"], "mpg", 0.2, StandardScaler, True, ) results_dict["Multi SVR 4 features"] = build_model( svr_reg, data, ["cylinder", "displacement", "horsepower", "weight"], "mpg", 0.2, StandardScaler, True, ) results_dict["Single SGD"] = build_model( sgd_reg, data, ["weight"], "mpg", 0.2, StandardScaler, True ) results_dict["Multi SGD all"] = build_model( sgd_reg, data, ["cylinder", "displacement", "horsepower", "qsec", "weight"], "mpg", 0.2, StandardScaler, True, ) results_dict["Multi SGD 4 features"] = build_model( sgd_reg, data, ["cylinder", "displacement", "horsepower", "weight"], "mpg", 0.2, StandardScaler, True, ) results_dict["Single Kneighbors"] = build_model( kneighbor_reg, data, ["weight"], "mpg", 0.2, StandardScaler, True ) results_dict["Multi Kneighbors all"] = build_model( kneighbor_reg, data, ["cylinder", "displacement", "horsepower", "qsec", "weight"], "mpg", 0.2, StandardScaler, True, ) results_dict["Multi Kneighbors 4 features"] = build_model( kneighbor_reg, data, ["cylinder", "displacement", "horsepower", "weight"], "mpg", 0.2, StandardScaler, True, ) results_dict["Single Decision tree"] = build_model( decisiontree_reg, data, ["weight"], "mpg", 0.2, StandardScaler, True ) results_dict["Multi Decision tree all"] = build_model( decisiontree_reg, data, ["cylinder", "displacement", "horsepower", "qsec", "weight"], "mpg", 0.2, StandardScaler, True, ) results_dict["Multi Decision tree 4 features"] = build_model( decisiontree_reg, data, ["cylinder", "displacement", "horsepower", "weight"], "mpg", 0.2, StandardScaler, True, ) results_dict["Single Random Forest"] = build_model( randomforest_reg, data, ["weight"], "mpg", 0.2, StandardScaler, True ) results_dict["Multi Random Forest all"] = build_model( randomforest_reg, data, ["cylinder", "displacement", "horsepower", "qsec", "weight"], "mpg", 0.2, StandardScaler, True, ) results_dict["Multi Random Forest 4 features"] = build_model( randomforest_reg, data, ["cylinder", "displacement", "horsepower", "weight"], "mpg", 0.2, StandardScaler, True, ) results_dict["Single xgb"] = build_model( xgb_reg, data, ["weight"], "mpg", 0.2, StandardScaler, True ) results_dict["Multi xgb all"] = build_model( xgb_reg, data, ["cylinder", "displacement", "horsepower", "qsec", "weight"], "mpg", 0.2, StandardScaler, True, ) results_dict["Multi xgb 4 features"] = build_model( xgb_reg, data, ["cylinder", "displacement", "horsepower", "weight"], "mpg", 0.2, StandardScaler, True, ) # ### Comparing all the results of applied Regressor functions with number of features compare_results() # ### Overfitting models overfitting() # ### Underfitting models underfitting() # ### Balanced Models balanced() # ### Finding best model with number of features with best training and testing score results = pd.DataFrame(results_dict).transpose() best = results[ (results["training score"] < results["testing score"] + 0.02) & (results["training score"] > results["testing score"] - 0.02) ] best_model = ( best.groupby(best.index)[["training score", "testing score"]] .max() .sort_values(by=["testing score"], ascending=False) .head(1) ) print( f"Best Model with best training and best testing score for this dataset :\n\n{best_model}" )
# # Exploring Ideas for ML # ## Playground Series - S3, E12 # Install pycaret import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # Import all the nesesary lebraries from pycaret.classification import * from imblearn.over_sampling import ( ADASYN, BorderlineSMOTE, KMeansSMOTE, RandomOverSampler, SMOTE, SMOTENC, SVMSMOTE, ) from pathlib import Path # Import OS path libraries. # I like to disable my Notebook Warnings. import warnings warnings.filterwarnings("ignore") # Configure notebook display settings to only use 2 decimal places, tables look nicer. pd.options.display.float_format = "{:,.2f}".format pd.set_option("display.max_columns", 15) pd.set_option("display.max_rows", 50) # Define some of the notebook parameters for future experiment replication. SEED = 42 def read_csv_to_dataframe(file_path, delimiter=",", encoding="utf-8", header="infer"): """ Read data from a CSV file and load it into a pandas DataFrame. Parameters: file_path (str): The file path to the CSV file. delimiter (str): The delimiter used in the CSV file (default: ','). encoding (str): The character encoding used in the CSV file (default: 'utf-8'). header (int or str): The row number to use as the header, or 'infer' to let pandas determine the header (default: 'infer'). Returns: pandas.DataFrame: A DataFrame containing the data from the CSV file. """ return pd.read_csv(file_path, delimiter=delimiter, encoding=encoding, header=header) # Example usage: # Assuming 'file_path' is the path to your CSV file # data = read_csv_to_dataframe(file_path) TRN_PATH = "/kaggle/input/playground-series-s3e12/train.csv" TST_PATH = "/kaggle/input/playground-series-s3e12/test.csv" SUB_PATH = "/kaggle/input/playground-series-s3e12/sample_submission.csv" ORG_PATH = "/kaggle/input/kidney-stone-prediction-based-on-urine-analysis/kindey stone urine analysis.csv" trn_data = read_csv_to_dataframe(TRN_PATH) tst_data = read_csv_to_dataframe(TST_PATH) org_data = read_csv_to_dataframe(ORG_PATH) org_data = org_data[org_data["target"] == 1] sub_data = read_csv_to_dataframe(SUB_PATH) import pandas as pd def append_dataframes(df1, df2, reset_index=True): """ Append two pandas DataFrames along the rows. Parameters: df1 (pandas.DataFrame): The first DataFrame. df2 (pandas.DataFrame): The second DataFrame. reset_index (bool): Whether to reset the index of the resulting DataFrame (default: True). Returns: pandas.DataFrame: An appended DataFrame. """ appended_df = pd.concat([df1, df2], axis=0, ignore_index=reset_index) return appended_df trn_data = append_dataframes(trn_data, org_data) def analyze_dataframe(df): """ Analyze a pandas DataFrame and provide a summary of its characteristics. Parameters: df (pandas.DataFrame): The input DataFrame to analyze. Returns: None """ print("DataFrame Information:") print("----------------------") display(df.info(verbose=True, show_counts=True)) print("\n") print("DataFrame Description:") print("----------------------") display(df.describe(include="all")) print("\n") print("Number of Null Values:") print("----------------------") display(df.isnull().sum()) print("\n") print("Number of Duplicated Rows:") print("--------------------------") display(df.duplicated().sum()) print("\n") print("Number of Unique Values:") print("------------------------") display(df.nunique()) print("\n") print("DataFrame Shape:") print("----------------") print(f"Rows: {df.shape[0]}, Columns: {df.shape[1]}") # Example usage: # Assuming 'data' is your DataFrame # analyze_dataframe(data) analyze_dataframe(trn_data) TARGET = "target" ignore = ["id", "target"] numeric_feat = ["gravity", "ph", "osmo", "cond", "urea", "calc"] categ_feat = [ feat for feat in trn_data.columns if feat not in numeric_feat and feat not in ignore ] # features = categ_feat + numeric_feat numeric_feat categ_feat numeric_feat = ["cond", "calc", "gravity"] trn_data.columns # Pycaret configuration. clf = setup( data=trn_data, target=TARGET, categorical_features=categ_feat, numeric_features=numeric_feat, normalize=True, ignore_features=["id", "ph", "osmo", "urea"], normalize_method="zscore", fix_imbalance=True, fix_imbalance_method=SMOTE(), remove_outliers=True, outliers_method="iforest", fold_strategy="stratifiedkfold", fold=20, use_gpu=True, session_id=123, ) # Selecting what model should be trained. best_model = compare_models(sort="auc", fold=10) # Define the base models ext = create_model("et", fold=20) tuned_ext = tune_model(ext, fold=20) plot_model(tuned_ext, plot="feature") unseen_predictions_ext = predict_model(tuned_ext, data=tst_data, raw_score=True) unseen_predictions_ext # ... sub_data["target"] = unseen_predictions_ext["prediction_score_1"] sub_data.to_csv("pycaret_ext_submission.csv", index=False) sub_data.head() # --- # Define the base models lda = create_model("lda", fold=20) tuned_lda = tune_model(lda, fold=20) plot_model(tuned_lda, plot="feature") unseen_predictions_lda = predict_model(tuned_lda, data=tst_data, raw_score=True) unseen_predictions_lda # ... sub_data["target"] = unseen_predictions_lda["prediction_score_1"] sub_data.to_csv("pycaret_lda_submission.csv", index=False) sub_data.head()
# Assignment 7 # 1. Load your dataset from the “CO2 Emissions.csv” csv file. # 2. Explore your dataset and list the name of the text columns. # 3. Explore your dataset and check if there is any column with missing values. # 4. Select your input variables (only select integer valued columns and columns without missing # values) and ourput variable (hint: output colum is the one you want to predict). # 5. Split your dataset as %80 training and %20 testing. # 6. Scale your training data and testing data inputs. # 7. Implement your neural network object using the ski-learn python library(you can design a # network with one or 2 or 3 layers with any amount of the neurons). # 8. Train (fit) your network. # 9. Report the accuracy (R2 score) of the neural network for the test datasets. # 10. Make a prediction for the given input values: # Engine Size(L) = 5.6 Cylinders= 8 Fuel Consumption City (L/100 km) =17.5 Fuel Consumption Hwy # (L/100 km) = 12 Fuel Consumption Comb (L/100 km) =15 and Fuel Consumption Comb (mpg) = 1 # **1. Loading data** import pandas as pd import warnings as w w.filterwarnings("ignore") co2_emissions = pd.read_csv("/kaggle/input/co2-emissions/CO2 Emissions.csv") co2_emissions.head() # **2. Explore the data** co2_emissions.shape co2_emissions.info() co2_emissions.describe() co2_emissions.columns co2_emissions.nunique() # **3. Divide the data into the training and test datasets** X = co2_emissions[ [ "Engine Size(L)", "Cylinders", "Fuel Consumption City (L/100 km)", "Fuel Consumption Hwy (L/100 km)", "Fuel Consumption Comb (L/100 km)", "Fuel Consumption Comb (mpg)", ] ] y = co2_emissions["CO2 Emissions(g/km)"] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) X_train.shape X_test.shape # **4. Scaling data** from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test) # **5. Implement the DL model** from tensorflow.keras import Sequential from tensorflow.keras.layers import Dense from tensorflow.keras.layers import Flatten from tensorflow.keras.optimizers import Adam def build_model(hp): model = Sequential() model.add(Flatten(input_shape=(X_train_scaled.shape[1],))) model.add(Dense(units=hp.Int("units", min_value=100, max_value=500, step=100))) model.add(Dense(1, activation="relu")) model.compile( Adam(hp.Choice("learning_rate", [1e-2, 1e-3, 1e-4])), loss="mean_squared_error" ) return model # **6. Tune the hyper-parameters** from kerastuner.tuners import RandomSearch tuner = RandomSearch(build_model, objective="val_loss", max_trials=5) tuner.search(X_train_scaled, y_train, epochs=5, validation_split=0.3) best_model = tuner.get_best_models()[0] tuner.results_summary() # **7. Fitting the model to the training data** best_model.fit(X_train_scaled, y_train) # **8. Evaluate the quality of the trained model using test dataset** best_model.evaluate(X_test_scaled, y_test) # **9. Make prediction using the trained model** best_model.predict([[5.6, 8, 17.5, 12, 15, 19]])
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import matplotlib.pyplot as plt import torch from torch.utils.data import TensorDataset, DataLoader, random_split # In this notebook I will build my first Neural Net using Pytorch. For simplicity it will only consist of fully conncect layers. # - Much of this notebook is based on chapter 4 of the Fastbook (https://course.fast.ai/Resources/book.html), which I can only recommend. # - If you want to get familar with PyTorch quickly, check out this tutorial: https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html # ## 1. The Data # The dataset consists out 28 by 28 pixel images. # Load the dataframes df_train = pd.read_csv("/kaggle/input/digit-recognizer/train.csv") df_test = pd.read_csv("/kaggle/input/digit-recognizer/test.csv") # Transform the data y_train = df_train["label"] X_train = np.array(df_train.drop("label", axis=1)).reshape(-1, 28, 28) X_test = np.array(df_test).reshape(-1, 28, 28) # We should transform our images to be between -1 and 1. print(X_train.min(), X_train.max()) X_train = (2 / 255) * X_train - 1 print(X_train.min(), X_train.max()) # To prevent errors the data has to be converted to float32 X_train = X_train.astype("float32") X_test = X_test.astype("float32") # The target has to Integer for our loss function (https://stackoverflow.com/questions/60440292/runtimeerror-expected-scalar-type-long-but-found-float) y_train = y_train.astype(int) # Plot a sample index = 2 plt.imshow(X_train[index]) plt.show() print("The label of this picture is: " + str(y_train[index])) # Before we can contiune with our model we have to convert our data into DataLoaders that PyTorch can use for training. # Generate dataset dataset = TensorDataset(torch.tensor(X_train), torch.tensor(y_train)) # split in train and validation set g = torch.Generator().manual_seed(42) train, val = random_split(dataset, [0.8, 0.2], generator=g) train_loader = DataLoader(train) val_loader = DataLoader(val) # ## 2. The Model # Now we define a simple fully connected Neutal Network. We have two hidden layers with 16 nodes each and add our nonlinearites by using the ReLU function. Our output layer has 10 units (one for each digit). # The softmax layer was left out on purpose as it will be applied in the loss-function (https://stackoverflow.com/questions/55675345/should-i-use-softmax-as-output-when-using-cross-entropy-loss-in-pytorch). import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super().__init__() self.fc1 = nn.Linear(28 * 28, 16) self.fc2 = nn.Linear(16, 16) self.fc3 = nn.Linear(16, 10) def forward(self, x): x = torch.flatten( x, 1 ) # flatten everything except the batch dimension (1 is the start_dims, so we don't flatten along the 0 dim which is the batch) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = F.relu(self.fc3(x)) return x net = Net() # ## 3. Defining a Loss function and optimizer # - As a loss function we will be using Classification Cross-Entropy Loss. A good explaination of this loss function can be found here: https://towardsdatascience.com/cross-entropy-loss-function-f38c4ec8643e # - As a optimizer we will be using Stochastic Gradient Descent. # import torch.optim as optim criterion = nn.CrossEntropyLoss() optimizer = optim.SGD( net.parameters(), lr=0.001, momentum=0.9 ) # experiement with the learning rate, if train for longer it is often useful to decreae the learning rate after a few epochs # data, labels = next(iter(train_loader)) # net(data) # ## 4. Training the network # We will now train our network. A detailed explained of all the steps can be found in fastbook chapter 4 (see above). for epoch in range(5): # a epoch is one iteration over all the data running_loss = 0.0 for i, data in enumerate(train_loader, 0): # get the inputs (this is a batch, so lists of images & labels) inputs, labels = data # reset the gradient optimizer.zero_grad() # forward + backward + optimize outputs = net(inputs) # forward loss = criterion(outputs, labels) # loss loss.backward() # backward optimizer.step() # update # print statistics running_loss += loss.item() if i % 2000 == 1999: # print every 2000 mini-batches print(f"[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}") running_loss = 0.0 # compute accuracy after each epoch correct = 0 total = 0 with torch.no_grad(): for data in train_loader: images, labels = data output = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print(correct / total) print("Training finished") # ## 5. Testing on the validation set # Now we compute the accuracy on the validation set. train_iter = iter(train_loader) image, label = next(train_iter) net(image), label correct = 0 total = 0 with torch.no_grad(): for data in train_loader: images, labels = data print(labels) output = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item()
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: os.path.join(dirname, filename) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # To Singapore With Love # Deepest respect to Lee Kuan Yew 🙏🏽 # # ![Map](https://cdn.techinasia.com/wp-content/uploads/2015/03/lee-kuan-yew.jpg) import pandas as pd import numpy as np import os import plotly as plotly # Interactive Graphing Library for Python import plotly.express as px import plotly.graph_objects as go from plotly.offline import init_notebook_mode, iplot, plot init_notebook_mode(connected=True) import matplotlib # 2D Plotting Library import matplotlib.pyplot as plt import seaborn as sns # Python Data Visualization Library based on matplotlib import geopandas as gpd # Python Geospatial Data Library plt.style.use("fivethirtyeight") import folium from folium.plugins import HeatMap from folium.plugins import MarkerCluster import warnings warnings.simplefilter(action="ignore", category=FutureWarning) from IPython.display import Image # In Singapore 🇸🇬 : there are currently no licensing requirements for Airbnb properties here. BUT renting out your property on Airbnb might not be legal in the first place. Under the Planning Act, property rentals must be at least 3 months long (for private properties) or 6 months long (for HDB flats). HDB flats also cannot be rented out to tourists. # In April, 2 men were fined $60,000 for renting out 4 condo apartments on Airbnb. The Singapore government is currently exploring options to allow short-term rentals in condos, but nothing confirmed yet. Until then, Airbnb hosts, you have been warned! ## df = pd.read_csv("/kaggle/input/singapore-airbnb/listings.csv") # Price Range bins = [30, 50, 100, 150, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 5000, 10000] names = [ "<30", "30-50", "50-100", "100-150", "150-200", "200-300", "300-400", "400-500", "500-600", "600-700", "800-900", "900-1000", "1000-5000", "5000-10000", ] d = dict(enumerate(names, 1)) df["PriceRange"] = np.vectorize(d.get)(np.digitize(df["price"], bins)) ### Missing values is replaced df["reviews_per_month"] = df["reviews_per_month"].fillna(df["reviews_per_month"].mean()) df["last_review"] = df["last_review"].ffill() # Singapore AirBnb Listed Properties ### Location point plt.figure(figsize=(18, 12)) # plt.style.use("Solarize_Light2") plt.style.use("fivethirtyeight") map1 = sns.scatterplot( df.longitude, df.latitude, hue=df.neighbourhood_group, style=df.neighbourhood_group, ) # map1.set_title('Singapore AirBnb Overview') # Price Distribution Map # plt.figure(figsize=(20,15)) # map2 = sns.scatterplot(x=df.longitude, y=df.latitude, # hue=df.PriceRange, size=df.PriceRange, # sizes=(20, 200), hue_norm=(0, 20), # legend="full", data=df) # map1.set_title('Singapore AirBnb Overview') # Kaggle error not supporing above code Image("/kaggle/input/singpore-geojson/price.png") # Neighbourhood Price Distribution # plt.figure(figsize=(20,15)) plt.style.use("fivethirtyeight") map3 = sns.relplot( data=df, x="longitude", y="latitude", col="neighbourhood_group", hue="PriceRange", kind="scatter", ) # Distribution of all listings in Singapore (Heatmap) m = folium.Map([1.3521, 103.8198], zoom_start=10, tiles="stamenterrain") HeatMap( df[["latitude", "longitude"]].dropna(), radius=8, gradient={0.2: "blue", 0.4: "purple", 0.6: "orange", 1.0: "red"}, control_scale=True, ).add_to(m) display(m) # Distribution of all listings in Singapore (Count) Singapore = folium.Map( location=[1.3521, 103.8198], tiles="stamenterrain", zoom_start=10 ) marker_cluster = MarkerCluster().add_to(Singapore) locations = df[["latitude", "longitude"]] locationlist = locations.values.tolist() for point in range(0, len(locationlist)): folium.Marker(locationlist[point]).add_to(marker_cluster) Singapore # Using Singapore Community Data Map # Source - Singapore Land Authority import geopandas as gpd import json center = [1.3521, 103.8198] m = folium.Map(location=center, zoom_start=10) # set map # load district information with open( "/kaggle/input/singpore-geojson/community-use-sites-geojson.geojson", mode="rt", encoding="utf-8", ) as f: geo = json.loads(f.read()) f.close() # Add geojson to folium folium.GeoJson(geo, name="Singapore").add_to(m) MarkerCluster( df[["latitude", "longitude"]].dropna(), radius=10, gradient={0.2: "blue", 0.4: "purple", 0.6: "orange", 1.0: "red"}, ).add_to(m) display(m) plt.style.use("grayscale") filter_df = df[ [ "neighbourhood_group", "price", "minimum_nights", "calculated_host_listings_count", "availability_365", "room_type", "PriceRange", ] ] new_data = filter_df y = new_data.columns count = 0 plt.figure(figsize=(18, 18)) for i in range(2, 7): plt.subplot(3, 3, count + 1) sns.scatterplot(data=new_data, x="price", y=y[i], hue="room_type", palette="deep") count = count + 1 sns.despine(offset=10, bottom=True, left=True) ## Will Update Soon ... !!
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import pandas as pd import matplotlib.pyplot as plt from sklearn import tree from sklearn import metrics from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split import seaborn as sns from sklearn.metrics import ( accuracy_score, confusion_matrix, classification_report, precision_score, recall_score, f1_score, ) # **READ DATA** b = pd.read_csv("/kaggle/input/boston-house-prices/boston.csv") b.head(b.info()) # **SCATTER PLOT AND HEATMAP TO SEE CORRELATION** plt.scatter(x=b["AGE"], y=b["MEDV"], color="brown") plt.xlabel = "Avg Number of rooms per dwelling" plt.ylabel("Median value of home") sns.heatmap(b.corr(), annot=False) # **SPLIT DATA INTO FEATURE VARIABLE AND TARGET VARIABLE** b.columns feature_list = ["CRIM", "INDUS", "NOX", "RM", "AGE", "RAD", "TAX", "PTRATIO", "LSTAT"] x = b[feature_list] y = b["MEDV"] x.head() y.head() # **SPLIT DATA INTO TRAIN AND TEST DATA** x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=5) from sklearn.tree import DecisionTreeRegressor regressor = DecisionTreeRegressor( criterion="absolute_error", random_state=100, max_depth=4, min_samples_leaf=1 ) regressor.fit(x_train, y_train) # **USE REGRESSOR TO PREDICT** y_pred = regressor.predict(x_test) y_test[1:10] y_pred[1:10] # **CHECK MODEL ACCURACY** print("Accuracy:", mean_squared_error(y_test, y_pred))
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) input_folder = "/kaggle/input/tlvmc-parkinsons-freezing-gait-prediction" import os test_folders = [ os.path.join(input_folder, "test", "tdcsfog"), os.path.join(input_folder, "test", "defog"), ] submission_list = [] for folder in test_folders: for fn in os.listdir(folder): series_id = fn.split(".")[0] series = pd.read_csv(os.path.join(folder, fn)) series["Id"] = series["Time"].apply(lambda time: f"{series_id}_{time}") series["StartHesitation"] = 0 series["Turn"] = 0 series["Walking"] = 0 submission_list.append(series[["Id", "StartHesitation", "Turn", "Walking"]]) submission = pd.concat(submission_list).reset_index(drop=True) submission.to_csv("submission.csv", index=False) submission.head(n=100)
# <div style="color:white; # display:fill; # border-radius:5px; # background-color:#c71585; # font-size:200%; # font-family:Verdana; # letter-spacing:0.5px"> # <p style="padding: 30px;text-align:center; # color:white;"> # 👩🏼‍💻 Recommendation Systems Tutorial 👩🏼‍💻 # # # # <span style="padding: 30px;text-align:center; # color:white;"> # ![image.png](attachment:32cd57b7-02d4-4c66-8bac-af3080c4ec40.png) # # <div style="color:black; # display:fill; # border-radius:5px; # background-color:#dda0dd; # font-size:110%; # font-family:Verdana; # letter-spacing:0.5px"> # <p style="padding:2px; # color:black;"> # ▶️Recommender System is a system that seeks to predict or filter preferences according to the user’s choices. Recommender systems are utilized in a variety of areas including movies, music, news, books, research articles, search queries, social tags, and products in general. # Recommender systems produce a list of recommendations in any of the two ways – # 💣Collaborative filtering: Collaborative filtering approaches build a model from the user’s past behavior (i.e. items purchased or searched by the user) as well as similar decisions made by other users. This model is then used to predict items (or ratings for items) that users may have an interest in. # # 💣Content-based filtering: Content-based filtering approaches uses a series of discrete characteristics of an item in order to recommend additional items with similar properties. Content-based filtering methods are totally based on a description of the item and a profile of the user’s preferences. It recommends items based on the user’s past preferences. # # ▶️They’re used by various large name companies like Google, Instagram, Spotify, Amazon, Reddit, Netflix etc. often to increase engagement with users and the platform. For example, Spotify would recommend songs similar to the ones you’ve repeatedly listened to or liked so that you can continue using their platform to listen to music. Amazon uses recommendations to suggest products to various users based on the data they have collected for that user.Recommender systems are often seen as a “black box”, the model created by these large companies are not very easily interpretable # # # # <div style="color:black; # display:fill; # border-radius:5px; # background-color:#dda0dd; # font-size:110%; # font-family:Verdana; # letter-spacing:0.5px"> # <p style="padding:2px; # color:black;"> # ▶️Examples of Recommender Systems # # Some of the most popular examples of recommender systems include the ones used by Amazon, Netflix, and Spotify. # ▶️Amazon’s recommender system is based on a combination of collaborative filtering and content-based algorithms. It uses past customer behavior to make recommendations for new products. Amazon’s recommender system is one of the most complex and sophisticated in the world. # # ▶️Netflix’s recommender system is also based on a combination of collaborative filtering and content-based algorithms. However, Netflix takes things a step further by also incorporating machine learning into its algorithm. This allows Netflix to make predictions about what a user might want to watch based on the behavior of other users. # # ▶️Spotify’s recommender system is based on collaborative filtering. It uses past user behavior to make recommendations for new songs to listen to. # # # # import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # import movie data set and rating data set look at columns and choosing columns movie = pd.read_csv("/kaggle/input/movielens-20m-dataset/movie.csv") movie.columns movie = movie.loc[:, ["movieId", "title"]] movie.head() rating = pd.read_csv("/kaggle/input/movielens-20m-dataset/rating.csv") rating.columns rating = rating.loc[:, ["movieId", "userId", "rating"]] rating.head() # merge movie and rating data data = pd.merge(movie, rating) data.head() data.shape # <h2 # style="background-color:#db7093;color:white;font-family:newtimeroman;font-size:200%;border-radius: 5px 5px">limit too much data data = data.iloc[:1000000, :] # Calculate mean rating of all movies data.groupby("title")["rating"].mean().sort_values(ascending=False).head(10) # Calculate count rating of all movies data.groupby("title")["rating"].count().sort_values(ascending=False).head(10) # Creating dataframe with 'rating' count values ratings = pd.DataFrame(data.groupby("title")["rating"].mean()) ratings["num of ratings"] = pd.DataFrame(data.groupby("title")["rating"].count()) ratings.head() # Creating dataframe with 'rating' count values ratings = pd.DataFrame(data.groupby("title")["rating"].mean()) ratings["num of ratings"] = pd.DataFrame(data.groupby("title")["rating"].count()) ratings.head() # plot graph of 'num of ratings column' import matplotlib.pyplot as plt import seaborn as sns sns.set_style("white") # plot graph of 'num of ratings column' plt.figure(figsize=(10, 4)) ratings["num of ratings"].hist(bins=70) # plot graph of 'ratings' column plt.figure(figsize=(10, 4)) ratings["rating"].hist(bins=70) # Sorting values according to the 'num of rating column' moviemat = data.pivot_table(index="userId", columns="title", values="rating") moviemat.head() ratings.sort_values("num of ratings", ascending=False).head(10) # make a pivot table in order to make rows are users and columns are movies. And values are rating pivot_table = data.pivot_table(index=["userId"], columns=["title"], values="rating") pivot_table.head(10) # RESULT movie_watched = pivot_table["Toy Story (1995)"] similarity_with_other_movies = pivot_table.corrwith( movie_watched ) # find correlation between "Bad Boys (1995)" and other movies similarity_with_other_movies = similarity_with_other_movies.sort_values(ascending=False) similarity_with_other_movies.head()
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import seaborn as sns import matplotlib.pyplot as plt train_df = pd.read_csv("/kaggle/input/bike-sharing-demand/train.csv") test_df = pd.read_csv("/kaggle/input/bike-sharing-demand/test.csv") # # Display Data train_df train_df.isnull().sum() # firt we will exctracte some useful features from datetime train_df["datetime"] = pd.to_datetime(train_df["datetime"]) train_df["year"] = train_df.datetime.dt.year train_df["month"] = train_df.datetime.dt.month train_df["Day"] = train_df.datetime.dt.day def hr_func(ts): return ts.hour train_df["hour"] = train_df["datetime"].apply(hr_func) train_df.info() train_df.hist(figsize=(15, 10)) train_df.var() # # **Lets Start With Simple Visualization** # fig, ax = plt.subplots(2, 2, figsize=(15, 10)) # sns.countplot(x='season', data=train_df, ax=ax[0,0]); # sns.countplot(x='holiday', data=train_df, ax=ax[0,1]); # sns.countplot(x='workingday', data=train_df, ax=ax[1,0]); # sns.countplot(x='weather', data=train_df, ax=ax[1,1]); train_df["registered"].sum() train_df["casual"].sum() train_df["count"].sum() ig, ax = plt.subplots(figsize=(10, 5)) sns.barplot(data=train_df, x="season", y="count") ax.set_title("Rented_bikes Vs season") plt.show() ig, ax = plt.subplots(figsize=(10, 5)) sns.barplot(data=train_df, x="Day", y="count") ax.set_title("Rented_bikes Vs Day") plt.show() ig, ax = plt.subplots(figsize=(10, 5)) sns.barplot(data=train_df, x="month", y="count") ax.set_title("Rented_bikes Vs month") plt.show() ig, ax = plt.subplots(figsize=(10, 5)) sns.barplot(data=train_df, x="year", y="count") ax.set_title("Rented_bikes Vs year") plt.show() train_df[["season", "count"]].groupby(["season"], as_index=False).sum().sort_values( by="count", ascending=False ) # here we will extract weekday from days and see if weekend will be useful import datetime as dt import os train_df["weekday"] = train_df[["datetime"]].apply( lambda x: dt.datetime.strftime(x["datetime"], "%A"), axis=1 ) for i in range(len(train_df["weekday"])): if train_df["weekday"][i] == "Sunday" or train_df["weekday"][i] == "Saturday": train_df["weekday"][i] = 0 else: train_df["weekday"][i] = 1 train_df["weekday"] = train_df[["weekday"]].astype(int) # from histgram we can see number of rentals increase in the weekend plt.hist(train_df.weekday) # * we can see here number of rentals increase at 8-9 and also at 17-20 in working day # * and when there is no working day we can see number of rentals increase at 10-18 workday_avg = pd.DataFrame( train_df.groupby(["hour", "workingday"])["count"].mean() ).reset_index() plt.figure(figsize=(10, 6)) sns.pointplot(data=workday_avg, x="hour", y="count", hue="workingday") # draw a seaborn correlation heatmap to detect correlation between features for feature selection process fig, ax = plt.subplots(figsize=(15, 15)) # Sample figsize in inches sns.heatmap(train_df.corr(), annot=True, ax=ax) # # Model Prediction from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.ensemble import RandomForestRegressor X = train_df.drop(["datetime", "casual", "registered", "count", "Day"], axis=1) y = train_df["count"] X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.3, random_state=42) # Root Mean Squared Logarithmic Error from math import sqrt def RMSLE(y_pred, y_actual): n = y_pred.size RMSLE = sqrt(((np.log(y_pred + 1) - np.log(y_actual + 1)) ** 2).sum() / n) return RMSLE # # Linear Regression lr = LinearRegression().fit(X_train, y_train) train_pred = lr.predict(X_train) val_pred = lr.predict(X_val) train_score = RMSLE(train_pred, y_train) val_score = RMSLE(val_pred, y_val) print("Train score:", train_score) print("validation score:", val_score) # # Random Forest # TRy to find the best hyperparameters for RandomForestRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import GridSearchCV param_grid = {"n_estimators": [50, 60, 70, 80, 90, 100], "max_depth": [3, 7, 9, 10, 15]} # kfold = (n_splits=3, shuffle=True, random_state=1) BestModel = GridSearchCV( estimator=RandomForestRegressor(), param_grid=param_grid, scoring="neg_root_mean_squared_error", cv=5, n_jobs=-1, verbose=3, ) BestModel.fit(X_train, y_train) print(BestModel.best_score_, BestModel.best_estimator_, BestModel.best_params_) rf = RandomForestRegressor(max_depth=9, n_estimators=200, random_state=42).fit( X_train, y_train ) tr_pred = rf.predict(X_train) v_pred = rf.predict(X_val) tr_score = RMSLE(tr_pred, y_train) v_score = RMSLE(v_pred, y_val) print("validation score:", v_score) print("Train score:", tr_score) # # Hist Gradient Boosting Regressor from sklearn.experimental import enable_hist_gradient_boosting from sklearn.ensemble import HistGradientBoostingRegressor hist = HistGradientBoostingRegressor(max_depth=15, learning_rate=0.15).fit( X_train, y_train ) y_pred_hist_tr = hist.predict(X_train) y_pred_hist_ts = hist.predict(X_val) tr1_score = RMSLE(y_pred_hist_tr, y_train) v1_score = RMSLE(y_pred_hist_ts, y_val) print("validation score:", v1_score) print("Train score:", tr1_score) # # StackingRegressor from sklearn.tree import DecisionTreeRegressor from sklearn.linear_model import RidgeCV from sklearn.svm import LinearSVR from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import StackingRegressor from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.neighbors import KNeighborsRegressor from sklearn.ensemble import ExtraTreesRegressor from sklearn.experimental import enable_hist_gradient_boosting from sklearn.ensemble import HistGradientBoostingRegressor estimators = [ ("Hist", HistGradientBoostingRegressor(max_depth=9, learning_rate=0.15)), ("DT", DecisionTreeRegressor(max_depth=5, random_state=42)), ("Linear", Ridge(alpha=0.9)), ("Extra", ExtraTreesRegressor(max_depth=15, n_estimators=50, random_state=39)), ("ran", RandomForestRegressor(n_estimators=70, max_depth=15, random_state=39)), ] reg = StackingRegressor( estimators=estimators, final_estimator=RandomForestRegressor( n_estimators=60, max_depth=9, random_state=42 ), ) reg.fit(X_train, y_train) # y_pred_reg_tr = reg.predict(X_train) y_pred_reg_ts = reg.predict(X_val) R_reg = RMSLE(y_pred_reg_ts, y_val) R1_reg = RMSLE(y_pred_reg_tr, y_train) print("RMSLE of Random Forest Regressor :", R_reg) print("RMSLE of what model learn :", R1_reg) # # Test data test_df["datetime"] = pd.to_datetime(test_df["datetime"]) test_df["year"] = test_df.datetime.dt.year test_df["month"] = test_df.datetime.dt.month test_df["Day"] = test_df.datetime.dt.day def hr_func(ts): return ts.hour test_df["hour"] = test_df["datetime"].apply(hr_func) test_df["weekday"] = test_df[["datetime"]].apply( lambda x: dt.datetime.strftime(x["datetime"], "%A"), axis=1 ) for i in range(len(test_df["weekday"])): if test_df["weekday"][i] == "Sunday" or test_df["weekday"][i] == "Saturday": test_df["weekday"][i] = 0 else: test_df["weekday"][i] = 1 test_df["weekday"] = test_df[["weekday"]].astype(int) test_df = test_df.drop(["datetime", "Day"], axis=1) test_df # # Submission y_test_predicted = reg.predict(test_df) test = pd.read_csv("/kaggle/input/bike-sharing-demand/test.csv") submission_df = pd.DataFrame({"datetime": test["datetime"], "count": y_test_predicted}) submission_df.to_csv("submission.csv", index=False) submission_df
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # # Представим, что мы работаем дата-сайентистом в компании Booking. Одна из проблем компании — это нечестные отели, которые накручивают себе рейтинг. Одним из способов обнаружения таких отелей является построение модели, которая предсказывает рейтинг отеля. Если предсказания модели сильно отличаются от фактического результата, то, возможно, отель ведёт себя нечестно, и его стоит проверить. # Немного о данных: # ![image.png](attachment:9f0b1b5b-53c3-4357-88bd-8829cc606b78.png) # ## Загружаем данные hotels_train = pd.read_csv("/kaggle/input/sf-booking/hotels_train.csv") hotels_train.head() hotels_test = pd.read_csv("/kaggle/input/sf-booking/hotels_test.csv") hotels_test.head() submission = pd.read_csv("/kaggle/input/sf-booking/submission.csv") submission.head() # Объединим тренировочный и тестовый наборы данных для того, чтобы было удобнее их обработать hotels_train["sample"] = 1 # пометим тренировочную выборку hotels_test["sample"] = 0 # пометим тестовую выборку hotels_test["reviewer_score"] = 0 # добавим тестовому набору данных колонку с рейтингом hotels = pd.concat([hotels_train, hotels_test], ignore_index=True) hotels.head() # # Заполнение пропущенных значений # Посмотрим на наличие пропущенных значений в наборе данных hotels.isnull().sum() # Можно увидеть, что в некоторых отзывах у отелей нет координат. Посмотрим, у каких именно. mask1 = hotels["lat"].isnull() mask2 = hotels["lng"].isnull() hotels_without_coordinates = ( hotels[mask1 | mask2]["hotel_name"].value_counts().index.tolist() ) display(hotels_without_coordinates) # Так как количество отелей, у которых нет координат, сравнительно небольшое, то самостоятельно поищем их координаты в интернете и заполним пропуски. hotels.loc[ hotels["hotel_name"] == "Fleming s Selection Hotel Wien City", ["lat", "lng"] ] = ["48.206481", "16.363451"] hotels.loc[hotels["hotel_name"] == "Hotel City Central", ["lat", "lng"]] = [ "48.213558", "16.379923", ] hotels.loc[hotels["hotel_name"] == "Hotel Atlanta", ["lat", "lng"]] = [ "48.220310", "16.355881", ] hotels.loc[ hotels["hotel_name"] == "Maison Albar Hotel Paris Op ra Diamond", ["lat", "lng"] ] = ["48.875223", "2.323385"] hotels.loc[hotels["hotel_name"] == "Hotel Daniel Vienna", ["lat", "lng"]] = [ "48.188835", "16.383810", ] hotels.loc[ hotels["hotel_name"] == "Hotel Pension Baron am Schottentor", ["lat", "lng"] ] = ["48.216705", "16.359819"] hotels.loc[ hotels["hotel_name"] == "Austria Trend Hotel Schloss Wilhelminenberg Wien", ["lat", "lng"], ] = ["48.219555", "16.285566"] hotels.loc[ hotels["hotel_name"] == "Derag Livinghotel Kaiser Franz Joseph Vienna", ["lat", "lng"], ] = ["48.245914", "16.341188"] hotels.loc[hotels["hotel_name"] == "NH Collection Barcelona Podium", ["lat", "lng"]] = [ "41.391430", "2.177890", ] hotels.loc[hotels["hotel_name"] == "City Hotel Deutschmeister", ["lat", "lng"]] = [ "48.220856", "16.366642", ] hotels.loc[hotels["hotel_name"] == "Hotel Park Villa", ["lat", "lng"]] = [ "48.233379", "16.345510", ] hotels.loc[hotels["hotel_name"] == "Cordial Theaterhotel Wien", ["lat", "lng"]] = [ "48.209530", "16.351515", ] hotels.loc[hotels["hotel_name"] == "Holiday Inn Paris Montmartre", ["lat", "lng"]] = [ "48.888860", "2.333190", ] hotels.loc[hotels["hotel_name"] == "Roomz Vienna", ["lat", "lng"]] = [ "48.222458", "16.393538", ] hotels.loc[ hotels["hotel_name"] == "Mercure Paris Gare Montparnasse", ["lat", "lng"] ] = ["48.839701", "2.323519"] hotels.loc[hotels["hotel_name"] == "Renaissance Barcelona Hotel", ["lat", "lng"]] = [ "41.392429", "2.167500", ] hotels.loc[hotels["hotel_name"] == "Hotel Advance", ["lat", "lng"]] = [ "41.379389", "2.157475", ] # Удостоверимся, что пропусков больше нет hotels.isnull().sum() # # Исследование целевого признака hotels_reviewer_score_hist = sns.histplot(hotels_train["reviewer_score"], bins=30) hotels_reviewer_score_hist.set_title("Распределение оценок") hotels_reviewer_score_box = sns.boxplot(hotels_train["reviewer_score"], orient="h") hotels_reviewer_score_box.set_title("Распределение оценок") # Можно заметить, что оценка отеля может лежать в диапазоне от 0 до 10. Коробчатая диаграмма показывает, что 50% оценок лежат между значениями примерно в 7.5 и 9.5. # # Проектирование признаков # Посмотрим на типы данных в нашем наборе hotels.info() # ## Количество дней с публикации отзыва (days_since_review) # Преобразуем признак 'days_since_review' из object в int, оставив только число hotels["days_since_review"] = hotels["days_since_review"].apply( lambda x: int(x.split(" ")[0]) ) hotels["days_since_review"] # ## Дата публикации отзыва (review_date) # Преобразуем признак 'review_date' в datetime hotels["review_date"] = pd.to_datetime(hotels["review_date"]) # Далее выделим в отдельные признаки месяц и сезон, в котором был написан отзыв hotels["review_date_month"] = pd.to_datetime(hotels["review_date"]).dt.month def get_season(x): if x in [1, 2, 12]: return 1 elif x in [3, 4, 5]: return 2 elif x in [6, 7, 8]: return 3 elif x in [9, 10, 11]: return 4 hotels["review_date_season"] = hotels["review_date_month"].apply(get_season) # Посмотрим, меняется ли средняя оценка и количество отзывов в зависимости от месяца hotels_date_gb = ( hotels.groupby("review_date_month")["reviewer_score"].agg("mean").reset_index() ) hotels_date_gb_line = sns.lineplot( hotels_date_gb, x="review_date_month", y="reviewer_score" ) hotels_date_gb_line.set_title("Зависимость оценки от месяца отзыва") hotels_date_gb = ( hotels.groupby("review_date_month")["hotel_name"].agg("count").reset_index() ) hotels_date_gb_line = sns.lineplot( hotels_date_gb, x="review_date_month", y="hotel_name" ) hotels_date_gb_line.set_title("Зависимость количества отзывов от месяца отзыва") # Посмотрим, меняется ли средняя оценка и количество отзывов в зависимости от сезона hotels_date_gb = ( hotels.groupby("review_date_season")["reviewer_score"].agg("mean").reset_index() ) hotels_date_gb_line = sns.lineplot( hotels_date_gb, x="review_date_season", y="reviewer_score" ) hotels_date_gb_line.set_title( "Зависимость средней оценки от сезона, в котором был написан отзыв" ) hotels_date_gb = ( hotels.groupby("review_date_season")["hotel_name"].agg("count").reset_index() ) hotels_date_gb_line = sns.lineplot( hotels_date_gb, x="review_date_season", y="hotel_name" ) hotels_date_gb_line.set_title( "Зависимость количества отзывов от сезона, в котором был написан отзыв" )
# **Import modules** import pandas as pd import numpy as np import os import matplotlib.pyplot as plt import seaborn as sns import warnings from tqdm.notebook import tqdm warnings.filterwarnings("ignore") import tensorflow as tf from tensorflow.keras.utils import load_img from keras.models import Sequential, Model from keras.layers import Dense, Conv2D, Dropout, Flatten, MaxPooling2D, Input # **Load the dataset** BASE_DIR = "/content/imdb_crop" def imShow(path): import cv2 import matplotlib.pyplot as plt image = cv2.imread(path) height, width = image.shape[:2] resized_image = cv2.resize( image, (3 * width, 3 * height), interpolation=cv2.INTER_CUBIC ) fig = plt.gcf() fig.set_size_inches(18, 10) plt.axis("off") # plt.rcParams['figure.figsize'] = [10, 5] plt.imshow(cv2.cvtColor(resized_image, cv2.COLOR_BGR2RGB)) def imShowCV(image): import cv2 import matplotlib.pyplot as plt height, width = image.shape[:2] resized_image = cv2.resize( image, (3 * width, 3 * height), interpolation=cv2.INTER_CUBIC ) fig = plt.gcf() fig.set_size_inches(18, 10) plt.axis("off") # plt.rcParams['figure.figsize'] = [10, 5] plt.imshow(cv2.cvtColor(resized_image, cv2.COLOR_BGR2RGB)) # Printing the number of files that do not have '.mat' extension import os ages = os.scandir("/content/imdb_crop") length = 0 for age in ages: if ".mat" not in str(age.path): length += len(os.listdir(age.path)) print(length) import scipy.io imdbMat = scipy.io.loadmat("imdb_crop/imdb.mat") imdbPlace = imdbMat["imdb"][0][0] print(imdbPlace) print(len(imdbPlace)) for item in imdbPlace: print(item) print(len(item[0])) # labels - age, gender, ethnicity image_paths = [] age_labels = [] gender_labels = [] place = imdbPlace where = "imdb_crop" total = 0 for i in range(460723): if i % 10000 == 0: print(i) bYear = int(place[0][0][i] / 365) # birth year taken = place[1][0][i] # photo taken path = place[2][0][i][0] gender = place[3][0][i] # Female/Male name = place[4][0][i] # Name faceBox = place[5][0][i] # Face coords faceScore = place[6][0][i] # Face score secFaceScore = place[7][0][i] # Sec face score # Calculating shit age = taken - bYear faceScore = str(faceScore) secFaceScore = str(secFaceScore) age_labels.append(age) gender_labels.append(gender) image_paths.append(path) if ( "n" not in faceScore ): # n as in Inf; if true, implies that there isn't a face in the image if "a" in secFaceScore: # a as in NaN; implies that no second face was found if age >= 0: try: gender = int(gender) total += 1 if i > 1500: print("----------------------") print(i) print(bYear) print(taken) print("AGE", age) print("NAME", name) print("GENDER", gender) print(faceBox) print(faceScore) print(secFaceScore) print(age_labels) print(gender_labels) print(image_paths) imShow(os.path.join(where, path)) break except: print("Failed with gender") continue print(total) # Feature Extraction def extract_features(images): features = [] for image in tqdm(images): img = load_img(image, grayscale=True) img = img.resize((128, 128), Image.ANTIALIAS) img = np.array(img) features.append(img) features = np.array(features) # ignore this step if using RGB features = features.reshape(len(features), 128, 128, 1) return features # convert to dataframe df = pd.DataFrame() df["image"], df["age"], df["gender"] = image_paths, age_labels, gender_labels df.head() import os # iterate over all the files in the folder imdb_crop for filename in os.listdir("imdb_crop"): # create the full path to the file # file_path = os.path.join(image_paths, filename) temp = filename.split("/") img_path_new = int(temp[1]) # apply the function to the file X = extract_features(df["image"]) # create the full path to the output file output_file_path = os.path.join("imdb_crop_output", filename) X = extract_features(df["image"]) X.shape # normalize the images X = X / 255.0 y_gender = np.array(df["gender"]) y_age = np.array(df["age"]) input_shape = (128, 128, 1) # Model Creation # Model 1 inputs = Input((input_shape)) # convolutional layers conv_1 = Conv2D(32, kernel_size=(3, 3), activation="relu")(inputs) maxp_1 = MaxPooling2D(pool_size=(2, 2))(conv_1) conv_2 = Conv2D(64, kernel_size=(3, 3), activation="relu")(maxp_1) maxp_2 = MaxPooling2D(pool_size=(2, 2))(conv_2) conv_3 = Conv2D(128, kernel_size=(3, 3), activation="relu")(maxp_2) maxp_3 = MaxPooling2D(pool_size=(2, 2))(conv_3) conv_4 = Conv2D(256, kernel_size=(3, 3), activation="relu")(maxp_3) maxp_4 = MaxPooling2D(pool_size=(2, 2))(conv_4) flatten = Flatten()(maxp_4) # fully connected layers dense_1 = Dense(256, activation="relu")(flatten) dense_2 = Dense(256, activation="relu")(flatten) dropout_1 = Dropout(0.3)(dense_1) dropout_2 = Dropout(0.3)(dense_2) output_1 = Dense(1, activation="sigmoid", name="gender_out")(dropout_1) output_2 = Dense(1, activation="relu", name="age_out")(dropout_2) model = Model(inputs=[inputs], outputs=[output_1, output_2]) model.compile( loss=["binary_crossentropy", "mae"], optimizer="adam", metrics=["accuracy"] ) # Train the model # train model history = model.fit( x=X, y=[y_gender, y_age], batch_size=32, epochs=30, validation_split=0.2 ) # Save the model model.save("model_IMDB-WIKI_30.h5")
# [birdclef-2023-pytorch-lightning-inference](https://www.kaggle.com/code/nischaydnk/birdclef-2023-pytorch-lightning-inference) # [birdclef-2023-pytorch-lightning-training-w-cmap](https://www.kaggle.com/code/nischaydnk/birdclef-2023-pytorch-lightning-training-w-cmap) # [audio-deep-learning-made-simple-sound-classification-step-by-step](https://towardsdatascience.com/audio-deep-learning-made-simple-sound-classification-step-by-step-cebc936bbe5) # [signal_framing](https://superkogito.github.io/blog/2020/01/25/signal_framing.html) import pandas as pd import numpy as np import torch import torch.nn as nn import torchaudio from pathlib import Path from sklearn import preprocessing from torch.nn import init from torch.utils.data import DataLoader, Dataset, random_split download_path = "/kaggle/input/" metadata_file = download_path + "/birdclef-2023/train_metadata.csv" df = pd.read_csv(metadata_file) df["relative_path"] = "train_audio/" + df["filename"].astype(str) df = df[["relative_path", "primary_label"]] birds = list(pd.get_dummies(df["primary_label"]).columns) birds = np.transpose(birds) le = preprocessing.LabelEncoder() df[["classID"]] = df[["primary_label"]].apply(le.fit_transform) del df["primary_label"] # df.head() # birds.shape # df[['classID']].nunique(),df.classID.unique() import math, random import torch import torchaudio from torchaudio import transforms from IPython.display import Audio class AudioUtil: # ---------------------------- # Load an audio file. Return the signal as a tensor and the sample rate # ---------------------------- @staticmethod def open(audio_file): sig, sr = torchaudio.load(audio_file) return (sig, sr) # ---------------------------- # Convert the given audio to the desired number of channels # ---------------------------- @staticmethod def rechannel(aud, new_channel): sig, sr = aud if sig.shape[0] == new_channel: # Nothing to do return aud if new_channel == 1: # Convert from stereo to mono by selecting only the first channel resig = sig[:1, :] else: # Convert from mono to stereo by duplicating the first channel resig = torch.cat([sig, sig]) return (resig, sr) # ---------------------------- # Since Resample applies to a single channel, we resample one channel at a time # ---------------------------- @staticmethod def resample(aud, newsr): sig, sr = aud if sr == newsr: # Nothing to do return aud num_channels = sig.shape[0] # Resample first channel resig = torchaudio.transforms.Resample(sr, newsr)(sig[:1, :]) if num_channels > 1: # Resample the second channel and merge both channels retwo = torchaudio.transforms.Resample(sr, newsr)(sig[1:, :]) resig = torch.cat([resig, retwo]) return (resig, newsr) # ---------------------------- # Pad (or truncate) the signal to a fixed length 'max_ms' in milliseconds # ---------------------------- @staticmethod def pad_trunc(aud, max_ms): sig, sr = aud num_rows, sig_len = sig.shape max_len = sr // 1000 * max_ms if sig_len > max_len: # Truncate the signal to the given length sig = sig[:, :max_len] elif sig_len < max_len: # Length of padding to add at the beginning and end of the signal pad_begin_len = random.randint(0, max_len - sig_len) pad_end_len = max_len - sig_len - pad_begin_len # Pad with 0s pad_begin = torch.zeros((num_rows, pad_begin_len)) pad_end = torch.zeros((num_rows, pad_end_len)) sig = torch.cat((pad_begin, sig, pad_end), 1) return (sig, sr) # ---------------------------- # Shifts the signal to the left or right by some percent. Values at the end # are 'wrapped around' to the start of the transformed signal. # ---------------------------- @staticmethod def time_shift(aud, shift_limit): sig, sr = aud _, sig_len = sig.shape shift_amt = int(random.random() * shift_limit * sig_len) return (sig.roll(shift_amt), sr) # ---------------------------- # Generate a Spectrogram # ---------------------------- @staticmethod def spectro_gram(aud, n_mels=64, n_fft=1024, hop_len=None): sig, sr = aud top_db = 80 # spec has shape [channel, n_mels, time], where channel is mono, stereo etc spec = transforms.MelSpectrogram( sr, n_fft=n_fft, hop_length=hop_len, n_mels=n_mels )(sig) # Convert to decibels spec = transforms.AmplitudeToDB(top_db=top_db)(spec) return spec # ---------------------------- # Augment the Spectrogram by masking out some sections of it in both the frequency # dimension (ie. horizontal bars) and the time dimension (vertical bars) to prevent # overfitting and to help the model generalise better. The masked sections are # replaced with the mean value. # ---------------------------- @staticmethod def spectro_augment(spec, max_mask_pct=0.1, n_freq_masks=1, n_time_masks=1): _, n_mels, n_steps = spec.shape mask_value = spec.mean() aug_spec = spec freq_mask_param = max_mask_pct * n_mels for _ in range(n_freq_masks): aug_spec = transforms.FrequencyMasking(freq_mask_param)( aug_spec, mask_value ) time_mask_param = max_mask_pct * n_steps for _ in range(n_time_masks): aug_spec = transforms.TimeMasking(time_mask_param)(aug_spec, mask_value) return aug_spec # Let’s walk through the steps as our data gets transformed, starting with an audio file: # * The audio from the file gets loaded into a Numpy array of shape (num_channels, num_samples). Most of the audio is sampled at 44.1kHz and is about 4 seconds in duration, resulting in 44,100 * 4 = 176,400 samples. If the audio has 1 channel, the shape of the array will be (1, 176,400). Similarly, audio of 4 seconds duration with 2 channels and sampled at 48kHz will have 192,000 samples and a shape of (2, 192,000). # * Since the channels and sampling rates of each audio are different, the next two transforms resample the audio to a standard 44.1kHz and to a standard 2 channels. # * Since some audio clips might be more or less than 4 seconds, we also standardize the audio duration to a fixed length of 4 seconds. Now arrays for all items have the same shape of (2, 176,400) # * The Time Shift data augmentation now randomly shifts each audio sample forward or backward. The shapes are unchanged. # * The augmented audio is now converted into a Mel Spectrogram, resulting in a shape of (num_channels, Mel freq_bands, time_steps) = (2, 64, 344) # * The SpecAugment data augmentation now randomly applies Time and Frequency Masks to the Mel Spectrograms. The shapes are unchanged. # Thus, each batch will have two tensors, one for the X feature data containing the Mel Spectrograms and the other for the y target labels containing numeric Class IDs. The batches are picked randomly from the training data for each training epoch. # * Each batch has a shape of (batch_sz, num_channels, Mel freq_bands, time_steps) class SoundDS(Dataset): def __init__(self, df, data_path): self.df = df self.data_path = str(data_path) self.duration = 4000 self.sr = 44100 self.channel = 2 self.shift_pct = 0.4 def __len__(self): return len(self.df) # self.audio_length = self.duration*self.sr def __getitem__(self, idx): audio_file = self.data_path + self.df.loc[idx, "relative_path"] class_id = self.df.loc[idx, "classID"] aud = AudioUtil.open(audio_file) reaud = AudioUtil.resample(aud, self.sr) rechan = AudioUtil.rechannel(reaud, self.channel) dur_aud = AudioUtil.pad_trunc(rechan, self.duration) shift_aud = AudioUtil.time_shift(dur_aud, self.shift_pct) sgram = AudioUtil.spectro_gram(shift_aud, n_mels=64, n_fft=1024, hop_len=None) aug_sgram = AudioUtil.spectro_augment( sgram, max_mask_pct=0.1, n_freq_masks=2, n_time_masks=2 ) return aug_sgram, class_id data_path = download_path + "birdclef-2023/" myds = SoundDS(df, data_path) num_items = len(myds) num_train = round(num_items * 0.8) num_val = num_items - num_train train_ds, val_ds = random_split(myds, [num_train, num_val]) train_dl = torch.utils.data.DataLoader(train_ds, batch_size=16, shuffle=True) val_dl = torch.utils.data.DataLoader(val_ds, batch_size=16, shuffle=False) import pandas as pd import sklearn.metrics def padded_cmap(solution, submission, padding_factor=5): solution = solution.drop(["row_id"], axis=1, errors="ignore") submission = submission.drop(["row_id"], axis=1, errors="ignore") new_rows = [] for i in range(padding_factor): new_rows.append([1 for i in range(len(solution.columns))]) new_rows = pd.DataFrame(new_rows) new_rows.columns = solution.columns padded_solution = pd.concat([solution, new_rows]).reset_index(drop=True).copy() padded_submission = pd.concat([submission, new_rows]).reset_index(drop=True).copy() score = sklearn.metrics.average_precision_score( padded_solution.values, padded_submission.values, average="macro", ) return score class AudioClassifier(nn.Module): # ---------------------------- # Build the model architecture # ---------------------------- def __init__(self): super().__init__() conv_layers = [] # First Convolution Block with Relu and Batch Norm. Use Kaiming Initialization self.conv1 = nn.Conv2d(2, 8, kernel_size=(5, 5), stride=(2, 2), padding=(2, 2)) self.relu1 = nn.ReLU() self.bn1 = nn.BatchNorm2d(8) init.kaiming_normal_(self.conv1.weight, a=0.1) self.conv1.bias.data.zero_() conv_layers += [self.conv1, self.relu1, self.bn1] # Second Convolution Block self.conv2 = nn.Conv2d(8, 16, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) self.relu2 = nn.ReLU() self.bn2 = nn.BatchNorm2d(16) init.kaiming_normal_(self.conv2.weight, a=0.1) self.conv2.bias.data.zero_() conv_layers += [self.conv2, self.relu2, self.bn2] # Second Convolution Block self.conv3 = nn.Conv2d( 16, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1) ) self.relu3 = nn.ReLU() self.bn3 = nn.BatchNorm2d(32) init.kaiming_normal_(self.conv3.weight, a=0.1) self.conv3.bias.data.zero_() conv_layers += [self.conv3, self.relu3, self.bn3] # Second Convolution Block self.conv4 = nn.Conv2d( 32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1) ) self.relu4 = nn.ReLU() self.bn4 = nn.BatchNorm2d(64) init.kaiming_normal_(self.conv4.weight, a=0.1) self.conv4.bias.data.zero_() conv_layers += [self.conv4, self.relu4, self.bn4] # Linear Classifier self.ap = nn.AdaptiveAvgPool2d(output_size=1) self.lin = nn.Linear(in_features=64, out_features=264) # Wrap the Convolutional Blocks self.conv = nn.Sequential(*conv_layers) # ---------------------------- # Forward pass computations # ---------------------------- def forward(self, x): # Run the convolutional blocks x = self.conv(x) # Adaptive pool and flatten for input to linear layer x = self.ap(x) x = x.view(x.shape[0], -1) # Linear layer x = self.lin(x) # Final output return x myModel = AudioClassifier() device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") myModel = myModel.to(device) next(myModel.parameters()).device import gc # ---------------------------- # Training Loop # ---------------------------- def training(model, train_dl, num_epochs): # Loss Function, Optimizer and Scheduler criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) scheduler = torch.optim.lr_scheduler.OneCycleLR( optimizer, max_lr=0.001, steps_per_epoch=int(len(train_dl)), epochs=num_epochs, anneal_strategy="linear", ) # Repeat for each epoch for epoch in range(num_epochs): running_loss = 0.0 correct_prediction = 0 total_prediction = 0 # Repeat for each batch in the training set for i, data in enumerate(train_dl): # Get the input features and target labels, and put them on the GPU inputs, labels = data[0].to(device), data[1].to(device) # Normalize the inputs inputs_m, inputs_s = inputs.mean(), inputs.std() inputs = (inputs - inputs_m) / inputs_s # Zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() scheduler.step() # Keep stats for Loss and Accuracy running_loss += loss.item() # Get the predicted class with the highest score _, prediction = torch.max(outputs, 1) # Count of predictions that matched the target label correct_prediction += (prediction == labels).sum().item() total_prediction += prediction.shape[0] if i % 10 == 0: # print every 10 mini-batches print("[%d, %5d] loss: %.3f" % (epoch + 1, i + 1, running_loss / 10)) # Print stats at the end of the epoch num_batches = len(train_dl) avg_loss = running_loss / num_batches acc = correct_prediction / total_prediction print(f"Epoch: {epoch}, Loss: {avg_loss:.2f}, Accuracy: {acc:.2f}") print("Finished Training") num_epochs = 2 # Just for demo, adjust this higher. training(myModel, train_dl, num_epochs) # 23/03 # Epoch: 0, Loss: 5.18, Accuracy: 0.04 # Epoch: 1, Loss: 4.56, Accuracy: 0.09 gc.collect() torch.cuda.empty_cache() torch.save(myModel.state_dict(), "r1001_birdclef2023.v.1.0.pth") myModel.load_state_dict(torch.load("r1001_birdclef2023.v.1.0.pth")) # evaluate on the validation set after each epoch myModel.eval() with torch.no_grad(): correct = 0 total = 0 # Repeat for each batch in the validation set for i, data in enumerate(val_dl): # Get the input features and target labels, and put them on the GPU inputs, labels = data[0].to(device), data[1].to(device) # Normalize the inputs inputs_m, inputs_s = inputs.mean(), inputs.std() inputs = (inputs - inputs_m) / inputs_s outputs = myModel(inputs) _, predicted = torch.max(outputs, 1) total += predicted.shape[0] correct += (predicted == labels).sum().item() output_val = outputs.sigmoid().cpu().detach().numpy() target_one_hot = torch.eye(264)[labels] target_val = target_one_hot.numpy() val_df = pd.DataFrame(target_val, columns=birds) pred_df = pd.DataFrame(output_val, columns=birds) avg_score = padded_cmap(val_df, pred_df, padding_factor=3) print(f"cmAP score pad 3: {avg_score}") accuracy = 100 * correct / total print(f"Validation Accuracy: {accuracy:.2f}%") myModel.train() # 23/03 - Validation Accuracy: 8.53% # (label_df == 1).any(axis=1).sum(), (predicted_df == 1).any(axis=1).sum() # label_df.columns[label_df.eq(1).any()],predicted_df.columns[predicted_df.eq(1).any()] # y_true, y_scores # labels, birds from torch.utils.data import DataLoader, Dataset import numpy as np class SoundTestDS(Dataset): def __init__(self, df, data_path): self.df = df self.data_path = str(data_path) self.duration = 4000 self.sr = 44100 self.channel = 2 self.shift_pct = 0.4 def __len__(self): return len(self.df) def audio_to_image(self, aud): reaud = AudioUtil.resample(aud, 44100) rechan = AudioUtil.rechannel(reaud, 2) dur_aud = AudioUtil.pad_trunc(rechan, 4000) shift_aud = AudioUtil.time_shift(dur_aud, 0.4) sgram = AudioUtil.spectro_gram(shift_aud, n_mels=64, n_fft=1024, hop_len=None) aug_sgram = AudioUtil.spectro_augment( sgram, max_mask_pct=0.1, n_freq_masks=2, n_time_masks=2 ) return aug_sgram def split_audio(self, aud, duration, step=None): sig, sr = aud audio_length = sr * 5 audios = [] step = None or audio_length for i in range(audio_length, len(sig[0]) + step, step): start = max(0, i - audio_length) end = start + audio_length audios.append(sig[0][start:end]) if len(audios[-1]) < audio_length: audios = audios[:-1] images = [self.audio_to_image((audio.unsqueeze(0), sr)) for audio in audios] images = np.stack(images) return images def __getitem__(self, idx): audio_file = self.data_path + self.df.loc[idx, "relative_path"] aud = AudioUtil.open(audio_file) return self.split_audio(aud, 5) # import soundfile as sf # import os # # define the path to the audio file # audio_file_path = "/kaggle/input/birdclef-2023/test_soundscapes/soundscape_29201.ogg" # # define the duration of each segment in seconds # segment_duration = 60 # # read the audio file # audio_data, samplerate = sf.read(audio_file_path) # # calculate the total number of segments # total_segments = int(len(audio_data) / (segment_duration * samplerate)) # # create a directory to store the segments # output_dir = "/kaggle/working/testaud" # if not os.path.exists(output_dir): # os.makedirs(output_dir) # # split the audio file into segments and save each segment as a separate file # for i in range(total_segments): # segment_start = i * segment_duration * samplerate # segment_end = segment_start + segment_duration * samplerate # segment_data = audio_data[segment_start:segment_end] # segment_file_name = os.path.join(output_dir, f"segment_{i}.ogg") # sf.write(segment_file_name, segment_data, samplerate) df_test = pd.DataFrame( [ (path.stem, path.parent.absolute().stem + "/" + path.stem + ".ogg", -1) for path in Path(download_path + "birdclef-2023/test_soundscapes/").glob( "*.ogg" ) ], columns=["filename", "relative_path", "classID"], ) # df_test = pd.DataFrame( # [(path.stem, path.parent.absolute().stem + '/' + path.stem + '.ogg',-1) for path in Path('/kaggle/working/testaud').glob("*.ogg")], # columns = ["filename", "relative_path", "classID" ] # ) # print(df_test.shape) # df_test.head() # test_dataset = SoundTestDS(df_test[['relative_path','classID']], '/kaggle/working/')#data_path) test_dataset = SoundTestDS(df_test[["relative_path", "classID"]], data_path) test_dataloader = DataLoader(test_dataset, batch_size=16, shuffle=False) # dataset = train_ds # # Iterate through the dataset # for i in range(10): # # Get the i-th sample from the dataset # sample = dataset[i] # # Extract the input (audio data) and target (label) from the sample # input, target = sample # # Do something with the input and target # print(f'Sample {i}: Input shape: {input.shape}, Target: {target}') # dataset = test_dataset # # Iterate through the dataset # for i in range(len(dataset)): # # Get the i-th sample from the dataset # sample = dataset[i] # for j in range(len(sample)): # aud = sample[j] # # Extract the input (audio data) and target (label) from the sample # input, _ = aud # # Do something with the input and target # print(f'Sample {i}: Audion {j}: Input shape: {input.shape}') # Load your trained model myModel.load_state_dict(torch.load("r1001_birdclef2023.v.1.0.pth")) # Put the model in evaluation mode myModel.eval() # Iterate over the test set and make predictions predictions = [] with torch.no_grad(): # Repeat for each batch in the test set for i, data in enumerate(test_dataloader): # Get the input features and target labels, and put them on the GPU row = [] for j in range(len(data)): inputs = data[j].to(device) # Normalize the inputs inputs_m, inputs_s = inputs.mean(), inputs.std() inputs = (inputs - inputs_m) / inputs_s # Make a prediction on the waveform tensor outputs = myModel(inputs) row.append(outputs.sigmoid().cpu().detach().numpy()) predictions.append(row) myModel.train() # len(filenames), len(predictions[0]),len(predictions[0][0]), predictions[0][0].shape,len(predictions[0][0][1]) # len(bird_cols) filenames = df_test.filename.values.tolist() bird_cols = list(birds) sub_df = pd.DataFrame(columns=["row_id"] + bird_cols) sub_df[bird_cols] = sub_df[bird_cols].astype(np.float32) for i, file in enumerate(filenames): pred = predictions[0][i] num_rows = len(pred) row_ids = [f"{file}_{(j+1)*5}" for j in range(num_rows)] df = pd.DataFrame(columns=["row_id"] + bird_cols) df["row_id"] = row_ids df[bird_cols] = pred sub_df = pd.concat([sub_df, df]).reset_index(drop=True) # len(sub_df) # sub_df[0:13] sub_df.to_csv("submission.csv", index=False)
import numpy as np import pandas as pd from matplotlib import pyplot as plt import seaborn as sns import os import sklearn from sklearn.model_selection import train_test_split for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # ## Predicting Loan Default - When should credit be approved? # **Problem statement**: # The aim of this notebook is to create a simple program that can predict wether a credit should be approved or not, based on previous client data. The program should help the bank minimize risk with future clients. # The model used will predict wether a client should have their loan approved or not, based on his or her history, using logistic regression for classification. # **The data:** # The data consists of a csv file containing records of clients from a private german bank. Includes the client profile (account balance, number of credits,...) and a variable **Creditability** (1 : credit-worthy 0 : not credit-worthy). # A detailed description of the variables can be found [here](https://newonlinecourses.science.psu.edu/stat508/book/export/html/803). # read and inspect dataset data = pd.read_csv("../input/german-credit-risk/german_credit.csv") data.head() data.describe() # data summary data.corr() # check for correlations with target variable # new data will include the variables with highest correlation # with dependent variable - creditability x = data[ [ "Account Balance", "Duration of Credit (month)", "Payment Status of Previous Credit", ] ] y = data["Creditability"] # splitting data # test = 80% of data x_train, x_test, y_train, y_test = train_test_split( x, y, test_size=0.80, random_state=6 ) # using statsmodels for model and metrics import statsmodels.api as sm # building the model and fitting the training data model = sm.Logit(y_train, x_train).fit() # summary statistics of log. regression model.summary() pred_y = model.predict(x_test) # values predicted by model pred_y.head() # Our logistic regression function returns the likelihood of a credit being worthy, and so values can range from 0 to 1. # We'll transform the likelyhood into a binary variable for classification. # If a credit is more than 50% likely to be worthy, it will be labeled worthy. # The function below can apply this process. # function for turning likelihood into labels def binary_classify(x): # takes int x returns output int label x = round(x, 2) if x >= 0.50: return 1 return 0 pred = list(map(binary_classify, pred_y)) # apply function to all predictions # ### Classification performance # Now that we have used logistic regression to perform classification, we can check how accurate the predictions are: # accuracy score sklearn.metrics.accuracy_score(y_test, pred) # The model makes 73.75% of predictions correct. # ## Proposed solution # In order to classify future clients as credit worthy or not, we can build a simple program that will take as inputs their account balance, credit duration and payment status of current credit. The program will then apply the previous model and classify the client, providing information to the bank of wether the credit should be approved or not. # The formula used for classification was obtained previously with *statsmodels*. # predictive function based on logistic model - returns likelyhood def log_func(x): balance, credit, pay_status = x result = (0.6364 * balance) + (-0.05 * credit) + (0.2374 * pay_status) return result def binary_classify(x): # takes int x = likelihood returns output int label x = round(x, 2) if x >= 0.50: return 1 return 0 def predict(x): # makes credit predictions return binary_classify(log_func(x)) def print_result(x): # prints output to user if predict(x) == 1: return "Credit worthy" return "Not credit worthy" # Let's try to apply the program as an example. # We can check the data of a specific client as a test: test = data.iloc[97] # data from client test = test[ [ "Creditability", "Account Balance", "Duration of Credit (month)", "Payment Status of Previous Credit", ] ] test # Client data: # * Creditability: 0 - was classified not credit worthy # * Account Balance: 2 # * Duration of Credit (month): 36 # * Payment Status of Previous Credit: 3 # testing input_test = (2, 36, 3) # client data print("Result: " + print_result(input_test))
# Importing the relevant files import os import numpy as np import cv2 from tqdm import tqdm import random import tensorflow as tf from tensorflow.keras.optimizers import Adam from tensorflow.keras.layers import Conv2D, MaxPool2D, Flatten, Dense from tensorflow.keras.models import Sequential from sklearn.metrics import confusion_matrix from sklearn.utils import shuffle # Setting the image size, epochs,classes and batch size img = 150 epochs = 30 batch_size = 25 names = ["O", "R"] encode_name = {name: i for i, name in enumerate(names)} # Making a function to load the images and labels. I have used openCV for this purpose def load_data(): datasets = [ "/kaggle/input/waste-classification-data/DATASET/TRAIN", "/kaggle/input/waste-classification-data/DATASET/TEST", ] output = [] for dataset in tqdm(datasets): images = [] labels = [] for folder in os.listdir(dataset): label = encode_name[folder] if dataset == "/kaggle/input/waste-classification-data/DATASET/TRAIN": img_set = random.sample(os.listdir(os.path.join(dataset, folder)), 7000) else: img_set = random.sample(os.listdir(os.path.join(dataset, folder)), 1000) for file in img_set: img_path = os.path.join(os.path.join(dataset, folder), file) image = cv2.imread(img_path) image = cv2.resize(image, (img, img)) images.append(image) labels.append(label) images = np.array(images, dtype=np.float32) labels = np.array(labels, dtype=np.int32) output.append((images, labels)) return output # Loading the training and testing data (train_images, train_labels), (test_images, test_labels) = load_data() # Converting the training and testing images and labels to numpy arrays train_images = np.array(train_images) train_labels = np.array(train_labels) test_images = np.array(test_images) test_labels = np.array(test_labels) # Printing the size of the images and labels print( f"Training images size:{train_images.shape}, Training labels size:{train_labels.shape}" ) print( f"Testing images size:{test_images.shape}, Testing labels size:{test_labels.shape}" ) # Scaling the values of the images pixels to 0-1 to make the computation easier for our model train_images, test_images = train_images / 255, test_images / 255 # Randomizing the training data train_images, train_labels = shuffle(train_images, train_labels) # Making the model architecture model = Sequential( [ Conv2D( filters=32, activation="relu", input_shape=(img, img, 3), padding="same", kernel_size=(3, 3), ), Conv2D(filters=32, activation="relu", padding="same", kernel_size=(3, 3)), MaxPool2D(pool_size=(2, 2)), Conv2D(filters=64, activation="relu", padding="same", kernel_size=(3, 3)), Conv2D(filters=64, activation="relu", padding="same", kernel_size=(3, 3)), MaxPool2D(pool_size=(2, 2)), Conv2D(filters=128, activation="relu", padding="same", kernel_size=(3, 3)), Conv2D(filters=128, activation="relu", padding="same", kernel_size=(3, 3)), MaxPool2D(pool_size=(2, 2)), Conv2D(filters=256, activation="relu", padding="same", kernel_size=(3, 3)), Conv2D(filters=256, activation="relu", padding="same", kernel_size=(3, 3)), MaxPool2D(pool_size=(2, 2)), Conv2D(filters=256, activation="relu", padding="same", kernel_size=(3, 3)), Conv2D(filters=256, activation="relu", padding="same", kernel_size=(3, 3)), MaxPool2D(pool_size=(2, 2)), Conv2D(filters=512, activation="relu", padding="same", kernel_size=(3, 3)), Conv2D(filters=512, activation="relu", padding="same", kernel_size=(3, 3)), MaxPool2D(pool_size=(2, 2)), Conv2D(filters=512, activation="relu", padding="same", kernel_size=(3, 3)), Conv2D(filters=512, activation="relu", padding="same", kernel_size=(3, 3)), Flatten(), Dense(units=4096, activation="relu"), Dense(units=4096, activation="relu"), Dense(units=1, activation="sigmoid"), ] ) # Printing the model summary model.summary() # Saving the weights of the model model.save("model.h5") # Compiling the model. Specifying the optimizer to act on the data. The loss function(which could also have been sparse_categorical_crossentropy),since there are only two classes, I have used binary_crossentropy model.compile( optimizer=Adam(lr=0.0001), loss="binary_crossentropy", metrics=["accuracy"] ) model.load_weights("model.h5") # Training the model on the training data model.fit( x=train_images, y=train_labels, validation_split=0.3, epochs=epochs, batch_size=batch_size, steps_per_epoch=100, verbose=2, ) # Using the model to make predictions on the testing data p = model.predict(test_images) # Using the confusion matrix to print the accuracy of those predictions cm = confusion_matrix(y_true=test_labels, y_pred=np.round(p)) print(f"Accuracy:{(cm.trace()/cm.sum())*100}")
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # # Importing Libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import cross_val_score from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import LogisticRegression from sklearn import tree from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.svm import SVC sns.set() from sklearn.metrics import confusion_matrix, classification_report from sklearn.neural_network import MLPClassifier import warnings warnings.filterwarnings("ignore") # # Load DataSets data = pd.read_csv("/kaggle/input/titanic/train.csv") data_2 = pd.read_csv("/kaggle/input/titanic/test.csv") data_3 = pd.read_csv("/kaggle/input/titanic/gender_submission.csv") data data_2 data_3 test = pd.merge(data_2, data_3, how="inner", on="PassengerId") test # # Data Manipuletion / Cleaning # **As we can see that we wont able to find any informetion from passengerId or Name se we will drop these 2 columns. # but there is chanse that we can find some informetion from ticket column. But before that we need to clean the data i.e. we need to process the null value # if exists.** sns.heatmap(data.isnull()) data.isnull().sum() train = data.drop(["PassengerId", "Name", "Cabin"], axis=1) sns.heatmap(test.isnull()) test.isnull().sum() test = test.drop(["Cabin", "PassengerId", "Name"], axis=1) # As we can see cabin contain huge number of null value so there is no point of using it and # as we already discussed PassengerId and Name have no importaance in this modeling so we drop them. But we will fill the null value of age column with the mean of the age of pclass value train.groupby("Pclass")["Age"].mean() for i in range(len(train["Age"])): if train["Age"].isnull()[i] == True: if train["Pclass"][i] == 1: train["Age"][i] = 38 elif train["Pclass"][i] == 2: train["Age"][i] = 30 else: train["Age"][i] = 25 else: train["Age"][i] = train["Age"][i] test.groupby("Pclass")["Age"].mean() for i in range(len(test["Age"])): if test["Age"].isnull()[i] == True: if test["Pclass"][i] == 1: test["Age"][i] = 40.918367 elif test["Pclass"][i] == 2: test["Age"][i] = 28.7775 else: test["Age"][i] = 24.027945 else: test["Age"][i] = test["Age"][i] train = train.dropna() test = test.dropna() # As we drop and fill the null values now we will process the ticket column and try to make them into different classes based on their initials and for those who contins numbers i consider the class low ticket = train["Ticket"].tolist() ticket[1].split(" ")[0][0] catch = [] for i in range(len(ticket)): catch.append(ticket[i].split(" ")[0][0]) for i in range(len(ticket)): if catch[i] in ["1", "2", "3", "4", "5", "6", "7", "8", "9"]: catch[i] = "low" else: catch[i] = catch[i] train["Ticket"] = catch data ticket = test["Ticket"].tolist() catch = [] for i in range(len(ticket)): catch.append(ticket[i].split(" ")[0][0]) x = np.array(catch) for i in range(len(ticket)): if catch[i] in ["1", "2", "3", "4", "5", "6", "7", "8", "9"]: catch[i] = "low" else: catch[i] = catch[i] test["Ticket"] = catch test titanic = pd.concat([train, test], axis=0) # # EDA # As we have cleaned the data now we will try to find out some insight from the data. we will try to find out relation between different columns with Survived column. sns.countplot(titanic, x=titanic["Survived"]) sns.countplot(titanic, x=titanic["Survived"], hue="Sex") titanic.groupby("Sex")["Survived"].sum() titanic.value_counts("Sex").reset_index() male_survived = ( titanic.groupby("Sex")["Survived"].sum()[1] / titanic.value_counts("Sex").reset_index()[0][0] ) * 100 female_survived = ( titanic.groupby("Sex")["Survived"].sum()[0] / titanic.value_counts("Sex").reset_index()[0][1] ) * 100 print(round(male_survived, 2), "% of male passenger were survived the crash") print(round(female_survived, 2), "% of female passenger were survived the crash") sns.countplot(titanic, x=titanic["SibSp"], hue="Survived") sns.countplot(titanic, x=titanic["SibSp"], hue="Sex") sns.countplot(titanic, x=titanic["Survived"], hue="SibSp") sns.countplot(titanic, x=titanic["Pclass"], hue="Sex") sns.countplot(titanic, x=titanic["Pclass"], hue="Survived") sns.countplot(titanic, x=titanic["Survived"], hue="Pclass") titanic.groupby("Pclass")["Survived"].sum() titanic.value_counts("Pclass").reset_index() Pclass_1_survived = ( titanic.groupby("Pclass")["Survived"].sum()[0:1][1] / titanic.value_counts("Pclass").reset_index()[0][1] ) * 100 Pclass_2_survived = ( titanic.groupby("Pclass")["Survived"].sum()[1:2][2] / titanic.value_counts("Pclass").reset_index()[0][2] ) * 100 Pclass_3_survived = ( titanic.groupby("Pclass")["Survived"].sum()[2:3][3] / titanic.value_counts("Pclass").reset_index()[0][0] ) * 100 print( round(Pclass_1_survived, 2), "% of passenger were survived the crash who were travelling in class 1", ) print( round(Pclass_2_survived, 2), "% of passenger were survived the crash who were travelling in class 2", ) print( round(Pclass_3_survived, 2), "% of passenger were survived the crash who were travelling in class 3", ) sns.pairplot(titanic, hue="Pclass") sns.pairplot(titanic, hue="Survived") sns.pairplot(titanic, hue="Sex") # # Prepare The DataSet for ML Model # We ahve some coluns like Sex, Ticket contains catagorical varible. to process them me need dummy plt.rcParams["font.size"] = 11 corr = train.corr() sns.heatmap(corr, annot=True, vmax=1, vmin=-1).set_title("Correlation Map") plt.show() Sex = pd.get_dummies(train["Sex"], drop_first=True) Embarked = pd.get_dummies(train["Embarked"], drop_first=True) train = pd.concat([train, Sex, Embarked], axis=1) train["Embarked_Q"] = train["Q"] train["Embarked_S"] = train["S"] train = train.drop(["Q", "S"], axis=1) Ticket = pd.get_dummies(train["Ticket"], drop_first=True) train = pd.concat([train, Ticket], axis=1) train = train.drop(["Sex", "Embarked", "Ticket"], axis=1) plt.rcParams["font.size"] = 11 corr = test.corr() sns.heatmap(corr, annot=True, vmax=1, vmin=-1).set_title("Correlation Map") plt.show() test = test.dropna() Sex = pd.get_dummies(test["Sex"], drop_first=True) Embarked = pd.get_dummies(test["Embarked"], drop_first=True) test = pd.concat([test, Sex, Embarked], axis=1) test["Embarked_Q"] = test["Q"] test["Embarked_S"] = test["S"] test = test.drop(["Q", "S"], axis=1) Ticket = pd.get_dummies(test["Ticket"], drop_first=True) test = pd.concat([test, Ticket], axis=1) test = test.drop(["Sex", "Embarked", "Ticket"], axis=1) x_test = test.drop("Survived", axis=1) y_test = test["Survived"] x_train = train.drop("Survived", axis=1) y_train = train["Survived"] # # Creating and Evaluating Different Models # # Logistic Regression from sklearn.linear_model import LogisticRegression model = LogisticRegression() model.fit(x_train, y_train) model.score(x_train, y_train) Logistic_score = model.score(x_test, y_test) print("score of the Linear Regression model is:", model.score(x_test, y_test)) prediction = model.predict(x_test) print(confusion_matrix(y_test, prediction)) sns.heatmap(confusion_matrix(y_test, prediction), annot=True) print(classification_report(y_test, prediction)) # # Multinomial Naive_Bayes # from sklearn.naive_bayes import MultinomialNB mnnb = MultinomialNB() mnnb.fit(x_train, y_train) print(mnnb.score(x_test, y_test)) prediction = mnnb.predict(x_test) NB = mnnb.score(x_test, y_test) print("score of the MultinomialNB model is:", mnnb.score(x_test, y_test)) sns.heatmap(confusion_matrix(y_test, prediction), annot=True) print(classification_report(y_test, prediction)) # # MLP MPL_model = MLPClassifier( activation="logistic", max_iter=7000000000, verbose=1, learning_rate="adaptive" ) MPL_model.fit(x_train, y_train) plt.plot(MPL_model.loss_curve_) plt.show() mpl_score = MPL_model.score(x_test, y_test) mpl_score # # Random Forest Rf = RandomForestClassifier() Rf.fit(x_train, y_train) print(Rf.score(x_test, y_test)) Rf_score = Rf.score(x_test, y_test) predction = Rf.predict(x_test) print(confusion_matrix(y_test, predction)) print(classification_report(y_test, predction)) sns.heatmap(confusion_matrix(y_test, predction), annot=True) # # Decision Tree Decion_tree_model = DecisionTreeClassifier() Decion_tree_model.fit(x_train, y_train) predction = Decion_tree_model.predict(x_test) print(Decion_tree_model.score(x_test, y_test)) Decion_tree_model_score = Decion_tree_model.score(x_test, y_test) print(confusion_matrix(y_test, predction)) print(classification_report(y_test, predction)) sns.heatmap(confusion_matrix(y_test, predction), annot=True) # # KNN knn = KNeighborsClassifier(n_neighbors=2) knn.fit(x_train, y_train) prediction = knn.predict(x_test) print(knn.score(x_test, y_test)) knn_score = knn.score(x_test, y_test) print(confusion_matrix(y_test, prediction)) print(classification_report(y_test, prediction)) sns.heatmap(confusion_matrix(y_test, prediction), annot=True) print("Logistic_score:", Logistic_score) print("NB:", NB) print("mpl_score:", mpl_score) print("Rf_score:", Rf_score) print("Decion_tree_model_score:", Decion_tree_model_score) print("knn_score:", knn_score)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session data_path = "/kaggle/input/bike-sharing-demand/" train = pd.read_csv(data_path + "train.csv") test = pd.read_csv(data_path + "test.csv") submission = pd.read_csv(data_path + "sampleSubmission.csv") # **데이터 확인** train.head() test.head() # **casual, registered는 train data에만 있으므로 제거해도 되겠다** train.info() train.describe() # **temp, atemp, humidity, windspeed는 max값이 다른 분위값에 비해 급격히 커지므로 이상치가 있을 것으로 예상됨** train.isnull().sum() # **많은 데이터가 묶인 datatime 데이터 쪼개기** # **년, 월, 날짜, 시간대로 쪼개자** train["year"] = train["datetime"].apply(lambda x: x.split()[0].split("-")[0]) train["month"] = train["datetime"].apply(lambda x: x.split()[0].split("-")[1]) train["day"] = train["datetime"].apply(lambda x: x.split()[0].split("-")[2]) train["hour"] = train["datetime"].apply(lambda x: x.split()[1].split(":")[0]) # **casual, registered 제거** train.drop(columns=["casual", "registered"], inplace=True) # **데이터 시각화** import matplotlib.pyplot as plt import seaborn as sns train.head() # **월별 대여량** sns.pointplot(data=train, x="month", y="count", hue="year") sns.pointplot(data=train, x="month", y="count") # **계절별 대여량** sns.pointplot(data=train, x="season", y="count", hue="year") train["month"] = train["month"].astype(int) train.loc[train["month"].isin([1, 2, 3]), "new_season"] = 1 train.loc[train["month"].isin([4, 5, 6]), "new_season"] = 2 train.loc[train["month"].isin([7, 8, 9]), "new_season"] = 3 train.loc[train["month"].isin([10, 11, 12]), "new_season"] = 4 train.head() sns.pointplot(data=train, x="new_season", y="count") # **1, 2, 3월이 봄(1), 4, 5, 6월이 여름(2), 7, 8, 9월이 가을(3), 10, 11, 12월이 겨울(4)인 것으로 보임** # **월별 그래프와 계쩔별 그래프의 모양이 비슷하니 '계절'만 가져다가 사용하자** # **날이 좋을 것으로 보이는 가을->여름->겨울-> 봄 순으로 자전거 사용량이 많음. 겨울이 더 사용량이 없을 것 같았지만 봄이 1, 2, 3월임을 감안하면 이때가 더 날이 안 좋거나 추울 수 있음** # **시간의 흐름에 따라 숫자가 주어진 것이고 크고 작음의 관계는 없음. 원핫인코딩을 해야하지 않을까?** train.head() train.drop(columns=["month", "new_season"], inplace=True) train.head() # **시간별 대여량 확인** sns.pointplot(data=train, x="hour", y="count", hue="year") # **오전 7시, 8시의 대여량과 오후 17시, 18시의 대여량이 많음=> 출퇴근길(등하교길)에 자전거 대여량이 많을 것** # **휴일이 영향을 주는지도 알아보자** sns.pointplot(data=train, x="hour", y="count", hue="holiday") # **holiday가 아니면 출퇴근 시간에 사용량이 많은 것 same** # **holiday이면 오전 7시부터 오후 17시 정도까지 사용량이 꾸준히 늘어남.** # **holiday에 대여량 이상치가 많음** # **workingday-count** sns.pointplot(data=train, x="hour", y="count", hue="workingday") # **holiday와 마찬가지로 workingday가 아닌 날에는 오전 7시부터 오후 17시 정도까지 자전거 대여량이 꾸준히 늘어나서 유지됨** # **결론: 보통은 출퇴근 길에 자전거 대여량 많음. 주말이나 휴일에는 오전 7시부터 시작하여 오후 5시 정도까지 대여량이 많음.** # **working day와 holiday가 서로 상관관계가 높을까? 그렇다면 하나를 지워야 할 수도!** sns.pointplot(data=train, x="day", y="count", hue="year") # **날짜에서 특정한 패턴을 찾기는 어려움** # **day feature는 버리자** # **2012년에 2011년보다 전반적으로 자전거 대여량이 많았던 이유는 무엇일까? 휴일 수가 많았나? 날씨가 좋았나?** train.groupby("year").mean() # **holiday, workingday의 차이보다는 temp, atemp, humidity에서 좀 더 차이가 있지 않나 싶음.** # **날씨의 영향을 분석해보자** train.head() sns.lineplot(data=train, x="weather", y="count") # **4일 때 대여량이 많은 건 이상치 아닐까?. 신뢰구간도 없다.** sns.lineplot(data=train, x="temp", y="count") sns.lineplot(data=train, x="atemp", y="count") sns.lineplot(data=train, x="humidity", y="count") sns.lineplot(data=train, x="windspeed", y="count") # **temp, atemp가 높을수록 대여량이 증가하는 경향, humidity는 높을수록 대여량이 감소하는 경향. 끈적끈적할 때 자전거 타고 싶지 않겠지** # **weather가 4일 때 대여량이 높아지는 이상치가 있음. 무시해야 할 듯. 또한 windspeed가 강할 때 대여량이 높아지는 이상치 있음. 이 역시 무시해야 할 듯** sns.regplot(data=train, x="weather", y="count", line_kws={"color": "red"}) sns.regplot(data=train, x="temp", y="count", line_kws={"color": "red"}) sns.regplot(data=train, x="atemp", y="count", line_kws={"color": "red"}) sns.regplot(data=train, x="humidity", y="count", line_kws={"color": "red"}) sns.regplot(data=train, x="windspeed", y="count", line_kws={"color": "red"}) # **windspeed에서 0과 10 사이가 크게 빈 것은 측정이 제대로 되지 못한 것이 아닐까?** # # **weather에서 4인데 대여량이 높아졌던 것은 이상치가 맞는 것으로 보임** # **feature 사이의 상관관계 알아보기** train.head() # 수치형 데이터 = season, holiday, workingday, wearher, temp, atemp, humidity, windspeed, count 의 상관관계 계수 알아보기 train[ [ "season", "holiday", "workingday", "weather", "temp", "atemp", "humidity", "windspeed", "count", "hour", ] ].corr() corrMat = train[ [ "season", "holiday", "workingday", "weather", "temp", "atemp", "humidity", "windspeed", "count", "hour", ] ].corr() fig, ax = plt.subplots() fig.set_size_inches(10, 10) sns.heatmap(data=corrMat, annot=True) # annot을 넣으면 상관계수가 숫자로 표시됨 ax.set(title="Heatmap of Numerical Data") # **feature 엔지니어링** # 1. test data에는 없는 casual, registered 제거 # 2. datetime 쪼개기(연, 월, 일, 시간으로 나누기) / 출퇴근 시간에 대여량이 많은 것을 보면 '시간'이 대여량에 영향을 미칠 것. '월'은 season으로 대체할 것이기 때문에 제거. year, day는 count에 크게 영향을 미치지 않는 것으로 보이기 때문에 제거할 것. # 3. season feature는 원핫인코딩으로 인코딩하기(숫자가 크고 작음을 의미하지 않으므로) # 4. holiday와 workingday를 hue로 해서 시간별 대여량을 보면 그래프가 비슷하게 나타남. 두 feature이 서로 영향을 많이 미치면 하나를 제거하려고 했는데 heatmap을 보니 생각보다 수가 크지 않음. 우선은 두 가지 모두 두고 하자. # 5. temp, atemp feature는 비슷한 개념인데 heatmap에서 서로 영향을 크게 주고받음을 알 수 있다. 하나는 빼버리자. (count와의 상관관계 점수도 같음). temp와 atemp는 높을수록 count가 높음 # 6. weather feature는 lineplot, rugplot을 보면 수가 커질수록(날씨가 나빠질수록) count가 줄어듦. 다만 weather가 4일때 200개 정도의 count가 있는 event는 오류로 보이므로 제거 예정 # 7. humidity feature는 커질수록 count가 감소함. # 8. windspeed가 강할수록 count가 높아지는데(rugplot) lineplot을 보면 또 그게 아닌 것 같음. 그리고 rugplot 보면 사이에 크게 빈 곳이 있음. 결측치일까? windspeed feature 자체를 제거해야 하나? data_path = "/kaggle/input/bike-sharing-demand/" train = pd.read_csv(data_path + "train.csv") test = pd.read_csv(data_path + "test.csv") submission = pd.read_csv(data_path + "sampleSubmission.csv") train.head() test.head() # 1. test data에는 없는 casual, registered 제거 train.drop(columns=["registered", "casual"], inplace=True) train.head() # 2. datetime 쪼개기(연, 월, 일, 시간으로 나누기) / 출퇴근 시간에 대여량이 많은 것을 보면 '시간'이 대여량에 영향을 미칠 것. train["year"] = train["datetime"].apply(lambda x: int(x.split()[0].split("-")[0])) train["month"] = train["datetime"].apply(lambda x: int(x.split()[0].split("-")[1])) train["day"] = train["datetime"].apply(lambda x: int(x.split()[0].split("-")[2])) train["hour"] = train["datetime"].apply(lambda x: int(x.split()[1].split(":")[0])) test["year"] = test["datetime"].apply(lambda x: int(x.split()[0].split("-")[0])) test["month"] = test["datetime"].apply(lambda x: int(x.split()[0].split("-")[1])) test["day"] = test["datetime"].apply(lambda x: int(x.split()[0].split("-")[2])) test["hour"] = test["datetime"].apply(lambda x: int(x.split()[1].split(":")[0])) train.head() test.head() # 2. '월'은 season으로 대체할 것이기 때문에 제거. year, day는 count에 크게 영향을 미치지 않는 것으로 보이기 때문에 제거할 것. train.drop(columns=["month", "year", "day", "datetime"], inplace=True) test.drop(columns=["month", "year", "day", "datetime"], inplace=True) train.head() # 5. temp, atemp feature는 비슷한 개념인데 heatmap에서 서로 영향을 크게 주고받음을 알 수 있다. 하나는 빼버리자. (count와의 상관관계 점수도 같음). temp와 atemp는 높을수록 count가 높음 train.drop(columns="atemp", inplace=True) test.drop(columns="atemp", inplace=True) # 6. weather feature는 lineplot, rugplot을 보면 수가 커질수록(날씨가 나빠질수록) count가 줄어듦. 다만 weather가 4일때 200개 정도의 count가 있는 event는 오류로 보이므로 제거 예정 train = train[train["weather"] != 4] # 8. windspeed가 강할수록 count가 높아지는데(rugplot) lineplot을 보면 또 그게 아닌 것 같음. 그리고 rugplot 보면 사이에 크게 빈 곳이 있음. 결측치일까? windspeed feature 자체를 제거해야 하나? train.drop(columns="windspeed", inplace=True) test.drop(columns="windspeed", inplace=True) # 3. season feature는 원핫인코딩으로 인코딩하기(숫자가 크고 작음을 의미하지 않으므로) # **원핫인코딩 결과 붙이기** from sklearn.preprocessing import OneHotEncoder encoder = OneHotEncoder() train_encoded = encoder.fit_transform(train["season"].to_numpy().reshape(-1, 1)) test_encoded = encoder.fit_transform(test["season"].to_numpy().reshape(-1, 1)) train.drop(columns="season", inplace=True) test.drop(columns="season", inplace=True) from scipy import sparse train_sprs = sparse.hstack((sparse.csr_matrix(train), train_encoded), format="csr") test_sprs = sparse.hstack((sparse.csr_matrix(test), test_encoded), format="csr")
# # SALES ANALYTICS # Hi! This is my Sales Analytics notebook for [Sales Product Data](https://www.kaggle.com/datasets/knightbearr/sales-product-data) from [Knightbearr](https://www.kaggle.com/knightbearr). The purpose is to provide analysis based on dataset provided by going through all the necessary step and methods in this notebook alongside its explanation. Since there is already task provided in the dataset description making it easier to explore different means to answer multiple questions and provide analysis. Also note that I'm still learning and there may be mistake and few things i might be overlooked. If that happen feel free comment and point them out. # Thanks! # # Table of Contents # [SALES ANALYTICS](#SALES-ANALYTICS) # - [LIBRARY IMPORT](#LIBRARY-IMPORT) # - [DATA READING](#DATA-READING) # - [DATA CLEANING](#DATA-CLEANING) # - [DATA MANIPULATION](#DATA-MANIPULATION) # - [QUESTIONS](#QUESTIONS) # - [Annual Sales](#Annual-Sales) # - [Monthly Sales](#Monthly-Sales) # - [Sales by State & City](#Sales-by-State-and-City) # - [Sales by State](#Sales-by-State) # - [Sales by City](#Sales-by-City) # - [Order Trend](#Order-Trend) # - [Monthly Order Trend](#Monthly-Order-Trend) # - [Daily Order Trend](#Daily-Order-Rrend) # - [Hourly Order Trend](#Hourly-Order-Trend) # - [Product Performance](#Product-Performance) # - [Product Popularity](#Product-Popularity) # - [Price List Comparision](#Price-List-Comparision) # - [Product Sold by Order](#Product-Sold-by-Order) # - [Probability](#Probability) # - [Product Orders of Total Sales](#Product-Orders-of-Total-Sales) # - [Product Associate Rules](#Product-Associate-Rules) # - [SUMMARY](#TO-SUMMARIZE) # - [REFERENCES](#REFERENCES) # # LIBRARY IMPORT # > Import all required library for files import/export, plotting, and association rules. # import required library import os import squarify import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from matplotlib.dates import DateFormatter # required library for one-hot matrix and association rules from mlxtend.preprocessing import TransactionEncoder from mlxtend.frequent_patterns import apriori, association_rules # # DATA READING # > Combine all related CSV data into a single dataframe(all_sales_df) then rename and lowercase all the column name. # find file path directory for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # data path dir_path = "../input/sales-product-data" # create empty df for all sales all_sales_df = pd.DataFrame() # concat all csv in dir path for filename in os.listdir(dir_path): df = pd.read_csv(os.path.join(dir_path, filename)) all_sales_df = pd.concat([all_sales_df, df], ignore_index=True) # rename column name all_sales_df = all_sales_df.rename(mapper=str.strip, axis="columns") all_sales_df = all_sales_df.rename( columns={ "Order ID": "Order_id", "Quantity Ordered": "Quantity", "Price Each": "Price", "Order Date": "Date", "Purchase Address": "Address", } ) # lowercase column name column_name = list(all_sales_df.columns) column_name = [x.lower().strip() for x in column_name] all_sales_df.columns = column_name # show dataframe info print(all_sales_df.info()) # show all_sales_df head all_sales_df.head() # # DATA CLEANING # > First check for rows contain null and duplicates. # Then check for non-numeric values in order_id, quantity, and price since the 3 column cannot be non-numeric. # check for all rows contain null value print("rows contain null:") print(all_sales_df.isnull().sum()) # check duplicated rows print("rows contain duplicates:", all_sales_df.duplicated().sum()) # check for non-numeric in order_id, quantity, and price print( "non-numeric in order_id:", all_sales_df["order_id"] .loc[pd.to_numeric(all_sales_df["order_id"], errors="coerce").isnull()] .unique(), ) print( "non-numeric in quantity:", all_sales_df["quantity"] .loc[pd.to_numeric(all_sales_df["quantity"], errors="coerce").isnull()] .unique(), ) print( "non-numeric in price:", all_sales_df["price"] .loc[pd.to_numeric(all_sales_df["price"], errors="coerce").isnull()] .unique(), ) # > There is a few consideration about dropping duplicated rows. # Check duplicated rows and their duplicates. # check order id in duplicated rows that are not null and is numeric all_sales_df[ all_sales_df.duplicated(keep=False) & all_sales_df["order_id"].notnull() & all_sales_df["order_id"].str.isnumeric() ]["order_id"].head() # check rows contain order id of 176585, 177795, 178158 all_sales_df[all_sales_df["order_id"].isin(["176585", "177795", "178158"])] # >Now since order id 176585, 177795, and 178158 despite having quantity column it still have more than 1 of same rows each. # Which doesn't make sense when the product is the same it should be added into 'quantity' instead of adding another duplicate row. Another thing to consider is that we can join the rows from duplicates into rows that are duplicated and add the value into quantity. # But since it is still unclear, the next cells will continue to remove the duplicate rows. # > If there is null and duplicated rows then it need to be dropped/removed. # For non-numeric in mentioned columns, apply to_numeric to remove the rows dataframe. # Then check the result by applying the previous methods for a new defined dataframe(clean_sales_df). # drop null rows clean_sales_df = all_sales_df.dropna(how="all") # drop all duplicates rows clean_sales_df = clean_sales_df[~clean_sales_df.duplicated()] # drop non-numeric values in order_id, quantity, and price clean_sales_df = clean_sales_df[ pd.to_numeric(clean_sales_df["order_id"], errors="coerce").notnull() ] clean_sales_df = clean_sales_df[ pd.to_numeric(clean_sales_df["quantity"], errors="coerce").notnull() ] clean_sales_df = clean_sales_df[ pd.to_numeric(clean_sales_df["price"], errors="coerce").notnull() ] # print data cleaning result # null result print("rows contain null:") print(clean_sales_df.isnull().sum()) # check duplicated rows print("rows contain duplicates:", clean_sales_df.duplicated().sum()) # unique value result print( "non-numeric in order_id:", clean_sales_df["order_id"] .loc[pd.to_numeric(clean_sales_df["order_id"], errors="coerce").isnull()] .unique(), ) print( "non-numeric in quantity:", clean_sales_df["quantity"] .loc[pd.to_numeric(clean_sales_df["quantity"], errors="coerce").isnull()] .unique(), ) print( "non-numeric in price:", clean_sales_df["price"] .loc[pd.to_numeric(clean_sales_df["price"], errors="coerce").isnull()] .unique(), ) # # DATA MANIPULATION # > Before analysis it's important to define data type for each column that will be called later on. # Split city and state from 'address' into separate 'city' and 'state' column which will be required later for visualizations. # Add 'total_sales' column from 'quantity'*'price'. # change data type for column quantity, price, date, and address clean_sales_df["quantity"] = clean_sales_df["quantity"].astype(int) clean_sales_df["price"] = clean_sales_df["price"].astype(float) clean_sales_df["date"] = pd.to_datetime(clean_sales_df["date"], format="%m/%d/%y %H:%M") clean_sales_df["address"] = clean_sales_df["address"].astype(str) # add city and state column clean_sales_df["city"] = clean_sales_df["address"].apply( lambda x: x.split(",")[1].strip() ) clean_sales_df["state"] = clean_sales_df["address"].apply( lambda x: x.split(",")[2].split(" ")[1].strip() ) # add total sales column clean_sales_df["total_sales"] = clean_sales_df["quantity"] * clean_sales_df["price"] # > From here since data outside year 2019 is less significant. # The following try to separate clean_sales_df(all data) and clean_sales_2019_df(2019 data). # But we can check how many rows contain data outside 2019 by applying following method. # find data outside 2019 print( "number of rows outside 2019:", len(clean_sales_df[clean_sales_df["date"].dt.year != 2019]), ) # store 2019 data in separate dataframe clean_sales_2019_df = pd.DataFrame( clean_sales_df[clean_sales_df["date"].dt.year == 2019] ) # this will only include rows with year 2019 # print data manipulation result # 2019 data print("clean_sales_2019 data result:") print(clean_sales_2019_df.info()) # data outside 2019 print( "number of rows outside 2019 in clean_sales_2019_df:", len(clean_sales_2019_df[clean_sales_2019_df["date"].dt.year != 2019]), ) # > Reset the index for both dataframe and print data head to show dataframe result. # reset data index for both dataframe clean_sales_df = clean_sales_df.reset_index(drop=True) clean_sales_2019_df = clean_sales_2019_df.reset_index(drop=True) # check data head before analysis/visualization clean_sales_df.head() # # QUESTIONS # ## Annual Sales # > Task 1: # > Q: What was the best Year for sales? How much was earned that Year? # > # > A: Create Annual Sales summary and find max/min values in Annual Sales # > In this section clean_sales_df will be referred to find annual sales as annual_sales_df. # Plot the annual_sales_df and find max/min values in annual_sales_df then print the result as conclusion. # find annual sales summary and convert to dataframe annual_sales_df = pd.DataFrame( clean_sales_df.groupby(clean_sales_df["date"].dt.year)["total_sales"].sum() ) annual_sales_df.reset_index(inplace=True) # generate annual sales visual with plt.style.context("ggplot"): plt.figure(figsize=(4, 4)) sns.barplot(x="date", y="total_sales", data=annual_sales_df) plt.ticklabel_format(style="plain", axis="y") plt.title("Annual Sales", fontsize=20) plt.xlabel("Year") plt.ylabel("Sales") # add data callouts for x, y in enumerate(annual_sales_df["total_sales"]): label = f"${y:,.2f}" plt.annotate( label, (x, y), textcoords="offset points", xytext=(0, 1), ha="center", fontsize=12, ) plt.show() # find highest year and value in annual sales highest_year = annual_sales_df["date"].iloc[annual_sales_df["total_sales"].idxmax()] highest_value = annual_sales_df["total_sales"].max() # find lowest year and value in annual sales lowest_year = annual_sales_df["date"].iloc[annual_sales_df["total_sales"].idxmin()] lowest_value = annual_sales_df["total_sales"].min() # show result as visual with plt.style.context("ggplot"): plt.subplots(figsize=(8, 1)) plt.axis("off") plt.text( 0.5, 0.5, f"Highest Year: {highest_year}, Total Sales: ${highest_value:,.2f}\n" f"Lowest Year: {lowest_year}, Total Sales: ${lowest_value:,.2f}", fontsize=14, ha="center", va="center", ) plt.title("Best & Worst Year", fontsize=20) plt.show() # print result as conclusion print( f"CONCLUSION\n" f"Total sales generated by company: ${highest_value+lowest_value:,.2f}\n" f"\n" f"With the highest sales is in {highest_year}, generating: ${highest_value:,.2f}\n" f"With the lowest sales is in {lowest_year}, generating: ${lowest_value:,.2f}" ) # ## Monthly Sales # > Task 2: # > Q: What was the best month for sales? How much was earned that month? # > # > A: Create Monthly Sales summary and find largest/smallest values in Monthly Sales # > In this section clean_sales_df will be referred to find monthly sales as monthly_sales_df. # Plot the monthly_sales_df and find largest/smallest values in monthly_sales_df then print the result as conclusion. # find monthly sales summary and convert to dataframe monthly_sales_df = pd.DataFrame( clean_sales_df.groupby( [clean_sales_df["date"].dt.year, clean_sales_df["date"].dt.month] )["total_sales"].sum() ) monthly_sales_df.index = pd.to_datetime( monthly_sales_df.index.map("{0[0]}-{0[1]}".format) ) monthly_sales_df.index.name = "date" monthly_sales_df = monthly_sales_df.reset_index() # find monthly sales average average_monthly_sales = monthly_sales_df["total_sales"].mean() # generate monthly sales visual with plt.style.context("ggplot"): plt.figure(figsize=(16, 4)) sns.lineplot(x="date", y="total_sales", data=monthly_sales_df) plt.gca().xaxis.set_major_formatter(DateFormatter("%y-%m")) plt.ticklabel_format(style="plain", axis="y") plt.title("Monthly Sales", fontsize=20) plt.xlabel("Date") plt.ylabel("Sales") plt.xticks(monthly_sales_df["date"]) # add axh line plt.axhline(y=average_monthly_sales, color="blue", linestyle="--", linewidth=1) plt.text( monthly_sales_df["date"].iloc[-12], average_monthly_sales + 5, f"Avg: ${average_monthly_sales:,.2f}", color="blue", fontsize=10, ha="center", va="bottom", ) # add data callouts for x, y in zip(monthly_sales_df["date"], monthly_sales_df["total_sales"]): label = f"${y:,.2f}" plt.annotate( label, (x, y), textcoords="offset points", xytext=(2, 4), ha="center" ) plt.show() # find highest month and value in monthly sales highest_months = monthly_sales_df.nlargest(3, "total_sales") highest_months["date"] = pd.to_datetime(highest_months["date"]).dt.strftime("%B %Y") highest_month_names = highest_months["date"].tolist() highest_month_values = highest_months["total_sales"].tolist() # find lowest month and value in monthly sales lowest_months = monthly_sales_df.nsmallest(3, "total_sales") lowest_months["date"] = pd.to_datetime(lowest_months["date"]).dt.strftime("%B %Y") lowest_month_names = lowest_months["date"].tolist() lowest_month_values = lowest_months["total_sales"].tolist() # show result as visual with plt.style.context("ggplot"): plt.subplots(figsize=(8, 1)) plt.axis("off") plt.text( 0.5, 0.5, f"Highest Month: {highest_month_names[0]}, Total Sales: ${highest_month_values[0]:,.2f}\n" f"Lowest Month: {lowest_month_names[0]}, Total Sales: ${lowest_month_values[0]:,.2f}", fontsize=14, ha="center", va="center", ) plt.title("Best & Worst Month", fontsize=20) plt.show() # print result as conclusion print( f"CONCLUSION\n" f"Top 3 best month:\n{highest_months.to_string(index=False)}\n" f"\n" f"Bottom 3 worst month:\n{lowest_months.to_string(index=False)}" ) # ## Sales by State and City # > Task 3: # > Q: What City had the highest number of sales? # > # > A: Create Sales by State/City and find largest/smallest values in Sales by State/City # > This section separated by 2 for Sales by State and Sales by City from clean_sales_df. # Purpose is to find both trend on state level and city level. # Plot and find largest/smallest values in both dataframe then print the result as conclusion. # ### Sales by State # find sales by state and convert to dataframe sales_by_state_df = pd.DataFrame(clean_sales_df.groupby("state")["total_sales"].sum()) sales_by_state_df = sales_by_state_df.sort_values( by="total_sales", ascending=False ).reset_index() # generate sales by state visual with plt.style.context("fivethirtyeight"): plt.figure(figsize=(16, 4)) sns.barplot(x="state", y="total_sales", data=sales_by_state_df, palette="husl") plt.ticklabel_format(style="plain", axis="y") plt.title("Sales by State", fontsize=20) plt.xlabel("State") plt.ylabel("Sales") # add data callouts for x, y in enumerate(sales_by_state_df["total_sales"]): label = f"${y:,.2f}" plt.annotate( label, (x, y), textcoords="offset points", xytext=(0, 2), ha="center", fontsize=10, ) plt.show() # > Following method is to create dictionary for state colors which is used by previous Sales by State plot. # The resulted dictionary will be called in next Sales by City visual to refer state by its colors. # create dictionary for state colors for use in sales by city visual state_colors = {} n_states = len(sales_by_state_df["state"]) palette = sns.color_palette( "husl", n_colors=n_states ) # use same palette as previous state visual for i, state in enumerate(sales_by_state_df["state"]): state_colors[state] = palette[i] # check the state colors print(state_colors) # find highest month and value in sales by state highest_state = sales_by_state_df.nlargest(3, "total_sales") highest_state_names = highest_state["state"].tolist() highest_state_values = highest_state["total_sales"].tolist() # find lowest month and value in sales by state lowest_state = sales_by_state_df.nsmallest(3, "total_sales") lowest_state_names = lowest_state["state"].tolist() lowest_state_values = lowest_state["total_sales"].to_list() # show result as visual with plt.style.context("fivethirtyeight"): plt.subplots(figsize=(8, 1)) plt.axis("off") plt.text( 0.5, 0.5, f"Highest State: {highest_state_names[0]}, Total Sales: ${highest_state_values[0]:,.2f}\n" f"Lowest State: {lowest_state_names[0]}, Total Sales: ${lowest_state_values[0]:,.2f}", fontsize=14, ha="center", va="center", ) plt.title("Best & Worst State", fontsize=20) plt.show() # print result as conclusion print( f"CONCLUSION\n" f"Top 3 best state sales:\n{highest_state.to_string(index=False)}\n" f"\n" f"Bottom 3 worst state sales:\n{lowest_state.to_string(index=False)}" ) # ### Sales by City # > There is a problem when referring y='city' in following cell for a same city name Portland, Maine and Portland Oregon which in return overwrite the y-axis. # The solution is to rename the city name for 'Portland' by referring 'state' then return with new defined names. # find sales by city and convert to dataframe sales_by_city_df = pd.DataFrame( clean_sales_df.groupby(["state", "city"])["total_sales"].sum() ) sales_by_city_df = sales_by_city_df.sort_values( by="total_sales", ascending=False ).reset_index() # modify city named "Portland" before generating visual (to avoid overwrite) sales_by_city_df.loc[ (sales_by_city_df["state"] == "ME") & (sales_by_city_df["city"] == "Portland"), "city", ] = "Portland (Maine)" sales_by_city_df.loc[ (sales_by_city_df["state"] == "OR") & (sales_by_city_df["city"] == "Portland"), "city", ] = "Portland (Oregon)" # generate visual for sales by city with plt.style.context("fivethirtyeight"): plt.figure(figsize=(16, 4)) sns.barplot( x="total_sales", y="city", hue="state", data=sales_by_city_df, dodge=False, palette=state_colors, ) # previous state_colors dict plt.title("Sales by City", fontsize=20) plt.xlabel("Sales") plt.ylabel("City") plt.legend( title="State", bbox_to_anchor=(1.05, 0.5), loc="center left", borderaxespad=0.0 ) # add data callouts for y, x in enumerate(sales_by_city_df["total_sales"]): label = f"${x:,.2f}" plt.annotate( label, (x, y), textcoords="offset points", xytext=(0, 0), ha="left", va="center", fontsize=10, ) plt.show() # find highest month and value in sales by city highest_city = sales_by_city_df.nlargest(3, "total_sales") highest_city_names = highest_city["city"].tolist() highest_city_values = highest_city["total_sales"].tolist() # find lowest month and value in sales by city lowest_city = sales_by_city_df.nsmallest(3, "total_sales") lowest_city_names = lowest_city["city"].tolist() lowest_city_values = lowest_city["total_sales"].tolist() # show result as visual with plt.style.context("fivethirtyeight"): plt.subplots(figsize=(8, 1)) plt.axis("off") plt.text( 0.5, 0.5, f"Highest City: {highest_city_names[0]}, Total Sales: ${highest_city_values[0]:,.2f}\n" f"Lowest City: {lowest_city_names[0]}, Total Sales: ${lowest_city_values[0]:,.2f}", fontsize=14, ha="center", va="center", ) plt.title("Highest & Lowest City Sales", fontsize=20) plt.show() # print result as conclusion print( f"CONCLUSION\n" f"Top 3 best city sales:\n{highest_city.to_string(index=False)}\n" f"\n" f"Bottom 3 worst city sales:\n{lowest_city.to_string(index=False)}" ) # ## Order Trend # > Task 4: # > Q: What time should we display adverstisement to maximize likelihood of customer's buying product? # > # > A: Find Monthly/Daily/Hourly Order Trend # > This section will find the data related to orders by simply find count/unique number of order_id by month/day/hour. # The data that will be referred here is clean_sales_2019_df(which also apply for the rest of the analysis). # > # > Despite order id cannot be duplicate in the dataset there is multiple rows with the same order id. # The reason why it's not dropped is because each may contains different product. # *not sure how to approach/may also need to change data cleaning section # > # > But using .count() it will return the duplicated order id as well. # If we want to count the order id as unique number then we can call .nunique() which will be used in following sections. # ### Monthly Order Trend # find monthly order and convert to dataframe monthly_order_df = pd.DataFrame( clean_sales_2019_df.groupby( [clean_sales_2019_df["date"].dt.year, clean_sales_2019_df["date"].dt.month] )["order_id"].nunique() ) monthly_order_df.index = pd.to_datetime( monthly_order_df.index.map("{0[0]}-{0[1]}".format) ) monthly_order_df.index.name = "date" monthly_order_df = monthly_order_df.rename( columns={"order_id": "total_orders"} ).reset_index() # find average monthly order average_monthly_order = monthly_order_df["total_orders"].mean() # generate monthly order visual with plt.style.context("bmh"): plt.figure(figsize=(16, 4)) sns.lineplot(x="date", y="total_orders", data=monthly_order_df) plt.gca().xaxis.set_major_formatter(DateFormatter("%Y-%m")) plt.ticklabel_format(style="plain", axis="y") plt.title("Monthly Order Trend", fontsize=20) plt.xlabel("Date") plt.ylabel("Order") plt.xticks(monthly_order_df["date"]) # add axh line plt.axhline(y=average_monthly_order, color="red", linestyle="--", linewidth=1) plt.text( monthly_order_df["date"].iloc[-12], average_monthly_order + 5, f"Avg: {average_monthly_order:,.2f}", color="red", fontsize=10, ha="center", va="bottom", ) # add data callouts for x, y in zip(monthly_order_df["date"], monthly_order_df["total_orders"]): label = f"{(y):,}" plt.annotate( label, (x, y), textcoords="offset points", xytext=(2, 4), ha="center" ) plt.show() # find 3 highest value in monthly order highest_monthly_orders = monthly_order_df.nlargest(3, "total_orders") highest_monthly_orders["date"] = pd.to_datetime( highest_monthly_orders["date"] ).dt.strftime("%B") # find 3 lowest value in monthly order lowest_monthly_orders = monthly_order_df.nsmallest(3, "total_orders") lowest_monthly_orders["date"] = pd.to_datetime( lowest_monthly_orders["date"] ).dt.strftime("%B") # print result as conclusion print( f"CONCLUSION\n" f"Months with highest total orders:\n{highest_monthly_orders.to_string(index=False)}\n" f"\n" f"Months with lowest total orders:\n{lowest_monthly_orders.to_string(index=False)}\n" f"\n" f"*use as references to maximize/prioritize advertisement" ) # ### Daily Order Trend # find daily order and convert to dataframe daily_order_df = pd.DataFrame( clean_sales_2019_df.groupby(clean_sales_2019_df["date"].dt.dayofweek)[ "order_id" ].nunique() ) daily_order_df.columns = ["total_orders"] daily_order_df.index = [ "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday", ] daily_order_df.index.name = "day_of_week" daily_order_df = daily_order_df.reset_index() # find average daily order average_daily_order = daily_order_df["total_orders"].mean() # generate daily order visual with plt.style.context("bmh"): plt.figure(figsize=(16, 4)) sns.lineplot(x="day_of_week", y="total_orders", data=daily_order_df) plt.ticklabel_format(style="plain", axis="y") plt.title("Daily Order Trend", fontsize=20) plt.xlabel("Day of Week") plt.ylabel("Order") # add axh line plt.axhline(y=average_daily_order, color="red", linestyle="--", linewidth=1) plt.text( daily_order_df["day_of_week"].iloc[-7], average_daily_order - 5, f"Avg: {average_daily_order:,.2f}", color="red", fontsize=10, ha="center", va="top", ) # add data callouts for x, y in enumerate(daily_order_df["total_orders"]): label = f"{(y):,}" plt.annotate( label, (x, y), textcoords="offset points", xytext=(2, 4), ha="center" ) plt.show() # find 3 highest value in daily orders highest_daily_orders = daily_order_df.nlargest(3, "total_orders") # find 3 lowest value in daily orders lowest_daily_orders = daily_order_df.nsmallest(3, "total_orders") # print result as conclusion print( f"CONCLUSION\n" f"Days with highest total orders:\n{highest_daily_orders.to_string(index=False)}\n" f"\n" f"Days with lowest total orders:\n{lowest_daily_orders.to_string(index=False)}\n" f"\n" f"*use as references to maximize/prioritize advertisement" ) # ### Hourly Order Trend # find hourly order and convert to dataframe hourly_order_df = pd.DataFrame( clean_sales_2019_df.groupby(clean_sales_2019_df["date"].dt.hour)[ "order_id" ].nunique() ) hourly_order_df.columns = ["total_orders"] hourly_order_df.index = pd.to_datetime(hourly_order_df.index, format="%H").strftime( "%H:%M" ) hourly_order_df.index.name = "hour" hourly_order_df = hourly_order_df.reset_index() # find average hourly order average_hourly_order = hourly_order_df["total_orders"].mean() # generate hourly order visual with plt.style.context("bmh"): plt.figure(figsize=(16, 4)) sns.lineplot(x="hour", y="total_orders", data=hourly_order_df) plt.ticklabel_format(style="plain", axis="y") plt.title("Hourly Order Trend", fontsize=20) plt.xlabel("Hour") plt.ylabel("Order") # add axh line plt.axhline(y=average_hourly_order, color="red", linestyle="--", linewidth=2) plt.text( 0.5, average_hourly_order + 100, f"Avg: {average_hourly_order:,.2f}", color="red", fontsize=10, ha="center", va="bottom", ) # add data callouts for x, y in enumerate(hourly_order_df["total_orders"]): label = f"{y:,}" plt.annotate( label, (x, y), textcoords="offset points", xytext=(2, 4), ha="center" ) plt.show() # find 6 highest value in hourly orders highest_hourly_orders = hourly_order_df.nlargest(6, "total_orders") # find 6 lowest value in hourly orders lowest_hourly_orders = hourly_order_df.nsmallest(6, "total_orders") # print result as conclusion print( f"CONCLUSION\n" f"Hours with highest total orders:\n{highest_hourly_orders.to_string(index=False)}\n" f"\n" f"Hours with lowest total orders:\n{lowest_hourly_orders.to_string(index=False)}\n" f"\n" f"*use as references to maximize/prioritize advertisement" ) # ## Product Performance # > Task 5: # > Q: What product sold the most? Why do you think it sold the most? # > # > A: Find Products Popularity and Product Price List Comparision # > Find data related to Product Popularity by calculate sum of quantity by each product. # This return the total product being purchased. # It also find price list by product which is used to create filled lines for comparision. # ### Product Popularity # create dataframe for product popularity product_popularity_df = pd.DataFrame( clean_sales_2019_df.groupby("product")["quantity"].sum() ) product_popularity_df.index.name = "product" product_popularity_df = product_popularity_df.sort_values( by="quantity", ascending=False ) product_popularity_df = product_popularity_df.reset_index() # create dataframe for product price product_price_df = pd.DataFrame(clean_sales_2019_df.groupby("product")["price"].first()) product_price_df = product_price_df.reset_index() # merge the two dataframes on the product column merged_popularity_price_df = pd.merge( product_popularity_df, product_price_df, on="product" ) # generate product sales visual with plt.style.context("classic"): fig, ax1 = plt.subplots(figsize=(16, 4)) sns.barplot( x="product", y="quantity", data=merged_popularity_price_df, palette="husl", ax=ax1, ) plt.ticklabel_format(style="plain", axis="y") plt.title("Product Popularity", fontsize=20) plt.xlabel("Product") plt.ylabel("Quantity") plt.xticks(rotation=80) # add data callouts for x, y in enumerate(merged_popularity_price_df["quantity"]): label = f"{y:,}" plt.annotate( label, (x, y), textcoords="offset points", xytext=(0, 4), ha="center", fontsize=12, ) # plot product prices as filled line plot ax2 = ax1.twinx() ax2.plot( merged_popularity_price_df["product"], merged_popularity_price_df["price"], color="red", ) ax2.set_ylabel("Price") ax2.fill_between( merged_popularity_price_df["product"], merged_popularity_price_df["price"], alpha=0.2, ) plt.show() # > Similar to previous Sales by State/City method the following will store product colors as dictionary which will be used later on. # create dictionary for product colors for use in product related visual product_colors = {} n_products = len(merged_popularity_price_df["product"]) palette = sns.color_palette( "husl", n_colors=n_products ) # use same palette as previous product visual for i, product in enumerate(merged_popularity_price_df["product"]): product_colors[product] = palette[i] # check the state colors print(product_colors) # find product sold most product_sold_most = merged_popularity_price_df.nlargest(3, "quantity") product_sold_most_names = product_sold_most["product"].tolist() product_sold_most_quantities = product_sold_most["quantity"].tolist() # find product sold least product_sold_least = merged_popularity_price_df.nsmallest(3, "quantity") product_sold_least_names = product_sold_least["product"].tolist() product_sold_least_quantities = product_sold_least["quantity"].tolist() # show result as visual with plt.style.context("classic"): plt.subplots(figsize=(8, 1)) plt.axis("off") plt.text( 0.5, 0.5, f"Most sold: {product_sold_most_names[0]}, Quantity: {product_sold_most_quantities[0]:,}\n" f"Least sold: {product_sold_least_names[0]}, Quantity: {product_sold_least_quantities[0]:,}", fontsize=14, ha="center", va="center", ) plt.title("Most & Least Sold Product", fontsize=20) plt.show() # print result as conclusion print( f"CONCLUSION\n" f"Top 3 most sold products:\n{product_sold_most.to_string(index=False)}\n" f"\n" f"Bottom 3 least sold products:\n{product_sold_least.to_string(index=False)}" ) # ### Price List Comparision # find price for each item list product_list_df = pd.DataFrame(clean_sales_2019_df.groupby("product")["price"].first()) product_list_df = product_list_df.sort_values(by="price", ascending=False) product_list_df = product_list_df.reset_index() # find product price average average_product_price = product_list_df["price"].mean() # generate product list visual with plt.style.context("classic"): plt.figure(figsize=(16, 6)) sns.barplot(x="price", y="product", data=product_list_df, palette=product_colors) plt.title("Product Price List", fontsize=20) plt.xlabel("Price") plt.ylabel("Product") # add axv line plt.axvline(x=average_product_price, color="red", linestyle="--", linewidth=1) plt.text( average_product_price + 5, len(product_list_df) / 2, f"Avg: ${average_product_price:.2f}", color="red", ha="left", va="center", ) plt.show() # find expensive product most_expensive_product = product_list_df.nlargest(3, "price") # find cheap product most_cheap_product = product_list_df.nsmallest(3, "price") # print result as conclusion print( f"CONCLUSION\n" f"Most expensive products:\n{most_expensive_product.to_string(index=False)}\n" f"\n" f"Most cheap products:\n{most_cheap_product.to_string(index=False)}" ) # ### Product Sold by Order # > Find average item each order and show how likely customers to buy more than 1 product in single order. # find average quantity per order id average_item_per_order = ( clean_sales_2019_df.groupby("order_id")["quantity"].mean().mean() ) # show result as visual with plt.style.context("classic"): plt.subplots(figsize=(8, 1)) plt.axis("off") plt.text( 0.5, 0.5, f"{average_item_per_order:,.2f}", fontsize=40, ha="center", va="center", ) plt.title("Average Item Each Order", fontsize=20) plt.show() # ## Probability # > Task 6: # > Q: How much probability for next people will order certain products? # > # > A: Find Product Orders % of Total Sales # >The following section is to find % product orders/sold compare to the total sales of all products. # the result will give % of product which may define the likelihood of the product will be purchased next. # This part is also the only section which used Squarify to plot the result as Treemap. # ### Product Orders of Total Sales # find total product sold total_product_sold = product_popularity_df["quantity"].sum() # find sizes and labels value in product popularity sizes = product_popularity_df["quantity"] labels = product_popularity_df["product"] # calculate percentage for each product percentages = [ f"{100*sizes[i]/sizes.sum():.2f}%\n{labels[i]}" for i in range(len(sizes)) ] # generate treemap visual for product sold percentage of total with plt.style.context("seaborn-dark-palette"): plt.figure(figsize=(16, 8)) squarify.plot( sizes=sizes, label=percentages, alpha=0.7, color=[product_colors[label] for label in labels], ) # get color from previous product color dict plt.axis("off") plt.title("Product % of Total", fontsize=20) plt.show() # print the result as conclusion print(f"CONCLUSION\n" f"List of probability:") # find percentages for product and print as conclusion for p in percentages: prob, label = p.split("\n") print(f"{label} = {prob}") # ## Product Associate Rules # > Task 7: # > Q: What products are most often sold together? # > # > A: Find Product Associate Rules using mlxtend library # > First need to find the product sold by each order id and store them into series(product_by_order). # Then transform the data into one-hot encoded matrix by applying TransactionEncoder().fit_transform(). # The result will be stored as dataframe(encoded_df). # Encoded data then used to generate frequent item sets using apriori algorithm the minimum support are defined as following. # Lastly sort the order by value in 'confidence'. # group product by order id product_by_order = clean_sales_2019_df.groupby("order_id")["product"].apply(list) # convert data to one-hot encoded matrix te = TransactionEncoder() onehot = te.fit_transform(product_by_order) encoded_df = pd.DataFrame(onehot, columns=te.columns_) # identify frequent itemsets frequent_itemsets = apriori(encoded_df, min_support=0.000015, use_colnames=True) # generate association rules rules = association_rules(frequent_itemsets, metric="confidence", min_threshold=0.5) rules = rules.sort_values("confidence", ascending=False) # print rules data head rules.head() # > Although the rules can be presented as tables. # In this case the rules is generated as string following more descriptive explanation. # There may be other method to visualize the rules waiting to be explored. # But for now the following will do. # create summary for each rule # create list to store items summaries = [] # iterrate throught available items in rules for i, row in rules.iterrows(): antecedents = ", ".join(list(row["antecedents"])) consequents = list(row["consequents"])[0] support = row["support"] confidence = row["confidence"] lift = row["lift"] leverage = row["leverage"] conviction = row["conviction"] # define ANSI escape codes for modifying the text's appearance BLUE = "\033[94m" GREEN = "\033[92m" RED = "\033[91m" END = "\033[0m" # create summary in string summary = ( f"Rule {i+1}:\n" f"Customers who bought {BLUE}{antecedents}{END} are more likely to buy {RED}{consequents}{END}.\n" f"This combination of products was purchased in {GREEN}{support*100:.3f}%{END} of all transactions.\n" f"When customers buy {BLUE}{antecedents}{END}, the chance of them also buying {RED}{consequents}{END} is {GREEN}{confidence*100:.2f}%{END}.\n" f"{RED}{consequents}{END} appears {GREEN}{lift:.2f}x{END} more likely when {BLUE}{antecedents}{END} appears compared to {RED}{consequents}{END} alone in general.\n" f"The rule's significance, as measured by leverage, is {GREEN}{leverage:.5f}{END}.\n" f"Dependence between {BLUE}{antecedents}{END} and {RED}{consequents}{END} is {GREEN}{conviction:.2f}{END}." ) # append the summary summaries.append(summary) # join all summaries into a single string summary_string = "\n\n".join(summaries) # print summary print(f"CONCLUSION\n\n{summary_string}")
# #### Now we are going to apply eigen cam on YOLO v5 model. There are certain things that we must consider before beginning with creation of the code for the interpretation of the model # - **The reshape transform - This isnt necessary for this model since it directly will return 2D spatial tensor as it's output.** # - **The target function - For eigen cam there won't be a a target function necessary for this, instead we will just apply PCA on the 2D activations** # - **The target layer - We will be extracting the second last layer as the target layer since the final layer just deals with the detections.** import warnings warnings.filterwarnings("ignore") warnings.simplefilter("ignore") import torch import cv2 import numpy as np import requests import torchvision.transforms as transforms from pytorch_grad_cam import EigenCAM from pytorch_grad_cam.utils.image import show_cam_on_image, scale_cam_image from PIL import Image model = torch.hub.load("ultralytics/yolov5", "yolov5s", pretrained=True) # #### After playing with the model, we can find the second last layer in it for modules in model.named_children(): print(modules) print(type(model)) print(type(model.model)) print(type(model.model.model)) print(type(model.model.model.model)) print(model.model.model.model[-2]) import io COLORS = np.random.uniform(0, 255, size=(80, 3)) def parse_detections(results): detections = results.pandas().xyxy[0] detections = detections.to_dict() boxes, colors, names = [], [], [] for i in range(len(detections["xmin"])): confidence = detections["confidence"][i] if confidence < 0.2: continue xmin = int(detections["xmin"][i]) ymin = int(detections["ymin"][i]) xmax = int(detections["xmax"][i]) ymax = int(detections["ymax"][i]) name = detections["name"][i] category = int(detections["class"][i]) color = COLORS[category] boxes.append((xmin, ymin, xmax, ymax)) colors.append(color) names.append(name) return boxes, colors, names def draw_detections(boxes, colors, names, img): for box, color, name in zip(boxes, colors, names): xmin, ymin, xmax, ymax = box cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 2) cv2.putText( img, name, (xmin, ymin - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2, lineType=cv2.LINE_AA, ) return img headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/112.0.0.0 Safari/537.36" } image_url = ( "https://upload.wikimedia.org/wikipedia/commons/f/f1/Puppies_%284984818141%29.jpg" ) response = requests.get(image_url, stream=True, headers=headers) img = np.array(Image.open(io.BytesIO(response.content))) img = cv2.resize(img, (640, 640)) rgb_img = img.copy() img = np.float32(img) / 255 transform = transforms.ToTensor() tensor = transform(img).unsqueeze(0) model = torch.hub.load("ultralytics/yolov5", "yolov5s", pretrained=True) model.eval() model.cpu() target_layers = [model.model.model.model[-2]] results = model([rgb_img]) boxes, colors, names = parse_detections(results) detections = draw_detections(boxes, colors, names, rgb_img.copy()) Image.fromarray(detections) # #### Creating the cam model and running it on the image. cam = EigenCAM(model, target_layers, use_cuda=False) grayscale_cam = cam(tensor)[0, :, :] cam_image = show_cam_on_image(img, grayscale_cam, use_rgb=True) Image.fromarray(cam_image) # #### We can also remove the heatmap data outside the bounding boxes and scale them inside every bounding box def renormalize_cam_in_bounding_boxes( boxes, colors, names, image_float_np, grayscale_cam ): """Normalize the CAM to be in the range [0, 1] inside every bounding boxes, and zero outside of the bounding boxes.""" renormalized_cam = np.zeros(grayscale_cam.shape, dtype=np.float32) for x1, y1, x2, y2 in boxes: renormalized_cam[y1:y2, x1:x2] = scale_cam_image( grayscale_cam[y1:y2, x1:x2].copy() ) renormalized_cam = scale_cam_image(renormalized_cam) eigencam_image_renormalized = show_cam_on_image( image_float_np, renormalized_cam, use_rgb=True ) image_with_bounding_boxes = draw_detections( boxes, colors, names, eigencam_image_renormalized ) return image_with_bounding_boxes renormalized_cam_image = renormalize_cam_in_bounding_boxes( boxes, colors, names, img, grayscale_cam ) Image.fromarray(renormalized_cam_image) Image.fromarray(np.hstack((rgb_img, cam_image, renormalized_cam_image)))
# Diabetic Retinopathy Detection # ## Table of Content # 1 - Introduction and Create Workspace # # 1.1 Import Packages # 1.2 Create Classes and Function # # 2 - Pre-Training on Diabetic Retinopathy 2015 data # # 2.1 Import Data # 2.2 Explore Data # 2.3 Preprocess and Augment Data # 2.4 - Using EFfienctNetB7 on Diabetic Retinopathy 2015 data # # 2.4.1 Setup Model and Choose Hyperparameters # 2.4.2 Train Model on Diabetic Retinopathy 2015 data # 2.4.3 Evaluation # # # 3 - Training on Diabetic Retinopathy 2019 data # # 3.1 Import Data # 3.2 Explore Data # 3.3 Preprocess and Augment Data # 3.4 - Load Pre-Trained EFfienctNetB7 trained on 2015 data # # 3.4.1 Setup Model and Choose Hyperparameters # 3.4.2 Train Model on Diabetic Retinopathy 2019 data # 3.4.3 Evaluation # # # # 1 - Introducation and Create Workspace # &nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Diabetic retinopathy (DR) is one of the leading causes of vision loss. According to a recent study from International Diabetes Federation, the global prevalence of DR among the individuals with diabetes for the period from 2015 to 2019 was at more than 25%. According to the World Health Organization, more than 300 million people worldwide have diabetes, and the disease # prevalence has been rising rapidly in developing countries. # &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Early detection and treatment are crucial steps towards preventing DR. Currently, detecting DR is a time-consuming process. The screening procedure requires a trained clinical expert to examine the fundus photographs of the patient’s retina. This creates delays in diagnosis and treatment of the disease. Automated evaluation of retina photographs can speed up the efficiency and coverage of the DR screening programs. This is especially relevant for developing countries, which often lack qualified medical stuff to perform the diagnosis. # &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;The project aims at developing a deep learning model for predicting the severity of DR disease based on the patient’s retina photograph. Previous research has explored the usage of deep learning for detecting DR and concluded that convolutional neural networks (CNNs) have high potential in this task . The Asia Pacific Tele-Ophthalmology Society (APTOS) has launched two Kaggle competitions with a goal of promoting the use of deep learning for DR detection and boosting the development of automated detection systems. # GitHub Repository. # The project leverages two data sets:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;1. main data set used for modeling and evaluation. This data set is provided by APTOS. It has been employed in the APTOS 2019 Blindness Detection competition on Kaggle and is available for the download at the competition website: https://www.kaggle.com/c/aptos2019-blindness-detection/data. The data set includes 3,662 labeled retina images of clinical patients. The images are taken using a fundus photography technique. # &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;2. supplementary data set for pre-training. This data set features 35,126 retina images labeled by a clinician using the same scale as the main data set. The data set has been used in the 2015 Diabetic Retinopathy Detection competition and is available for the download at the corresponding website: https://www.kaggle.com/c/diabetic-retinopathy-detection/data. # ## 1.1 Import Packages # importing libraries import numpy as np import pandas as pd from PIL import Image, ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True import cv2 from tqdm import tqdm_notebook as tqdm from functools import partial import scipy as sp import random import time import sys import os import matplotlib.pyplot as plt import seaborn as sns from sklearn import metrics from sklearn.metrics import confusion_matrix import torch import torchvision import torch.nn as nn import torch.optim as optim from torch.optim import lr_scheduler from torchvision import transforms, models, datasets from torch.utils.data import Dataset from torch.autograd import Variable from efficientnet_pytorch import EfficientNet import warnings warnings.filterwarnings("ignore") # # ## 1.2 Create Classes and Function # seed function def seed_everything(seed=23): # tests assert isinstance(seed, int), "seed has to be an integer" # randomness os.environ["PYTHONHASHSEED"] = str(seed) random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False image_size = 256 # IMAGE PREPROCESSING def prepare_image(path, sigmaX=10, do_random_crop=False): """ Preprocess image """ # import image image = cv2.imread(path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # perform smart crops image = crop_black(image, tol=7) if do_random_crop == True: image = random_crop(image, size=(0.9, 1)) # resize and color image = cv2.resize(image, (int(image_size), int(image_size))) image = cv2.addWeighted(image, 4, cv2.GaussianBlur(image, (0, 0), sigmaX), -4, 128) # circular crop image = circle_crop(image, sigmaX=sigmaX) # convert to tensor image = torch.tensor(image) image = image.permute(2, 1, 0) return image # CROP FUNCTIONS def crop_black(img, tol=7): """ Perform automatic crop of black areas """ if img.ndim == 2: mask = img > tol return img[np.ix_(mask.any(1), mask.any(0))] elif img.ndim == 3: gray_img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) mask = gray_img > tol check_shape = img[:, :, 0][np.ix_(mask.any(1), mask.any(0))].shape[0] if check_shape == 0: return img else: img1 = img[:, :, 0][np.ix_(mask.any(1), mask.any(0))] img2 = img[:, :, 1][np.ix_(mask.any(1), mask.any(0))] img3 = img[:, :, 2][np.ix_(mask.any(1), mask.any(0))] img = np.stack([img1, img2, img3], axis=-1) return img def circle_crop(img, sigmaX=10): """ Perform circular crop around image center """ height, width, depth = img.shape largest_side = np.max((height, width)) img = cv2.resize(img, (largest_side, largest_side)) height, width, depth = img.shape x = int(width / 2) y = int(height / 2) r = np.amin((x, y)) circle_img = np.zeros((height, width), np.uint8) cv2.circle(circle_img, (x, y), int(r), 1, thickness=-1) img = cv2.bitwise_and(img, img, mask=circle_img) return img def random_crop(img, size=(0.9, 1)): """ Random crop """ height, width, depth = img.shape cut = 1 - random.uniform(size[0], size[1]) i = random.randint(0, int(cut * height)) j = random.randint(0, int(cut * width)) h = i + int((1 - cut) * height) w = j + int((1 - cut) * width) img = img[i:h, j:w, :] return img class EyeData(Dataset): # initialize def __init__( self, data, directory, transform=None, do_random_crop=True, itype=".png" ): self.data = data self.directory = directory self.transform = transform self.do_random_crop = do_random_crop self.itype = itype # length def __len__(self): return len(self.data) # get items def __getitem__(self, idx): img_name = os.path.join( self.directory, self.data.loc[idx, "id_code"] + self.itype ) image = prepare_image(img_name, do_random_crop=self.do_random_crop) image = self.transform(image) label = torch.tensor(self.data.loc[idx, "diagnosis"]) return {"image": image, "label": label} class Data(Dataset): # initialize def __init__( self, data, directory, transform=None, do_random_crop=True, itype=".png" ): self.data = data self.directory = directory self.transform = transform self.do_random_crop = do_random_crop self.itype = itype # length def __len__(self): return len(self.data) # get items def __getitem__(self, idx): img_name = os.path.join( self.directory, self.data.loc[idx, "id_code"] + self.itype ) image = cv2.imread(img_name) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) image = crop_black(image, tol=7) image = cv2.resize(image, (int(image_size), int(image_size))) image = circle_crop(image, sigmaX=10) image = torch.tensor(image) image = image.permute(2, 1, 0) image = self.transform(image) label = torch.tensor(self.data.loc[idx, "diagnosis"]) return {"image": image, "label": label} def init_model(train=True, trn_layers=2, model_name="enet_b7"): """ Initialize the model """ ### training mode if train == True: # load pre-trained model model = EfficientNet.from_pretrained("efficientnet-b7", num_classes=5) model.load_state_dict( torch.load( "../input/diabetic-retinopathy-pre-training/models/model_{}.bin".format( model_name, 1 ) ) ) # freeze first layers for child in list(model.children())[:-trn_layers]: for param in child.parameters(): param.requires_grad = False # inference mode if train == False: # load pre-trained model model = EfficientNet.from_pretrained("efficientnet-b7", num_classes=5) model.load_state_dict( torch.load( "../input/diabetic-retinopathy-pre-training/models/model_{}.bin".format( model_name, 1 ) ) ) # freeze all layers for param in model.parameters(): param.requires_grad = False ### return model return model # GPU CHECK train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print("CUDA is not available. Training on CPU...") device = torch.device("cpu") else: print("CUDA is available. Training on GPU...") device = torch.device("cuda:0") # RANDOMNESS seed = 23 seed_everything(seed) # # # 2 - Pre-Training on Diabetic Retinopathy 2015 data # ## 2.1 Import Data # import data train = pd.read_csv("../input/diabetic-retinopathy-resized/trainLabels.csv") train.columns = ["id_code", "diagnosis"] test = pd.read_csv("../input/aptos2019-blindness-detection/train.csv") # check shape print(train.shape, test.shape) print("-" * 15) print(train["diagnosis"].value_counts()) print("-" * 15) print(test["diagnosis"].value_counts()) # # ## 2.2 Explore Data # CLASS DISTRIBUTION # plot fig = plt.figure(figsize=(15, 5)) plt.hist(train["diagnosis"]) plt.title("Class Distribution") plt.ylabel("Number of examples") plt.xlabel("Diagnosis") # transformations sample_trans = transforms.Compose( [ transforms.ToPILImage(), transforms.ToTensor(), ] ) sample = Data( data=train.iloc[0:10], directory="../input/diabetic-retinopathy-resized/resized_train/resized_train", transform=sample_trans, itype=".jpeg", ) # data loader sample_loader = torch.utils.data.DataLoader( dataset=sample, batch_size=10, shuffle=False, num_workers=4 ) # display images for batch_i, data in enumerate(sample_loader): # extract data inputs = data["image"] labels = data["label"].view(-1, 1) # create plot fig = plt.figure(figsize=(15, 7)) for i in range(len(labels)): ax = fig.add_subplot(2, int(len(labels) / 2), i + 1, xticks=[], yticks=[]) plt.imshow(inputs[i].numpy().transpose(1, 2, 0)) ax.set_title(labels.numpy()[i]) break # IMAGE SIZES # placeholder image_stats = [] # import loop for index, observation in tqdm(train.iterrows(), total=len(train)): # import image img = cv2.imread( "../input/diabetic-retinopathy-resized/resized_train/resized_train/{}.jpeg".format( observation["id_code"] ) ) # compute stats height, width, channels = img.shape ratio = width / height # save image_stats.append( np.array((observation["diagnosis"], height, width, channels, ratio)) ) # construct DF image_stats = pd.DataFrame(image_stats) image_stats.columns = ["diagnosis", "height", "width", "channels", "ratio"] # IMAGE SIZE DISTRIBUTION fig = plt.figure(figsize=(15, 5)) # width plt.subplot(1, 3, 1) plt.hist(image_stats["width"]) plt.title("(a) Image Width") plt.ylabel("Number of examples") plt.xlabel("Width") # height plt.subplot(1, 3, 2) plt.hist(image_stats["height"]) plt.title("(b) Image Height") plt.ylabel("Number of examples") plt.xlabel("Height") # ratio plt.subplot(1, 3, 3) plt.hist(image_stats["ratio"]) plt.title("(c) Aspect Ratio") plt.ylabel("Number of examples") plt.xlabel("Ratio") # # ## 2.3 Preprocess and Augment Training Data # TRANSFORMATIONS # parameters batch_size = 16 image_size = 256 # train transformations train_trans = transforms.Compose( [ transforms.ToPILImage(), transforms.RandomRotation((-360, 360)), transforms.RandomHorizontalFlip(), transforms.RandomVerticalFlip(), transforms.ToTensor(), ] ) # validation transformations valid_trans = transforms.Compose( [ transforms.ToPILImage(), transforms.ToTensor(), ] ) # test transformations test_trans = valid_trans # EXAMINE FIRST BATCH (TRAIN) # get dataset sample = EyeData( data=train.iloc[0:10], directory="../input/diabetic-retinopathy-resized/resized_train/resized_train", transform=train_trans, itype=".jpeg", ) # data loader sample_loader = torch.utils.data.DataLoader( dataset=sample, batch_size=batch_size, shuffle=True, num_workers=4 ) # display images for batch_i, data in enumerate(sample_loader): # extract data inputs = data["image"] labels = data["label"].view(-1, 1) # create plot fig = plt.figure(figsize=(20, 10)) for i in range(len(labels)): ax = fig.add_subplot(2, int(len(labels) / 2), i + 1, xticks=[], yticks=[]) plt.imshow(inputs[i].numpy().transpose(1, 2, 0)) ax.set_title(labels.numpy()[i]) break # EXAMINE FIRST BATCH (TEST) # get dataset sample = EyeData( data=test.iloc[0:10], directory="../input/aptos2019-blindness-detection/train_images", transform=test_trans, itype=".png", do_random_crop=False, ) # data loader sample_loader = torch.utils.data.DataLoader( dataset=sample, batch_size=batch_size, shuffle=False, num_workers=4 ) # display images for batch_i, data in enumerate(sample_loader): # extract data inputs = data["image"] # create plot fig = plt.figure(figsize=(20, 10)) for i in range(10): ax = fig.add_subplot(2, int(10 / 2), i + 1, xticks=[], yticks=[]) plt.imshow(inputs[i].numpy().transpose(1, 2, 0)) break # # ## 2.4 - Using EFfienctNet for Transfer Learning # ### 2.4.1 - Setup Model and Choose Hyperparameters # MODEL ARCHITECTURE # model name model_name = "enet_b7" # initialization function def init_pre_model(train=True): """ Initialize the model """ ### training mode if train == True: # load pre-trained model model = EfficientNet.from_pretrained("efficientnet-b7", num_classes=5) ### inference mode if train == False: # load pre-trained model model = EfficientNet.from_name("efficientnet-b7") model._fc = nn.Linear(model._fc.in_features, 5) # freeze layers for param in model.parameters(): param.requires_grad = False ### return model return model # check architecture model = init_pre_model() print(model) # VALIDATION SETTINGS # placeholders oof_preds = np.zeros((len(test), 5)) # timer cv_start = time.time() # PARAMETERS # loss function criterion = nn.CrossEntropyLoss() # epochs max_epochs = 15 early_stop = 5 # learning rates eta = 1e-3 # scheduler step = 5 gamma = 0.5 # # ## 2.4.2 - Train Model on Diabetic Retinopathy 2015 data # DATA PREPARATION # load splits data_train = train data_valid = test # create datasets train_dataset = EyeData( data=data_train, directory="../input/diabetic-retinopathy-resized/resized_train/resized_train", transform=train_trans, itype=".jpeg", ) valid_dataset = EyeData( data=data_valid, directory="../input/aptos2019-blindness-detection/train_images", transform=valid_trans, itype=".png", ) # create data loaders train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=batch_size, shuffle=True, num_workers=4 ) valid_loader = torch.utils.data.DataLoader( valid_dataset, batch_size=batch_size, shuffle=False, num_workers=4 ) # # ## 2.4.3 - Evaluation # RECHECK PERFORMANCE # rounding oof_preds_round = oof_preds.argmax(axis=1) coef = [0.5, 1.5, 2.5, 3.5] for i, pred in enumerate(oof_preds_round): if pred < coef[0]: oof_preds_round[i] = 0 elif pred >= coef[0] and pred < coef[1]: oof_preds_round[i] = 1 elif pred >= coef[1] and pred < coef[2]: oof_preds_round[i] = 2 elif pred >= coef[2] and pred < coef[3]: oof_preds_round[i] = 3 else: oof_preds_round[i] = 4 # compute kappa oof_loss = criterion( torch.tensor(oof_preds), torch.tensor(test["diagnosis"]).view(-1).type(torch.long) ) oof_kappa = metrics.cohen_kappa_score( test["diagnosis"], oof_preds_round.astype("int"), weights="quadratic" ) print("OOF loss = {:.4f}".format(oof_loss)) print("OOF kappa = {:.4f}".format(oof_kappa)) # CONFUSION MATRIX # construct confusion matrix cm = confusion_matrix(test["diagnosis"], oof_preds_round) cm = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis] annot = np.around(cm, 2) # plot matrix fig, ax = plt.subplots(figsize=(10, 10)) sns.heatmap(cm, cmap="Blues", annot=annot, lw=0.5) ax.set_xlabel("Prediction") ax.set_ylabel("Ground Truth") ax.set_aspect("equal") from sklearn.metrics import classification_report # Classification Report Test print( "\n Classification Report in Test: \n", classification_report(test["diagnosis"], oof_preds_round), ) # # # 3 - Training on Diabetic Retinopathy 2019 data # # ## 3.1 Import Data # import data train = pd.read_csv("../input/aptos2019-blindness-detection/train.csv") test = pd.read_csv("../input/aptos2019-blindness-detection/sample_submission.csv") # check shape print(train.shape, test.shape) print("-" * 15) print(train["diagnosis"].value_counts(normalize=True)) # MODELING EPOCHS # placeholders val_kappas = [] val_losses = [] trn_losses = [] bad_epochs = 0 # initialize and send to GPU model = init_pre_model() model = model.to(device) # optimizer optimizer = optim.Adam(model.parameters(), lr=eta) scheduler = lr_scheduler.StepLR(optimizer, step_size=step, gamma=gamma) # training and validation loop for epoch in range(max_epochs): ### PREPARATION # timer epoch_start = time.time() # reset losses trn_loss = 0.0 val_loss = 0.0 # placeholders fold_preds = np.zeros((len(data_valid), 5)) # TRAINING # switch regime model.train() # loop through batches for batch_i, data in enumerate(train_loader): # extract inputs and labels inputs = data["image"] labels = data["label"].view(-1) inputs = inputs.to(device, dtype=torch.float) labels = labels.to(device, dtype=torch.long) optimizer.zero_grad() # forward and backward pass with torch.set_grad_enabled(True): preds = model(inputs) loss = criterion(preds, labels) loss.backward() optimizer.step() # compute loss trn_loss += loss.item() * inputs.size(0) # INFERENCE # switch regime model.eval() # loop through batches for batch_i, data in enumerate(valid_loader): # extract inputs and labels inputs = data["image"] labels = data["label"].view(-1) inputs = inputs.to(device, dtype=torch.float) labels = labels.to(device, dtype=torch.long) # compute predictions with torch.set_grad_enabled(False): preds = model(inputs).detach() fold_preds[ batch_i * batch_size : (batch_i + 1) * batch_size, : ] = preds.cpu().numpy() # compute loss loss = criterion(preds, labels) val_loss += loss.item() * inputs.size(0) # save predictions oof_preds = fold_preds # scheduler step scheduler.step() # EVALUATION # evaluate performance fold_preds_round = fold_preds.argmax(axis=1) val_kappa = metrics.cohen_kappa_score( data_valid["diagnosis"], fold_preds_round.astype("int"), weights="quadratic" ) # save perfoirmance values val_kappas.append(val_kappa) val_losses.append(val_loss / len(data_valid)) trn_losses.append(trn_loss / len(data_train)) # EARLY STOPPING # display info print( "- epoch {}/{} | lr = {} | trn_loss = {:.4f} | val_loss = {:.4f} | val_kappa = {:.4f} | {:.2f} min".format( epoch + 1, max_epochs, scheduler.get_lr()[len(scheduler.get_lr()) - 1], trn_loss / len(data_train), val_loss / len(data_valid), val_kappa, (time.time() - epoch_start) / 60, ) ) # check if there is any improvement if epoch > 0: if val_kappas[epoch] < val_kappas[epoch - bad_epochs - 1]: bad_epochs += 1 else: bad_epochs = 0 # save model weights if improvement if bad_epochs == 0: oof_preds_best = oof_preds.copy() torch.save(model.state_dict(), "models/model_{}.bin".format(model_name)) # break if early stop if bad_epochs == early_stop: print( "Early stopping. Best results: loss = {:.4f}, kappa = {:.4f} (epoch {})".format( np.min(val_losses), val_kappas[np.argmin(val_losses)], np.argmin(val_losses) + 1, ) ) print("") break # break if max epochs if epoch == (max_epochs - 1): print( "Did not met early stopping. Best results: loss = {:.4f}, kappa = {:.4f} (epoch {})".format( np.min(val_losses), val_kappas[np.argmin(val_losses)], np.argmin(val_losses) + 1, ) ) print("") break # load best predictions oof_preds = oof_preds_best # print performance print("") print("Finished in {:.2f} minutes".format((time.time() - cv_start) / 60)) # # ## 3.2 Explore Data # CLASS DISTRIBUTION # plot fig = plt.figure(figsize=(15, 5)) plt.hist(train["diagnosis"]) plt.title("Class Distribution") plt.ylabel("Number of examples") plt.xlabel("Diagnosis") # transformations sample_trans = transforms.Compose( [ transforms.ToPILImage(), transforms.ToTensor(), ] ) sample = Data( data=train.iloc[0:10], directory="../input/aptos2019-blindness-detection/train_images", transform=sample_trans, itype=".png", ) # data loader sample_loader = torch.utils.data.DataLoader( dataset=sample, batch_size=10, shuffle=False, num_workers=4 ) # display images for batch_i, data in enumerate(sample_loader): # extract data inputs = data["image"] labels = data["label"].view(-1, 1) # create plot fig = plt.figure(figsize=(15, 7)) for i in range(len(labels)): ax = fig.add_subplot(2, int(len(labels) / 2), i + 1, xticks=[], yticks=[]) plt.imshow(inputs[i].numpy().transpose(1, 2, 0)) ax.set_title(labels.numpy()[i]) break # IMAGE SIZES # placeholder image_stats = [] # import loop for index, observation in tqdm(train.iterrows(), total=len(train)): # import image img = cv2.imread( "../input/aptos2019-blindness-detection/train_images/{}.png".format( observation["id_code"] ) ) # compute stats height, width, channels = img.shape ratio = width / height # save image_stats.append( np.array((observation["diagnosis"], height, width, channels, ratio)) ) # construct DF image_stats = pd.DataFrame(image_stats) image_stats.columns = ["diagnosis", "height", "width", "channels", "ratio"] # IMAGE SIZE DISTRIBUTION fig = plt.figure(figsize=(15, 5)) # width plt.subplot(1, 3, 1) plt.hist(image_stats["width"]) plt.title("(a) Image Width") plt.ylabel("Number of examples") plt.xlabel("Width") # height plt.subplot(1, 3, 2) plt.hist(image_stats["height"]) plt.title("(b) Image Height") plt.ylabel("Number of examples") plt.xlabel("Height") # ratio plt.subplot(1, 3, 3) plt.hist(image_stats["ratio"]) plt.title("(c) Aspect Ratio") plt.ylabel("Number of examples") plt.xlabel("Ratio") # # ## 3.3 Preprocess and Augment Data # TRANSFORMATIONS # parameters batch_size = 25 image_size = 256 # train transformations train_trans = transforms.Compose( [ transforms.ToPILImage(), transforms.RandomRotation((-360, 360)), transforms.RandomHorizontalFlip(), transforms.RandomVerticalFlip(), transforms.ToTensor(), ] ) # valid transformations valid_trans = transforms.Compose( [ transforms.ToPILImage(), transforms.ToTensor(), ] ) # test transformations test_trans = valid_trans # EXAMINE FIRST BATCH (TRAIN) # get dataset sample = EyeData( data=train.iloc[0:10], directory="../input/aptos2019-blindness-detection/train_images", transform=train_trans, itype=".png", ) # data loader sample_loader = torch.utils.data.DataLoader( dataset=sample, batch_size=batch_size, shuffle=True, num_workers=4 ) # display images for batch_i, data in enumerate(sample_loader): # extract data inputs = data["image"] labels = data["label"].view(-1, 1) # create plot fig = plt.figure(figsize=(20, 10)) for i in range(len(labels)): ax = fig.add_subplot(2, int(len(labels) / 2), i + 1, xticks=[], yticks=[]) plt.imshow(inputs[i].numpy().transpose(1, 2, 0)) ax.set_title(labels.numpy()[i]) break # EXAMINE FIRST BATCH (TEST) # get dataset sample = EyeData( data=test.iloc[0:10], directory="../input/aptos2019-blindness-detection/test_images", transform=test_trans, itype=".png", do_random_crop=False, ) # data loader sample_loader = torch.utils.data.DataLoader( dataset=sample, batch_size=batch_size, shuffle=False, num_workers=4 ) # display images for batch_i, data in enumerate(sample_loader): # extract data inputs = data["image"] # create plot fig = plt.figure(figsize=(20, 10)) for i in range(10): ax = fig.add_subplot(2, int(10 / 2), i + 1, xticks=[], yticks=[]) plt.imshow(inputs[i].numpy().transpose(1, 2, 0)) break # # ## 3.4 - Load Pre-Trained EFfienctNetB7 trained on 2015 data # ### 3.4.1 Setup Model and Choose Hyperparameters # MODEL ARCHITECTURE # model name model_name = "enet_b7" # check architecture model = init_model(model_name=model_name) print(model) # VALIDATION SETTINGS from sklearn.model_selection import KFold, StratifiedKFold # no. folds num_folds = 4 # creating splits skf = StratifiedKFold(n_splits=num_folds, shuffle=True, random_state=seed) splits = list(skf.split(train["id_code"], train["diagnosis"])) # placeholders oof_preds = np.zeros((len(train), 1)) # timer cv_start = time.time() # PARAMETERS # loss function criterion = nn.CrossEntropyLoss() # epochs max_epochs = 15 early_stop = 5 # learning rates eta = 1e-3 # scheduler step = 5 gamma = 0.5 # # ## 3.4.2 Train Model on Diabetic Retinopathy 2019 dat # CROSS-VALIDATION LOOP for fold in tqdm(range(num_folds)): # DATA PREPARATION # display information print("-" * 30) print("FOLD {}/{}".format(fold + 1, num_folds)) print("-" * 30) # load splits data_train = train.iloc[splits[fold][0]].reset_index(drop=True) data_valid = train.iloc[splits[fold][1]].reset_index(drop=True) # create datasets train_dataset = EyeData( data=data_train, directory="../input/aptos2019-blindness-detection/train_images", transform=train_trans, itype=".png", ) valid_dataset = EyeData( data=data_valid, directory="../input/aptos2019-blindness-detection/train_images", transform=valid_trans, itype=".png", ) # create data loaders train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=batch_size, shuffle=True, num_workers=4 ) valid_loader = torch.utils.data.DataLoader( valid_dataset, batch_size=batch_size, shuffle=False, num_workers=4 ) # MODEL PREPARATION # placeholders val_kappas = [] val_losses = [] trn_losses = [] bad_epochs = 0 # load best OOF predictions if fold > 0: oof_preds = oof_preds_best.copy() # initialize and send to GPU model = init_model(train=True) model = model.to(device) # optimizer optimizer = optim.Adam(model._fc.parameters(), lr=eta) scheduler = lr_scheduler.StepLR(optimizer, step_size=step, gamma=gamma) # TRAINING AND VALIDATION LOOP for epoch in range(max_epochs): ## PREPARATION # timer epoch_start = time.time() # reset losses trn_loss = 0.0 val_loss = 0.0 # placeholders fold_preds = np.zeros((len(data_valid), 1)) # TRAINING # switch regime model.train() # loop through batches for batch_i, data in enumerate(train_loader): # extract inputs and labels inputs = data["image"] labels = data["label"].view(-1) inputs = inputs.to(device, dtype=torch.float) labels = labels.to(device, dtype=torch.long) optimizer.zero_grad() # forward and backward pass with torch.set_grad_enabled(True): preds = model(inputs) loss = criterion(preds, labels) loss.backward() optimizer.step() # compute loss trn_loss += loss.item() * inputs.size(0) # INFERENCE # initialize model.eval() # loop through batches for batch_i, data in enumerate(valid_loader): # extract inputs and labels inputs = data["image"] labels = data["label"].view(-1) inputs = inputs.to(device, dtype=torch.float) labels = labels.to(device, dtype=torch.long) # compute predictions with torch.set_grad_enabled(False): preds = model(inputs).detach() _, class_preds = preds.topk(1) fold_preds[ batch_i * batch_size : (batch_i + 1) * batch_size, : ] = class_preds.cpu().numpy() # compute loss loss = criterion(preds, labels) val_loss += loss.item() * inputs.size(0) # save predictions oof_preds[splits[fold][1]] = fold_preds # scheduler step scheduler.step() # EVALUATION # evaluate performance fold_preds_round = fold_preds val_kappa = metrics.cohen_kappa_score( data_valid["diagnosis"], fold_preds_round.astype("int"), weights="quadratic" ) # save perfoirmance values val_kappas.append(val_kappa) val_losses.append(val_loss / len(data_valid)) trn_losses.append(trn_loss / len(data_train)) # EARLY STOPPING # display info print( "- epoch {}/{} | lr = {} | trn_loss = {:.4f} | val_loss = {:.4f} | val_kappa = {:.4f} | {:.2f} min".format( epoch + 1, max_epochs, scheduler.get_lr()[len(scheduler.get_lr()) - 1], trn_loss / len(data_train), val_loss / len(data_valid), val_kappa, (time.time() - epoch_start) / 60, ) ) # check if there is any improvement if epoch > 0: if val_kappas[epoch] < val_kappas[epoch - bad_epochs - 1]: bad_epochs += 1 else: bad_epochs = 0 # save model weights if improvement if bad_epochs == 0: oof_preds_best = oof_preds.copy() torch.save( model.state_dict(), "models/model_{}_fold{}.bin".format(model_name, fold + 1), ) # break if early stop if bad_epochs == early_stop: print( "Early stopping. Best results: loss = {:.4f}, kappa = {:.4f} (epoch {})".format( np.min(val_losses), val_kappas[np.argmin(val_losses)], np.argmin(val_losses) + 1, ) ) print("") break # break if max epochs if epoch == (max_epochs - 1): print( "Did not meet early stopping. Best results: loss = {:.4f}, kappa = {:.4f} (epoch {})".format( np.min(val_losses), val_kappas[np.argmin(val_losses)], np.argmin(val_losses) + 1, ) ) print("") break # load best predictions oof_preds = oof_preds_best # print performance print("") print("Finished in {:.2f} minutes".format((time.time() - cv_start) / 60)) # # ## 3.4.3 - Evaluation # # PLOT LOSS AND KAPPA DYNAMICS sns.set() # plot size fig = plt.figure(figsize=(15, 5)) # plot loss dynamics plt.subplot(1, 2, 1) plt.plot(trn_losses, "red", label="Training") plt.plot(val_losses, "green", label="Validation") plt.xlabel("Epoch") plt.ylabel("Loss") plt.legend() # plot kappa dynamics plt.subplot(1, 2, 2) plt.plot(val_kappas, "blue", label="Kappa") plt.xlabel("Epoch") plt.ylabel("Kappa") plt.legend() # RECHECK PERFORMANCE # evaluate performance oof_preds_round = oof_preds.copy() oof_kappa = metrics.cohen_kappa_score( train["diagnosis"], oof_preds_round.astype("int"), weights="quadratic" ) print("OOF kappa = {:.4f}".format(oof_kappa)) # CONFUSION MATRIX # construct confusion matrx cm = confusion_matrix(train["diagnosis"], oof_preds_round) cm = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis] annot = np.around(cm, 2) # plot matrix fig, ax = plt.subplots(figsize=(8, 6)) sns.heatmap(cm, cmap="Blues", annot=annot, lw=0.5) ax.set_xlabel("Prediction") ax.set_ylabel("Ground Truth") ax.set_aspect("equal") from sklearn.metrics import classification_report # Classification Report Test print( "\n Classification Report in Test: \n", classification_report(train["diagnosis"], oof_preds_round), ) # PLOT LOSS AND KAPPA DYNAMICS sns.set() # plot size fig = plt.figure(figsize=(15, 5)) # plot loss dynamics plt.subplot(1, 2, 1) plt.plot(trn_losses, "red", label="Training") plt.plot(val_losses, "green", label="Validation") plt.xlabel("Epoch") plt.ylabel("Loss") plt.legend() # plot kappa dynamics plt.subplot(1, 2, 2) plt.plot(val_kappas, "blue", label="Kappa") plt.xlabel("Epoch") plt.ylabel("Kappa") plt.legend()
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. # # Homework 5 # First we make a list of a range of angles. Feel free to print 'theta' to see what it looks like N = 121 # Want a lot of points. I made a point for every half angle between 30 and 90 degrees theta = np.linspace(30, 90, N) # Next we define our function. Where do we get it? Do you understand what it means? def v(theta, x, g, h, H): radians = theta * np.pi / 180 # np.cos/tan take radian values return (x / np.cos(radians)) * np.sqrt( (g / 2) / (x * np.tan(radians) + h - H) ) # maybe write this equation on scratch paper to see what it looks like # Defining our constants x = 15 # ft Distance to hoop g = 32.174 # ft/s^2 h = 6 # ft Height of person H = 10 # ft Height of hoop rim_radius = 0.738 # ft ball_radius = 0.398 # ft import matplotlib.pyplot as plt plt.plot(theta, v(theta, x, g, h, H), label="perfect") plt.plot(theta, v(theta, x - rim_radius + ball_radius, g, h, H), label="min") plt.plot(theta, v(theta, x + rim_radius - ball_radius, g, h, H), label="max") plt.ylim(24.3, 27) plt.xlim(38, 68) # Label your own axes with units plt.legend() plt.grid() # to better see the plot plt.show()
# # Predicting Airbnb Prices # # Importing Data import pandas as pd import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns import os from sklearn import set_config plt.style.use("ggplot") pd.set_option("display.max_columns", 100) # set_config(transform_output="pandas") #doesn't work here :( os.chdir("/kaggle/input/airbnb-cleaned-europe-dataset") df = pd.read_csv("Aemf1.csv") df df.info() # # EDA # ## Heat map # Correlations between variables are visualized in the heat map below. # - Cleaner rooms are rated higher. # - Attractions and restraunts are found in the same locations. # - City centers are further from the metro. # Heat map # optimizng range for color scale min = df.corr().min().min() max = df.corr()[df.corr() != 1].max().max() # thresholding selected correlations df_corr = df.corr()[np.absolute(df.corr()) > 0.3] # Mask for selecting only bottom triangle mask = np.triu(df_corr) with plt.style.context("default"): sns.heatmap(df_corr, vmin=min, vmax=max, mask=mask) # ## Pair plots # Distributions and relationships are plotted for selected parameters below: # raw data sns.pairplot( df[ [ "City Center (km)", "Metro Distance (km)", "Attraction Index", "Restraunt Index", "Price", ] ][df["Price"] < 2000], kind="hist", corner=True, ) # We see that these features are better represented in log space: # rescaled data df_trial = pd.DataFrame() df_trial["City Center (km)"] = np.log(df["City Center (km)"]) df_trial["Metro Distance (km)"] = np.log(df["Metro Distance (km)"]) df_trial["Attraction Index"] = np.log(df["Attraction Index"]) df_trial["Restraunt Index"] = np.log(df["Restraunt Index"]) df_trial["Price"] = np.log(df["Price"]) sns.pairplot(df_trial[df_trial["Price"] < 2000], kind="hist", corner=True) # ## RBF Definition # We can replace features with an apparent radial price distribution with an radial basis function. # Metro, city center and restraunt index appear to have radial price distributions from sklearn.metrics.pairwise import rbf_kernel rbf_metro = rbf_kernel(df_trial[["Metro Distance (km)"]], [[-0.5]], gamma=0.25) rbf_city = rbf_kernel(df_trial[["City Center (km)"]], [[0.8]], gamma=2) rbf_res = rbf_kernel(df_trial[["Restraunt Index"]], [[6]], gamma=3) # visualizing metro rbf function fig, ax1 = plt.subplots(1) plt.bar(df_trial["Metro Distance (km)"], df["Price"]) plt.xlabel("Log Metro Distance (km)") plt.ylabel("Price") ax2 = ax1.twinx() ax2.scatter(df_trial["Metro Distance (km)"], rbf_metro, color="k", s=0.5) ax2.set_ylim([0, 3]) ax2.set_ylabel("Price rbf") plt.show() # visualizing city rbf function fig, ax1 = plt.subplots(1) plt.bar(df_trial["City Center (km)"], df["Price"]) ax2 = ax1.twinx() ax2.scatter(df_trial["City Center (km)"], rbf_city, color="k", s=0.5) ax2.set_ylim([0, 1]) plt.show() # visualizing city rbf function fig, ax1 = plt.subplots(1) plt.bar(df_trial["Restraunt Index"], df["Price"]) ax2 = ax1.twinx() ax2.scatter(df_trial["Restraunt Index"], rbf_res, color="k", s=0.5) ax2.set_ylim([0, 1]) plt.show() # updating df with rbf functions df["rbf_metro"] = rbf_metro df["rbf_city"] = rbf_city df["rbf_res"] = rbf_res # ## Visualizing categorical data fig, ax = plt.subplots(1) fig.set_size_inches(8, 4) sns.boxplot(data=df, x="City", y="Price", showfliers=False) ax.set_ylim([0, 1300]) plt.show() sns.boxplot(data=df, x="Superhost", y="Price", showfliers=False) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 3)) plt.sca(ax1) sns.boxplot(data=df, x="Room Type", y="Price", showfliers=False) plt.sca(ax2) sns.boxplot(data=df, x="Shared Room", y="Price", showfliers=False) plt.tight_layout() sns.boxplot(data=df, x="Day", y="Price", showfliers=False) sns.boxplot( data=df, x="Person Capacity", y="Price", showfliers=False ) # ,scatter_kws={'alpha':0.05},line_kws={"color": "black"}) plt.ylim([0, 1000]) plt.show() # ## Visualizing consumer rankings # sns.regplot(data = df[df["Price"]<2000], x='Cleanliness Rating', y='Price',scatter=True,scatter_kws={'alpha':0.05},line_kws={"color": "black"}); sns.jointplot( x=df["Cleanliness Rating"], y=np.log(df["Price"]), kind="reg", scatter_kws={"alpha": 0.05}, line_kws={"color": "black"}, ) plt.show() # sns.regplot(data = df[df['Price']<2000], x='Guest Satisfaction', y='Price',scatter_kws={'alpha':0.05},line_kws={"color": "black"}) sns.jointplot( x=df["Guest Satisfaction"], y=np.log(df["Price"]), kind="reg", scatter_kws={"alpha": 0.05}, line_kws={"color": "black"}, ) plt.show() # # Cleaning Data # Three preprocessing transformations are defined for selecting different subsets of input features. from sklearn.compose import ColumnTransformer from sklearn.preprocessing import FunctionTransformer from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import MinMaxScaler from sklearn.base import BaseEstimator, TransformerMixin from sklearn.pipeline import make_pipeline from sklearn.model_selection import train_test_split # defining functions for column transformer cat_encoder = OneHotEncoder() log_pipeline = make_pipeline( FunctionTransformer(np.log), MinMaxScaler() # , inverse_func=np.exp), ) def day_2_num(X): return X == "Weekend" def day_pipeline(): return make_pipeline(FunctionTransformer(day_2_num)) day_pipe = day_pipeline() # defining standard column transformer preprocessing = ColumnTransformer( [ ("day", day_pipe, ["Day"]), ( "drop", "drop", [ "Normalised Attraction Index", "Normalised Restraunt Index", "rbf_metro", "rbf_city", "rbf_res", ], ), ( "pass", "passthrough", ["Private Room", "Shared Room", "Superhost", "Business", "Multiple Rooms"], ), ( "maxscale", MinMaxScaler(), ["Cleanliness Rating", "Bedrooms", "Guest Satisfaction"], ), ( "log", log_pipeline, [ "Attraction Index", "City Center (km)", "Metro Distance (km)", "Restraunt Index", ], ), ("cat", cat_encoder, ["Room Type", "City"]), ] ) # column transformer with rbf functions instead of metro, city, and restraunts preprocessing_rbf = ColumnTransformer( [ ("day", day_pipe, ["Day"]), ( "drop", "drop", [ "Normalised Attraction Index", "Normalised Restraunt Index", "Metro Distance (km)", "City Center (km)", "Restraunt Index", ], ), ( "pass", "passthrough", ["Private Room", "Shared Room", "Superhost", "Business", "Multiple Rooms"], ), ( "maxscale", MinMaxScaler(), ["Cleanliness Rating", "Bedrooms", "Guest Satisfaction"], ), ("log", log_pipeline, ["Attraction Index"]), ("pass2", "passthrough", ["rbf_metro", "rbf_city", "rbf_res"]), ("cat", cat_encoder, ["Room Type", "City"]), ] ) # column transformer with given normalized features preprocessing_norm = ColumnTransformer( [ ("day", day_pipe, ["Day"]), ( "drop", "drop", ["Attraction Index", "Restraunt Index", "rbf_metro", "rbf_city", "rbf_res"], ), ( "pass", "passthrough", ["Private Room", "Shared Room", "Superhost", "Business", "Multiple Rooms"], ), ( "maxscale", MinMaxScaler(), ["Cleanliness Rating", "Bedrooms", "Guest Satisfaction"], ), ("pass2", "passthrough", ["Normalised Attraction Index"]), ("log", log_pipeline, ["City Center (km)", "Metro Distance (km)"]), ("pass3", "passthrough", ["Normalised Restraunt Index"]), ("cat", cat_encoder, ["Room Type", "City"]), ] ) # naming output columns names = pd.Series( [ "Weekend", "Private Room", "Shared Room", "Superhost", "Business", "Multiple Rooms", "Cleanliness Rating", "Bedrooms", "Guest Satisfaction", "Attraction Index", "City Center", "Metro Distance", "Restraunt Index", "Private room", "Entire home/apt", "Shared room", "Amsterdam", "Athens", "Barcelona", "Berlin", "Budapest", "Lisbon", "Paris", "Rome", "Vienna", ] ) # transforming data df_processed = pd.DataFrame(preprocessing.fit_transform(df), columns=names) # splitting data into test and train sets y = df["Price"].copy() X = df.drop(columns={"Price"}) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=10 ) # # Predicing Price # importing packages from sklearn.linear_model import LinearRegression, Ridge, ElasticNet from sklearn.neighbors import KNeighborsRegressor from sklearn.svm import SVR from sklearn.ensemble import ( RandomForestRegressor, ExtraTreesRegressor, AdaBoostRegressor, GradientBoostingRegressor, ) from sklearn.metrics import mean_squared_error import xgboost as xgb from sklearn.decomposition import PCA # ## Sampling regression models # Common regression models were evaluated with six variations: # 1. No rerescaling or feature engineering # 2. Price target transformed to log-space # 3. Dimensionality rediction via PCA # 4. Feature engineering via replacement with RBF # 5. Provided normalized resraunt and attraction indexes used # 5. Combining variations 2-4 # unscaled y np.random.seed(10) models = [ Ridge(), ElasticNet(), SVR(), KNeighborsRegressor(), RandomForestRegressor(), ExtraTreesRegressor(), AdaBoostRegressor(), GradientBoostingRegressor(), xgb.XGBRegressor(), ] model_names = [ "Ridge", "ElasticNet", "SVR", "K-nearest neighbors", "Random Forest", "Extra Trees", "Adaptive Boosting", "Gradient Boosting", "XGBoost", ] error = [] for model in models: sample_pipe = make_pipeline(preprocessing, model) sample_pipe.fit(X_train, y_train) y_pred = sample_pipe.predict(X_test) error.append(mean_squared_error(y_test, y_pred)) # scaled y scaled_error = [] for model in models: scaled_pipe = make_pipeline(preprocessing, model) scaled_pipe.fit(X_train, np.log(y_train)) y_pred = scaled_pipe.predict(X_test) y_pred = np.exp(y_pred) scaled_error.append(mean_squared_error(y_test, y_pred)) # with dimensionality reduction pca = PCA(n_components=0.95) pca_error = [] for model in models: pca_pipe = make_pipeline(preprocessing, pca, model) pca_pipe.fit(X_train, y_train) y_pred = pca_pipe.predict(X_test) pca_error.append(mean_squared_error(y_test, y_pred)) # with rbf rbf_error = [] for model in models: rbf_pipe = make_pipeline(preprocessing_rbf, model) rbf_pipe.fit(X_train, y_train) y_pred = rbf_pipe.predict(X_test) rbf_error.append(mean_squared_error(y_test, y_pred)) # with normalized features norm_error = [] for model in models: norm_pipe = make_pipeline(preprocessing_norm, model) norm_pipe.fit(X_train, y_train) y_pred = norm_pipe.predict(X_test) norm_error.append(mean_squared_error(y_test, y_pred)) # combination of all combo_error = [] for model in models: combo_pipe = make_pipeline(preprocessing_rbf, pca, model) combo_pipe.fit(X_train, np.log(y_train)) y_pred = combo_pipe.predict(X_test) y_pred = np.exp(y_pred) combo_error.append(mean_squared_error(y_test, y_pred)) sample_results = pd.DataFrame( [error, scaled_error, pca_error, rbf_error, norm_error, combo_error], index=[ "Unscaled", "Scaled", "Reduced Dimensions", "RBF Features", "Normalized Features", "Combination", ], columns=model_names, ).T sample_results.plot(kind="barh") # plt.axvline((sum(error)+sum(scaled_error)+sum(pca_error))/(len(error)+len(scaled_error)+len(pca_error)), color='k', linestyle='--') plt.title("Classifier RMSE") plt.xlim([0, 250000]) plt.legend(loc=4, face_color="white") plt.show() # The top performing classifier was the random forest classifier with an unscaled price target. # ## Optimizing the random forest regressor from sklearn.model_selection import RandomizedSearchCV from scipy.stats import loguniform, expon, uniform, randint rf_pipeline = make_pipeline( preprocessing, RandomForestRegressor(random_state=10, n_jobs=-1) ) rf_params = { "randomforestregressor__n_estimators": randint(70, 110), "randomforestregressor__max_depth": randint(1, 10), "randomforestregressor__min_weight_fraction_leaf": uniform(0, 0.1), "randomforestregressor__max_features": ["auto", "sqrt", "log2"], "randomforestregressor__max_leaf_nodes": randint(1, 10), #'randomforestregressor__bootstrap':[True,False] } rf_search = RandomizedSearchCV( rf_pipeline, param_distributions=rf_params, n_iter=10000, cv=5, scoring="neg_mean_squared_error", random_state=15, ) rf_search.fit(X_train, y_train) score = rf_search.best_score_ params = rf_search.best_params_ score, params baseline = error[5] improvement = (baseline + rf_search.best_score_) / baseline * 100 baseline, improvement # 23% improvement with bootstrap true and n_est = 85 from skopt import BayesSearchCV from skopt.space import Real, Categorical, Integer from skopt.plots import plot_objective rf_pipeline = make_pipeline( preprocessing, RandomForestRegressor(random_state=10, n_jobs=-1) ) rf_search = { "randomforestregressor__n_estimators": (1, 100, "randint"), "randomforestregressor__max_depth": (1, 10, "randint"), "randomforestregressor__min_weight_fraction_leaf": (0, 0.1, "uniform"), #'randomforestregressor__max_features':['auto','sqrt','log2'], "randomforestregressor__max_leaf_nodes": (1, 10, "randint"), #'randomforestregressor__bootstrap':[True,False] } opt = BayesSearchCV(rf_pipeline, [(rf_search, 40)], cv=3) opt.fit(X_train, y_train) print("val. score: %s" % opt.best_score_) print("test score: %s" % opt.score(X_test, y_test)) print("best params: %s" % str(opt.best_params_))
# * The images provided for this competition are not classified in folders, based on classes, provided as whole in train and test folder. # * In this notebook we would be classifying and adding images to their respective class folders i.e either 'Benign' or 'Malignant' for the train images dataset. # * This would help in the training of model as tensorflow requires image folder to train on image data. # * We would need train.csv folder for classifying images. import os import shutil import random import re import math import time import pandas as pd import numpy as np from os import listdir from os.path import isfile, join # Setting file paths for our notebook: base_path = r"../input/siim-isic-melanoma-classification/jpeg" train_dir = r"../input/siim-isic-melanoma-classification/jpeg/train" test_dir = r"../input/siim-isic-melanoma-classification/jpeg/test" img_stats_path = r"../input/siim-isic-melanoma-classification" # Loading train and test data. train = pd.read_csv(os.path.join(base_path, "train.csv")) test = pd.read_csv(os.path.join(base_path, "test.csv")) sample = pd.read_csv(os.path.join(base_path, "sample_submission.csv")) # List containing all the names of images train_images = [f for f in listdir(train_dir) if isfile(join(train_dir, f))] test_images = [f for f in listdir(test_dir) if isfile(join(test_dir, f))] # Labels for the image names train_images_labels = [] for i in range(train.shape[0]): train_images_labels.append(train["target"].iloc[i]) # Create folders with class names src = r"../input/siim-isic-melanoma-classification" # Create new train_class folder, in that benign n malignant folders benign = r"../input/siim-isic-melanoma-classification\train_class\benign" malignant = r"../input/siim-isic-melanoma-classification\train_class\malignant" # Code for moving images from train folder to respective benign or malignant folder for i in range(train.shape[0]): if train["target"].iloc[i] == 0: shutil.move(src + "\\" + train_images[i], benign + "\\" + train_images[i]) else: shutil.move(src + "\\" + train_images[i], malignant + "\\" + train_images[i])
# # Imbalanced classification problem with anonimized data # New Bulgarian University semester I project # 1. Do an explarotary data analysis; # 2. Reduce data dimensionality; # 3. Acquire data from categorical features; # 4. Scale the data; # 5. Use logistic regression and SVM to find the best model available, while varying the hyperparameters via GridSearchCV or other methods. Use different metrics for the results; # 6. *optional* Try solving the problem via XGBoost; # 7. Test the best model on the testing dataset. # # Exploratory Data Analysis import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.feature_selection import RFE from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import ( StandardScaler, MinMaxScaler, MaxAbsScaler, RobustScaler, QuantileTransformer, PowerTransformer, ) from sklearn.metrics import ( accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, confusion_matrix, ) from statsmodels.stats.outliers_influence import variance_inflation_factor from sklearn.decomposition import PCA from sklearn.model_selection import train_test_split from sklearn.model_selection import ( KFold, RepeatedKFold, StratifiedKFold, RandomizedSearchCV, cross_val_score, train_test_split, TimeSeriesSplit, GridSearchCV, ) from numpy import mean from numpy import std from lightgbm import LGBMClassifier import xgboost as xgb from xgboost import XGBClassifier from sklearn.svm import SVC from imblearn.over_sampling import SMOTE from sklearn.utils import resample from scipy.stats import reciprocal, uniform pd.options.display.max_rows = 999 pd.options.display.max_columns = 999 df_train = pd.read_csv("X_train.csv", encoding='"Windows-1251"') df_test = pd.read_csv("X_test.csv", encoding='"Windows-1251"') df_test.shape df_train.shape df_test["test_flag"] = 1 df_train["test_flag"] = 0 len(df_test[df_test["Bad_Flag"] == 1]) / len(df_test[df_test["Bad_Flag"] == 0]) len(df_test[df_test["Bad_Flag"] == 0]) len(df_train[df_train["Bad_Flag"] == 1]) / len(df_train[df_train["Bad_Flag"] == 0]) len(df_train[df_train["Bad_Flag"] == 0]) # The training and testing datasets will be concatenated only for the sake of data cleaning and feature engineering. The 'test_flag' was created in order to be able to separate the datasets after those steps. Care will be taken not to have any information leak from the testing dataset. df_train = pd.concat([df_train, df_test]) df_train.shape df_train.describe() df_train.isnull().sum().sort_values(ascending=False)[:10] df_train.x255[:10] # It seems that x255 is a date type of feature. It will be transformed in the following section. # # Data cleaning and feature engineering df_train.x255 = pd.to_datetime(df_train.x255) df_train.x255.mean() df_train.x255 = df_train.x255.fillna(df_train.x255.mean()) df_train.x255.isnull().unique() df_train.x255 = df_train["x255"].astype(str) df_train["month"] = df_train.x255.str[5:7] df_train["year"] = df_train.x255.str[:4] df_train["day"] = df_train.x255.str[8:10] df_train.day.unique() df_train.month.unique() df_train.year.unique() df_train.year = df_train.year.astype(int) df_train.year.unique() df_train.month = df_train.month.astype(int) df_train.month.unique() df_train.day = df_train.day.astype(int) df_train.day.unique() df_train.shape # Dropping columns with no more than 1 unique value, as they can not have explanatory power: for col in df_train.columns: if len(df_train[col].unique()) == 1: df_train.drop(col, inplace=True, axis=1) df_train.shape df_train = df_train.drop(["x255"], axis=1) df_train.x261.unique() # Cleaning up features before One-hot encoding: df_train.x273.unique() features = ["x273", "x274", "x275", "x276"] for feature in features: df_train[feature] = df_train[feature].str.replace("Не", "0") df_train[feature] = df_train[feature].str.replace("Да", "1") df_train[feature] = df_train[feature].astype(bool) df_train.x273 # Now those features are boolean and can be used in model training and prediction. df_train.x2.value_counts() df_train.x3.value_counts() df_train.x4.value_counts() features = [] X = df_train.drop(["Bad_Flag"], axis=1) X = X.select_dtypes(exclude=["number", "bool_"]) X.head() # Cleaning more features: df_train.x195.value_counts() df_train.x262.value_counts() features = ["x195", "x262", "x253"] for feature in features: df_train[feature] = df_train[feature].str.replace("No", "0") df_train[feature] = df_train[feature].str.replace("Yes", "1") df_train[feature] = df_train[feature].astype(bool) df_train.x262 df_train.x256.value_counts() # Resetting index to enable concatenation later: df_train = df_train.reset_index() X = df_train.copy() ind = X["index"] X = X.select_dtypes(exclude=["number", "bool_"]) X.head() # Proper encoding to be able to make sense of feature x193 could not be found. # Transforming categorical data: from sklearn.preprocessing import OneHotEncoder enc = OneHotEncoder(drop="first") enc_data = pd.DataFrame( enc.fit_transform(X[X.columns.tolist()]).toarray(), columns=enc.get_feature_names() ) # Drop_first was used to make sure that no multicollinearity occurs between features. This would be damaging especially to logistic regression and linear-based models in general. enc_data # Dropping original categorical variables: df_train = df_train.drop(X.columns.tolist(), axis=1) df_train.shape df_train.head() # Returning the index to enc_data to enable concatenation with df_train: enc_data["index"] = ind enc_data.head() df_train = pd.concat([enc_data, df_train], axis=1) df_train.shape df_train.head() df_train.x135.equals(df_train.x136) # Even though pd.equals returns False, I suspect x135 and x136 are duplicate features. df_train.x135.describe() df_train.x136.describe() # They are, therefore drop either one: df_train = df_train.drop(["x135"], axis=1) # Removing column unnamed: df_train.drop(df_train.filter(regex="Unname"), axis=1, inplace=True) df_train.head() # Index not needed anymore: df_train = df_train.drop(["index"], axis=1) # Checking for duplicated columns as xgboost returns error for them: duplicate_columns = df_train.columns[df_train.columns.duplicated()] duplicate_columns # No duplicates, proceed with next steps. df_train.head() # Preparing original df_train for anomaly removal. df_train_og = df_train[df_train.test_flag == 0] # # Anomaly removal # Training with RFClassifier in order to find the most important features according to it (and remove anomalous observations from them) will be done on original training data to avoid information leakage from test data and thus preserve a 'true' testing dataset. from sklearn.ensemble import RandomForestClassifier X = df_train_og.drop(["Bad_Flag"], axis=1) y = df_train_og.Bad_Flag rf = RandomForestClassifier(n_estimators=100) rf.fit(X, y) # Get feature importances importances = rf.feature_importances_ # Sort the feature importances in descending order sorted_importances = np.argsort(importances)[::-1] # Get the top k features k = 10 # number of top features to consider top_k_features = X.columns[sorted_importances[:k]] # RFClassifier was used to find some important features and later use them for anomaly removal. It was important to fit the classifier on training data only (test_flag==0). top_k_features df_train_og.shape # Outliers were removed using the interquartile range. # Interquartile Range (IQR) is calculated via the difference between the 75th percentile and 25th percentile. The aim is to create a threshold beyond the 75th and 25th percentile. Beyond this threshold, instances will be detected as anomalies and deleted from the training dataset. # The threshold is determined by multiplying a number (ex: 1.5) by the IQR. The higher this threshold is, the less outliers will be detected (multiplying by a higher number ex: 3), and the lower this threshold is the more outliers will be detected. # The Tradeoff: The lower the threshold the more outliers will be removed. More "extreme outliers" should be removed, because there is a risk of information loss which will cause the models to perform worse. # # -----> x1 Removing Outliers (Highest Negative Correlated with Labels) x1_bad = df_train_og["x1"].loc[df_train_og["Bad_Flag"] == 1].values q25, q75 = np.percentile(x1_bad, 25), np.percentile(x1_bad, 75) print("Quartile 25: {} | Quartile 75: {}".format(q25, q75)) x1_iqr = q75 - q25 print("iqr: {}".format(x1_iqr)) x1_cut_off = x1_iqr * 1.5 x1_lower, x1_upper = q25 - x1_cut_off, q75 + x1_cut_off print("Cut Off: {}".format(x1_cut_off)) print("x1 Lower: {}".format(x1_lower)) print("x1 Upper: {}".format(x1_upper)) outliers = [x for x in x1_bad if x < x1_lower or x > x1_upper] print("Feature x1 Outliers for Bad Cases: {}".format(len(outliers))) print("x1 outliers:{}".format(outliers)) df_train_og = df_train_og.drop( df_train_og[(df_train_og["x1"] > x1_upper) | (df_train_og["x1"] < x1_lower)].index ) print("----" * 44) print("Size of new dataset", df_train_og.shape) # # -----> x265 Removing Outliers (Highest Negative Correlated with Labels) x265_bad = df_train_og["x265"].loc[df_train_og["Bad_Flag"] == 1].values q25, q75 = np.percentile(x265_bad, 25), np.percentile(x265_bad, 75) print("Quartile 25: {} | Quartile 75: {}".format(q25, q75)) x265_iqr = q75 - q25 print("iqr: {}".format(x265_iqr)) x265_cut_off = x265_iqr * 5 x265_lower, x265_upper = q25 - x265_cut_off, q75 + x265_cut_off print("Cut Off: {}".format(x265_cut_off)) print("x265 Lower: {}".format(x265_lower)) print("x265 Upper: {}".format(x265_upper)) outliers = [x for x in x265_bad if x < x265_lower or x > x265_upper] print("Feature x265 Outliers for Bad Cases: {}".format(len(outliers))) print("x265 outliers:{}".format(outliers)) df_train_og = df_train_og.drop( df_train_og[ (df_train_og["x265"] > x265_upper) | (df_train_og["x265"] < x265_lower) ].index ) print("----" * 44) print("Size of new dataset", df_train_og.shape) top_k_features # # -----> x268 Removing Outliers (Highest Negative Correlated with Labels) x268_bad = df_train_og["x268"].loc[df_train_og["Bad_Flag"] == 1].values q25, q75 = np.percentile(x268_bad, 25), np.percentile(x268_bad, 75) print("Quartile 25: {} | Quartile 75: {}".format(q25, q75)) x268_iqr = q75 - q25 print("iqr: {}".format(x268_iqr)) x268_cut_off = x268_iqr * 5 x268_lower, x268_upper = q25 - x268_cut_off, q75 + x268_cut_off print("Cut Off: {}".format(x268_cut_off)) print("x268 Lower: {}".format(x268_lower)) print("x268 Upper: {}".format(x268_upper)) outliers = [x for x in x268_bad if x < x268_lower or x > x268_upper] print("Feature x268 Outliers for Bad Cases: {}".format(len(outliers))) print("x268 outliers:{}".format(outliers)) df_train_og = df_train_og.drop( df_train_og[ (df_train_og["x268"] > x268_upper) | (df_train_og["x268"] < x268_lower) ].index ) print("----" * 44) print("Size of new dataset", df_train_og.shape) df_train_og.head() # # Train-validation-test split # The train-test(or validation) split should be done before any feature scaling and feature selection to avoid information leakage. This is because feature scaling and feature selection should only be performed on the training data and not on the test data. The test data is meant to be unseen data that provides a measure of how well the model generalizes to new data. By scaling and selecting features based on the test data, the test set is no longer truly unseen and can result in overestimating the performance of the model. df_test = df_train[df_train.test_flag == 1] df_train_og = df_train_og.drop(["test_flag"], axis=1) df_train_split, df_val = train_test_split( df_train_og, test_size=0.05, random_state=42, stratify=df_train_og.Bad_Flag ) print(df_train_split.shape, df_val.shape) df_test = df_test.drop(["test_flag"], axis=1) df_test.shape df_train_vif = df_train_split.copy() df_val_vif = df_val.copy() df_test_vif = df_test.copy() df_train_vif_corr = df_train_split.copy() df_val_vif_corr = df_val.copy() df_test_vif_corr = df_test.copy() df_train_corr = df_train_split.copy() df_val_corr = df_val.copy() df_test_corr = df_test.copy() # # Variance Inflation Factor # Variance Inflation Factor (VIF) is a statistical measure used to quantify the degree of multicollinearity among the independent variables in a multiple regression model. VIF is calculated as the ratio of the variance of a particular predictor in a multiple regression model to the variance of that predictor when it is considered alone. High VIF values indicate that a predictor is highly correlated with other predictors in the model, which can lead to instability in the regression coefficients and poor model performance. def remove_high_vif_features(dataframe, threshold=5.0): """Remove features with high Variance Inflation Factor (VIF) from a DataFrame. Args: dataframe: pandas DataFrame threshold: VIF threshold for removing features (default: 5.0) Returns: dataframe: pandas DataFrame with high VIF features removed """ # Convert dataframe to a matrix X = dataframe.values # Get the feature names feature_names = dataframe.columns # Compute the VIF for each feature vif = [variance_inflation_factor(X, i) for i in range(X.shape[1])] # Create a dictionary with the feature names and their corresponding VIF values vif_dict = dict(zip(feature_names, vif)) # Create a list of features with VIF values greater than the threshold high_vif_features = [ feature for feature, vif in vif_dict.items() if vif > threshold ] # Remove the high VIF features from the DataFrame dataframe = dataframe.drop(columns=high_vif_features) return dataframe X = df_train_vif.drop(["Bad_Flag"], axis=1) y = df_train_vif.Bad_Flag X = X.astype("float") X = remove_high_vif_features(X, threshold=6.0) # saving variables for direct later use df_train_vif = X.join(y) X_vif = X.copy() y_vif = y.copy() df_train_vif.shape # A significant number of features were removed as a result of being multicolinear. X_val_vif = df_val_vif.drop(["Bad_Flag"], axis=1) X_val_vif = X_val_vif[X_vif.columns.tolist()] X_val_vif.head() df_val_vif = X_val_vif.join(df_val_vif.Bad_Flag) X_test_vif = df_test_vif.drop(["Bad_Flag"], axis=1) X_test_vif = X_test_vif[X.columns.tolist()] X_test_vif.head() df_test_vif = X_test_vif.join(df_test_vif.Bad_Flag) # # Correlation def remove_low_correlation_features(dataframe, target, threshold=0.1): """Remove features with low correlation to the target variable from a DataFrame. Args: dataframe: pandas DataFrame target: target variable name threshold: correlation threshold for removing features (default: 0.1) Returns: dataframe: pandas DataFrame with low correlation features removed """ # Compute the correlation matrix corr_matrix = dataframe.corr() # Create a list of features with correlation values less than the threshold low_correlation_features = [ feature for feature, corr in corr_matrix[target].iteritems() if abs(corr) < threshold ] # Remove the low correlation features from the DataFrame dataframe = dataframe.drop(columns=low_correlation_features) return dataframe df_train_vif_corr = remove_low_correlation_features( df_train_vif, "Bad_Flag", threshold=0.05 ) df_train_vif_corr.shape X = df_train_vif_corr.drop(["Bad_Flag"], axis=1) X = X.astype("float") y = df_train_vif_corr.Bad_Flag X_vif_corr = X.copy() y_vif_corr = y.copy() # y_vif_corr = pd.DataFrame(y_vif_corr) # y_vif_corr.Bad_Flag.isna().unique() X_test_vif_corr = X_test_vif[X_vif_corr.columns.tolist()] X_test_vif_corr df_test_vif_corr = X_test_vif_corr.join(df_test_vif_corr.Bad_Flag) X_val_vif_corr = X_val_vif[X_vif_corr.columns.tolist()] X_val_vif_corr df_val_vif_corr = X_val_vif_corr.join(df_val_vif_corr.Bad_Flag) df_train_corr = remove_low_correlation_features( df_train_split, "Bad_Flag", threshold=0.05 ) X_corr = df_train_corr.drop(["Bad_Flag"], axis=1) y_corr = df_train_corr.Bad_Flag df_train_corr.shape X_test_corr = df_test_corr.drop(["Bad_Flag"], axis=1) X_test_corr = X_test_corr[X_corr.columns.tolist()] X_test_corr df_test_corr = X_test_corr.join(df_test_corr.Bad_Flag) X_val_corr = df_val_corr.drop(["Bad_Flag"], axis=1) X_val_corr = X_val_corr[X_corr.columns.tolist()] X_val_corr df_val_corr = X_val_corr.join(df_val_corr.Bad_Flag) # # Downsampling # Downsampling is a technique for handling imbalanced datasets in machine learning. The idea behind this technique is to balance the class distribution of the target variable by randomly removing instances from the majority class. The aim is to reduce the size of the majority class to match the size of the minority class, creating a more balanced dataset. This can help to improve the performance of some machine learning algorithms, as they may perform poorly on imbalanced datasets where the majority class dominates the training data. df_majority = df_train_split[df_train_split.Bad_Flag == 0] df_minority = df_train_split[df_train_split.Bad_Flag == 1] # Downsample majority class df_majority_downsampled = resample( df_majority, replace=False, # sample without replacement n_samples=len(df_minority), # to match minority class random_state=42, ) # reproducible results # Combine minority class with downsampled majority class df_downsampled = pd.concat([df_majority_downsampled, df_minority]) # Display new class counts df_downsampled.Bad_Flag.value_counts() df_majority_vif = df_train_vif[df_train_vif.Bad_Flag == 0] df_minority_vif = df_train_vif[df_train_vif.Bad_Flag == 1] # Downsample majority class df_majority_downsampled_vif = resample( df_majority_vif, replace=False, # sample without replacement n_samples=len(df_minority_vif), # to match minority class random_state=42, ) # reproducible results # Combine minority class with downsampled majority class df_downsampled_vif = pd.concat([df_majority_downsampled_vif, df_minority_vif]) # Display new class counts df_downsampled_vif.Bad_Flag.value_counts() df_majority_vif_corr = df_train_vif_corr[df_train_vif_corr.Bad_Flag == 0] df_minority_vif_corr = df_train_vif_corr[df_train_vif_corr.Bad_Flag == 1] # Downsample majority class df_majority_downsampled_vif_corr = resample( df_majority_vif_corr, replace=False, # sample without replacement n_samples=len(df_minority_vif_corr), # to match minority class random_state=42, ) # reproducible results # Combine minority class with downsampled majority class df_downsampled_vif_corr = pd.concat( [df_majority_downsampled_vif_corr, df_minority_vif_corr] ) # Display new class counts df_downsampled_vif_corr.Bad_Flag.value_counts() df_majority_corr = df_train_corr[df_train_corr.Bad_Flag == 0] df_minority_corr = df_train_corr[df_train_corr.Bad_Flag == 1] # Downsample majority class df_majority_downsampled_corr = resample( df_majority_corr, replace=False, # sample without replacement n_samples=len(df_minority_corr), # to match minority class random_state=42, ) # reproducible results # Combine minority class with downsampled majority class df_downsampled_corr = pd.concat([df_majority_downsampled_corr, df_minority_corr]) # Display new class counts df_downsampled_corr.Bad_Flag.value_counts() # # Upsampling # Upsampling is a technique used in imbalanced datasets to balance the class distribution. It involves increasing the number of instances in the minority class by duplicating existing instances. The goal is to make the number of instances in the minority class equal or close to the number of instances in the majority class, so that the class distribution becomes more balanced. This can help reduce the bias of the model towards the majority class and improve the model's performance in detecting the minority class. However, oversampling can lead to overfitting to the minority class and an increased computational burden, df_majority = df_train_split[df_train_split.Bad_Flag == 0] df_minority = df_train_split[df_train_split.Bad_Flag == 1] # Upsample minority class df_minority_upsampled = resample( df_minority, replace=True, # sample with replacement n_samples=len(df_majority), # to match majority class random_state=42, ) # reproducible results # Combine majority class with upsampled minority class df_upsampled = pd.concat([df_majority, df_minority_upsampled]) # Display new class counts df_upsampled.Bad_Flag.value_counts() df_majority_vif = df_train_vif[df_train_vif.Bad_Flag == 0] df_minority_vif = df_train_vif[df_train_vif.Bad_Flag == 1] # Downsample majority class df_minority_upsampled_vif = resample( df_minority_vif, replace=True, # sample with replacement n_samples=len(df_majority_vif), # to match minority class random_state=42, ) # reproducible results # Combine minority class with downsampled majority class df_upsampled_vif = pd.concat([df_majority_vif, df_minority_upsampled_vif]) # Display new class counts df_upsampled_vif.Bad_Flag.value_counts() df_majority_vif_corr = df_train_vif_corr[df_train_vif_corr.Bad_Flag == 0] df_minority_vif_corr = df_train_vif_corr[df_train_vif_corr.Bad_Flag == 1] # Downsample majority class df_minority_upsampled_vif_corr = resample( df_minority_vif_corr, replace=True, # sample with replacement n_samples=len(df_majority_vif_corr), # to match minority class random_state=42, ) # reproducible results # Combine minority class with downsampled majority class df_upsampled_vif_corr = pd.concat( [df_majority_vif_corr, df_minority_upsampled_vif_corr] ) # Display new class counts df_upsampled_vif_corr.Bad_Flag.value_counts() df_majority_corr = df_train_corr[df_train_corr.Bad_Flag == 0] df_minority_corr = df_train_corr[df_train_corr.Bad_Flag == 1] # Downsample majority class df_minority_upsampled_corr = resample( df_minority_corr, replace=True, # sample with replacement n_samples=len(df_majority_corr), # to match minority class random_state=42, ) # reproducible results # Combine minority class with downsampled majority class df_upsampled_corr = pd.concat([df_majority_corr, df_minority_upsampled_corr]) # Display new class counts df_upsampled_corr.Bad_Flag.value_counts() # # Logistic Regression # upsampled X_up = df_upsampled.drop(["Bad_Flag"], axis=1) y_up = df_upsampled.Bad_Flag x_train = X_up.copy() y_train = df_upsampled.Bad_Flag x_val = df_val.drop(["Bad_Flag"], axis=1) y_val = df_val.Bad_Flag reg = LogisticRegression(max_iter=2000) reg.fit(x_train, y_train) def cmetrics(y_true, y_pred): metrics = {} metrics["accuracy"] = round(accuracy_score(y_true, y_pred), 2) metrics["precision"] = round(precision_score(y_true, y_pred), 2) metrics["recall"] = round(recall_score(y_true, y_pred), 2) metrics["f1"] = round(f1_score(y_true, y_pred), 2) metrics["AUC-ROC"] = round(roc_auc_score(y_true, y_pred), 2) return metrics from sklearn.metrics import confusion_matrix import numpy as np import matplotlib.pyplot as plt import seaborn as sns def cmatrix(y_true, y_pred): # Calculate the confusion matrix cm = confusion_matrix(y_true, y_pred) # Plot the confusion matrix sns.heatmap( cm, annot=True, xticklabels=["0", "1"], yticklabels=["0", "1"], cmap="Blues", fmt="g", ) plt.xlabel("Predicted Label") plt.ylabel("True Label") plt.title("Confusion Matrix") plt.show() y_hat_val = reg.predict(x_val) print(cmetrics(y_val, y_hat_val)) cmatrix(y_val, y_hat_val) from tabulate import tabulate results = [["Log.Reg. default", round(f1_score(y_val, y_hat_val), 2)]] print(tabulate(results, headers=["Algorithm", "f1"], numalign="left")) cv_lr = StratifiedKFold(n_splits=5, random_state=42, shuffle=True) params_lr = { "C": np.logspace(-5, 5), "penalty": ["l1", "l2", "elasticnet"], "solver": ["lbfgs", "newton-cg"], "fit_intercept": [True, False], "l1_ratio": np.linspace(0, 1, 11), } reg_search = RandomizedSearchCV( LogisticRegression(max_iter=2000), params_lr, scoring="f1", cv=cv_lr, random_state=42, n_jobs=-1, ) reg_search.fit(x_train, y_train) reg_search.best_estimator_ reg_search.best_estimator_.solver y_hat_val = reg_search.best_estimator_.predict(x_val) print(cmetrics(y_val, y_hat_val)) cmatrix(y_val, y_hat_val) results += [["Log.Reg. tuned", round(f1_score(y_val, y_hat_val), 2)]] print(tabulate(results, headers=["Algorithm", "f1"], numalign="left")) # # Logistic Regression with feature selection via VIF and low corr. # # upsampled X_up = df_upsampled_vif_corr.drop(["Bad_Flag"], axis=1) y_up = df_upsampled_vif_corr.Bad_Flag x_train = X_up.copy() y_train = y_up.copy() x_val = df_val_vif_corr.drop(["Bad_Flag"], axis=1) y_val = df_val_vif_corr.Bad_Flag from sklearn.linear_model import LogisticRegression reg = LogisticRegression(max_iter=2000) reg.fit(x_train, y_train) y_hat_val = reg.predict(x_val) print(cmetrics(y_val, y_hat_val)) cmatrix(y_val, y_hat_val) results += [["Log.Reg. VIF+corr default", round(f1_score(y_val, y_hat_val), 2)]] print(tabulate(results, headers=["Algorithm", "f1"], numalign="left")) params_lr = { "C": np.logspace(-5, 5), "penalty": ["l1", "l2", "elasticnet"], "solver": ["newton-cg", "lbfgs", "liblinear", "saga"], "fit_intercept": [True, False], "l1_ratio": np.linspace(0, 1, 11), } reg_search = RandomizedSearchCV( LogisticRegression(max_iter=2000), params_lr, scoring="f1", cv=cv_lr, random_state=42, n_jobs=-1, ) reg_search.fit(x_train, y_train) reg_search.best_estimator_ y_hat_val = reg_search.best_estimator_.predict(x_val) print(cmetrics(y_val, y_hat_val)) cmatrix(y_val, y_hat_val) results += [["Log.Reg. VIF+corr Tuned", round(f1_score(y_val, y_hat_val), 2)]] print(tabulate(results, headers=["Algorithm", "f1"], numalign="left")) # Feature selection via combined VIF and removing lowly correlated to the target variable features does not offer improvement over using no feature selection techniques. # # Logistic Regression with feature selection via VIF # upsampled X_up = df_upsampled_vif.drop(["Bad_Flag"], axis=1) y_up = df_upsampled_vif.Bad_Flag x_train = X_up.copy() y_train = y_up.copy() x_val = df_val_vif.drop(["Bad_Flag"], axis=1) y_val = df_val_vif.Bad_Flag from sklearn.linear_model import LogisticRegression reg = LogisticRegression(max_iter=2000) reg.fit(x_train, y_train) y_hat_val = reg.predict(x_val) print(cmetrics(y_val, y_hat_val)) cmatrix(y_val, y_hat_val) results += [["Log.Reg. VIF default", round(f1_score(y_val, y_hat_val), 2)]] print(tabulate(results, headers=["Algorithm", "f1"], numalign="left")) reg_search = RandomizedSearchCV( LogisticRegression(max_iter=2000), params_lr, scoring="f1", cv=cv_lr, random_state=42, n_jobs=-1, ) reg_search.fit(x_train, y_train) reg_search.best_estimator_ y_hat_val = reg_search.best_estimator_.predict(x_val) print(cmetrics(y_val, y_hat_val)) cmatrix(y_val, y_hat_val) results += [["Log.Reg. VIF tuned", round(f1_score(y_val, y_hat_val), 2)]] print(tabulate(results, headers=["Algorithm", "f1"], numalign="left")) # Similar results to VIF+low corr. # # Logistic Regression with feature selection via low corr. # upsampled X_up = df_upsampled_corr.drop(["Bad_Flag"], axis=1) y_up = df_upsampled_corr.Bad_Flag x_train = X_up.copy() y_train = y_up.copy() x_val = df_val_corr.drop(["Bad_Flag"], axis=1) y_val = df_val_corr.Bad_Flag from sklearn.linear_model import LogisticRegression reg = LogisticRegression(max_iter=2000) reg.fit(x_train, y_train) y_hat_val = reg.predict(x_val) print(cmetrics(y_val, y_hat_val)) cmatrix(y_val, y_hat_val) results += [["Log.Reg. corr default", round(f1_score(y_val, y_hat_val), 2)]] print(tabulate(results, headers=["Algorithm", "f1"], numalign="left")) params_lr = { "C": np.logspace(-5, 5), "penalty": ["l1", "l2", "elasticnet"], "solver": ["newton-cg", "lbfgs", "liblinear"], "fit_intercept": [True, False], "l1_ratio": np.linspace(0, 1, 11), } reg_search = RandomizedSearchCV( LogisticRegression(max_iter=2000), params_lr, scoring="f1", cv=cv_lr, random_state=42, n_jobs=-1, ) reg_search.fit(x_train, y_train) reg_search.best_estimator_ y_hat_val = reg_search.best_estimator_.predict(x_val) print(cmetrics(y_val, y_hat_val)) cmatrix(y_val, y_hat_val) results += [["Log.Reg. corr tuned", round(f1_score(y_val, y_hat_val), 2)]] print(tabulate(results, headers=["Algorithm", "f1"], numalign="left")) # Logistic regression does not provide better results when the lowly correlated features are removed. # # SVM # SVM takes long to compile - using downsampled (i.e. smaller) data and scaling helps to improve that. # downsampled X_dw = df_downsampled.drop(["Bad_Flag"], axis=1) y_dw = df_downsampled.Bad_Flag # scaling scaler = MinMaxScaler() scaler.fit(X_dw) X_dw_scaled = scaler.transform(X_dw) x_train = X_dw_scaled.copy() y_train = y_dw.copy() x_val = df_val.drop(["Bad_Flag"], axis=1) x_val = scaler.transform(x_val) y_val = df_val.Bad_Flag from sklearn.svm import SVC SVC = SVC() SVC.fit(x_train, y_train) y_hat_val = SVC.predict(x_val) print(cmetrics(y_val, y_hat_val)) cmatrix(y_val, y_hat_val) results += [["SVM default", round(f1_score(y_val, y_hat_val), 2)]] print(tabulate(results, headers=["Algorithm", "f1"], numalign="left")) params_svm = { "C": np.logspace(-5, 5, 50), "gamma": np.logspace(-5, 5, 50), "kernel": ["linear", "poly", "rbf", "sigmoid"], } def spline(data_1, data_2): kernel = np.ones((data_1.shape[0], data_2.shape[0])) for d in range(data_1.shape[1]): column_1 = data_1[:, d].reshape(-1, 1) column_2 = data_2[:, d].reshape(-1, 1) c_prod = column_1 * column_2.T c_sum = column_1 + column_2.T c_min = np.minimum(column_1, column_2.T) kernel *= ( 1.0 + c_prod + c_prod * c_min - c_sum / 2.0 * c_min**2.0 + 1.0 / 3.0 * c_min**3.0 ) return kernel # The spline kernel is not included in sk-learn library. Code taken from [here](https://github.com/gmum/pykernels/blob/master/pykernels/regular.py). params_svm = { "C": np.logspace(-5, 5, 50), "gamma": np.logspace(-5, 5, 50), "kernel": ["poly", "rbf", "sigmoid", spline], } # fewer parameters are included to reduce compilation time, otherwise script does not compile at all cv_svm = StratifiedKFold(n_splits=5, random_state=42, shuffle=True) svm_search_best = RandomizedSearchCV( SVC, params_svm, scoring="f1", cv=cv_svm, random_state=42, n_jobs=-1 ) svm_search_best.fit(x_train, y_train) svm_search_best.best_estimator_ svm_search_best.best_estimator_.kernel y_pred = svm_search_best.best_estimator_.predict(x_val) print(cmetrics(y_val.values, y_pred)) cmatrix(y_val, y_pred) results += [["SVM tuned", round(f1_score(y_val.values, y_pred), 2)]] print(tabulate(results, headers=["Algorithm", "f1"], numalign="left")) # The results for SVM do not show improvement over logistic regression. # # SVM with feature selection via VIF and low corr. # downsampled X_dw = df_downsampled_vif_corr.drop(["Bad_Flag"], axis=1) y_dw = df_downsampled_vif_corr.Bad_Flag # scaling scaler = MinMaxScaler() scaler.fit(X_dw) X_dw_scaled = scaler.transform(X_dw) x_train = X_dw_scaled.copy() y_train = y_dw.copy() x_val = df_val_vif_corr.drop(["Bad_Flag"], axis=1) x_val = scaler.transform(x_val) y_val = df_val_vif_corr.Bad_Flag from sklearn.svm import SVC SVC = SVC() SVC.fit(x_train, y_train) y_hat_val = SVC.predict(x_val) print(cmetrics(y_val, y_hat_val)) cmatrix(y_val, y_hat_val) results += [["SVM Vif+corr default", round(f1_score(y_val, y_hat_val), 2)]] print(tabulate(results, headers=["Algorithm", "f1"], numalign="left")) cv_svm = StratifiedKFold(n_splits=5, random_state=42, shuffle=True) svm_search = RandomizedSearchCV( SVC, params_svm, scoring="f1", cv=cv_svm, random_state=42, n_jobs=None ) svm_search.fit(x_train, y_train) svm_search.best_estimator_.kernel y_pred = svm_search.best_estimator_.predict(x_val) print(cmetrics(y_val, y_pred)) cmatrix(y_val, y_pred) results += [["SVM Vif+corr tuned", round(f1_score(y_val, y_pred), 2)]] print(tabulate(results, headers=["Algorithm", "f1"], numalign="left")) # SVM performs very poorly with VIF + low correlation removed data. Interestingly, the spline kernel was also not chosen as the best estimator kernel. # It was hence decided to experiment - perhaps removing the lowly correlated features removes some important features. # # SVM with feature selection via VIF # downsampled X_dw = df_downsampled_vif.drop(["Bad_Flag"], axis=1) y_dw = df_downsampled_vif.Bad_Flag # scaling scaler = MinMaxScaler() scaler.fit(X_dw) X_dw_scaled = scaler.transform(X_dw) x_train = X_dw_scaled.copy() y_train = y_dw.copy() x_val = df_val_vif.drop(["Bad_Flag"], axis=1) x_val = scaler.transform(x_val) y_val = df_val_vif.Bad_Flag from sklearn.svm import SVC SVC = SVC() SVC.fit(x_train, y_train) y_hat_val = SVC.predict(x_val) print(cmetrics(y_val, y_hat_val)) cmatrix(y_val, y_hat_val) results += [["SVM VIF default", round(f1_score(y_val, y_hat_val), 2)]] print(tabulate(results, headers=["Algorithm", "f1"], numalign="left")) params_svm = {"kernel": ["poly", "rbf", "sigmoid", spline]} # fewer parameters are included to reduce compilation time, otherwise script does not compile at all cv_svm = StratifiedKFold(n_splits=5, random_state=42, shuffle=True) svm_search = RandomizedSearchCV( SVC, params_svm, scoring="f1", cv=cv_svm, random_state=42, n_jobs=-1 ) svm_search.fit(x_train, y_train) svm_search.best_estimator_ y_pred = svm_search.best_estimator_.predict(x_val) print(cmetrics(y_val.values, y_pred)) cmatrix(y_val, y_pred) results += [["SVM VIF tuned", round(f1_score(y_val.values, y_pred), 2)]] print(tabulate(results, headers=["Algorithm", "f1"], numalign="left")) # # SVM with feature selection via low corr. # downsampled X_dw = df_downsampled_corr.drop(["Bad_Flag"], axis=1) y_dw = df_downsampled_corr.Bad_Flag # scaling scaler = MinMaxScaler() scaler.fit(X_dw) X_dw_scaled = scaler.transform(X_dw) x_train = X_dw_scaled.copy() y_train = y_dw.copy() x_val = df_val_corr.drop(["Bad_Flag"], axis=1) x_val = scaler.transform(x_val) y_val = df_val_corr.Bad_Flag from sklearn.svm import SVC SVC = SVC() SVC.fit(x_train, y_train) y_hat_val = SVC.predict(x_val) print(cmetrics(y_val, y_hat_val)) cmatrix(y_val, y_hat_val) results += [["SVM corr default", round(f1_score(y_val, y_hat_val), 2)]] print(tabulate(results, headers=["Algorithm", "f1"], numalign="left")) params_svm = {"kernel": ["poly", "rbf", "sigmoid", spline]} # fewer parameters are included to reduce compilation time, otherwise script does not compile at all cv_svm = StratifiedKFold(n_splits=5, random_state=42, shuffle=True) svm_search = RandomizedSearchCV( SVC, params_svm, scoring="f1", cv=cv_svm, random_state=42, n_jobs=-1 ) svm_search.fit(x_train, y_train) svm_search.best_estimator_ y_pred = svm_search.best_estimator_.predict(x_val) print(cmetrics(y_val.values, y_pred)) cmatrix(y_val, y_pred) results += [["SVM corr tuned", round(f1_score(y_val.values, y_pred), 2)]] print(tabulate(results, headers=["Algorithm", "f1"], numalign="left")) # # XGBoost # upsample X_up = df_upsampled.drop(["Bad_Flag"], axis=1) y_up = df_upsampled.Bad_Flag x_train = X_up.copy() y_train = df_upsampled.Bad_Flag x_val = df_val.drop(["Bad_Flag"], axis=1) y_val = df_val.Bad_Flag eval_set = [(x_val, y_val)] from xgboost import XGBClassifier xgb = XGBClassifier() xgb.fit(x_train.values, y_train.values) y_hat_xgb_def = xgb.predict(x_val.values) print(cmetrics(y_val, y_hat_xgb_def)) cmatrix(y_val, y_hat_xgb_def) results += [["XGB default", round(f1_score(y_val, y_hat_xgb_def), 2)]] print(tabulate(results, headers=["Algorithm", "f1"], numalign="left")) params_xgb = { "max_depth": [1, 2, 3, 4, 5, 6], "min_child_weight": [1, 2, 3, 4], } # parameters to be tried in the search fix_params = { "learning_rate": 0.2, "n_estimators": 100, "objective": "binary:logistic", } # other parameters, fixed for the moment cv_xgb = StratifiedKFold(n_splits=5, random_state=42, shuffle=True) xgb = XGBClassifier(**fix_params) xgb_search_best = RandomizedSearchCV( xgb, params_xgb, n_iter=5, scoring="f1", cv=cv_xgb, random_state=42, refit=True, n_jobs=-1, ) xgb_search_best.fit(x_train, y_train) xgb_search_best.best_params_ # The particular choice of min_child_weight does not have a significant impact on the F1-score. To be selected are the best results of this search, i.e., max_depth = 5, and min_child_weight = 1. Other parameters can also be searched for: params_xgb = { "subsample": [0.8, 0.9, 1], "max_delta_step": [0, 1, 2, 4], } # parameters to be tries in the search fix_params = { "learning_rate": 0.2, "n_estimators": 100, "objective": "binary:logistic", "max_depth": 5, "min_child_weight": 1, } # other parameters, fixed for the moment cv_xgb = StratifiedKFold(n_splits=5, random_state=42, shuffle=True) xgb = XGBClassifier(**fix_params) xgb_search_best = RandomizedSearchCV( xgb, params_xgb, n_iter=5, scoring="f1", cv=cv_xgb, random_state=42, refit=True, n_jobs=-1, ) xgb_search_best.fit(x_train, y_train) xgb_search_best.best_params_ # It is obtained that max_delta_step = 4 and subsample = 0.9 are (quasi)-optimal. Optimizing the learning rate: # params_xgb = {"learning_rate": [0.05, 0.1, 0.15, 0.2, 0.25, 0.3]} fix_params = { "n_estimators": 100, "objective": "binary:logistic", "max_depth": 5, "min_child_weight": 1, "max_delta_step": 4, "subsample": 0.9, } # other parameters, fixed for the moment xgb = XGBClassifier(**fix_params) xgb_search_best = RandomizedSearchCV( xgb, params_xgb, n_iter=5, scoring="f1", cv=cv_xgb, random_state=42, refit=True, n_jobs=-1, ) xgb_search_best.fit(x_train, y_train) xgb_search_best.best_params_ fix_params = { "n_estimators": 100, "objective": "binary:logistic", "max_depth": 5, "min_child_weight": 1, "max_delta_step": 4, "subsample": 0.9, "learning_rate": 0.3, } xgb = XGBClassifier(**fix_params) xgb_final = xgb.fit(x_train, y_train) y_hat_xgb = xgb_final.predict(x_val) print(cmetrics(y_val, y_hat_xgb)) cmatrix(y_val, y_hat_xgb) results += [["XGB tuned", round(f1_score(y_val, y_hat_xgb), 2)]] print(tabulate(results, headers=["Algorithm", "f1"], numalign="left")) # # XGBoost with feature selection via VIF and low corr. # Normally, XGboost is a boosting algorithm and should be able to select features (hence remove variables with low correlation with target variable) and not be affected by high VIF features as well. Despite that, it is interesting to compare cleaned and not cleaned data. # upsampled X_up = df_upsampled_vif_corr.drop(["Bad_Flag"], axis=1) y_up = df_upsampled_vif_corr.Bad_Flag x_train = X_up.copy() y_train = y_up.copy() x_val = df_val_vif_corr.drop(["Bad_Flag"], axis=1) y_val = df_val_vif_corr.Bad_Flag from xgboost import XGBClassifier xgb = XGBClassifier() xgb.fit(x_train, y_train) y_hat_xgb_def = xgb.predict(x_val) print(cmetrics(y_val, y_hat_xgb_def)) cmatrix(y_val, y_hat_xgb_def) results += [["XGB VIF+corr def", round(f1_score(y_val, y_hat_xgb_def), 2)]] print(tabulate(results, headers=["Algorithm", "f1"], numalign="left")) xgb = XGBClassifier(**fix_params) xgb_final_vif_corr = xgb.fit(x_train, y_train) y_hat_xgb = xgb_final_vif_corr.predict(x_val) print(cmetrics(y_val, y_hat_xgb)) cmatrix(y_val, y_hat_xgb) results += [["XGB VIF+corr tuned", round(f1_score(y_val, y_hat_xgb), 2)]] print(tabulate(results, headers=["Algorithm", "f1"], numalign="left")) # # XGBoost with feature selection via VIF # upsample X_up = df_upsampled_vif.drop(["Bad_Flag"], axis=1) y_up = df_upsampled_vif.Bad_Flag x_train = X_up.copy() y_train = y_up.copy() x_val = df_val_vif.drop(["Bad_Flag"], axis=1) y_val = df_val_vif.Bad_Flag from xgboost import XGBClassifier xgb = XGBClassifier() xgb.fit(x_train, y_train) y_hat_xgb_def = xgb.predict(x_val) print(cmetrics(y_val, y_hat_xgb_def)) cmatrix(y_val, y_hat_xgb_def) results += [["XGB VIF default", round(f1_score(y_val, y_hat_xgb_def), 2)]] print(tabulate(results, headers=["Algorithm", "f1"], numalign="left")) xgb = XGBClassifier(**fix_params) xgb_final_vif = xgb.fit(x_train, y_train) y_hat_xgb = xgb_final_vif.predict(x_val) print(cmetrics(y_val, y_hat_xgb)) cmatrix(y_val, y_hat_xgb) results += [["XGB VIF tuned", round(f1_score(y_val, y_hat_xgb), 2)]] print(tabulate(results, headers=["Algorithm", "f1"], numalign="left")) # # XGBoost with feature selection via low corr. # upsample X_up = df_upsampled_corr.drop(["Bad_Flag"], axis=1) y_up = df_upsampled_corr.Bad_Flag x_train = X_up.copy() y_train = y_up.copy() x_val = df_val_corr.drop(["Bad_Flag"], axis=1) y_val = df_val_corr.Bad_Flag eval_set = [(x_val, y_val)] from xgboost import XGBClassifier xgb = XGBClassifier() xgb.fit(x_train, y_train) y_hat_xgb_def = xgb.predict(x_val) print(cmetrics(y_val, y_hat_xgb_def)) cmatrix(y_val, y_hat_xgb_def) results += [["XGB corr default", round(f1_score(y_val, y_hat_xgb_def), 2)]] print(tabulate(results, headers=["Algorithm", "f1"], numalign="left")) xgb = XGBClassifier(**fix_params) xgb_final_corr = xgb.fit(x_train, y_train) y_hat_xgb = xgb_final_corr.predict(x_val) print(cmetrics(y_val, y_hat_xgb)) cmatrix(y_val, y_hat_xgb) results += [["XGB corr tuned", round(f1_score(y_val, y_hat_xgb), 2)]] print(tabulate(results, headers=["Algorithm", "f1"], numalign="left")) # # Testing # DEFAULT XGB # upsample X_up = df_upsampled.drop(["Bad_Flag"], axis=1) y_up = df_upsampled.Bad_Flag x_train = X_up.copy() y_train = df_upsampled.Bad_Flag from xgboost import XGBClassifier xgb = XGBClassifier() xgb.fit(x_train, y_train) X_test = df_test.drop(["Bad_Flag"], axis=1) y_test = df_test.Bad_Flag y_pred = xgb.predict(X_test) print(cmetrics(y_test, y_pred)) print(confusion_matrix(y_test, y_pred)) # TUNED XGB X_test = df_test.drop(["Bad_Flag"], axis=1) y_test = df_test.Bad_Flag X_up = df_upsampled.drop(["Bad_Flag"], axis=1) y_up = df_upsampled.Bad_Flag x_train = X_up.copy() y_train = df_upsampled.Bad_Flag y_pred = xgb_final.predict(X_test) print(cmetrics(y_test, y_pred)) print(confusion_matrix(y_test, y_pred))
# Imports for project import functools import os import tensorflow.compat.v2 as tf import tensorflow_hub as hub import matplotlib.pylab as plt import numpy as np # Loading model and setting the driectory of the content and style images model = "/kaggle/input/arbitrary-image-stylization-v1/tensorflow1/256/2" model = hub.load(model) content_image = "/kaggle/input/100-bird-species/test/ABBOTTS BABBLER/1.jpg" style_image = "/kaggle/input/abstract-art-gallery/Abstract_gallery/Abstract_gallery/Abstract_image_1002.jpg" # Function for displaying the images def show_image(images, titles=("",)): img_num = len(images) image_sizes = [image.shape[1] for image in images] width = (image_sizes[0] * 6) // 320 plt.figure(figsize=(width * img_num, width)) for i in range(img_num): plt.imshow(images[i][0]) plt.axis("off") plt.title(titles[i] if len(titles) > i else "") plt.show() # Function to decode image directory and setting outputs def decode_image(image): img = tf.io.decode_image(tf.io.read_file(image), channels=3, dtype=tf.float32)[ tf.newaxis, ... ] return img outputs = model( tf.constant(decode_image(content_image)), tf.constant(decode_image(style_image)) ) stylized_image = outputs[0] # Displaying content, style and stylized images show_image( [decode_image(content_image), decode_image(style_image), stylized_image], titles=["Content Image", "Style Image", "Stylized Image"], )
# World happiness dataset has 5 years ranking of countries separately. The main object of this notebook is to work on my EDA skills. There is not a lot of data present, but this dataset might work best if you want to work on your EDA mainly, visualization skills. import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns # reading data from csv into pandas dataframe, as the files are differentiated based on years, i will be reading them seperately and in future i will be merging them based on requirements. data15 = pd.read_csv("/kaggle/input/world-happiness/2015.csv") data16 = pd.read_csv("/kaggle/input/world-happiness/2016.csv") data17 = pd.read_csv("/kaggle/input/world-happiness/2017.csv") data18 = pd.read_csv("/kaggle/input/world-happiness/2018.csv") data19 = pd.read_csv("/kaggle/input/world-happiness/2019.csv") data15.head() # Lets see what are the features data15.columns data15.info() data15.describe() data15.describe(include="object") # By above info and describe, there are 2 categorical features and 10 continuous features. non of them have any missing values. But if we focus a little into the continuous values, **Happiness ranking is not actually a continuous values where the values range from 1 to 158** where 1 is best and 158 is worst. we need to find a way to work with this data in future. # # Understanding Data # ### Not using Visualiation data15["Region"].value_counts() # In this 2015 dataset, Among 158 countries, 40 lie in Sub-Saharan Africa which is considerably 25%. # ### Now Lets use Visualization # **Continuous features**: # * Happiness Score # * Standard Error # * Economy (GDP per Capita) # * Family # * Health (Life Expectancy) # * Freedom # * Trust (Government Corruption) # * Generosity # * Dystopia Residual # **Categorical Features**: # * Country # * Region # **Special Feature**: # * Happiness Rank sns.scatterplot(data=data15, x="Economy (GDP per Capita)", y="Happiness Rank")
# A language model is trained on large amounts of textual data to understand the patterns and structure of language. The primary goal of a language model is to predict the probability of the next word or sequence of words in a sentence given the previous words. # Language models can be used for a variety of natural language processing (NLP) tasks, such as text classification, machine translation, text summarization, speech recognition, and sentiment analysis. There are many types of language models, ranging from simple n-gram models to more complex neural network-based models such as recurrent neural networks (RNNs) and transformers. # The transformer architecture is currently mostly used for language models and can be divided into an encoder and/or decoder architecture depending on the specific task. In general, transformers are trained on a large quantity of unlabeled text using self-supervised learning. The training of a transformer model on a lot of data takes a lot of computational effort and the training of language models can get expensive very quickly. So, often the best way to have a task-specific transformer model is to use a pre-trained model from [Hugging Face](https://huggingface.co/) and fine-tune the model based on your data. # Based on my work experience with invoices, fine-tuning a pre-existing model didn't work well. I received the best results for text classification after I finetuned a french base-model on german invoices. Nevertheless the overall F1-score wasn't worth the effort. I assume that the content and structure of an invoice differs too much from the training data (e.g. no continuous text and many numbers). Additional, the tokenizers of the pre-trained models are not optimied for invoices, so the context window of a transformer will contain less text, which makes the training less effective. # I worked on text classification of invoices for multiple clients. I trained a base-model on a few million invoices (mostly german and english) and fine-tuned the base model for each client consists with around 2000 - 50000 invoices and 70 - 2000 labels. Initially I used the Longformer architecture ([Beltagy et al. 2020](https://arxiv.org/pdf/2004.05150.pdf)), but based on a [bug](https://github.com/pytorch/pytorch/issues/94810), I couldn't deploy the models. Besides its limitations, I used the BERT architecture [Devlin et al. 2019](https://arxiv.org/pdf/1810.04805.pdf). # Obviously, I can't share anything from my work related data, so I use a german corpus and draft the training of a base-model. Another tutorial can be found [on Hugging Face](https://huggingface.co/blog/how-to-train). import os from pathlib import Path from datasets import load_dataset, Dataset import pandas as pd from sklearn.metrics import f1_score, precision_score, recall_score, accuracy_score import torch from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode from transformers import BertTokenizerFast, DataCollatorForLanguageModeling from transformers import BertConfig, BertForMaskedLM from transformers import LineByLineTextDataset from transformers import Trainer, TrainingArguments, EarlyStoppingCallback from tokenizers import Tokenizer from tokenizers import normalizers from tokenizers.normalizers import NFD, Lowercase, StripAccents from tokenizers import pre_tokenizers from tokenizers.pre_tokenizers import Digits, Whitespace, ByteLevel, Punctuation from tokenizers.processors import TemplateProcessing from tokenizers import Tokenizer, models, trainers from tqdm.auto import tqdm os.environ["WANDB_DISABLED"] = str("true") os.environ["TOKENIZERS_PARALLELISM"] = str("true") # ## Split data # Finding a good dataset is hard. I picked the [3 Million German Sentences](https://www.kaggle.com/datasets/rtatman/3-million-german-sentences) to showcase a short model training. Also, I don't expect any useful model here. # Each sentence has an id and a timestamp. For training a model, this is not needed. Additional, I use around 3000 sentences for the evaluation for the model training. The datasets will fit in memory, but to able to scale, I will use a streaming approch. def clean_text(examples): return {"text": examples["text"].split("\t")[1].split(":")[-1].strip()} dataset = load_dataset( "text", data_files="/kaggle/input/3-million-german-sentences/deu_news_2015_3M-sentences.txt", split="train", streaming=False, ) dataset = dataset.map(clean_text) dataset = dataset.train_test_split(test_size=0.01) train_length = len(dataset["train"]) eval_length = len(dataset["test"]) # convenience beats best practice df = pd.DataFrame({"text": dataset["train"]["text"]}) df.to_parquet("/kaggle/working/train_data.snap.parquet", compression="snappy") df = pd.DataFrame({"text": dataset["test"]["text"]}) df.to_parquet("/kaggle/working/eval_data.snap.parquet", compression="snappy") # del [dataset, df] # Finally, let's "load" the data. Did I mention, that I really like the [datasets library](https://huggingface.co/docs/datasets/index). # ## Tokenizer # A tokenizer converts raw text into into smaller units, such as words or subwords, that can be used for training machine learning models. The tokenizer takes as input a string of text and outputs a sequence of tokens, each of which represents a distinct unit of meaning. The subword tokenizer breaks down words into smaller subword units. This is useful for handling out-of-vocabulary (OOV) words, which are words that are not in the training data. # I use the [Byte-Pair Encoding tokenizer](https://huggingface.co/course/chapter6/5?fw=pt), which is a data compression algorithm, where the most common pair of consecutive bytes of data is replaced with a byte that does not occur in that data ([Gage 1994](https://www.derczynski.com/papers/archive/BPE_Gage.pdf), [Sennrich et al. 2016](https://arxiv.org/pdf/1508.07909.pdf)). byte_to_unicode_map = bytes_to_unicode() unicode_to_byte_map = dict((v, k) for k, v in byte_to_unicode_map.items()) base_vocab = list(unicode_to_byte_map.keys()) print(f"Size of our base vocabulary: {len(base_vocab)}") print(f"First element: `{base_vocab[0]}`, last element: `{base_vocab[-1]}`") # normalizer = normalizers.Sequence([NFD(), # # Lowercase(), # # StripAccents() # ]) # pre_tokenizer = pre_tokenizers.Sequence([ # # ByteLevel(add_prefix_space=False), # Whitespace() # ]) # tokenizer.normalizer = normalizer # tokenizer.pre_tokenizer = pre_tokenizer from tokenizers import Tokenizer from tokenizers.decoders import ByteLevel as ByteLevelDecoder from tokenizers.models import BPE from tokenizers.normalizers import Lowercase, NFKC, Sequence from tokenizers.pre_tokenizers import ByteLevel # First we create an empty Byte-Pair Encoding model (i.e. not trained model) tokenizer = Tokenizer(BPE()) # Then we enable lower-casing and unicode-normalization # The Sequence normalizer allows us to combine multiple Normalizer that will be # executed in order. tokenizer.normalizer = Sequence( [ NFKC(), # Lowercase() ] ) # Our tokenizer also needs a pre-tokenizer responsible for converting the input to a ByteLevel representation. tokenizer.pre_tokenizer = pre_tokenizers.Sequence( [ByteLevel(add_prefix_space=False), Whitespace()] ) # And finally, let's plug a decoder so we can recover from a tokenized input to the original one # tokenizer.decoder = ByteLevelDecoder() print( tokenizer.normalizer.normalize_str("""Dies ist ein Beispielsatz in Deutsch Äoüß""") ) # Here, we define the tokenization trainer. We define the size of the vocabular and the special tokens we use. vocab_size = 32768 trainer = trainers.BpeTrainer( vocab_size=vocab_size, show_progress=True, initial_alphabet=ByteLevel.alphabet(), special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"], ) # Normally, I avoid loading the dataset into memory to train a tokenizer. In this case, the tokenizer doesn't train with the batch_iterator. I don't know, what causes this problems, but for now, I # iter_dataset = iter(train_dataset) # def batch_iterator(batch_size=10): # for _ in tqdm(range(0, round(train_length,-1), batch_size)): # yield [next(iter_dataset)['text'] for _ in range(batch_size)] train_dataset = load_dataset( "parquet", data_files="/kaggle/working/train_data.snap.parquet", split="train" ) dataset = load_dataset( "text", data_files="/kaggle/input/3-million-german-sentences/deu_news_2015_3M-sentences.txt", split="train", streaming=False, ) # tokenizer.train_from_iterator(batch_iterator(), trainer=trainer) tokenizer.train_from_iterator(dataset, trainer=trainer, length=len(train_dataset)) del [train_dataset] print( tokenizer.normalizer.normalize_str( "wie geht es dir? Héllò hôw1 are äöü? 1234.12 1,2 12 euro po12" ) ) print( tokenizer.pre_tokenizer.pre_tokenize_str( "wie geht es dir? Héllò hôw1 are äöü? 1234.12 1,2 12 euro po12" ) ) output = tokenizer.encode( "wie geht es dir Beispielsatz in Deutsch Äoüß? Héllò hôw1 are äöü? 1234.12 1,2 12 euro po12" ) print(output.tokens) tokenizer.get_vocab_size() words = pd.read_csv( "/kaggle/input/3-million-german-sentences/deu_news_2015_3M-words.csv", dtype=str ) words.rename(columns={"!": "word", "53658": "count"}, inplace=True) words = words[["word", "count"]] words.head() many_tokens = [] for word in tqdm(words["word"].tolist()): if not isinstance(word, str): continue enc = tokenizer.encode(word) if len(enc) > 2: # ignore cls and sep many_tokens.append(word) many_tokens[1] len(many_tokens) tokenizer.save(f"/kaggle/working/tokenizer.json") # ## Model Training train_dataset = load_dataset( "parquet", data_files="/kaggle/working/train_data.snap.parquet", streaming=True, split="train", ) eval_dataset = load_dataset( "parquet", data_files="/kaggle/working/eval_data.snap.parquet", streaming=True, split="train", ) model_path = "/kaggle/working/model" use_mlm = True mlm_probability = 0.2 # still keeping the 80 - 10 - 10 rule batch_size = 16 seed, buffer_size = 42, 10_000 max_length = 512 block_size = 512 max_position_embeddings = 512 hidden_size = 768 num_hidden_layers = 2 # 12 num_attention_heads = 2 # 12 intermediate_size = 3072 drop_out = 0.1 config = BertConfig( attention_window=[block_size] * num_attention_heads, # mask_token_id = 4, bos_token_id=1, sep_token_id=2, # pad_token_id = 3, eos_token_id=2, max_position_embeddings=max_position_embeddings, hidden_size=hidden_size, num_hidden_layers=num_hidden_layers, num_attention_heads=num_attention_heads, intermediate_size=intermediate_size, hidden_act="gelu", hidden_dropout_prob=drop_out, attention_probs_dropout_prob=drop_out, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, vocab_size=vocab_size, use_cache=True, classifier_dropout=None, onnx_export=False, ) # train_dataset = load_dataset('parquet', data_files=f'../corpus/lufthansa.snap.parquet', # streaming=True, # split="train" # ) # eval_dataset = load_dataset('parquet', data_files=f'../corpus/lufthansa.snap.parquet', # streaming=True, # split="train" # ) def encode(examples, max_length, tokenizer): return tokenizer.batch_encode_plus( examples["text"], padding=True, truncation=True, max_length=max_length, # return_special_tokens_mask=True, # return_tensors="pt" ) tk_tokenizer = Tokenizer.from_file(f"/kaggle/working/tokenizer.json") tokenizer = PreTrainedTokenizerFast(tokenizer_object=tk_tokenizer) tokenizer.add_special_tokens( { "pad_token": "[PAD]", "unk_token": "[UNK]", "sep_token": "[SEP]", "cls_token": "[CLS]", "bos_token": "[CLS]", "eos_token": "[SEP]", "mask_token": "[MASK]", } ) train_dataset = train_dataset.map( encode, remove_columns=["text"], batched=True, batch_size=batch_size, fn_kwargs={"max_length": max_length, "tokenizer": tokenizer}, ) eval_dataset = eval_dataset.map( encode, remove_columns=["text"], batched=True, batch_size=batch_size, fn_kwargs={"max_length": max_length, "tokenizer": tokenizer}, ) train_dataset = train_dataset.with_format("torch") eval_dataset = eval_dataset.with_format("torch") data_collator = DataCollatorForLanguageModeling( tokenizer=tokenizer, mlm=use_mlm, mlm_probability=mlm_probability ) model = BertForMaskedLM(config=config) print(f"n of parameters: {model.num_parameters()}") # comp_model = torch.compile(model) # print(f"n of parameters: {comp_model.num_parameters()}") # ### Trainer config early_stopping = EarlyStoppingCallback( early_stopping_patience=3, early_stopping_threshold=0.02 ) callbacks = [early_stopping] learning_rate = 1e-4 # bert weight_decay = 1e-2 # bert lr_scheduler_type = "linear" num_train_epochs = 1 # 5 but training set is small train_batch_size = 32 eval_batch_size = 32 gradient_accumulation_steps = 2 eval_accumulation_steps = 2 warmup_steps = 1_000 adam_beta1 = 0.9 # bert adam_beta2 = 0.999 # bert adam_epsilon = 1e-8 # bert max_grad_norm = 1.0 # bert max_steps = len(train_dataset) // train_batch_size # 1_000_000 print(max_steps) training_args = TrainingArguments( output_dir=model_path, overwrite_output_dir=True, learning_rate=learning_rate, weight_decay=weight_decay, lr_scheduler_type=lr_scheduler_type, num_train_epochs=num_train_epochs, adam_beta1=adam_beta1, adam_beta2=adam_beta2, adam_epsilon=adam_epsilon, max_grad_norm=max_grad_norm, evaluation_strategy="steps", eval_steps=5_000, max_steps=max_steps, per_device_train_batch_size=train_batch_size, # depends on memory per_device_eval_batch_size=eval_batch_size, gradient_accumulation_steps=gradient_accumulation_steps, # eval_accumulation_steps=eval_accumulation_steps, save_strategy="steps", save_steps=5_000, save_total_limit=3, prediction_loss_only=False, report_to="tensorboard", log_level="warning", logging_strategy="steps", # fp16 = True, # fp16_full_eval=True, load_best_model_at_end=True, metric_for_best_model="loss", greater_is_better=False, push_to_hub=False, dataloader_pin_memory=True, ) def compute_metrics(eval_pred): logits, labels = eval_pred predictions = np.argmax(logits, axis=-1) accuracy = accuracy_score(y_true=labels, y_pred=predictions) recall = recall_score(y_true=labels, y_pred=predictions, average="weighted") precision = precision_score(y_true=labels, y_pred=predictions, average="weighted") f1 = f1_score(y_true=labels, y_pred=predictions, average="weighted") return {"accuracy": accuracy, "precision": precision, "recall": recall, "f1": f1} trainer = Trainer( model=model, args=training_args, data_collator=data_collator, train_dataset=train_dataset, eval_dataset=eval_dataset, # compute_metrics=compute_metrics, tokenizer=tokenizer, callbacks=callbacks, ) trainer.train()
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session print("Hello World!") x = 5 y = "Boo Boo" print(x) y x = 80 if x < 60: print("x is smaller") print("ABCD") else: print("x is greater") print("EFGH") x x = 55 x x = 5 y = str(5) z = float(4) x y z x = 5 y = "Hello World" z = 3.33 print(x) print(y) print(z) x, y, z = 55, "Hello World 5", 3.335 print(x) print(y) print(z) print(x, y, z) print("The value of x is", x) print("The value of y is " + y) print("The value of y is", y) print("The value of z is ", z) x = "abcd " y = "efgh" z = x + y z
# Roman numerals are written left to right with symbols of decreasing magnitude. # They are broken down straightforwardly with the following components: # Numerals=[I:1, IV:4, V:5, IX:9, X:10, XL:40, L:50, XC:90, C:100, CD:400, D:500, CM:900, M:1000] # Task: construct any number 1-1000 # Make sure that the function only accepts numbers in the range 1-1000 # Anything else should return an error message x = 5 type(x) is int def check(x): if type(x) is int and 1 <= x <= 1000: return True else: return "No" check(x) a = 2000 b = "string" c = 55.5 print(check(a)) print(check(b)) print(check(c)) # We will iterate over the symbols, appending them to a string while subtracting their value from x: roman = "" x = 100 x -= 10 roman += "X" print(x) print(roman) # Constructing the generator, incorporating this check: # Reminder of the symbols we need: # [I:1, IV:4, V:5, IX:9, X:10, XL:40, L:50, XC:90, C:100, CD:400, D:500, CM:900, M:1000] def RomanNumeral(x): Numeral = "" # start with an empty string if type(x) is int and 1 <= x <= 1000: while x > 0: if x == 1000: x -= 1000 Numeral += "M" elif 900 <= x < 1000: x -= 900 Numeral += "CM" elif 500 <= x < 900: x -= 500 Numeral += "D" elif 400 <= x < 500: x -= 400 Numeral += "CD" elif 100 <= x < 400: x -= 100 Numeral += "C" elif 90 <= x < 100: x -= 90 Numeral += "XC" elif 50 <= x < 90: x -= 50 Numeral += "L" elif 40 <= x < 50: x -= 40 Numeral += "XL" elif 10 <= x < 40: x -= 10 Numeral += "X" elif x == 9: x -= 9 Numeral += "IX" elif 5 <= x < 9: x -= 5 Numeral += "V" elif x == 4: x -= 4 Numeral += "IV" elif 1 <= x < 4: x -= 1 Numeral += "I" return Numeral else: return "Please input an integer between 1 and 1000" print(RomanNumeral(145)) print(RomanNumeral(678)) print(RomanNumeral(999)) print(RomanNumeral(-100)) print(RomanNumeral(3000)) print(RomanNumeral("three hundred")) print(RomanNumeral(300.00)) # Can the code be streamlined using a for loop: Numerals = { "I": 1, "IV": 4, "V": 5, "IX": 9, "X": 10, "XL": 40, "L": 50, "XC": 90, "C": 100, "CD": 400, "D": 500, "CM": 900, "M": 1000, } Numerals = dict(sorted(Numerals.items(), key=lambda x: x[1], reverse=True)) def RomanNumeral(x): Numeral = "" # start with an empty string if type(x) is int and 1 <= x <= 1000: while x > 0: for i in Numerals: if x >= Numerals[i]: x -= Numerals[i] Numeral += i break return Numeral else: return "Please input an integer between 1 and 1000" print(RomanNumeral(145)) print(RomanNumeral(678)) print(RomanNumeral(999)) print(RomanNumeral(-100)) print(RomanNumeral(3000)) print(RomanNumeral("three hundred")) print(RomanNumeral(300.00))
# kutuphanelerin yuklenmesi import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # # OLCULERİN FORMULLERİ # ![Ekran%20Resmi%202021-02-20%2022.20.00.png](attachment:Ekran%20Resmi%202021-02-20%2022.20.00.png) # ![Ekran%20Resmi%202021-02-20%2022.20.16.png](attachment:Ekran%20Resmi%202021-02-20%2022.20.16.png) # ![Ekran%20Resmi%202021-02-20%2022.20.29.png](attachment:Ekran%20Resmi%202021-02-20%2022.20.29.png) # # 1. Denklem # ***b = 2.90, w1 = 0.04, w2 = 0.17, w3= 0.002*** # # verinin yuklenmesi df = pd.read_csv("../input/advertising-data/Advertising.csv") # gereksiz degiskenlerin düsürulmes df = df.drop("Unnamed: 0", axis=1) # ilk 5 gozlem df.head() # tahminlerin hesaplanması df[["yhat"]] = df.iloc[:, 0:3].apply( lambda x: 2.90 + 0.04 * x[0] + 0.17 * x[1] + 0.002 * x[2], axis=1 ) # gercek ve tahmin arasındaki farkın hesaplanması df[["difference"]] = df.apply(lambda x: x[3] - x[4], axis=1) # farkların karelerinin alınması df[["square"]] = df.apply(lambda x: x[5] ** 2, axis=1) # mean squared error degerinin hesaplanması mse1 = df.square.sum() / len(df) # root mean square error degerinin hesaplanması rmse1 = np.sqrt(mse1) # mean absolute error degerinin hesaplanması mae1 = np.abs(df.difference).sum() / len(df) # mse , rmse ve mae'nin birlikte gosterimi print(mse1, rmse1, mae1) # # 2. Denklem # ***b = 1.70, w1 = 0.09, w2 = 0.20, w3= 0.017*** # verinin yuklenmesi df = pd.read_csv("../input/advertising-data/Advertising.csv") # gereksiz degiskenlerin düsürulmes df = df.drop("Unnamed: 0", axis=1) # ilk 5 gozlem df.head() # tahminlerin hesaplanması df[["yhat"]] = df.iloc[:, 0:3].apply( lambda x: 1.70 + 0.09 * x[0] + 0.20 * x[1] + 0.017 * x[2], axis=1 ) # gercek ve tahmin arasındaki farkın hesaplanması df[["difference"]] = df.apply(lambda x: x[3] - x[4], axis=1) # farkların karelerinin alınması df[["square"]] = df.apply(lambda x: x[5] ** 2, axis=1) # mean squared error degerinin hesaplanması mse2 = df.square.sum() / len(df) # root mean square error degerinin hesaplanması rmse2 = np.sqrt(mse2) # mean absolute error degerinin hesaplanması mae2 = np.abs(df.difference).sum() / len(df) # mse , rmse ve mae'nin birlikte gosterimi print(mse2, rmse2, mae2) # Hesaplanan olculerin birlikte gosterilmesi measure = pd.DataFrame( [mse1, rmse1, mae1, mse2, rmse2, mae2], index=["mse1", "rmse1", "mae1", "mse2", "rmse2", "mae2"], ) # olculere isim verilmese measure.columns = ["measures"] # olculerin gosterimi measure
# # Pandas revision - 101 # - This notebook contains Pandas revision import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns # ## Method Chaining df = pd.read_csv( "https://raw.githubusercontent.com/cajjster/data_files/main/vgsales.csv" ) df.head() df["Genre"].value_counts().sort_index() df["Genre"].sort_index().value_counts().plot.bar() # ## `loc` and `iloc` type(df.iloc[4]) # - Interger location df.iloc[4:10] df.iloc[1:10:3] # start:stop:step df.iloc[-1:] df.iloc[-1:, 2:5] # r,c # - Column name based df.loc[:100, "NA_Sales"] df.loc[:100, ["Platform", "NA_Sales"]] df.loc[100, "NA_Sales"] = 4.55 df.loc[100, "NA_Sales"] # change or update particular value # ## Filter with conditional logic for i in df[["Name", "Platform", "Year", "Genre", "Publisher"]]: print(i.upper()) print(df[i].unique()) print() wii = df["Platform"] == "Wii" wii.value_counts() df.loc[wii] df.loc[df["Platform"] == "PS2"] # ## Video gammes those has higher number of sales in japan than EU df.loc[df["JP_Sales"] > df["EU_Sales"], "Name"] df.loc[(df["Platform"] == "Wii") & (df["Genre"] == "Role-Playing")].sort_values( by="Global Sales", ascending=False ) ## Alternate wway for above technique rpg = df["Genre"] == "Role-Playing" df.loc[wii & rpg].reset_index(drop=True) ## Filter with OR action = df["Genre"] == "Action" shooter = df["Genre"] == "Shooter" df.loc[action | shooter] # filter with both or and condition since_2010 = df["Year"] == 2010 df.loc[(since_2010) & (action | shooter)] # not using () will give you different outputs df.loc[since_2010 & action | shooter] # #### isin() top_3_pub = df["Publisher"].value_counts()[:3].index.tolist() top_3_pub_isin = df.Publisher.isin(top_3_pub) top_3_pub_df = df.loc[top_3_pub_isin] top_3_pub_df genres = df.Genre.isin(["Sports", "Action", "Shooter"]) sales_2M = df["Global Sales"] >= 2 df.loc[genres & sales_2M] df.loc[genres & top_3_pub_isin & sales_2M] ## Between() allows us to specify a range' between_2m_10_m = df["Global Sales"].between(2, 10) y_90 = df["Year"].between(1990, 1999) y_00 = df["Year"].between(2000, 2010) y_10 = df["Year"].between(2010, 2019) df.loc[between_2m_10_m & y_90, "Genre"].value_counts( normalize=True ).sort_index().plot.bar() df.loc[between_2m_10_m & y_00, "Genre"].value_counts(normalize=True) df.loc[between_2m_10_m & y_10, "Genre"].value_counts(normalize=True).plot.bar() ## Leta find out which Racing games has the highest sales in EU compared to the NA.JP and Other Sales # between 2000 & 2010 race = df["Genre"] == "Racing" highest_EU = ( (df["EU_Sales"] > df["JP_Sales"]) & (df["EU_Sales"] > df["NA_Sales"]) & (df["EU_Sales"] > df["Other_Sales"]) ) y_00s = df["Year"].between(2000, 2019) df.loc[race & highest_EU & y_00s, ["Name", "EU_Sales"]].sort_values( by="EU_Sales", ascending=False ).head().set_index("Name") # ## Most useful methods for data analysis df.query("NA_Sales < JP_Sales") df.query("Publisher == 'Ubisoft' and Year > 2014") ps3 = df.query("Platform == 'PS3'") # unique and nunique() df.Platform.unique() df.nunique() df["Year"].nunique() # for i in df.select_dtypes("object"): # print(df[i].unique()) ps3.reset_index(drop=True, inplace=True) ps3 ps3.set_index("Name", inplace=True) ps3.rename({"EU_Sales": "Europe", "NA_Sales": "US"}, axis=1) ps3.rename({"Call of Duty: Black Ops II ": "COD Black OPS 2"}) ## nlargest and nsmallest ps3.nlargest(n=10, columns="NA_Sales").loc[:, "NA_Sales"].plot.bar() import matplotlib.pyplot as plt import seaborn as sns fig, ax = plt.subplots(2, 2, figsize=(20, 20)) ps3.nlargest(n=10, columns="NA_Sales").loc[:, "NA_Sales"].plot.bar(ax=ax[0][0]) ax[1][0].set_title("North America") ps3.nlargest(n=10, columns="EU_Sales").loc[:, "EU_Sales"].plot.bar(ax=ax[0][1]) ax[0][1].set_title("Europe") ps3.nlargest(n=10, columns="JP_Sales").loc[:, "JP_Sales"].plot.bar(ax=ax[1][0]) ax[1][0].set_title("Japan") ps3.nlargest(n=10, columns="Other_Sales").loc[:, "Other_Sales"].plot.bar(ax=ax[1][1]) ax[1][1].set_title("Other") fig.suptitle("Most sold PS3 games by Continent ", fontsize=20) fig.tight_layout() # fig, ax = plt.subplots(2,2,figsize=(20,20)) # ps3.nsmallest(n=5,columns='NA_Sales').loc[:,"NA_Sales"].plot.bar(ax=ax[0][0]) # ax[1][0].set_title("North America") # ps3.nsmallest(n=5,columns='EU_Sales').loc[:,"EU_Sales"].plot.bar(ax=ax[0][1]) # ax[0][1].set_title("Europe") # ps3.nsmallest(n=5,columns='JP_Sales').loc[:,"JP_Sales"].plot.bar(ax=ax[1][0]) # ax[1][0].set_title("Japan") # ps3.nsmallest(n=5,columns='Other_Sales').loc[:,"Other_Sales"].plot.bar(ax=ax[1][1]) # ax[1][1].set_title("Other") # fig.suptitle("Least sold PS3 games by Continent ", fontsize=20) # fig.tight_layout() ps3.nsmallest(n=5, columns="Global Sales") top_100 = ps3.nlargest(n=100, columns="Global Sales") top_100["Genre"].value_counts().plot.barh() print(df.Year.min()) print(df.Year.max()) df["Global Sales"].quantile(0.99) df.EU_Sales.agg({"min", "max", "mean", "median", "std", "sum", "count"}) xbox_sales = ( df.loc[df.Platform == "XB", ["NA_Sales", "Year"]].groupby("Year")["NA_Sales"].sum() ) xbox_sales xbox_sales.cumsum() xbox_sales.cumsum().plot.area() # cut and qcut # cut gives you same bin size pd.cut(x=df["Year"], bins=5).value_counts() pd.cut( x=df["Year"], bins=[1980, 1989, 1999, 2009, 2019], labels=["80s", "90s", "00s", "10s"], ).value_counts() df["Decade"] = pd.cut( x=df["Year"], bins=[1980, 1989, 1999, 2009, 2019], labels=["80s", "90s", "00s", "10s"], include_lowest=True, ) df # qcut quantile cut pd.qcut(x=df["Global Sales"], q=4, precision=50).value_counts() sony = ["PS", "PS2", "PS3", "PS4", "PSP", "PSV"] nintendo = ["N64", "GB", "GBA", "GC", "Wii", "Wiiu", "DS", "NES", "3DS", "SNES"] microsoft = ["XB", "XB360", "XOne"] pc = ["PC"] atari = ["2600"] panasonic = ["3DO"] sega = ["DC", "GG", "SAT", "SCD"] def categories(x): if x in sony: return "Sony" elif x in nintendo: return "Nintendo" elif x in microsoft: return "Microsoft" elif x in pc: return "PC" elif x in sega: return "Sega" else: return "Other" df["Platform"].apply(categories).value_counts() df["Platform_Company"] = df["Platform"].apply(categories) df import scipy.stats as stats z_score = df.select_dtypes("float").apply(lambda x: stats.zscore(x)) z_score.mean() z_score.std() ## correlation corr_matrix = df.drop("Year", axis=1).corr() corr_matrix sns.heatmap(corr_matrix, annot=True) import numpy as np matrix = np.triu(corr_matrix) sns.heatmap(corr_matrix, annot=True, mask=matrix) # ## GroupBY df.groupby("Genre")["NA_Sales"].mean() df.Genre.unique() print(df["NA_Sales"].mean()) df.loc[df["Genre"] == "Shooter", "NA_Sales"].mean() sales_by_genre = df.groupby("Genre")[ ["NA_Sales", "EU_Sales", "JP_Sales", "Other_Sales"] ].mean() sales_by_genre plt.figure(figsize=(12, 8)) sns.heatmap(sales_by_genre, annot=True, cmap="Greens") df.groupby("Platform_Company")["JP_Sales"].agg("mean") df.groupby("Platform_Company")["JP_Sales"].agg(["mean", "median", "count"]) df.groupby("Platform_Company")[["JP_Sales", "Global Sales"]].agg( {"JP_Sales": ["mean", "median", "count"], "Global Sales": ["mean"]} ) df.groupby(["Platform_Company", "Decade"])[["Global Sales"]].sum() platform_sales_per_decade = ( df.groupby(["Decade", "Platform_Company"])[["Global Sales"]].sum().unstack() ) df.groupby(["Decade", "Platform_Company"])[["Global Sales"]].sum().unstack( -1 ).plot.line() platform_sales_per_decade.columns.get_level_values(1) platform_sales_per_decade_columns = platform_sales_per_decade.columns.get_level_values( 1 ) platform_sales_per_decade_columns platform_sales_per_decade.plot.line() # - Crosstab: “Compute a simple cross-tabulation of two (or more) factors. By default computes a frequency table of the factors unless an array of values and an aggregation function are passed.” # - Pivot Table: “Create a spreadsheet-style pivot table as a DataFrame. The levels in the pivot table will be stored in MultiIndex objects (Hierarchical indexes on the index and columns of the result DataFrame. # ### Pivot Table pd.pivot_table(df.drop("Year", axis=1), index="Platform_Company", aggfunc="mean") ## create multiple indexes and spcify its value and aggfunc pd.pivot_table(df, index=["Platform_Company", "Decade"], aggfunc="mean") # ### Crosstab pd.crosstab(index=df["Platform_Company"], columns=df["Decade"]) # multiple indexes and a column pd.crosstab(index=[df["Platform_Company"], df["Publisher"]], columns=df["Decade"]) df.columns # single index and multple columns pd.crosstab( index=df["Platform_Company"], columns=[df["Genre"], df["Publisher"]], margins=True ) # ### Pivot Table or CrossTab? # Choose how you want to represent the data. At bare minimum, the pivot table compares the index and yields numerical values. Additionally, the crosstab compares the index and columns which yield the count. # ## Join, Merge and Concat # #### Split dataframe where we have Publisher is Activision activision_df = df.loc[df["Publisher"] == "Activision"].copy() ea_df = df.loc[df["Publisher"] == "Electronic Arts"].copy() pd.merge(ea_df, activision_df, how="inner", on="Platform") pd.concat([ea_df, activision_df], axis=0, ignore_index=True) # ### Apply, Applymap and map nyc = pd.read_csv( "https://raw.githubusercontent.com/misraturp/Pandas-apply-vs.-map-vs.-applymap/main/NYC_Jobs.csv" ) nyc.head() nyc = nyc[ [ "Job ID", "Civil Service Title", "Agency", "Posting Type", "Job Category", "Salary Range From", "Salary Range To", ] ] nyc.head() ## Capitalize the text ### Apply is good for applying a function to either axis or the ### whole dataframe to the function capitalize = lambda x: x.upper() df["Publisher"].apply(capitalize) df ## difference between apply and applymap is that apply passes the dataframe to the function ## one axis at a time ## applymap passes one element at a time def add_year(text): return str(text) + "_2022" nyc.applymap(add_year) ## map works on series and its main strength is to replace values ## so given a series like that s = pd.Series(["cat", "dog", "NaN", "horse"]) s # we can change the values using a dict only s.map({"cat": "kitten", "dog": "puppy"}) # but you can also still pass a function to it # this, however, can be done using apply too, so nothing special # thus, map is mainly useful for when you want to completely map elements from # one value to another def change_word(title): title = title.replace("DEPT", "kitten") return title nyc["Agency"].map(change_word) nyc["Agency"].map("The position is created by {}".format) # for both map and applymap, you can specify na_action to ignore, # so that NA values will not even be passed to the function # the result does not change s.map({"cat": "kitten", "dog": "puppy"}, na_action="")
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression df = pd.read_csv("/kaggle/input/student-marks-dataset/Student_Marks.csv") df.sample(10) # df[df["time_study"]==3.736] df.info() df.isnull().sum() df.describe() sns.heatmap(df.corr(), annot=True) figure = plt.scatter(x=df["time_study"], y=df["Marks"]) plt.hist(x=df["number_courses"], bins=25, color="red") figure = plt.scatter(x=df["number_courses"], y=df["Marks"]) x = df.drop(["Marks"], axis=1) y = df["Marks"] x_train, x_test, y_train, y_test = train_test_split( x, y, test_size=0.2, random_state=42 ) model = LinearRegression() model.fit(x_train, y_train) pred = model.predict(x_test) from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error r2_score(y_test, pred) model.score(x_test, y_test) df[df["time_study"] == 3.736] features = [[3.736, 4]] model.predict(features)
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sea df = pd.read_csv("../input/titanic/train.csv") df.shape df.head(5) # ## Analysing data sea.countplot(x="Survived", data=df) sea.countplot(x="Survived", hue="Sex", data=df) sea.countplot(x="Survived", hue="Pclass", data=df) df["Age"].plot.hist() df["Fare"].plot.hist(bins=10, figsize=(10, 5)) df.info() sea.countplot(x="SibSp", data=df) # ## Data Wranglling df.isnull() df.isnull().sum() sea.heatmap(df.isnull()) df.head(5) df.drop("Cabin", axis=True, inplace=True) df.head(2) df.dropna(inplace=True) sea.heatmap(df.isnull()) df.head(3) # # **Normalization & Standardization** df["Fare"] = (df["Fare"] - df["Fare"].min()) / (df["Fare"].max() - df["Fare"].min()) df["Age"] = (df["Age"] - df["Age"].mean()) / df["Age"].std() df["Sex"] = df["Sex"].factorize()[0] df["Sex"] df["Embarked"] = df["Embarked"].factorize()[0] df["Embarked"] df.head(5) df = df.drop(columns=["Ticket", "Name", "PassengerId"]) # # **TEST DATA** df2 = pd.read_csv("../input/titanic/test.csv") df2.isnull().sum() df2 df2.head(3) df2.isnull().sum() df2.drop("Cabin", axis=1, inplace=True) df2["Age"] = df2["Age"].fillna(df2["Age"].mean()) df2["Fare"] = df2["Fare"].fillna(df2["Fare"].mean()) df2.isnull().sum() df2["Sex"] = df2["Sex"].factorize()[0] df2["Embarked"] = df2["Embarked"].factorize()[0] df2.head() # # **Normalization & Standardization** df2["Fare"] = (df2["Fare"] - df2["Fare"].min()) / ( df2["Fare"].max() - df2["Fare"].min() ) df2["Age"] = (df2["Age"] - df2["Age"].mean()) / df2["Age"].std() df2 df2.drop(["Name", "Ticket", "PassengerId"], axis=1, inplace=True) df2.head(7) # # **Training Data** X_train = df.drop("Survived", axis=1) Y_train = df["Survived"] X_train.isnull().sum() from sklearn.model_selection import train_test_split train_x, val_x, train_y, val_y = train_test_split(X_train, Y_train) from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from sklearn.naive_bayes import GaussianNB from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score # Define the models model_1 = LogisticRegression(random_state=1) model_2 = RandomForestClassifier() model_3 = KNeighborsClassifier() model_4 = SVC() model_5 = GaussianNB() model_6 = DecisionTreeClassifier() def score_model(models, X_train=train_x, X_val=val_x, y_train=train_y, y_val=val_y): models.fit(X_train, y_train) predictions = models.predict(X_val) return accuracy_score(y_val, predictions) models = [model_1, model_2, model_3, model_4, model_5, model_6] for i in range(0, len(models)): acc = score_model(models[i]) print("model {} accuracy {}".format(i + 1, acc)) model_1.fit(train_x, train_y) pred = model_1.predict(df2) sub = pd.read_csv("../input/titanic/gender_submission.csv") sub.head(2) submit5 = pd.DataFrame({"PassengerId": sub["PassengerId"], "Survived": pred}) submit5.to_csv("submit.csv", index=False)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session from sklearn.preprocessing import StandardScaler from sklearn.metrics import mean_squared_error, r2_score, make_scorer from sklearn.linear_model import LinearRegression, Lasso, Ridge from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor from sklearn.model_selection import GridSearchCV import matplotlib.pyplot as plt plt.style.use("fivethirtyeight") # load data df = pd.read_csv("/kaggle/input/insurance/insurance.csv") df.sample(10) # distribution of label # Get the label column label = df["charges"] # Create a figure for 2 subplots (2 rows, 1 column) fig, ax = plt.subplots(2, 1, figsize=(18, 10)) # Plot the histogram ax[0].hist(label, bins=100) ax[0].set_ylabel("Frequency") # Add lines for the mean, median, and mode ax[0].axvline(label.mean(), color="magenta", linestyle="dashed", linewidth=2) ax[0].axvline(label.median(), color="cyan", linestyle="dashed", linewidth=2) # Plot the boxplot ax[1].boxplot(label, vert=False) ax[1].set_xlabel("Charges") # Add a title to the Figure fig.suptitle("Charges Distribution") # Show the figure fig.show() # box_plots cat_features = ["age", "sex", "children", "smoker", "region"] for col in cat_features: df_outliers = df.charges.quantile(0.95) df_outliers_removed = df[df.charges <= df_outliers] df_outliers_removed.boxplot("charges", col, figsize=(20, 5)) plt.suptitle("") plt.title("charges by " + col) plt.show() # scatter plot df.plot.scatter("bmi", "charges", figsize=(8, 8)) correlation = df.corr()["charges"]["bmi"] plt.title("bmi correlation with charges: " + str(correlation)) plt.show() # one-hot encoding df = pd.get_dummies(df) # Separate features and labels X, y = df.drop("charges", 1).values, df["charges"].values print("Features:", X[:10], "\nLabels:", y[:10], sep="\n") # scale features scaler = StandardScaler() X_scaled = scaler.fit_transform(X) from sklearn.model_selection import train_test_split # Split data 70%-30% into training set and test set X_train, X_test, y_train, y_test = train_test_split( X_scaled, y, test_size=0.30, random_state=0 ) print("Training Set: %d rows\nTest Set: %d rows" % (X_train.shape[0], X_test.shape[0])) # Fit a linear regression model on the training set model = LinearRegression().fit(X_train, y_train) # Evaluate the model using the test data predictions = model.predict(X_test) mse = mean_squared_error(y_test, predictions) print("MSE:", mse) rmse = np.sqrt(mse) print("RMSE:", rmse) r2 = r2_score(y_test, predictions) print("R2:", r2) # Plot predicted vs actual plt.scatter(y_test, predictions) plt.xlabel("Actual Labels") plt.ylabel("Predicted Labels") plt.title("Insurance Cost Predictions") # overlay the regression line z = np.polyfit(y_test, predictions, 1) p = np.poly1d(z) plt.plot(y_test, p(y_test), color="magenta") plt.show() # Fit a lasso model on the training set model = Lasso().fit(X_train, y_train) # Evaluate the model using the test data predictions = model.predict(X_test) mse = mean_squared_error(y_test, predictions) print("MSE:", mse) rmse = np.sqrt(mse) print("RMSE:", rmse) r2 = r2_score(y_test, predictions) print("R2:", r2) # Plot predicted vs actual plt.scatter(y_test, predictions) plt.xlabel("Actual Labels") plt.ylabel("Predicted Labels") plt.title("Insurance Cost Predictions") # overlay the regression line z = np.polyfit(y_test, predictions, 1) p = np.poly1d(z) plt.plot(y_test, p(y_test), color="magenta") plt.show() # Fit a decision tree model on the training set model = DecisionTreeRegressor().fit(X_train, y_train) # Evaluate the model using the test data predictions = model.predict(X_test) mse = mean_squared_error(y_test, predictions) print("MSE:", mse) rmse = np.sqrt(mse) print("RMSE:", rmse) r2 = r2_score(y_test, predictions) print("R2:", r2) # Plot predicted vs actual plt.scatter(y_test, predictions) plt.xlabel("Actual Labels") plt.ylabel("Predicted Labels") plt.title("Insurance Cost Predictions") # overlay the regression line z = np.polyfit(y_test, predictions, 1) p = np.poly1d(z) plt.plot(y_test, p(y_test), color="magenta") plt.show() # Train the model model = RandomForestRegressor().fit(X_train, y_train) # Evaluate the model using the test data predictions = model.predict(X_test) mse = mean_squared_error(y_test, predictions) print("MSE:", mse) rmse = np.sqrt(mse) print("RMSE:", rmse) r2 = r2_score(y_test, predictions) print("R2:", r2) # Plot predicted vs actual plt.scatter(y_test, predictions) plt.xlabel("Actual Labels") plt.ylabel("Predicted Labels") plt.title("Insurance Cost Predictions") # overlay the regression line z = np.polyfit(y_test, predictions, 1) p = np.poly1d(z) plt.plot(y_test, p(y_test), color="magenta") plt.show() # Train the model from sklearn.ensemble import GradientBoostingRegressor # Fit a lasso model on the training set model = GradientBoostingRegressor().fit(X_train, y_train) # Evaluate the model using the test data predictions = model.predict(X_test) mse = mean_squared_error(y_test, predictions) print("MSE:", mse) rmse = np.sqrt(mse) print("RMSE:", rmse) r2 = r2_score(y_test, predictions) print("R2:", r2) # Plot predicted vs actual plt.scatter(y_test, predictions) plt.xlabel("Actual Labels") plt.ylabel("Predicted Labels") plt.title("Insurance Cost Predictions") # overlay the regression line z = np.polyfit(y_test, predictions, 1) p = np.poly1d(z) plt.plot(y_test, p(y_test), color="magenta") plt.show() # Use a Gradient Boosting algorithm alg = GradientBoostingRegressor() # Try these hyperparameter values params = { "learning_rate": [0.001, 0.01, 0.1, 0.5, 1.0], "n_estimators": [20, 50, 100, 150], } # Find the best hyperparameter combination to optimize the R2 metric score = make_scorer(r2_score) gridsearch = GridSearchCV(alg, params, scoring=score, cv=5, return_train_score=True) gridsearch.fit(X_train, y_train) print("Best parameter combination:", gridsearch.best_params_, "\n") # Get the best model model = gridsearch.best_estimator_ print(model, "\n") # Evaluate the model using the test data predictions = model.predict(X_test) mse = mean_squared_error(y_test, predictions) print("MSE:", mse) rmse = np.sqrt(mse) print("RMSE:", rmse) r2 = r2_score(y_test, predictions) print("R2:", r2) # Plot predicted vs actual plt.scatter(y_test, predictions) plt.xlabel("Actual Labels") plt.ylabel("Predicted Labels") plt.title("Insurance Cost Predictions") # overlay the regression line z = np.polyfit(y_test, predictions, 1) p = np.poly1d(z) plt.plot(y_test, p(y_test), color="magenta") plt.show()
# Install dependencies # ----------------------------------------------------------------------------- # Imports # ----------------------------------------------------------------------------- import os, random, copy, yaml, pickle from time import time, sleep from tqdm import tqdm from math import floor import numpy as np import pandas as pd import matplotlib.pyplot as plt import pyarrow.parquet as pq # torch imports import torch import torch.nn as nn import torch.nn.init as init import torch.nn.functional as F from torch import Tensor from torch.utils.data import random_split, IterableDataset import torch_geometric from torch_geometric.data import Data, Batch from torch_geometric.utils import homophily from torch_geometric.loader import DataLoader from torch_geometric.nn import EdgeConv, knn_graph from torch_scatter import scatter_add, scatter_mean, scatter_max, scatter_min import pytorch_lightning as pl # ----------------------------------------------------------------------------- # Helper function # ----------------------------------------------------------------------------- import logging import logging.config import os, re, gc, psutil def get_logger(name, msg): """ :param name: string :param msg: DEBUG, INFO, WARNING, ERROR :return: Logger() instance """ level = { "DEBUG": logging.DEBUG, "INFO": logging.INFO, "WARNING": logging.WARNING, "ERROR": logging.ERROR, } logging.basicConfig( level=level[msg], format="== %(name)s == %(asctime)s %(levelname)s:\t%(message)s", datefmt="%H:%M:%S", ) logger = logging.getLogger(name) return logger def walk_dir(dirname, batch_ids): files = dict() pattern = r"_(\d+)\.parquet" if batch_ids is None: batch_ids = list() for base, _, names in os.walk(dirname): for name in names: match = re.findall(pattern, name) batch_ids.append(int(match[0])) files[int(match[0])] = os.path.join(base, name) return files, batch_ids for base, _, names in os.walk(dirname): selected_files = dict() for name in names: match = re.findall(pattern, name) if int(match[0]) in batch_ids: selected_files[int(match[0])] = os.path.join(base, name) files.update(selected_files) return files, batch_ids def memory_check(logger, msg=""): gc.collect() logger.debug( f"memory usage {psutil.virtual_memory().used / 1024**3:.2f} " f"of {psutil.virtual_memory().total / 1024**3:.2f} GB {msg}" ) # ----------------------------------------------------------------------------- # Basic settings # ----------------------------------------------------------------------------- # basic BATCH_SIZE = 400 BATCHES_TEST = None ##################### EVENTS_PER_FILE = 200_000 # paths BASE_PATH = "/kaggle/" ###################### PATH = os.path.join(BASE_PATH, "input", "icecube-neutrinos-in-deep-ice") MODEL_PATH = os.path.join(BASE_PATH, "input", "ice-cube-model") OUTPUT_PATH = os.path.join(BASE_PATH, "working") TEST_PATH = os.path.join(PATH, "test") META_PATH = os.path.join(OUTPUT_PATH, "test_meta") # files FILES_TEST, BATCHES_TEST = walk_dir(TEST_PATH, BATCHES_TEST) FILE_META = os.path.join(PATH, "test_meta.parquet") FILE_SENSOR_GEO = os.path.join(PATH, "sensor_geometry.csv") FILE_GNNPre = os.path.join(MODEL_PATH, "official-pretrained.pth") FILE_GNN = os.path.join(MODEL_PATH, "finetuned.ckpt") FILE_BDT = os.path.join(MODEL_PATH, "BDT_clf.Baseline.0414.sklearn") # ----------------------------------------------------------------------------- # Split meta file # ----------------------------------------------------------------------------- if not os.path.exists(META_PATH): os.mkdir(META_PATH) meta_test = pd.read_parquet(FILE_META) for i, df in meta_test.groupby("batch_id"): print(f"processing {i} -> {df.shape}") splitted = os.path.join(META_PATH, f"meta_{i}.parquet") df.to_parquet(splitted) # ----------------------------------------------------------------------------- # Some Logging # ----------------------------------------------------------------------------- LOGGER = get_logger("IceCube", "DEBUG") DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") LOGGER.info(f"using {DEVICE}") LOGGER.info(f"{len(FILES_TEST)} files for testing") memory_check(LOGGER) LOGGER.info(f"GNN model:{FILE_GNN}") LOGGER.info(f"BDT model:{FILE_BDT}") # ----------------------------------------------------------------------------- # Dataset # ----------------------------------------------------------------------------- # sensor geometry def prepare_sensors(scale=None): sensors = pd.read_csv(FILE_SENSOR_GEO).astype( { "sensor_id": np.int16, "x": np.float32, "y": np.float32, "z": np.float32, } ) if scale is not None and isinstance(scale, float): sensors["x"] *= scale sensors["y"] *= scale sensors["z"] *= scale return sensors def angle_to_xyz(angles_b): az, zen = angles_b.t() x = torch.cos(az) * torch.sin(zen) y = torch.sin(az) * torch.sin(zen) z = torch.cos(zen) return torch.stack([x, y, z], dim=1) def xyz_to_angle(xyz_b): x, y, z = xyz_b.t() az = torch.arccos(x / torch.sqrt(x**2 + y**2)) * torch.sign(y) zen = torch.arccos(z / torch.sqrt(x**2 + y**2 + z**2)) return torch.stack([az, zen], dim=1) def angular_error(xyz_pred_b, xyz_true_b): return torch.arccos(torch.clip_(torch.sum(xyz_pred_b * xyz_true_b, dim=1), -1, 1)) def angles2vector(df): df["nx"] = np.sin(df.zenith) * np.cos(df.azimuth) df["ny"] = np.sin(df.zenith) * np.sin(df.azimuth) df["nz"] = np.cos(df.zenith) return df def vector2angles(n, eps=1e-8): n = n / (np.linalg.norm(n, axis=1, keepdims=True) + eps) azimuth = np.arctan2(n[:, 1], n[:, 0]) azimuth[azimuth < 0] += 2 * np.pi zenith = np.arccos(n[:, 2].clip(-1, 1)) return np.concatenate([azimuth[:, np.newaxis], zenith[:, np.newaxis]], axis=1) def series2tensor(series, set_device=None): ret = torch.from_numpy(series.values).float() if set_device is not None: return ret.to(DEVICE) return ret def solve_linear(xw, yw, zw, xxw, yyw, xyw, yzw, zxw): A = torch.tensor( [ [xxw, xyw, xw], [xyw, yyw, yw], [xw, yw, 1], ] ) b = torch.tensor([zxw, yzw, zw]) try: coeff = torch.linalg.solve(A, b) return coeff except Exception: LOGGER.debug("linear system not solvable") return torch.zeros((3,)) def feature_extraction(df, fun=None, eps=1e-8): # list of variables # sort by time df.sort_values(["time"], inplace=True) t = series2tensor(df.time) c = series2tensor(df.charge) x = series2tensor(df.x) y = series2tensor(df.y) z = series2tensor(df.z) hits = t.numel() # hits # weighted values Sx = torch.sum(x) Sxx = torch.sum(x * x) Sxy = torch.sum(x * y) Sy = torch.sum(y) Syy = torch.sum(y * y) Syz = torch.sum(y * z) Sz = torch.sum(z) Szx = torch.sum(z * x) # error of plane estimate coeff = solve_linear(Sx, Sy, Sz, Sxx, Syy, Sxy, Syz, Szx) error = torch.sum((z - coeff[0] * x - coeff[1] * y - coeff[2])) error = torch.square(error * 1e3) # error # plane norm vector norm_vec = torch.tensor([coeff[0], coeff[1], -1], dtype=torch.float) norm_vec /= torch.sqrt(coeff[0] ** 2 + coeff[1] ** 2 + 1) # norm_vec -> (3, ) # delta t -> median time dt = torch.quantile( t, torch.tensor([0.15, 0.50, 0.85], dtype=torch.float) ) # dt -> (3, ) # charge centre (vector) sumq = torch.sum(c) # sumq meanq = sumq / hits # meanq qv = torch.tensor( [torch.sum(x * c), torch.sum(y * c), torch.sum(z * c)], dtype=torch.float ) qv /= sumq # qv -> (3, ) # bright sensor ratio bratio = c[c > 5 * meanq].numel() / hits # bratio # grouping by time (remember to sort by time) n_groups = 4 # xyzt -> (16, ) if hits > n_groups: sec_len = floor(hits / n_groups) remain_len = hits - (n_groups - 1) * sec_len xyzt = series2tensor(df[["x", "y", "z", "time"]]) xyzt = torch.split(xyzt, [sec_len, sec_len, sec_len, remain_len]) xyzt = torch.concat([xx.mean(axis=0) for xx in xyzt]) else: xyzt = torch.zeros(n_groups * 4) _xxxx = list() for i in range(hits): _xxxx.append(x[i]) _xxxx.append(y[i]) _xxxx.append(z[i]) _xxxx.append(t[i]) xyzt[: hits * 4] = torch.tensor(_xxxx, dtype=torch.float) # unique xyz unique = torch.tensor( [_x.unique().numel() for _x in [x, y, z]], dtype=torch.float ) # unique -> (3, ) # global features glob_feat = torch.tensor( [ hits, error, sumq, meanq, bratio, ], dtype=torch.float, ) return torch.concat([norm_vec, dt, qv, xyzt, unique, glob_feat]).unsqueeze(0) def prepare_feature(df): df = df.reset_index(drop=True) # remove auxiliary df = df[~df.auxiliary] df.x *= 1e-3 df.y *= 1e-3 df.z *= 1e-3 df.time -= np.min(df.time) return df[["time", "charge", "x", "y", "z"]] # Dataset class IceCube(IterableDataset): def __init__( self, parquet_dir, meta_dir, chunk_ids, batch_size=200, max_pulses=200, extra=False, ): self.parquet_dir = parquet_dir self.meta_dir = meta_dir self.chunk_ids = chunk_ids self.batch_size = batch_size self.max_pulses = max_pulses self.extra = extra def __iter__(self): # Handle num_workers > 1 and multi-gpu is_dist = torch.distributed.is_initialized() world_size = torch.distributed.get_world_size() if is_dist else 1 rank_id = torch.distributed.get_rank() if is_dist else 0 info = torch.utils.data.get_worker_info() num_worker = info.num_workers if info else 1 worker_id = info.id if info else 0 num_replica = world_size * num_worker offset = rank_id * num_worker + worker_id chunk_ids = self.chunk_ids[offset::num_replica] # Sensor data sensor = prepare_sensors() # Read each chunk and meta iteratively into memory and build mini-batch for c, chunk_id in enumerate(chunk_ids): data = pd.read_parquet( os.path.join(self.parquet_dir, f"batch_{chunk_id}.parquet") ) meta = pd.read_parquet( os.path.join(self.meta_dir, f"meta_{chunk_id}.parquet") ) eids = meta["event_id"].tolist() eids_batches = [ eids[i : i + self.batch_size] for i in range(0, len(eids), self.batch_size) ] for batch_eids in eids_batches: batch = [] # For each sample, extract features for eid in batch_eids: df = data.loc[eid] df = pd.merge(df, sensor, on="sensor_id") # sampling of pulses if number exceeds maximum if len(df) > self.max_pulses: df_pass = df[~df.auxiliary] df_fail = df[df.auxiliary] if len(df_pass) >= self.max_pulses: df = df_pass.sample(self.max_pulses) else: df_fail = df_fail.sample(self.max_pulses - len(df_pass)) df = pd.concat([df_fail, df_pass]) df.sort_values(["time"], inplace=True) t = series2tensor(df.time) c = series2tensor(df.charge) a = series2tensor(df.auxiliary) x = series2tensor(df.x) y = series2tensor(df.y) z = series2tensor(df.z) feat = torch.stack([x, y, z, t, c, a], dim=1) batch_data = Data( x=feat, n_pulses=len(feat), eid=torch.tensor([eid]).long() ) if self.extra: feats = feature_extraction(prepare_feature(df)) setattr(batch_data, "extra_feat", feats) batch.append(batch_data) yield Batch.from_data_list(batch) del data del meta gc.collect() # ----------------------------------------------------------------------------- # GraphNet GNN model # ----------------------------------------------------------------------------- class MLP(nn.Sequential): def __init__(self, feats): layers = [] for i in range(1, len(feats)): layers.append(nn.Linear(feats[i - 1], feats[i])) layers.append(nn.LeakyReLU()) super().__init__(*layers) class Model(pl.LightningModule): def __init__( self, max_lr=1e-3, num_warmup_step=1_000, remaining_step=1_000, ): super().__init__() self.save_hyperparameters() self.conv0 = EdgeConv(MLP([17 * 2, 128, 256]), aggr="add") self.conv1 = EdgeConv(MLP([512, 336, 256]), aggr="add") self.conv2 = EdgeConv(MLP([512, 336, 256]), aggr="add") self.conv3 = EdgeConv(MLP([512, 336, 256]), aggr="add") self.post = MLP([1024 + 17, 336, 256]) self.readout = MLP([768, 128]) self.pred = nn.Linear(128, 3) def forward(self, data: Batch): vert_feat = data.x batch = data.batch # x, y, z, t, c, a # 0 1 2 3 4 5 vert_feat[:, 0] /= 500.0 # x vert_feat[:, 1] /= 500.0 # y vert_feat[:, 2] /= 500.0 # z vert_feat[:, 3] = (vert_feat[:, 3] - 1.0e04) / 3.0e4 # time vert_feat[:, 4] = torch.log10(vert_feat[:, 4]) / 3.0 # charge edge_index = knn_graph(vert_feat[:, :3], 8, batch) # Construct global features hx = homophily(edge_index, vert_feat[:, 0], batch).reshape(-1, 1) hy = homophily(edge_index, vert_feat[:, 1], batch).reshape(-1, 1) hz = homophily(edge_index, vert_feat[:, 2], batch).reshape(-1, 1) ht = homophily(edge_index, vert_feat[:, 3], batch).reshape(-1, 1) means = scatter_mean(vert_feat, batch, dim=0) n_p = torch.log10(data.n_pulses).reshape(-1, 1) global_feats = torch.cat([means, hx, hy, hz, ht, n_p], dim=1) # [B, 11] # Distribute global_feats to each vertex _, cnts = torch.unique_consecutive(batch, return_counts=True) global_feats = torch.repeat_interleave(global_feats, cnts, dim=0) vert_feat = torch.cat((vert_feat, global_feats), dim=1) # Convolutions feats = [vert_feat] # Conv 0 vert_feat = self.conv0(vert_feat, edge_index) feats.append(vert_feat) # Conv 1 edge_index = knn_graph(vert_feat[:, :3], k=8, batch=batch) vert_feat = self.conv1(vert_feat, edge_index) feats.append(vert_feat) # Conv 2 edge_index = knn_graph(vert_feat[:, :3], k=8, batch=batch) vert_feat = self.conv2(vert_feat, edge_index) feats.append(vert_feat) # Conv 3 edge_index = knn_graph(vert_feat[:, :3], k=8, batch=batch) vert_feat = self.conv3(vert_feat, edge_index) feats.append(vert_feat) # Postprocessing post_inp = torch.cat(feats, dim=1) post_out = self.post(post_inp) # Readout readout_inp = torch.cat( [ scatter_min(post_out, batch, dim=0)[0], scatter_max(post_out, batch, dim=0)[0], scatter_mean(post_out, batch, dim=0), ], dim=1, ) readout_out = self.readout(readout_inp) # Predict pred = self.pred(readout_out) kappa = pred.norm(dim=1, p=2) + 1e-8 pred_x = pred[:, 0] / kappa pred_y = pred[:, 1] / kappa pred_z = pred[:, 2] / kappa pred = torch.stack([pred_x, pred_y, pred_z, kappa], dim=1) return pred def train_or_valid_step(self, data, prefix): pred_xyzk = self.forward(data) # [B, 4] true_xyz = data.gt.view(-1, 3) # [B, 3] loss = VonMisesFisher3DLoss()(pred_xyzk, true_xyz).mean() error = angular_error(pred_xyzk[:, :3], true_xyz).mean() self.log( f"loss-{prefix}", loss, batch_size=len(true_xyz), on_epoch=True, prog_bar=True, logger=True, sync_dist=True, ) self.log( f"error-{prefix}", error, batch_size=len(true_xyz), on_epoch=True, prog_bar=True, logger=True, sync_dist=True, ) return loss def training_step(self, data, _): return self.train_or_valid_step(data, "train") def validation_step(self, data, _): return self.train_or_valid_step(data, "valid") def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), lr=self.hparams.max_lr) scheduler = torch.optim.lr_scheduler.SequentialLR( optimizer, schedulers=[ torch.optim.lr_scheduler.LinearLR( optimizer, 1e-2, 1, self.hparams.num_warmup_step ), torch.optim.lr_scheduler.LinearLR( optimizer, 1, 1e-3, self.hparams.remaining_step ), ], milestones=[self.hparams.num_warmup_step], ) return { "optimizer": optimizer, "lr_scheduler": { "scheduler": scheduler, "interval": "step", }, } # ----------------------------------------------------------------------------- # GNN prediction # ----------------------------------------------------------------------------- def predict_gnn(model): test_set = IceCube(TEST_PATH, META_PATH, BATCHES_TEST, batch_size=400, extra=True) test_loader = DataLoader(test_set, batch_size=1) pred = None eid = None with torch.no_grad(): for i, data in tqdm(enumerate(test_loader)): pred_xyzk = model(data.to(DEVICE)) angles = np.concatenate( [ # +-------------+------------------------------------+----------------------+ # | x, y, z, kp | azimuth, zenith | extra features | # +-------------+------------------------------------+----------------------+ pred_xyzk.cpu(), xyz_to_angle(pred_xyzk[:, :3]).cpu(), data.extra_feat.cpu() # +-------------+------------------------------------+----------------------+ ], axis=1, ) pred = angles if pred is None else np.concatenate([pred, angles]) eid = ( data.eid.cpu() if eid is None else np.concatenate([eid, data.eid.cpu()]) ) col_xyzk = ["x", "y", "z", "kappa"] col_angles = ["azimuth", "zenith"] col_norm_vec = ["ex", "ey", "ez"] col_dt = ["dt_15", "dt_50", "dt_85"] col_qv = ["qx", "qy", "qz"] col_xyzt = [ "x0", "y0", "z0", "t0", "x1", "y1", "z1", "t1", "x2", "y2", "z2", "t2", "x3", "y3", "z3", "t3", ] col_unique = ["uniq_x", "uniq_y", "uniq_z"] col_glob_feat = ["hits", "error", "sumq", "meanq", "bratio"] col_extra = col_norm_vec + col_dt + col_qv + col_xyzt + col_unique + col_glob_feat res = pd.DataFrame(pred, columns=col_xyzk + col_angles + col_extra) res["azimuth"] = np.remainder(res["azimuth"], 2 * np.pi) res["zenith"] = np.remainder(res["zenith"], 2 * np.pi) res["event_id"] = eid return res model = Model.load_from_checkpoint(FILE_GNN) LOGGER.info(f"loaded {FILE_GNN}") model.eval() model.freeze() model.to(DEVICE) reco_df = predict_gnn(model) # ----------------------------------------------------------------------------- # GNN + Plane projection prediction # ----------------------------------------------------------------------------- n_hat = reco_df[["x", "y", "z"]].to_numpy() e = reco_df[["ex", "ey", "ez"]].to_numpy() xe = np.sum(n_hat * e, axis=1, keepdims=True) proj = n_hat - xe * e proj /= np.linalg.norm(proj, axis=1, keepdims=True) + 1e-8 # ----------------------------------------------------------------------------- # GNN + Plane projection + BDT prediction # ----------------------------------------------------------------------------- # reco_df inputs reco_df["error"] = np.log10(reco_df["error"] + 1e-6) reco_df["sumq"] = np.log10(reco_df["sumq"] + 1e-3) reco_df["dt_50"] = np.log10(reco_df["dt_50"] + 1e-3) reco_df["dt_85"] = np.log10(reco_df["dt_85"] + 1e-3) reco_df["kappa"] = np.log10(reco_df["kappa"] + 1e-3) columns = ["kappa", "zenith", "error", "sumq", "qz", "dt_50", "dt_85", "ez"] reco = reco_df[columns].to_numpy() xe = np.arccos(xe) # trajectory display col_xyzt = [ "x0", "y0", "z0", "t0", "x1", "y1", "z1", "t1", "x2", "y2", "z2", "t2", "x3", "y3", "z3", "t3", ] traj = reco_df[col_xyzt].values traj = traj.reshape(-1, 4, 4) v1 = ( 1e3 * (traj[:, 1, :3] - traj[:, 0, :3]) / (traj[:, 1, 3] - traj[:, 0, 3] + 1)[:, np.newaxis] ) v2 = ( 1e3 * (traj[:, 2, :3] - traj[:, 1, :3]) / (traj[:, 2, 3] - traj[:, 1, 3] + 1)[:, np.newaxis] ) v3 = ( 1e3 * (traj[:, 3, :3] - traj[:, 2, :3]) / (traj[:, 3, 3] - traj[:, 2, 3] + 1)[:, np.newaxis] ) v1scale = np.linalg.norm(v1, axis=1, keepdims=True) + 1e-1 v2scale = np.linalg.norm(v2, axis=1, keepdims=True) + 1e-1 v3scale = np.linalg.norm(v3, axis=1, keepdims=True) + 1e-1 ev1 = np.sum(-v1 * e / v1scale, axis=1, keepdims=True) ev2 = np.sum(-v2 * e / v2scale, axis=1, keepdims=True) ev3 = np.sum(-v3 * e / v3scale, axis=1, keepdims=True) ev1 = np.arccos(ev1) ev2 = np.arccos(ev2) ev3 = np.arccos(ev3) vv12 = np.sum(v1 * v2 / v1scale / v2scale, axis=1, keepdims=True) vv23 = np.sum(v2 * v3 / v2scale / v3scale, axis=1, keepdims=True) vv31 = np.sum(v3 * v1 / v3scale / v1scale, axis=1, keepdims=True) vavg = np.log10(np.mean((v1scale, v2scale, v3scale), axis=0)) evvv = np.mean((ev1, ev2, ev3), axis=0) vvvv = np.mean((vv12, vv23, vv31), axis=0) pos = np.mean(traj[:, :, :3], axis=1) xyzq = reco_df[["qx", "qy", "qz"]].to_numpy() distq = pos - xyzq distq = np.linalg.norm(distq, axis=1, keepdims=True) + 1e-3 # load the model and predict LOGGER.info("Loading BDT model...") clf = pickle.load(open(FILE_BDT, "rb")) LOGGER.info("Predicting...") X = np.concatenate([reco, xe, ev1, ev2, ev3, vavg, evvv, vvvv, distq], axis=1) X[np.isnan(X)] = 0 y_hat = clf.predict(X)[:, np.newaxis] gnn = reco_df[["azimuth", "zenith"]].to_numpy() fit = vector2angles(proj) bdt = (gnn * ~y_hat) + fit * y_hat LOGGER.info(f"GNN prediction\n{gnn}") LOGGER.info(f"Plane prediction\n{fit}") LOGGER.info(f"BDT prediction\n{bdt}") submit_df = pd.DataFrame(bdt, columns=["azimuth", "zenith"]) submit_df["event_id"] = reco_df.event_id.values submit_df = submit_df.set_index("event_id") submit_df = submit_df.sort_values(["event_id"]) # sort by event_id submit_df.to_csv(os.path.join(OUTPUT_PATH, "submission.csv")) print(submit_df)
import numpy as np import torch from torch.utils.data import DataLoader, Dataset import torch.nn as nn from transformers import AutoTokenizer # import os # os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:512' dev = "cpu" if torch.cuda.is_available(): dev = "cuda:0" DEVICE = torch.device(dev) MAX_LENGTH = 50 DEVICE count = 0 english_lines = [] with open( "../input/phomt-cs644/PhoMT/tokenization/train/train.en", encoding="utf-8" ) as f: for line in f: english_lines.append(" ".join(line.split()[:MAX_LENGTH])) count = count + 1 if count > 500: break count = 0 vietnamese_lines = [] with open( "../input/phomt-cs644/PhoMT/tokenization/train/train.vi", encoding="utf-8" ) as f: for line in f: vietnamese_lines.append(" ".join(line.split()[:MAX_LENGTH])) count = count + 1 if count > 500: break print(english_lines[0]) print("--> len of english_lines is", len(english_lines)) print(vietnamese_lines[0]) print("--> len of vietnamese_lines is", len(vietnamese_lines)) # # 1.1 - Tokenize words with subword tokenizers tokenizer_vi = AutoTokenizer.from_pretrained("vinai/phobert-base") tokenizer_en = AutoTokenizer.from_pretrained("bert-base-uncased") # ## 1.3 - Build encoder input, decoder input, decoder target encoder_input_data = [] for line in vietnamese_lines: encoder_input_data.append(tokenizer_vi.encode(line)) # print(encoder_input_data) # break decoder_input_data = [] decoder_target_data = [] for line in english_lines: # line is: \t xin chao bla bla \n decoder_input_data.append(tokenizer_en.encode(line)[:-1]) # print(decoder_input_data) decoder_target_data.append(tokenizer_en.encode(line)[1:]) # print(decoder_target_data) # break # shape of encoder_input_data, decoder_input_data, decoder_target_data are all (dataset_size, seq_len) print(tokenizer_vi.decode(encoder_input_data[0])) print(tokenizer_en.decode(decoder_input_data[0])) print(tokenizer_en.decode(decoder_target_data[0])) # ## 1.4 - Create Dataset and DataLoader class PrepareDataset(Dataset): def __init__(self, encoder_input_data, decoder_input_data, decoder_target_data): self.encoder_input_indexes = encoder_input_data self.decoder_input_indexes = decoder_input_data self.decoder_target_indexes = decoder_target_data def __len__(self): return len(self.encoder_input_indexes) def __getitem__(self, index): encoder_input_indexes = self.encoder_input_indexes[index] decoder_input_indexes = self.decoder_input_indexes[index] decoder_target_indexes = self.decoder_target_indexes[index] return ( torch.LongTensor(encoder_input_indexes), torch.LongTensor(decoder_input_indexes), torch.LongTensor(decoder_target_indexes), ) def collate_fn(data): # batch, seq_len encoder_input_indexes, decoder_input_indexes, decoder_target_indexes = zip(*data) max_length = 0 for seq in encoder_input_indexes: if len(seq) >= max_length: max_length = len(seq) for target in decoder_input_indexes: if len(target) >= max_length: max_length = len(target) max_length = min([max_length, MAX_LENGTH]) length_enc_inp_indexes = [] for seq in encoder_input_indexes: length_enc_inp_indexes.append(min([len(seq), max_length])) # length_enc_inp_indexes = [min([len(seq), MAX_LENGTH]) for seq in encoder_input_indexes] length_dec_inp_indexes = [] for label in decoder_input_indexes: length_dec_inp_indexes.append(min([len(label), max_length])) # length_dec_inp_indexes = [min([len(label), MAX_LENGTH]) for label in decoder_input_indexes] length_dec_tar_indexes = [] for label in decoder_target_indexes: length_dec_tar_indexes.append(min([len(label), max_length])) # length_dec_tar_indexes = [min([len(label), MAX_LENGTH]) for label in decoder_target_indexes] padded_enc_inp = torch.zeros(len(encoder_input_indexes), max_length).long() padded_dec_inp = torch.zeros(len(encoder_input_indexes), max_length).long() padded_dec_tar = torch.zeros(len(encoder_input_indexes), max_length).long() # print(f"encoder_input_indexes shape is {padded_enc_inp.shape}") # print(f"decoder_input_indexes shape is {padded_dec_inp.shape}") # print(f"decoder_target_indexes shape is {padded_dec_tar.shape}\n") # print(f"encoder_input_indexes shape is {encoder_input_indexes.shape}") for i, seq in enumerate(encoder_input_indexes): end = length_enc_inp_indexes[i] # print(len(seq)) try: padded_enc_inp[i, :end] = seq except: padded_enc_inp[i, :end] = seq[:max_length] # print(f"decoder_input_indexes shape is {decoder_input_indexes.shape}") for i, label in enumerate(decoder_input_indexes): end = length_dec_inp_indexes[i] # padded_dec_inp[i, :end-1] = label # padded_dec_inp[i, end] = label try: padded_dec_inp[i, :end] = label except: padded_dec_inp[i, :end] = label[:max_length] # print(f"decoder_target_indexes shape is {decoder_target_indexes.shape}") for i, label in enumerate(decoder_target_indexes): end = length_dec_tar_indexes[i] try: padded_dec_tar[i, :end] = label except: padded_dec_tar[i, :end] = label[:max_length] return padded_enc_inp, padded_dec_inp, padded_dec_tar batch_size = 64 train_dataset = PrepareDataset( encoder_input_data, decoder_input_data, decoder_target_data ) train_loader = DataLoader(train_dataset, batch_size=batch_size, collate_fn=collate_fn) for enc_inp, dec_inp, dec_tar in train_loader: print(enc_inp.shape) print(dec_inp.shape) print(dec_tar.shape) break # Encoder class LSTMEncoder( nn.Module ): # Here hidden_size is output size, which we can pass latent_size in def __init__( self, src_embed_size, src_vocab_size, hidden_size, num_layers, dropout ): super(LSTMEncoder, self).__init__() self.hidden_size = hidden_size self.embedding_layer = nn.Embedding( src_vocab_size, src_embed_size, padding_idx=0 ) self.lstm_layer = nn.LSTM( input_size=src_embed_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True, ) self.dropout_layer = nn.Dropout(dropout) def forward(self, input): x = self.embedding_layer(input) x = self.dropout_layer(x) batch_size = x.size(0) hidden, cell = self.init_hidden_cell_state(batch_size) _, hidden_cell = self.lstm_layer(x, (hidden, cell)) return hidden_cell def init_hidden_cell_state(self, batch_size): hidden = torch.zeros(1, batch_size, self.hidden_size, device=DEVICE) cell = torch.zeros(1, batch_size, self.hidden_size, device=DEVICE) return hidden, cell # Decoder class LSTMDecoder(nn.Module): def __init__( self, tar_embed_size, tar_vocab_size, hidden_size, num_layers, dropout ): super(LSTMDecoder, self).__init__() self.hidden_size = hidden_size self.embedding_layer = nn.Embedding( tar_vocab_size, tar_embed_size, padding_idx=0 ) self.lstm_layer = nn.LSTM( input_size=tar_embed_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True, ) self.dropout_layer = nn.Dropout(dropout) # self.output_layer = nn.Linear(hidden_size, tar_vocab_size) def forward(self, input, latent_state, latent_cell_state): x = self.embedding_layer(input) dec_out, hidden_cell = self.lstm_layer(x, (latent_state, latent_cell_state)) return dec_out, hidden_cell class Seq2SeqModel(nn.Module): def __init__( self, embed_size, src_vocab_size, tar_vocab_size, hidden_size, num_layers, dropout, ): super(Seq2SeqModel, self).__init__() self.encoder = LSTMEncoder( embed_size, src_vocab_size, hidden_size, num_layers, dropout ) self.encoder = self.encoder.to(DEVICE) self.decoder = LSTMDecoder( embed_size, tar_vocab_size, hidden_size, num_layers, dropout ) self.decoder = self.decoder.to(DEVICE) self.output_layer = nn.Linear(hidden_size, tar_vocab_size) def forward(self, inputs): enc_inp, dec_inp = inputs enc_hidd, enc_cell = self.encoder(enc_inp) # print(f"enc_hidd is at {enc_hidd.device}") # print(f"enc_cell is at {enc_cell.device}\n") enc_hidd = enc_hidd.to(DEVICE) enc_cell = enc_cell.to(DEVICE) # print(f"enc_hidd is at {enc_hidd.device}") # print(f"enc_cell is at {enc_cell.device}") dec_out, hidden_cell = self.decoder(dec_inp, enc_hidd, enc_cell) pred = self.output_layer(dec_out) return pred num_epochs = 2 src_vocab_size = tokenizer_vi.vocab_size tar_vocab_size = tokenizer_en.vocab_size # Hyperparameters batch_size = 64 embed_size = 100 latent_size = 100 num_layers = 1 dropout = 0.33 lr = 2 mmt = 0.9 train_dataset = PrepareDataset( encoder_input_data, decoder_input_data, decoder_target_data ) train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=batch_size, collate_fn=collate_fn ) seq2seq_model = Seq2SeqModel( embed_size=embed_size, src_vocab_size=src_vocab_size, tar_vocab_size=tar_vocab_size, hidden_size=latent_size, num_layers=num_layers, dropout=dropout, ) seq2seq_model.to(DEVICE) criterion = nn.CrossEntropyLoss(ignore_index=0) optimizer = torch.optim.SGD(seq2seq_model.parameters(), lr=lr, momentum=mmt) scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau( optimizer=optimizer, mode="min", verbose=True, patience=3, factor=0.2 ) training_loss = 0 for i in range(num_epochs): training_loss = 0.0 seq2seq_model.train() count = 1 for enc_inp, dec_inp, dec_tar in train_loader: enc_inp = enc_inp.to(DEVICE) dec_inp = dec_inp.to(DEVICE) dec_tar = dec_tar.to(DEVICE) optimizer.zero_grad() # print(f"enc_inp shape is {enc_inp.shape}") # print(f"dec_inp shape is {dec_inp.shape}\n") preds = seq2seq_model((enc_inp, dec_inp)) preds = preds.contiguous().view(-1, tar_vocab_size) dec_tar = dec_tar.view(-1) # print(preds.shape) # print(dec_tar.shape) loss = criterion(preds, dec_tar) loss.backward() optimizer.step() training_loss += loss.item() * enc_inp.size(0) # print(f"Batch {count} \t Training loss: {training_loss / (count* enc_inp.size(0))}") count += 1 scheduler.step(training_loss) train_loss = training_loss / len(train_loader.dataset) print(f"Epoch {i+1} \t Training loss: {train_loss}") torch.save(seq2seq_model.state_dict(), "model_weights.pth") # model = Seq2SeqModel(embed_size=embed_size, # src_vocab_size=src_vocab_size, # tar_vocab_size=tar_vocab_size, # hidden_size=latent_size, # num_layers=num_layers, dropout=dropout) # model.to(DEVICE) seq2seq_model.eval() stcns = [ "Mọi đứa trẻ sinh ra trong khoảng nửa đêm đều sở hữu năng lực đặc biệt ", "Bạn vưà bị loại ra khỏi tổng hợp gien trên quả đất .", "Nên chúng tôi đã thực hiện một thí nghiệm , chúng tôi trồng cây những cây mẹ cùng với cây con", "Tôi rất vui .", "Đầu tiên , ta đều cần phải đi ra khỏi những khu rừng", ] inputs = [] for line in stcns: line_index = tokenizer_vi.encode(line) # print(line_index) # print(tokenizer_vi.decode(line_index)) inputs.append(line_index) # print(input) # print("".join([vietnamese_characters[i-1] for i in input[0]])) sos = tokenizer_en.convert_tokens_to_ids(["[CLS]"]) for c, input in enumerate(inputs): # print(input) dec_inp = torch.LongTensor([sos]) dec_inp = dec_inp.to(DEVICE) enc_inp = torch.LongTensor([input]) enc_inp = enc_inp.to(DEVICE) for i in range(MAX_LENGTH): # print(dec_inp.device) pred = seq2seq_model( (enc_inp, dec_inp) ) # batch_size x seq_len x tar_vocab_size # print(pred.shape) _, prediction_char = torch.max(pred[:, -1:, :].data, 2) # print(f"prediction_char is {prediction_char}") dec_inp = torch.concat([dec_inp, prediction_char], axis=1) # print(f"dec_inp is {dec_inp}") prediction_text = dec_inp.cpu().numpy() # print(prediction_text) print("\n", stcns[c]) print(tokenizer_en.decode(prediction_text[0])) class Translator(nn.Module): # For inference def __init__(self, seq2seq_model) -> None: super(Translator, self).__init__() self.seq2seq_model = seq2seq_model # def forward(self, inputs): # enc_inp, dec_inp = inputs # enc_hidd, enc_cell = self.encoder(enc_inp) # # print(f"enc_hidd is at {enc_hidd.device}") # # print(f"enc_cell is at {enc_cell.device}\n") # enc_hidd = enc_hidd.to(DEVICE) # enc_cell = enc_cell.to(DEVICE) # # print(f"enc_hidd is at {enc_hidd.device}") # # print(f"enc_cell is at {enc_cell.device}") # dec_out, hidden_cell = self.decoder(dec_inp, enc_hidd, enc_cell) # pred = self.output_layer(dec_out) # return pred def forward( self, input ): # encoder input, dec_inp is [\t] aka start token and will be iteratively fed to decoder sos = english_characters["\t"] dec_inp = torch.Tensor([[sos]], device=DEVICE) for i in range(MAX_LENGTH): pred = self.seq2seq_model( (input, dec_inp) ) # batch_size x seq_len x tar_vocab_size print(pred.shape)
# install mediapipe import ultralytics ultralytics.checks() # import dependencies import os import subprocess import IPython from IPython.display import Video, display import numpy as np import pandas as pd import cv2 import mediapipe as mp def play_video(video_path: str): frac = 0.65 # scaling factor for display display( Video( data=video_path, embed=True, height=int(720 * frac), width=int(1280 * frac) ) ) def detect_player_bbox(video_path: str) -> str: """ Annotates video with object detection bounding boxes using YOLOv8 model. """ video_name = video_path.split("/")[-1] folder_name = "predict" # YOLOv8 Object Detection # you can edit the model if you want to use a different yolo8 model os.system(f"yolo predict model=yolov8x.pt source={video_path} save_txt=True") # path to latest output max = 0 for dir_name in os.listdir("/kaggle/working/runs/detect"): if dir_name != "predict": if int(dir_name[-1]) > max: max = int(dir_name[-1]) if max > 0: folder_name += str(max) output_path = f"/kaggle/working/runs/detect/{folder_name}/labels" return output_path def detect_player_bbox(video_path: str) -> str: """ Annotates video with object detection bounding boxes using YOLOv8 model. """ video_name = video_path.split("/")[-1] folder_name = "predict" # YOLOv8 Object Detection # you can edit the model if you want to use a different yolo8 model os.system(f"yolo predict model=yolov8x.pt source={video_path} save_txt=True") # path to latest output max = 0 for dir_name in os.listdir("/kaggle/working/runs/detect"): if dir_name != "predict": if int(dir_name[-1]) > max: max = int(dir_name[-1]) if max > 0: folder_name += str(max) output_path = f"/kaggle/working/runs/detect/{folder_name}/labels" return output_path def bbox_labels_to_dataframe(bbox_labels_path: str) -> pd.DataFrame: bbox_labels = { "video_name": [], "frame": [], "class_id": [], "center_x": [], "center_y": [], "width": [], "height": [], } for filename in os.listdir(bbox_labels_path): video_name = "_".join(filename.split("_")[0:3]) + ".mp4" frame = filename.split("_")[-1] frame = int(frame.split(".")[0]) with open(bbox_labels_path + "/" + filename, "r") as f: for line in f: line = line.split(" ") class_id = int(line[0]) center_x = float(line[1]) center_y = float(line[2]) width = float(line[3]) height = float(line[4]) if class_id == 0: # if person # append to dict bbox_labels["video_name"].append(video_name) bbox_labels["frame"].append(frame) bbox_labels["class_id"].append(class_id) bbox_labels["center_x"].append(center_x) bbox_labels["center_y"].append(center_y) bbox_labels["width"].append(width) bbox_labels["height"].append(height) return pd.DataFrame(bbox_labels) def multi_pose_estimation( video_path: str, bbox_labels: pd.DataFrame, verbose=True ) -> str: """ Performs multi-shot multi-pose estimation by obtianing person bbox from YOLOv8 and performing single pose estimation on the bbox crop. """ # intializing mediapipe utils mp_drawing = mp.solutions.drawing_utils mp_drawing_styles = mp.solutions.drawing_styles mp_pose = mp.solutions.pose # video name video_name = video_path.split("/")[-1] # VideoCapture Object cap = cv2.VideoCapture(video_path) # video variables width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = cap.get(cv2.CAP_PROP_FPS) total_frames = bbox_labels["frame"].max() # VideoWriter Object output_path = "labeled_" + video_name tmp_output_path = "tmp_" + output_path out = cv2.VideoWriter( tmp_output_path, cv2.VideoWriter_fourcc(*"MP4V"), fps, (width, height) ) # check if camera opened successfully if cap.isOpened() == False: print("Error opening video file!") # multipose estimation with mp_pose.Pose( min_detection_confidence=0.8, min_tracking_confidence=0.8 ) as pose: frame = 1 while cap.isOpened(): success, image = cap.read() if success: # selecting the frame bbox_set = bbox_labels.query("frame==@frame") # iterating through bboxs in the frame for idx, annot in bbox_set.iterrows(): bbox_center_x = annot["center_x"] * width bbox_center_y = annot["center_y"] * height bbox_width = annot["width"] * width bbox_height = annot["height"] * height # finding top-left and bottom-right bbox cooridnates bbox_top_left_x = int(bbox_center_x - (bbox_width / 2)) bbox_top_left_y = int(bbox_center_y - (bbox_height / 2)) bbox_bottom_right_x = int(bbox_center_x + (bbox_width / 2)) bbox_bottom_right_y = int(bbox_center_y + (bbox_height / 2)) # cropping image to bbox image_crop = image[ bbox_top_left_y:bbox_bottom_right_y, bbox_top_left_x:bbox_bottom_right_x, ] # pose estimation # set image as not writeable to improve perfromance image_crop.flags.writeable = False image_crop = cv2.cvtColor(image_crop, cv2.COLOR_BGR2RGB) results = pose.process(image_crop) # transposing results to be drawn on the original image if results.pose_landmarks != None: for landmark in results.pose_landmarks.landmark: landmark.x = ( (abs(bbox_bottom_right_x - bbox_top_left_x) / width) * landmark.x ) + (bbox_top_left_x / width) landmark.y = ( (abs(bbox_bottom_right_y - bbox_top_left_y) / height) * landmark.y ) + (bbox_top_left_y / height) # draw the pose annotations on the image # set image as writeable image.flags.writeable = True mp_drawing.draw_landmarks( image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS, landmark_drawing_spec=mp_drawing_styles.get_default_pose_landmarks_style(), ) # save video out.write(image) if verbose: print(f"Frame: {frame}/{total_frames}") frame += 1 else: break cap.release() out.release() # Not all browsers support the codec, we will re-load the file at tmp_output_path # and convert to a codec that is more broadly readable using ffmpeg if os.path.exists(output_path): os.remove(output_path) subprocess.run( [ "ffmpeg", "-i", tmp_output_path, "-crf", "18", "-preset", "veryfast", "-hide_banner", "-loglevel", "error", "-vcodec", "libx264", output_path, ] ) os.remove(tmp_output_path) return output_path video_path = "/kaggle/input/nfl-player-contact-detection/train/58168_003392_Endzone.mp4" bbox_labels_path = detect_player_bbox(video_path) bbox_labels = bbox_labels_to_dataframe(bbox_labels_path) output_path = multi_pose_estimation(video_path, bbox_labels) play_video(output_path)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # !pip install tensorflow import sys import numpy as np import random as rn import pandas as pd import torch from pytorch_pretrained_bert import BertModel from torch import nn # from torchnlp.datasets import imdb_dataset # --> We are using our own uploaded dataset. from pytorch_pretrained_bert import BertTokenizer from tensorflow.keras.preprocessing.sequence import pad_sequences from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler from torch.optim import Adam from torch.nn.utils import clip_grad_norm_ from IPython.display import clear_output import matplotlib.pyplot as plt rn.seed(321) np.random.seed(321) torch.manual_seed(321) torch.cuda.manual_seed(321) path = "../input/imdb-50k-movie-reviews-test-your-bert/" train_data = pd.read_csv(path + "train.csv") test_data = pd.read_csv(path + "test.csv") # experimenting here with a sample of dataset, to avoid memory overflow. train_data = train_data[:2000] test_data = test_data[:500] train_data = train_data.to_dict(orient="records") test_data = test_data.to_dict(orient="records") type(train_data) train_texts, train_labels = list( zip(*map(lambda d: (d["text"], d["sentiment"]), train_data)) ) test_texts, test_labels = list( zip(*map(lambda d: (d["text"], d["sentiment"]), test_data)) ) len(train_texts), len(train_labels), len(test_texts), len(test_labels) tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", do_lower_case=True) # tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'tokenizer', 'bert-base-uncased') train_tokens = list( map(lambda t: ["[CLS]"] + tokenizer.tokenize(t)[:510] + ["[SEP]"], train_texts) ) test_tokens = list( map(lambda t: ["[CLS]"] + tokenizer.tokenize(t)[:510] + ["[SEP]"], test_texts) ) len(train_tokens), len(test_tokens) train_tokens_ids = pad_sequences( list(map(tokenizer.convert_tokens_to_ids, train_tokens)), maxlen=512, truncating="post", padding="post", dtype="int", ) test_tokens_ids = pad_sequences( list(map(tokenizer.convert_tokens_to_ids, test_tokens)), maxlen=512, truncating="post", padding="post", dtype="int", ) train_tokens_ids.shape, test_tokens_ids.shape train_y = np.array(train_labels) == "pos" test_y = np.array(test_labels) == "pos" train_y.shape, test_y.shape, np.mean(train_y), np.mean(test_y) train_masks = [[float(i > 0) for i in ii] for ii in train_tokens_ids] test_masks = [[float(i > 0) for i in ii] for ii in test_tokens_ids] class BertBinaryClassifier(nn.Module): def __init__(self, dropout=0.1): super(BertBinaryClassifier, self).__init__() self.bert = BertModel.from_pretrained( "bert-base-uncased", output_attentions=True ) # self.bert = torch.hub.load('huggingface/pytorch-transformers', 'modelForSequenceClassification', 'bert-base-uncased', output_attention=True) # self.bert = BertForSequenceClassification.from_pretrained('bert-base-uncased', output_attentions=True) self.dropout = nn.Dropout(dropout) self.linear = nn.Linear(768, 1) self.sigmoid = nn.Sigmoid() def forward(self, tokens, masks=None): encoded_layers, pooled_output = self.bert( tokens, attention_mask=masks, output_all_encoded_layers=True ) dropout_output = self.dropout(pooled_output) linear_output = self.linear(dropout_output) proba = self.sigmoid(linear_output) print(encoded_layers) return proba # ensuring that the model runs on GPU, not on CPU device = torch.device("cuda" if torch.cuda.is_available() else "cpu") device str(torch.cuda.memory_allocated(device) / 1000000) + "M" bert_clf = BertBinaryClassifier() bert_clf = bert_clf.cuda() # running BERT on CUDA_GPU str(torch.cuda.memory_allocated(device) / 1000000) + "M" x = torch.tensor(train_tokens_ids[:3]).to(device) y, pooled = bert_clf.bert(x, output_all_encoded_layers=False) x.shape, y.shape, pooled.shape y = bert_clf(x) y.cpu().detach().numpy() # kinda Garbage Collector to free up used and cache space # Cross- checking CUDA GPU Memory to ensure GPU memory is not overflowing. str(torch.cuda.memory_allocated(device) / 1000000) + "M" y, x, pooled = None, None, None torch.cuda.empty_cache() # Clearing Cache space for fresh Model run str(torch.cuda.memory_allocated(device) / 1000000) + "M" # Setting hyper-parameters BATCH_SIZE = 4 EPOCHS = 10 train_tokens_tensor = torch.tensor(train_tokens_ids) train_y_tensor = torch.tensor(train_y.reshape(-1, 1)).float() test_tokens_tensor = torch.tensor(test_tokens_ids) test_y_tensor = torch.tensor(test_y.reshape(-1, 1)).float() train_masks_tensor = torch.tensor(train_masks) test_masks_tensor = torch.tensor(test_masks) # str(torch.cuda.memory_allocated(device)/1000000 ) + 'M' train_dataset = TensorDataset(train_tokens_tensor, train_masks_tensor, train_y_tensor) train_sampler = RandomSampler(train_dataset) train_dataloader = DataLoader( train_dataset, sampler=train_sampler, batch_size=BATCH_SIZE ) test_dataset = TensorDataset(test_tokens_tensor, test_masks_tensor, test_y_tensor) test_sampler = SequentialSampler(test_dataset) test_dataloader = DataLoader(test_dataset, sampler=test_sampler, batch_size=BATCH_SIZE) param_optimizer = list(bert_clf.sigmoid.named_parameters()) optimizer_grouped_parameters = [{"params": [p for n, p in param_optimizer]}] optimizer = Adam(bert_clf.parameters(), lr=3e-6) # torch.cuda.empty_cache() # Clearing Cache space for a fresh Model run # import time # start = time.time() # for epoch_num in range(EPOCHS): # bert_clf.train() # train_loss = 0 # for step_num, batch_data in enumerate(train_dataloader): # token_ids, masks, labels = tuple(t.to(device) for t in batch_data) # print(str(torch.cuda.memory_allocated(device)/1000000 ) + 'M') # logits = bert_clf(token_ids, masks) # loss_func = nn.BCELoss() # batch_loss = loss_func(logits, labels) # train_loss += batch_loss.item() # bert_clf.zero_grad() # batch_loss.backward() # clip_grad_norm_(parameters=bert_clf.parameters(), max_norm=1.0) # optimizer.step() # clear_output(wait=True) # print('Epoch: ', epoch_num + 1) # print("\r" + "{0}/{1} loss: {2} ".format(step_num, len(train_data) / BATCH_SIZE, train_loss / (step_num + 1))) # end = time.time() # print("time elapsed: ",end - start) bert_clf.eval() bert_predicted = [] all_logits = [] with torch.no_grad(): for step_num, batch_data in enumerate(test_dataloader): token_ids, masks, labels = tuple(t.to(device) for t in batch_data) logits = bert_clf(token_ids, masks) loss_func = nn.BCELoss() loss = loss_func(logits, labels) numpy_logits = logits.cpu().detach().numpy() bert_predicted += list(numpy_logits[:, 0] > 0.5) all_logits += list(numpy_logits[:, 0]) np.mean(bert_predicted) print(classification_report(test_y, bert_predicted)) # print(bert_clf.out) # print(bert_clf.bert.encoder) # print(bert_clf.bert.encoder.layer[0].attention.self.query.weight) # basic import math # PyTorch import torch import torch.nn.functional as F # visualisation import matplotlib.pyplot as plt import seaborn as sns # # random tensors function from https://rockt.github.io/2018/04/30/einsum # def random_tensors(shape, num=1, requires_grad=False): # tensors = [torch.randn(shape, requires_grad=requires_grad) for i in range(0,num)] # return tensors[0] if num == 1 else tensors # # dimensions = batch size x sequence length x embedding dimension # Y = random_tensors([3, 5, 7]) # attention function based on http://nlp.seas.harvard.edu/2018/04/03/attention.html#attention def attention_transf(query, key, value): "Compute 'Scaled Dot Product Attention'" # scaling factor for scores d_k = query.size(-1) # matrix multiplication to get every dot product for query and transposed key scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k) # apply softmax of the scores on the last dimensions (= sequence length) p_attn = F.softmax(scores, dim=-1) # matrix multiplication of attention matrix and value matrix to get output based out = torch.matmul(p_attn, value) return out, p_attn # run Y through attention function # out, p_attn = attention_transf(Y, Y, Y) out, p_attn = attention_transf(Y, Y, Y) # print shapes Y.shape, p_attn.shape, out.shape # input dimmension = batch size x sequence length x embedding dimension Y.shape # transpose the last two dimension to enable matrix multiplication in the next step Y.transpose(-2, -1).shape # matrix multiplication for attention matrix torch.matmul(Y, Y.transpose(-2, -1)).shape # matrix multiplication for output torch.matmul(torch.matmul(Y, Y.transpose(-2, -1)), Y).shape # check attention matrix shape p_attn.shape # print attention matrix p_attn # print first attention vector = dimension of softmax p_attn[0, 0] # verify that softmax adds up to 1 p_attn[0, 0].sum().item() # verify that softmax adds up to 1 for every row in the attention matrix p_attn.sum(dim=2) # input sns.heatmap( Y[0].numpy(), annot=True, cmap=sns.light_palette("blue", as_cmap=True), linewidths=1 ).set_title("Input (= query, key, and value)") # output sns.heatmap( out[0].numpy(), annot=True, cmap=sns.light_palette("green", as_cmap=True), linewidths=1, ).set_title("Output") p_attn[0, 0].view(1, -1) Y[0, :, 0].view(-1, 1) # attention matrix sns.heatmap( p_attn[0, 0].view(1, -1).numpy(), annot=True, cmap=sns.light_palette("orange", as_cmap=True), linewidths=1, ) # input sns.heatmap( Y[0, :, 0].view(-1, 1).numpy(), annot=True, cmap=sns.light_palette("blue", as_cmap=True), linewidths=1, ) # output sns.heatmap( out[0, 0, 0].view(1, 1).numpy(), annot=True, cmap=sns.light_palette("green", as_cmap=True), linewidths=1, )
# ## Binary Classification to predict 'Buggy' # import libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, confusion_matrix from sklearn.metrics import roc_curve, auc from sklearn.metrics import precision_recall_curve import xgboost as xgb # read data from Excel file df = pd.read_excel("/kaggle/input/completo/completo.xlsx") df.head() df.info() print("Null Values: ", df.isnull().sum().sum()) df.describe() df["Buggy"].value_counts # Check for Duplicates print("duplicated Values: ", df.duplicated().sum()) # remove duplicate values df = df.drop_duplicates() print("duplicated Values: ", df.duplicated().sum()) # drop unwanted columns df = df.drop(["Project", "Hash", "LongName", "Number of Bugs"], axis=1) df.isnull().sum().sum() df.head() df.shape # handling outliers # plot all columns in a boxplot plt.figure(figsize=(29, 10)) df.boxplot() plt.xticks(rotation=45) plt.show() # split the data into inputs and outputs x = df.drop("Buggy", axis=1) # inputs/features y = df["Buggy"] # output/target variable x y scaler = StandardScaler() # fit and transform the data scaled_data = scaler.fit_transform(df) # Split the data into training and testing sets X_train, X_test, y_train, y_test = train_test_split( x, y, test_size=0.2, random_state=42 ) # Before Excueting the random forest model we first need to make hyperparamter tuning from xgboost import XGBRegressor from sklearn.model_selection import GridSearchCV xgb_model = XGBRegressor(random_state=2022) search_space = { "n_estimators": [100, 300], "max_depth": [3, 7], "min_samples_split": [25, 50], "max_features": [2, 4], } GS = GridSearchCV( estimator=xgb_model, param_grid=search_space, scoring=["r2", "neg_root_mean_squared_error"], refit="r2", cv=5, verbose=4, ) GS.fit(X_train, y_train) print(GS.best_params_) # ## Random Forest Classifier # Create a random forest classifier with 300 trees rf = RandomForestClassifier( max_depth=35, max_features=20, min_samples_split=50, n_estimators=300 ) # Fit the model to the training data rf.fit(X_train, y_train) y_pred = rf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print("Accuracy: {:.2f}%".format(accuracy * 100)) # calculate confusion matrix cm = confusion_matrix(y_test, y_pred) # plot confusion matrix using heatmap sns.heatmap(cm, annot=True, cmap="Blues") # calculate ROC curve fpr, tpr, thresholds = roc_curve(y_test, rf.predict_proba(X_test)[:, 1]) roc_auc = auc(fpr, tpr) # plot ROC curve plt.plot(fpr, tpr, label="ROC curve (AUC = {:.2f})".format(roc_auc)) plt.plot([0, 1], [0, 1], linestyle="--", label="Random guess") plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") plt.title("Receiver Operating Characteristic (ROC) Curve") plt.legend() # plot feature importances fig, ax = plt.subplots(figsize=(12, 15)) ax.barh(range(len(rf.feature_importances_)), rf.feature_importances_) ax.set_yticks(range(len(X_train.columns))) ax.set_yticklabels(X_train.columns) ax.set_xlabel("Importance") ax.set_ylabel("Feature") plt.show() import shap shap.initjs() import joblib explainer = shap.TreeExplainer(rf) explainer = shap.TreeExplainer(rf) shap_values = explainer.shap_values(np.array(X_test.iloc[0])) Explainer = shap.force_plot(explainer.expected_value[1], shap_values[1], X_test.iloc[0]) Explainer import lime import lime.lime_tabular explainer = lime.lime_tabular.LimeTabularExplainer( X_test.values, feature_names=X_test, discretize_continuous=True ) exp = explainer.explain_instance( X_test.iloc[10], rf.predict_proba, num_features=4, top_labels=1 ) exp.show_in_notebook(show_table=True, show_all=False) # # XGBoost # Define model model = xgb.XGBClassifier() # Train model model.fit(X_train, y_train) y_pred = model.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print("Accuracy: {:.2f}%".format(accuracy * 100)) # calculate confusion matrix cm = confusion_matrix(y_test, y_pred) # plot confusion matrix using heatmap sns.heatmap(cm, annot=True, cmap="Blues") # # XGBoost with GPU usage # Define model xgb_gpu = xgb.XGBClassifier(tree_method="gpu_hist", gpu_id=0) # Train model xgb_gpu.fit(X_train, y_train) y_pred = xgb_gpu.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print("Accuracy: {:.2f}%".format(accuracy * 100)) # calculate confusion matrix cm = confusion_matrix(y_test, y_pred) # plot confusion matrix using heatmap sns.heatmap(cm, annot=True, cmap="Blues")
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from tensorflow import keras # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) from tensorflow.keras import datasets, layers, models import matplotlib.pyplot as plt import tensorflow as tf import numpy as np import seaborn as sns import pandas as pd logdir = "log" (train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data() train_images = train_images.reshape((60000, 28, 28, 1)) test_images = test_images.reshape((10000, 28, 28, 1)) train_images, test_images = train_images / 255.0, test_images / 255.0 classes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] model = models.Sequential() model.add(layers.Conv2D(32, (3, 3), activation="relu", input_shape=(28, 28, 1))) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation="relu")) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation="relu")) model.add(layers.Flatten()) model.add(layers.Dense(64, activation="relu")) model.add(layers.Dense(10, activation="softmax")) model.compile( optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"] ) model.fit( x=train_images, y=train_labels, epochs=5, validation_data=(test_images, test_labels) ) y_true = test_labels y_pred = model.predict_classes(test_images)
from sklearn.model_selection import train_test_split import pandas as pd diamonds = pd.read_csv("../input/diamonds/diamonds.csv") diamonds.head(10) df = diamonds.copy() X = df.drop(["price"], axis=1) y = df.price df.cut.value_counts() df["cut"] = df["cut"].map( {"Fair": 1, "Good": 2, "Very Good": 3, "Premium": 4, "Ideal": 5} ) df.head() df = pd.get_dummies(data=df, columns=["color", "clarity"]) df.head() df.isnull().sum() X = df.drop(["price"], axis=1) y = df.price from sklearn.tree import DecisionTreeRegressor from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split( X, y, train_size=0.75, random_state=0 ) model = DecisionTreeRegressor(random_state=0) model.fit(X_train, y_train) from sklearn.metrics import mean_absolute_error predictions = model.predict(X_test) print(mean_absolute_error(y_test, predictions)) def get_mae(max_leaf_nodes, X_train, X_test, y_train, y_test): model = DecisionTreeRegressor(max_leaf_nodes=max_leaf_nodes, random_state=0) model.fit(X_train, y_train) pred = model.predict(X_test) mae = mean_absolute_error(y_test, pred) return mae for max_leaf_nodes in [5, 50, 500, 5000, 6000]: my_mae = get_mae(max_leaf_nodes, X_train, X_test, y_train, y_test) print("Max leaf nodes: %d \t\t Mean Absolute Error: %d" % (max_leaf_nodes, my_mae)) model = DecisionTreeRegressor(max_leaf_nodes=5000, random_state=0, criterion="mae") model.fit(X_train, y_train) predictions = model.predict(X_test) print(mean_absolute_error(y_test, predictions)) model.score(X_train, y_train) # train_score model.score(X_test, y_test) # test score
# # NCAA M Basketball Player / Team Stats Scraping # #### This notebook can be used to scrape men's NCAA basketball player / team stats from https://www.sports-reference.com/ # ## Introduction # As I got started on the March Machine Learning Mania 2021 - NCAAM contest, I thought it might be useful to bring in player stats to help make the winning predictions. # As the compeition data didn't include player stats, I decided to create a notebook to get that data! # ## Prep ## library imports ## linear algebra import numpy as np ## file IO / processing import pandas as pd ## system import os ## requests import requests ## results storage from collections import defaultdict ## scraping from bs4 import BeautifulSoup ## functions def get_soup(url, parser="html.parser", verify=True): """ Gets the Beautifulsoup object which holds the data to be scrapped Args: url (str): URL of the page to be scrapped parser (str): Type of parser to be used Returns: BeautifulSoup object """ request = get_request_response(url, verify=verify) return BeautifulSoup(request.content, parser) def get_request_response(url, verify=True): """ Requests the content to be scrapped Args: url (url): URL of the page to be scrapped Returns: request object """ return requests.get(url, verify=verify) def find_all(soup, **kwargs): """ Returns all the PageElement tags which match a given criteria See BeautifulSoup find_all documentation Args: soup (BeautifulSoup): BeautifulSoup object containing the web page content Returns: list of PageElements """ return soup.find_all(**kwargs) def find(soup, **kwargs): """ Returns one PageElement tag which matches a given criteria See BeautifulSoup find_all documentation Args: soup (BeautifulSoup): BeautifulSoup object containing the web page content Returns: PageElement instance """ return soup.find(**kwargs) def find_per_game_table(soup): """ Returns per game stats table PageElement tag See BeautifulSoup find_all documentation Args: soup (BeautifulSoup): BeautifulSoup object containing the web page content Returns: per game stats table PageElement tag instance """ return find( soup, name="table", attrs={"class": "sortable stats_table", "id": "per_game"} ) def find_stats_tags_from_soup(soup, name): """ Returns table PageElement tag of the chosen table See BeautifulSoup find_all documentation Args: soup (BeautifulSoup): BeautifulSoup object containing the web page content name (str): name of the table to be scraped Returns: table PageElement tag instance """ if name == "per game": table_soup = find_per_game_table(soup) else: raise NotImplementedError("Invalid table name") return find_all(soup=table_soup, name="td") def get_stats(tags): """ Get stats from the table tags Args: tags (list(PageElement tag)): list of tag elements which contain player informations returns: dictionary of player stats """ game_stats = defaultdict(list) for tag in tags: game_stats[tag["data-stat"]].append(tag.string) return game_stats def get_stats_from_soup(soup, name): """ Get player stats from BeautifulSoup object Args: soup (BeautifulSoup): BeautifulSoup object containing the web page content name (str): name of the table to be scraped Returns: dictionary of player stats """ tags = find_stats_tags_from_soup(soup, name=name) return get_stats(tags) def get_stats_frame_from_soup(soup, name): """ Get player stats DataFrame from BeautifulSoup object Args: soup (BeautifulSoup): BeautifulSoup object containing the web page content name (str): name of the table to be scraped Returns: pandas DataFrame of player stats """ return pd.DataFrame(data=get_stats_from_soup(soup, name=name)) def scrape_per_game_stats_from_url(url, school=None, season=None): """ Get player stats from BeautifulSoup object with school and season Args: soup (BeautifulSoup): BeautifulSoup object containing the web page content name (str): name of the table to be scraped Returns: pandas DataFrame of player stats """ soup = get_soup(url=url) df = get_stats_frame_from_soup(soup=soup, name="per game") df["School"] = school df["Season"] = season return df # ## Example ## Gonzaga 2020-2021 url = "https://www.sports-reference.com/cbb/schools/gonzaga/2021.html#all_schools_per_game" df = scrape_per_game_stats_from_url(url=url, school="Gonzaga", season="2020-2021") df ## Duke 2018-2019 url = "https://www.sports-reference.com/cbb/schools/duke/2019.html#all_schools_per_game" df = scrape_per_game_stats_from_url(url=url, school="Duke", season="2018-2019") df
import os print(os.getcwd()) os.listdir("/kaggle/input/monthly-data") import pandas as pd files = [file for file in os.listdir("/kaggle/input/monthly-data")] files.sort() files all_month = pd.DataFrame() for file in files: df = pd.read_csv("/kaggle/input/monthly-data/" + file) all_month = pd.concat([all_month, df]) all_month all_month = all_month.dropna(how="all") all_month # all_month = all_month[all_month['Order_Date'].str[0:2] != 'Or'] # all_month # all_month['Order_Date'] = pd.to_datetime(all_month['Order_Date']) # all_month.head() # all_month['month'] = pd.DatetimeIndex(all_month['Order_Date']).month # all_month.head() # all_month['Quantity_Ordered'] = pd.to_numeric(all_month['Quantity_Ordered']) # all_month['Price_Each'] = pd.to_numeric(all_month['Price_Each']) # all_month.info() # all_month = all_month.drop(columns = 'Quantitiy_Ordered') # all_month.info() all_month["Order_ID"] = all_month["Order_ID"].astype("str") all_month["Product"] = all_month["Product"].astype("str") all_month["Purchase_Address"] = all_month["Purchase_Address"].astype("str") all_month.info() # all_month['ffp'] = all_month['Product'].str[0:4] # all_month.head() # all_month = all_month.drop(columns = 'ffp') # all_month.head() for_product = all_month.groupby("Product") for_product.sum() import matplotlib.pyplot as plt product = [product for product, df in for_product] quantity = for_product.sum()["Quantity_Ordered"] plt.bar(product, quantity) plt.xticks(product, rotation="vertical", size=6) plt.show() # all_month.loc[(all_month.Product == 'LG Dryer') | (all_month.Product == 'LG Washing Machine')] all_month.info() all_month["sales"] = all_month["Quantity_Ordered"] * all_month["Price_Each"] # all_month.head() all_month["Order_Date"] = pd.to_datetime(all_month["Order_Date"]) # all_month.info() all_month["month"] = pd.DatetimeIndex(all_month["Order_Date"]).month # all_month.head() all_month.groupby("month").sum() # import matplotlib.ticker as mtick month_list = [month for month, df in all_month.groupby("month")] sales_data = all_month.groupby("month").sum()["sales"] plt.bar(month_list, sales_data) plt.xticks(month_list) # plt.gca().yaxis.set_major_formatter(mtick.FormatStrFormatter('%.1f')) plt.ticklabel_format(style="plain") plt.tight_layout() plt.show() import matplotlib.ticker as mtick month_list = [month for month, df in all_month.groupby("month")] sales_data = all_month.groupby("month").sum()["sales"] plt.bar(month_list, sales_data) plt.xticks(month_list) # plt.gca().yaxis.set_major_formatter(mtick.FormatStrFormatter('%.f')) plt.tight_layout() plt.show() all_month["city"] = all_month["Purchase_Address"].apply( lambda x: x.split(",")[1] + " " + x.split(",")[2][0:3] ) # all_month.head() all_month.groupby("city").sum() cities = [city for city, df in all_month.groupby("city")] sales_data = all_month.groupby("city").sum()["sales"] plt.bar(cities, sales_data) plt.xticks(cities, rotation="vertical") plt.ticklabel_format(style="plain", axis="y") plt.show()
def fun(name, *args): print(type(args)) print("first arg is ", name) for i in args: print(i) fun("sai", "helllo", 1, 2, 3) def myfun(name, **args): print(type(args)) print("first arg is ", name) for i, j in args.items(): print(i, j) myfun("sai", age=20, city="hyderabad") def myfun(name, city, *args, **kwargs): print("first arg is ", name) print(type(args)) for i in args: print(i) print(type(kwargs)) for i, j in kwargs.items(): print(i, " : ", j) myfun("sai", "chennai", 20, 40, "comapany", Role="Ml Engineer", Date="20/30") import os os.path.join("sai", "man")
from pycocotools.coco import COCO import requests import os # Set up data directories dataDir = "check" dataType = "train" annFile = f"/kaggle/input/coco-dataset-annotation/instances_train2017.json" imgDir = f"{dataDir}/{dataType}2017" os.makedirs(imgDir, exist_ok=True) # Initialize COCO API coco = COCO(annFile) # Get image ids for the 'chair' and 'bench' categories catIds = coco.getCatIds(catNms=["chair", "bench"]) imgIds = coco.getImgIds(catIds=catIds) # Download the images and annotations for imgId in imgIds: # Download image img = coco.loadImgs(imgId)[0] img_url = img["coco_url"] img_name = img["file_name"] with open(f"{imgDir}/{img_name}", "wb") as f: f.write(requests.get(img_url).content) # Download annotations annIds = coco.getAnnIds(imgIds=imgId, catIds=catIds) anns = coco.loadAnns(annIds) annFile = f'{imgDir}/{img_name.split(".")[0]}.txt' with open(annFile, "w") as f: for ann in anns: bbox = ann["bbox"] x_center = (bbox[0] + bbox[2] / 2) / img["width"] y_center = (bbox[1] + bbox[3] / 2) / img["height"] width = bbox[2] / img["width"] height = bbox[3] / img["height"] catId = ann["category_id"] f.write(f"{catId} {x_center} {y_center} {width} {height}\n")
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # Karakterleri 2. konumdan 5. konuma getirin (dahil değildir): b = "Ciao!" print(b[0:6]) # Not: İlk karakterin indeksi 0'dır. b = "Buongiorno!" print(b[:5]) b = "Merhaba Ben Yusuf yirmi dört yaşındayım." print(b[14:19]) b = "Günaydın Trabzon!" print(b[-5:-2]) a = "arkadaşlar Selam!" print(a.upper()) a = "DÜNYANIN EN İYİ Asma Köprü Istanbul" print(a.lower()) a = " Dünyanın en güzel şehri Istanbul! " print(a.strip()) a = "Merhaba, Yusuf" print(a.replace("değişecek_olan", "yerine_gelmesini_istediğimiz")) a = "Merhaba, Ben, Yusuf" print(a.split(",")) # returns ['Hello', ' World!'] b = a.split() a = "YU" b = "SUF" c = a + b print(c) a = "Şampiyon" b = "Trabzon" c = a + " " + b # boşluk oluşturuma için kullanılıyor print(c) age = 28 txt = "My name is Yusuf, I am {}" print(txt.format(age)) quantity = 10 itemno = 1500 price = 1000 myorder = "Zara da {} parça kıyafete {} yerine {} tl ödedim." print(myorder.format(quantity, itemno, price)) txt = 'Benim memleketim karadenizde "Trabzon"un meşhur yemeği hamsi tavadır.' txt x = "Bize Her yer Trabzon" print(len(x))
import pandas as pd import matplotlib.pyplot as plt import seaborn as sns df = pd.read_csv( "/kaggle/input/electricity-production-by-source-world/Electricity_Production_By_Source.csv" ) df.head() # loading ISO 3166 dataset to check full list of existing countries based on Alpha-3 codes. iso_a3 = pd.read_csv( "/kaggle/input/country-names-with-short-codes-a2-a3-iso/country code.csv", encoding="ISO-8859-1", ) iso_a3_list = list(iso_a3["Alpha-3 code"]) iso_a3.head() # replace null values with 0 df = df.fillna(0) # create a new column for total electricity production df["Total"] = df.iloc[:, 3:].sum(axis=1) # check if Code not matches with ISO Alpha-3 codes to detect Totals and Region Sub-totals in the dataset SubTotal_codes = df[~df["Code"].isin(iso_a3_list)] SubTotal_codes = ( SubTotal_codes.groupby(["Entity", "Code"])["Total"] .sum() .sort_values(ascending=False) .reset_index() ) # filter dataset only for rows which have a valid ISO code, so represent real country df = df[df["Code"].isin(iso_a3_list)] df_year = ( df.groupby("Year")[ [ "Electricity from coal (TWh)", "Electricity from gas (TWh)", "Electricity from hydro (TWh)", "Electricity from other renewables (TWh)", "Electricity from solar (TWh)", "Electricity from oil (TWh)", "Electricity from wind (TWh)", "Electricity from nuclear (TWh)", ] ] .sum() .reset_index() ) # Chart 1 - Electricity Production by Year and Source sns.set_style("whitegrid") # Define the label and color for each energy source energy_sources = { "Coal": "darkgray", "Gas": "lightcoral", "Hydro": "steelblue", "Other Renewables": "yellowgreen", "Solar": "gold", "Oil": "darkred", "Wind": "teal", "Nuclear": "purple", } # Plot the bar chart ax = sns.barplot( x="Year", y="Electricity from coal (TWh)", data=df_year, color=energy_sources["Coal"], ) for source in list(energy_sources.keys())[1:]: ax = sns.barplot( x="Year", y=f"Electricity from {source.lower()} (TWh)", data=df_year, color=energy_sources[source], bottom=df_year[ [ f"Electricity from {prev.lower()} (TWh)" for prev in list(energy_sources.keys())[ : list(energy_sources.keys()).index(source) ] ] ].sum(axis=1), ) # Add the legend handles = [ plt.Rectangle((0, 0), 1, 1, color=energy_sources[source]) for source in energy_sources ] labels = list(energy_sources.keys()) ax.legend(handles, labels, loc="upper left", bbox_to_anchor=(1, 1)) ax.set_title("Electricity Production by Year and Source") ax.set_ylabel("Electricity Production (TWh)") plt.xticks(rotation=90) plt.show() # Select the data for the decade 2010-2019 df_decade = df[df["Year"].between(2010, 2019)] # Group the data by Entity and Source of electricity df_grouped = ( df_decade.groupby("Entity")[ [ "Electricity from coal (TWh)", "Electricity from gas (TWh)", "Electricity from hydro (TWh)", "Electricity from other renewables (TWh)", "Electricity from solar (TWh)", "Electricity from oil (TWh)", "Electricity from wind (TWh)", "Electricity from nuclear (TWh)", "Total", ] ] .sum() .reset_index() ) # get top 10 by total production to limit the chart top_10 = ( df_grouped.groupby("Entity") .sum() .sort_values(by="Total", ascending=False) .reset_index() .head(10) ) # Create a stacked bar chart for production per source per country fig, ax = plt.subplots(figsize=(10, 10)) sns.barplot( x="Electricity from coal (TWh)", y="Entity", data=top_10, label="Coal", color="darkgray", ) sns.barplot( x="Electricity from gas (TWh)", y="Entity", data=top_10, label="Gas", color="lightcoral", ) sns.barplot( x="Electricity from hydro (TWh)", y="Entity", data=top_10, label="Hydro", color="steelblue", ) sns.barplot( x="Electricity from other renewables (TWh)", y="Entity", data=top_10, label="Other Renewables", color="yellowgreen", ) sns.barplot( x="Electricity from solar (TWh)", y="Entity", data=top_10, label="Solar", color="gold", ) sns.barplot( x="Electricity from oil (TWh)", y="Entity", data=top_10, label="Oil", color="darkred", ) sns.barplot( x="Electricity from wind (TWh)", y="Entity", data=top_10, label="Wind", color="teal" ) sns.barplot( x="Electricity from nuclear (TWh)", y="Entity", data=top_10, label="Nuclear", color="purple", ) ax.set( xlabel="Electricity Production (TWh)", ylabel="Country", title="Electricity Production by Source and Country (2010-2019)", ) ax.legend(loc="lower right") plt.show()
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt from tensorflow.keras.datasets import fashion_mnist from keras.preprocessing.image import ImageDataGenerator from keras.layers import Conv2D, MaxPooling2D, Flatten, BatchNormalization import random # for generating random numbers from keras.models import Sequential # Model type to be used from keras.layers.core import Dense, Dropout, Activation from keras.utils import np_utils # NumPy related tools from sklearn.model_selection import train_test_split class_names = [ "T-shirt/top", "Trouser", "Pullover", "Dress", "Coat", "Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot", ] (X_train, y_train), (X_test, y_test) = fashion_mnist.load_data() print(f"X_train's shape is {X_train.shape}") print(f"y_train's shape is {y_train.shape}") print(f"y_train has {np.max(y_train) + 1} classes") # We want to add channels to our X data, so that they # are compatible with the Convolutional Layers # The idea here is that we are working in greyscale # So the image has 1 channel # The image data is of shape (N, im_height, im_width, channels) X_train = X_train.reshape(X_train.shape + (1,)) X_test = X_test.reshape(X_test.shape + (1,)) print(X_train.shape) print(X_test.shape) print( f"The maximum value of X_train is {np.max(X_train)}. We don't want this, because it'll make training longer" ) X_train = X_train / 255 X_test = X_test / 255 print( f"Now the maximum value of X_train is {np.max(X_train)}. We have now scaled our training data." ) # Let's take a look at some of these images fig, ax = plt.subplots(2, 5) for i in range(2): for j in range(5): ind = (i * 5) + j ds_ex = np.where(y_train == ind)[0][0] ax[i, j].imshow(X_train[ds_ex, ...]) ax[i, j].set_title(class_names[ind]) plt.show() def to_one_hot(y): """ Input: y of shape (n_samples) Output: y of shape (n_samples, n_classes) """ onehot = np.zeros((y.shape[0], len(class_names))) onehot[np.arange(y.shape[0]), y] = 1 # for i in range(len(y)): # onehot[i, y[i]] = 1 return onehot y_train = to_one_hot(y_train) y_test = to_one_hot(y_test) # Over to you. Create a CNN to classify this # Including validation set - reduces the test accuracy # X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.2, random_state=42) # Now make the CNN model - use the same code as for MNIST digits dataset model = Sequential() # Linear stacking of layers # Convolution Layer 1 model.add( Conv2D(32, (3, 3), input_shape=(28, 28, 1)) ) # 32 different 3x3 kernels -- so 32 feature maps model.add(BatchNormalization(axis=-1)) # normalize each feature map before activation model.add(Activation("relu")) # activation model.add(Dropout(0.2)) # 20% dropout of randomly selected nodes # Convolution Layer 2 model.add(Conv2D(32, (3, 3))) # 32 different 3x3 kernels -- so 32 feature maps model.add(BatchNormalization(axis=-1)) # normalize each feature map before activation model.add(Activation("relu")) # activation model.add(MaxPooling2D(pool_size=(2, 2))) # Pool the max values over a 2x2 kernel model.add(Dropout(0.2)) # 20% dropout of randomly selected nodes # Convolution Layer 3 model.add(Conv2D(64, (3, 3))) # 64 different 3x3 kernels -- so 64 feature maps model.add(BatchNormalization(axis=-1)) # normalize each feature map before activation model.add(Activation("relu")) # activation model.add(Dropout(0.2)) # 20% dropout of randomly selected nodes # Convolution Layer 4 model.add(Conv2D(64, (3, 3))) # 64 different 3x3 kernels -- so 64 feature maps model.add(BatchNormalization(axis=-1)) # normalize each feature map before activation model.add(Activation("relu")) # activation model.add(MaxPooling2D(pool_size=(2, 2))) # Pool the max values over a 2x2 kernel model.add(Flatten()) # Flatten final 4x4x64 output matrix into a 1024-length vector model.add(Dropout(0.2)) # 20% dropout of randomly selected nodes # Fully Connected Layer 5 model.add(Dense(512)) # 512 FCN nodes model.add(BatchNormalization()) # normalization model.add(Activation("relu")) # activation model.add(Dropout(0.2)) # 20% dropout of randomly selected nodes # Fully Connected Layer 6 model.add(Dense(10)) # final 10 FCN nodes model.add(Activation("softmax")) # softmax activation model.summary() model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) # Did worse with data augmentation # gen = ImageDataGenerator( # featurewise_center=False, # set input mean to 0 over the dataset # samplewise_center=False, # set each sample mean to 0 # featurewise_std_normalization=False, # divide inputs by std of the dataset # samplewise_std_normalization=False, # divide each input by its std # zca_whitening=False, # apply ZCA whitening # rotation_range=10, # randomly rotate images in the range (degrees, 0 to 180) # zoom_range = 0.1, # Randomly zoom image # width_shift_range=0.1, # randomly shift images horizontally (fraction of total width) # height_shift_range=0.1, # randomly shift images vertically (fraction of total height) # horizontal_flip=False, # randomly flip images # vertical_flip=False) # randomly flip images batch_sz = 32 # 32 seems to work best num_epochs = 10 # model.fit(X_train, y_train, batch_size=batch_sz, epochs=num_epochs, validation_data=(X_val, y_val), verbose=1) model.fit(X_train, y_train, batch_size=batch_sz, epochs=num_epochs, verbose=1) # predict with the cnnmodel score = model.evaluate(X_test, y_test) print("Loss:", score[0]) print("Test accuracy:", score[1])
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import cudf import cuml from cuml.model_selection import train_test_split from cuml.metrics import accuracy_score import xgboost as xgb from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session time_slot_data_X = cudf.read_csv( "/kaggle/input/tumai-x-aimunich-x-kkcompany/light_train_source_labels.csv" ) time_slot_data_y = cudf.read_csv( "/kaggle/input/tumai-x-aimunich-x-kkcompany/light_train_target_labels.csv" ) time_slot_data_X.head() time_slot_data_X.describe() # Target Time Span time_slot_data_y.head() time_slot_data_y.describe() # time_slot_cols = list(time_slot_data.columns) # time_slot_cols.remove('user_id') # time_slot_data[time_slot_cols].sum().plot.bar() time_slot_cols_X = list(time_slot_data_X.columns) time_slot_cols_X.remove("user_id") time_slot_cols_y = list(time_slot_data_y.columns) time_slot_cols_y.remove("user_id") X = time_slot_data_X[time_slot_cols_X] y = time_slot_data_y[time_slot_cols_y] # split into training and testing sets X_train, X_test, y_train_cudf, y_test_cudf = train_test_split( X, y, test_size=0.2, random_state=42 ) cudf.DataFrame(X_train) X_train = cudf.DataFrame(X_train) X_test = cudf.DataFrame(X_test) y_train = cudf.DataFrame(y_train_cudf) y_test = cudf.DataFrame(y_test_cudf) # create XGBoost classifier clf = xgb.XGBClassifier(tree_method="gpu_hist", gpu_id=0) # fit the classifier to the training data clf.fit(X_train, y_train) # make predictions on the testing data y_pred = clf.predict(X_test) # calculate accuracy of the predictions accuracy = cuml.accuracy_score(y_test.values.ravel(), y_pred) print("Accuracy:", accuracy) # Create Submission X_submission = cudf.read_csv( "/kaggle/input/tumai-x-aimunich-x-kkcompany/light_test_source_labels.csv" ) user_ids = X_submission["user_id"] X_sub = X_submission[time_slot_cols_X] y_sub = clf.predict(X_sub) submission = pd.DataFrame(y_sub, columns=time_slot_cols_y) submission["user_id"] = user_ids.to_numpy() submission.to_csv("submission.csv")
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) import pandas as pd import numpy as np from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_absolute_percentage_error train_df = pd.read_csv("/kaggle/input/gdz-elektrik-datathon-2023/train.csv") submit_df = pd.read_csv( "/kaggle/input/gdz-elektrik-datathon-2023/sample_submission.csv" ) med_df = pd.read_csv("/kaggle/input/gdz-elektrik-datathon-2023/med.csv") med_df["Yıl"] = pd.to_datetime(med_df["Tarih"]).dt.year med_df["Ay"] = pd.to_datetime(med_df["Tarih"]).dt.month med_df["Gün"] = pd.to_datetime(med_df["Tarih"]).dt.day train_df["Yıl"] = pd.to_datetime(train_df["Tarih"]).dt.year train_df["Ay"] = pd.to_datetime(train_df["Tarih"]).dt.month train_df["Gün"] = pd.to_datetime(train_df["Tarih"]).dt.day train_df["Saat"] = pd.to_datetime(train_df["Tarih"]).dt.hour submit_df["Yıl"] = pd.to_datetime(submit_df["Tarih"]).dt.year submit_df["Ay"] = pd.to_datetime(submit_df["Tarih"]).dt.month submit_df["Gün"] = pd.to_datetime(submit_df["Tarih"]).dt.day submit_df["Saat"] = pd.to_datetime(submit_df["Tarih"]).dt.hour submit_df["Kesintili Günler"] = 0 train_df = train_df.drop("Tarih", axis=1) submit_df = submit_df.drop("Tarih", axis=1) med_df = med_df.drop("Tarih", axis=1) med_df[["Yıl", "Ay", "Gün"]] = med_df[["Yıl", "Ay", "Gün"]].astype(int) train_df["Kesintili Günler"] = train_df.apply( lambda row: int( (row[["Yıl", "Ay", "Gün"]] == med_df[["Yıl", "Ay", "Gün"]]).all(axis=1).any() ), axis=1, ) calendar = pd.read_csv( "/kaggle/input/d/frtgnn/turkish-calendar/Turkish calendar.csv", sep=(";") ) new_df = calendar.iloc[853:2557].copy() new_df.loc[:, "Ay"] = pd.to_datetime( new_df["CALENDAR_DATE"], format="%d.%m.%Y" ).dt.month new_df.loc[:, "Yıl"] = pd.to_datetime( new_df["CALENDAR_DATE"], format="%d.%m.%Y" ).dt.year new_df = new_df.drop(["SEASON_SK", "SPECIAL_DAY_SK", "SPECIAL_DAY_SK2"], axis=1) new_df["WEEKEND_FLAG"] = new_df["WEEKEND_FLAG"].replace(["N"], 0) new_df["WEEKEND_FLAG"] = new_df["WEEKEND_FLAG"].replace(["Y"], 1) new_df["RAMADAN_FLAG"] = new_df["RAMADAN_FLAG"].replace(["N"], 0) new_df["RAMADAN_FLAG"] = new_df["RAMADAN_FLAG"].replace(["Y"], 1) new_df["PUBLIC_HOLIDAY_FLAG"] = new_df["PUBLIC_HOLIDAY_FLAG"].replace(["N"], 0) new_df["PUBLIC_HOLIDAY_FLAG"] = new_df["PUBLIC_HOLIDAY_FLAG"].replace(["Y"], 1) new_df.rename(columns={"DAY_OF_MONTH": "Gün"}, inplace=True) new_df.rename(columns={"DAY_OF_WEEK_SK": "Haftanın Günü"}, inplace=True) new_df.rename(columns={"QUARTER_OF_YEAR": "Sezon"}, inplace=True) new_df.rename(columns={"WEEKEND_FLAG": "Haftasonu - Haftaiçi"}, inplace=True) new_df.rename(columns={"WEEK_OF_YEAR": "Yılın kaçıncı haftası"}, inplace=True) new_df.rename(columns={"RAMADAN_FLAG": "Ramazan"}, inplace=True) new_df.rename(columns={"RELIGIOUS_DAY_FLAG_SK": "Dini Gün"}, inplace=True) new_df.rename(columns={"NATIONAL_DAY_FLAG_SK": "Ulusal Gün"}, inplace=True) new_df.rename(columns={"PUBLIC_HOLIDAY_FLAG": "Resmi tatil"}, inplace=True) new_df_submit = new_df.iloc[0:31] new_df_train = new_df.iloc[31:1704] merged_df = pd.merge(train_df, new_df_train, on=["Yıl", "Ay", "Gün"]) merged_df2 = pd.merge(submit_df, new_df_submit, on=["Yıl", "Ay", "Gün"]) merged_df X_train = merged_df.drop("Dağıtılan Enerji (MWh)", axis=1) X_train = X_train.drop("CALENDAR_DATE", axis=1) y_train = merged_df["Dağıtılan Enerji (MWh)"] X_test = merged_df2.drop("Dağıtılan Enerji (MWh)", axis=1) X_test = X_test.drop("CALENDAR_DATE", axis=1) rf_model = RandomForestRegressor(n_estimators=100, random_state=42) rf_model.fit(X_train, y_train) # Make predictions on the validation set y_pred = rf_model.predict(X_test) subm = pd.read_csv("/kaggle/input/gdz-elektrik-datathon-2023/sample_submission.csv") subm["Dağıtılan Enerji (MWh)"] = y_pred subm subm.to_csv("submission6.csv", index=None)
import numpy as np import pandas as pd import matplotlib.pyplot as plt train = pd.read_csv("/kaggle/input/aqueous-solubility-predictioin/train.csv") test = pd.read_csv("/kaggle/input/aqueous-solubility-predictioin/test.csv") train.info() features_todrop = ["SD", "Ocurrences", "Group"] label = train["Solubility"] features = train.drop(columns=features_todrop) features = features.drop(columns="Solubility") num_features = features.select_dtypes(["float64", "int64"]) from sklearn.model_selection import train_test_split features_train, features_valid, labels_train, labels_valid = train_test_split( num_features, label, test_size=0.2, random_state=7 ) from xgboost import XGBRegressor xgb_model = XGBRegressor(n_estimators=200) xgb_model.fit(features_train, labels_train) from sklearn.metrics import mean_squared_error mean_squared_error(labels_valid, xgb_model.predict(features_valid)) test["Solubility"] = xgb_model.predict(test.select_dtypes(["float64", "int64"])) test[["comp_id", "Solubility"]].to_csv("/kaggle/working/submission.csv", index=False)
import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt from plotly.express import * import plotly.express as px df = pd.read_csv( "/kaggle/input/top-50-us-tech-companies-2022-2023-dataset/Top 50 US Tech Companies 2022 - 2023.csv" ) df.head(10) # ### rename the columns so that they make sense. We can use rename() method by passing in a dictionary of old and new names df.rename( columns={ "Company Name": "Company", "Founding Year": "Founding", "Annual Revenue 2022-2023 (USD in Billions)": "Revenue_USD", "Market Cap (USD in Trillions)": "MarketCap_with_Trillions", "Employee Size": "Employee", "Stock Name": "Stock_Name", }, inplace=True, ) df.columns # # Data Wringling df.head().info df.describe() df.shape # ### extracting profits (Annual Revenue 2022-2023 (USD in Billions)) for this Tech Companies df.head(10) fig = px.bar(df, x="Revenue_USD", y="Company") fig.show() # ### Compare the trend of top 5 companies that contributed the most Revenue With US Dollars¶ inplace = True df.sort_values(by=["Revenue_USD"], ascending=False, axis=0, inplace=True) df.head() # get the top 5 entries df_top5 = df.head() # transpose the dataframe df_top5 = df_top5["Revenue_USD"].transpose() print(df_top5) import plotly.express as px fig = px.bar(df_top5, y=["Revenue_USD"]) fig.show() # ### Numbers of Employees for the first 10 Companies in DataFrame df.head(10).index = df.head(10).index.map( int ) # let's change the index values of df_CI to type integer for plotting df.head(10).plot(kind="bar") plt.title("distribution of Employee") plt.ylabel("Founding") plt.xlabel("Company") plt.show() # ### Another Compare the trend of top 10 companies that contributed the most MarketCap with Trillions¶ inplace = True df.sort_values(by=["MarketCap_with_Trillions"], ascending=False, axis=0, inplace=True) df.head(10) df_top10 = df.head(10) # transpose the dataframe df_top10 = df_top10["MarketCap_with_Trillions"].transpose() print(df_top10) import plotly.express as px fig = px.line(df_top10, y=["MarketCap_with_Trillions"]) fig.show()
# # Sentiment Analysis Jumia Reviews # In this NLP project I'll be attempting to classify reviews on a particula product sold on the [Jumia](https://www.jumia.com.ng/) intopositive or negative type categories based off the text content and summary in the reviews. # We will use the [Jumia dataset](https://www.kaggle.com/datasets/chibuzornwachukwu/product-ratings-oraimo-jumia-reviews) from Kaggle. # This dataset covers the ratings on the [Oraimo](oraimo.com.ng) Freepods 3 over a year after its release. # It is a decent product and the data pretty much buttresses this point. # Check out and - if you can - classify the reviews of the customer base. # - Customer Name - the name of the customer # - Review Topic - the title and summary of each review # - Review Body - the contents of the reviews # - Rating(of 5) - product score by each customer (on a 1-5 scale) # - Review date - date of each review # ### Importing Dependencies import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns color = sns.color_palette() import plotly.offline as py py.init_notebook_mode(connected=True) import plotly.graph_objs as go import plotly.tools as tls import plotly.express as px # ### Wranging and Cleaning jumia = pd.read_csv( "/kaggle/input/product-ratings-oraimo-jumia-reviews/jumia_reviews_df_multi_page.csv" ) jumia.head() jumia.info() jumia.rename({"Rating(of 5)": "rating"}, axis=1, inplace=True) jumia.dropna(inplace=True) # ### Exploring the reviews fig = px.histogram(jumia, x="rating") fig.update_traces( marker_color="turquoise", marker_line_color="rgb(8,48,107)", marker_line_width=1.5 ) fig.update_layout(title_text="Product Ratings") fig.show() ratings = jumia["rating"].value_counts() numbers = ratings.index quantity = ratings.values custom_colors = ["green", "yellowgreen", "orange", "tomato", "red"] plt.figure(figsize=(10, 8)) plt.pie(quantity, labels=numbers, colors=custom_colors) central_circle = plt.Circle((0, 0), 0.5, color="white") fig = plt.gcf() fig.gca().add_artist(central_circle) plt.rc("font", size=12) plt.title("Distribution of Jumia Product Ratings", fontsize=14) plt.show() # > More than half the customers that purchased the product loved it import nltk from nltk.corpus import stopwords from wordcloud import WordCloud # Creating Stopwords list stopwords = set(stopwords.words("english")) stopwords.update(["br", "href"]) textt = " ".join(review for review in jumia["Review Body"]) wordcloud = WordCloud(stopwords=stopwords).generate(textt) plt.imshow(wordcloud, interpolation="bilinear") plt.axis("off") plt.show() #### Removing the neutral reviews jumia = jumia[jumia["rating"] != 3] jumia["sentiment"] = jumia["rating"].apply(lambda rating: +1 if rating > 3 else -1) # #### Positive vs Negative reviews positive = jumia[jumia["sentiment"] == 1].dropna() negative = jumia[jumia["sentiment"] == -1].dropna() import nltk from nltk.corpus import stopwords stopwords = set(stopwords.words("english")) stopwords.update( [ "freepod", "pod", "Freepods", "Freepod", "stuff", "href", "good", "great", "sound", "product", "flavour", "like", "coffee", "dog", "flavor", "buy", "but", ] ) ## good and great removed because they were included in negative sentiment pos = " ".join(review for review in positive["Review Body"]) wordcloud = WordCloud(stopwords=stopwords).generate(pos) plt.imshow(wordcloud, interpolation="bilinear") plt.axis("off") plt.show() import nltk from nltk.corpus import stopwords stopwords = set(stopwords.words("english")) stopwords.update( [ "freepod", "pod", "Freepods", "Freepod", "stuff", "href", "good", "great", "sound", "product", "flavour", "like", "coffee", "dog", "flavor", "buy", "but", ] ) ## good and great removed because they were included in negative sentiment pos = " ".join(review for review in negative["Review Body"]) wordcloud = WordCloud(stopwords=stopwords).generate(pos) plt.imshow(wordcloud, interpolation="bilinear") plt.axis("off") plt.show() jumia["sentiment"] = jumia["sentiment"].replace({-1: "negative"}) jumia["sentiment"] = jumia["sentiment"].replace({1: "positive"}) fig = px.histogram(jumia, x="sentiment") custom_colors = ["yellowgreen", "tomato"] fig.update_traces( marker_color=custom_colors, marker_line_color=custom_colors, marker_line_width=1.5 ) fig.update_layout(title_text="Product Sentiment") fig.show() # > The ratio of positive reviews is way higher than that of negative # ### Even more cleaning # > We "attack" the punctuation and unnecessary characters def remove_punctuation(text): final = "".join(u for u in text if u not in ("?", ".", ";", ":", "!", '"')) return final jumia["Review Body"] = jumia["Review Body"].apply(remove_punctuation) jumia = jumia.dropna(subset=["Review Topic"]) jumia["Review Topic"] = jumia["Review Topic"].apply(remove_punctuation) # #### Creating Bag of Words # > Making use of the count vectorizer from sklearn which will transform the text in our data frame into a a sparse matrix of integers - a bag of words model that can be understood and used by the logistic regression model. # random split train and test data index = jumia.index jumia["random_number"] = np.random.randn(len(index)) train = jumia[jumia["random_number"] <= 0.8] test = jumia[jumia["random_number"] > 0.8] # count vectorizer: from sklearn.feature_extraction.text import CountVectorizer vectorizer = CountVectorizer(token_pattern=r"\b\w+\b") train_matrix = vectorizer.fit_transform(train["Review Topic"]) test_matrix = vectorizer.transform(test["Review Topic"]) # ### Split - Train - Test # #### Spliting Dataframe using the following ratio # - 80% for the training # - 20% for the testing and evaluation X_train = train_matrix X_test = test_matrix y_train = train["sentiment"] y_test = test["sentiment"] # Logistic Regression from sklearn.linear_model import LogisticRegression lr = LogisticRegression(solver="lbfgs", max_iter=6000) # Feature Scaling from sklearn.preprocessing import StandardScaler scaler = StandardScaler(with_mean=False) X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) lr.fit(X_train, y_train) predictions = lr.predict(X_test) # #### Find accuracy, precision, recall: from sklearn.metrics import confusion_matrix, classification_report new = np.asarray(y_test) confusion_matrix(predictions, y_test) print(classification_report(predictions, y_test))
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from matplotlib import pyplot as plt import seaborn as sns df_train = pd.read_csv("/kaggle/input/spaceship-titanic/train.csv") print("Tamanho: ", df_train.shape) df_train.head() df_test = pd.read_csv("/kaggle/input/spaceship-titanic/test.csv") # # Repassando pela análise de dados # ### Ressaltando que para as variáveis categóricas é necessário transformar para numerico/booleano df_train.describe() df_train.corr() sns.pairplot( df_train, hue="Transported", vars=["Age", "RoomService", "FoodCourt", "Spa", "ShoppingMall", "VRDeck"], ) # ### Visualizar os dados nulos df_train.isna().sum() df_train[df_train.isna().any(axis=1)] df_train[df_train.isna().any(axis=1)].isna().sum() # # ### uma opção válida é excluir as linhas com dados nulos # ## Age sns.histplot(data=df_train, x="Age", kde=True) sns.histplot(data=df_train, x="Age", kde=True, hue="Transported") display( df_train[["Transported", "HomePlanet", "Age"]] .groupby(by=["Transported", "HomePlanet"]) .median() .reset_index() ) fig, axes = plt.subplots(nrows=3, ncols=1) sns.histplot( data=df_train, x="Age", kde=True, hue="HomePlanet", ax=axes[0], hue_order=["Earth", "Europa", "Mars"], ).set_title("População") sns.histplot( data=df_train[df_train["Transported"] == True], x="Age", kde=True, hue="HomePlanet", ax=axes[1], hue_order=["Earth", "Europa", "Mars"], ).set_title("Transportados") sns.histplot( data=df_train[df_train["Transported"] == False], x="Age", kde=True, hue="HomePlanet", ax=axes[2], hue_order=["Earth", "Europa", "Mars"], ).set_title("Não transportados") plt.subplots_adjust(top=1.7) fig.set_figheight(7) # Em transportados, há um aumento nas idades baixas # #### Cryosleep sns.countplot(data=df_train, x="CryoSleep", hue="Transported").set_title( "Sono Criogênico" ) # #### HomePlanet df_train["earthling"] = df_train["HomePlanet"].map( {"Earth": True, "Mars": False, "Europa": False} ) df_test["earthling"] = df_train["HomePlanet"].map( {"Earth": True, "Mars": False, "Europa": False} ) df_train["HomePlanet_num"] = df_train["HomePlanet"].map( {"Earth": 1, "Mars": 0, "Europa": -1} ) df_test["HomePlanet_num"] = df_train["HomePlanet"].map( {"Earth": 1, "Mars": 0, "Europa": -1} ) fig, axes = plt.subplots(nrows=1, ncols=2) sns.countplot(df_train, x="HomePlanet", hue="Transported", ax=axes[0]).set_title( "HomePlanet" ) sns.countplot(df_train, x="earthling", hue="Transported", ax=axes[1]).set_title( "Earthling" ) fig.set_figwidth(10) # #### Destination sns.countplot(df_train, x="Destination", hue="Transported") df_train["Destination_num"] = df_train["Destination"].map( {"TRAPPIST-1e": 1, "PSO J318.5-22": 0, "55 Cancri e": -1} ) df_test["Destination_num"] = df_test["Destination"].map( {"TRAPPIST-1e": 1, "PSO J318.5-22": 0, "55 Cancri e": -1} ) # #### Cabin df_train[["deck", "num", "side"]] = df_train["Cabin"].str.split("/", expand=True) df_test[["deck", "num", "side"]] = df_test["Cabin"].str.split("/", expand=True) sns.countplot(df_train, x="deck", hue="Transported") df_train["deck_num"] = df_train["deck"].map( {"F": 1, "E": 1, "B": -1, "C": -1, "A": 0, "G": 0, "D": 0} ) df_test["deck_num"] = df_test["deck"].map( {"F": 1, "E": 1, "B": -1, "C": -1, "A": 0, "G": 0, "D": 0} ) sns.countplot(df_train, x="side", hue="Transported") df_train["side_num"] = df_train["side"].map({"P": 1, "S": -1}) df_test["side_num"] = df_test["side"].map({"P": 1, "S": -1}) # # Seleção de variáveis importantes # ['CryoSleep','Age',"VIP",'RoomService','FoodCourt','ShoppingMall','Spa','VRDeck','HomePlanet_num', 'Destination_num', 'deck_num','side_num'] colunas = [ "CryoSleep", "Age", "VIP", "RoomService", "FoodCourt", "ShoppingMall", "Spa", "VRDeck", "HomePlanet_num", "Destination_num", "deck_num", "side_num", ] # #### Decide-se da base de treino remover dados nulos e da base de teste preencher com a mediana df_test[colunas] = df_test[colunas].fillna(df_test[colunas].median()) df_train = df_train.dropna() Y_train = df_train["Transported"] X_test_origin = df_test[colunas] X_train = df_train[colunas] # # Rodar o modelo # #### Usando a biblioteca sklearn # ### Separar dados de treino entre treino e validação # ![image.png](attachment:539de484-9646-4170-a76e-168c6c63a916.png) from sklearn.model_selection import train_test_split X = X_train y = Y_train # X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, shuffle=True) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=True) # ## Exemplificando com o algoritmo KNN (K-nearest neighbors) # ![image.png](attachment:205775e9-de39-4a0d-8090-8ea05b783114.png) # ### Inicializar e rodar o modelo from sklearn.neighbors import KNeighborsClassifier # Inicializa o modelo model = KNeighborsClassifier() # O método 'fit' do sklearn treina o algoritmo com os dados de treino model.fit(X_train, y_train) # Para modelos de classificação, o método score do sklearn calcula a acurácia por padrão. model.score(X_test, y_test) # Resultados que o modelo está prevendo para a variável alvo. y_pred = model.predict(X_test) y_pred from sklearn.metrics import accuracy_score accuracy_score(y_test, y_pred) # ## "Tunar" os parâmetros # #### Modelo tem vários parâmetros, que você pode ajustar para o problema: # https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html # model = KNeighborsClassifier(n_neighbors=5) model.fit(X_train, y_train) model.score(X_test, y_test) scores = {} for n_neighbors in range(1, 51): model = KNeighborsClassifier(n_neighbors=n_neighbors) model.fit(X_train, y_train) score = model.score(X_test, y_test) scores[n_neighbors] = score scores plt.figure(figsize=(6, 4)) plt.plot(scores.keys(), scores.values(), "-bo") plt.xlabel("k", fontsize=15) plt.ylabel("Accuracy", fontsize=15) plt.show(True) best_k = max(scores, key=scores.get) print("Melhor k:", best_k) model = KNeighborsClassifier(n_neighbors=15) model.fit(X_train, y_train) model.score(X_test, y_test) # ### GridSearchCV from sklearn.model_selection import cross_val_score, GridSearchCV param_grid = { "n_neighbors": list(range(1, 51)), } grid = GridSearchCV( KNeighborsClassifier(), param_grid, cv=5, scoring="accuracy", verbose=3 ) # grid_search_knn=grid.fit(X_train, y_train) grid_search_knn = grid.fit(X, y) print("\n Melhores parâmetros: ", grid_search_knn.best_params_) print("\nScore: ", grid_search_knn.best_score_) # ## Cross Validation # ![image.png](attachment:13891abd-5b2b-44a3-8961-e343a70fcd9d.png) from sklearn.model_selection import cross_validate for n_neighbors in range(1, 51): model = KNeighborsClassifier(n_neighbors=n_neighbors) # realiza a validação cruzada. Atenção ao X e y usados cv = cross_validate(model, X, y, cv=5) print("k:", n_neighbors, "accurace:", cv["test_score"].mean()) score = cv["test_score"].mean() scores[n_neighbors] = score cv best_k = max(scores, key=scores.get) best_score = scores[best_k] print( f"Melhor k = {best_k} com score = {best_score}".format( best_k=best_k, best_score=best_score ) ) best_score == grid_search_knn.best_score_ # ## Random Forest # > #### O objetivo de um SVM é encontrar o hiperplano de separação ideal o qual maximiza a margem da base de treinamento. # ### Árvore de decisão # ![image.png](attachment:e023bcda-5d73-453a-a199-6e34b45ea1a6.png) # #### Problemas: overfitting e viés # ### Floresta aleatória # ![image.png](attachment:a8459fda-ec33-48ea-8518-110e1150afed.png) # https://www.ibm.com/topics/random-forest#:~:text=Random%20forest%20is%20a%20commonly,both%20classification%20and%20regression%20problems. # #### Documentação do sklearn: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html from sklearn.ensemble import RandomForestClassifier # random_state=42 model = RandomForestClassifier(random_state=42) model.fit(X_train, y_train) model.score(X_test, y_test) param_grid = { "n_estimators": [200, 500], # número de árvores na floresta "max_features": [ "sqrt", "log2", ], # número de features a se considerar para cada divisão "max_depth": [7, 8, 9, 10], # profundidade máxima da árvore } grid = GridSearchCV( estimator=RandomForestClassifier(random_state=42), param_grid=param_grid, cv=5, verbose=1, ) grid_search_RF = grid.fit(X_train, y_train) print("\n Melhores parâmetros: ", grid_search_RF.best_params_) print("\nScore: ", grid_search_RF.best_score_) # ## SVM (Support Vector Machine) # > #### O objetivo de um SVM é encontrar o hiperplano de separação ideal o qual maximiza a margem da base de treinamento. # ![image.png](attachment:9ad795ab-824b-4ce8-96d2-e6de1a4a73ed.png) # ![image.png](attachment:8e930ce7-0cb2-4162-856c-cc32a49b7fea.png) # ![image.png](attachment:350c0d14-a8f1-4b27-af49-7043791f949b.png) # ![image.png](attachment:b5257a2f-9c38-4558-9279-3749644d6bcf.png) # ![image.png](attachment:f366798a-3604-45ef-bfac-1afaa6826d99.png) # http://www2.decom.ufop.br/imobilis/svm-entendendo-sua-matematica-parte-1-a-margem/#:~:text=O%20SVM%20%C3%A9%20uma%20t%C3%A9cnica%20de%20classifica%C3%A7%C3%A3o%20baseada%20em%20aprendizado,cada%20classe%20estejam%20previamente%20classificadas. from sklearn.svm import SVC model = SVC() model.fit(X_train, y_train) model.score(X_test, y_test) # #### Documentação sklearn: https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html import time start = time.time() param_grid = { "C": [1, 10, 50], # paramêtro de regularização "gamma": [1, 0.1, 0.005, 0.00001, 0.0000001], # coeficiente do kernel "kernel": ["rbf"], } grid = GridSearchCV(SVC(), param_grid, cv=5, verbose=1) grid_search_svm = grid.fit(X_train, y_train) end = time.time() print("\n Melhores parâmetros: ", grid_search_svm.best_params_) print("\nScore: ", grid_search_svm.best_score_) print("\nTotal time: ", end - start) # # Modelo final # #### Compara-se os resultados dos modelos acima e escolhe o que obteve o maior score print("Knn: ", grid_search_knn.best_score_) print("RandomForest: ", grid_search_RF.best_score_) print("SVM: ", grid_search_svm.best_score_) # #### RandomForest é escolhido por ter maior pontuação # Com modelo já treinado, obtém-se a predição para a base de testes # Obs: lembrar de fazer na base de testes as mesmas modificações de features (colunas) que foi feito na base de treino (transformar features, criar features novas, etc) y_test_predict = grid_search_RF.predict(X_test_origin) output = pd.DataFrame( {"PassengerId": df_test["PassengerId"], "Transported": y_test_predict} ) output output.to_csv("submission.csv", index=False)
import numpy as np import torch import torch.nn as nn import torch.optim as optim import matplotlib.pyplot as plt def get_data(a, seq_lenth): x = np.cos(a) y = np.sin(a) x_data = [] y_data = [] sample_num = int(len(x) / seq_length) # sample_num的个数为x_data的个数 for i in range(sample_num): x_data.append(x[i * seq_length : (i + 1) * seq_length]) y_data.append(y[i * seq_length : (i + 1) * seq_length]) x_data = torch.tensor(x_data, dtype=torch.float32).unsqueeze(2) y_data = torch.tensor(y_data, dtype=torch.float32).unsqueeze(2) return x_data, y_data seq_length = 5 # 每个epoch的长度 pi = 3.14 a = np.linspace(0 * pi, 1.1 * pi, 11000) b = np.linspace(1.1 * pi, 2 * pi, 9000) x_train, y_train = get_data(a, seq_length) x_test, y_test = get_data(b, seq_length) # 训练集的范围是0-10pi aa = np.linspace(-10 * pi, 10 * pi, 2000) bb = np.linspace(10 * pi, 14 * pi, 400) xx_train, yy_train = get_data(aa, seq_length) xx_test, yy_test = get_data(bb, seq_length) # RNN class EncoderRNN(nn.Module): def __init__(self, input_size, hidden_size): super(EncoderRNN, self).__init__() self.hidden_size = hidden_size self.rnn = nn.RNN(input_size, hidden_size, batch_first=True) def forward(self, x): _, hidden = self.rnn(x) return hidden class DecoderRNN(nn.Module): def __init__(self, hidden_size, output_size): super(DecoderRNN, self).__init__() self.hidden_size = hidden_size self.rnn = nn.RNN(output_size, hidden_size, batch_first=True) self.fc = nn.Linear(hidden_size, output_size) def forward(self, x, hidden): output, _ = self.rnn(x, hidden) output = self.fc(output) return output # RNN input_size = 1 hidden_size = 64 output_size = 1 encoder = EncoderRNN(input_size, hidden_size) decoder = DecoderRNN(hidden_size, output_size) criterion = nn.MSELoss() encoder_optimizer = optim.Adam(encoder.parameters(), lr=0.001) decoder_optimizer = optim.Adam(decoder.parameters(), lr=0.001) # RNN,训练集的范围是0-1pi import matplotlib.pyplot as plt epochs = 3000 loss_val = [] for epoch in range(epochs): encoder_optimizer.zero_grad() decoder_optimizer.zero_grad() hidden = encoder(x_train) decoder_input = torch.zeros(x_train.size(0), seq_length, 1) y_pred = decoder(decoder_input, hidden) loss = criterion(y_pred, y_train) loss_val.append(loss.item()) loss.backward() encoder_optimizer.step() decoder_optimizer.step() if epoch % 100 == 0: print(f"Epoch{epoch},Loss:{loss.item()}") plt.plot(loss_val, label="loss") plt.legend() plt.show() print("Finished Training") # RNN,训练集的范围是0-1pi encoder.eval() decoder.eval() with torch.no_grad(): hidden = encoder(x_train) decoder_input = torch.zeros(x_train.size(0), seq_length, 1) y_train_pred = decoder(decoder_input, hidden) train_loss = criterion(y_train_pred, y_train) print(f"Train Loss:{train_loss.item()}") hidden = encoder(x_test) decoder_input = torch.zeros(x_test.size(0), seq_length, 1) y_test_pred = decoder(decoder_input, hidden) test_loss = criterion(y_test_pred, y_test) print(f"Test Loss:{test_loss.item()}") # RNN,训练集的范围是0-1pi import matplotlib.pyplot as plt x1 = x_train.numpy().reshape(-1) y1 = y_train.numpy().reshape(-1) y1_ = y_train_pred.numpy().reshape(-1) x2 = x_test.numpy().reshape(-1) y2 = y_test.numpy().reshape(-1) y2_ = y_test_pred.numpy().reshape(-1) x1.shape y1.shape plt.plot(a, y1, label="train_ture") plt.plot(a, y1_, label="train_pred") plt.plot(b, y2, label="test_ture") plt.plot(b, y2_, label="test_pred") plt.legend() plt.show() # RNN,训练集的范围是-10到10pi import matplotlib.pyplot as plt epochs = 3000 loss_val = [] for epoch in range(epochs): encoder_optimizer.zero_grad() decoder_optimizer.zero_grad() hidden = encoder(xx_train) decoder_input = torch.zeros(xx_train.size(0), seq_length, 1) yy_pred = decoder(decoder_input, hidden) loss = criterion(yy_pred, yy_train) loss_val.append(loss.item()) loss.backward() encoder_optimizer.step() decoder_optimizer.step() if epoch % 100 == 0: print(f"Epoch{epoch},Loss:{loss.item()}") plt.plot(loss_val, label="loss") plt.legend() plt.show() print("Finished Training") # RNN,训练集的范围是-10到10pi encoder.eval() decoder.eval() with torch.no_grad(): hidden = encoder(xx_train) decoder_input = torch.zeros(xx_train.size(0), seq_length, 1) yy_train_pred = decoder(decoder_input, hidden) train_loss = criterion(yy_train_pred, yy_train) print(f"Train Loss:{train_loss.item()}") hidden = encoder(xx_test) decoder_input = torch.zeros(xx_test.size(0), seq_length, 1) yy_test_pred = decoder(decoder_input, hidden) test_loss = criterion(yy_test_pred, yy_test) print(f"Test Loss:{test_loss.item()}") # RNN,训练集的范围是-10到10pi import matplotlib.pyplot as plt x1 = xx_train.numpy().reshape(-1) y1 = yy_train.numpy().reshape(-1) y1_ = yy_train_pred.numpy().reshape(-1) x2 = xx_test.numpy().reshape(-1) y2 = yy_test.numpy().reshape(-1) y2_ = yy_test_pred.numpy().reshape(-1) x1.shape y1.shape plt.plot(aa, y1, label="train_ture") plt.plot(aa, y1_, label="train_pred") plt.plot(bb, y2, label="test_ture") plt.plot(bb, y2_, label="test_pred") plt.legend() plt.show() # LSTM class LstmRNN(nn.Module): def __init__(self, input_size, hidden_size, output_size, num_layers): super().__init__() self.lstm = nn.LSTM( input_size, hidden_size, num_layers ) # utilize the LSTM model in torch.nn self.linear1 = nn.Linear(hidden_size, output_size) # 全连接层 def forward(self, _x): x, _ = self.lstm(_x) # _x is input, size (seq_len, batch, input_size) # s, b, h = x.shape # x is output, size (seq_len, batch, hidden_size) # x = x.view(s * b, h) x = self.linear1(x) # x = x.view(s, b, -1) return x # LSTM input_size = 1 hidden_size = 64 output_size = 1 num_layers = 1 lstm = LstmRNN(input_size, hidden_size, output_size, num_layers) criterion = nn.MSELoss() lstm_optimizer = optim.Adam(lstm.parameters(), lr=0.001) # LSTM,训练集的范围是0-1pi import matplotlib.pyplot as plt epochs = 600 running_loss = 0.0 loss_val = [] for epoch in range(epochs): lstm_optimizer.zero_grad() y_pred = lstm(x_train) loss = criterion(y_pred, y_train) loss.backward() lstm_optimizer.step() loss_val.append(loss.item()) if epoch % 100 == 0: print(f"Epoch{epoch},Loss:{loss.item()}") plt.plot(loss_val, label="loss") plt.legend() plt.show() print("Finished Training") # LSTM,训练集的范围是0-1pi lstm.eval() with torch.no_grad(): y_train_pred = lstm(x_train) train_loss = criterion(y_train_pred, y_train) print(f"Train Loss:{train_loss.item()}") y_test_pred = lstm(x_test) test_loss = criterion(y_test_pred, y_test) print(f"Test Loss:{test_loss.item()}") # LSTM,训练集的范围是0-1pi import matplotlib.pyplot as plt x1 = x_train.numpy().reshape(-1) y1 = y_train.numpy().reshape(-1) y1_ = y_train_pred.numpy().reshape(-1) x2 = x_test.numpy().reshape(-1) y2 = y_test.numpy().reshape(-1) y2_ = y_test_pred.numpy().reshape(-1) x1.shape y1.shape plt.plot(a, y1, label="train_ture") plt.plot(a, y1_, label="train_pred") plt.plot(b, y2, label="test_ture") plt.plot(b, y2_, label="test_pred") plt.legend() plt.show() # LSTM,训练集的范围是-10到10pi import matplotlib.pyplot as plt epochs = 600 running_loss = 0.0 loss_val = [] for epoch in range(epochs): lstm_optimizer.zero_grad() yy_pred = lstm(xx_train) loss = criterion(yy_pred, yy_train) loss.backward() lstm_optimizer.step() loss_val.append(loss.item()) if epoch % 100 == 0: print(f"Epoch{epoch},Loss:{loss.item()}") plt.plot(loss_val, label="loss") plt.legend() plt.show() print("Finished Training") # LSTM,训练集的范围是-10到10pi lstm.eval() with torch.no_grad(): yy_train_pred = lstm(xx_train) train_loss = criterion(yy_train_pred, yy_train) print(f"Train Loss:{train_loss.item()}") yy_test_pred = lstm(xx_test) test_loss = criterion(yy_test_pred, yy_test) print(f"Test Loss:{test_loss.item()}") # LSTM,训练集的范围是-10到10pi import matplotlib.pyplot as plt x1 = xx_train.numpy().reshape(-1) y1 = yy_train.numpy().reshape(-1) y1_ = yy_train_pred.numpy().reshape(-1) x2 = xx_test.numpy().reshape(-1) y2 = yy_test.numpy().reshape(-1) y2_ = yy_test_pred.numpy().reshape(-1) x1.shape y1.shape plt.plot(aa, y1, label="train_ture") plt.plot(aa, y1_, label="train_pred") plt.plot(bb, y2, label="test_ture") plt.plot(bb, y2_, label="test_pred") plt.legend() plt.show()